Science.gov

Sample records for paleoclimatology

  1. Molecular proxies for paleoclimatology

    NASA Astrophysics Data System (ADS)

    Eglinton, Timothy I.; Eglinton, Geoffrey

    2008-10-01

    We summarize the applications of molecular proxies in paleoclimatology. Marine molecular records especially are proving to be of value but certain environmentally persistent compounds can also be measured in lake sediments, loess deposits and ice cores. The fundamentals of this approach are the molecular parameters, the compound abundances and carbon, hydrogen, nitrogen and oxygen isotopic contents which can be derived by the analysis of sediment extracts. These afford proxy measures which can be interpreted in terms of the conditions which control climate and also reflect its operation. We discuss two types of proxy; those of terrigenous and those of aquatic origin, and exemplify their application in the study of marine sediments through the medium of ten case studies based in the Atlantic, Mediterranean and Pacific Oceans, and in Antarctica. The studies are mainly for periods in the present, the Holocene and particularly the last glacial/interglacial, but they also include one study from the Cretaceous. The terrigenous proxies, which are measures of continental vegetation, are based on higher plant leaf wax compounds, i.e. long-chain (circa C 30) hydrocarbons, alcohols and acids. They register the relative contributions of C 3 vs. C 4 type plants to the vegetation in the source areas. The two marine proxies are measures of sea surface temperatures (SST). The longer established one, (U 37K') is based on the relative abundances of C 37 alkenones photosynthesized by unicellular algae, members of the Haptophyta. The newest proxy (TEX 86) is based on C 86 glycerol tetraethers (GDGTs) synthesized in the water column by some of the archaeal microbiota, the Crenarchaeota.

  2. Paleoclimatology

    SciTech Connect

    Crowley, T.J.; North, G.R.

    1991-01-01

    The 1980s began with the publication of a signal pioneering work in this general field: T.J.M. Schopf's Paleoceanography (Harvard University Press). What followed might be called the decade of climate modelling, or at least the decade when climate modelling increasingly worked back in time and broadened to include the oceans, when modelling emerged as a formidable tool for investigation of the geological past. Crowley (Applied Research Corporation) and North (Texas A M) have been prominent players in this new game, and they bring authoritative insight to this volume. The book is logically organized and suitable for a graduate textbook. It begins appropriately with an elementary description of energy balance models applied to the present world climate. An innovation of particular interest is the concept of instabilities owing to nonlinear feedbacks, which may account for catastrophic events such as the abrupt retreat of an ince cap. The introductory chapters continue with a generalized treatment of the present atmospheric and oceanic circulation and the global distribution of sea surface temperature and salinity. The differential equations that drive the general circulation models (GCMs) are laid out in principle, and the formidable complications of coupling the ocean into the system are outlined. This game is apparently one in which available computer time rarely catches up with the demands of its increasing complexity. The main part of the volume consists of five chapters on aspects of Quaternary climates, and another five chapters that move the reader backward through geological time to finally confront the dim mysteries of the Precambrian. These chapters each include a critical discussion of the ground truth - that which is already known about the climate of each geological interval, including evaluation of a wide variety of climatically sensitive proxy parameters: flora, fauna, glacial deposits, evaporites, coals, and isotope ratios of oxygen and carbon.

  3. Paleoclimatology

    SciTech Connect

    Not Available

    1991-01-01

    This book presents information that helps scientists to understand climate changes of the past. The book focuses on the results from observational modeling studies from the Quaternary and pre-Quaternary periods. The text includes sections on climate models and their structures, power, and limitations; the need for additional research, and the consequences of greenhouse warming. The book is 18th in the Oxford Monographs on Geology and Geophysics series.

  4. The Urbino Summer School in Paleoclimatology: Investing in the future of paleoclimatology

    NASA Astrophysics Data System (ADS)

    Schellenberg, S. A.; Galeotti, S.; Brinkhuis, H.; Leckie, R. M.

    2010-12-01

    Improving our understanding of global climate dynamics is increasingly critical as we continue to perturb the Earth system on geologically rapid time-scales. One approach is the modeling of climate dynamics; another is the exploitation of natural archives of climate history. To promote the synergistic integration of these approaches in the next generation of paleoclimatologists, a group of international teacher-scholars have developed the Urbino Summer School in Paleoclimatology (USSP), which has been offered since 2004 at the Università degli Studi di Urbino in Urbino, Italy. The USSP provides international graduate students with an intensive three-week experience in reconstructing the history and dynamics of climate through an integrated series of lectures, investigations, and field and laboratory analyses. Complementing these formal components, informal scientific discussions and collaborations are promoted among faculty and students through group meals, coffee breaks, socials, and evening presentations. The first week begins with a broad overview of climate history and dynamics, and then focuses on the principles and methods that transform geographically- and materially-diverse data into globally time-ordinated paleoclimatic information. Lectures largely serve as “connective tissue” for student-centered investigations that use ocean drilling data and student-collected field data from the spectacular exposures of the surrounding Umbre-Marche Basin. The second week provides sessions and investigations on various biotic and geochemical proxies, and marks the start of student “working groups,” each of whom focus on current understanding of, and outstanding questions regarding, a particular geologic time-interval. Parallel sessions also commence, wherein students self-select to attend one of three concurrently-offered more specialized topics. The third week is an intensive exploration of geochemical, climate, and ocean modeling that stresses the integration

  5. Methods and future directions for paleoclimatology in the Maya Lowlands

    NASA Astrophysics Data System (ADS)

    Douglas, Peter M. J.; Brenner, Mark; Curtis, Jason H.

    2016-03-01

    A growing body of paleoclimate data indicates that periods of severe drought affected the Maya Lowlands of southeastern Mexico and northern Central America, especially during the Terminal Classic period (ca. 800-950 CE), raising the possibility that climate change contributed to the widespread collapse of many Maya polities at that time. A broad range of paleoclimate proxy methods have been applied in the Maya Lowlands and the data derived from these methods are sometimes challenging for archeologists and other non-specialists to interpret. This paper reviews the principal methods used for paleoclimate inference in the region and the rationale for climate proxy interpretation to help researchers working in the Maya Lowlands make sense of paleoclimate datasets. In particular, we focus on analyses of speleothems and lake sediment cores. These two paleoclimate archives have been most widely applied in the Maya Lowlands and have the greatest potential to provide insights into climate change impacts on the ancient Maya. We discuss the development of chronologies for these climate archives, the proxies for past climate change found within them, and how these proxy variables are interpreted. Finally, we present strategies for improving our understanding of proxy paleoclimate data from the Maya Lowlands, including multi-proxy analyses, assessment of spatial variability in past climate change, combined analysis of climate models and proxy data, and the integration of paleoclimatology and archeology.

  6. Geology, paleoclimatology and the evolution of the kidney: some explorations into the legacy of Homer Smith.

    PubMed

    Kooman, Jeroen P

    2012-01-01

    The aim of this review is to perform an overview of the relation between kidney development in different species and new developments in plate tectonics and paleoclimatology, which likely had a remarkable effect on evolution. The review follows the ideas of Homer Smith, but adds new data on the subjects which were unknown in Homer Smith's time. The structure and function of the kidney are a result of hundreds of millions of years of evolution, in which adaptations had to be made in response to environmental demands while maintaining the kidney's integrated function. The ideas of Homer Smith have greatly contributed to our understanding of this process, and continue to be of relevance both for researchers as well as physicians working in the field of kidney disease.

  7. Technical Note: The Linked Paleo Data framework - a common tongue for paleoclimatology

    NASA Astrophysics Data System (ADS)

    McKay, N. P.; Emile-Geay, J.

    2015-09-01

    Paleoclimatology is a highly collaborative scientific endeavor, increasingly reliant on online databases for data sharing. Yet, there is currently no universal way to describe, store and share paleoclimate data: in other words, no standard. Data standards are often regarded by scientists as mere technicalities, though they underlie much scientific and technological innovation, as well as facilitating collaborations between research groups. In this article, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the proxy and measurement types encountered in a large international collaboration (PAGES2K). We also introduce a vehicle for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representations (Linked Open Data). The LiPD framework enables quick querying and extraction, and we expect that it will facilitate the writing of open-source, community codes to access, analyze, model and visualize paleoclimate observations. We welcome community feedback on this standard, and encourage paleoclimatologists to experiment with the format for their own purposes.

  8. Technical note: The Linked Paleo Data framework - a common tongue for paleoclimatology

    NASA Astrophysics Data System (ADS)

    McKay, Nicholas P.; Emile-Geay, Julien

    2016-04-01

    Paleoclimatology is a highly collaborative scientific endeavor, increasingly reliant on online databases for data sharing. Yet there is currently no universal way to describe, store and share paleoclimate data: in other words, no standard. Data standards are often regarded by scientists as mere technicalities, though they underlie much scientific and technological innovation, as well as facilitating collaborations between research groups. In this article, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the archive and measurement types encountered in a large international collaboration (PAGES 2k). We also introduce a vehicle for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representation (Linked Open Data).The LiPD framework enables quick querying and extraction, and we expect that it will facilitate the writing of open-source community codes to access, analyze, model and visualize paleoclimate observations. We welcome community feedback on this standard, and encourage paleoclimatologists to experiment with the format for their own purposes.

  9. Paleoclimatological change in the Late Neoproterozoic: Evidence from oxygen isotopes of phosphorite in Yangtze Platform, China

    NASA Astrophysics Data System (ADS)

    Ling, H.-F.; Jiang, S.-Y.; Feng, H.-Z.; Chen, J.-H.; Chen, Y.-Q.; Yang, J.-H.

    2003-04-01

    Seawater and its isotopic composition is the most promising recorder for the climate change of the Earth. Chemical sediments such as carbonate and phosphorite has long been used to reveal the seawater chemistry in the past. The d13C of carbonate with least diagenesis has proved to be sensitive proxy for paleo-environment and paleo-productivity and for chemostratigrphy (e.g. Shen, 2002; Yang et al., 1999; Lambert et al., 1987). However, d18O of carbonate are more prone to suffering diagenesis, and therefore the implications of Phanerozoic d18O curve are controversial (cf. Veizer et al., 1999). Recent study of Wenzel et al. (2000) shows that Silurian phosphatic conodont retained primary oxygen isotopes whereas the d18O values of the coeval calcitic brachiopod shells were altered by diagenesis. Here, we presented and compared oxygen, carbon isotopic compositions and trace and rare earth element concentrations of Neoproterozoic phosphorite and coeval dolomite from the Yangtze platform in an attempt to reconstruct the paleoclimatological and paleooceanographic change during Neoproterozoic. The Yangtze platform possesses excellent record of Late Neoproterozoic-Cambrian strata. In this study, we collected samples systematically from late Neoproterozoic Doushantuo Formation at the Wengan section, Guizhou province. The Doushantuo Fm, overlying on the late Vendian tillite of Nantuo Fm and overlain by dolostone of Dengying Fm which underlain the basal Cambrian black shale, consists mainly of phosphorite and minor interbeded dolostone with total thickness of about 70 m. Our results show large variations of d18Odolo(SMOW) for the dolomite (17.6 ~ 25.9‰) which has no correlation with their d13Cdolo values and other geochemical parameters. In contrast, phosphorites display rather limited variations of the d18Ophos (SMOW) values (10.7 ~ 15.0‰). Further more, the d18Ophos and d13Cdolo values, Ce anomaly and Pb/Th ratio consistently increased from the lower to upper part of the

  10. Masking of interannual climate proxy signals by residual tropical cyclone rainwater: Evidence and challenges for low-latitude speleothem paleoclimatology

    NASA Astrophysics Data System (ADS)

    Frappier, Amy Benoit

    2013-09-01

    The anomalously low oxygen isotope ratio (δ18O values) of tropical cyclone rainfall can transfer proxy information about past tropical cyclone activity to stalagmite oxygen isotope records. Isotopically distinct stormwater reaches the growing crystal surface as a coherent slug, or after attenuation by mixing with isotopically normal vadose groundwaters. A high-resolution micromilled stalagmite stable isotope record from Belize shows that residual tropical cyclone water from Hurricane Mitch masked the oxygen isotope record of a major El Niño event. On decadal time scales, measured δ18O values are affected by changes in local tropical cyclone frequency. Despite the tropical cyclone masking effect, the structure of the "missing" El Niño event is preserved in the ATM-7 carbon isotope ratios (δ13C values). In tropical cyclone-prone regions, the fidelity of stalagmite oxygen isotope proxy data to recording background climate signals is modulated by temporal variations in local tropical cyclone rainfall, and the sensitivity of individual stalagmites to tropical cyclone masking varies with hydrology. Speleothem δ13C values, unaffected by tropical cyclones, can preserve the underlying structure of climatic variability. For low-latitude speleothems with C-O isotope covariance, intervals in which the δ18O values are significantly lower than δ13C values predict may indicate periods when local tropical cyclone masking of isotope-derived precipitation records is enhanced by greater infiltration of tropical cyclone rain. The temporal structure in stalagmite C-O isotope covariance has paleoenvironmental meaning that may be revealed by exploring factors associated with independent behavior in each isotope ratio, respectively. Tropical cyclone masking presents new challenges to paleoclimatology and a source of hypotheses for paleotempestology.

  11. Towards a semantic web of paleoclimatology

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J.; Eshleman, J. A.

    2012-12-01

    The paleoclimate record is information-rich, yet signifiant technical barriers currently exist before it can be used to automatically answer scientific questions. Here we make the case for a universal format to structure paleoclimate data. A simple example demonstrates the scientific utility of such a self-contained way of organizing coral data and meta-data in the Matlab language. This example is generalized to a universal ontology that may form the backbone of an open-source, open-access and crowd-sourced paleoclimate database. Its key attributes are: 1. Parsability: the format is self-contained (hence machine-readable), and would therefore enable a semantic web of paleoclimate information. 2. Universality: the format is platform-independent (readable on all computer and operating systems), and language- independent (readable in major programming languages) 3. Extensibility: the format requires a minimum set of fields to appropriately define a paleoclimate record, but allows for the database to grow organically as more records are added, or - equally important - as more metadata are added to existing records. 4. Citability: The format enables the automatic citation of peer- reviewed articles as well as data citations whenever a data record is being used for analysis, making due recognition of scientific work an automatic part and foundational principle of paleoclimate data analysis. 5. Ergonomy: The format will be easy to use, update and manage. This structure is designed to enable semantic searches, and is expected to help accelerate discovery in all workflows where paleoclimate data are being used. Practical steps towards the implementation of such a system at the community level are then discussed.; Preliminary ontology describing relationships between the data and meta-data fields of the Nurhati et al. [2011] climate record. Several fields are viewed as instances of larger classes (ProxyClass,Site,Reference), which would allow computers to perform operations on all records within a specific class (e.g. if the measurement type is δ18O , or if the proxy class is 'Tree Ring Width', or if the resolution is less than 3 months, etc). All records in such a database would be bound to each other by similar links, allowing machines to automatically process any form of query involving existing information. Such a design would also allow growth, by adding records and/or additional information about each record.

  12. Paleoclimatology: Second clock supports orbital pacing of the ice ages

    SciTech Connect

    Kerr, R.A.

    1997-05-02

    For a while, it looked as if a water-filled crack in the Nevada desert might doom the accepted explanation of the ice ages. Twenty years ago, the so-called astronomical theory had carried the day. Oceanographers had found evidence implying that the march of ice ages over the last million years was paced by the cyclical stretching and squeezing of Earth`s orbit around the sun, which would have altered the way sunlight fell on the planet`s surface. But in 1988, researchers scuba diving in Nevada`s Devils Hole came up with a climate record--captured in carbonate deposits in the crack-that seemed to contradict this chronology. This article discusses the findings and the puzzles that still remain. The records of sea-level change in Barbados coral appear to be right and the astronomical theory is on solid ground using a new clock based on the radioactive decay of uranium-235 to protactinium-231. However, the Devils Hole record also seems to be correct.

  13. Paleoclimatology. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-07-01

    The bibliography contains citations concerning studies of climate in the geologic past. Glacial deposits, fossils, and paleogeographical data are reviewed. Topics include geologic formations, sediments and ocean bottom sampling, geological age determination, climatic changes, and greenhouse effects. (Contains 50-250 citations and includes a subject term index and title list.)

  14. Late Miocene biogeography and paleoclimatology of the central North Atlantic

    USGS Publications Warehouse

    Poore, R.Z.

    1981-01-01

    Quantitative analyses of planktonic foraminiferal assemblages from Deep Sea Drilling Project (DSDP) Holes 334 and 410 demonstrate that subpolar and subtropical faunal provinces existed in the North Atlantic during the late Miocene. Climatic oscillations are clearly recorded in Hole 410 by variations in abundance of the Neogloboquadrina subpolar assemblage. These climatic oscillations have a period of about 1 m.y. Higher frequency oscillations with a periodicity of one to several hundred thousand years are evident from about 6.5 to 7.5 m.y. and are probably present throughout the entire late Miocene. A revised age of 7.0 m.y. is proposed for the first occurrence of the calcareous nannofossil Amaurolithus primus (the Amaurolithus datum). ?? 1981.

  15. Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology

    USGS Publications Warehouse

    Ludvigson, Greg A.; Gonzalez, Luis A.; Metzger, R.A.; Witzke, B.J.; Brenner, Richard L.; Murillo, A.P.; White, T.S.

    1998-01-01

    Sphaerosiderite, a morphologically distinct millimeter-scale spherulitic siderite (FeCO3), forms predominantly in wetland soils and sediments, and is common in the geologic record. Ancient sphaerosiderites are found in paleosol horizons within coal-bearing stratigraphic intervals and, like their modern counterparts, are interpreted as having formed in water-saturated environments. Here we report on sphaerosiderites from four different stratigraphic units, each of which has highly variable 13C and relatively stable 18O compositions. The unique isotopic trends are analogous to well-documented meteoric calcite lines, which we define here as meteoric sphaerosiderite lines. Meteoric sphaerosiderite lines provide a new means of constraining ground-water ??18O and thus allow evaluation of paleohydrology and paleoclimate in humid continental settings.

  16. [Paleoclimatology studies for Yucca Mountain site characterization]. Final report

    SciTech Connect

    1996-05-03

    This report consists of two separate papers: Fernley Basin studies; and Influence of sediment supply and climate change on late Quaternary eolian accumulation patterns in the Mojave Desert. The first study involved geologic mapping of late Quaternary sediments and lacustrine features combined with precise control of elevations and descriptions of sediments for each of the major sedimentary units. The second paper documents the response of a major eolian sediment transport system in the east-central Mojave Desert: that which feeds the Kelso Dune field. Information from geomorphic, stratigraphic, and sedimentologic studies of eolian deposits and landforms is combined with luminescence dating of these deposits to develop a chronology of periods of eolian deposition. Both studies are related to site characterization studies of Yucca Mountain and the forecasting of rainfall patterns possible for the high-level radioactive waste repository lifetime.

  17. The Upper Laacher See Tephra in Lake Geneva sediments: Paleoenvironmental and paleoclimatological implications

    USGS Publications Warehouse

    Moscariello, A.; Costa, F.

    1997-01-01

    Microstratigraphical analysis of Late glacial lacustrine sediments from Geneva Bay provided evidence of a tephra layer within the upper Aller??d biozone. The layer consists of alkali feldspar, quartz, plagioclase. amphibole, pyroxene, opaques, titanite and glass shards. Electron microprobe analyses and morphological study of glass shards allowed correlation with the upper part of the Laacher See Tephra of the Laacher See volcano (Eifel Mountains, Germany). Sedimentological features of enclosing lacustrine sediments suggest that a momentary decrease in precipitation occurred in the catchment area and consequent reduction in detrital supply in the lake, after the ash fall-out. This has been interpreted as the environmental response to a momentary cooling following the Laacher See Tephra aerosols emission. Comparison with Sedimentological features characterizing the Aller??d-Younger Dryas transition highlights the sensitivity of Lake Geneva system in recording both short and long-terms climate-induced environmental changes.

  18. Recrystallization-induced oxygen isotope changes in inclusion-hosted water of speleothems - paleoclimatological implications

    NASA Astrophysics Data System (ADS)

    Demény, Attila; Czuppon, György; Leél-Őssy, Szabolcs; Németh, Péter; Szabó, Máté; Tóth, Mária; Németh, Tibor

    2016-04-01

    Stable hydrogen and oxygen isotope data of water trapped in fluid inclusions were collected for recently forming stalagmites and flowstones in order to determine how dripwater compositions are reflected and preserved in the inclusion water compositions. The samples were collected from different cave sites (with temperatures around 10 ± 1 °C) from the central and north-eastern parts of Hungary. Hydrogen isotope compositions were found to reflect dripwater values, whereas the oxygen isotope data were increasingly shifted from the local dripwater compositions with the time elapsed after deposition. The δ18O data are correlated with X-Ray diffraction full width at half maximum values (related to crystal domain size and lattice strain), suggesting that the oxygen isotope shift is related to recrystallization of calcite. Transmission electron microscope analyses detected the presence of nanocrystalline (<50 nm) calcite, whose crystallization to coarser-grained calcite crystals (>200 nm) may have induced re-equilibration between the carbonate and the trapped inclusion water. Additional data indicated that amorphous calcium carbonate (ACC) may have formed as a precursor of nanocrystalline calcite. ACC-calcite transformation followed by Ostwald ripening process provides an explanation for unexpectedly low oxygen isotope compositions in the inclusion water, especially in cold caves where carbonate may form first as an amorphous phase. This research was supported by the National Office for Research and Technology of Hungary (GVOP-3.2.1-2004-04-0235/3.0), the Hungarian Scientific Research Fund (OTKA CK 80661 and OTKA NK 101664).

  19. Palynology, paleoclimatology and correlation of middle Miocene beds from Porcupine River (locality 90-1), Alaska

    USGS Publications Warehouse

    White, J.M.; Ager, T.A.

    1994-01-01

    Beds in the Upper Ramparts Canyon of the Porcupine River, Alaska (67?? 20' N, 141?? 20' W), yielded a flora rich in pollen of hardwood genera now found in the temperate climates of North America and Asia. The beds are overlain or enclosed by two basalt flows which were dated to 15.2 ?? 0.1 Ma by the 40Ar 39Ar method, fixing the period of the greatest abundance of warm-loving genera to the early part of the middle Miocene. The assemblage is the most northern middle Miocene flora known in Alaska. Organic bed 1 underlies the basalt and is older than 15.2 Ma, but is of early to middle Miocene age. The pollen assemblage from organic bed 1 is dominated by conifer pollen from the pine and redwood-cypress-yew families with rare occurrences of temperate hardwoods. Organic bed 2 is a forest floor containing redwood trees in life position, engulfed by the lowest basalt flow. A pine log has growth rings up to 1 cm thick. Organic beds 3 and 4 comprise lacustrine sediment and peat between the two basalt flows. Their palynoflora contain conifers and hardwood genera, of which about 40% have modern temperate climatic affinities. Hickory, katsura, walnut, sweet gum, wingnut, basswood and elm pollen are consistently present, and beech and oak alone make up about 20% of the pollen assemblage. A warm high latitude climate is indicated for all of the organic beds, but organic bed 3 was deposited under a time of peak warmth. Climate data derived by comparison with modern east Asian vegetation suggest that, at the time of deposition of organic bed 3, the Mean Annual Temperature (MAT) was ca. 9??C, the Warm Month Mean Temperature (WMMT) was ??? 20??C and the Cold Month Mean Temperature (CMMT) was ca. -2??C. In contrast, the modern MAT for the region is -8.6??C, WMMT is 12.6??C and CMMT is -28??C. Organic beds 3 and 4 correlate to rocks of the middle Miocene-late Seldovian Stage of Cook Inlet and also probably correlate to, and more precisely date, the lower third of the Suntrana Formation in the Alaska Range, beds at Unalaklect, part of the upper Mackenzie Bay sequence in the Beaufort-Mackenzie basin, and the Mary Sachs gravel of Banks Island. This suggests that forests with significant percentages of temperate deciduous angiosperms existed between latitudes 60?? and 72??N during the early middle Miocene. ?? 1994.

  20. Isotopic analysis of pristine microshells resolves a troubling paradox of paleoclimatology

    NASA Astrophysics Data System (ADS)

    Schwarzschild, Bertram

    2001-12-01

    If fossil isotopic data tell us that the tropical ocean was much cooler 50 million years ago than it is now, then either the data are flawed or we understand very little about global warming. . 10.1063/1.1445530

  1. The Paleoclimatological Power of Biodiversity: 500 yrs of New York City Watershed Drought

    NASA Astrophysics Data System (ADS)

    Pederson, N.; Cook, E.; Vranes, K.

    2010-12-01

    The frequency of water restriction has increased over the last decade for New York City (NYC) despite: 1) its location in perhumid climate and 2) a reduction in water consumption since 1979. Population growth and future climate change could trigger more frequent restrictions and litigation over supplies. We update drought history for the NYC water supply region from the mid-1970’s reconstruction to better understand why water restrictions have increased. Using nested reconstruction techniques, 31 tree-ring chronologies comprised of 12 species account for 59.1% of the average May-Aug Palmer Drought Severity Index from 1895-2006 in the Hudson River Valley. Verification statistics indicate a reasonably strong reconstruction from 1507-2006. The new reconstruction covers an extended season versus the prior reconstruction (May-Aug vs Jul) and yet captures more annual variation in drought (59.1% vs 54%), supporting research indicating that the use of multiple species, including non-traditional species such as Liriodendron tulipifera, Betula lenta and Carya spp., might improve reconstruction skill. While the mid-1960s drought is still the most intense drought, it is closely rivaled by multi-annual droughts centered on 1637 and 1687. The new reconstruction indicates that the current 38-year pluvial is rivaled only by the 1719-1766 and 1619 periods. Other notable multi-annual pluvials are centered on 1541, 1581 and 1831. Multi-taper method analysis of the new reconstruction indicates periodicity of drought similar to the prior reconstruction, with significant peaks at 12-13, 16-18 and 23-years. The years during recent water restrictions rank as a minor droughts when viewed over the past 500-years. In the context of decreasing water usage and the current pluvial, it appears that the NYC region is not be prepared for the next significant drought.

  2. Annually laminated sequences in the internal structure of some Belgian stalagmites -- Importance for paleoclimatology

    SciTech Connect

    Genty, D.; Quinif, Y.

    1996-01-01

    Fifteen stalagmites from four caves and one sealed tunnel in southern Belgium are composed of alternations of annually deposited white-porous and dark-compact laminae. This is demonstrated by comparing the number of laminae with the local history of the site for modern stalagmites and with radioisotopic ages for Late Glacial and Holocene stalagmites. Annual cyclicity in the internal structure of these speleothems is explained by the highly seasonal variations of the water excess, which influences underground water flow. Comparison between climatic data and modern stalagmites of a closed tunnel shows that growth laminae can record climatic variations: (1) there is a good correlation (R = 0.84) between lamina thickness in a stalagmite and water excess; (2) during years with a high water excess, dark-compact laminae are more developed, which makes the speleothem darker. Vertical successions of several laminae represent microsequences that may have recorded climatic variations with a time resolution of 1/2 year. In a Late Glacial stalagmite, successive laminae microsequences form very regular cycles of 11 years separated by a thick dark-compact lamina. It is supported that, as for modern stalagmites, the thick dark-compact lamina corresponds to a period of high water excess. Hence, this 11-year cycle may reflect a climatic cycle.

  3. An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology

    NASA Astrophysics Data System (ADS)

    Sturm, C.; Zhang, Q.; Noone, D.

    2009-06-01

    Stable water isotopes have been measured in a wide range of climate archives, with the purpose of reconstructing regional climate variations. Yet the common assumption that the isotopic signal is a direct indicator of temperature proves to be misleading under certain circumstances, since its relationship with temperature also depends on e.g. atmospheric circulation and precipitation seasonality. The present article introduces the principles, benefits and caveats of using climate models with embedded water isotopes as a support for the interpretation of isotopic climate archives. A short overview of the limitations of empirical calibrations of isotopic proxy records is presented, with emphasis on the physical processes that infirm its underlying hypotheses. The simulation of climate and its associated isotopic signal, despite difficulties related to downscaling and intrinsic atmospheric variability, can provide a "transfer function" between the isotopic signal and the considered climate variable. The multi-proxy data can then be combined with model output to produce a physically consistent climate reconstruction and its confidence interval. A sensitivity study with the isotope-enabled global circulation model CAM3iso under idealised present-day, pre-industrial and mid-Holocene is presented to illustrate the impact of a changing climate on the isotope-temperature relationship.

  4. Paleoclimatology indicators of the Salt Wash member of the Upper Jurassic Morrison Formation near Jensen, Utah

    SciTech Connect

    Medlyn, D.A. . Dept. of Geology); Bilbey, S.A. )

    1993-04-01

    The Upper Jurassic Morrison Formation has yielded one of the richest floras of the so-called transitional conifers'' of the Middle Mesozoic. Recently, a silicified axis of one of these conifers was collected from the Salt Wash member in essentially the same horizon as a previously reported partial Stegosaurus skeleton. In addition, two other axes of conifers were collected in the same immediate vicinity. Paleoecological considerations are extrapolated from the coniferous flora, vertebrate fauna and associated lithologies. Techniques of paleodendrology and relationships of extant/extinct environments are compared. The paleoclimatic conditions of the transitional conifers and associated dinosaurian fossils are postulated.

  5. Speleothem Paleoclimatology of the Last Glacial Maximum and Deglaciation in Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Gentry, C. L.; Hodell, D. A.; Curtis, J. H.; Brenner, M.; Gallup, C.; Endsley, E.

    2006-12-01

    Two speleothems were collected in August 2005 from Columnas Cave near Tzucacab, Yucatan, Mexico. Both stalagmites have basal ages placing the initial growth during the Last Glacial Maximum (LGM). The first sample, Hobo 3, has a basal U/Th age of 21,089 +/- 221 years and the second sample, Hobo 4, has a basal U/Th age of 21,823 +/- 261 years. Oxygen isotopes were measured on calcite samples drilled every 0.5mm along the growth axis of these speleothems. Oxygen isotope values are relatively low at the base of both Hobo 3 and 4 during the LGM, and increase during the period inferred to represent the Late Glacial. Lower oxygen isotopic values during the LGM suggest a cold, wet climate in Yucatan followed by more arid conditions during the Late Glacial. This interpretation is consistent with recent findings from sediment cores from Lake Peten Itza, Guatemala (Hodell et al., 2006). We speculate that a cold, wet LGM may have been caused by increased winter precipitation related to polar outbreaks and "Norte" winds, which bring rain to Yucatan today during the dry season. Arid conditions during the Late Glacial may coincide with delivery of glacial meltwater to the Gulf of Mexico via the Mississippi River. Although additional U/Th dates are needed to constrain the chronology, our preliminary results suggest that Hobo 3 and 4 stalagmites will provide a detailed history of climate change for the northern Yucatan Peninsula during the last glacial cycle.

  6. A Miocene termite nest from southern Argentina and its paleoclimatological implications

    USGS Publications Warehouse

    Bown, T.M.; Laza, J.H.

    1990-01-01

    A Miocene termitarium attributable to the extant termite Syntermes (Isoptera: Termitidae, Nasutitermitinae) is the first fossil termite nest reported from South America and possibly the oldest record of the Isoptera from that continent. A new ichnogenus and ichnospecies, Syntermesichnus fontanae, is proposed for this distinctive trace fossil. It differs from nests constructed by other members of the Nasutitermitinae in its architectural organization and its large size. -from Authors

  7. Paleoclimatology of the Early Paleogene using Kimberlite-Hosted Mummified Wood from the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Hook, B. A.; Halfar, J.; Gedalof, Z.; Bollmann, J.; Schulze, D. J.

    2011-12-01

    Fifty-five million years ago, during the Paleocene-Eocene transition, average global temperatures were 4 - 7°C warmer than today and tropical forest ecosystems persisted in Arctic regions for millennia (ref. 1). Superimposed on this warmth were several hyperthermal periods of intense warming (10 - 12°C above modern-day average), such as the Paleocene-Eocene Thermal Maximum (PETM; 55.5 Ma), caused by an influx of isotopically-light carbon of unknown origin into the atmosphere (ref. 2). During this time, massive kimberlite eruptions buried forest fragments under pyroclastic debris. Evidence can be found in several diamondiferous kimberlite mines in the Northwest Territories of Canada, aged at 56.0 ±0.7 Ma (Diavik Mine) and 53.2 ±0.3 Ma (Ekati Mine) (ref. 3). Due to these unique burial conditions, the original woody material is intact (i.e. not petrified) allowing paleoclimatic analyses from wood growing before and after the PETM. Morelet Wavelet Analysis detected a significant 4 - 7 year periodicity in tree-ring width suggesting Cenozoic El Niño climate cycles were similar to those existing today, thus validating paleoclimatic models (ref. 4). In addition, evidence of wood-boring insect galleries within samples suggests the existence of a rich ecosystem above the Arctic Circle. Our multi-proxy study of δ13C, δ18O, and δD isotope ratios in α-cellulose at sub-annual scales will permit a better understanding of seasonal and yearly trends in Early Paleogene temperature and precipitation. It will also allow comparisons with studies of Eocene-aged wood (45 Ma) suggesting Arctic regions were 10 - 12°C warmer than modern-day temperatures, with relative humidity reaching 90 - 100% by the end of the growing season (refs. 5,6). 1. Zachos, J, M Pagani, L Sloan, E Thomas, and K Billups. 2001. Science 292(5517): 686 - 693. 2. Higgins, JA, and DP Schrag. 2006. Earth and Planetary Science Letters 245: 523-537. 3. Creaser, RA, H Grütter, J Carlson, and B Crawford. 2004. Lithos 76. 399-414. 4. Huber, M and R Caballero. 2003. Science 299: 877-881. 5. Jahren, AH, and LSL Sternberg. 2003. Geology 31(5): 463-466. 6. Jahren, AH, and LSL Sternberg. 2008. Geology 36 (2): 99 - 102.

  8. Paleoecology and paleoclimatology of a late holocene peat deposit from Braendevinsskaer, Central West Greenland

    SciTech Connect

    Bennike, O. )

    1992-08-01

    The macroscopical plant and animal remains of a nearshore peat deposit in West Greenland are described and documented. The assemblages contain a mixture of limnic, terrestrial, and marine plants and animals. These are divided into four local macrofossil assemblage zones, of which zone 3, ca. A.D. 950 to ca. A.D. 1760, represents a wet phase which is correlated in part with the Little Ice Age.

  9. Spatial and temporal analyses of geothermal climate signals: Implications for borehole paleoclimatology

    NASA Astrophysics Data System (ADS)

    Smerdon, Jason E.

    Inversions of subsurface temperature profiles to reconstruct ground surface temperature (GST) histories have been widely used as indicators of paleoclimate. These reconstructions assume that heat transport within the subsurface is conductive. Climatic interpretations of GST reconstructions also assume that GST is strongly coupled to surface air temperature (SAT) on timescales of decades and longer. I examine these two assumptions using records of SAT and subsurface temperature time series from Fargo, North Dakota; Prague, Czech Republic; Cape Henlopen State Park, Delaware; and Cape Hatteras National Seashore, North Carolina. These records comprise intra-daily observations that span parts of one or two decades. The characteristics of downward-propagating annual temperature signals at each site clearly indicate that heat transport in the subsurface can be described as one-dimensional conduction in a homogeneous medium. Extrapolations of subsurface observations to the ground surface yield estimates of annual GST signals, and allow comparisons to annual SAT signals. All annual GST signals are modestly attenuated and negligibly phase shifted relative to SAT. Relationships between GST and SAT are further explored on daily, seasonal, and annual timescales to identify and characterize the principal meteorological factors that lead to differences between GST and SAT. I compare subsurface temperature observations to calculations from a conductive subsurface model driven with daily SAT as the surface boundary condition and show daily differences exist between observed and modeled subsurface temperatures. Year-to-year spectral decompositions of daily SAT and subsurface temperature time series are also analyzed. Dissimilarities exist between annual amplitudes of GST and SAT signals. These amplitude differences partition into summer and winter seasons and can lead to mean annual GST that is either cooler or warmer than SAT. Additionally, the differences between mean annual GST and SAT can be estimated using amplitude characterizations of GST and SAT signals. Taken collectively, the results presented here indicate that differences between GST and SAT vary according to site-specific meteorological conditions and can be calculated readily from these conditions. It is therefore possible to conduct large regional studies of GST-SAT differences where long-term meteorological records are available, thus addressing how well GST changes represent SAT changes over large spatial regions on timescales of decades and centuries.

  10. Evolution of the Ishtmus of Panama: biological, paleoceanographic, and paleoclimatological implications

    NASA Astrophysics Data System (ADS)

    Jaramillo, Carlos

    2016-04-01

    The rise of the Isthmus of Panama has been the product of small-scale geological processes that, however, have had worldwide repercussions. Four major events have been linked to the rise of the Isthmus including 1) the onset of the Thermohaline circulation (TCH), 2) the onset of Northern Hemisphere Glaciation, 3) the birth of the Caribbean Sea, and 4) the Great American Biotic Interchange (GABI). The available evidence indicates that there is a strong link between the closure of Central American Seaway (CAS) and the onset of Atlantic Meridional Overturning Circulation (a precursor of THC), but at 10 Ma rather than at 3.5 Ma as it was assumed before. There are not evidences of a connection between the full emergence of the Isthmus at 3.5 Ma and the onset of the NHG. There are strong evidences that the full emergence of the Isthmus at 3.5 Ma changed the oceanography of the Caribbean Sea to its modern conditions, although the role of additional variables into Pleistocene Caribbean Sea conditions still need to be evaluated, including the changes in the climate of the Pleistocene and the cessation of the freshwater flow of several South American rivers into the Caribbean. GABI is more complex that often assumed and it seems that variables other than a continuous terrestrial Isthmus have controlled the direction, timing and speed of migrations. The building of Panamanian landscape can be summarized in four phases, 1) a late Eocene large island in central Panama and the Azuero Peninsula, 2) an early Miocene large scale generation of terrestrial landscapes in Central America that connected central Panama with North America, 3) a full closure of CAS at 10 Ma, interrupting the exchange of deep waters between Caribbean and Pacific, and generating most of the landscape across the Isthmus. Exchange of shallow waters continued until 3.5 Ma, albeit intermittently. 4) A continuous terrestrial landscape across the Isthmus over the past 3.5 Ma.

  11. Variations of oxygen and hydrogen isotope ratios in deer bones and their potential in paleoclimatology

    SciTech Connect

    Luz, B.; Schwarcz, H.P.; Cormie, A.B.

    1985-01-01

    Variations of deltaO-18 of bone phosphate (deltap) and deltaD of bone collagen of white tailed deer, were studied in samples with wide geographic distribution in North America. There is a linear relationship between deltaO-18 of local precipitation (deltaw) and deltap (deltap=0.54deltaw+21.53; r=0.81). Scatter about the regression line is related to estimation errors of deltaw and to changes in relative humidity. Low relative humidity results in highly O-18 enriched leaf water, which may lead to similar enrichment in bones of deer, that depend on leaves as a major source of food. Linear correlation between deltaD and deltap is high (r=0.93), suggesting that both variables depend on variations in isotopic composition of local environmental water. Samples from arid regions are highly enriched in O-18 and deviate from the regression line. This raises the possibility of estimating past changes in relative humidity by simultaneous analysis of deltap and deltaD in fossil bones.

  12. Beryllium-10 in the Taylor Dome ice core: Applications to Antarctic glaciology and paleoclimatology

    SciTech Connect

    Steig, E.J.

    1996-12-31

    An ice core was drilled at Taylor dome, East Antarctica, reaching to bedrock at 554 meters. Oxygen-isotope measurements reveal climatic fluctuations through the last interglacial period. To facilitate comparison of the Taylor Dome paleoclimate record with geologic data and results from other deep ice cores, several glaciological issues need to be addressed. In particular, accumulation data are necessary as input for numerical ice-flow-models, for determining the flux of chemical constituents from measured concentrations, and for calculation of the offset in age between ice and trapped air in the core. The analysis of cosmogenic beryllium-10 provides a geochemical method for constraining the accumulation-rate history at Taylor Dome. High-resolution measurements were made in shallow firn cores and snow pits to determine the relationship among beryllium-10 concentrations, wet and dry deposition mechanisms, and snow-accumulation rates. Comparison between theoretical and measured variations in deposition over the last 75 years constrains the relationship between beryllium-10 deposition and global average production rates. The results indicate that variations in geomagnetically-modulated production-rate do not strongly influence beryllium-10 deposition at Taylor Dome. Although solar modulation of production rate is important for time scales of years to centuries, snow-accumulation rate is the dominant control on ice-core beryllium-10 concentrations for longer periods. Results show that the Taylor Dome core can be used to provide new constraints on regional climate over the last 130,000 years, complementing the terrestrial and marine geological record from the Dry Valley, Transantarctic Mountains and western Ross Sea.

  13. Stable isotope paleoclimatology of the earliest Eocene using kimberlite-hosted mummified wood from the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Hook, B. A.; Halfar, J.; Gedalof, Z.; Bollmann, J.; Schulze, D. J.

    2015-10-01

    The recent discovery of well-preserved mummified wood buried within a subarctic kimberlite diamond mine prompted a paleoclimatic study of the early Eocene "hothouse" (ca. 53.3 Ma). At the time of kimberlite eruption, the Subarctic was warm and humid producing a temperate rainforest biome well north of the Arctic Circle. Previous studies have estimated that mean annual temperatures in this region were 4-20 °C in the early Eocene, using a variety of proxies including leaf margin analysis and stable isotopes (δ13C and δ18O) of fossil cellulose. Here, we examine stable isotopes of tree-ring cellulose at subannual- to annual-scale resolution, using the oldest viable cellulose found to date. We use mechanistic models and transfer functions to estimate earliest Eocene temperatures using mummified cellulose, which was well preserved in the kimberlite. Multiple samples of Piceoxylon wood within the kimberlite were crossdated by tree-ring width. Multiple proxies are used in combination to tease apart likely environmental factors influencing the tree physiology and growth in the unique extinct ecosystem of the Polar rainforest. Calculations of interannual variation in temperature over a multidecadal time-slice in the early Eocene are presented, with a mean annual temperature (MAT) estimate of 11.4 °C (1 σ = 1.8 °C) based on δ18O, which is 16 °C warmer than the current MAT of the area (-4.6 °C). Early Eocene atmospheric δ13C (δ13Catm) estimates were -5.5 (±0.7) ‰. Isotopic discrimination (Δ) and leaf intercellular pCO2 ratio (ci/ca) were similar to modern values (Δ = 18.7 ± 0.8 ‰; ci/ca = 0.63 ± 0.03 %), but intrinsic water use efficiency (Early Eocene iWUE = 211 ± 20 μmol mol-1) was over twice the level found in modern high-latitude trees. Dual-isotope spectral analysis suggests that multidecadal climate cycles somewhat similar to the modern Pacific Decadal Oscillation likely drove temperature and cloudiness trends on 20-30-year timescales, influencing photosynthetic productivity and tree growth patterns.

  14. Stable isotope paleoclimatology of the earliest Eocene using kimberlite-hosted mummified wood from the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Hook, B. A.; Halfar, J.; Gedalof, Z.; Bollmann, J.; Schulze, D.

    2014-11-01

    The recent discovery of well-preserved mummified wood buried within a subarctic kimberlite diamond mine prompted a paleoclimatic study of the early Eocene "hothouse" (ca. 53.3 Ma). At the time of kimberlite eruption, the Subarctic and Artic were warm and humid producing a temperate rainforest biome well north of the Arctic Circle. Previous studies have estimated mean annual temperatures in this region were 4-20 °C in the early Eocene, using a variety of proxies including leaf margin analysis, and stable isotopes (δ18O) of fossil cellulose. Here, we examine stable isotopes of tree-ring cellulose at subannual to annual scale resolution, using the oldest viable cellulose found to date. We use mechanistic models and transfer functions to estimate earliest Eocene temperatures using mummified cellulose, which was well preserved in the kimberlite. Multiple samples of Piceoxylon wood within the kimberlite were crossdated by tree-ring width. Multiple proxies are used in combination to tease apart likely environmental factors influencing the tree physiology and growth in the unique extinct ecosystem of the Polar rainforest. Calculations of interannual variation in temperature over a multidecadal time-slice in the early Eocene are presented, with a mean temperature estimate of 11.4 °C (1σ = 1.8 °C) based on δ18O. Dual-isotope spectral analysis suggests that multidecadal climate cycles similar to the modern Pacific Decadal Oscillation likely drove temperature and cloudiness trends on 20-30 year timescales.

  15. Glacial and periglacial geomorphology and its paleoclimatological significance in three North Ethiopian Mountains, including a detailed geomorphological map

    NASA Astrophysics Data System (ADS)

    Hendrickx, Hanne; Jacob, Miro; Frankl, Amaury; Nyssen, Jan

    2015-10-01

    Geomorphological investigations and detailed mapping of past and present (peri)glacial landforms are required in order to understand the impact of climatic anomalies. The Ethiopian Highlands show a great variety in past and contemporary climate, and therefore, in the occurrence of glacial and periglacial landforms. However, only a few mountain areas have been studied, and detailed geomorphological understanding is lacking. In order to allow a fine reconstruction of the impact of the past glacial cycle on the geomorphology, vegetation complexes, and temperature anomalies, a detailed geomorphological map of three mountain areas (Mt. Ferrah Amba, 12°51‧N 39°29‧E; Mt. Lib Amba, 12°04‧N 39°22‧; and Mt. Abuna Yosef, 12°08‧N 39°11‧E) was produced. In all three study areas, inactive solifluction lobes, presumably from the Last Glacial Maximum (LGM), were found. In the highest study area of Abuna Yosef, three sites were discovered bearing morainic material from small late Pleistocene glaciers. These marginal glaciers occurred below the modeled snowline and existed because of local topo-climatic conditions. Evidence of such Pleistocene avalanche-fed glaciers in Ethiopia (and Africa) has not been produced earlier. Current frost action is limited to frost cracks and small-scale patterned ground phenomena. The depression of the altitudinal belts of periglacial and glacial processes during the last cold period was assessed through periglacial and glacial landform mapping and comparisons with data from other mountain areas taking latitude into account. The depression of glacial and periglacial belts of approximately 600 m implies a temperature drop around 6 °C in the last cold period. This cooling is in line with temperature depressions elsewhere in East Africa during the LGM. This study serves as a case study for all the intermediate mountains (3500-4200 m) of the North Ethiopian highlands.

  16. High-resolution paleoclimatology of the coastal margin of northernmost California during the past 7,300 years

    NASA Astrophysics Data System (ADS)

    Barron, J. A.; Heusser, L. E.; Addison, J. A.; Burky, D.; Kusler, J. E.; Finney, B.

    2013-12-01

    Piston core TN062 0550, located 13 km offshore of Eureka, California (40.866 deg. N, 124.572 deg. W, 550 m water depth), contains a continuous high-resolution climate record of the past 7,300 yr. Deposition occurred at nearly constant sedimentation rates averaging 94 cm/kyr based on 14C AMS dating of planktonic foraminifers. Pollen and marine ecosystem proxies (diatoms, silicoflagellates, wt. percent biogenic silica) studied at 50-70 yr sample resolution show a stepwise development of the climate/ oceanographic system off northernmost California. The relative contributions of Sequoia sempervirens (coastal redwood) pollen, a proxy for coastal fog associated with offshore upwelling, and biogenic silica concentrations (a proxy for siliceous export productivity) increase (two fold and three fold, respectively) in successive steps at ~5,000 yr BP and from ~2,400 to 2,000 yr BP. These increases are interpreted to reflect a progressive intensification of spring upwelling based on modern observations of the California Current system. At 5,000 yr BP diatom assemblages change from an assorted mixture of warm, temperate, and cool-water taxa to a low diversity temperate-oceanic assemblage dominated by Thalassionema spp. At ~2,400 yr BP the diatom assemblage transitions to a mixture of nearshore upwelling taxa and taxa associated with the central North Pacific Gyre. Silicoflagellate assemblages undergo a similar increase in the representation of modern seasonal proxies at ~3,000 yr BP that may reflect intensified ENSO variability. A two-fold increase in the relative contributions of Quercus (oak) and riparian Alnus (alder) pollen between ~3,800 and 2,000 yr BP likely signals a period of enhanced fluvial runoff associated with increased winter precipitation. Given the present day association of the Eel River system with the northwestern half of the western US winter precipitation dipole, these pollen data suggest that the ~3,800 and 2,000 yr interval was dominated by protracted negative Pacific Decadal Oscillation-like (PDO) conditions. The widespread occurrence of drought in the southwestern US between ~3,800 and 2,200 yr BP supports this interpretation.

  17. Trade winds drive pronounced seasonality in carbonate chemistry in a tropical Western Pacific island cave—Implications for speleothem paleoclimatology

    NASA Astrophysics Data System (ADS)

    Noronha, Alexandra L.; Hardt, Benjamin F.; Banner, Jay L.; Jenson, John W.; Partin, Judson W.; James, Eric W.; Lander, Mark A.; Bautista, Kaylyn K.

    2017-01-01

    Carbon dioxide concentrations in caves are a primary driver of rates of carbonate dissolution and precipitation, exerting strong control on speleothem growth rate and geochemistry. Long-term cave monitoring studies in midlatitude caves have observed seasonal variability in cave pCO2, whereby airflow is driven by temperature contrasts between the surface and subsurface. In tropical settings, where diurnal temperature cycles are larger than seasonal temperature cycles, it has been proposed that caves will ventilate on daily time scales, preventing cave pCO2 from increasing substantially above atmospheric pCO2. By contrast, the relatively small temperature difference between the surface and subsurface may be insufficient to drive complete ventilation of tropical caves. Here we present results of an 8 year cave monitoring study, including observations of cave pCO2 and carbonate chemistry, at Jinapsan Cave, Guam (13.4°N, 144.5°E). We find that cave pCO2 in Jinapsan Cave is both relatively high and strongly seasonal, with cave pCO2 ranging from 500 to 5000 ppm. The seasonality of cave pCO2 cannot be explained by temperature contrasts, instead we find evidence that seasonal trade winds drive cave ventilation and modulate cave pCO2. Calcite deposition rates at seven drip sites in Jinapsan Cave are shown to be seasonally variable, demonstrating that speleothem growth rates in Jinapsan Cave are strongly affected by seasonal variations in cave pCO2. These results highlight the importance that advection can have on cave ventilation processes and carbonate chemistry. Seasonality in carbonate chemistry and calcite deposition in this cave affect the interpretation of speleothem-based paleoclimate records.

  18. Variations in [sup 18]O/[sup 16]O ratios of kaolinites within a lateritic profile: Their significance for laterite genesis and isotope paleoclimatology

    SciTech Connect

    Giral, S.; Girard, J.P.; Savin, S.M. . Dept. of Geological Sciences); Nahon, D.B. )

    1992-01-01

    The authors have made an integrated study of the field occurrence, petrology, mineralogy and crystallography, and oxygen isotope geochemistry of an active lateritic profile from about 60 km north of Manaus (Amazonia, Brazil). The parent rock is an arkosic sandstone. The delta O-18 values of kaolinites from the profile are far from uniform. The total range is about 2.4 per mil (18.7 to 21.1 per mil). The calculated delta O-18 value of kaolinite in isotopic equilibrium with local average precipitation and mean annual temperature is 19.6 per mil, within the range of the measured values. Kaolinite of each of several textural occurrences also shows significant isotopic variation both vertically and within a given horizon. Different size fractions of kaolinite of a single textural occurrence within a single horizon also exhibit differences in delta O-18 values. At depths below a few meters, they expect the temperature and the delta O-18 values of the soil water profile to be relatively uniform at any time. If this is so, the variations in delta O-18 values of the kaolinites would suggest that the formation of different populations occurred at different times. They cannot yet distinguish between variations of conditions that were seasonal and variations that occurred on scales of many years. However, it is most important to resolve the causes of these variations before using the delta O-18 values of soil clays for purposes of paleoclimatic reconstruction.

  19. Integrated biostratigraphy, stage boundaries and Paleoclimatology of the Upper Cretaceous-Lower Eocene successions in Kharga and Dakhala Oases, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalil, H.; Al Sawy, S.

    2014-08-01

    The Upper Cretaceous-Lower Eocene succession in the studied sections is divided into four rock units that arranged from base to top: the Dakhla, Tarawan, Esna and the Thebes formations. Detailed study of the foraminifera and calcareous nannofossils has led to the recognition of 58 and 82 species, respectively. Based on planktonic foraminifera and calcareous nannofossils 8 planktonic foraminiferal biozones (CF4, P2, P3, P4, E1, E2, E3 and E4) have been recognized as well as 8 calcareous nannofossil biozones (CC25b, NP3, NP4, NP5, NP6, NP7/8, NP9, and NP10). At Gabal Teir/Tarawan section, Kharga Oasis, the Paleocene can be divided into three stages; Danian, Selandian and Thanetian. The Danian/Selandian boundary is placed at P3a/P3b zonal boundary (LO of Igorina albeari) which corresponds to the level of LO of Lithoptychius ulii, Fasciculithus pileatus, Fasciculithus involutus and Lithoptychius janii (upper part of Zone NP4). The Selandian/Thanetian boundary, on the other hand, can be traced within the foraminiferal Zone P4 (Globanomalina pseudomenardii Zone) and between the nannofossil zones NP6 and NP7/8 (LO of Discoaster mohleri). At Gabal Ghanima section, the Paleocene/Eocene boundary is located within the lower part of the Esna Formation. It can be traced at the base of planktonic foraminiferal Zone E1 (LOs of Acarinina africana, A sibaiyaensis and Morozovella allinsoensis), and at the NP9a/NP9b subzonal boundary (LO of Rhomboaster spp). However, the lower Eocene succession seems to be condensed and punctuated by minor hiatus (absence of Subzone NP10a). The dominance of cool water nannofossil species in the late Maastrichtian and early Danian interval suggests a gradual decrease in the surface water paleotemperature. However, a slight warming condition prevailed around the Danian/Selandian transition as evidenced by the warm water nannofossil species. At the P/E boundary interval, the high abundance of warm-water taxa (e.g. Discoaster, Sphenolithus, Rhomboaster, Tribrachiatus and Pontosphaera species) indicates a warm-water paleotemperatures.

  20. Lower Eocene alluvial paleosols (Willwood Formation, Northwest Wyoming, U.S.A.) and their significance for paleoecology, paleoclimatology, and basin analysis

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1981-01-01

    The lower Eocene Willwood Formation of northwest Wyoming is a 700 m thick accumulation of alluvial floodplain and channel mudstones and sandstones, nearly all of which show paleopedogenic modifications. Pedogenesis of Willwood sandstones is indicated by taproot and vertebrate and invertebrate bioturbation, early local cementation by calcium carbonate, and thin illuviation cutans on clastic grains. Pedogenesis in Willwood mudstones is indicated by plant bioturbation, insect and other invertebrate burrow casts and lebensspuren; free iron, aluminum, and manganese mobilization, including hydromorphic gleying; sesquioxide and calcareous glaebule formation in lower parts of the solum; presence of clay-rich and organic carbon-rich zones; and well differentiated epipedons and albic and spodic horizons. Probable A horizons are also locally well developed. Occurrence of variegated paleosol units in thick floodplain mudstone deposits and their association with thin, lenticular, and unconnected fluvial sandstones in the Willwood Formation of the central and southeast Bighorn Basin suggest that these soils formed during times of rapid sediment accumulation. The tabular geometry and lateral persistence of soil units as well as the absence of catenization indicate that Willwood floodplains were broad and essentially featureless. All Willwood paleosols were developed on alluvial parent materials and are complex in that B horizons of younger paleosols were commonly superimposed upon and mask properties of suspected A and B horizons of the next older paleosols. The soils appear to be wet varieties of the Spodosol and Entisol groups (aquods and ferrods, and aquents, respectively), though thick, superposed and less mottled red, purple, and yellow paleosols resemble some ultisols. Most Willwood paleosols resemble warm temperate to subtropical alluvial soils that form today under alternating wet and dry conditions and (or) fluctuating water tables. The up-section decrease in frequency of gley mottles, increase in numerical proportion and thickness of red versus orange coloration, and increase in abundance of calcrete glaebules indicate better drained soils and probably drier climate in late Willwood time. This drying is believed to be related to creation of rain shadows and spacing of rainfall (but not necessarily decrease in absolute rainfall) due to progressive tectonic structural elevation of the mountainous margins of the Bighorn Basin. ?? 1981.

  1. Warm to cold polar climate transitions over the last 15,000 years: A paleoclimatology record from the raised beaches of northern Norway

    SciTech Connect

    Fletcher, C.H. ); Fairbridge, R.H. ); Moeller, J.K. ); Long, A.J. )

    1991-03-01

    Because of the strength of the cold, dry arctic high pressure vortex, and the absence of multiple air-mass sources, climate records from the polar region tend to display a cleaner signal than those from mid-latitude settings. The high arctic presents unique opportunities for the prediction of the natural background pattern of climate change prior to the disturbances generated by manmade atmospheric pollutants. The Varanger Peninsula of northernmost Norway was extensively depressed by an ice dome during the last glacial stage. Deglaciation was accompanied by isostatic recovery at a steady though exponentially decaying rate. Superimposed on the rising land is a discontinuous staircase of cobble beach ridges, deposited during the postglacial period by storms at the coast. The ridges are constructed during brief episodes of weather- and tide-related elevation of sea level and wave run-up. Storminess periods can only occur in the absence of sea ice associated with several decades of mild, relatively warm temperatures. A history of local relative sea level is constructed from over 70 radiocarbon dates of various water-level indicators. The sea-level history is used to construct a chronology of beach-ridge building that documents the cyclic, a periodic nature of arctic storminess conditions. The authors date a dynamic signal with multiple climate transitions from warm, stormy conditions to cool, calm conditions occurring roughly every 200 years between 15,000 years ago to 10,000 years ago. Throughout the Holocene the climate is more settled with longer periods separating the major warm to cool transitions.

  2. Relation between D/H ratios and 18O /16O ratios in cellulose from linen and maize - Implications for paleoclimatology and for sindonology

    NASA Astrophysics Data System (ADS)

    DeNiro, Michael J.; Sternberg, Leonel D.; Marino, Bruno D.; Druzik, James R.

    1988-09-01

    The 18O /16O ratios of cellulose and the D/H ratios of cellulose nitrate were determined for linen, a textile produced from the fibers of the flax plant Linum usitatissimum, and for maize ( Zea mays) from a variety of geographic locations in Europe, the Middle East, and North and South America. The regression lines of δD values on δ 18O values had slopes of 5.4 and 5.8 for the two species. Statistical analysis of results reported in the only other study in which samples of a single species (the silver fir Abies pindrow) that grew under a variety of climatic conditions were analyzed yielded slopes of ~6 when δD values of cellulose nitrate were regressed on δ 18O values of cellulose. The occurrence of this previously unrecognized relationship in three species suggests it may obtain in other plants as well. Determining the basis for this relationship, which is not possible given current understanding of fractionation of the isotopes of oxygen and hydrogen by plants, should lead to increased understanding of how D/H and 18O /16O ratios in cellulose isolated from fossil plants are related to paleoclimates. The separation of most linen samples from Europe from those originating in the Middle East when δD values are plotted against δ 18O values suggests it may be possible to use the isotope ratios of cellulose prepared from the Shroud of Turin to resolve the controversy concerning its geographic origin.

  3. Relation between D/H ratios and sup 18 O/ sup 16 O ratios in cellulose from linen and maize--Implications for paleoclimatology and for sindonology

    SciTech Connect

    DeNiro, M.J.; Sternberg, L.D.; Marino, B.D. ); Druzik, J.R. )

    1988-09-01

    The {sup 18}O/{sup 16}O ratios of cellulose and the D/H ratios of cellulose nitrate were determined for linen, a textile produced from the fibers of the flax plant Linum usitatissimum, and for maize (Zea mays) from a variety of geographic locations in Europe, the Middle East, and North and South America. The regression lines of {delta}D values on {delta}{sup 18}O values had slopes of 5.4 and 5.8 for the two species. Statistical analysis of results reported in the only other study in which samples of a single species that grew under a variety of climatic conditions were analyzed yielded slopes of {approximately}6 when {delta}D values of cellulose nitrate were regressed on {delta}{sup 18}O values of cellulose. The occurrence of this previously unrecognized relationship in three species suggests it may obtain in other plants as well. Determining the basis for this relationship, which is not possible given current understanding of fractionation of the isotopes of oxygen and hydrogen by plants, should lead to increased understanding of how D/H and {sup 18}O/{sup 16}O ratios in cellulose isolated from fossil plants are related to paleoclimates. The separation of most linen samples from Europe from those originating in the Middle East when {delta}D values are plotted against {delta}{sup 18}O values suggests it may be possible to use the isotope ratios of cellulose prepared from the Shroud of Turin to resolve the controversy concerning its geographic origin.

  4. Paleontology, paleoclimatology and paleoecology of the late middle miocene Musselshell Creek flora, Clearwater County Idaho. A preliminary study of a new fossil flora

    SciTech Connect

    Baghai, N.L.; Jorstad, R.B.

    1995-10-01

    The Musselshell Creek flora (12.0-10.5 Ma) of northern Idaho is used to reconstruct paleoclimatic and paleoecologic parameters of the Pacific Northwest during the late Middle Miocene. Other megafossil and microfossil floral records spanning 12.0-6.4 Ma are unknown from this region. The Musselshell Creek fossil flora, previously undescribed, is preserved in lacustrine clays and sediments that accumulated in a narrow valley surrounded by rugged terrain. Dominant taxa include dicotyledons and conifers. Most of the leaves are preserved as impressions or compressions. Some fossil leaves retained their original pigmentation, cellular anatomy, and organic constituents. Other fossils include excellent remains of pollen and spores, dispersed leaf cuticle, pyritized wood, and disarticulated fish bones. A destructive statistical analysis of one block of sediment, approximately 30 cm x 45 cm (1.5 sq. ft) recovered 14 orders, 23 families, and 34 genera of spermatophyte plant fossils. These floral elements are compared with two other earlier Miocene floras which were similarly sampled. Common megafossil genera include Quercus, Zizy-phoides, Taxodium, Alnus, Castanea, Magnolia, Acer, Ex-bucklandia, Sequoia, Populus, and Betula. The rare occurrence of Ginkgo leaves is a first record of this taxon in the Idaho Miocene. Additional plant taxa, are represented by palynomorphs. Common pollen taxa are Pinus, Abies, Carya, Quercus, and Tilia. Most of the megafossil and microfossil flora assemblage is characteristic of a streambank to floodplain environment that existed in a warm to cool temperate climate similar to the modern Mid-Atlantic coast of the United States. 47 refs., 5 figs., 4 tabs.

  5. High-resolution paleoclimatology of the Santa Barbara Basin during the Medieval Climate Anomaly and early Little Ice Age based on diatom and silicoflagellate assemblages in Kasten core SPR0901-02KC

    USGS Publications Warehouse

    Barron, John A.; Bukry, David B.; Hendy, Ingrid L.

    2015-01-01

    Diatom and silicoflagellate assemblages documented in a high-resolution time series spanning 800 to 1600 AD in varved sediment recovered in Kasten core SPR0901-02KC (34°16.845’ N, 120°02.332’ W, water depth 588 m) from the Santa Barbara Basin (SBB) reveal that SBB surface water conditions during the Medieval Climate Anomaly (MCA) and the early part of the Little Ice Age (LIA) were not extreme by modern standards, mostly falling within one standard deviation of mean conditions during the pre anthropogenic interval of 1748 to 1900. No clear differences between the character of MCA and the early LIA conditions are apparent. During intervals of extreme droughts identified by terrigenous proxy scanning XRF analyses, diatom and silicoflagellate proxies for coastal upwelling typically exceed one standard deviation above mean values for 1748-1900, supporting the hypothesis that droughts in southern California are associated with cooler (or La Niña-like) sea surface temperatures (SSTs). Increased percentages of diatoms transported downslope generally coincide with intervals of increased siliciclastic flux to the SBB identified by scanning XRF analyses. Diatom assemblages suggest only two intervals of the MCA (at ~897 to 922 and ~1151 to 1167) when proxy SSTs exceeded one standard deviation above mean values for 1748 to 1900. Conversely, silicoflagellates imply extreme warm water events only at ~830 to 860 (early MCA) and ~1360 to 1370 (early LIA) that are not supported by the diatom data. Silicoflagellates appear to be more suitable for characterizing average climate during the 5 to 11 year-long sample intervals studied in the SPR0901-02KC core than diatoms, probably because diatom relative abundances may be dominated by seasonal blooms of a particular year.

  6. Hidden histories and ancient mysteries of witches, plants and fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Convergent findings from archaeobotany, molecular genetics, paleoclimatology and comparative linguistics mandate revisions to agricultural history. Recent research has demonstated that stripe rust (agent: Puccinia striiformis) and scald (species in Rhynchosporium) moved into western and northern Eu...

  7. Photosynthesis: the paradox of carbon dioxide efflux.

    PubMed

    Falkowski, P G

    1997-10-01

    The discovery that photosynthetic marine cyanobacteria can actually leak CO2 has been predicted from theory but, until now, never experimentally demonstrated. The apparent paradox can be explained by known chemistry and biochemistry, but the phenomenon may have important implications for paleoclimatology.

  8. Soil microscopy and micromorphology

    SciTech Connect

    FitzPatrick, E.A.

    1993-12-31

    This book is a valuable resource to help geologists integrate knowledge of soil science into the endeavor of identifying paleosols. Attention is focused on the following: soil micromorphology, including sample preparation techniques; and physical and chemical properties. Various applications are presented of micromorphological soil study. Included is coverage on the disciplines of agriculture, archeology, engineering, geomorphology, paleoclimatology, paleopedology, and microbiology.

  9. Physical geology

    SciTech Connect

    Skinner, B.; Porter, S.

    1987-01-01

    The book integrates current thinking on processes (plate techtonics, chemical cycles, changes throughout geologic time). It is an introduction to investigations into the way the earth works, how mountains are formed, how the atmosphere, hydrosphere, crust and mantle interact with each other. Treatments on climate, paleoclimatology and landscape evolution are included, as is a discussion on how human activity affects geological interactions.

  10. The Journey of Man: A Genetic Odyssey

    SciTech Connect

    Wells, Spencer

    2004-02-25

    Evidence from paleoanthropology and genetics has consistently shown that our species originated in Africa. Recent results from the Y-chromosome confirm this, but further posit that all modern humans were still living in Africa 60,000 years ago. The case for a recent 'African exodus' will be discussed, with supporting evidence drawn from DNA polymorphisms, paleoclimatology and archaeology.

  11. In Memoriam; Recent Ph.D.s; Honors

    NASA Astrophysics Data System (ADS)

    2005-03-01

    In Memoriam. John C. Freeman, 84, 18 November 2004, Atmospheric Sciences, 1991. Thomas Gold, 84, 22 June 2004, Retired Life Member, AGU Fellow, Planetology, 1958. William H. Pickering, 93, 2004, Retired Life Member, AGU Fellow, Planetology, 1962. Geoff O. Seltzer, 45, 15 January 2005, Paleoceanography/Paleoclimatology, 1990.

  12. Workshop on Early Mars: How Warm and How Wet?, part 1

    NASA Technical Reports Server (NTRS)

    Squyres, S. (Editor); Kasting, J. (Editor)

    1993-01-01

    This volume contains papers that have been accepted for presentation at the Workshop on Early Mars: How Warm and How Wet?, 26-28 Jul. 1993, in Breckenridge, CO. The following topics are covered: the Martian water cycle; Martian paleoclimatology; CO2/CH4 atmosphere on early Mars; Noachian hydrology; early Martian environment; Martian weathering; nitrogen isotope ratios; CO2 evolution on Mars; and climate change.

  13. Paleoclimate, proxies, paradoxes, and predictions

    SciTech Connect

    Wing, S.

    1994-04-01

    The author looks in a broad way at the issues studied by paleoclimatology, and discusses some of the observational evidence which is inducing much interest today with concerns about global climate, and global warming. He discusses how the science has evolved, and the application of diverse skills to the problem of interpreting, and explaining the observational evidence. This is a broad general interest type of article.

  14. Volcanic eruptions: Atmospheric effects. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning gaseous and particulate contributions to the Earth's atmosphere from volcanoes, and the effects these substances have on the climate and the environment. Citations cover case studies of specific volcanic eruptions, detection and measurement of volcanic gases and aerosols in the atmosphere, environmental effects on the biota, long and short term climatological effects, paleoclimatology and volcanoes, atmospheric and transport modeling, and solar radiation inhibition. (Contains a minimum of 214 citations and includes a subject term index and title list.)

  15. Volcanic eruptions: Atmospheric effects. May 1970-February 1990 (A Bibliography from the NTIS data base). Report for May 1970-February 1990

    SciTech Connect

    Not Available

    1990-03-01

    This bibliography contains citations concerning gaseous and particulate contributions to the Earth's atmosphere from volcanoes, and the effects these substances have on the climate and the environment. Case studies of specific volcanic eruptions; detection and measurement of volcanic gases, aerosols, and particulates in the atmosphere; environmental effects on the biota; long and short term climatological effects; paleoclimatology and volcanoes; atmospheric and transport modelling; and solar radiation inhibition are among the topics discussed. (Contains 157 citations fully indexed and including a title list.)

  16. Scientists and Reporters Just Want to Get to the Bottom of It All

    NASA Astrophysics Data System (ADS)

    Rosen, Julia

    2014-10-01

    After just a few short months, my desk at the Los Angeles Times had succumbed to the same peculiar malady as my desk at Oregon State University, where I did my Ph.D. in paleoclimatology: It seemed to have sprouted a thin coat of fluorescent sticky notes. Each tiny square bore a fact that merited remembering or a question that demanded answering, and, every day, they multiplied.

  17. Paleoclimatic tracers: An investigation using an atmospheric general circulation model under ice age conditions. 2. Water isotopes

    SciTech Connect

    Joussaume, S. ); Jouzel, J. Centre National de la Recherche Scientifique, Grenoble )

    1993-02-20

    The linear relationship observed between the water isotopic contents of precipitation and surface air temperatures leads to the use of the water isotopes, H[sub 2][sup 18]O and HDO, in paleoclimatology. Applied to the measurements of the isotopic content of paleowaters, like groundwaters and deep ice cores, this relationship is used to infer paleotemperatures. However, this interpretation of paleo-isotopic contents is only valid if the isotope-temperature relationship is not affected by climate change. To address this problem, the authors have developed a water isotope modeling inside an atmospheric general circulation model (AGCM) and performed simultations of both the present-day and Last Glacial Maximum (LGM) climatic conditions. AGCM are indeed the only appropriate tools able to account the whole complexity of the atmospheric circulation. For the present-day climate, preliminary results for January were presented by Joussaume et al. (1984) and are complemented by new simulations performed for both February and August climatic conditions with a higher-resolution version of the model. Model results are well corroborated by observations. They also exhibit some effects of the atmospheric circulation on the isotopic fields. For the simulated LGM climate, the model results compare well with paleoclimatic data of water isotopic contents, except for a higher than observed spatial variability. The overall patterns of the simulated [delta][sup 18]O-temperature relationship for the LGM climate are practically unchanged, which tends to comfort the use of water isotopes in paleoclimatology. However, concerning the deuterium excess, i.e., the relationship between oxyen 18 and deuterium, the model results are not sufficiently valid to allow a discussion of the use of deuterium excess in paleoclimatology. 46 refs., 14 figs., 7 tabs.

  18. Holocene glacier fluctuations in the Peruvian Andes indicate northern climate linkages.

    PubMed

    Licciardi, Joseph M; Schaefer, Joerg M; Taggart, Jean R; Lund, David C

    2009-09-25

    The role of the tropics in triggering, transmitting, and amplifying interhemispheric climate signals remains a key debate in paleoclimatology. Tropical glacier fluctuations provide important insight on regional paleoclimatic trends and forcings, but robust chronologies are scarce. Here, we report precise moraine ages from the Cordillera Vilcabamba (13 degrees 20'S) of southern Peru that indicate prominent glacial events and associated climatic shifts in the outer tropics during the early Holocene and late in the "Little Ice Age" period. Our glacier chronologies differ from the New Zealand record but are broadly correlative with well-dated glacial records in Europe, suggesting climate linkages between the tropics and the North Atlantic region.

  19. Allerod--younger dryas lake temperatures from midge fossils in atlantic Canada.

    PubMed

    Walker, I R; Mott, R J; Smol, J P

    1991-08-30

    Remains of freshwater midges are abundant in lake sediments, and their species distributions are closely related to the surface-water temperature of lakes; their distributions thus provide a powerful tool for paleoclimatology. The distribution of species in a core from Splan Pond in Atlantic Canada indicates that there were abrupt transitions in late-glacial temperatures between warm and cold states. The transitions are correlative with the well-known warm Allerød and cold Younger Dryas events in Europe. These data thus confirm the inference from palynological data that these events affected regions on both sides of the Atlantic.

  20. Pleistocene glaciation in the blue ridge province, southern appalachian mountains, north Carolina.

    PubMed

    Berkland, J O; Raymond, L A

    1973-08-17

    Glacial polish, grooves, and striations discovered at an elevation of 1370 meters in the headwaters of Boone Fork on Grandfather Mountain, North Carolina, indicate the former, existence of alpine glaciation at a latitude of 36 degrees 07'N. The Boone Fork glacier was located 890 kilometers south of the previously recognized southern limit of alpine glaciation in the Appalachian Mountains, and 350 kilometers southeast of the nearest point on the Laurentide ice sheet. This find has significant implications for studies of Pleistocene geomorphology, paleobiology, and paleoclimatology in the eastern United States.

  1. Some topics on geochemistry of weathering: a review.

    PubMed

    Formoso, Milton L L

    2006-12-01

    Weathering is a complex process comprising physical disaggregation, chemical and biological decomposition of rocks and minerals transforming complex structure minerals in simpler ones. Hydrolysis of silicates is perhaps the most important process but associated certainly to biological weathering. It is discussed the role ofwaters: activities/concentrations of chemical species, pH, Eh, importance of complexes. Weathering is not only a destructive process. It can concentrate chemical species and form mineral deposits (kaolin, bauxite, Fe, Mn, P, Nb, Au). Weathering studies are important in pedology, engineering geology, hydrogeology, paleoclimatology and ecology. The use of stonemeal is based upon the study of rock weathering.

  2. An additional step toward comprehensive paleoclimate reanalyses

    NASA Astrophysics Data System (ADS)

    Goosse, Hugues

    2016-09-01

    Although data assimilation in paleoclimatology has shown significant progress, the model data comparison step remains a limiting factor because paleoclimate (proxy) records have generally a complex response to both climatic and nonclimatic factors. In experiments performed in a controlled framework, Dee et al. (2016) have applied proxy system models that simulate tree ring width, isotopic composition of corals and isotopic composition of ice cores from the results of a climate model. The difference between those simulated variables and the value measured on the natural archive can then be computed directly, improving significantly the performance of the data assimilation method.

  3. Climate Warming and 21st-Century Drought in Southwestern North America

    NASA Astrophysics Data System (ADS)

    MacDonald, Glen M.; Stahle, David W.; Diaz, Jose Villanueva; Beer, Nicholas; Busby, Simon J.; Cerano-Paredes, Julian; Cole, Julie E.; Cook, Edward R.; Endfield, Georgina; Gutierrez-Garcia, Genaro; Hall, Beth; Magana, Victor; Meko, David M.; Méndez-Pérez, Matias; Sauchyn, David J.; Watson, Emma; Woodhouse, Connie A.

    2008-02-01

    Since 2000, southwestern North America has experienced widespread drought. Lakes Powell and Mead are now at less than 50% of their reservoir capacity, and drought or fire-related states of emergency were declared this past summer by governors in six western states. As with other prolonged droughts, such as the Dust Bowl during the 1930s, aridity has at times extended from northern Mexico to the southern Canadian prairies. A synthesis of climatological and paleoclimatological studies suggests that a transition to a more arid climate may be occurring due to global warming, with the prospect of sustained droughts being exacerbated by the potential reaction of the Pacific Ocean to warming.

  4. Volcanic eruptions: atmospheric effects. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-04-01

    The bibliography contains citations concerning gaseous and particulate contributions to the Earth's atmosphere from volcanoes, and the effects these substances have on the climate and the environment. Case studies of specific volcanic eruptions; detection and measurement of volcanic gases, aerosols, and particulates in the atmosphere; environmental effects on the biota; long and short term climatological effects; paleoclimatology and volcanoes; atmospheric and transport modelling; and solar radiation inhibition are among the topics discussed. (Contains a minimum of 179 citations and includes a subject term index and title list.)

  5. Greenhouse effect and the global climate. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning terrestrial climatic changes known as the greenhouse effect. The greenhouse effect is an accumulation of carbon dioxide and other gases that retain solar-induced heat, thereby increasing the average global temperature. Modeling studies, measurements of atmospheric gases, pollutants and temperatures, studies of climatic records for occurrence of similar changes (paleoclimatology), prediction of environmental changes due to the greenhouse effect, government energy policy as a result of possible climate change, and the contributions of manmade and natural pollutants to the greenhouse effect are among the topics discussed. (Contains a minimum of 52 citations and includes a subject term index and title list.)

  6. Hydrogeology of closed basins and deserts of South America, ERTS-1 interpretations

    NASA Technical Reports Server (NTRS)

    Stoertz, G. E.; Carter, W. D.

    1973-01-01

    Images from the Earth Resources Technology Satellite (ERTS-1) contain data useful in studies of hydrogeology, geomorphology, and paleoclimatology. Sixteen Return Beam Vidicon (RBV) images and 15 Multi-Spectral Scanner (MSS) images were studied. These covered deserts and semidesert areas in southwestern Bolivia, northwestern Argentina, northern Chile, and southeastern Peru from July 30 to November 17, 1972. During the first 3 months after launching, high-quality cloud-free imagery was obtained over approximately 90 percent of the region of interior drainage, or an area of 170,000 square miles.

  7. A phase-transition model for the rise and collapse of ancient civilizations: A pre-ceramic Andean case study

    NASA Astrophysics Data System (ADS)

    Flores, J. C.

    2015-12-01

    For ancient civilizations, the shift from disorder to organized urban settlements is viewed as a phase-transition simile. The number of monumental constructions, assumed to be a signature of civilization processes, corresponds to the order parameter, and effective connectivity becomes related to the control parameter. Based on parameter estimations from archaeological and paleo-climatological data, this study analyzes the rise and fall of the ancient Caral civilization on the South Pacific coast during a period of small ENSO fluctuations (approximately 4500 BP). Other examples considered include civilizations on Easter Island and the Maya Lowlands. This work considers a typical nonlinear third order evolution equation and numerical simulations.

  8. Seasonal Streamflow Reconstructions of the Choctawhatchee River (AL-USA)

    NASA Astrophysics Data System (ADS)

    Tootle, G. A.; Therrell, M.; Moat, T.; Meko, M.

    2015-12-01

    Tree ring samples were collected from Bald Cypress (Taxodium distichum) species in watersheds adjacent to the Choctawhatchee River (Alabama and Florida - USA). These samples were collected to update an existing tree ring proxy that was developed in the late 1980's and early 1990's (Stahle and Cleaveland, 1992, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution # FL001, Choctawhatchee River. NOAA/NCDC Paleoclimatology Program, Boulder, Colorado, USA). The motivation for updating the tree ring proxy was to determine if recent droughts identified in historic unimpaired Choctawhatchee River streamflow records were reflected in Bald Cypress tree ring growth. Historic streamflow from 1934 to 2013 was obtained for the USGS station at Newton, Alabama and one, five and ten-year droughts were identified and ranked. Many of the most severe droughts were identified in recent (~2000 to present) records (see Figure). Combining the new tree ring proxy with other regional proxies, seasonal streamflow was reconstructed for the Choctawhatchee River Newton, Alabama gage. The reconstructed streamflow allows water managers and planners to observe past wet and dry periods that may exceed magnitude, duration and/or severity of wet and dry periods in observed records.

  9. Paleobotanical Evidence for Near Present-Day Levels of Atmospheric CO2 During Part of the Tertiary

    NASA Astrophysics Data System (ADS)

    Royer, Dana L.; Wing, Scott L.; Beerling, David J.; Jolley, David W.; Koch, Paul L.; Hickey, Leo J.; Berner, Robert A.

    2001-06-01

    Understanding the link between the greenhouse gas carbon dioxide (CO2) and Earth's temperature underpins much of paleoclimatology and our predictions of future global warming. Here, we use the inverse relationship between leaf stomatal indices and the partial pressure of CO2 in modern Ginkgo biloba and Metasequoia glyptostroboides to develop a CO2 reconstruction based on fossil Ginkgo and Metasequoia cuticles for the middle Paleocene to early Eocene and middle Miocene. Our reconstruction indicates that CO2 remained between 300 and 450 parts per million by volume for these intervals with the exception of a single high estimate near the Paleocene/Eocene boundary. These results suggest that factors in addition to CO2 are required to explain these past intervals of global warmth.

  10. Molecular and isotopic composition of lipids in modern and fossil bivalve shells: Records of paleoenvironmental change?

    SciTech Connect

    CoBabe, E.A.

    1995-12-31

    Suites of lipids residing in situ in modern and fossil bivalve shells offer new possibilities for the study of paleoecology and paleoclimatology. Distributions of carbon isotopic compositions of modem shell lipids suggests that many of these compounds, including alkanes, sterols, fatty acids, ketones and phytadienes, are derived from the bivalves and not directly from the surrounding environment. The occurrence of fatty acids in modem and fossil shell material opens up the possibility that saturation levels of these compounds may be used as paleothermometers. To date, the utility of fatty acids in paleoclimate studies has been limited because of the swift breakdown of these compounds in sediment. However, initial results indicate that fatty acids in bivalve shells retain their original structure for at least several million years. Comparison of modem bivalve shell fatty acids from tropical, temperate and polar nearshore marine systems will be presented, along with analogous fossil data.

  11. Prospects for future climate: A special US/USSR report on climate and climate change

    SciTech Connect

    MacCracken, M.C.; Budyko, M.I.; Hecht, A.D.; Izrael, Y.A.

    1990-01-01

    Starting with the US-USSR Agreement on Protection of the Environment signed in 1972, the two nations have cooperated in joint research on atmospheric and environmental problems. The result of these efforts has been an innovative approach to projecting future climate change based on what has been learned about past warm periods and what can be learned from models. The chapters in this document explore the following: past changes in climate, both paleoclimatology and changes in the recent past; changes in atmospheric composition; estimates of greenhouse-induced change including the use of both empirical methods and climate models; impacts of climate change on water resources and agriculture in the two countries; and prospects for future climate changes.

  12. The last glacial termination.

    PubMed

    Denton, G H; Anderson, R F; Toggweiler, J R; Edwards, R L; Schaefer, J M; Putnam, A E

    2010-06-25

    A major puzzle of paleoclimatology is why, after a long interval of cooling climate, each late Quaternary ice age ended with a relatively short warming leg called a termination. We here offer a comprehensive hypothesis of how Earth emerged from the last global ice age. A prerequisite was the growth of very large Northern Hemisphere ice sheets, whose subsequent collapse created stadial conditions that disrupted global patterns of ocean and atmospheric circulation. The Southern Hemisphere westerlies shifted poleward during each northern stadial, producing pulses of ocean upwelling and warming that together accounted for much of the termination in the Southern Ocean and Antarctica. Rising atmospheric CO2 during southern upwelling pulses augmented warming during the last termination in both polar hemispheres.

  13. Paleobotanical evidence for near present-day levels of atmospheric Co2 during part of the tertiary.

    PubMed

    Royer, D L; Wing, S L; Beerling, D J; Jolley, D W; Koch, P L; Hickey, L J; Berner, R A

    2001-06-22

    Understanding the link between the greenhouse gas carbon dioxide (CO(2)) and Earth's temperature underpins much of paleoclimatology and our predictions of future global warming. Here, we use the inverse relationship between leaf stomatal indices and the partial pressure of CO(2) in modern Ginkgo biloba and Metasequoia glyptostroboides to develop a CO(2) reconstruction based on fossil Ginkgo and Metasequoia cuticles for the middle Paleocene to early Eocene and middle Miocene. Our reconstruction indicates that CO(2) remained between 300 and 450 parts per million by volume for these intervals with the exception of a single high estimate near the Paleocene/Eocene boundary. These results suggest that factors in addition to CO(2) are required to explain these past intervals of global warmth.

  14. Changes in the Radiocarbon Reservoir Age in Lake Xingyun, Southwestern China during the Holocene

    PubMed Central

    Zhou, Aifeng; He, Yuxin; Wu, Duo; Zhang, Xiaonan; Zhang, Can; Liu, Zhonghui; Yu, Junqing

    2015-01-01

    Chronology is a necessary component of paleoclimatology. Radiocarbon dating plays a central role in determining the ages of geological samples younger than ca. 50 ka BP. However, there are many limitations for its application, including radiocarbon reservoir effects, which may cause incorrect chronology in many lakes. Here we demonstrate temporal changes in the radiocarbon reservoir age of Lake Xingyun, Southwestern China, where radiocarbon ages based on bulk organic matter have been reported in previous studies. Our new radiocarbon ages, determined from terrestrial plant macrofossils suggest that the radiocarbon reservoir age changed from 960 to 2200 years during the last 8500 cal a BP years. These changes to the reservoir effect were associated with inputs from either pre-aged organic carbon or 14C-depleted hard water in Lake Xingyun caused by hydrological change in the lake system. The radiocarbon reservoir age may in return be a good indicator for the carbon source in lake ecosystems and depositional environment. PMID:25815508

  15. IDEAL Symposium on the East African Lakes

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.; Kelts, K.; Lehman, J. T.; Wuest, A.

    A vast array of interdisciplinary problems presented by the African Great Lakes were highlighted at the International Symposium on the Limnology, Climatology and Paleoclimatology of the East African Lakes, organized by the International Decade for the East African Lakes (IDEAL) February 17-21 in Jinja, Uganda. Approximately 125 scientists attended from North America, Europe, Africa, and New Zealand. Jinja is located on the northern shore of Lake Victoria at the head-waters of the Nile and is the site of the host institution for the symposium, the Uganda Freshwater Fisheries Research Organization (UFFRO). The conveners of the symposium were Tom Johnson of Duke University, George Kitaka of UNESCO-ROSTA, and Eric Odada of the University of Nairobi.

  16. Latitudinal species diversity gradient of marine zooplankton for the last three million years

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, Gene; Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.

    2012-01-01

    High tropical and low polar biodiversity is one of the most fundamental patterns characterising marine ecosystems, and the influence of temperature on such marine latitudinal diversity gradients is increasingly well documented. However, the temporal stability of quantitative relationships among diversity, latitude and temperature is largely unknown. Herein we document marine zooplankton species diversity patterns at four time slices [modern, Last Glacial Maximum (18 000 years ago), last interglacial (120 000 years ago), and Pliocene (~3.3–3.0 million years ago)] and show that, although the diversity-latitude relationship has been dynamic, diversity-temperature relationships are remarkably constant over the past three million years. These results suggest that species diversity is rapidly reorganised as species' ranges respond to temperature change on ecological time scales, and that the ecological impact of future human-induced temperature change may be partly predictable from fossil and paleoclimatological records.

  17. Changes in the radiocarbon reservoir age in Lake Xingyun, Southwestern China during the Holocene.

    PubMed

    Zhou, Aifeng; He, Yuxin; Wu, Duo; Zhang, Xiaonan; Zhang, Can; Liu, Zhonghui; Yu, Junqing

    2015-01-01

    Chronology is a necessary component of paleoclimatology. Radiocarbon dating plays a central role in determining the ages of geological samples younger than ca. 50 ka BP. However, there are many limitations for its application, including radiocarbon reservoir effects, which may cause incorrect chronology in many lakes. Here we demonstrate temporal changes in the radiocarbon reservoir age of Lake Xingyun, Southwestern China, where radiocarbon ages based on bulk organic matter have been reported in previous studies. Our new radiocarbon ages, determined from terrestrial plant macrofossils suggest that the radiocarbon reservoir age changed from 960 to 2200 years during the last 8500 cal a BP years. These changes to the reservoir effect were associated with inputs from either pre-aged organic carbon or 14C-depleted hard water in Lake Xingyun caused by hydrological change in the lake system. The radiocarbon reservoir age may in return be a good indicator for the carbon source in lake ecosystems and depositional environment.

  18. A guide for digitising manuscript climate data

    NASA Astrophysics Data System (ADS)

    Brönnimann, S.; Annis, J.; Dann, W.; Ewen, T.; Grant, A. N.; Griesser, T.; Krähenmann, S.; Mohr, C.; Scherer, M.; Vogler, C.

    2006-10-01

    Hand-written or printed manuscript data are an important source for paleo-climatological studies, but bringing them into a suitable format can be a time consuming adventure with uncertain success. Before digitising such data (e.g., in the context a specific research project), it is worthwhile spending a few thoughts on the characteristics of the data, the scientific requirements with respect to quality and coverage, the metadata, and technical aspects such as reproduction techniques, digitising techniques, and quality control strategies. Here we briefly discuss the most important considerations according to our own experience and describe different methods for digitising numeric or text data (optical character recognition, speech recognition, and key entry). We present a tentative guide that is intended to help others compiling the necessary information and making the right decisions.

  19. Stable hydrogen-isotope ratios in beetle chitin: preliminary European data and re-interpretation of North American data

    NASA Astrophysics Data System (ADS)

    Gröcke, Darren R.; Schimmelmann, Arndt; Elias, Scott; Miller, Randall F.

    2006-08-01

    Beetle exoskeletons contain chitin, a poly amino-sugar that is biosynthesized incorporating hydrogen isotopes from diet and water. As the stable isotope ratios D/H (or 2H/ 1H, expressed as δ D values) of precipitation and diet are jointly influenced by climate, the biochemically recorded hydrogen-isotope ratio in fossil beetle exoskeleton has the potential to be used for paleoclimatic reconstruction. New δ D data from modern beetles are presented as a preliminary database for Europe, with a re-evaluation of earlier North American data. We present correlated matrices of δ D values in modern beetle chitin and modern precipitation to demonstrate the concept. We review the pertinent literature to highlight the history, utility, and likely future research directions for the use of chitin's stable isotopes in entomological paleoclimatology.

  20. Relationship between δ 18O values for skeletal apatite from reindeer and foxes and yearly mean δ 18O values of environmental water

    NASA Astrophysics Data System (ADS)

    Iacumin, Paola; Longinelli, Antonio

    2002-07-01

    The oxygen isotope composition of bone and tooth phosphate of 50 fox specimens and 30 reindeer specimens from various locations with different climatic and environmental conditions was measured. The existing relationship between these values and the mean oxygen isotope composition of local meteoric water has been calculated. In the case of foxes, specimens belonging to two genera ( Vulpes and Alopex) and three different species were measured. The samples fit a straight line whose equation can be used for paleoclimatological studies either in Arctic or in temperate regions. For reindeer ( Rangifer), a relatively large range of isotopic values was obtained from each location, suggesting imperfect equilibrium conditions with environmental water. The calculated equation can be used for semi-quantitative information on local paleowaters at high latitudes only.

  1. Regional magnetic anomaly constraints on continental rifting

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  2. Modeling glacial climates

    NASA Technical Reports Server (NTRS)

    North, G. R.; Crowley, T. J.

    1984-01-01

    Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.

  3. Colombian late cretaceous tropical planktonic foraminifera: Redressing the imbalance

    SciTech Connect

    McCarthy, L.D.

    1993-02-01

    Recent work involving Late Cretaceous planktonic foraminifera has concentrated on European and other areas in the Northern Hemisphere. Many of the biostratigraphical and evolutionary models reflect this geographical restriction and ignore earlier studies from tropical areas. In 1955 Rolando Gandolfi described many new species and subspecies from Colombia and provided a different view of the evolutionary development of planktonic foraminifera. A re-examination of the Gandolfi type collection using Scanning Electron Micrography (Environmental Chamber technique) integrated with Colombian well samples from onshore Guajira area, Middle and Upper Magdalena Valley and Putumayo Basin has given a new view into the evolutionary development of Late Cretaceous planktonic foraminifera. This has enabled a modified globigerine Late Cretaceous biostratigraphy to be constructed for Colombia. This work redresses the imbalance between studies of tropical and northern high latitude Late Cretaceous planktonic foraminifera and provides an insight into the paleoenvironmental and paleoclimatological factors influencing the Colombian region at the time.

  4. High elevation of Jiaolai Basin during the Late Cretaceous: Implication for the coastal mountains along the East Asian margin

    NASA Astrophysics Data System (ADS)

    Zhang, Laiming; Wang, Chengshan; Cao, Ke; Wang, Qian; Tan, Jie; Gao, Yuan

    2016-12-01

    A large body of evidence suggests that there were extensive coastal mountains along the East Asian margin during the Late Cretaceous. However, current knowledge of the paleo-mountains - the period, range, and elevation - is limited. Therefore, direct paleoaltimetry is needed to validate and evaluate the paleo-mountains in East Asia. Our study area is Jiaolai Basin, which is located at the East Asian continental margin. We estimate the paleoelevation of Jiaolai Basin during the Late Cretaceous using carbonate clumped isotope paleothermometry. After correcting for seasonal preference, latitudinal difference, and secular climate change, we conclude that the paleoelevation of Jiaolai Basin was almost certainly ≥2.0 km at ∼80 Ma. Combined with the evidence from stratigraphy, paleogeography, and paleoclimatology, our results suggest that the existence of coastal mountains along East Asia during the Late Cretaceous is likely and the model of Okhotomorsk-East Asia collision is preferred.

  5. AGU climate scientists visit Capitol Hill

    NASA Astrophysics Data System (ADS)

    Hankin, Erik

    2012-02-01

    On 1 February 2012, AGU teamed with 11 other scientific societies to bring 29 scientists researching various aspects of climate change to Washington, D. C., for the second annual Climate Science Day on Capitol Hill. The participants represented a wide range of expertise, from meteorology to agriculture, paleoclimatology to statistics, but all spoke to the reality of climate change as demonstrated in their scientific research. With Congress debating environmental regulations and energy policy amid tight fiscal pressures, it is critical that lawmakers have access to the best climate science to help guide policy decisions. The scientists met with legislators and their staff to discuss the importance of climate science for their districts and the nation and offered their expertise as an ongoing resource to the legislators.

  6. Devils Hole, Nevada--A Primer

    USGS Publications Warehouse

    Landwehr, Jurate M.; Winograd, Isaac J.

    2012-01-01

    This fact sheet summarizes the multifaceted research of the U.S. Geological Survey—published in diverse outlets—that focuses on the subaqueous cavern Devils Hole in Nevada. Questions addressed in the fact sheet are: What is Devils Hole? Why is Devils Hole of interest to paleoclimatologists? How was the isotopic record from the Devils Hole vein calcite dated? What paleoclimate phenomena are recorded by the Devils Hole stable isotopic time series? Where can one find the isotopic records? What contributions has Devils Hole research made to the field of paleoclimatology, paleohydrology, and geochemistry? What does Devils Hole reveal about how long we can expect the present interglaciation to last? What are some practical applications of the Devils Hole findings? Why is Devils Hole of interest to zoologists?

  7. On reconstruction of time series in climatology

    NASA Astrophysics Data System (ADS)

    Privalsky, V.; Gluhovsky, A.

    2015-10-01

    The approach to time series reconstruction in climatology based upon cross-correlation coefficients and regression equations is mathematically incorrect because it ignores the dependence of time series upon their past. The proper method described here for the bivariate case requires the autoregressive time- and frequency domains modeling of the time series which contains simultaneous observations of both scalar series with subsequent application of the model to restore the shorter one into the past. The method presents further development of previous efforts taken by a number of authors starting from A. Douglass who introduced some concepts of time series analysis into paleoclimatology. The method is applied to the monthly data of total solar irradiance (TSI), 1979-2014, and sunspot numbers (SSN), 1749-2014, to restore the TSI data over 1749-1978. The results of the reconstruction are in statistical agreement with observations.

  8. Can Convergent Cross Mapping Untangle Idiosyncratic Speleothem Proxy Records to Reveal the Structure of Shared Climate Forcing?

    NASA Astrophysics Data System (ADS)

    Frappier, A. E.

    2015-12-01

    Rapid growth and development of speleothem paleoclimatology has generated diverse and important new terrestrial paleoenvironmental proxy records that increasingly illuminate both the enormous potential and great complexity of cave proxy systems and speleothem data. Speleothem records commonly exhibit complex covariation patterns between proxy variables (i.e. carbon and oxygen isotopes, various trace element concentrations and ratios, stratigraphic characteristics, growth rates, etc...). Such covariation patterns frequently change sign and magnitude over time, and often show periods without significant correlation that alternate with times with strongly coupled behavior. These patterns are evident when comparing records between sites and stalagmites, and even within a single stalagmite. Instability in covariation patterns and low long-term correlations both limit our confidence in applying speleothems proxy transfer functions over long time periods. Are these complex covariation patterns meaningful or merely mirages? When two speleothem records show the same result, replication is considered by the community to be evidence that both records are highly sensitive to a common climate signal and are thus reliable proxies for that climate signal. Signals derived from a single speleothem dataset could be noise, and thus of limited value until it is validated by the replication test. Are speleothems naturally idiosyncratic and noisy? Must all speleothem records be duplicated to establish reliability? I consider whether Convergent Cross Mapping (CCM) may offer a fruitful approach to these problems. CCM is a powerful statistical tool developed in George Sugihara's lab for complex dynamical systems that tests the direction of causality and strength of forcing among multiple time-series variables. I apply CCM to speleothem timeseries records to 1) reconstruct the underlying state climate variable of interest over time (in this case, precipitation), and 2) determine the

  9. Community-Supported Data Repositories in Paleobiology: A 'Middle Tail' Between the Geoscientific and Informatics Communities

    NASA Astrophysics Data System (ADS)

    Williams, J. W.; Ashworth, A. C.; Betancourt, J. L.; Bills, B.; Blois, J.; Booth, R.; Buckland, P.; Charles, D.; Curry, B. B.; Goring, S. J.; Davis, E.; Grimm, E. C.; Graham, R. W.; Smith, A. J.

    2015-12-01

    Community-supported data repositories (CSDRs) in paleoecology and paleoclimatology have a decades-long tradition and serve multiple critical scientific needs. CSDRs facilitate synthetic large-scale scientific research by providing open-access and curated data that employ community-supported metadata and data standards. CSDRs serve as a 'middle tail' or boundary organization between information scientists and the long-tail community of individual geoscientists collecting and analyzing paleoecological data. Over the past decades, a distributed network of CSDRs has emerged, each serving a particular suite of data and research communities, e.g. Neotoma Paleoecology Database, Paleobiology Database, International Tree Ring Database, NOAA NCEI for Paleoclimatology, Morphobank, iDigPaleo, and Integrated Earth Data Alliance. Recently, these groups have organized into a common Paleobiology Data Consortium dedicated to improving interoperability and sharing best practices and protocols. The Neotoma Paleoecology Database offers one example of an active and growing CSDR, designed to facilitate research into ecological and evolutionary dynamics during recent past global change. Neotoma combines a centralized database structure with distributed scientific governance via multiple virtual constituent data working groups. The Neotoma data model is flexible and can accommodate a variety of paleoecological proxies from many depositional contests. Data input into Neotoma is done by trained Data Stewards, drawn from their communities. Neotoma data can be searched, viewed, and returned to users through multiple interfaces, including the interactive Neotoma Explorer map interface, REST-ful Application Programming Interfaces (APIs), the neotoma R package, and the Tilia stratigraphic software. Neotoma is governed by geoscientists and provides community engagement through training workshops for data contributors, stewards, and users. Neotoma is engaged in the Paleobiological Data Consortium

  10. Defense of GAD during the 1950s and early 1960s

    NASA Astrophysics Data System (ADS)

    Frankel, H. R.

    2012-12-01

    Paleomagnetists favoring continental offered empirical and theoretical support for the GAD hypothesis. Initial support came from the discovery that the mean directions of rock units, regardless of polarity, laid down back through the Upper Tertiary centered on the rotational pole. Armed with Fisher's statistics, Hospers (1951, 1953) found that the mean direction of the NRM of Icelandic lava flows back through the Miocene better agreed with the GAD field than with the present field. Similarly, Campbell and Runcorn (1956), Creer (1956), and Irving and Green (1957) respectively found that the natural remanent magnetization of Late Tertiary Columbia River basalts, Quaternary basalts of Argentina, and Late Cenozoic New Volcanics of Victoria supported the hypothesis. If significant continental drift or "true" polar wander has occurred, paleomagnetic data alone cannot determine if the axial element of the GAD hypothesis holds earlier than Late Tertiary. Extending the GAD hypothesis back in time requires an approach involving a means independent of paleomagnetism for determining past latitudes. Irving was the first to realize that the paleoclimatology would work. If the GAD hypothesis holds, then paleolatitudes based on paleomagnetism and paleoclimatology should agree. Irving (1956) found that, except for the Squantum Tillite, the paleomagnetically and paleoclimatically determined paleolatitudes for Europe, North America, India, and Tasmania were in agreement. He concluded that the magnetic and rotational axes have coincided since the Paleozoic. Blackett (1961) also compared paleoclimatic and paleomagnetic data-sets. Irving and Briden (1962, 1964) further appealed to paleoclimatology to defend the hypothesis. Determining the paleolatitude spectra for several paleoclimatic indicators, they found the present latitude of fossil instances inconsistent with the latitude of modern instances while their paleomagnetically determined paleolatitudes, which assumed the GAD hypothesis

  11. Northwest Pacific typhoons documented by the Philippine Jesuits, 1566-1900

    NASA Astrophysics Data System (ADS)

    GarcíA-Herrera, Ricardo; Ribera, Pedro; HernáNdez, Emiliano; Gimeno, Luis

    2007-03-01

    In recent years, the population and the value of properties in areas prone to tropical cyclone (TC) have increased dramatically. This has caused more attention to be placed on the characterization of TC climatologies and the identification of the role that factors such as the main teleconnection patterns may play in TC variability. Due to the timescales involved, the instrumental records have proven too short to provide a complete picture. Thus, documentary and other paleoclimatological techniques have been used to reconstruct TC occurrence. This has been done mostly for the Atlantic basin, whereas in the Pacific basin, fewer attempts have been made. The aim of this paper is to provide a high-resolution chronology of typhoons and intense storms occurring in the Philippine Islands and their vicinity for the period 1566-1900. The chronology is based upon the writings of the Spanish Jesuit Miguel Selga, who produced the original work at the beginning of the 20th century. The sources, reliability, and completeness of the chronology are examined critically. A total of 652 events are included, 524 of which are reported as typhoons, the rest being considered as tropical storms. For each of these classes, the landfall location and the track (when sufficient information is available) have been drawn. This chronology is an indispensable step toward a final and complete typhoon record in the western Pacific basin.

  12. Paleoecological potential of mid-altitude peat deposits in the Tropical Andes: evidence from subfossil wood and palynology

    NASA Astrophysics Data System (ADS)

    Gonzalez Arango, Catalina; Andres Ayala Usma, David; Boom, Arnoud; Archila, Sonia; Montes, Camilo

    2016-04-01

    The understanding of past climatic and ecological phenomena at mid-altitudes in the tropical Andes is limited by the lack of ancient lakes and other well preserved paleoclimatological archives. During the opening of a main road a decade ago in the Central Cordillera of Colombia, some buried peat deposits became exposed within the Pereira Volcanodetritic Fan (~2000 m.a.s.l), revealing a rich resource of organic remains, including big fragments of subfossil trees and micro and macro plant remains ideal for multiproxy analysis. Radiocarbon dating and palynological analysis suggest that the deposit dates back to the last glacial period. We present the first δ13C results of a subfossil wood sample with visible tree rings, that was identified as a member of the genus Chrysochlamys (Clusiaceae) and that revealed a periodic signal that might be attributed to climatic variability. A clear seasonal pattern arises suggesting a different climatic configuration, most likely related to a broader migrational range of the ITCZ related to higher eccentricity. Pollen analysis reveals the prevalence of montane Andean forests and Paramo elements (today ca. 1200 meters higher) indicating much colder climates than today. These first findings indicate that mid-altitude Andean peats are highly sensitive to climatic variability and provide an excellent opportunity to study ancient environmental phenomena at extremely high resolution.

  13. Correlation-based interpretations of paleoclimate data - where statistics meet past climates

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Emile-Geay, Julien; Partin, Judson

    2017-02-01

    Correlation analysis is omnipresent in paleoclimatology, and often serves to support the proposed climatic interpretation of a given proxy record. However, this analysis presents several statistical challenges, each of which is sufficient to nullify the interpretation: the loss of degrees of freedom due to serial correlation, the test multiplicity problem in connection with a climate field, and the presence of age uncertainties. While these issues have long been known to statisticians, they are not widely appreciated by the wider paleoclimate community; yet they can have a first-order impact on scientific conclusions. Here we use three examples from the recent paleoclimate literature to highlight how spurious correlations affect the published interpretations of paleoclimate proxies, and suggest that future studies should address these issues to strengthen their conclusions. In some cases, correlations that were previously claimed to be significant are found insignificant, thereby challenging published interpretations. In other cases, minor adjustments can be made to safeguard against these concerns. Because such problems arise so commonly with paleoclimate data, we provide open-source code to address them. Ultimately, we conclude that statistics alone cannot ground-truth a proxy, and recommend establishing a mechanistic understanding of a proxy signal as a sounder basis for interpretation.

  14. Whither Dendroclimatology?

    NASA Astrophysics Data System (ADS)

    Bunn, A. G.; Lloyd, A. H.

    2007-12-01

    As in other fields of paleoclimatology, uniformitarianism is the key principle in dendroclimatology. The assumption that the processes that form tree rings now are the same as those in the past is what allows climate to be reconstructed from tree rings. Recent years have seen declining ring widths in the northern high latitudes coincident with increasing temperatures despite being an ostensibly temperature limited environment. There are several factors that could play into this phenomenon. It could be that that more nuanced statistical or process models are needed to fully understand the climate | growth relationship. Or, there could be exogenous forcings (e.g., global dimming) that contribute to the shift in the climate | growth relationship, and that understanding the nature of those forcings is needed. What can this "divergence problem" tell us about tree growth and climate and does the apparent loss of sensitivity indicate a violation of the uniformity principle? We will present an analysis of simulated and real tree-ring data that attempts to answer these questions and show that while there are basic gaps in our understanding, the careful modeling of climate | growth relations and the proper attribution of error are keys to the making progress on the "divergence opportunity."

  15. The Role of Internet Paleo Perspective Overviews in Making Data About Past Climate and Environmental Change More Accessible

    NASA Astrophysics Data System (ADS)

    Anderson, D. M.; Bauer, B. A.; Gille, E. P.; Gross, W. S.; Hartman, M. A.; Shah, A. M.; Woodhouse, C. A.

    2005-12-01

    The cornerstone of scientific discovery is the peer-reviewed journal article, yet for non-specialists these articles can be difficult to appreciate. Scientific writing and the sheer number of articles published each month compound the problem. At the World Data Center for Paleoclimatology, a primary goal is to make published scientific results more accessible to non-specialists. In partnership with scientists, we have created Paleo Perspectives, online essays that provide an introduction to the scientific literature on a topic, background needed to appreciate the results, figures with detailed captions, photographs, short movies and visualizations, summaries, glossaries, direct links to the data, and links to additional information. The power and flexibility of the Internet enables us to provide and update this rich array of material. We have produced three paleo perspectives (global warming, drought, abrupt climate change), with a fourth in review (arctic climate variability). Web statistics indicate these are some of the Data Center`s most often-used web pages (more so for hot topics such as global warming), and awards and accolades indicate that the content is appreciated and on-target. Review by scientists assures the accuracy of the presentations, and newly-contributed data provide material for updates.

  16. Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history.

    PubMed

    Ehrlich, Hermann; Koutsoukos, Petros G; Demadis, Konstantinos D; Pokrovsky, Oleg S

    2008-12-01

    In contrast to biomineralization phenomena, that are among the most widely studied topics in modern material and earth science and biomedicine, much less is systematized on modern view of demineralization. Biomineralized structures and tissues are composites, containing a biologically produced organic matrix and nano- or microscale amorphous or crystalline minerals. Demineralization is the process of removing the inorganic part, or the biominerals, that takes place in nature via either physiological or pathological pathways in organisms. In vitro demineralization processes, used to obtain mechanistic information, consist in the isolation of the mineral phase of the composite biomaterials from the organic matrix. Physiological and pathological demineralization include, for example, bone resorption mediated by osteoclasts. Bioerosion, a more general term for the process of deterioration of the composite biomaterials represents chemical deterioration of the organic and mineral phase followed by biological attack of the composite by microorganisms and enzymes. Bioerosional organisms are represented by endolithic cyanobacteria, fungi, algae, plants, sponges, phoronids and polychaetes, mollusks, fish and echinoids. In the history of demineralization studies, the driving force was based on problems of human health, mostly dental caries. In this paper we summarize and integrate a number of events, discoveries, milestone papers and books on different aspect of demineralization during the last 400 years. Overall, demineralization is a rapidly growing and challenging aspect of various scientific disciplines such as astrobiology, paleoclimatology, geomedicine, archaeology, geobiology, dentistry, histology, biotechnology, and others to mention just a few.

  17. Recovering Paleo-Records from Antarctic Ice-Cores by Coupling a Continuous Melting Device and Fast Ion Chromatography.

    PubMed

    Severi, Mirko; Becagli, Silvia; Traversi, Rita; Udisti, Roberto

    2015-11-17

    Recently, the increasing interest in the understanding of global climatic changes and on natural processes related to climate yielded the development and improvement of new analytical methods for the analysis of environmental samples. The determination of trace chemical species is a useful tool in paleoclimatology, and the techniques for the analysis of ice cores have evolved during the past few years from laborious measurements on discrete samples to continuous techniques allowing higher temporal resolution, higher sensitivity and, above all, higher throughput. Two fast ion chromatographic (FIC) methods are presented. The first method was able to measure Cl(-), NO3(-) and SO4(2-) in a melter-based continuous flow system separating the three analytes in just 1 min. The second method (called Ultra-FIC) was able to perform a single chromatographic analysis in just 30 s and the resulting sampling resolution was 1.0 cm with a typical melting rate of 4.0 cm min(-1). Both methods combine the accuracy, precision, and low detection limits of ion chromatography with the enhanced speed and high depth resolution of continuous melting systems. Both methods have been tested and validated with the analysis of several hundred meters of different ice cores. In particular, the Ultra-FIC method was used to reconstruct the high-resolution SO4(2-) profile of the last 10,000 years for the EDML ice core, allowing the counting of the annual layers, which represents a key point in dating these kind of natural archives.

  18. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.

    PubMed

    Zhu, Chun; Wakeham, Stuart G; Elling, Felix J; Basse, Andreas; Mollenhauer, Gesine; Versteegh, Gerard J M; Könneke, Martin; Hinrichs, Kai-Uwe

    2016-12-01

    Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal (i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (≤ 100 m) and deep (>100 m) populations of archaea, (ii) stratification of unsaturated GDGTs with varying redox conditions, and (iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We, thus, provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota.

  19. A TEX86 surface sediment database and extended Bayesian calibration

    PubMed Central

    Tierney, Jessica E; Tingley, Martin P

    2015-01-01

    Quantitative estimates of past temperature changes are a cornerstone of paleoclimatology. For a number of marine sediment-based proxies, the accuracy and precision of past temperature reconstructions depends on a spatial calibration of modern surface sediment measurements to overlying water temperatures. Here, we present a database of 1095 surface sediment measurements of TEX86, a temperature proxy based on the relative cyclization of marine archaeal glycerol dialkyl glycerol tetraether (GDGT) lipids. The dataset is archived in a machine-readable format with geospatial information, fractional abundances of lipids (if available), and metadata. We use this new database to update surface and subsurface temperature calibration models for TEX86 and demonstrate the applicability of the TEX86 proxy to past temperature prediction. The TEX86 database confirms that surface sediment GDGT distribution has a strong relationship to temperature, which accounts for over 70% of the variance in the data. Future efforts, made possible by the data presented here, will seek to identify variables with secondary relationships to GDGT distributions, such as archaeal community composition. PMID:26110065

  20. A TEX₈₆ surface sediment database and extended Bayesian calibration.

    PubMed

    Tierney, Jessica E; Tingley, Martin P

    2015-01-01

    Quantitative estimates of past temperature changes are a cornerstone of paleoclimatology. For a number of marine sediment-based proxies, the accuracy and precision of past temperature reconstructions depends on a spatial calibration of modern surface sediment measurements to overlying water temperatures. Here, we present a database of 1095 surface sediment measurements of TEX86, a temperature proxy based on the relative cyclization of marine archaeal glycerol dialkyl glycerol tetraether (GDGT) lipids. The dataset is archived in a machine-readable format with geospatial information, fractional abundances of lipids (if available), and metadata. We use this new database to update surface and subsurface temperature calibration models for TEX86 and demonstrate the applicability of the TEX86 proxy to past temperature prediction. The TEX86 database confirms that surface sediment GDGT distribution has a strong relationship to temperature, which accounts for over 70% of the variance in the data. Future efforts, made possible by the data presented here, will seek to identify variables with secondary relationships to GDGT distributions, such as archaeal community composition.

  1. Carbon isotope analyses of cellulose using two different on-line techniques (elemental analysis and high-temperature pyrolysis)--a comparison.

    PubMed

    Knöller, Kay; Boettger, Tatjana; Weise, Stephan M; Gehre, Matthias

    2005-01-01

    Even though the recent development in on-line methods for the stable isotope determination in cellulose has led to a significant increase in sample throughput and decrease in sample preparation expenditure, there still is a large potential for optimizing the analytical procedures by simultaneously measuring the isotope ratios of two or even more elements. Therefore, the main objective of this study was to answer the question whether high-temperature pyrolysis (HTP) is a suitable and reliable technique for the determination of the carbon isotopic composition of cellulose simultaneously during the well-known conventional oxygen isotope analysis. This study shows that HTP of cellulose is a technique that can produce reasonable delta(13)C values, matching the requirements of most research problems related to paleoclimatology. The reproducibility of the delta values for (13)C/(12)C is better than 0.2 per thousand. Some deficiencies of the method are related to the incomplete conversion of the organic carbon in the sample to carbon monoxide. A clear isotope effect seems to be related to the non-statistical conversion of the carbon in the cellulose to CO. The extent of this effect appears to be controlled by the relative proportion of crystallized and amorphous matter in the cellulose structure. Those deficiencies can be eliminated by using an appropriate normalization and by applying the principles of identical treatment for reference materials and samples. In general, a very good agreement is achieved for carbon isotope values determined by HTP and elemental analysis (EA).

  2. Uranium-series dating of sediments from searles lake: differences between continental and marine climate records.

    PubMed

    Bischoff, J L; Rosenbauer, R J; Smith, G I

    1985-03-08

    One of the major unresolved questions in Pleistocene paleoclimatology has been whether continental climatic transitions are consistent with the glacial delta(18)O marine record. Searles Lake in California, now a dry salt pan, is underlain by sediment layers deposited in a succession of lakes whose levels and salinities have fluctuated in response to changes in climate over the last 3 x 10(6) years. Uraniumseries dates on the salt beds range from 35 x 10(3) to 231x 10(3) years. This range of dates allows identification of lake-sediment horizons that are time correlatives of the boundaries of marine isotope stages from the recent 3/4 boundary back to the 8/9 boundary. The 5/6 boundary coincided with a deepening of the lake, but the analogous 1/2 boundary coincided with desiccation. The 3/4, 4/5, 6/7, 7/8, and 8/9 boundaries correspond in age to horizons that record little or no change in sedimentation or climate. These hydrologic results demonstrate that the continental paleoclimate record at this mid-latitude site does not mimic the marine record.

  3. Classifying black and white spruce pollen using layered machine learning.

    PubMed

    Punyasena, Surangi W; Tcheng, David K; Wesseln, Cassandra; Mueller, Pietra G

    2012-11-01

    Pollen is among the most ubiquitous of terrestrial fossils, preserving an extended record of vegetation change. However, this temporal continuity comes with a taxonomic tradeoff. Analytical methods that improve the taxonomic precision of pollen identifications would expand the research questions that could be addressed by pollen, in fields such as paleoecology, paleoclimatology, biostratigraphy, melissopalynology, and forensics. We developed a supervised, layered, instance-based machine-learning classification system that uses leave-one-out bias optimization and discriminates among small variations in pollen shape, size, and texture. We tested our system on black and white spruce, two paleoclimatically significant taxa in the North American Quaternary. We achieved > 93% grain-to-grain classification accuracies in a series of experiments with both fossil and reference material. More significantly, when applied to Quaternary samples, the learning system was able to replicate the count proportions of a human expert (R(2) = 0.78, P = 0.007), with one key difference - the machine achieved these ratios by including larger numbers of grains with low-confidence identifications. Our results demonstrate the capability of machine-learning systems to solve the most challenging palynological classification problem, the discrimination of congeneric species, extending the capabilities of the pollen analyst and improving the taxonomic resolution of the palynological record.

  4. Conflicting mitochondrial and nuclear phylogenies for the widely disjunct Emys (Testudines: Emydidae) species complex, and what they tell us about biogeography and hybridization.

    PubMed

    Spinks, Phillip Q; Shaffer, H Bradley

    2009-02-01

    Understanding the mechanisms by which widely disjunct members of a clade came to occupy their current distribution is one of the fundamental challenges of biogeography. Here, we used data from 7 nuclear and 1 mitochondrial gene to examine the phylogenetic and biogeographic history of Emys, a clade of turtles that is broadly disjunct in western and eastern North America and Europe. We found strong disagreement between mitochondrial and nuclear gene trees, with mitochondrial DNA supporting the monophyly of the North American taxa (marmorata + blandingii) to the exclusion of the European orbicularis, and nuclear genes supporting the monophyly of (blandingii + orbicularis) to the exclusion of marmorata. We used fossil-calibrated molecular chronograms, in combination with supporting evidence from the fossil record and paleoclimatology, to identify a potential example of ancient hybridization and mitochondrial gene capture 12 million years ago, which explains this discrepancy. Based on the weight of evidence, we argue that the invasion of Eurasia by Emys orbicularis occurred about 16 Ma via a trans-Beringian land bridge. The case of Emys emphasizes how single-gene trees can be strongly affected by population processes, including hybridization, and that the effects of these processes can persist through long periods of evolutionary history. Given the chaotic state of the current taxonomy of these turtles, our work also emphasizes the care that should be used in implementing taxonomic changes based on 1 or a few gene trees and the importance of taking a conservative approach in renaming or splitting higher taxa based on apparent nonmonophyly.

  5. Optimized demineralization technique for the measurement of stable isotope ratios of nonexchangeable H in soil organic matter.

    PubMed

    Ruppenthal, Marc; Oelmann, Yvonne; Wilcke, Wolfgang

    2013-01-15

    To make use of the isotope ratio of nonexchangeable hydrogen (δ(2)H(n (nonexchangeable))) of bulk soil organic matter (SOM), the mineral matrix (containing structural water of clay minerals) must be separated from SOM and samples need to be analyzed after H isotope equilibration. We present a novel technique for demineralization of soil samples with HF and dilute HCl and recovery of the SOM fraction solubilized in the HF demineralization solution via solid-phase extraction. Compared with existing techniques, organic C (C(org)) and organic N (N(org)) recovery of demineralized SOM concentrates was significantly increased (C(org) recovery using existing techniques vs new demineralization method: 58% vs 78%; N(org) recovery: 60% vs 78%). Chemicals used for the demineralization treatment did not affect δ(2)H(n) values as revealed by spiking with deuterated water. The new demineralization method minimized organic matter losses and thus artificial H isotope fractionation, opening up the opportunity to use δ(2)H(n) analyses of SOM as a new tool in paleoclimatology or geospatial forensics.

  6. Foraminiferal faunal estimates of paleotemperature: Circumventing the no-analog problem yields cool ice age tropics

    USGS Publications Warehouse

    Mix, A.C.; Morey, A.E.; Pisias, N.G.; Hostetler, S.W.

    1999-01-01

    The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5??to 6??C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.

  7. The Tyrolean Iceman and excavated human remains as sources of information about the past, the present, and the future.

    PubMed

    Sjøvold, T

    1998-01-01

    The 5,200-year-old mummy of the so-called "Iceman" found in the Tyrolean Alps in September 1991 has not only provided unique information about the European Stone Age, but has also supported disciplines of glaciology and paleoclimatology, contributed to medical history, age-at-death determination, and plastic surgery. The Iceman is the oldest known case of medical tattooing. Since the body is unique, new noninvasive methods had to be developed to investigate it. Stereolithographic skull models were produced to study the skull. Age determination was partly based on computer tomography. These methods may even be used for present or future medical or forensic practice. Furthermore, a collection of identified skulls from a charnel house in Austria, dating from about 1780 AD to 1990 AD, has been used for testing and developing osteological methods, though the inclusion of the skulls in the charnel house is formally classified a second burial. These skulls have been studied by permission from the local Catholic church. Careful respect for the ancestors is crucial in both these and other cases. In return, access to the remains of ancestors provides information which may shed light upon the past, the present, and even help survival in the future.

  8. Uranium-series dating of sediments from Searles Lake: Differences between continental and marine climate records

    USGS Publications Warehouse

    Bischoff, J.L.; Rosenbauer, R.J.; Smith, G.I.

    1985-01-01

    One of the major unresolved questions in Pleistocene paleoclimatology has been whether continental climatic transitions are consistent with the glacial ??18O marine record. Searles Lake in California, now a dry salt pan, is underlain by sediment layers deposited in a succession of lakes whose levels and salinities have fluctuated in response to changes in climate over the last 3 ?? 106 years. Uranium-series dates on the salt beds range from 35 ?? 103 to 231 ?? 103 years. This range of dates allows identification of lake-sediment horizons that are time correlatives of the boundaries of marine isotope stages from the recent 3/4 boundary back to the 8/9 boundary. The 5/6 boundary coincided with a deepening of the lake, but the analogous 1/2 boundary coincided with desiccation. The 3/4, 4/5, 6/7, 7/8, and 8/9 boundaries correspond in age to horizons that record little or no change in sedimentation or climate. These hydrologic results demonstrate that the continental paleoclimate record at this mid-latitude site does not mimic the marine record.

  9. Ted Irving's early contributions to paleomagnetism

    NASA Astrophysics Data System (ADS)

    Frankel, H. R.

    2014-12-01

    Edward (Ted) Irving (1927 - 2014) was one of the most deeply and widely respected paleomagnetists, making significant contributions to the field throughout his career which spanned six decades. Restricting attention to the first decade of his career, the 1950s, he discovered from work on the Torridonian (1951-1953) that fine-grained red sandstones were generally suitable for paleomagnetic work (1951-1952). He rediscovered (1951) that paleomagnetism could be used to test continental drift, and initiated (1951) the first paleomagnetic test of whether India had drifted northward relative to Asia and argued (1954) that it had. He also made significant contributions to the first APW path for Great Britain (Creer, Irving, and Runcorn, 1954). He was the first to draw two APW paths to explain results from Great Britain and North America (1956) and to use paleomagnetism and paleoclimatology together to argue for continental drift (1954, 1956). With Ron Green, his first student, he first APW path for Australia (1958). He was the first to invoke axial rotations to explain away an apparent anomaly with an APW path (1959). His work on the Torridonian led to the first description of stratigraphically sequential reversals in sedimentary rocks. Moreover, his 1959 superb review of the paleomagnetic support for continental drift was instrumental in Hess's becoming a continental drifter before he came up with the idea of seafloor spreading.

  10. Testing coral-based tropical cyclone reconstructions: An example from Puerto Rico

    USGS Publications Warehouse

    Kilbourne, K. Halimeda; Moyer, Ryan P.; Quinn, Terrence M.; Grottoli, Andrea G.

    2011-01-01

    Complimenting modern records of tropical cyclone activity with longer historical and paleoclimatological records would increase our understanding of natural tropical cyclone variability on decadal to centennial time scales. Tropical cyclones produce large amounts of precipitation with significantly lower δ18O values than normal precipitation, and hence may be geochemically identifiable as negative δ18O anomalies in marine carbonate δ18O records. This study investigates the usefulness of coral skeletal δ18O as a means of reconstructing past tropical cyclone events. Isotopic modeling of rainfall mixing with seawater shows that detecting an isotopic signal from a tropical cyclone in a coral requires a salinity of ~ 33 psu at the time of coral growth, but this threshold is dependent on the isotopic composition of both fresh and saline end-members. A comparison between coral δ18O and historical records of tropical cyclone activity, river discharge, and precipitation from multiple sites in Puerto Rico shows that tropical cyclones are not distinguishable in the coral record from normal rainfall using this approach at these sites.

  11. Comparison and Significance of Two Different Organic Paleotemperature Reconstructions

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zhang, H.; He, J.; Ruan, Y.; Dong, L.; Wang, H.; Li, L.

    2015-12-01

    Temperature is a basic parameter in the study of paleoclimatology and paleoceanography. In the present study, two organic geochemical proxies, UK'37 and TEX86 were used for the sea surface temperature reconstruction in the site MD123434 (18°49.84'N,116°18.89'E, water depth 2995m) in northern South China Sea. On the whole, the two reconstructed temperature correlated well with each other, reflecting low temperature in the last glacial and high in the Holocene. Nevertheless, detailed comparison illustrated relatively higher reconstructed temperature by the UK'37 method than that in TEX86 proxy, with a range of 23.0℃ to 27.8℃ and 18.9℃to 29.5℃ for UK'37 and TEX86 proxy respectively. The average temperature discrepancy (ΔT) between the two temperature proxies is ~3℃ during the last glacial and ~0℃ during the Holocene, which cannot be fully attributed to calculation errors. The offset between these two proxies may be caused by the different living water depths of the source organisms: haptophyte and Thaumarchaeota for the UK'37 and TEX86 respectively. The terrestrial GDGTs input and the different calibration equations on the TEX86 may possibly also contribute to the discrepancy. Meanwhile, growth seasonalities between the two source organisms cannot be ignored either.

  12. Assessing the accuracy of oxygen isotopes and Sr/Ca as proxies of sea surface temperature at the extreme latitudinal limits of Porites corals

    NASA Astrophysics Data System (ADS)

    Hirabayashi, S.; Yokoyama, Y.; Suzuki, A.; Kawakubo, Y.; Miyairi, Y.; Okai, T.; Nojima, S.

    2014-12-01

    Oxygen isotope and Sr/Ca ratios in harmatypic coral skeletons are widely employed as proxies of sea-surface temperature (SST) in paleoclimatology, yet they are considered to be influenced from growth rate of corals. Corals in temperate regions have lower skeletal growth rate because of relatively stressful environment, in particular lower SST than those in the tropics or subtropics. Dependency on SST proxies from those effects are required to be validated to better understand paleo-environment using temperate corals. This study reports Sr/Ca-based SST reconstructions for three temperate Porites coral colonies (USB93, USB12-01, USB12-03) collected from Kyushu, Japan, near the northern latitudinal limits of Porites. Results clearly indicated that Sr/Ca reliably reproduced SST variation, independent from growth rate variations, in contrast to δ18O-based reconstruction (Hirabayashi et al., 2013, Geochemical Journal). The inter-colony variation of skeletal Sr/Ca of two Porites corals (USB12-01, USB12-03) were observed. This is attributed to the difference in calcification processes between so called "smooth type" and "sharp type" proposed by Gagan et al. (2012) as is defined by the ratio of tissue thickness/extension rate. According to these observations, summer SST reconstruction can be achieved by a limited number of coral specimens in a temperate region with comparable accuracy to tropical and subtropical corals.

  13. Antarctica Research in the Polar Research Center of China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Li, Y.; Liu, S.; Cole-Dai, J.

    2003-12-01

    The Polar Research Center of China (PRCC) was established in the early 1990s (formerly Polar Research Institute of China) to serve as the leading national organization for Antarctica-related research in China. Current research areas of center staff scientists include glaciology and paleoclimatology, upper atmospheric physics, polar and marine biology, and oceanagrphy. In addition to its own active research, PRCC on behalf of the China Antarctic and Arctic Administration coordinates and provides logistical support to Antarctica research activities by all Chinese scientists. The center organizes and manages the annual Chinese Research Expedition to Antarctica with participation from many other national and academic institutions. In its first decade of existence, PRCC has accumulated valuable experience in conducting and facilitating research in Antarctica, particularly in the areas of logistic support for field programs, staffing and managing the two permanent stations in Antarctica (Great Wall and Zhongshan). The successful operation of the Chinese Antarctica research program has benefitted from generous assistance from several more established national (for example, Australia, Japan and the United States) Antarctica programs and from frequent contact with international colleagues working on Antarctica research. Among the many issues and problems frequently encountered in the last decade are: (1) The scale of research activities is often seriously constrained by logistic capabilities and funding; (2) Limited computer network and library resources hamper speedy and timely access to relevant international scientific literature; (3) Acquisition of high quality scientific (field and laboratory) equipment and special supplies can be limited by funding and access to suppliers.

  14. The Development and Evaluation of the Climate Time Line Information Tool

    NASA Astrophysics Data System (ADS)

    McCaffrey, M. S.; Kowal, D.; Eakin, C. M.

    2002-12-01

    The Climate Time Line Information Tool or CTL (http://www.ngdc.noaa.gov/paleo/ctl) has been prototyped as a digital educational tool for conveying fundamental climatic processes and their human dimension for diverse audiences. Using a powers of ten approach to temporal scaling, the CTL website was developed through a CIRES Innovative Research Grant by Mark McCaffrey at the National Climatic Data Center's Paleoclimatology Program and Dan Kowal at the National Geophysical Data Center. CTL was specifcally designed as an interdisciplinary tool for conveying information about weather and climatic processes, such as the diurnal, annual and orbital cycles and ENSO. Moreover, the web site explores potential connections between climatic variability and human development over the past 100,000 years. Evaluation of the prototype examined issues of usability and navigation of the site as well as how its content and framework served the needs of undergraduate, middle and high school students, geoscience educators, and climate experts. The development and evaluation of the Climate Time Line provide a case study for other geoscience researchers and educators on: i) how objectives were set by developers; ii) how evaluators were involved in assessing the prototype; iii) the variety of evaluative methods available to test the viability of the product; and iv) how results from the evaluation can be used to finalize the prototype.

  15. Effects of handling, storage, and chemical treatments on δ13C values of terrestrial fossil organic matter

    NASA Astrophysics Data System (ADS)

    Gauthier, Caroline; Hatté, Christine

    2008-08-01

    With the need to interpret small isotopic variations, δ13C analyses of sedimentary organic matter are more and more widespread in the field of (paleo)climatology. Recent developments require an evaluation of the reliability and reproducibility of the whole data acquisition chain. Literature abounds in protocols for sediment pretreatment prior to physical measurements. These procedures differ at every step: from sampling, handling, and storage conditions to leaching procedure, without cross evaluation. In this study, we focus on two sediment samples: a modern temperate soil and a 70 ka typical loess. We review different protocols that characterize each step of the sediment pretreatment. Handling and storage conditions are tested, e.g., finger skin contact, mild- to high-temperature oven-dry, and freeze-drying. Likewise, different decarbonation protocols are compared: wet decarbonation under cold 0.6 N HCl, 2 N HCl and boiling 1 N HCl, and acid fuming with 36% HCl. This study identifies up to 1.5‰ isotopic shifts linked to experimental bias. This large bias might be at the origin of erroneous paleoclimatic interpretation. On the basis of these results, we propose specific treatments adapted to the sample type.

  16. Aligning MIS5 proxy records from Lake Ohrid (FYROM) with independently dated Mediterranean archives: implications for core chronology

    NASA Astrophysics Data System (ADS)

    Zanchetta, G.; Regattieri, E.; Giaccio, B.; Wagner, B.; Sulpizio, R.; Francke, A.; Vogel, L. H.; Sadori, L.; Masi, A.; Sinopoli, G.; Lacey, J. H.; Leng, M. L.; Leicher, N.

    2015-10-01

    The DEEP site sediment sequence obtained during the ICDP SCOPSCO project at Lake Ohrid was dated using tephrostratigraphic information, cyclostratigraphy, and orbital tuning through marine isotope record. Although this approach is suitable for the generation of a general chronological framework of the long succession, it is insufficient to resolve more detailed paleoclimatological questions, such as leads and lags of climate events between marine and terrestrial records or between different regions. In this paper, we demonstrate how the use of different tie points can affect cyclostratigraphy and orbital tuning for the period between ca. 140 and 70 ka and how the results can be correlated with directly/indirectly radiometrically-dated Mediterranean marine and continental proxy records. The alternative age model obtained shows consistent differences with that proposed by Francke et al. (2015) for the same interval, in particular at the level of the MIS6-5e transition. According to this age model, different proxies from the DEEP site sediment record support an increase of temperatures between glacial to interglacial conditions, which is almost synchronous with a rapid increase in sea surface temperature observed in the western Mediterranean. The results show how important a detailed study of independent chronological tie points is for synchronizing different records and to highlight asynchronisms of climate events.

  17. Sedimentary environmental change induced from late Quaternary sea-level change in the Bonaparte Gulf, northwestern Australia

    NASA Astrophysics Data System (ADS)

    Ishiwa, Takeshige; Yokoyama, Yusuke; Miyairi, Yosuke; Ikehara, Minoru; Obrochta, Stephen

    2016-12-01

    Low-latitude continental shelves, mixed siliciclastic-carbonate sedimentary systems, provide an understanding of sedimentary environments driven by paleoclimatological processes. The Bonaparte Gulf, northwestern Australian continental shelf, is among the widest in the world, ranging to 500 km, with shallow carbonate terraces and platforms that were exposed during periods of lower sea level. The dominant sediments type switches between carbonate and siliciclastic over a sea-level cycle. However, the mechanism of sedimentary environmental change in the Bonaparte Gulf is not clearly understood. Here, we present a record of sedimentary environmental change from ca. 24 to 35 ka that is related to sea-level variability and exposure of carbonate terraces and platforms. Multi-proxy data from a marine sediment core show a sea-level change induced switch in sedimentary environment from siliciclastic to carbonate-dominated sedimentation during the last glaciation. Radiocarbon ages constrain the timing of this switch to ca. 26 ka, associated with a local sea-level fall of -90 m.

  18. Obliquity Modulation of the Incoming Solar Radiation

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  19. Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika

    PubMed Central

    Rüber, Lukas; Verheyen, Erik; Meyer, Axel

    1999-01-01

    The current phylogenetic hypothesis for the endemic Lake Tanganyika cichlid fishes of the tribe Eretmodini is based solely on morphology and suggests that more complex trophic morphologies derived only once from a less specialized ancestral condition. A molecular phylogeny of eretmodine cichlids based on partial mitochondrial DNA cytochrome b and control-region sequences was used to reconstruct the evolutionary sequence of trophic adaptations and to test alternative models of morphological divergence. The six mitochondrial lineages found disagree with the current taxonomy and the morphology-based phylogeny. Mitochondrial lineages with similar trophic morphologies are not grouped monophyletically but are typically more closely related to lineages with different trophic phenotypes currently assigned to other genera. Our results indicate multiple independent origins of similar trophic specializations in these cichlids. A pattern of repeated divergent morphological evolution becomes apparent when the phylogeography of the mitochondrial haplotypes is analyzed in the context of the geological and paleoclimatological history of Lake Tanganyika. In more than one instance within Lake Tanganyika, similar morphological divergence of dentitional traits occurred in sympatric species pairs. Possibly, resource-based divergent selective regimes led to resource partitioning and brought about similar trophic morphologies independently and repeatedly. PMID:10468591

  20. Extreme Drought Conditions in the Rio Grande/Bravo Basin

    NASA Astrophysics Data System (ADS)

    Gutiérrez, F.; Dracup, J. A.

    2001-12-01

    The Treaty of February 3, 1944 entitled "Utilization of Waters of the Colorado and Tijuana Rivers and of the Rio Grande" between the U.S. and Mexico regulates the distribution of flows of the rivers between these two countries. The treaty is based on hydrological data available up to 1944. Using new (historical and paleoclimatological) data, the water balance presented in the Treaty is re-examinated and the 431,721,000 m3/year allocation for USA during "extreme drought conditions" is re-evaluated. The authors define "extreme drought conditions" for this basin and a hydrological drought analysis is carried out using a streamflow simulation model. The analysis is complemented with an analysis of the effects of the El Niño - Southern Oscillation and the Pacific Decadal Oscillation on precipitation and streamflow. The results of this research will be applicable to potential changes in the current water resources management policies on the basin. Given the social, economical and political importance of this basin, the findings of this research potentially will have significant impacts. This research is founded by the NSF fund SAHRA (Science and Technology Center to study and promote the "Sustainability of Water Resources in Semi-Arid Regions" at the University of Arizona).

  1. Climate reconstruction using data assimilation of water isotope ratios from ice cores

    NASA Astrophysics Data System (ADS)

    Steiger, Nathan J.; Steig, Eric J.; Dee, Sylvia G.; Roe, Gerard H.; Hakim, Gregory J.

    2017-02-01

    Water isotope data from ice cores, particularly δ18O, have long been used in paleoclimatology. Although δ18O has been primarily interpreted as a proxy for local air temperature, isotope-enabled climate models have established that there are many nonlocal and nontemperature-related climatic influences on isotopic signals at coring locations. Moreover, recent observational studies have linked ice core isotopes to nonlocal patterns of climate variability, particularly to midlatitude atmospheric circulation patterns and to variations in tropical climate. Therefore, paleoclimate reconstructions may better utilize ice core isotope proxies by combining them with isotope-enabled climate models. Here we employ a data assimilation-based technique that fuses isotopic proxy information with the dynamical constraints of climate models. Through several idealized and real proxy experiments we assess the spatial and temporal extent to which isotope records can reconstruct surface temperature, 500 hPa geopotential height, and precipitation. We find local reconstruction skill to be most robust across the reconstructions, particularly for temperature and geopotential height, as well as limited nonlocal skill in the tropics. These results are in agreement with long-held views that isotopes in ice cores have clear value as local climate proxies, particularly for temperature and atmospheric circulation. These results also show that in principle nonlocal climate information may also be inferred from ice cores. However, the spatial range of this information is nonuniform and depends on skillful modeling of the proxy data within the reconstruction process.

  2. Last Glacial mammals in South America: a new scenario from the Tarija Basin (Bolivia).

    PubMed

    Coltorti, M; Abbazzi, L; Ferretti, M P; Iacumin, P; Rios, F Paredes; Pellegrini, M; Pieruccini, P; Rustioni, M; Tito, G; Rook, L

    2007-04-01

    The chronology, sedimentary history, and paleoecology of the Tarija Basin (Bolivia), one of the richest Pleistocene mammalian sites in South America, are revised here based on a multidisciplinary study, including stratigraphy, sedimentology, geomorphology, paleontology, isotope geochemistry, and (14)C geochronology. Previous studies have indicated a Middle Pleistocene age for this classic locality. We have been able to obtain a series of (14)C dates encompassing all the fossil-bearing sequences previously studied in the Tarija Basin. The dated layers range in age from about 44,000 to 21,000 radiocarbon years before present (BP), indicating that the Tarija fauna is much younger than previously thought. Glacial advances correlated to marine isotopic stages (MIS) 4 and 2 (ca. 62 and 20 ka BP, respectively) are also documented at the base and at the very top of the Tarija-Padcaya succession, respectively, indicating that the Bolivian Altiplano was not dry but sustained an ice cap during the Last Glacial Maximum. The results of this multidisciplinary study enable us to redefine the chronological limits of the Tarija sequence and of its faunal assemblage and to shift this paleontological, paleoclimatological, and paleoecological framework to the time interval from MIS 4 to MIS 2.

  3. Application of the authigenic 10Be/ 9Be dating method to continental sediments: Reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin

    NASA Astrophysics Data System (ADS)

    Lebatard, Anne-Elisabeth; Bourlès, Didier L.; Braucher, Régis; Arnold, Maurice; Duringer, Philippe; Jolivet, Marc; Moussa, Abderamane; Deschamps, Pierre; Roquin, Claude; Carcaillet, Julien; Schuster, Mathieu; Lihoreau, Fabrice; Likius, Andossa; Mackaye, Hassan Taisso; Vignaud, Patrick; Brunet, Michel

    2010-08-01

    The concentrations of atmospheric cosmogenic 10Be normalized to the solubilized fraction of its stable isotope 9Be have been measured in the authigenic phase leached from silicated continental sediments deposited since the upper Miocene in the northern Chad Basin. This method is validated by the systematic congruence with the biochronological estimations based on the fossil mammal evolutive degree of faunal assemblages. The fifty-five authigenic 10Be/ 9Be ages obtained along 12 logs distributed along two West-East cross sections that encompass best representative Mio-Pliocene outcrops including paleontological sites show a systematic stratigraphic decrease when considering all studied sedimentary facies extending from the Pleistocene up to 8 Ma and allow performing geologic correlations otherwise impossible in the studied area. The resulting global sequence evidences and temporally specifies the succession of the main paleoenvironments that have developed in this region since the Miocene. Under the special conditions encountered in the northern Chad Basin, this study demonstrates that the authigenic 10Be/ 9Be ratio may be used as a dating tool of continental sedimentary deposits from 1 to 8 Ma. The half-life of 10Be theoretically allowing dating up to 14 Ma, it may have fundamental implications on important field research such as paleoclimatology and, through the dating of fossiliferous deposits in paleontology and paleoanthropology.

  4. Medieval Warm Period and Little Ice Age Impacts on Prehistoric Human Migrations in the Eastern North American Arctic

    NASA Astrophysics Data System (ADS)

    Friesen, M.; Finkelstein, S. A.

    2014-12-01

    The eastern North American Arctic has a complex 5,000-year prehistory, during which many human population movements occurred over large distances. Archaeologists have interpreted these movements as resulting from many factors, however the effects of climate change are often hypothesized as primary drivers that can "push" human groups to leave some regions, or "pull" them to move to others. In this paper, we will examine climate change over the past millennium-and-a-half, and in particular at the two widespread, though variable, climate change events known as the Medieval Warm Period and Little Ice Age. We synthesize the latest paleoclimatological information on the timing and magnitude of these periods across the eastern Arctic, and assess the degree to which they coincide with current understanding of major population movements. In particular, we assess climate's potential impact on 1) the expansion of Late Dorset Paleo-Inuit to the High Arctic; 2) the migration of Thule Inuit from Alaska to the eastern Arctic; and 3) the abandonment of northern regions and new settlement of southern regions by Inuit in the mid-second millennium AD.

  5. Water isotope ratio (δ2H and δ18O) measurements in atmospheric moisture using an optical feedback cavity enhanced absorption laser spectrometer

    NASA Astrophysics Data System (ADS)

    Iannone, Rosario Q.; Romanini, Daniele; Cattani, Olivier; Meijer, Harro A. J.; Kerstel, Erik R. Th.

    2010-05-01

    Water vapor isotopes represent an innovative and excellent tool for understanding complex mechanisms in the atmospheric water cycle over different time scales, and they can be used for a variety of applications in the fields of paleoclimatology, hydrology, oceanography, and ecology. We use an ultrasensitive near-infrared spectrometer, originally designed for use on airborne platforms in the upper troposphere and lower stratosphere, to measure the water deuterium and oxygen-18 isotope ratios in situ, in ground-level tropospheric moisture, with a high temporal resolution (from 300 s down to less than 1 s). We present some examples of continuous monitoring of near-surface atmospheric moisture, demonstrating that our infrared laser spectrometer could be used successfully to record high-concentration atmospheric water vapor mixing ratios in continuous time series, with a data coverage of ˜90%, interrupted only for daily calibration to two isotope ratio mass spectrometry-calibrated local water standards. The atmospheric data show that the water vapor isotopic composition exhibits a high variability that can be related to weather conditions, especially to changes in relative humidity. Besides, the results suggest that observed spatial and temporal variations of the stable isotope content of atmospheric water vapor are strongly related to water vapor transport in the atmosphere.

  6. A TEX86 surface sediment database and extended Bayesian calibration

    NASA Astrophysics Data System (ADS)

    Tierney, Jessica E.; Tingley, Martin P.

    2015-06-01

    Quantitative estimates of past temperature changes are a cornerstone of paleoclimatology. For a number of marine sediment-based proxies, the accuracy and precision of past temperature reconstructions depends on a spatial calibration of modern surface sediment measurements to overlying water temperatures. Here, we present a database of 1095 surface sediment measurements of TEX86, a temperature proxy based on the relative cyclization of marine archaeal glycerol dialkyl glycerol tetraether (GDGT) lipids. The dataset is archived in a machine-readable format with geospatial information, fractional abundances of lipids (if available), and metadata. We use this new database to update surface and subsurface temperature calibration models for TEX86 and demonstrate the applicability of the TEX86 proxy to past temperature prediction. The TEX86 database confirms that surface sediment GDGT distribution has a strong relationship to temperature, which accounts for over 70% of the variance in the data. Future efforts, made possible by the data presented here, will seek to identify variables with secondary relationships to GDGT distributions, such as archaeal community composition.

  7. The MIS 5 palaeoenvironmental record in the SE Mediterranean coast of the Iberian Peninsula (Río Antas, Almería, Spain)

    NASA Astrophysics Data System (ADS)

    Torres, T.; Ortiz, J. E.; Blázquez, A. M.; Ruiz Zapata, B.; Gil, M. J.; Martín, T.; Sánchez-Palencia, Y.

    2015-08-01

    Landwards of a MIS5 bar, a borehole core (SRA) was analyzed to establish the relationship between the lagoonal record and the raised beach deposits in the surroundings of the Antas river mouth and to reconstruct the Pleistocene palaeoenvironmental evolution of the southern Mediterranean coast of the Iberian Peninsula. 63 samples were recovered for amino acid racemization dating, 86 samples for sedimentological and paleontological determination, 37 samples for pollen identification and 54 for biomarker analysis. AAR revealed that the borehole record contains MIS11, MIS6 and MIS5 deposits, the latter extensively represented. During the end of MIS6 and MIS5, a sand barrier developed and created a shallow lagoon with alternating terrestrial inputs this process being common in other Mediterranean realms. Litho- and biofacies allowed the identification of distinct paleoenvironments through time, with the presence of a lagoonal environment alternating with alluvial fan progradation. Biomarkers indicated constant input from terrestrial plants, together with variable development of aquatic macrophytes. The palynological content allowed the reconstruction of the paleoclimatological conditions during MIS6 and 5, with evidence of seven scenarios characterized by alternating arid and relatively humid conditions.

  8. Continental temperature change during Early Eocene hyperthermal events

    NASA Astrophysics Data System (ADS)

    Ziegler, Martin; Abels, Hemmo; de Winter, Nils; Gingerich, Philip; Bernasconi, Stefano

    2015-04-01

    Carbonate clumped isotope thermometry has great potential for solving long-standing questions in paleoclimatology as it provides temperature estimates that are independent from assumptions regarding the isotopic or elemental composition of water from which the carbonate precipitated. The clumped isotope group at ETH has worked towards decreasing the sample size requirements and derived new calibrations for the Kiel method based on synthetic and natural calcites. Here we present results of clumped isotope based continental temperatures across the Paleocene-Eocene Thermal Maximum (PETM). The Bighorn Basin of northwestern Wyoming provides hundreds of meters of excellently exposed river floodplain strata of Paleocene and early Eocene age. Records of the the largest greenhouse-warming episode in this interval of time, were recovered soon after their discovery in deep marine sediments. This has allowed intensive study of the major impact this greenhouse warming event had on continental interior climate. Recently, records of four successive, smaller, transient greenhouse warming events in the early Eocene - ETM2/H1/Elmo, H2, I1, and I2 - were located in the fluvial rock record of the basin. We show that the (summer) temperature excursions during hyperthermal events in continental mid-latitudes were amplified compared to marine temperatures and proportional to the size of associated carbon isotope excursions.

  9. Deconstructing interdecadal climate variability using a network of paleoclimate proxy records

    NASA Astrophysics Data System (ADS)

    Young, S. K.; Okumura, Y.; Partin, J. W.

    2015-12-01

    Interdecadal climate variability is of marked socioeconomic importance around the world and recent studies suggest that it may also affect the rate of global warming (Here, interdecadal variability refers broadly to variability on time scales of 10-100 years.) Our understanding of interdecadal climate variability is at present limited by a short instrumental record constituting only a few cycles. To improve climate prediction over the coming decades, a better understanding of interdecadal climate variability is critical. An increasing number of annually resolved paleoclimate proxy records present a means to extend the temporal coverage of the record of interdecadal variability. In so doing, we may begin to address the following questions. What were the amplitudes and timescales of known modes of interdecadal variability, such as the Interdecadal Pacific Oscillation (IPO) or the Atlantic Multidecadal Oscillation (AMO), before the instrumental era? Is interdecadal variability in different ocean basins related? Are there any yet undiscovered modes of interdecadal variability? To answer these questions we construct a network of annually-resolved proxy records collected from the NOAA paleoclimatology data archive and perform various statistical analyses without any a priori assumptions about modes of variability. During the instrumental period, this network reasonably captures the observed interdecadal variability in the Atlantic and Pacific Oceans. We are currently extending these analyses beyond the instrumental record to reconstruct past variability. The new insight gained from the proxies will be assessed through the analysis of CMIP5 climate model simulations.

  10. Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875).

    PubMed

    Hugall, Andrew; Moritz, Craig; Moussalli, Adnan; Stanisic, John

    2002-04-30

    Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them.

  11. Sea level record obtained from submerged the Great Barrier Reef coral reefs

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Esat, T. M.; Thompson, W. G.; Thomas, A. L.; Webster, J.; Miyairi, Y.; Matsuzaki, H.; Okuno, J.; Fallon, S.; Braga, J.; Humblet, M.; Iryu, Y.; Potts, D. C.

    2013-12-01

    The last glacial is an interesting time in climate history. The growth and decay of large northern hemisphere ice sheets acting in harmony with major changes in ocean circulation amplified climate variations and resulted in severe and rapid climate swings throughout this time. The variability is not limited to climate but includes rapid, large scale changes in sea level recorded by tropical corals (eg., Yokoyama and Esat, 2011 Oceanography). Research done in the last decade using corals provides a better picture of the climate system, though only a few samples older than 15 ka are available. The Integrated Ocean Drilling Program (IODP) Expedition 325 drilled 34 holes across 17 sites in the Great Barrier Reef, Australia to recover fossil coral reef deposits. We recovered reef materials from water depth to 126 m that ranged in age from 9,000 years to older than 30,000 years ago covering several paleoclimatologically important events, including the Last Glacial Maximum. Two transects separated more than 600 km apart show an identical sea-level history thereby verifying the reliability of the records. Radiometrically dated corals and coralline algae indicate periods of rapid sea-level fluctuation at this time, likely due to complex interactions between ocean currents and ice sheets of the North Atlantic.

  12. Biological response to climate change in the Arctic Ocean: The view from the past

    USGS Publications Warehouse

    Cronin, Thomas M.; Cronin, Matthew A.

    2017-01-01

    The Arctic Ocean is undergoing rapid climatic changes including higher ocean temperatures, reduced sea ice, glacier and Greenland Ice Sheet melting, greater marine productivity, and altered carbon cycling. Until recently, the relationship between climate and Arctic biological systems was poorly known, but this has changed substantially as advances in paleoclimatology, micropaleontology, vertebrate paleontology, and molecular genetics show that Arctic ecosystem history reflects global and regional climatic changes over all timescales and climate states (103–107 years). Arctic climatic extremes include 25°C hyperthermal periods during the Paleocene-Eocene (56–46 million years ago, Ma), Quaternary glacial periods when thick ice shelves and sea ice cover rendered the Arctic Ocean nearly uninhabitable, seasonally sea-ice-free interglacials and abrupt climate reversals. Climate-driven biological impacts included large changes in species diversity, primary productivity, species’ geographic range shifts into and out of the Arctic, community restructuring, and possible hybridization, but evidence is not sufficient to determine whether or when major episodes of extinction occurred.

  13. Normalizing paleoclimate variables in support of data-intensive science

    NASA Astrophysics Data System (ADS)

    Thrasher, B. L.; Wahl, E. R.; Morrill, C.

    2015-12-01

    Paleoclimate data are extremely heterogeneous - hundreds of different types of measurements and reconstructions are routinely made by scientists on an even larger number of kinds of physical samples. This heterogeneity is one of the biggest barriers to the development of accumulated data products and access capabilities, and to the use of paleo data beyond the community of paleoclimate specialists. We describe a new effort underway at the World Data Service for Paleoclimatology to create a set of standards for documenting variables (i.e., exactly what was measured or reconstructed). The nine-part variable description the WDS-Paleo uses currently is the starting point for this project, which will result in vocabularies that are complete, precise, standard, and extensible. This framework was designed to be general enough for use with all of the eighteen different proxy and reconstruction data types archived by the WDS-Paleo, thus allowing more uniformity to be applied to its holdings and allowing metadata to be stored and searched across proxy types in a single database structure. Ongoing work will extend this generalized variable framework, under the guidance of advisory panels consisting of subject matter experts, to generate proxy-specific and cross-proxy controlled vocabularies. This work will enable re-use of studies in larger compilations to enable scientific discovery that would not be possible from any one study alone, and will facilitate new, interdisciplinary uses for datasets.

  14. Regional Scale High Resolution δ18O Prediction in Precipitation Using MODIS EVI

    PubMed Central

    Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A.; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ18O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ18O are highly correlated and thus the EVI is a good predictor of precipitated δ18O. We then test the predictability of our EVI-δ18O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ18O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ18O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape. PMID:23029053

  15. Ostracode Mg/Ca Paleothermometry: Applications and Complications

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Dwyer, G. S.

    2007-12-01

    Ostracode (bivalved Crustacea) shell Mg/Ca paleothermometry has wide applicability in Cenozoic paleoclimatology over 101 to 107 year timescales because they are commonly fossilized, live in freshwater, shallow- and deep-marine habitats, and grow by molting, which minimizes Mg/Ca variability due to ontogenetic variability. Two empirically derived Mg/Ca-temperature calibrations based on core top and culturing include one for the shallow marine, estuarine genus Loxoconcha (5 to 30°C) and another for deep-sea genus Krithe (<1 to 14°C). The former produced a temperature history for Chesapeake Bay for the last millennium, which has been intensively analyzed in the context of the hockey stick temperature curve. The latter produced evidence for decreased deep-sea temperature during glacial intervals and the first Atlantic-wide reconstruction of deep-sea temperature during the warm mid-Pliocene. In addition to temperature, however, factors such as host-water magnesium concentrations, salinity, intra-shell, intra-population, and interspecific variabilility, seasonality, biological factors (shell secretion rate), and post-mortem dissolution can contribute to scatter in calibration datasets and uncertainty in paleotemperature estimates. We will review these processes, present a new 2000 year Chesapeake temperature record, and discuss its relation to twentieth century climate change.

  16. Bibliography of the paleontology and paleoecology of the Devonian-Mississippian black-shale sequence in North America

    SciTech Connect

    Barron, L.S.; Ettensohn, F.R.

    1980-06-01

    The Devonian-Mississippian black-shale sequence is one of the most prominent and well-known stratigraphic horizons in the Paleozoic of the United States, yet the paleontology and its paleoecologic and paleoenvironmental implications are poorly known. This is in larger part related to the scarcity of fossils preserved in the shale - in terms of both diversity and abundance. Nonetheless, that biota which is preserved is well-known and much described, but there is little synthesis of this data. The first step in such a synthesis is the compilation of an inclusive bibliography such as this one. This bibliography contains 1193 entries covering all the major works dealing with Devonian-Mississippian black-shale paleontology and paleoecology in North America. Articles dealing with areas of peripheral interest, such as paleogeography, paleoclimatology, ocean circulation and chemistry, and modern analogues, are also cited. In the index, the various genera, taxonomic groups, and other general topics are cross-referenced to the cited articles. It is hoped that this compilation will aid in the synthesis of paleontologic and paleoecologic data toward a better understanding of these unique rocks and their role as a source of energy.

  17. Research Using Accelerator Mass Spectrometry at Arizona

    NASA Astrophysics Data System (ADS)

    Jull, A.; Donahue, D. J.; Burr, G. S.; Beck, W.; Hatheway, A. L.; Biddulph, D. L.; McHargue, L. R.

    2002-12-01

    An Accelerator Mass Spectrometry (AMS) facility has been operated at the University of Arizona since 1982. This is an excellent example of a facility which has benefitted from the NSF Earth Sciences Instrumentation and Facilities Program. AMS has many applications to the fields of geochronology, geoarchaeology, paleoclimatology. A wide range of climatic, geologic and archeological records can be characterized by measuring their 14C and 10Be concentrations, using accelerator mass spectrometry (AMS). These records are found not only in the traditional sampling sites such as lake sediments and ice cores, but also in diverse natural accumulates and biogeochemical products such as: loess/paleosol deposits, corals, speleothems, and forest-fire horizons. The in-situ production of cosmogenic radionuclides in terrestrial and extraterrestrial materials provides several possibilities of determining their chronology. Thes studies are important for understanding cosmic-ray production of radionuclides in rock surfaces, by which we can draw conclusions about exposure time and erosion. Studies on extraterrestrial materials such as lunar samples allow us to determine the solar and galactic cosmic-ray fluxes in the past, and the cosmogenic 14C and 10Be in meteorites can be used to determine terrestrial ages. In this paper, we will highlight some selected applications of AMS, including dating of some interesting art works and artifacts, to show some of the great range of studies which can be undertaken.

  18. Investigating Climate Change Issues With Web-Based Geospatial Inquiry Activities

    NASA Astrophysics Data System (ADS)

    Dempsey, C.; Bodzin, A. M.; Sahagian, D. L.; Anastasio, D. J.; Peffer, T.; Cirucci, L.

    2011-12-01

    In the Environmental Literacy and Inquiry middle school Climate Change curriculum we focus on essential climate literacy principles with an emphasis on weather and climate, Earth system energy balance, greenhouse gases, paleoclimatology, and how human activities influence climate change (http://www.ei.lehigh.edu/eli/cc/). It incorporates a related set of a framework and design principles to provide guidance for the development of the geospatial technology-integrated Earth and environmental science curriculum materials. Students use virtual globes, Web-based tools including an interactive carbon calculator and geologic timeline, and inquiry-based lab activities to investigate climate change topics. The curriculum includes educative curriculum materials that are designed to promote and support teachers' learning of important climate change content and issues, geospatial pedagogical content knowledge, and geographic spatial thinking. The curriculum includes baseline instructional guidance for teachers and provides implementation and adaptation guidance for teaching with diverse learners including low-level readers, English language learners and students with disabilities. In the curriculum, students use geospatial technology tools including Google Earth with embedded spatial data to investigate global temperature changes, areas affected by climate change, evidence of climate change, and the effects of sea level rise on the existing landscape. We conducted a designed-based research implementation study with urban middle school students. Findings showed that the use of the Climate Change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts.

  19. Carbon isotope ratio monitoring-gas chromatography mass spectrometric measurements in the marine environment: biomarker sources and paleoclimate applications.

    PubMed

    Tolosa, I; Lopez, J F; Bentaleb, I; Fontugne, M; Grimalt, J O

    1999-09-30

    Some applications in the use of compound-specific isotopic analyses (CSIA) for biomarker source elucidation in the marine environment and its potential applications to paleoclimatology are evaluated in the present study. The potential use of the carbon isotope ratios of marine biomarkers as recorders of CO2 levels has been considered. A significant correlation between delta 13C cholesterol of suspended particulates and seawater CO2 concentrations from the south Indian Ocean has been found. delta 13C composition in biomarkers of different functionalities from three photosynthetic organisms has been examined. Small variations within and between biosynthetically related compound classes have been observed in cyanobacteria. In algae, e.g. diatoms and dinoflagellates, significant differences between the average delta 13C composition of fatty acids and sterols were observed (7.5/1000 and 2/1000, respectively). These differences can be attributed to diverse isotope effects associated with different biosynthetic reactions. Isotopic variations among homologues of the same lipid class have also been observed. In diatoms, variations were up to 5/1000 within each class of fatty acids and sterols and in the dinoflagellate species, these variations were lower than 3/1000. These differences, and particularly the intra-specific shifts in delta 13C lipid composition, must be considered for the correct interpretation of changes in delta 13C molecular signatures in the marine environment.

  20. Regional scale high resolution δ18O prediction in precipitation using MODIS EVI.

    PubMed

    Chan, Wei-Ping; Yuan, Hsiao-Wei; Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ(18)O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ(18)O are highly correlated and thus the EVI is a good predictor of precipitated δ(18)O. We then test the predictability of our EVI-δ(18)O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ(18)O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ(18)O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape.

  1. Radiocarbon analysis of halophilic microbial lipids from an Australian salt lake

    NASA Astrophysics Data System (ADS)

    Bray, P. Sargent; Jones, Claudia M.; Fallon, Stewart J.; Brocks, Jochen J.; George, Simon C.

    2012-01-01

    Assigning accurate dates to hypersaline sediments opens important terrestrial records of local and regional paleoecologies and paleoclimatology. However, as of yet no conventional method of dating hypersaline systems has been widely adopted. Biomarker, mineralogical, and radiocarbon analyses of sediments and organic extracts from a shallow (13 cm) core from a hypersaline playa, Lake Tyrrell, southeastern Australia, produce a coherent age-depth curve beginning with modern microbial mats and extending to ~ 7500 cal yr BP. These analyses are furthermore used to identify and constrain the timing of the most recent change in hydrological regime at Lake Tyrrell, a shift from a clay deposit to the precipitation of evaporitic sands occurring at some time between ~ 4500 and 7000 yr. These analyses show the potential for widespread dating of hypersaline systems integrating the biomarker approach, reinforce the value of the radiocarbon content of biomarkers in understanding the flow of carbon in modern ecologies, and validate the temporal dimension of data provided by biomarkers when dating late Quaternary sediments.

  2. Carboniferous coal swamp vegetation

    SciTech Connect

    Phillips, T.L.; Peppers, R.A.; DiMichele, W.A.

    1984-01-01

    The Carboniferous Period was one of considerable change on the Earth. The volume explores these changes by using plant morphology and paleoecology to develop the relationship between plant evolution and the derived coal sources. Both are interrelated by the regional and stratigraphic trends in paleoecology and paleoclimatology. The book is divided into three sections dealing with geology, plant morphology including palynology, and paleoecology. In Section I, the paleogeography, geologic settings of major coal basins, coal resources, coal-ball origins and occurrences, and the sources of paleobotanical information are presented with biostratigraphic correlations of Europe and the United States. Section II emphasizes plant morphology as form and structure provide the means of identifying plants and, in turn, establishing development, size, habit, reproductive biology, environmental parameters, and evolutionary change. Quantitative abundances and stratigraphic ranges of plants and spores are compared and summarized. Lastly, Section III integrates coal-ball peats and coal-spore floras as complementary sources for the quantitative analyses of coal-swamp vegetation in relation to climate and coal. The local and regional swamp studies are interfaced and basinal geology and depositional interpretations in a stratigraphic succession.

  3. STEPPE: Supporting collaborative research and education on Earth's deep-time sedimentary crust.

    NASA Astrophysics Data System (ADS)

    Smith, D. M.

    2014-12-01

    STEPPE—Sedimentary geology, Time, Environment, Paleontology, Paleoclimate, and Energy—is a National Science Foundation supported consortium whose mission is to promote multidisciplinary research and education on Earth's deep-time sedimentary crust. Deep-time sedimentary crust research includes many specialty areas—biology, geography, ecology, paleontology, sedimentary geology, stratigraphy, geochronology, paleoclimatology, sedimentary geochemistry, and more. In fact, the diversity of disciplines and size of the community (roughly one-third of Earth-science faculty in US universities) itself has been a barrier to the formation of collaborative, multidisciplinary teams in the past. STEPPE has been working to support new research synergies and the development of infrastructure that will encourage the community to think about the big problems that need to be solved and facilitate the formation of collaborative research teams to tackle these problems. Toward this end, STEPPE is providing opportunities for workshops, working groups and professional development training sessions, web-hosting and database services and an online collaboration platform that facilitates interaction among participants, the sharing of documentation and workflows and an ability to push news and reports to group participants and beyond using social media tools. As such, STEPPE is working to provide an interactive space that will serve as both a gathering place and clearinghouse for information, allowing for broader integration of research and education across all STEPPE-related sub disciplines.

  4. Late Holocene Drought Record From Castor Lake, North-Central Washington State

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Abbott, M. B.; Polissar, P. J.; Finney, B.

    2006-12-01

    ), multi-taper method (MTM), and wavelet analysis reveal a significant 25 year periodicity in the early part of the record transitioning to a 50 year periodicity in the later part and persisting into modern times. The modern climate of Castor Lake is primarily influenced by changes in the northern Pacific Ocean, and the region has been shown to respond to global-scale patterns such as the Pacific Decadal Oscillation (PDO), and the Pacific/North America Pattern (PNA), for which several decadal-scale periods of oscillation have been identified. The dominant periodicity transition from 25 to 50 years in the Castor Lake grayscale record may thus reflect changes in one or more of these systems, or a change in the effects of their interactions on regional climate. 1. E. R. Cook, D. M. Meko, D. W. Stahle, M. K. Cleaveland, in Data Contribution Series # 2004-045 I. P. W. D. C. f. Paleoclimatology, Ed. (NOAA/NGDC Paleoclimatology Program, Boulder, CO, 2004).

  5. Weathering and monsoonal evolution in the Eastern Himalayas since 13 Ma from detrital geochemistry, Kameng River Section, Arunachal Pradesh

    NASA Astrophysics Data System (ADS)

    Vögeli, Natalie; Van der Beek, Peter; Najman, Yani; Huyghe, Pascale

    2015-04-01

    The link between tectonics, erosion and climate has become an important subject to ongoing research in the last years (Clift et al. (2008), amongst others). The young Himalayan orogeny is the perfect laboratory for its study. The Neogene sedimentary foreland basin of the Himalaya contains a record of tectonics and paleoclimate since Miocene times, within the so called Siwalik Group. Therefore several sedimentary sections within the Himalayan foreland basin along strike in the Himalayan range have been dated and studied regarding exhumation rates, provenance and paleoclimatology (e.g. Quade and Cerling, 1995; Ghosh et al., 2004; Sanyal et al., 2004; van der Beek et al., 2006). Lateral variations have been observed and changes in exhumation rate as well as climate change in the past especially the strengthening of the Asian summer monsoon is still debated. Several paleoclimatological studies in the western Himalaya were conducted (Quade and Cerling, 1995; Najman et al., 2003; Huyghe et al., 2005), but the eastern part of the mountain range remains poorly studied. The Himalaya has a major influence on global and regional climate. The major force driving the evolution of this mountain belt is the India-Asia convergence, nevertheless it has been suggested that the monsoonal climate plays a major role for the erosion and relief pattern (Bookhagen and Burbank, 2006; Clift et al., 2008; Iaffaldano et al., 2011). Exhumation rates in the central Himalayas are more or less constant over last 13 Ma in the order of 1.8 km/myr, whereas exhumation rates in the eastern syntaxis increased post 3 Ma (Chirouze et al., 2013) to reach up to 10km/myr in the recent past. In this study we use a multidisciplinary approach in order to better understand the interplay of monsoon and weathering regime during the Mid Miocene to Pleistocene in the Himalaya. Therefore a sedimentary section in the eastern Himalaya was sampled. Pairs of fine and coarse grained sediment samples were taken in the

  6. Evaluating Paleoecological Patterns Using Paleoenvironmental Proxies: The Promise and the Peril

    NASA Astrophysics Data System (ADS)

    Jackson, S. T.; Booth, R. K.

    2007-12-01

    Michigan and Wisconsin during an extended pluvial period (4000-3000 yr BP) that followed on a drought of extraordinary duration and severity (4200-4000 yr BP). Continued expansion of yellow birch, as well as hemlock and beech, after 3000 yr BP was mediated by edaphic mosaics and centennial-scale pluvial events. Our experience indicates that integrated paleoecological and paleoclimatological studies have payoffs for ecology, paleoecology, and paleoclimatology. Perils, though real, are no different from those encountered in other interdisciplinary enterprises in the historical sciences. We identify six key challenges for continued progress in this area: (1)identifying, refining, and applying paleoclimate proxies that are sensitive to the same climate variables and at the same timescales as the ecological systems of interest. (2) correlating events in time among records, particularly when paleoecological and paleoclimate data derive from different archives. (3) identifying and modeling lags in ecological response to climate forcings. (4) determining proximal mechanisms of past ecological responses to climate changes. (5) assessing indirect responses to climate forcing, and interactions between climate and other factors (e.g., pests, wildfires). (6) determining "when to quit" - when to conclude that climate forcing of an observed ecological event is insupportable (versus assuming that the proxies examined to date simply aren't sensitive to whatever the ecological system is responding to). Meeting these challenges will require engagement and collaboration among paleoecologists, paleoclimatologists, geochronologists, and ecologists.

  7. Climate research in the former Soviet Union. FASAC: Foreign Applied Sciences Assessment Center technical assessment report

    SciTech Connect

    Ellingson, R.G.; Baer, F.; Ellsaesser, H.W.; Harshvardhan; Hoffert, M.I.; Randall, D.A.

    1993-09-01

    This report assesses the state of the art in several areas of climate research in the former Soviet Union. This assessment was performed by a group of six internationally recognized US experts in related fields. The areas chosen for review are: large-scale circulation processes in the atmosphere and oceans; atmospheric radiative processes; cloud formation processes; climate effects of natural atmospheric disturbances; and the carbon cycle, paleoclimates, and general circulation model validation. The study found an active research community in each of the above areas. Overall, the quality of climate research in the former Soviet Union is mixed, although the best Soviet work is as good as the best corresponding work in the West. The best Soviet efforts have principally been in theoretical studies or data analysis. However, an apparent lack of access to modern computing facilities has severely hampered the Soviet research. Most of the issues considered in the Soviet literature are known, and have been discussed in the Western literature, although some extraordinary research in paleoclimatology was noted. Little unusual and exceptionally creative material was found in the other areas during the study period (1985 through 1992). Scientists in the former Soviet Union have closely followed the Western literature and technology. Given their strengths in theoretical and analytical methods, as well as their possession of simplified versions of detailed computer models being used in the West, researchers in the former Soviet Union have the potential to make significant contributions if supercomputers, workstations, and software become available. However, given the current state of the economy in the former Soviet Union, it is not clear that the computer gap will be bridged in the foreseeable future.

  8. Extending Terrestrial Climate Information Into the Marine Realm: Palynological Information as a key to Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Weigelt, E.; Uenzelmann-Neben, G.; Dupont, L. M.

    2006-12-01

    The sedimentary sequences of the continental margin off southwest Africa have been shaped by different forces: So, the interaction of climate, oceanic currents and sea level fluctuations left a significant imprint in the sedimentary structures along the continental margin. Additionally, tectonic movements affected the sedimentary sequences. Our aim is to unravel the development and modifications of the depositional system in the Northern Cape Basin, and to deduce from local processes to global paleoclimatological and paleoceanographic changes. We present a seismostratigraphic model for the Neogene sedimentary layers in the Northern Cape Basin based on a combination of reflection seismic lines with drill site records of the ODP Leg 175 Site 1082, and assisted by palynological data. A striking observation is an unconformity dated at 2.2 Ma. The reflectors above onlap onto this interface, whereas the internal reflectors of the unit below show toplap termination. The outbuilding of the slope in the lower unit indicates a low relative sea level. In contrast the sigmoid reflection configuration in the unit above the unconformity is an indication for a gentle rise of relative sea level which indeed corresponds to a rise in eustatic sealevel. Since we can identify this Late Pliocene unconformity 250 km along the margin of the Northern Cape Basin we infer a large regional change in deposition regime. It coincides with a marked change of pollen assemblages. The accumulation rate of pollen suddenly drops from 50-60 pol/a/ccm in older layers to 8 pol/a/ccm in average after 2.2 Ma. The marked reduction of pollen input into the ocean is interpreted as the result of a loss of a perennial river discharge. It indicates a change of hinterland climate from humid to drier conditions, which in turn is associated with a shift of the Polar Front Zone of the Southern Ocean in the late Pliocene.

  9. Geomorphical and Geochronological Constrains of the Last Glacial Period in Southern Patagonia, Southern South America

    NASA Astrophysics Data System (ADS)

    García, J.; Hall, B. L.; Kaplan, M. R.; Vega, R. M.; Binnie, S. A.; Hein, A.; Gómez, G. N.; Ferrada, J. J.

    2013-12-01

    Despite the outer limits of the former Patagonian ice sheet (PIS, ~38-55S) having been extensively mapped, it remains unknown if the Patagonian glaciers fluctuated synchronously or asynchronously during the last glacial period. Previous work has revealed asynchronous spatiotemporal ice dynamics along the eastern and western ice-margins at the end of the last glaciation but it is not well understood if the northern and southern parts of the PIS reached concurrent maximum glaciation during the last glacial cycle. The Patagonian Andes is the only landmass involving the southern westerly wind belt latitudinal range, which is thought to have played a key role in past glacial and climate changes. Therefore, reconstructing southern Andes glacier history constitutes a key element for understanding the cause of glaciations in Patagonia and the role of the westerlies in climate change. Here, we discuss paleoglaciological and paleoclimatological implications of new 10Be and 14C data obtained from moraines and strategically selected mires in two contiguous glacially molded basins of south Patagonia (48-55S): Torres del Paine (51S) and Última Esperanza (52S). In this region, we focused our 10Be cosmogenic-dating efforts in the previously undated outer moraines deposited (supposedly) during the last glacial cycle. In order to crosscheck cosmogenic data we collected boulders embedded in moraines and cobbles from the main glaciofluvial plains grading from the outermost moraines. Geomorphic and cosmogenic dating affords evidence for glacial maximum conditions occurring between 40-50 ka (ka = thousand of years before present) in southern Patagonia, which is different from other chronologies within southern South America. We obtained 14C basal ages from sites located within moraine depressions and on former paleolake shorelines and thus these may provide key data on deglaciation and debated regional paleolake history.

  10. Evidence for Global Biogeochemical Changes During the Toarcian Oceanic Anoxic Event

    NASA Astrophysics Data System (ADS)

    Them, T. R., II; Gill, B. C.; Gröcke, D. R.; Selby, D. S.; Martindale, R. C.; Caruthers, A. H.; Tulsky, E. T. T.

    2015-12-01

    The global versus regional nature of the Toarcian Oceanic Anoxic Event (T-OAE; ~183 million years ago) has been heavily debated over the course of the last decade. Several lines of geochemical evidence support a significant perturbation to the carbon cycle and redox-sensitive elemental cycles across this interval. It is thought that these represent feedbacks to the emplacement of the Karoo-Ferrar large igneous province. These include: elevated atmospheric pCO2, an enhanced greenhouse effect and hydrologic cycle leading to increased weathering rates, dissociation of biogenic methane clathrates, and widespread ocean anoxia. Despite evidence for these global phenomena, the overwhelming majority of stratigraphic successions studied are located in Europe. The global magnitude of these biogeochemical perturbations has been challenged, with some considering that this event was regional to Europe, and others suggesting that the carbon isotope excursion (CIE) itself is not a reliable stratigraphic marker. In order to test these competing hypotheses, we have generated a geochemical dataset to reconstruct paleoceanographic and paleoclimatological changes across the T-OAE from western North America. The Toarcian strata in western Alberta consist primarily of organic-rich calcareous siltstones and shales. These deposits represent ideal sedimentary facies to reconstruct environmental changes through the use of geochemical proxy data, especially those that use redox-sensitive transition metals. Ammonite biostratigraphy suggests a nearly continuous sequence from the late Pliensbachian to middle Toarcian. The organic carbon isotopes show the prominent negative CIE interpreted to relate to the release of isotopically depleted carbon at the onset of the T-OAE. Pyrite sulfur weight percentages increase across the CIE and remain elevated, and iron speciation data suggest the development of anoxic conditions. Initial osmium isotope compositions become more radiogenic during the CIE

  11. Drastic Shrinking of the Hadley circulation in the Mid-Cretaceous Supergreenhouse

    NASA Astrophysics Data System (ADS)

    Hasegawa, H.; Tada, R.; Jiang, X.; Suganuma, Y.; Imsamut, S.; Charusiri, P.; Ichinnorov, N.; Khand, Y.

    2008-12-01

    Understanding the behaviour of the global climate system during extremely warm periods is one of the major targets of paleoclimatology. Paleo-SST proxy data demonstrate that the equator-to-pole temperature gradient was much lower than the present during the mid-Cretaceous "gsupergreenhouse"h period, implying larger meridional heat transport either by atmospheric and/or oceanic circulation. However, reconstruction of the atmospheric circulation during the Cretaceous has been hampered by the lack of appropriate data sets with reliable proxies. Desert distribution directly reflects the position of subtropical high pressure belt, and prevailing surface wind pattern preserved in the desert deposits gives the information on the exact position of its divergent axis that marks the poleward flank of the Hadley circulation. We reconstruct temporal changes in latitude of the subtropical high pressure belt and its divergent axis during the Cretaceous based on the spatio-temporal changes in latitudinal distribution of deserts and prevailing surface wind patterns recorded in the Asian interior (Gobi basin of Mongolia; Ordos, Subei, Jianguan, Sichuan, Simao basins of China; Khorat basin of Thailand). The results reveal poleward shift of the subtropical high pressure belt during the early and late Cretaceous periods, suggesting poleward expansion of Hadley circulation, whereas equatorward shift of such belt during the mid-Cretaceous "gsupergreenhouse"h period, suggesting drastic shrinking of the Hadley circulation. These results in conjunction with recent observations suggest that the Hadley circulation gradually expands poleward in response to the increase in global temperatures and atmospheric pCO2, and when global temperatures and atmospheric pCO2 exceed a certain threshold, the Hadley circulation shrinks drastically.

  12. PaleoGeo: a Web based GIS database for paleoenvironmental studies

    NASA Astrophysics Data System (ADS)

    Song, Wonsuh; Kondo, Yasuhisa; Oguchi, Takashi

    2014-05-01

    Paleoenvironmental studies cover various fields such as paleohydrology, geomorphology, paleooceanology, paleobiology, paleoclimatology, and chronology. It is difficult for an individual researcher to collect and compile enormous data regarding these fields. We have been compiling portal data and presenting them using a web-based geographical information system (Web-GIS) called PaleoGeo for the multidisciplinary project 'Replacement of Neanderthals by Modern Humans'. The aim of the project is to reconstruct the distribution of Neanderthals and modern humans in time and space in relation to past climate change. We have been collecting information from almost three thousand articles of 13 journals regarding paleoenvironmental research (i.e., Boreas, Catena, Climatic Change, Earth Surface Processes and Landforms, Geomorphology, Journal of Quaternary Science, Palaeogeography, Palaeoclimatology, and Palaeoecology, Quaternary International, Quaternary Research, Quaternary Science Reviews, The Holocene, and The Journal of Geology). The topics of the articles were classified into six themes (paleohydrology, earth surface processes and materials, paleooceanology, paleobiology, palaeoclimatology, and chronology) and 19 subthemes (hydrology, flood, fluvial, glacier, fluvial/glacier, sedimentology, soil, slope process, periglacial, peat land, eolian, sea-level, biology, vegetation, zoology, vegetation/zoology, archaeology, climate, atmosphere, and chronology). The collected data consist of the journal name, information about each paper (authors, title, volume, year, and page numbers), site location (country name, longitude, and latitude), theme, subtheme, keywords, DOI (Digital Object Identifier), and period (era). Location data are indispensable for paleoenvironmental studies. The PaleoGeo shows information with a map, which is an advantage of this database system. However, the number of the paleoenvironmental studies is growing rapidly and we have to effectively cover them as

  13. Geochemical Approach to Archaeal Ecology: δ13C of GDGTs

    NASA Astrophysics Data System (ADS)

    Lichtin, S.; Warren, C.; Pearson, A.; Pagani, M.

    2015-12-01

    Over the last decade and a half, glycerol dialkyl glycerol tetraethers (GDGTs) have increasingly been used to reconstruct environmental temperatures; proxies like TEX86 that correlate the relative abundance of these archaeal cell membrane lipids to sea surface temperature are omnipresent in paleoclimatology literature. While it has become common to make claims about past temperatures using GDGTs, our present understanding of the organisms that synthesize the compounds is still quite limited. The generally accepted theory states that microorganisms like the Thaumarchaeota modify the structure of membrane lipids to increase intermolecular interactions, strengthening the membrane at higher temperatures. Yet to date, culture experiments have been largely restricted to a single species, Nitrosopumilus maritimes, and recent studies on oceanic archaeal rRNA have revealed that these biomarkers are produced in diverse, heterogeneous, and site-specific communities. This brings up questions as to whether different subclasses of GDGTs, and all subsequent proxies, represent adaptation within a single organismal group or a shift in community composition. To investigate whether GDGTs with different chain structures, from the simple isoprenoidal GDGT-0 to Crenarchaeol with its many cyclopentane groups, are sourced from archaea with similar or disparate metabolic pathways—and if that information is inherited in GDGTs trapped in marine sediments—this study examines the stable carbon isotope values (δ13C) of GDGTs extracted from the uppermost meters of sediment in the Orca Basin, Gulf of Mexico, using spooling-wire microcombustion isotope-ratio mass spectrometer (SWiM-IRMS), tackling a fundamental assumption of the TEX86 proxy that influences the way we perceive the veracity of existing temperature records.

  14. An extractive removal step optimized for a high-throughput α-cellulose extraction method for δ13C and δ18O stable isotope ratio analysis in conifer tree rings.

    PubMed

    Lin, Wen; Noormets, Asko; King, John S; Sun, Ge; McNulty, Steve; Domec, Jean-Christophe

    2016-09-26

    Stable isotope ratios (δ(13)C and δ(18)O) of tree-ring α-cellulose are important tools in paleoclimatology, ecology, plant physiology and genetics. The Multiple Sample Isolation System for Solids (MSISS) was a major advance in the tree-ring α-cellulose extraction methods, offering greater throughput and reduced labor input compared to traditional alternatives. However, the usability of the method for resinous conifer species may be limited by the need to remove extractives from some conifer species in a separate pretreatment step. Here we test the necessity of pretreatment for α-cellulose extraction in loblolly pine (Pinus taeda L.), and the efficiency of a modified acetone-based ambient-temperature step for the removal of extractives (i) in loblolly pine from five geographic locations representing its natural range in the southeastern USA, and (ii) on five other common coniferous species (black spruce (Picea mariana Mill.), Fraser fir (Abies fraseri (Pursh) Poir.), Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), Norway spruce (Picea abies (L.) Karst) and ponderosa pine (Pinus ponderosa D.)) with contrasting extractive profiles. The differences of δ(13)C values between the new and traditional pretreatment methods were within the precision of the isotope ratio mass spectrometry method used (±0.2‰), and the differences between δ(18)O values were not statistically significant. Although some unanticipated results were observed in Fraser fir, the new ambient-temperature technique was deemed as effective as the more labor-consuming and toxic traditional pretreatment protocol. The proposed technique requires a separate acetone-inert multiport system similar to MSISS, and the execution of both pretreatment and main extraction steps allows for simultaneous treatment of up to several hundred microsamples from resinous softwood, while the need of additional labor input remains minimal.

  15. Analytical framework for recurrence network analysis of time series.

    PubMed

    Donges, Jonathan F; Heitzig, Jobst; Donner, Reik V; Kurths, Jürgen

    2012-04-01

    Recurrence networks are a powerful nonlinear tool for time series analysis of complex dynamical systems. While there are already many successful applications ranging from medicine to paleoclimatology, a solid theoretical foundation of the method has still been missing so far. Here, we interpret an ɛ-recurrence network as a discrete subnetwork of a "continuous" graph with uncountably many vertices and edges corresponding to the system's attractor. This step allows us to show that various statistical measures commonly used in complex network analysis can be seen as discrete estimators of newly defined continuous measures of certain complex geometric properties of the attractor on the scale given by ɛ. In particular, we introduce local measures such as the ɛ-clustering coefficient, mesoscopic measures such as ɛ-motif density, path-based measures such as ɛ-betweennesses, and global measures such as ɛ-efficiency. This new analytical basis for the so far heuristically motivated network measures also provides an objective criterion for the choice of ɛ via a percolation threshold, and it shows that estimation can be improved by so-called node splitting invariant versions of the measures. We finally illustrate the framework for a number of archetypical chaotic attractors such as those of the Bernoulli and logistic maps, periodic and two-dimensional quasiperiodic motions, and for hyperballs and hypercubes by deriving analytical expressions for the novel measures and comparing them with data from numerical experiments. More generally, the theoretical framework put forward in this work describes random geometric graphs and other networks with spatial constraints, which appear frequently in disciplines ranging from biology to climate science.

  16. Precise determination of U isotopic compositions in low concentration carbonate samples by MC-ICP-MS.

    PubMed

    Wang, Ruo-Mei; You, Chen-Feng

    2013-03-30

    We developed a fast and simple analytical procedure for precise determination of U isotopic compositions in low concentration natural samples. The main advantage of the new method is that it requires only 12ng U and can obtain all U isotopic ratios without using spike. Five carbonate reference materials (JCp-1, RKM-4, RKM-5, GBW04412 and GBW04413) and 3 international standards with different matrices (IAPSO, IRMM-3184 and CRM-U010) were analyzed for ((234)U/(238)U) and (238)U/(235)U ratios by MC-ICPMS. Using our method, the results for these standards are in close agreement with the certified values, 1.144 ± 0.004, 0.966 ± 0.004 and 0.990 ± 0.003 for ((234)U/(238)U) and 137.72 ± 0.13, 137.64 ± 0.15 and 98.63 ± 0.04 for (238)U/(235)U, in IAPSO, IRMM-3184 and CRM-U010, respectively. The long-term reproducibility of ((234)U/(238)U) and (238)U/(235)U is 0.970 ± 0.002 and 137.56 ± 0.09; 1.144 ± 0.004 and 137.72 ± 0.13, respectively, for in-house U solution and IAPSO. The new ((234)U/(238)U) results for carbonates show much better precision than previous studies and also reflect their age variability. The obtained (238)U/(235)U ratios, representing the first measurements in these carbonate specimens, are rather constant. The method described here requires only 12 ng of U for analysis and can be completed in 5.2 min. The approach provides a fast method to measure ((234)U/(238)U) and (238)U/(235)U ratios in sample matrices commonly encountered in studies of chemical weathering, oceanography and paleoclimatology.

  17. Late Quaternary paleolimnology of Walker Lake, Nevada

    USGS Publications Warehouse

    Platt, Bradbury J.; Forester, R.M.; Thompson, R.S.

    1989-01-01

    Diatoms, crustaceans, and pollen from sediment cores, in conjunction with dated shoreline tufas provide evidence for lake level and environmental fluctuations of Walker Lake in the late Quaternary. Large and rapid changes of lake chemistry and level apparently resulted from variations in the course and discharge of the Walker River. Paleolimnological evidence suggests that the basin contained a relatively deep and slightly saline to freshwater lake before ca. 30 000 years B.P. During the subsequent drawdown, the Walker River apparently shifted its course and flowed northward into the Carson Sink. As a result, Walker Lake shallowed and became saline. During the full glacial, cooler climates with more effective moisture supported a shallow brine lake in the basin even without the Walker River. As glacial climates waned after 15 000 years ago, Walker Lake became a playa. The Walker River returned to its basin 4700 years ago, filling it with fresh water in a few decades. Thereafter, salinity and depth increased as evaporation concentrated inflowing water, until by 3000 years ago Walker Lake was nearly 90 m deep, according to dated shoreline tufas. Lake levels fluctuated throughout this interval in response to variations in Sierra Nevada precipitation and local evaporation. A drought in the Sierras between 2400 and 2000 years ago reduced Walker Lake to a shallow, brine lake. Climate-controlled refilling of the lake beginning 2000 years ago required about one millennium to bring Walker lake near its historic level. Through time, lake basins in the complex Lake Lahontan system, fill and desiccate in response to climatic, tectonic and geomorphic events. Detailed, multidisciplinary paleolimnologic records from related subbasins are required to separate these processes before lake level history can be reliably used to interpret paleoclimatology. ?? 1989 Kluwer Academic Publishers.

  18. THE BIOGEOGRAPHIC ORIGIN OF ARCTIC ENDEMIC SEAWEEDS: A THERMOGEOGRAPHIC VIEW(1).

    PubMed

    Adey, Walter H; Lindstrom, Sandra C; Hommersand, Max H; Müller, Kirsten M

    2008-12-01

    The Arctic is geologically and biogeographically young, and the origin of its seaweed flora has been widely debated. The Arctic littoral biogeographic region dates from the latest Tertiary and Pleistocene. Following the opening of Bering Strait, about 3.5 mya, the "Great Trans-Arctic Biotic Interchange" populated the Arctic with a fauna strongly dominated by species of North Pacific origin. The Thermogeographic Model (TM) demonstrates why climate and geography continued to support this pattern in the Pleistocene. Thus, Arctic and Atlantic subarctic species of seaweeds are likely to be evolutionarily "based" in the North Pacific, subarctic species are likely to be widespread in the warmer Arctic, and species of Atlantic Boreal or warmer origin are unlikely in the Arctic and Subarctic. Although Arctic seaweeds have been thought to have a greater affinity with the North Atlantic, we have reanalyzed the Arctic endemic algal flora, using the Thermogeographic Model and evolutionary trees based on molecular data, to demonstrate otherwise. There are 35 congeneric species of the six, abundant Arctic Rhodophyta that we treat in this paper; 32 of these species (91%) occur in the North Pacific, two species (6%) occur in the Boreal or warmer Atlantic Ocean, and a single species is panoceanic, but restricted to the Subarctic. Laminaria solidungula J. Agardh, a kelp Arctic "endemic" species, has 18 sister species. While only eleven (61%) occur in the North Pacific, this rapidly dispersing and evolving genus is a terminal member of a diverse family and order (Laminariales) widely accepted to have evolved in the North Pacific. Thus, both the physical/time-based TM and the dominant biogeographic pattern of relatives of Arctic macrophytes suggest strong compliance with the evidence of zoology, geology, and paleoclimatology that the Arctic marine flora is largely of Pacific origin.

  19. Earth Orbit v2.1: a 3-D visualization and analysis model of Earth's orbit, Milankovitch cycles and insolation

    NASA Astrophysics Data System (ADS)

    Kostadinov, T. S.; Gilb, R.

    2014-06-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism, causing, for example, the contemporary glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity, precession and obliquity. The interaction of the amplitudes, periods and phases of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing and duration of the seasons. This complexity makes Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, we present "Earth Orbit v2.1": an astronomically precise and accurate model that offers 3-D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcing. The model is developed in MATLAB® as a user-friendly graphical user interface. Users are presented with a choice between the Berger (1978a) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the Milankovitch parameters to be varied independently of each other, so that users can isolate the effects of each parameter on orbital geometry, the seasons, and insolation. A 3-D orbital configuration plot, as well as various surface and line plots of insolation and insolation anomalies on various time and space scales are produced. Insolation computations use the model's own orbital geometry with no additional a priori input other than the Milankovitch parameter solutions. Insolation output and the underlying solar declination computation are successfully validated against the results of Laskar et al. (2004) and Meeus (1998), respectively. The model outputs some ancillary parameters as well, e.g., Earth's radius-vector length, solar declination and day length for the chosen date and latitude. Time-series plots of the Milankovitch parameters and several relevant paleoclimatological data sets can be produced. Both

  20. Evaluation of New Geological Reference Materials for U-Series Measurements

    NASA Astrophysics Data System (ADS)

    Denton, J. S.; Goldstein, S. J.; Nunn, A. J.; Ui Chearnaigh, K.; Amato, R.; Murrell, M. T.

    2012-12-01

    Uranium-series analytical measurements are widely used in geochemistry, geochronology, paleoclimatology, volcanology, environmental risk assessment and other fields. Recent advances in high-resolution, rapid, in situ microanalytical techniques e.g. LA-ICP-MS and SIMS present numerous opportunities for the geoanalytical community. As with other analytical techniques, the quality of the elemental concentration and isotopic data obtained through microanalytical techniques is dependent on the accurate characterization of suitable reference materials. Even for the case of fs-laser ablation applications, a range of well-characterized standards are required for high precision U-series work. Advances have been made in evaluating existing standard reference materials for U-series isotopic analysis, but this work is ongoing as more reference materials become available. In this study we present MC-TIMS and MC-ICP-MS results for uranium and thorium isotopic ratios and elemental concentrations measured in a suite of newly available Chinese Geological Standard Glasses (CGSG) designed for microanalysis. These glasses exhibit a range of chemical compositions including basalt, syenite, andesite and a soil. U concentrations for these glasses range from ≈2 to 14 μg/g and [Th]/[U] ratios range from ≈4 to 6. Uranium and thorium concentration and isotopic data will also be presented for rhyolitic obsidian from Macusani, SE Peru, which can be used as a rhyolitic reference material. These high-precision and high-accuracy ratios, from a suite of standards that exhibit a range of natural, non-basaltic compositions, will complement data from existing standards and expand the catalogue of reference materials that are appropriate for in situ U-series work. These results can be used to assess the performance of microanalytical techniques and will facilitate inter-laboratory comparison of data within the broader geoscience community.

  1. Correction algorithm for online continuous flow δ13C and δ18O carbonate and cellulose stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Evans, M. N.; Selmer, K. J.; Breeden, B. T.; Lopatka, A. S.; Plummer, R. E.

    2016-09-01

    We describe an algorithm to correct for scale compression, runtime drift, and amplitude effects in carbonate and cellulose oxygen and carbon isotopic analyses made on two online continuous flow isotope ratio mass spectrometry (CF-IRMS) systems using gas chromatographic (GC) separation. We validate the algorithm by correcting measurements of samples of known isotopic composition which are not used to estimate the corrections. For carbonate δ13C (δ18O) data, median precision of validation estimates for two reference materials and two calibrated working standards is 0.05‰ (0.07‰); median bias is 0.04‰ (0.02‰) over a range of 49.2‰ (24.3‰). For α-cellulose δ13C (δ18O) data, median precision of validation estimates for one reference material and five working standards is 0.11‰ (0.27‰); median bias is 0.13‰ (-0.10‰) over a range of 16.1‰ (19.1‰). These results are within the 5th-95th percentile range of subsequent routine runtime validation exercises in which one working standard is used to calibrate the other. Analysis of the relative importance of correction steps suggests that drift and scale-compression corrections are most reliable and valuable. If validation precisions are not already small, routine cross-validated precision estimates are improved by up to 50% (80%). The results suggest that correction for systematic error may enable these particular CF-IRMS systems to produce δ13C and δ18O carbonate and cellulose isotopic analyses with higher validated precision, accuracy, and throughput than is typically reported for these systems. The correction scheme may be used in support of replication-intensive research projects in paleoclimatology and other data-intensive applications within the geosciences.

  2. IODP Expedition 359: Maldives Monsoon and Sea Level

    NASA Astrophysics Data System (ADS)

    Betzler, Christian; Eberli, Gregor; Zarikian, Carlos

    2016-04-01

    Drilling the carbonate platforms and drifts in the Maldives aimed to recover the marine tropical record of the Neogene sea-level changes and the onset of the monsoon related current system in the Indian Ocean. To reach this goal, eight sites were drilled along two transects in the Kardiva Channel in the Inner Sea of the Maldives during IODP Expedition 359. The recovered cores and log data retrieved the material to achieve all the objectives set for the expedition. The most arresting accomplishment is the documentation of how the sea level controlled the carbonate platform system that was thriving during the Miocene Climate Optimum abruptly transitioned into a current-dominated system in the late Middle Miocene. This transition is linked to the onset of an early intensification of the Indian monsoon and the coeval demise of some of the Maldivian platforms. Cores and downhole logs allowed producing a solid record and reconstructing the Neogene environmental changes in the central Indian Ocean. Preliminary shipboard analyses allow a precise dating of this major paleoclimatological and paleoceanographical changes, as it also applies for the extension of the Oxygen Minimum Zone (OMZ) into this part of the Indian Ocean. Coring produced a solid framework to foster the post-cruise research of these distinct topics. In addition, complete spliced sections and logging at key sites during Expedition 359 provide the potential to assemble a cycle-based astrochronology for the Neogene section in the Maldives. This high-resolution chronology will allow: 1) independent ages to be assigned to key biostratigraphic events in the Maldives for comparison with those from other tropical regions; 2) more precise ages for the major sequence boundaries and unconformities; and 3) evaluation of higher-resolution sedimentation rate variations.

  3. Unity of Science: from High-Energy Neutrinos to Abrupt Climate Change and Life in Ice

    NASA Astrophysics Data System (ADS)

    Price, P. Buford

    2004-03-01

    These diverse topics exploit optical properties of micron-size particles in ice. AMANDA (Antarctic Muon and Neutrino Detector Array) searches for astrophysical sources of high-energy neutrinos by recording arrival times of Cherenkov light from their interaction products (muons and cascades) at phototubes in the 0.1 km^3 array in deep ice at the South Pole. Using pulsed lasers and LEDs in the array, we found that absorptivity and scattering of light in ice depend on dust concentration, which varies with depth due to dependence of dust concentration on global temperature at the time of deposition. Knowing dust concentration vs depth in AMANDA, we can fit muon tracks and locate neutrino sources to 1 arcdegree. As an AMANDA spinoff, we invented the Dust Logger, a new paleoclimatological instrument that emits laser light into glacial ice surrounding the borehole down which it is lowered. It records light that reenters the borehole after being partially absorbed and scattered by dust in the ice. This signal serves as an accurate proxy for global temperature as a function of time over a million years. The Dust Logger obtains a detailed time sequence of glacial and interglacial periods and of abrupt temperature changes that occur at millennial intervals. Occasional eruptions of nearby volcanoes punctuate the dust record with cm-thick ash layers in ice. We infer that strong volcanic eruptions lead to millennial-scale global coolings, most likely by dumping soluble iron- and acid-rich grains into nutrient-limited southern oceans, thus stimulating rapid growth of phytoplankton, which sequester carbon dioxide, a major greenhouse gas, from the atmosphere. Microbial cells are similar to dust in size and contain biomolecules that autofluoresce. We invented a BioSpectraLogger, which emits 224-nm laser light into ice and searches for fluorescence by microbes able to live in liquid veins in ice. It can be used in lakes, oceans, ice, and permafrost. A miniaturized version can search

  4. Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene - Bayesian wiggle-matching of cosmogenic radionuclide records

    NASA Astrophysics Data System (ADS)

    Adolphi, F.; Muscheler, R.

    2016-01-01

    Investigations of past climate dynamics rely on accurate and precise chronologies of the employed climate reconstructions. The radiocarbon dating calibration curve (IntCal13) and the Greenland ice core chronology (GICC05) represent two of the most widely used chronological frameworks in paleoclimatology of the past ˜ 50 000 years. However, comparisons of climate records anchored on these chronologies are hampered by the precision and accuracy of both timescales. Here we use common variations in the production rates of 14C and 10Be recorded in tree-rings and ice cores, respectively, to assess the differences between both timescales during the Holocene. Compared to earlier work, we employ a novel statistical approach which leads to strongly reduced and yet, more robust, uncertainty estimates. Furthermore, we demonstrate that the inferred timescale differences are robust independent of (i) the applied ice core 10Be records, (ii) assumptions of the mode of 10Be deposition, as well as (iii) carbon cycle effects on 14C, and (iv) in agreement with independent estimates of the timescale differences. Our results imply that the GICC05 counting error is likely underestimated during the most recent 2000 years leading to a dating bias that propagates throughout large parts of the Holocene. Nevertheless, our analysis indicates that the GICC05 counting error is generally a robust uncertainty measurement but care has to be taken when treating it as a nearly Gaussian error distribution. The proposed IntCal13-GICC05 transfer function facilitates the comparison of ice core and radiocarbon dated paleoclimate records at high chronological precision.

  5. Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene - Bayesian wiggle-matching of cosmogenic radionuclide records

    NASA Astrophysics Data System (ADS)

    Adolphi, F.; Muscheler, R.

    2015-07-01

    Investigations of past climate dynamics rely on accurate and precise chronologies of the employed climate reconstructions. The radiocarbon dating calibration curve (IntCal13) and the Greenland ice core chronology (GICC05) represent two of the most widely used chronological frameworks in paleoclimatology of the past ∼ 50 000 years. However, comparisons of climate records anchored on these chronologies are hampered by the precision and accuracy of both timescales. Here we use common variations in the production rates of 14C and 10Be recorded in tree-rings and ice cores, respectively, to assess the differences between both timescales during the Holocene. We employ a novel statistical approach which leads to strongly reduced and yet, more robust, uncertainty estimates in comparison to earlier work. We demonstrate that the inferred timescale differences are robust independent of (i) the applied ice core 10Be records, (ii) assumptions of the mode of 10Be deposition, as well as (iii) carbon cycle effects on 14C, and in agreement with independent estimates of the timescale differences. Our results imply that the GICC05 counting error is likely underestimated during the most recent 2000 years leading to a dating bias that propagates throughout large parts of the Holocene. Nevertheless, our analysis indicates that the GICC05 counting error is generally a robust uncertainty measurement but care has to be taken when treating it as a nearly Gaussian error distribution. The proposed IntCal13-GICC05 transfer function facilitates the comparison of ice core and radiocarbon dated paleoclimate records at high chronological precision.

  6. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    NASA Astrophysics Data System (ADS)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  7. Distinguishing seawater from geologic brine in saline coastal groundwater using radium-226; an example from the Sabkha of the UAE

    USGS Publications Warehouse

    Kraemer, Thomas F.; Wood, Warren W.; Sanford, Ward E.

    2014-01-01

    Sabkhat (Salt flats) are common geographic features of low-lying marine coastal areas that develop under hyper-arid climatic conditions. They are characterized by the presence of highly concentrated saline solutions and evaporitic minerals, and have been cited in the geologic literature as present-day representations of hyper-arid regional paleohydrogeology, paleoclimatology, coastal processes, and sedimentation in the geologic record. It is therefore important that a correct understanding of the origin and development of these features be achieved. Knowledge of the source of solutes is an important first step in understanding these features. Historically, two theories have been advanced as to the main source of solutes in sabkha brines: an early concept entailing seawater as the obvious source, and a more recent and dynamic theory involving ascending geologic brine forced upward into the base of the sabkha by a regional hydraulic gradient in the underlying formations. Ra-226 could uniquely distinguish between these sources under certain circumstances, as it is typically present at elevated activity of hundreds to thousands of Bq/m3 (Becquerels per cubic meter) in subsurface formation brines; at exceedingly low activities in open ocean and coastal water; and not significantly supplied to water from recently formed marine sedimentary framework material. The coastal marine sabkha of the Emirate of Abu Dhabi was used to test this hypothesis. The distribution of Ra-226 in 70 samples of sabkha brine (mean: 700 Bq/m3), 7 samples of underlying deeper formation brine (mean: 3416 Bq/m3), the estimated value of seawater (< 16 Bq/m3) and an estimate of supply from sabkha sedimentary framework grains (<~6 Bq/m3) provide the first direct evidence that ascending geologic brine contributes significantly to the solutes of this sabkha system.

  8. Can a paleodrought record be used to reconstruct streamflow?: A case study for the Missouri River Basin

    NASA Astrophysics Data System (ADS)

    Ho, Michelle; Lall, Upmanu; Cook, Edward R.

    2016-07-01

    Recent advances in paleoclimatology have revealed dramatic long-term hydroclimatic variations that provide a context for limited historical records. A notable data set derived from a relatively dense network of paleoclimate proxy records in North America is the Living Blended Drought Atlas (LBDA): a gridded tree-ring-based reconstruction of summer Palmer Drought Severity Index. This index has been used to assess North American drought frequency, persistence, and spatial extent over the past two millennia. Here, we explore whether the LBDA can be used to reconstruct annual streamflow. Relative to streamflow reconstructions that use tree rings within the river basin of interest, the use of a gridded proxy poses a novel challenge. The gridded series have high spatial correlation, since they rely on tree rings over a common radius of influence. A novel algorithm for reconstructing streamflow using regularized canonical regression and inputs of local and global covariates is developed and applied over the Missouri River Basin, as a test case. Effectiveness in reconstruction is demonstrated with reconstructions showing periods where streamflow deficits may have been more severe than during recent droughts (e.g., the Civil War, Dust Bowl, and 1950s droughts). The maximum persistence of droughts and floods over the past 500 years far exceeds those observed in the instrumental record and periods of multidecadal variability in the 1500s and 1600s are detected. Challenges for an extension to a national streamflow reconstruction or applications using other gridded paleoclimate data sets such as adequate spatial coverage of streamflow and applicability of annual reconstructions are discussed.

  9. EarthCube GeoLink: Semantics and Linked Data for the Geosciences

    NASA Astrophysics Data System (ADS)

    Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Fils, D.; Hitzler, P.; Janowicz, K.; Ji, P.; Jones, M. B.; Krisnadhi, A.; Lehnert, K. A.; Mickle, A.; Narock, T.; O'Brien, M.; Raymond, L. M.; Schildhauer, M.; Shepherd, A.; Wiebe, P. H.

    2015-12-01

    The NSF EarthCube initiative is building next-generation cyberinfrastructure to aid geoscientists in collecting, accessing, analyzing, sharing, and visualizing their data and knowledge. The EarthCube GeoLink Building Block project focuses on a specific set of software protocols and vocabularies, often characterized as the Semantic Web and "Linked Data", to publish data online in a way that is easily discoverable, accessible, and interoperable. GeoLink brings together specialists from the computer science, geoscience, and library science domains, and includes data from a network of NSF-funded repositories that support scientific studies in marine geology, marine ecosystems, biogeochemistry, and paleoclimatology. We are working collaboratively with closely-related Building Block projects including EarthCollab and CINERGI, and solicit feedback from RCN projects including Cyberinfrastructure for Paleogeosciences (C4P) and iSamples. GeoLink has developed a modular ontology that describes essential geoscience research concepts; published data from seven collections (to date) on the Web as geospatially-enabled Linked Data using this ontology; matched and mapped data between collections using shared identifiers for investigators, repositories, datasets, funding awards, platforms, research cruises, physical specimens, and gazetteer features; and aggregated the results in a shared knowledgebase that can be queried via a standard SPARQL endpoint. Client applications have been built around the knowledgebase, including a Web/map-based data browser using the Leaflet JavaScript library and a simple query service using the OpenSearch format. Future development will include extending and refining the GeoLink ontology, adding content from additional repositories, developing semi-automated algorithms to enhance metadata, and further work on client applications.

  10. Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors

    NASA Astrophysics Data System (ADS)

    Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.

    2012-12-01

    Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.

  11. Drought as a Catalyst for Early Medieval European Subsistence Crises and Violence

    NASA Astrophysics Data System (ADS)

    Ludlow, Francis; Cook, Edward; Kostick, Conor; McCormick, Michael

    2016-04-01

    Tree-ring records provide one of most reliable means of reconstructing past climatic conditions, from longer-term multi-decadal fluctuations in temperature and precipitation to inter-annual variability, including years that experienced extreme weather. When combined with written records of past societal behaviour and the incidence of major societal stresses (e.g., famine, disease, and conflict), such records hold the potential to shed new light on historical interactions between climate and society. Recent years have seen the continued development of long dendroclimatic reconstructions, including, most recently the development of the Old World Drought Atlas (OWDA; Cook et al., 2015) which for the first time makes available a robust reconstruction of spring-summer hydroclimatic conditions and extremes for the greater European region, including the entirety of the Dark Ages. In this paper, we examine the association between hydroclimatic extremes identified in the OWDA and well-dated reports of severe drought in early medieval European annals and chronicles, and find a clear statistical correspondence, further confirming the accuracy of the OWDA and its importance as an independent record of hydroclimatic extremes, a resource that can now be drawn upon in both paleoclimatology and studies of climatic impacts on human society. We proceed to examine the association between hydroclimatic extremes identified in the OWDA and the incidence of a range of major societal stresses (scarcity and famine, epidemic disease, and mass human mortality) drawn from an exhaustive survey of early medieval European annals and chronicles. The outcome of this comparison firmly implicates drought as a significant driver of major societal stresses during early medieval times. Using a record of the violent killings of societal elites recorded on a continuous annual basis in medieval Irish monastic annals, we further examine the role of hydroclimatic extremes as triggers in medieval violence

  12. Time averaging and stratigraphic disorder of molluscan assemblages in the Holocene sediments in the NE Adriatic (Piran)

    NASA Astrophysics Data System (ADS)

    Tomasovych, Adam; Gallmetzer, Ivo; Haselmair, Alexandra; Kaufman, Darrell S.; Zuschin, Martin

    2016-04-01

    Stratigraphic changes in temporal resolution of fossil assemblages and the degree of their stratigraphic mixing in the Holocene deposits are of high importance in paleoecology, conservation paleobiology and paleoclimatology. However, few studies quantified downcore changes in time averaging and in stratigraphic disorder on the basis of dating of multiple shells occurring in individual stratigraphic layers. Here, we investigate downcore changes in frequency distribution of postmortem ages of the infaunal bivalve Gouldia minima in two, ~150 cm-thick piston cores (separated by more than 1 km) in the northern Adriatic Sea, close to the Slovenian city Piran at a depth of 24 m. We use radiocarbon-calibrated amino acid racemization to obtain postmortem ages of 564 shells, and quantify age-frequency distributions in 4-5 cm-thick stratigraphic intervals (with 20-30 specimens sampled per interval). Inter-quartile range for individual 4-5 cm-thick layers varies between 850 and 1,700 years, and range encompassing 95% of age data varies between 2,000 and 5,000 years in both cores. The uppermost sediments (20 cm) are age-homogenized and show that median age of shells is ~700-800 years. The interval between 20 and 90 cm shows a gradual increase in median age from ~2,000 to ~5,000 years, with maximum age ranging to ~8,000 years. However, the lowermost parts of both cores show a significant disorder, with median age of 3,100-3,300 years. This temporal disorder implies that many shells were displaced vertically by ~1 m. Absolute and proportional abundance of the bivalve Gouldia minima strongly increases towards the top of the both cores. We hypothesize that such increase in abundance, when coupled with depth-declining reworking, can explain stratigraphic disorder because numerically abundant young shells from the top of the core were more likely buried to larger sediment depths than less frequent shells at intermediate sediment depths.

  13. Fast Vegetational Responses to Late-Glacial Climate Change

    NASA Astrophysics Data System (ADS)

    Williams, J. W.; Post, D. M.; Cwynar, L. C.; Lotter, A. F.; Levesque, A. J.

    2001-12-01

    How rapidly can natural ecosystems respond to rapid climate change? This question can be addressed by studying paired paleoecological and paleoclimatological records spanning the last deglaciation. Between 16 and 10 ka, abrupt climatic oscillations (e.g. Younger Dryas, Gerzensee/Killarney Oscillations) interrupted the general warming trend. Rates of climate change during these events were as fast or faster than projected rates of change for this century. We compiled a dozen high-resolution lacustrine records in North America and Europe with a pollen record and independent climatic proxy, a clear Younger Dryas signal, and good age control. Cross-correlation analysis suggests that vegetation responded rapidly to late-glacial climate change, with significant changes in vegetation composition occurring within the lifespan of individual trees. At all sites, vegetation lagged climate by less than 200 years, and at two-thirds of the sites, the initial vegetational response occurred within 100 years. The finding of rapid vegetational responses is consistent across sites and continents, and is similar to the 100-200 year response times predicted by gap-scale forest models. Likely mechanisms include 1) increased susceptibility of mature trees to disturbances such as fire, wind, and disease, thereby opening up gaps for colonization, 2) the proximity of these sites to late-glacial treeline, where climate may directly control plant population densities and range limits, 3) the presence of herbaceous taxa with short generation times in these plant communities, and 4) rapid migration due to rare long-distance seed dispersals. Our results are consistent with reports that plant ranges are already shifting in response to recent climate change, and suggest that these shifts will persist for the next several centuries. Widespread changes in plant distributions may affect surface-atmosphere interactions and will challenge attempts to manage ecosystems and conserve biodiversity.

  14. Stable isotope deltas: tiny, yet robust signatures in nature.

    PubMed

    Brand, Willi A; Coplen, Tyler B

    2012-09-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including (14)C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. (13)C, (2)H, and (18)O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as-25 per mil can be written as-25 mUr (or-2.5 cUr or-0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg 'units' are easily included (e.g. either+0.015 ‰ or+15 per meg

  15. An integrated chronostratigraphic data system for the twenty-first century

    USGS Publications Warehouse

    Sikora, P.J.; Ogg, James G.; Gary, A.; Cervato, C.; Gradstein, Felix; Huber, B.T.; Marshall, C.; Stein, J.A.; Wardlaw, B.

    2006-01-01

    Research in stratigraphy is increasingly multidisciplinary and conducted by diverse research teams whose members can be widely separated. This developing distributed-research process, facilitated by the availability of the Internet, promises tremendous future benefits to researchers. However, its full potential is hindered by the absence of a development strategy for the necessary infrastructure. At a National Science Foundation workshop convened in November 2001, thirty quantitative stratigraphers and database specialists from both academia and industry met to discuss how best to integrate their respective chronostratigraphic databases. The main goal was to develop a strategy that would allow efficient distribution and integration of existing data relevant to the study of geologic time. Discussions concentrated on three major themes: database standards and compatibility, strategies and tools for information retrieval and analysis of all types of global and regional stratigraphic data, and future directions for database integration and centralization of currently distributed depositories. The result was a recommendation to establish an integrated chronostratigraphic database, to be called Chronos, which would facilitate greater efficiency in stratigraphic studies (http://www.chronos.org/) . The Chronos system will both provide greater ease of data gathering and allow for multidisciplinary synergies, functions of fundamental importance in a variety of research, including time scale construction, paleoenvironmental analysis, paleoclimatology and paleoceanography. Beyond scientific research, Chronos will also provide educational and societal benefits by providing an accessible source of information of general interest (e.g., mass extinctions) and concern (e.g., climatic change). The National Science Foundation has currently funded a three-year program for implementing Chronos.. ?? 2006 Geological Society of America. All rights reserved.

  16. Monsoon failure enhances drought in southwestern North America

    NASA Astrophysics Data System (ADS)

    Griffin, D.; Woodhouse, C. A.; Meko, D. M.; Stahle, D. W.

    2012-12-01

    The North American monsoon has emerged as a research frontier for paleoclimatology. Precisely dated tree-ring latewood (summer growth) offers unparalleled promise for studying interannual- to decadal-scale monsoon variability over past centuries. From the new network of latewood chronologies in the southwestern U.S., we present a high-quality, 470-year long reconstruction of June-August (monsoon) precipitation for the Arizona-Sonora sub-region of the North American monsoon. For comparison, we developed a companion reconstruction of October-April (cool-season) precipitation from chronologies of earlywood (spring growth). Foremost, these reconstructions demonstrate that many of the well-known southwestern droughts were not just cool-season events, but were also characterized by concurrent failure of the summer monsoon. The early 21st century drought, the late 19th century drought, the 17th century Puebloan drought, and even the 16th century megadrought each contain notable runs of consecutive years with below average monsoon rainfall. The reconstructions also reveal that the interannual relationship between winter and summer precipitation has been unstable through time and that the tendency for dry (wet) winters to be followed by wet [dry] summers was anomalously high during the mid-late 20th century. Cool-season and monsoon moisture variability in this region can be linked to patterns of ocean-atmosphere circulation. However, our understanding of the climate dynamics that would facilitate persistence of dual-season drought and transience in the winter-summer precipitation relationship is far from complete.

  17. Dating the Laschamp Excursion: Why Speleothems are Valuable Tools for Constraining the Timing and Duration of Short-Lived Geomagnetic Events

    NASA Astrophysics Data System (ADS)

    Lascu, I.; Feinberg, J. M.; Dorale, J. A.; Cheng, H.; Edwards, R. L.

    2015-12-01

    Short-lived geomagnetic events are reflections of geodynamo behavior at small length scales. A rigorous documentation of the anatomy, timing, duration, and frequency of centennial-to-millennial scale geomagnetic events can be invaluable for theoretical and numerical geodynamo models, and for the understanding the finer dynamics of the Earth's core. A critical ingredient for characterizing such geomagnetic instabilities are tightly constrained age models that enable high-resolution magnetostratigraphies. Here we focus on a North American speleothem geomagnetic record of the Laschamp excursion, which was the first geomagnetic excursion recognized and described in the paleomagnetic record, and remains the most studied event of its kind. The geological significance of the Laschamp lies chiefly in the fact that it constitutes a global time-synchronous geochronological marker. The Laschamp excursion occurred around the time of the demise of Homo neanderthalensis, in conjunction with high-amplitude, rapid climatic oscillations leading into the Last Glacial Maximum, and precedes a major supervolcano eruption in the Mediterranean. Thus, the precise determination of the timing and duration of the Laschamp would help in elucidating major scientific questions situated at the intersection of geology, paleoclimatology, and anthropology. Here we present a geomagnetic record from a stalagmite collected in Crevice Cave, Missouri, which we have dated using a combination of high-precision 230Th ages and annual layer counting using confocal microscopy. We have found a maximum duration for the Laschamp that spans the interval 42,250-39,700 years BP, and an age of 41,100 ± 350 years BP for the height of the excursion. During this period relative paleointensity decreased by an order of magnitude and the virtual geomagnetic pole was located at southerly latitudes. Our chronology provides the first robust bracketing for the Laschamp excursion, and improves on previous age determinations

  18. Do Speleothem Stable Isotope Records Contain Hidden Tropical Cyclone Histories? Exploring C-O Isotope Correlation Patterns for Indicators of Tropical Cyclone Masking

    NASA Astrophysics Data System (ADS)

    Frappier, A. E.; Rossington, C.

    2013-12-01

    The newly-described tropical cyclone masking effect on stable isotope paleohydrological signals in speleothem records arises from the intermittent delivery of large pulses of isotopically distinct tropical cyclone rain. Recent work shows that 18-O depleted tropical cyclone stormwater depresses the δ18O value of speleothem calcite for months to years following a tropical cyclone event, masking the background stable isotope signal of persistent climate variability. Periods of high local storm activity can lead to speleothem calcite paleohydrological signals with significant wet biases on interannual to decadal timescales. Because speleothem carbon isotope ratios are independent of tropical cyclone rainfall, tropical speleothems are known to exhibit moderate C-O isotope covariation over time, periods when C-O isotope covariation breaks down and δ18O values are low may provide a marker for times when tropical cyclone masking is important. If so, existing speleothem stable isotope records from tropical cyclone-prone regions may contain signatures of tropical cyclone masking in the temporal evolution of C-O isotope covariation patterns. We present results from an exploratory analysis of several published speleothem records that are candidates for containing tropical cyclone masking signals. For each speleothem, overall C-O isotope covariation coefficients were calculated, and transient covariation patterns were analyzed using a sliding correlation index, the Covariation of Stable Isotopes (CoSI) index, and Local Correlation (LoCo). Local tropical cyclone historical and paleotempest records are compared and a method is presented to test for the presence of tropical cyclone masking intervals. The implications for speleothem paleoclimatology and paleotempestology are discussed.

  19. Did European temperatures in 1540 exceed present-day records?

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Vogel, Martha M.; Luterbacher, Jürg; Pfister, Christian; Seneviratne, Sonia I.

    2016-11-01

    There is strong evidence that the year 1540 was exceptionally dry and warm in Central Europe. Here we infer 1540 summer temperatures from the number of dry days (NDDs) in spring (March-May) and summer (June-August) in 1540 derived from historical documentary evidence published elsewhere, and compare our estimates with present-day temperatures. We translate the NDD values into temperature distributions using a linear relationship between modeled temperature and NDD from a 3000 year pre-industrial control simulation with the Community Earth System Model (CESM). Our results show medium confidence that summer mean temperatures (T JJA) and maximum temperatures (TXx) in Central Europe in 1540 were warmer than the respective present-day mean summer temperatures (assessed between 1966-2015). The model-based reconstruction suggests further that with a probability of 40%-70%, the highest daily temperatures in 1540 were even warmer than in 2003, while there is at most a 20% probability that the 1540 mean summer temperature was warmer than that of 2003 in Central Europe. As with other state-of-the-art analyses, the uncertainty of the reconstructed 1540 summer weather in this study is considerable, for instance as extrapolation is required because 1540-like events are not captured by the employed Earth system model (ESM), and neither by other ESMs. However, in addition to paleoclimatological approaches we introduce here an independent methodology to estimate 1540 temperatures, and contribute consequently to a reduced overall uncertainty in the analysis of this event. The characterization of such events and the related climate system functioning is particularly relevant in the context of global warming and the corresponding increase of extreme heat wave magnitude and occurrence frequency.

  20. Stable isotope deltas: Tiny, yet robust signatures in nature

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  1. Reconstructing a mid-Cretaceous landscape from paleosols in western Canada

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.; Leckie, D.

    2005-01-01

    The Albian Stage of the mid-Cretaceous was a time of equable climate conditions with high sea levels and broad shallow epeiric seas that may have had a moderating affect on continental climates. A Late Albian landscape surface that developed during a regression and subsequent sea-level rise in the Western Canada Foreland Basin is reconstructed on the basis of correlation of paleosols penetrated by cores through the Paddy Member of the Peace River Formation. Reconstruction of this landscape refines chronostratigraphic relationships and will benefit future paleoclimatological studies milizing continental sphaerosiderite proxy records. The paleosols developed in estuarine sandstones and mudstones, and they exhibit evidence of a polygenetic history. Upon initial exposure and pedogenesis, the Paddy Member developed deeply weathered, well-drained cumulative soil profiles. Later stages of pedogenesis were characterized by hydromorphic soil conditions. The stages of soil development interpreted for the Paddy Member correlate with inferred stages of pedogenic development in time-equivalent formations located both basinward and downslope (upper Viking Formation), and landward and upslope (Boulder Creek Formation). On the basis of the genetic similarity among paleosols in these three correlative formations, the paleosols are interpreted as having formed along a single, continuous landscape surface. Results of this study indicate that the catena concept of pedogenesis along sloping landscapes is applicable to ancient successions. Sphaerosiderites in the Paddy Mem ber paleosols are used to provide proxy values for meteoric ??18O values at 52?? N paleolatitude in the Cretaceous Western Interior Basin. The meteoric ??18O values are used to refine existing interpretations about the mid-Cretaceous paleolatitudinal gradient in meteoric ?? 18O values, and the mid-Cretaceous hydrologic cycle. Copyright ?? 2005, SEPM (Society for Sedimentary Geology).

  2. Molecular dynamics simulation study of the effect of glycerol dialkyl glycerol tetraether hydroxylation on membrane thermostability.

    PubMed

    Huguet, Carme; Fietz, Susanne; Rosell-Melé, Antoni; Daura, Xavier; Costenaro, Lionel

    2017-02-16

    Archaeal tetraether membrane lipids span the whole membrane width and present two C40 isoprenoid chains bound by two glycerol groups (or one glycerol and calditol). These lipids confer stability and maintain the membrane fluidity in mesophile to extremophile environments, making them very attractive for biotechnological applications. The isoprenoid lipid composition in archaeal membranes varies with temperature, which has placed these lipids in the focus of paleo-climatological studies for over a decade. Non-hydroxylated isoprenoid archaeal lipids are typically used as paleo-thermometry proxies, but recently identified hydroxylated (OH) derivatives have also been proposed as temperature proxies. The relative abundance of hydroxylated lipids increases at lower temperatures, but the physiological function of the OH moiety remains unknown. Here we present molecular dynamics simulations of membranes formed by the acyclic glycerol-dialkyl-glycerol-tetraether caldarchaeol (GDGT-0), the most widespread archaeal core lipid, and its mono-hydroxylated variant (OH-GDGT-0) to better understand the physico-chemical properties conferred to the membrane by this additional moiety. The molecular dynamics simulations indicate that the additional OH group forms hydrogen bonds mainly with the sugar moieties of neighbouring lipids and with water molecules, effectively increasing the size of the polar headgroups. The hydroxylation also introduces local disorder that propagates along the entire alkyl chains, resulting in a slightly more fluid membrane. These changes would help to maintain trans-membrane transport in cold environments, explaining why the relative abundance of hydroxylated Archaea lipids increases at lower temperatures. The in silico approach aids to understand the underlying physiological mechanisms behind the hydroxylated lipid based paleo-thermometer recently proposed.

  3. IODP Expedition 325: Great Barrier Reefs Reveals Past Sea-Level, Climate and Environmental Changes Since the Last Ice Age

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Webster, J. M.; Cotterill, C.; Braga, J. C.; Jovane, L.; Mills, H.; Morgan, S.; Suzuki, A.; IODP Expedition 325 Scientists, the

    2011-09-01

    The timing and courses of deglaciations are key components in understanding the global climate system. Cyclic changes in global climate have occurred, with growth and decay of high latitude ice sheets, for the last two million years. It is believed that these fluctuations are mainly controlled by periodic changes to incoming solar radiation due to the changes in Earth's orbit around the sun. However, not all climate variations can be explained by this process, and there is the growing awareness of the important role of internal climate feedback mechanisms. Understanding the nature of these feedbacks with regard to the timing of abrupt global sea-level and climate changes is of prime importance. The tropical ocean is one of the major components of the feedback system, and hence reconstructions of temporal variations in sea-surface conditions will greatly improve our understanding of the climate system. The Integrated Ocean Drilling Program (IODP) Expedition 325 drilled 34 holes across 17 sites in the Great Barrier Reef, Australia to recover fossil coral reef deposits. The main aim of the expedition was to understand the environmental changes that occurred during the last ice age and subsequent deglaciation, and more specifically (1) establish the course of sea-level change, (2) reconstruct the oceanographic conditions, and (3) determine the response of the reef to these changes. We recovered coral reef deposits from water depths down to 126 m that ranged in age from 9,000 years to older than 30,000 years ago. Given that the interval of the dated materials covers several paleoclimatologically important events, including the Last Glacial Maximum, we expect that ongoing scientific analyses will fulfill the objectives of the expedition. doi:10.2204/iodp.sd.12.04.2011

  4. Development of Modern Analogue and Mutual Overlap Techniques for Paleoclimatic Reconstructions and Model Validation from Plant Macrofossil Assemblages in North America

    NASA Astrophysics Data System (ADS)

    Thompson, R. S.; Anderson, K. H.; Strickland, L. E.; Bartlein, P. J.; Shafer, S. L.

    2003-12-01

    Plant macrofossils provide a unique resource in paleoclimatology: They can usually be identified to the species level, can be directly dated by radiocarbon analysis, and can be related to modern living relatives whose ranges are usually well-known. Fossil packrat middens provide a spatially and temporally rich data set of well-dated species-level plant macrofossil assemblages covering the last glacial period and the Holocene in western North America. Other plant macrofossil assemblages are available from permanently wet (e.g., lakes, mires) and permanently dry (e.g., cave sediments) deposits. To provide the basis for exploring the paleoclimatic implications of these macrofossil assemblages we have investigated the present-day relations between climatic parameters and the distributions of more than 600 woody plant species across North America, based on a 25-km grid of climatic, bioclimatic, and species distribution data. We used this data set to explore the efficacy of climatic estimation from plant assemblages based on the "modern analogue" comparison between the target plant assemblage and all other plant assemblages in the modern data set using the Jaccard similarity coefficient. The estimates produced by these methods were then compared with the range of permissible climates for each assemblage based on the mutual overlap approach. Our explorations suggest that the "modern analogue" method provides meaningful climatic estimates in most regions, if the number of species in the target assemblage is large enough. Although it is pleasing to obtain a single value for each climatic parameter associated with a given macrofossil assemblage, it is also potentially misleading in that the range of permissible climates for the assemblage may be large, particularly under atmospheric carbon dioxide concentrations different from those of today. The mutual overlap approach may provide a more realistic view of the past and may be better suited for data - model comparisons.

  5. Post-depositional migration and preservation of methanesulfonic acid (MSA) in polar ice cores

    NASA Astrophysics Data System (ADS)

    Osman, M.; Marchal, O.; Guo, W.; Das, S. B.; Evans, M. J.

    2015-12-01

    Methanesulfonic acid (MSA; CH3SO3-) in ice cores is a unique, high-resolution proxy of regional sea ice behavior, marine primary productivity, and synoptic climatology. Significant uncertainties remain, however, in both our understanding of the production and transfer of MSA to the ice sheet, as well as its preservation over time, compromising the paleoclimatological utility of the proxy. Here we apply a numerical modeling approach to quantitatively investigate the post-depositional processes affecting MSA migration and preservation within the firn and ice column, building on recent observational and theoretical studies. Our model allows us to evaluate the timing and magnitude of the vertical movement of MSA in response to varying influences, including the competing effects of 1) concentration gradients of sea-salts typically deposited asynchronously to MSA, 2) snow accumulation and densification rates, and 3) in situ temperature gradients. We first test the model against a recently collected ice core from a high accumulation site in coastal West Antarctica, where monthly-resolved MSA records show an abrupt shift from a summer-to-winter maximum in MSA at ~23m depth (ρ ≈ 650 kg/m3), near the firn-ice transition. We find our model to be a robust predictor of the observed migrational features in this record, capturing both (i) the abrupt shift in summer-to-winter maximal concentrations of MSA (steady state ≈ 3.2 yrs), and (ii) the depression of the seasonal amplitude at depth. Further, our modeling results suggest post-depositional effects can lead to substantial interannual alteration of the MSA signal, contrary to previous assumptions that MSA migration is confined within annual layers at high accumulation sites. Using a broad range of polar MSA records and their associated, site-specific environmental conditions, we will evaluate the fidelity of subannual to interannual variability of MSA records and systematically determine the factors conducive to its

  6. Climate Inferences From Geothermal Measurements in South America

    NASA Astrophysics Data System (ADS)

    Gurza Fausto, Edmundo; Harris, Robert; Montenegro, Alvaro; Tassara, Andrés; Beltrami, Hugo

    2013-04-01

    We present the data and analysis of 26 borehole temperature logs from South America. The dataset consists of a combination of 15 new borehole logs measured during 2012 distributed between three sites in Chile. These sites are located near Vallenar, Sierra Gorda and Sierra Limon Verde. Six temperature logs were measured during 1994 at sites near Michilla, Mansa Mina and the region of El Loa (Springer et al., Tectonophysics, 1998). Four logs were obtained from the NOAA Paleoclimatology Borehole Database located in Villa Staff, Toquepala and Talara in Peru. These data were analyzed for climate variability signals of the surface temperature and changes in the earth's surface energy balance. The analysis suggests regionalized temperature changes in ground surface temperatures with anomalies ranging from -0.1 to -0.3 K for Vallenar, -0.2 to -0.9 K in Sierra Gorda and 0.0 to 0.5 K for Sierra Limon Verde. We place the results within the context of surface air temperature yearly means obtained from existing meteorological and proxy paleoclimatic data between Peru and Northern Chile. The use of geothermal measurements for climate variability studies provides a further understanding of the climatic and energy cycles of the Southern Hemisphere, where meteorological data can be scarce to non-existent. Analysis of borehole temperature data have contributed significantly to estimating the last millennium surface temperature changes. Additionally, recent analysis have contributed to evaluate the Earth's energy balance by providing a quantitative value for the energy absorbed by the continents in the later part of the 20th century. Knowledge of the surface energy flux is important for understanding the solid Earth - atmosphere boundary condition, land cover changes, and their impact on regional and global climate models.

  7. Climate Inferences from Geothermal Measurements in South America

    NASA Astrophysics Data System (ADS)

    Gurza Fausto, E.; Harris, R. N.; Montenegro, A.; Tassara, A.; Beltrami, H.

    2014-12-01

    Analysis of borehole temperature data have contributed significantly to estimating the last millennium surface temperature changes. Additionally, recent analysis have contributed to evaluate the Earth's energy balance by providing a quantitative value for the energy absorbed by the continents in the later part of the 20th century. Knowledge of the surface energy flux is important for understanding the solid Earth - atmosphere boundary condition, land cover changes, and their impact on regional and global climate models. We present data and analysis of 19 borehole temperature versus depth profiles from South America. The dataset includes 10 new borehole logs measured during 2012 at three sites in northern Chile (Vallenar, Sierra Gorda and Sierra Limon Verde). These new measurements complement six temperature logs measured during 1994 in the same region (sites near Michilla and Sierra Limon Verde; Springer et al., Tectonophysics, 1998) and four logs obtained from the NOAA Paleoclimatology Borehole Database located in Villa Staff, Toquepala and Talara in Peru. These data were analyzed for climate variability signals of the surface temperature and changes in the Earth's surface energy balance. The analysis suggests a cooling trend during the 19th century of approximately -0.5ºK. Furthermore, results show regionalized temperature changes in ground surface temperatures during the last 50 years with estimates of -0.4ºK in Vallenar, and approximately +1ºK in the Atacama Desert of Northern Chile. We place the results within the context of surface air temperature yearly means obtained from existing meteorological and proxy paleoclimatic data between Peru and Northern Chile. The use of geothermal measurements for climate variability studies provides a further understanding of the climatic and energy cycles of the Southern Hemisphere, where meteorological data can be scarce to non-existent.

  8. Ontology Design Patterns: Bridging the Gap Between Local Semantic Use Cases and Large-Scale, Long-Term Data Integration

    NASA Astrophysics Data System (ADS)

    Shepherd, Adam; Arko, Robert; Krisnadhi, Adila; Hitzler, Pascal; Janowicz, Krzysztof; Chandler, Cyndy; Narock, Tom; Cheatham, Michelle; Schildhauer, Mark; Jones, Matt; Raymond, Lisa; Mickle, Audrey; Finin, Tim; Fils, Doug; Carbotte, Suzanne; Lehnert, Kerstin

    2015-04-01

    Integrating datasets for new use cases is one of the common drivers for adopting semantic web technologies. Even though linked data principles enables this type of activity over time, the task of reconciling new ontological commitments for newer use cases can be daunting. This situation was faced by the Biological and Chemical Oceanography Data Management Office (BCO-DMO) as it sought to integrate its existing linked data with other data repositories to address newer scientific use cases as a partner in the GeoLink Project. To achieve a successful integration with other GeoLink partners, BCO-DMO's metadata would need to be described using the new ontologies developed by the GeoLink partners - a situation that could impact semantic inferencing, pre-existing software and external users of BCO-DMO's linked data. This presentation describes the process of how GeoLink is bridging the gap between local, pre-existing ontologies to achieve scientific metadata integration for all its partners through the use of ontology design patterns. GeoLink, an NSF EarthCube Building Block, brings together experts from the geosciences, computer science, and library science in an effort to improve discovery and reuse of data and knowledge. Its participating repositories include content from field expeditions, laboratory analyses, journal publications, conference presentations, theses/reports, and funding awards that span scientific studies from marine geology to marine ecology and biogeochemistry to paleoclimatology. GeoLink's outcomes include a set of reusable ontology design patterns (ODPs) that describe core geoscience concepts, a network of Linked Data published by participating repositories using those ODPs, and tools to facilitate discovery of related content in multiple repositories.

  9. Pleistocene lake level changes in Western Mongolia

    NASA Astrophysics Data System (ADS)

    Borodavko, P. S.

    2009-04-01

    .Petersburg, Nauka, 304 p. 4. Tarasov, P.E., Harrison, S.P., Saarse, L., Pushenko, M.Ya., Andreev, A.A., Aleshinskaya, Z.V., Davydova, N.N., Dorofeyuk, N.I., Efremov, Yu.V., Khomutova, V.I., Sevastyanov, D.V., Tamosaitis, J., Dorofeyuk, N.I., Efremov, Yu.V., Khomutova, V.I., Sevastyanov, D.V., Tamosaitis, J.,Uspenskaya, O.N., Yakushko, O.F. and Tarasova, I.V., 1994. Lake status records from the Former Soviet Union and Mongolia: Data Base Documentation, World Data Center -A for Paleoclimatology NOAA Paleoclimatology Program, Paleoclimatology Publications Series Report No 2, Boulder, Colorado USA, 274 p. 5. Tserensodnom, Zh., 1971. Mongol orny Nuur. Ulaanbaatar, TUAH, 202 p. 6. Vipper, P., Dorofeyuk, N., Liiva, A., Meteltseva, E., and Sokolovskaya, V., 1981. Palaeogeography of the Central Mongolia during the upper Pleistocene and Holocene. Izv. Akad. Nauk ESSR, Ser. Biol., vol. 30, no. 1, pp. 74-82.

  10. Relations between rainfall–runoff-induced erosion and aeolian deposition at archaeological sites in a semi-arid dam-controlled river corridor

    USGS Publications Warehouse

    Collins, Brian; Bedford, David; Corbett, Skye; Fairley, Helen; Cronkite-Ratcliff, Collin

    2016-01-01

    Process dynamics in fluvial-based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam-building affect fluvial processes, the complexity in local response can be further increased by flood- and sediment-limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi-temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446-km-long semi-arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam-controlled fluvial sand bar deposition, aeolian sand transport, and rainfall-induced erosion. Empirical rainfall-erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration-excess overland flow and gullying govern large-scale (centimeter- to decimeter-scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic-driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four-minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short

  11. Atlantic Meridional Overturning Circulation during Heinrich-Stadial 1 & 2 as seen by 231Pa/230Th

    NASA Astrophysics Data System (ADS)

    Antz, B.; Lippold, J. A.; Schulz, H.; Frank, N.; Mangini, A.

    2014-12-01

    Assessing the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) is a major challenge for paleoclimatology, because its strength and structure is a crucial element of the global heat- and carbon distribution towards the deep ocean. Here the focus is set on how excessive freshwater input through abrupt melting of continental ice sheets can affect its overturning vigour. Such forcing can be tested by investigating its behaviour during extreme iceberg discharge events into the open North Atlantic during the last glacial period, so called Heinrich-Events [Heinrich 1988; Hemming 2004]. The sedimentary activity ratio 231Pa/230Th has been increasingly used as a kinematic circulation proxy in the Atlantic Ocean over the past decade [Gherardi et al. 2009; McManus et al. 2004; Lippold et al. 2012]. Here we present 231Pa/230Th ratios from several Atlantic sediment cores across Heinrich Events 1 (~17 ka BP) and 2 (~24 ka BP). The comparison of the profiles demonstrates the potential pitfalls when interpreating a single 231Pa/230Th profile. E. g. core IODP 1313 (Mid Atlantic Ridge, 3412 m water depth) shows 231Pa/230Th between 0.04 and 0.06, which would indicate a vigorous circulation over the entire time period. On the other hand core GeoB 16202-2 (Brasilan coastal area, 2248 m water depth) has a profile similar to the well known data set of [McManus et al. 2004] (i.e. during Heinrich Stadials values close to the production ratio of ~0.093, lower values at Holocene and LGM). Such divergency can be explained by 231Pa/230Th dependence on water depth, latitude, water mass and water mass age [Luo et al. 2010; Lippold et al. 2011], but also on changes in bioproductivity especially the flux of biogenic opal [Anderson et al. 1983A; Bradtmiller et al. 2007; Chase et al. 2002]. To avoid misleading interpretations, the here shown data set is accompanied by measurements of biogenic opal contents to appraise possible influences on the proxies. We observe large

  12. Modeling early Paleogene climate: From the top of the atmosphere to the bottom of the ocean

    NASA Astrophysics Data System (ADS)

    Huber, Matthew

    This dissertation addresses critical issues in early Paleogene paleoclimatology. This study's goal is to develop a more general and deeper understanding of climate by focusing on a time interval for which climate proxies and models have consistently disagreed. Climate proxies provide intriguing evidence of a ``greenhouse'' early Paleogene world: greenhouse gas (GHG) concentrations were higher than modern, midlatitude continental interiors were above freezing year-round, crocodiles lived at high latitudes, and vertical and meridional oceanic thermal gradients were small. The geologic record indicates that the climate system's response to increased GHG concentrations is to warm the poles and deep oceans and increase winter temperatures without raising tropical sea surface temperatures (SSTs), counter to every existing theory and model. Results from the uncoupled atmospheric general circulation model (GCM) experiments described in Part I demonstrate that (1)changes to land surface characteristics have important consequences at regional but not larger scales; (2)specification of warm polar SSTs implies approximately double modern ocean heat transport and does little to warm continental interiors during winter; (3)midlatitude continental interior temperatures are at least as sensitive-if not more-to changes in tropical SSTs as to extratropical SSTs; (4)testable predictions for past wind-driven ocean currents can be made from existing atmospheric GCM output. Results from Part II demonstrate that (1)a fully coupled GCM can be efficiently integrated to equilibrium for both a ``degraded'' modern case and an early Paleogene case; (2)the early Paleogene simulation produces temperature gradients very similar to modern, suggesting that it is unlikely that increased meridional heat transport caused early Paleogene small temperature gradients; (3)this simulation produces unrealistically cold continental interior temperatures, showing that a complete treatment of the ocean does

  13. Climcor: Paleoclimatic Coring: High Resolution and Innovations.Cnrs Gathers the Present Coring Equipment , and Coordinates the Different Efforts Provided By the Concerned Communities (ocean, ice and continent)

    NASA Astrophysics Data System (ADS)

    Calzas, M.; Rousseau, D. D.

    2014-12-01

    Global climate changes have been evidenced in various ways since the start of paleoclimatology in the 70s. The access to past atmosphere conditions in the air bubbles trapped in ice-cores gave an important impulse as it made the green-house gases concentrations accessible a prerequisite for climate modelers. Indeed since the publication of CO2 and CH4 variations over the last climate cycle in Vostok ice-cores, our knowledge of the past climate conditions has improved tremendously. However, improvements in technical equipment and approaches indicate that more is still to come inducing expected new findings in terms of mechanisms. The IMAGES program yielded very good quality and long marine cores that permitted to compare marine and ice-core records with high confidence. Moreover they permitted to improve the knowledge of past oceans dynamics, especially those linked to the massive discharges of icebergs in the oceans, impacting the Atlantic meridional overturning circulation. On the continent, various environments are drilled and cored to provide also comparable and reliable records of past climate: lakes, peatbogs, speleothems and loess. These records are complementary yielding important dataset to feed the earth system models necessary for a better understanding of past climate dynamics. Technical limitation of the present equipments does not allow such important jump in the quality of the data, and therefore in the knowledge of i, past climate variations at extremely high resolution and ii, of the behavior of the different domains as studied in IPCC experiments while societal requirements are more and more expressed by policy makers. C2FN initiative at CNRS gathers the present coring equipments located in labs or at the technical division of INSU, and coordinates the different efforts provided by the concerned communities (ocean, ice and continent). Valorization of the results obtained are published in high ranked scientific journals and presented in scientific

  14. Geochemically tracking provenance changes in marine sediment from the South Pacific Gyre throughout the Cenozoic

    NASA Astrophysics Data System (ADS)

    Dunlea, A. G.; Murray, R. W.; Sauvage, J.; Spivack, A. J.; Harris, R. N.; D'Hondt, S. L.

    2012-12-01

    The South Pacific Gyre (SPG), characterized by extremely slow sedimentation rates, is the world's largest oceanic desert. The little eolian dust from continents in the Southern Hemisphere must traverse great distances to reach the SPG, and the ultra-oligotrophic waters minimize the biogenic flux of sediment to the seafloor. However sparse, the pelagic sediment that is ultimately found on the seafloor retains a chemical record that can be used to trace its origin. Using cores from Integrated Ocean Drilling Program Expedition 329, we trace downcore fluctuations in major, trace, and rare earth element (REE) composition and flux to yield clues to the geological, chemical, and biological evolution of the SPG throughout the Cenozoic. The shipboard scientific party generally described the completely oxic, brown pelagic clays recovered during Exp. 329 as zeolitic metalliferous clay. The homogenous, very fine-grained nature of these sediments speaks to the challenges we face in resolving eolian detrital material ("dust"), fine-grained ash (commonly altered), and authigenic aluminosilicates from one another. Based on ICP-ES and ICP-MS analyses followed by multivariate statistical treatments, we are developing chemical records from a number of sites located throughout the SPG. Building on earlier work at DSDP Site 596 (Zhou and Kyte, 1992, Paleocean., 7, 441-465), and based on backtrack paths from 100 Ma forward, we are working to construct a regionally and temporally continuous paleoclimatological history of the SPG. Preliminary La-Th-Sc concentrations from Sites U1367, U1368, and U1369 show a distinct authigenic influence, but several refractory elements retain their original provenance signature. Sediment ages are constrained using a constant-Co model, based on the geochemically similar work that Zhou and Kyte (1992) performed in the SPG. REE concentrations normalized to post-archean average shale (PAAS) reveal a negative Ce anomaly that becomes more pronounced closer to

  15. A Demographic Analysis of American Geophysical Union Membership with Implications for Change

    NASA Astrophysics Data System (ADS)

    Rhodes, D. D.

    2006-12-01

    Demographers use population pyramids to characterize the age/gender structure of societal groups. Diagrams of the population of age cohorts for both sexes assume the shape of a pyramid in rapidly expanding groups, having many more young people than older adults. Stable populations have similar numbers of people in age cohorts from infants through middle-age adults. Shrinking populations have fewer children and relatively larger numbers of adults. Demographic analysis of the American Geophysical Union's (AGU) membership reveals significant differences among the numerous specialties and the membership as a whole. The population structure diagram of the total AGU membership is highly asymmetrical with 77.5% male and 22.5% female. Males outnumber females in every age cohort. This is most noticeable among members born prior to 1945. Males belonging to these cohorts make up 16.5% of the total membership, while female members of equivalent age include 0.8% of the total. The largest membership cohort (29% of the total) is comprised of males born between 1950 and 1964, a group that includes both the "baby boom" generation and post-war petroleum exploration expansion. In contrast, the female cohort with birth years from 1970 to 1979 is the largest grouping of women members (8.4% of AGU's membership). Furthermore, women comprise 36% of the members born since 1965, and only 14.5% of those born before 1965. Considered separately, the female membership's age structure is characteristic of a growing population, while the male side is in relative decline. The population structure of the entire membership is mirrored in some specialties, but there are remarkable differences in others. The largest specialty group (hydrology) includes 16.9% of the total AGU membership and has a population structure that differs little from that of the whole organization. Four specialties, Atmospheric Chemistry, Biogeosciences, and Paleoceanography and Paleoclimatology, and Marine Geochemistry differ

  16. Simultaneous analysis of 17O/16O, 18O/16O and 2H/1H of gypsum hydration water by cavity ring‐down laser spectroscopy

    PubMed Central

    Mather, Ian; Rolfe, James; Evans, Nicholas P.; Herwartz, Daniel; Staubwasser, Michael; Hodell, David A.

    2015-01-01

    demonstrate that precise and simultaneous isotopic measurements of δ17O, δ18O and δ2H values, and the derived deuterium‐excess and 17O‐excess, can be obtained from GHW and brines using a new extraction apparatus and subsequent measurement by CRDS. This method provides new opportunities for the application of water isotope tracers in hydrologic and paleoclimatologic research. © 2015 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:26443399

  17. Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data

    PubMed Central

    2010-01-01

    paleoclimatological and hydrogeological history of Mediterranean region. We propose different colonization models of Mediterranean region during the early Oligocene. Later vicariance events promoted Leuciscinae diversification during Oligocene and Miocene periods. Our data corroborate the presence of leuciscins in North Africa before the Messinian salinity crisis. Indeed, Messinian period appears as a stage of gradually Leuciscinae diversification. The rise of humidity at the beginning of the Pliocene promoted the colonization and posterior isolation of newly established freshwater populations. Finally, Pleistocene glaciations determined the current European distribution of some leuciscine species. PMID:20807419

  18. Habitability and Multistability in Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Lucarini, V.; Pascale, S.; Boschi, R.; Kirk, E.; Iro, N.

    2013-06-01

    In this paper we explore the potential multistability of the climate for a planet around the habitable zone. We focus on conditions reminiscent to those of the Earth system, but our investigation has more general relevance and aims at presenting a general methodology for dealing with exoplanets. We describe a formalism able to provide a thorough analysis of the non-equilibrium thermodynamical properties of the climate system and explore, using a flexible climate model, how such properties depend on the energy input of the parent star, on the infrared atmospheric opacity, and on the rotation rate of the planet. We first show that it is possible to reproduce the multi-stability properties reminiscent of the paleoclimatologically relevant snowball (SB)-warm (W) conditions. We then characterise the thermodynamics of the simulated W and SB states, clarifying the central role of the hydrological cycle in shaping the irreversibility and the efficiency of the W states, and emphasizing the extreme diversity of the SB states, where dry conditions are realized. Thermodynamics provides the clue for studying the tipping points of the system and leads us to constructing empirical parametrizations allowing for expressing the main thermodynamic properties as functions of the emission temperature of the planet only. Such empirical functions are shown to be rather robust with respect to changing the rotation rate of the planet from the current terrestrial one to half of it. Furthermore, we explore the dynamical range where the length of the day and the length of the year are comparable. We clearly find that there is a critical rotation rate below which the multi-stability properties are lost, and the ice-albedo feedback responsible for the presence of SB and W conditions is damped. The bifurcation graph of the system suggests the presence of a phase transition in the planetary system. Such critical rotation rate corresponds roughly to the phase-lock 2:1 condition. Therefore, if an

  19. Spatial distribution of allochthonous fine-grained sediments from drilling activities in the deepwater Ulleung Basin, Korea

    NASA Astrophysics Data System (ADS)

    Chun, Jong-Hwa; Um, In-Kwon; Bahk, Jang-Jun; Kim, Yuri; Ryu, Byong-Jae

    2015-04-01

    The marine sediments in deepwater basins can be used as sedimentologic, stratigraphic, paleoceanographic, and paleoclimatologic tools to interpret the various scientific topics in the world. As a result, many drilling and coring activities were performed by international ocean drilling programs in deepwater basins during the last 50 years. In the deepwater Ulleung Basin, the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) was conducted to perform the gas hydrate R&D in 2010. During the UBGH2, drilling and coring activities were successfully accomplished in 13 sites ranging from 898 m to 2,156 m water depth. The three major sediment facies in the Ulleung Basin are composed of light-colored bioturbated hemipelagic muds under a highly oxygenated bottom-water conditions, dark-colored crudely laminated muds under a poorly oxygenated bottom-water conditions, and laminated/massive sand with turbidites. The present seafloor sediments commonly consist of 1-2 thick light-colored bioturbated hemipelagic muds in the deepwater Ulleung Basin. We observed the UBGH2 drilling holes using by Ultra-short Baseline (USBL)-guided KIGAM Seafloor Observation System (KISOS) in 2013. The UBGH2 drilling holes were found on the seafloor with partially collapse of the margin. We also found the multi-colored sediment patches on the seafloor due to allochthonous sediment input. We analyzed the elements using a non-destructive Itrax X-ray fluorescence (XRF) core scanner for split core. The sediment patches have relatively low concentrations of Fe, Ba, Mn and Pb compared to the element concentrations of the present seafloor sediments. The concentrations of K, Ca, and Ti are higher than the present seafloor sediments. The patch sediments are observed no more than 50 m away from the UBGH2 drilling holes. The allochthonous sediments occur at depth of about 6 cm below seafloor in the observed drilling holes. The origin of allochthonous sediments on the seafloor is interpreted as drilling

  20. Dartmouth College Earth Sciences Mobile Field Program

    NASA Astrophysics Data System (ADS)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    spend several weeks conducting traditional multiday mapping of complexly-deformed sedimentary, metamorphic and igneous rocks, and also collect and interpret geobiological, geochemical, geophysical, paleoclimatological, paleontological, and remote-sensing data outside the context of traditional mapping. During the Mono Lake segment, for example, students examine the interaction of ecology and chemistry in alkaline lakes. During the Canadian Rockies segment, students reconstruct Holocene paleoclimate using tree stumps and fossil wood detritus marking former positions of an alpine glacier. While a mobile, wide-ranging field program requires complicated logistics and potentially high per-student costs, the diversity of research topics, geological environments, and field techniques have made it a successful cornerstone of the Dartmouth Earth Sciences major. After the Stretch experience, significant fractions of our students become involved in ongoing faculty research, pursue senior theses, and go on to pursue Earth Sciences graduate degrees.

  1. Graduate training in Earth science across borders and disciplines: ArcTrain -"Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic"

    NASA Astrophysics Data System (ADS)

    Stein, Rüdiger; Kucera, Michal; Walter, Maren; de Vernal, Anne

    2015-04-01

    Due to a complex set of feedback processes collectively known as "polar amplification", the Arctic realm is expected to experience a greater-than-average response to global climate forcing. The cascades of feedback processes that connect the Arctic cryosphere, ocean and atmosphere remain incompletely constrained by observations and theory and are difficult to simulate in climate models. Our capacity to predict the future of the region and assess the impacts of Arctic change processes on global and regional environments hinges on the availability of interdisciplinary experts with strong international experience and understanding of the science/society interface. This is the basis of the International Research Training Group "Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic - ArcTrain", which was initiated in 2013. ArcTrain aims to educate PhD students in an interdisciplinary environment that combines paleoclimatology, physical oceanography, remote sensing and glaciology with comprehensive Earth system modelling, including sea-ice and ice-sheet components. The qualification program for the PhD students includes joint supervision, mandatory research residences at partner institutions, field courses on land and on sea (Floating University), annual meetings and training workshops and a challenging structured training in expert skills and transferrable skills. Its aim is to enhance the career prospects and employability of the graduates in a challenging international job market across academic and applied sectors. ArcTrain is a collaborative project at the University of Bremen and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven. The German part of the project is designed to continue for nine years and educate three cohorts of twelve PhD students each. The Canadian partners comprise a consortium of eight universities led by the GEOTOP cluster at the Université du Québec à Montréal and including

  2. Refining Climatic Interpretations of Lower Forest Border Bristlecone Pine Tree-Ring Chronologies Over Recent Millennia

    NASA Astrophysics Data System (ADS)

    Larson, E. R.; Wilding, T.; Salzer, M. W.

    2012-12-01

    High-resolution paleoclimatology has been enhanced by the development of many proxy records of past climate variability derived from annually-resolved tree-ring widths. Bristlecone pine (Pinus longaeva) from western North America provides a unique and particularly useful proxy record that is both annually resolved and can extend for millennia. One challenge in interpreting bristlecone pine ring-width records is that ring growth can be influenced by both precipitation and temperature; we show that data from a separate species of pine improves understanding of these growth factors. The Methuselah Walk chronology (MWK) from the White Mountains of southern California provides a continuous, annually-resolved time series that has been used to estimate variability in precipitation over the past 8000 years (Hughes and Graumlich 1996). The reconstruction fails to capture five of the ten driest years during the calibration period of 1930-1980, however, possibly due to the shifting influence of temperature on factors such as snow pack retention that affect tree growth and that are important at this relatively high-elevation lower-forest border (~2800 m). The MWK reconstruction thus likely overestimates moisture availability over the reconstruction period. To improve interpretation of the MWK chronology we developed a tree-ring chronology from piñon pine trees (Pinus monophylla) growing in the same mountain range but approximately 400 m below MWK and therefore less likely to be influenced by temperature variability. The piñon living tree chronology (GVP) spans over five centuries, and cross sections collected from remnants predate AD 900, indicating the potential for developing a millennial-scale piñon chronology for use in conjunction with MWK. Tree growth at GVP was positively correlated with spring and summer precipitation, negatively correlated with summer temperatures over the instrumental record, and tracked precipitation during three of five drought years missed by

  3. The CREp program, a fully parameterizable program to compute exposure ages (3He, 10Be)

    NASA Astrophysics Data System (ADS)

    Martin, L.; Blard, P. H.; Lave, J.; Delunel, R.; Balco, G.

    2015-12-01

    Over the last decades, cosmogenic exposure dating permitted major advances in Earth surface sciences, and particularly in paleoclimatology. Yet, exposure age calculation is a dense procedure. It requires numerous choices of parameterization and the use of an appropriate production rate. Nowadays, Earth surface scientists may either calculate exposure ages on their own or use the available programs. However, these programs do not offer the possibility to include all the most recent advances in Cosmic Ray Exposure (CRE) dating. Notably, they do not propose the most recent production rate datasets and they only offer few possibilities to test the impact of the atmosphere model and the geomagnetic model on the computed ages. We present the CREp program, a Matlab © code that computes CRE ages for 3He and 10Be over the last 2 million years. The CREp program includes the scaling models of Lal-Stone in the "Lal modified" version (Balco et al., 2008; Lal, 1991; Stone, 2000) and the LSD model (Lifton et al., 2014). For any of these models, CREP allows choosing between the ERA-40 atmosphere model (Uppala et al., 2005) and the standard atmosphere (National Oceanic and Atmospheric Administration, 1976). Regarding the geomagnetic database, users can opt for one of the three proposed datasets: Muscheler et al. 2005, GLOPIS-75 (Laj et al. 2004) and the geomagnetic framework proposed in the LSD model (Lifton et al., 2014). They may also import their own geomagnetic database. Importantly, the reference production rate can be chosen among a large variety of possibilities. We made an effort to propose a wide and homogenous calibration database in order to promote the use of local calibration rates: CREp includes all the calibration data published until July 2015 and will be able to access an updated online database including all the newly published production rates. This is crucial for improving the ages accuracy. Users may also choose a global production rate or use their own data

  4. Paleoclimate of the Southern San Joaquin Valley, CA: Research Participation Opportunities for Improving Minority Participation and Achievement in the Geosciences

    NASA Astrophysics Data System (ADS)

    Baron, D.; Negrini, R.; Palacios-Fest, M. R.

    2004-12-01

    Numerous studies have shown that one of the best ways to draw students into geoscience programs is to expose them and their teachers to research projects designed to investigate issues relevant to their lives and communities. To be most effective, involvement in these projects should begin at the pre-college level and continue throughout their college career. Recognizing the importance of genuine research experiences, the Department of Geology at California State University, Bakersfield (CSUB), with support from the National Science Foundation's Opportunities for Enhancing Diversity in the Geosciences program, provides research participation opportunities for teachers and students from the Bakersfield City School District and the Kern High School District. Both districts have a high percentage of low-income and minority students that normally would not consider a degree or career in the geosciences. The project centers around a four-week summer research program and follow-up activities during the school year. The research investigates the climate history of the southern San Joaquin Valley as well as the frequency of flooding in the valley. Many teachers and students are familiar with periodic flooding from personal experience and are aware of the larger issue of climate change in the past and present from news reports. Thus, they can directly relate to the relevance of the research. The project draws on the faculty's expertise in paleoclimatology and geochemistry and takes advantage of CSUB's existing research facilities. Sediments in the dry lake basins of Buena Vista Lake and Kern Lake preserve a record of the regional climate history and flooding of the Kern River and its tributaries. In the first year of the project, 6 teachers and 10 high school students worked with CSUB faculty and students. Three cores from the lake basins were collected. The cores were analyzed using established geophysical, geochemical, lithological, and micropaleontological techniques

  5. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary, Long-term Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Schlosser, P.; Loring, A. J.; Warnick, W. K.; Committee, S. S.

    2008-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the arctic system. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities and economic activities. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and the Observing, Understanding, and Responding to Change panels, scientists with a variety of expertise--atmosphere, ocean and sea ice, hydrology and cryosphere, terrestrial ecosystems, human dimensions, and paleoclimatology--work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through National Science Foundation's (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU- sponsored Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF's Arctic System Synthesis (ARCSS) Program. The Responding to Change element is driven by stakeholder research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is also working to expand international connections in an effort to better understand the global arctic system. SEARCH is sponsored by eight (8) U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian

  6. Did tropical rainforest vegetation exist during the Late Cretaceous? New data from the late Campanian to early Maastrichtian Olmos Formation, Coahuila, Mexico.

    NASA Astrophysics Data System (ADS)

    Upchurch, G. R.; Estrada-Ruiz, E.; Cevallos-Ferriz, S. S.

    2008-12-01

    A major problem in paleobotany and paleoclimatology is the origin of modern tropical and paratropical rainforests. Studies of leaf macrofossils, beginning with those of Wolfe and Upchurch, have suggested that tropical and paratropical (i.e., megathermal) rainforests with dominant angiosperms are of Cenozoic origin, and that comparable vegetation was either absent or greatly restricted during the Late Cretaceous. Earth System modeling studies, in contrast, predict the existence of megathermal rainforest vegetation during the mid- and Late Cretaceous, though with less areal extent than during the Late Cenozoic and Recent. Megathermal climate with year-round precipitation is simulated along the paleoequator and along the northern margin of the Tethys Ocean, and tends to occur in highly focused regions, in contrast to the more latitudinally zoned pattern of the Recent. Low-resolution climatic indicators, such as the distribution of coals and tree fern spores, are consistent with evidence from climate modeling for megathermal wet climates during the Late Cretaceous, and by extension megathermal rainforest vegetation. However, corroborative data from plant macrofossil assemblages is needed, because the physiognomy of leaves and woods directly reflects plant adaptation to the environment and can estimate climate independently of the generic and familial affinities of the paleoflora. Newly collected plant macrofossil assemblages from the late Campian to early Maastrichtian Olmos Formation of Coahuila, Mexico, provide evidence for megathermal rainforest vegetation on the northern margin of the Tethys Ocean at approximately 35 degrees paleolatitude. The newly collected leaf flora is 72 percent entire- margined and has abundant palms, features typical of modern megathermal rainforests. Thirty percent of the species have large leaves, and 50 percent of the species have drip tips, features indicative of wet conditions. Simple and multiple regression functions based on the

  7. Episodic occurrence of high precipitation events in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Schlosser, E.; Powers, J. G.; Manning, K. W.; Duda, M. G.

    2009-04-01

    The precipitation regime of Dronning Maud Land (DML), Antarctica, was studied using Antarctic Mesoscale Prediction System (AMPS) archive data. Precipitation is the most important component of the mass balance of the Antarctic ice sheet. Precipitation studies of DML are particularly interesting because two deep ice core drilling sites, Kohnen Station and Dome Fuji, are located in this region. For the correct interpretation of the ice core properties a thorough understanding of the precipitation regime is necessary. The high-resolution AMPS archive data for the year 2001-2006 were used to study spatial and temporal distribution of precipitation. AMPS has been developed by the Mesoscale and Microscale Division of NCAR (National Center for Atmospheric Research) and the Polar Meteorology Group of Byrd Polar Research Center (BPRC) of The Ohio State University. For the investigated time period AMPS employed the Polar MM5, a version of the Fifth Generation Pennsylvania State University/NCAR Mesoscale Model optimized for use over ice sheets. Whereas diamond dust is the prevailing type of precipitation with regard to time, several episodically occurring, synoptically induced precipitation events per year can bring unusually high amounts of precipitation and thus a large part of the total annual accumulation. This can cause a strong bias in the ice core data. Additionally, increased temperature and wind speeds during these events need to be taken into account for a correct climatic interpretation of ice cores. A better understanding of the frequency and cause of occurence of such intermittent precipitation in the interior of Antarctica in past and future climates is necessary for both paleoclimatological studies and estimates of future sea level change. We investigated the synoptic situtation for 49 „high precipitation events" that occurred during the time period 2001-2006 at Kohnen Station. The majority of the events was caused by an amplifying of Rossby waves with a

  8. Differential Responses of Neotropical Mountain Forests to Climate Change during the Last Millenium

    NASA Astrophysics Data System (ADS)

    Figueroa-Rangel, B. L.; Olvera Vargas, M.

    2013-05-01

    The long-term perspective in the conservation of mountain ecosystems using palaeoecological and paleoclimatological techniques are providing with crucial information for the understanding of the temporal range and variability of ecological pattern and processes. This perception is contributing with means to anticipate future conditions of these ecosystems, especially their response to climate change. Neotropical mountain forests, created by a particular geological and climatic history in the Americas, represent one of the most distinctive ecosystems in the tropics which are constantly subject to disturbances included climate change. Mexico due to its geographical location between the convergence of temperate and tropical elements, its diverse physiography and climatic heterogeneity, contains neotropical ecosystems with high biodiversity and endemicity whose structure and taxonomical composition have changed along centurial to millennial scales. Different neotropical forests expand along the mountain chains of Mexico with particular responses along spatial and temporal scales. Therefore in order to capture these scales at fine resolution, sedimentary sequences from forest hollows were retrieved from three forest at different altitudes within 10 km; Pine forest (PF), Transitional forest (TF) and Cloud forest (CF). Ordination techniques were used to relate changes in vegetation with the environment every ~60 years. The three forests experience the effect of the dry stage ~AD 800-1200 related to the Medieval Warm Period reported for several regions of the world. CF contracted, PF expanded while the TF evolved from CF to a community dominated by dry-resistant epiphytes. Dry periods in PF and TF overlapped with the increase in fire occurrences while a dissimilar pattern took place in CF. Maize, Asteraceae and Poaceae were higher during dry intervals while epiphytes decreased. A humid period ~1200-1450 AD was associated with an expansion and a high taxa turnover in CF

  9. Magmatic He-3 in Ferrar Dolerite: Implications for Cosmogenic He-3 Surface Exposure Dating in the Dry Valleys of East Antarctica

    NASA Astrophysics Data System (ADS)

    Phillips, W. M.; Landis, G. P.; Marchant, D. R.; Lewis, A. R.; Mills-Herring, L. M.; Margerison, H. R.

    2001-12-01

    Sills of Jurassic Ferrar Dolerite are common in the Transantarctic Mountains. Cosmogenic He-3 surface exposure dating of glacial deposits using Ferrar clinopyroxene has become an important tool in Antarctic paleoclimatology. Here we report preliminary evidence for magmatic helium in Ferrar clinopyroxene from the Mullins Valley rock glacier, Quartermain Mountains, East Antarctica (S. 77.88\\deg, E. 160.58\\deg). Magmatic helium has not previously been recognized in Ferrar clinopyroxene, and all He-3 released by sample fusion has been ascribed to cosmogenic production. However, our evidence indicates that a correction for non-cosmogenic He-3 is needed for at least some samples. The Mullins Valley rock glacier is fed by a small, cold-based alpine glacier. Rockfall onto the alpine glacier becomes concentrated by sublimation, creating a dolerite-rich debris cap. Glacial ice, which may contain ancient atmospheric records, is preserved beneath the debris. We sampled 13 surface dolerite boulders from the head to the terminus of the rock glacier. Magmatic helium was identified by crushing clinopyroxene grains under vacuum 3 samples, yielding gas from broken inclusions with He-3/He-4 ratios of 0.11 to 0.45 R/Ra. Fusion ratios for these samples are 0.24 to 1.77 R/Ra. The magmatic component was also quantified by replicate fusion analyses of aliquots from the same mineral separates. These yielded He-3 and He-4 concentrations that plot along linear mixing lines. Since cosmogenic He-3 is the same in these replicates, this behavior must be due to trapped contributions. Thus, He-3 concentrations seem controlled by both cosmogenic production and irregularly distributed gas-rich inclusions. Radiogenic He-4 is also present. Magmatic and radiogenic He creates large He-3 exposure age errors in some samples. For example, two samples near the head of the glacier had apparent ages of 280 ka and 400 ka. After correction, these exposure ages were reduced to about 9 ka and 20 ka. Corrected

  10. Application of the authigenic 10Be/9Be dating method to continental sediments: reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin.

    NASA Astrophysics Data System (ADS)

    Lebatard, Anne-Elisabeth; Bourlès, Didier L.; Arnold, Maurice; Duringer, Philippe; Schuster, Mathieu; Jolivet, Marc; Braucher, Régis; Taisso Mackaye, Hassan; Vignaud, Patrick; Brunet, Michel

    2010-05-01

    deposits from 1 to 8 Ma. The half-life of 10Be theoretically allowing dating up to 14 Ma, it may have fundamental implications on important field research such as paleoclimatology and, through the dating of fossiliferous deposits in paleontology and paleoanthropology. Similar studies conducted in different continental context may in addition provide valuable information on the influence of environmental parameters on the biogeochemical behavior of the beryllium isotopes. Acknowledgments: This research was supported by: Chad Minist. Enseign. Sup. et Rech. (N'Djamena Univ. & CNAR); French Minist. Aff. Etrang. (Ambassade de France N'Djamena ; DCSUR, Paris) & Minist. Educ. Natl. et Rech. (CNRS, ECLIPSE, ANR, Univ. of Poitiers); NSF/RHOI. MPFT members are thanked for their supports.

  11. Evidence for postglacial signatures in gravity gradients: A clue in lower mantle viscosity

    NASA Astrophysics Data System (ADS)

    Métivier, Laurent; Caron, Lambert; Greff-Lefftz, Marianne; Pajot-Métivier, Gwendoline; Fleitout, Luce; Rouby, Hélène

    2016-10-01

    The Earth's surface was depressed under the weight of ice during the last glaciations. Glacial Isostatic Adjustment (GIA) induces the slow recession of the trough that is left after deglaciation and is responsible for a contemporary uplift rate of more than 1 cm/yr around Hudson Bay. The present-day residual depression, an indicator of still-ongoing GIA, is difficult to identify in the observed topography, which is predominantly sensitive to crustal heterogeneities. According to the most widespread GIA models, which feature a viscosity of 2- 3 ×1021 Pa s on top of the lower mantle, the trough is approximately 100 m deep and cannot explain the observed gravity anomalies across North America. These large anomalies are therefore usually attributed to subcontinental density heterogeneities in the tectosphere or to slab downwelling in the deep mantle. Here, we use observed gravity gradients (GG) to show that the uncompensated GIA trough is four times larger than expected and that it is the main source of the North American static gravity signal. We search for the contribution to these GGs from mantle mass anomalies, which are deduced from seismic tomography and are mechanically coupled to the global mantle flow. This contribution is found to be small over Laurentia, and at least 82% of the GGs are caused by GIA. Such a contribution from GIA in these GG observations implies a viscosity that is greater than 1022 Pa s in the lower mantle. Our conclusions are a plea for GIA models with a highly viscous lower mantle, which confirm inferences from mantle dynamic models. Any change in GIA modelling has important paleoclimatological and environmental implications, encouraging scientists to re-evaluate the past ice history at a global scale. These implications, in turn, affect the contribution of bedrock uplift to the contemporaneous mass balance over Antarctica and Greenland and thus the present-day ice-melting rate as deduced from the GRACE space mission. Additionally

  12. Water-table decline in the south-central Great Basin during the Quaternary Period; implications for toxic-waste disposal

    USGS Publications Warehouse

    Winograd, I.J.; Szabo, B. J.

    1986-01-01

    The distribution of vein calcite, tufa, and other features indicative of paleo-groundwater discharge, indicates that during the early to middle Pleistocene, the water table at Ash Meadows, in the Amargosa Desert, Nevada, and at Furnace Creek Wash, in east-central Death Valley, California, was tens to hundreds of meters above the modern water table, and that groundwater discharge occurred up to 18 km up-the-hydraulic gradient from modern discharge areas. Uranium series dating of the calcitic veins permits calculation of rates of apparent water table decline; rates of 0.02 to 0.08 m/1000 yr are indicated for Ash meadows and 0.2 to 0.6 m/1000 yr for Furnace Creek Wash. The rates for Furnace Creek Wash closely match a published estimate of vertical crustal offset for this area, suggesting that tectonism is a major cause for the displacement observed. In general, displacements of the paleo-water table probably reflect a combination of: (a) tectonic uplift of vein calcite and tufa, unaccompanied by a change in water table altitude; (b) decline in water table altitude in response to tectonic depression of areas adjacent to dated veins and associated tufa; (c) decline in water table altitude in response to increasing aridity caused by major uplift of the Sierra Nevada and Transverse Ranges during the Quaternary; and (d) decline in water altitude in response to erosion triggered by increasing aridity and/or tectonism. A synthesis of geohydrologic, neotectonic, and paleoclimatologic information with the vein-calcite data permits the inference that the water table in the south-central Great Basin progressively lowered throughout the Quaternary. This inference is pertinent to an evaluation of the utility of thick (200-600 m) unsaturated zones of the region for isolating solidified radioactive wastes from the hydrosphere for hundreds of millenia. Wastes buried a few tens to perhaps 100 m above the modern water table--that is above possible water level rises due to future

  13. The PAGES 2k Global Multiproxy Database for Temperature Reconstructions of the Common Era

    NASA Astrophysics Data System (ADS)

    McKay, N.; Emile-Geay, J.

    2015-12-01

    In 2013 the PAGES 2k Consortium released a paleo-temperature database with more than 500 records from 7 continental-scale regions, along with continental-scale temperature reconstructions derived independent by expert groups for each region. A major motivation of this effort was to increase the amount of regional expertise involved in identifying and evaluating paleoclimate records for their use in temperature reconstructions. The project highlighted the value of engaging regionally-based expertise in paleoclimatology; however, the resulting database was somewhat disjoint, as each group assembled data independently with somewhat distinct goals and criteria, which hindered the use of the database to answer questions that span across multiple regions. Moreover, key data (e.g., native measurements, chronological uncertainties) and metadata (e.g., seasonality) were not included. Phase 2 of the PAGES 2k temperature database improves upon these shortcomings with a community-built flexible database that can be used to address major questions about the climate of the Common Era, and to refine the methodologies used to reconstruct it. As in phase 1, the database was built upon the expertise of dozens of paleclimatologists whose regional expertise spans the globe. Phase 2 of the temperature database includes about 800 temperature-sensitive timeseries, derived from ten archive types, including from the oceans. Here we present the characteristics and structure of the database, including a suite of diagnostics used to evaluate the fidelity of the temperature signal in the data. This includes their correlation with instrumental temperature data; however this assessment is not possible with all the records in the database, and we also recognize that such correlations are an imperfect metric of how strongly a timeseries reflects temperature throughout the Common Era. Consequently, we also explore other metrics, including how well each record corresponds with with nearby sites back

  14. Mid-Holocene climate transition in the Arctic: a database of multicentennial quality climate proxy data from 6 to 2 ka

    NASA Astrophysics Data System (ADS)

    Sundqvist, H. S.; Kaufman, D. S.; Balascio, N. L.

    2012-12-01

    A major goal of paleoclimatology is to reconstruct the spatial-temporal pattern of past climate changes. The spatial-temporal pattern of temperature variability reflects the dynamics of the climate system, including its response to known climate forcing mechanisms and thresholds that lead to rapid transitions. A large network of well-dated proxy climate records is needed to capture the details of past climate variability. We have embarked on major systematic compilation of previously published Holocene proxy climate records from the Arctic. The focus is on well-dated, highly resolved, continuous records that extend to at least 6 ka BP, thereby capturing the transition between the relatively warm conditions of the Holocene thermal maximum and the cooler Neoglaciation. We have identified 139 sites from north of 58° latitude where published proxy records are resolved at centennial scale (at least one value every 400 ± 200 years) and have timescales constrained by at least one radiometric age every 3000 years. We have assembled the metadata for the proxy records from all sites including information on their location, archive and proxy types, climate interpretation, quality of the record (sample resolution and geochronological control), and the data source. The database currently (August 2012) includes the numerical proxy records from most of the sites. We have also compiled the original geochronological data, with the future goal of revising the underlying age models and quantifying age uncertainties. The majority (73%) of the proxy records in the current metadatabase are from lake sediments, with the reminder from marine sediment (17%) and glacier ice (7%). Most of the paleo-temperature records (54%) are based on pollen spectra, and another 26% are based on chironomid assemblages. Many of the proxy records reflect changes in precipitation or hydrology (26%). A high proportion of the sites (35%) are from Fennoscandia, 22% are from the Canadian islands and Greenland

  15. Reconciling radiocarbon and ice core timescales over the Holocene - Cosmogenic radionuclides as synchronization tools

    NASA Astrophysics Data System (ADS)

    Muscheler, R.; Adolphi, F.; Mekhaldi, F.

    2015-12-01

    The atmospheric production rates of cosmogenic radionuclides, such as 14C and 10Be, vary globally due to external processes, namely the solar and geomagnetic modulation of the galactic cosmic ray flux as well as solar proton events. This signature is recorded in various archives such as ice cores (10Be) and tree-rings (14C). Hence, cosmogenic radionuclides offer a means to continuously assess timescale differences between two of the most widely used timescales in paleoclimatology - the radiocarbon and the ice core timescales. Short lived solar proton events additionally provide distinct marker horizons that allow synchronization of discrete horizons at annual precision. We will present a cosmogenic radionuclide based synchronization of the Greenland ice core timescale (GICC05, Svensson et al., 2008) and the radiocarbon timescale (IntCal13, Reimer et al., 2013) over the Holocene. This synchronization allows radiocarbon dated and ice core paleoclimate records to be compared on a common timescale at down to sub-decadal precision. We will compare these results to independent discrete isochrones obtained from tephrochronology and solar proton events. In addition, we will discuss implications for the accuracy and uncertainty estimates of GICC05 over the Holocene. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP, Radiocarbon, 55, 1869-1887, 10.2458/azu_js_rc.55.16947, 2013. Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin

  16. Development and sustainability of NSF-funded climate change education efforts: lessons learned and strategies used to develop the Reconstructing Earth's Climate History (REaCH) curriculum (Invited)

    NASA Astrophysics Data System (ADS)

    St John, K. K.; Jones, M. H.; Leckie, R. M.; Pound, K. S.; Krissek, L. A.

    2013-12-01

    develop detailed instructor guides to accompany each module. After careful consideration of dissemination options, we choose to publish the full suite of exercise modules as a commercially-available book, Reconstructing Earth's Climate History, while also providing open online access to a subset of modules. Its current use in undergraduate paleoclimatology courses, and the availability of select modules for use in other courses demonstrate that creative, hybrid options can be found for lasting dissemination, and thus sustainability. In achieving our goal of making science accessible, we believe we have followed a curriculum development process and sustainability path that can be used by others to meet needs in earth, ocean, and atmospheric science education. Next steps for REaCH include exploration of its use in blended learning classrooms, and at minority serving institutions.

  17. A New Method of Obtaining High-Resolution Paleoclimate Records from Speleothem Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Logan, A. J.; Horton, T. W.

    2010-12-01

    We present a new method for stable hydrogen and oxygen isotope analysis of ancient drip water trapped within cave speleothems. Our method improves on existing fluid inclusion isotopic analytical techniques in that it decreases the sample size by a factor of ten or more, dramatically improving the spatial and temporal precision of fluid inclusion-based paleoclimatology. Published thermal extraction methods require large samples (c. 150 mg) and temperatures high enough (c. 500-900°C) to cause calcite decomposition, which is also associated with isotopic fractionation of the trapped fluids. Extraction by crushing faces similar challenges, where the failure to extract all the trapped fluid can result in isotopic fractionation, and samples in excess of 500 mg are required. Our new method combines the strengths of these published thermal and crushing methods using continuous-flow isotope ratio analytical techniques. Our method combines relatively low-temperature (~250°C) thermal decrepitation with cryogenic trapping across a switching valve sample loop. In brief, ~20 mg carbonate samples are dried (75°C for >1 hour) and heated (250°C for >1 hour) in a quartz sample chamber under a continuously flowing stream of ultra-high purity helium. Heating of the sample chamber is achieved by use of a tube furnace. Fluids released during the heating step are trapped in a coiled stainless steel cold trap (~ -98°C) serving as the sample loop in a 6-way switching valve. Trapped fluids are subsequently injected into a high-temperature conversion elemental analyzer by switching the valve and rapidly thawing the trap. This approach yielded accurate and precise measurements of injected liquid water IAEA reference materials (GISP; SMOW2; SLAP2) for both hydrogen and oxygen isotopic compositions. Blanking tests performed on the extraction line demonstrate extremely low line-blank peak heights (<50mv). Our tests also demonstrate that complete recovery of liquid water is possible and that

  18. Calcareous sinter from ancient aqueducts as a source of data in paleoclimate, tectonics and hydrology

    NASA Astrophysics Data System (ADS)

    Surmelihindi, G.; Passchier, C. W.

    2010-12-01

    During the lifetime the Roman Empire (300BC-400AD), about 1200 major aqueducts were built to supply cities in the Mediterranean with drinking water. The ruins of many of these channels contain sinter (calcium carbonate), which was deposited at a rate of 0.5-5 mm/year over the life of the aqueduct, usually 50-200 but up to 1000 years. Calcareous sinter inside the ancient aqueduct channels can give important insight into paleoclimatology in the form of temperature and rainfall, reflect palaeohydrology of water, water chemistry, flow rate, bacterial activity and source area of the water. This type of data is important to build climate models and to understand earthquake and flood patterns in the Mediterranean, and can be a new, additional source of information besides speleothems, travertine and tufa deposits. In our study we focus on Mediterranean climate patterns, and selected four aqueduct sites from Southern Turkey, Greece and Italy. The calcareous sinter deposits may reflect annual or subannual lamination characterized by alternating light, dense, coarse-grained and dark, porous, microcrystalline layers which are thought to represent winter and summer conditions respectively. Moreover, abrupt changes in the sequence of lamination can be a signal of natural hazards such as earthquakes or flood events. Deposits from the aqueduct of Patara (Southern Turkey) show 40-50 laminae couples, which may be annual layers. δ18O and δ 13C stable isotope data indicate high cyclicity within the sinter samples from Patara during the Roman period. Higher δ18O values correspond with dark, porous layers and lower values with light, dense layers. Major geochemical analyses show similar seasonal changes. Electron microprobe study shows that within dark laminae, detrital Fe, Mg, K, Al and Si are enriched whereas the light layers have high Ca content. Trace element analyses by LA-ICP-MS also indicate higher Mg/Ca and Sr/Ca values in the dark layers, which can be interpreted in terms

  19. Climatic variation along strike in the Himalayas since Mid-Miocene

    NASA Astrophysics Data System (ADS)

    Vögeli, N.; Van Der Beek, P.; Najman, Y.; Huyghe, P.; Wynn, P.

    2015-12-01

    The young Himalayan orogen is the perfect laboratory to study the interactions between tectonics, erosion and climate. The major force driving the evolution of this mountain belt is the India-Asia convergence. Whilst the Himalayas has a major influence on global and regional climate, it is suggested that the monsoonal climate plays a major role in the erosion and relief pattern. Understanding the past variations in monsoonal strength along strike is crucial to understand the role of climate in the evolution of the mountain belt. The Neogene sedimentary foreland basin of the Himalaya contains a record of tectonics and paleoclimate since Miocene times, within the so called molassic Siwalik Group. Therefore several sedimentary sections within the foreland basin along strike in the Himalayan range have previously been dated and studied with respect to determining hinterland exhumation rates, provenance and paleoclimatology. Lateral variations in hinterland exhumation rates have been observed but climate change in the past, especially the strengthening of the Asian summer monsoon along strike of the range, is still debated. In order to track vegetation as a marker of monsoon intensity and seasonality, we analyzed δ13C on soil carbonate and associated δ13C on bulk organic carbon from previously dated Siwalik Group sedimentary sections in the West and the East of the Himalayan foreland basin. Sedimentary records span from 20-1 Myr in the West and 13-1 Myr in the East. The presence of soil carbonate in the West, but its absence in the East is a first indication of lateral climatic variation. δ13C on soil carbonate shows a shift from around -10 ‰ to -2 ‰ at 6 Ma in the West. This is confirmed by δ13C analyses on bulk organic carbon which shows a shift from around -23 ‰ to -19 ‰ at the same time. Such a shift in isotopic value is likely to be associated with a change in vegetation type from C3 to C4. By contrast δ13C on bulk organic carbon remains at around -23

  20. Fine-Scale Spatial Variability of Precipitation, Soil, and Plant Water Isotopes

    NASA Astrophysics Data System (ADS)

    Goldsmith, G. R.; Braun, S.; Romero, C.; Engbersen, N.; Gessler, A.; Siegwolf, R. T.; Schmid, L.

    2015-12-01

    Introduction: The measurement of stable isotope ratios of water has become fundamental in advancing our understanding of environmental patterns and processes, particularly with respect to understanding the movement of water within the soil-plant-atmosphere continuum. While considerable research has explored the temporal variation in stable isotope ratios of water in the environment, our understanding of the spatial variability of these isotopes remains poorly understood. Methods: We collected spatially explicit samples of throughfall and soil water (n=150 locations) from a 1 ha plot delineated in a mixed deciduous forest in the northern Alps of Switzerland. We complemented this with fully sunlit branch and leaf samples (n = 60 individuals) collected from Picea abies and Fagus sylvatica between 14:00 and 16:00 on the same day by means of a helicopter. Soil and plant waters were extracted using cryogenic vacuum distillation and all samples were analyzed for δ18O using an isotope ratio mass spectrometer. Results: The mean δ18O of throughfall (-3.3 ± 0.8‰) indicated some evaporative enrichment associated with passage through the canopy, but this did not significantly differ from the precipitation collected in nearby open sites (-4.05‰). However, soil was depleted (-7.0 ± 1.8‰) compared to throughfall and there was no significant relationship between the two, suggesting that the sampling for precipitation inputs did not capture all the sources (e.g. stream water, which was -11.5‰) contributing to soil water δ18O ratios. Evaporative enrichment of δ18O was higher in leaves of Fagus (14.8 ± 1.8‰) than in leaves of Picea (11.8 ± 1.7‰). Sampling within crowns of each species (n = 5 branches each from 5 individuals) indicated that variability in a single individual is similar to that among individuals. Discussion: Stable isotopes of water are frequently engaged for studies of ecohydrology, plant ecophysiology, and paleoclimatology. Our results help

  1. Timing of maximum glacial extent and deglaciation from HualcaHualca volcano (southern Peru), obtained with cosmogenic 36Cl.

    NASA Astrophysics Data System (ADS)

    Alcalá, Jesus; Palacios, David; Vazquez, Lorenzo; Juan Zamorano, Jose

    2015-04-01

    Andean glacial deposits are key records of climate fluctuations in the southern hemisphere. During the last decades, in situ cosmogenic nuclides have provided fresh and significant dates to determine past glacier behavior in this region. But still there are many important discrepancies such as the impact of Last Glacial Maximum or the influence of Late Glacial climatic events on glacial mass balances. Furthermore, glacial chronologies from many sites are still missing, such as HualcaHualca (15° 43' S; 71° 52' W; 6,025 masl), a high volcano of the Peruvian Andes located 70 km northwest of Arequipa. The goal of this study is to establish the age of the Maximum Glacier Extent (MGE) and deglaciation at HualcaHualca volcano. To achieve this objetive, we focused in four valleys (Huayuray, Pujro Huayjo, Mollebaya and Mucurca) characterized by a well-preserved sequence of moraines and roches moutonnées. The method is based on geomorphological analysis supported by cosmogenic 36Cl surface exposure dating. 36Cl ages have been estimated with the CHLOE calculator and were compared with other central Andean glacial chronologies as well as paleoclimatological proxies. In Huayuray valley, exposure ages indicates that MGE occurred ~ 18 - 16 ka. Later, the ice mass gradually retreated but this process was interrupted by at least two readvances; the last one has been dated at ~ 12 ka. In the other hand, 36Cl result reflects a MGE age of ~ 13 ka in Mollebaya valley. Also, two samples obtained in Pujro-Huayjo and Mucurca valleys associated with MGE have an exposure age of 10-9 ka, but likely are moraine boulders affected by exhumation or erosion processes. Deglaciation in HualcaHualca volcano began abruptly ~ 11.5 ka ago according to a 36Cl age from a polished and striated bedrock in Pujro Huayjo valley, presumably as a result of reduced precipitation as well as a global increase of temperatures. The glacier evolution at HualcaHualca volcano presents a high correlation with

  2. Late Quaternary and future biome simulations for Alaska and Eastern Russia

    NASA Astrophysics Data System (ADS)

    Hendricks, Amy S.

    Arctic biomes across a region including Alaska and Eastern Russia were investigated using the BIOME4 biogeochemical and biogeography vegetation model. This study investigated past (the last 21,000 years), present, and future vegetation distributions in the study area, using climate forcing from five CMIP5 models (CCSM4, GISS-E2-R, MIROC-ESM, MPI-ESM, and MRI-CGCM3). The present-day BIOME4 simulations were generally consistent with current vegetation observations in the study region characterized by evergreen and deciduous taiga and shrub tundras. Paleoclimatological simulations were compared with pollen data samples collected in the study region. Pre-industrial biome simulations are generally similar to the modern reconstruction but differ by having more shrub tundra in both Russia and Alaska to the north, as well as less deciduous taiga in Alaska. Pre-industrial simulations were in good agreement with the pollen data. Mid-Holocene simulations place shrub tundras along the Arctic coast, and in some cases along the eastern coast of Russia. Simulations for the Mid-Holocene are in good agreement with pollen-based distributions of biomes. Simulations for the Last Glacial Maximum (LGM) show that the Bering Land Bridge was covered almost entirely by cushion forb, lichen and moss tundra, shrub tundra, and graminoid tundra. Three out of the five models' climate data produce evergreen and deciduous taiga in what is now southwestern Alaska, however the pollen data does not support this. The distributions of cushion forb, lichen, and moss tundra and graminoid tundra differ noticeably between models, while shrub tundra distributions are generally similar. Future simulations of BIOME4 based on the RCP8.5 climate scenario indicate a northward shift of the treeline and a significant areal decrease of shrub tundra and graminoid tundra regions in the 21st century. Intrusions of cool mixed, deciduous, and conifer forests above 60°N, especially in southwest Alaska, were notable

  3. Petroleum Geoscience Program at University of Oklahoma: 25 Years of Change

    NASA Astrophysics Data System (ADS)

    Slatt, R. M.; Clopine, W. W.

    2003-12-01

    The School of Geology and Geophysics at the University of Oklahoma has a long history and tradition of petroleum geoscience education and research. The 1980's and early 1990's downturn in the petroleum industry resulted in significantly fewer students seeking petroleum industry education and careers. Like many U.S. earth science departments, the School looked to geochemistry and hard rock geology to help fill the void. While this new emphasis complimented previous strengths by providing a solid foundation for earth science students, there were unintended consequences. Limited departmental resources caused a rift between traditional and new directions. Many incoming students found course work and faculty research interests differed from those in published recruiting materials. The relative merits of industry support vs academic research grants became an issue in employment decisions. Industry recruiters no longer felt they were working in partnership with the School. Many companies stopped recruiting at Oklahoma, alienating students and past/future alumni. In the mid- to late-1990's the leadership and faculty of the School found a more constructive balance, with strong support from a committed base of alumni. Two senior academic Chairs were filled by faculty with applied research interests and industry experience. In 2000, a third faculty member with a similar background became Director of the School. These additions provided a significant boost to the existing petroleum geoscience program. Other faculty hires provided new basic research directions such as paleoclimatology. These improvements have strengthened both industry and alumni support for the School, and have revived the image of a petroleum emphasis. There is now a very strong list of petroleum-oriented course offerings, improved interaction with the university's petroleum engineering school, company recruiters have returned in force, and alumni support has improved dramatically. At a time of decreasing

  4. NASA Partnership with JSU and MSU to Promote Remote Sensing Applications and Global Climate Change Education: 2013 Summer Course/Workshop

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.

    2014-12-01

    NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in the fields relevant to earth system science global climate change, marine and environmental sciences. A two week summer course/workshop was held during May 20-31, 2013 at JSU, focusing on historical and technical concepts of remote sensing technology and applications to climate and global climate change. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science and climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Some of the activities of the sessions will be presented. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high

  5. Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.

    2015-12-01

    NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school

  6. Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed

    PubMed Central

    2013-01-01

    Background Humans and insect herbivores are competing for the same food crops and have been for thousands of years. Despite considerable advances in crop pest management, losses due to insects remain considerable. The global homogenisation of agriculture has supported the range expansion of numerous insect pests and has been driven in part by human-assisted dispersal supported through rapid global trade and low-cost air passenger transport. One of these pests, is the whitefly, Bemisia tabaci, a cryptic species complex that contains some of the world’s most damaging pests of agriculture. The complex shows considerable genetic diversity and strong phylogeographic relationships. One consequence of the considerable impact that members of the B. tabaci complex have on agriculture, is the view that human activity, particularly in relation to agricultural practices, such as use of insecticides, has driven the diversification found within the species complex. This has been particularly so in the case of two members of the complex, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), which have become globally distributed invasive species. An alternative hypothesis is that diversification is due to paleogeographic and paleoclimatological changes. Results The idea that human activity is driving speciation within the B. tabaci complex has never been tested, but the increased interest in fossil whiteflies and the growth in molecular data have enabled us to apply a relaxed molecular clock and so estimate divergence dates for the major lineages within the B. tabaci species complex. The divergence estimates do not support the view that human activity has been a major driver of diversification. Conclusions Our analysis suggests that the major lineages within the complex arose approximately 60–30 mya and the highly invasive MED and MEAM1 split from the rest of the species complex around 12 mya well before the evolution of Homo sapiens and agriculture. Furthermore, the

  7. Why detail is important: Building a data system for deep-time paleoclimate research

    NASA Astrophysics Data System (ADS)

    Davydov, V. I.; Snyder, W. S.

    2006-12-01

    , magnetostratigraphy, and biostratigraphy (biozonation). One data system can't do it all, which is why we are working with SedDB (www.SedDB.org) on parts of the system. It is envisioned that this will be a web-based geoinformatics system comprised of linked databases and data systems (e.g., www.SedDB.org, www.Stratigraphy.net, www.pbdb.org, and others). We emphasize that this chronostratigraphic framework is not only about geochronologic data or even biozonation. Neither the time scale nor the rock record can be "calibrated" unless the ages provided by radiometric and other chronometric methods are accurately registered within the complete geologic context of the stratigraphic succession from which those data are derived. This requires detailed measured sections or described drill core, where each stratigraphic succession should be characterized by a broad array of data types. Since many sections do not encompass a long stratigraphic range, it will be critical to correlate these to longer reference sections and both marine and terrestrial data are equally important. Key to all of this will be data reproducibility, data attribution (metadata), detailed, precise, and accurately described sections, and well located samples. Finally, so the community can assess these data, access to all of the data must be universal and easy. Tools for correlation and assessment must be provided. Once built, such a system will provide significant impetus for future research on a variety of issues such as: extinction and radiation processes, global correlation, paleogeography, paleoclimatology, space-time pattern of the assembly and break-up of the supercontinents, and numerous other issues of regional and global interest.

  8. An Infrared Stimulated Luminescence (IRSL) Procedure for Estimating the Transport Rate of Potassium-Feldspar Grains in a Fluvial Setting

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Rhodes, E. J.

    2013-12-01

    -Marquardt). The fitted bleaching parameters were used in addition to the single aliquot regenerative-dose (SAR) protocol growth curves to build a model of bleach and growth of IRSL during transport, deposition, and burial. While this model does not provide a unique solution for the sediment transport rate, it can be used to assess the likelihood of a range of transport rates. References: Buylaert, J.P., A.S. Murray, K.J. Johnson, and M. Jain. 'Testing the potential of an elevated temperature IRSL signal from K-feldspar.' Radiation Measurements. 44 (2009), 560-565. Critelli, Salvatore, Emilia le Pera and Raymond V. Ingersoll. 'The effects of source lithology, transport, deposition and sampling scale on the composition of southern California sand.' Sedimentology, 44 (1997), 653-671. Enzel, Y. and S.G. Wells. 'Extracting Holocene Paleohyrology and Paleoclimatology from modern extreme flood events: an example from Southern California.' Geomorphology. 19 (1997), 203-226

  9. Assessing Climate Misconceptions of Middle School Learners and Teachers

    NASA Astrophysics Data System (ADS)

    Sahagian, D. L.; Anastasio, D. J.; Bodzin, A.; Cirucci, L.; Bressler, D.; Dempsey, C.; Peffer, T.

    2012-12-01

    ) environmental literacy and inquiry and (2) foster the development of geospatial thinking and reasoning using geospatial technologies as an essential component of the middle school science curriculum. The curriculum is designed to align instructional materials and assessments with learning goals. The following frameworks were used to provide guidelines for the climate change science content in addition to the science inquiry upon which schools must focus: Climate Literacy: The Essential Principles of Climate Sciences (U.S. Global Change Research Program, 2009) and the AAAS Project 2061 Communicating and Learning About Global Climate Change (AAAS, 2007). The curriculum is a coherent sequence of learning activities that include climate change investigations with Google Earth, Web-based interactivities that include an online carbon emissions calculator and a Web-based geologic time-line, and inquiry-based ("hands-on") laboratories. The climate change science topics include the atmosphere, Earth system energy balance, weather, greenhouse gases, paleoclimatology, and "humans and climate". It is hoped that with a solid foundation of climate science in the classroom, middle school learners will be in a position to evaluate new scientific discoveries, emerging data sets, and reasonably assess information and misinformation by which they are surrounded on a daily basis.

  10. Aragonite-Calcite Inversion During Biogenic Carbonate Sampling: Considerations for Interpreting Isotopic Measurements in Paleoclimate Studies

    NASA Astrophysics Data System (ADS)

    Waite, A. J.; Swart, P. K.

    2011-12-01

    As aragonite is the metastable polymorph of calcium carbonate, it lends itself to monotropic inversion to the more stable polymorph, calcite. This inversion is possible through an increase in the temperature and pressure conditions to which the sample is exposed and, although first noted nearly a century ago, has been primarily discussed in the context of sample roasting prior to analyses in paleoclimatological studies. Over the last several decades, however, researchers have found evidence to suggest that the friction associated with the sampling of biogenic carbonates via milling/drilling also induces inversion. Furthermore, this inversion may be associated with a shift in measured oxygen isotopic values and ultimately have significant implications for the interpretation of paleoclimatic reconstructions. Despite this, the isotopic heterogeneity of biogenic aragonite skeletons makes the effects of inversion challenging to test and the subject remains underrepresented in the literature. Here we present a first order study into the effects of milling on both the mineralogy and isotopic compositions measured in sclerosponges, corals, and molluscs. X-Ray diffraction analysis of samples hand ground with a mortar and pestle reveal 100% aragonitic skeletons. Conversely, samples milled with a computerized micromill show measurable inversion to calcite. On average, percent inversion of aragonite to calcite for individual specimens was 15% for sclerosponges, 16% for corals, and 9% for molluscs. Isotopic data from these specimens show that the higher the percentage of aragonite inverted to calcite, the more depleted the measured oxygen isotopic values. In the largest of the datasets (sclerosponges), it is evident that the range of oxygen isotope values from milled samples (-0.02 to +0.84%) exceeds the range in values for those samples which were hand ground and showed no inversion (+0.53 to +0.90%). This, coupled with the strong correlation between the two variables

  11. Middle-late Holocene climate variability in La Paz Basin, southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Gómez-Lizárraga, L. E.; Perez-Cruz, L. L.; Fucugauchi, J. U.

    2013-12-01

    Sediments from DIPAL III-K47 core collected at 830 m depth in the western slope within the oxygen minimum zone of La Paz Basin, southern Gulf of California provide a detailed record of paleoceanography and paleoclimatology for the tropical Pacific on centennial time scales for the past 7300 years. The sedimentary sequence is compose of hemipelagic sediments and is laminated throughout its entire length (145 cm). According to the preliminary age model based on radiocarbon AMS dates, core covers the period from ca 7300 to 1000 cal yr BP. The estimated sedimentation rates are between 0.20 and 0.29 mm/yr. Radiolarian assemblages, geochemical (major and trace elements Al, Ba, Ca, K, Si Ti, Zr and Zr/Al and Ba/Al ratios) and magnetic susceptibility are used as proxies of variations of oceanic circulation patterns, paleoproductivity, aeolian activity and precipitation. Eighty-two intervals were sampled for radiolarians and the core was sampled at 1-cm intervals to produce records of major and trace elements. Factor Analysis of the radiolarian abundances counted in sediments samples identified three assemblages. The first one (Arachnocorallium calvata, Lithomelissa setosa, Lithomelissa thoracites and Peridium longispinum) suggests winter-spring like conditions (cold and dry), Gulf of California Water persistence and a relative increase in productivity that might become from the east-to-west upwelling gradient. The second radiolarian assemblage (Tetrapyle octacantha group and Phorticium pylonium group) was interpreted as stratification of the column water and the incursion of warm, oligotrophic Tropical Surface Water that remind summer-fall like conditions. The third assemblage (Clathrocircus stapedius, Phorticium pylonium group, Lithomelissa pentacantha, Phormacantha hystrix, Phormospyris stabilis scaphipes, Lithomelissa thoracites, Pseudocubus obeliscus, Druppatractus irregularis and Druppatractus variabilis), suggests a mix water column that favors the organic carbon

  12. Major refit of R/V MARION DUFRESNE and giant sediment corer improvements

    NASA Astrophysics Data System (ADS)

    Leau, Hélène; Réaud, Yvan

    2015-04-01

    The french Research Vessel MARION DUFRESNE is equipped with a unique sediment coring facility, called CALYPSO, developed initially by Yvon BALUT at the French Polar Institute, Paul-Emile Victor (IPEV) that operates the vessel 217 days per year in all oceans. The CALYPSO sediment corer retrieves routinely 50 m long undisturbed sediment cores in any water depths, and presently holds the worldwide record of the longest core ever retrieved, that is 64.5 m. This vessel is then a fantastic opportunity for the paleoceanographic community to carry out expeditions at sea. Over the last 20 years, many international IMAGES coring expeditions were organized in all the ocean basins around the world on board the R/V MARION DUFRESNE. More than 1500 cores were retrieved, leading to major advances in the paleoceanography and paleoclimatology of the Late Quaternary. The vessel will celebrate her 20th anniversary in 2015 and will undergo a major refit on hull & machineries, public spaces, as well as scientific equipment. The coring capacity is currently being developed to further improve - The length of the retrievable core, with an objective of 75 m long core in routine - The quality of the sediment un-disturbance with a specially designed coring cable with controlled minimum elasticity - The safety of the operations at sea - The quality control of the operations with a suite of sensors and software allowing a detailed monitoring of the coring operation - The time requested for each operation - The environment data collection, in the same time as the coring operations The detailed description of the upgrades will be presented. They consist in a new suite of acoustic sensors that will be integrated on board the vessel during the 4 months ship yard stay from April to July 2015, amongst which a KONSBERG EM122 multibeam echo-sounder and a SBP 120-3 sub-bottom profiler, both mounted on a gondola fitted under the hull of the vessel. This equipment will allow the highest quality images of

  13. Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA

    USGS Publications Warehouse

    Dunagan, S.P.; Turner, C.E.

    2004-01-01

    During deposition of the Upper Jurassic Morrison Formation, water that originated as precipitation in uplands to the west of the Western Interior depositional basin infiltrated regional aquifers that underlay the basin. This regional groundwater system delivered water into the otherwise dry continental interior basin where it discharged to form two major wetland/lacustrine successions. A freshwater carbonate wetland/lacustrine succession formed in the distal reaches of the basin, where regional groundwater discharged into the Denver-Julesburg Basin, which was a smaller structural basin within the more extensive Western Interior depositional basin. An alkaline-saline wetland/lacustrine complex (Lake T'oo'dichi') formed farther upstream, where shallower aquifers discharged into the San Juan/Paradox Basin, which was another small structural basin in the Western Interior depositional basin. These were both wetlands in the sense that groundwater was the major source of water. Input from surface and meteoric water was limited. In both basins, lacustrine conditions developed during episodes of increased input of surface water. Inclusion of wetlands in our interpretation of what had previously been considered largely lacustrine systems has important implications for paleohydrology and paleoclimatology. The distal carbonate wetland/lacustrine deposits are well developed in the Morrison Formation of east-central Colorado, occupying a stratigraphic interval that is equivalent to the "lower" Morrison but extends into the "upper" Morrison Formation. Sedimentologic, paleontologic, and isotopic evidence indicate that regional groundwater discharge maintained shallow, hydrologically open, well oxygenated, perennial carbonate wetlands and lakes despite the semi-arid climate. Wetland deposits include charophyte-rich wackestone and green mudstone. Lacustrine episodes, in which surface water input was significant, were times of carbonate and siliciclastic deposition in scarce deltaic

  14. The Devil's Hole Is In The Details

    NASA Astrophysics Data System (ADS)

    Wallace, M. G.

    2012-12-01

    the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth. Space Science Review DOI 10.1007/s11214-011-9766-x. Kohfeld, Karen E., and Andy Ridgewell, 2009, "Glacial-Interglacial Variability in Atmospheric CO2", Surface Ocean-Lower Atmosphere Processes Geophysical Research Series 187, pp. 251-286. Landwehr, J.M., Sharp, W.D., Coplen, T.B., Ludwig, K.R., and Winograd, I.J., 2011, "The chronology for the δ18O record from Devil's Hole, Nevada, extended into the mid-Holocene: U.S. Geological Survey Open-File Report 2011-1082, 5 p. NOAA Paleoclimatology Program - Paleocean Site Data. tr163-19_ssts-fwc.txt # SST data only # File Created: 19-Jan-2005. ftp://ftp.ncdc.noaa.gov/pub/data/paleo/paleocean/sediment_files/sst/tr163-19_ssts-fwc.txt. Patterson, DB, and Farley, KA (1998): Extraterrestrial 3He in seafloor sediments: Evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochimica et Cosmochimica Acta, 62(23-24), 3669-3682. Shakun, Jeremy D. , Peter U. Clark, Feng He, Shaun A. Marcott, Alan C. Mix, Zhengyu Liu, Bette Otto-Bliesner, Andreas Schmittner & Edouard Bard, 2012, "Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation" Nature Vol 484. pp 49-55.

  15. Salt Playas of the Bolivian Altiplano

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the high plateau of southwestern Bolivia, two large salt deserts, or playas, are located between the eastern and western Andes. The Salar de Uyuni is the largest and highest playa in the world, encompassing an area of more than 9000 square kilometers and situated more than 3600 meters above sea level. It is separated by a range of hills from its smaller neighbor to the north, the Salar de Coipasa. During the Pleistocene the climate of the region was wetter and the entire area was covered by a massive lake. As the waters slowly dried, abundant dissolved minerals were left behind to form the playas. The salt pans are now excellent indicators of rainfall fluctuations within the region and are also important sites for the study of paleoclimatology.

    These two image pairs from the Multi-angle Imaging SpectroRadiometer (MISR)depict the playas on January 16, 2002 and January 3, 2003. At this time of year the wet season has already begun, and the Salar de Coipaso is usually at least partially flooded. Data from these two dates were processed identically to preserve relative variations in brightness between them. Varying degrees of surface moisture around the two playas are illustrated by the different display techniques of the right and left-hand panels.

    At left are two false-color views acquired by MISR's nadir camera. Data from the near-infrared, green and blue bands are displayed as red, green and blue. This spectral display causes bright, wet surfaces to appear blue-green because water selectively absorbs longer wavelengths such as near-infrared. Significantly more standing water is present in the Salar de Coipaso in 2002 than in 2003. However, a stronger signal at the near-infrared band on the 2003 date, which causes the overall hue in the 2003 image to be redder than 2002, suggests an increase in photosynthetic activity (plant growth) at the 2003 date compared with one year earlier.

    The right-hand panels were created using only red band data, and are

  16. Comparison of climate proxies from two 'Siamese twin

    NASA Astrophysics Data System (ADS)

    Belén Muñoz-García, María.; Rossi, Carlos; Jesús Turrero, María.; Martín-Chivelet, Javier

    2010-05-01

    of 281 samples drilled along the growth axes of both stalagmites. According to the proposed age model, the two stalagmites grew at very different rates, despite their proximity and their internal and external resemblance. The differences are very important in both magnitude and trends, suggesting that piping and dripping effects were strong enough to mask any paleoclimate information. On the contrary, the δ18O records of the Siamese sections of the two stalagmites are virtually identical, suggesting that this parameter is independent of stalagmite growth, being mostly controlled by external factors to the dripping system, probably climate variables (e.g., rainfall composition). Finally, important differences were found when comparing the δ13C time-series. These differences concern general patterns and trends, as well as the average values of each series. This could indicate that δ13C is much more influenced by piping effects than δ18O, and thus more difficult to interpret in terms of paleoclimate. In summary, similar δ18O records have been obtained in both stalagmites, but important differences were found in growth rates and δ13C values. A single record from only one of these stalagmites would have not been representative of the whole environmental system. These results suggest that the paleoclimate interpretations based on growth rates and δ13C records obtained in a single speleothem should be treated with caution. Contribution to project CGL2007-60618-BTE (MCI, Spain), research grants PR-2007-0111 and PR-2007-0197, and the Paleoclimatology and Global Change Research Group (UCM-CM-910198). L.R. Edwards and X. Wang are thanked for his advisory help and support during stays of JMC and MJT in the Univ. of Minnesota.

  17. Global plate boundary evolution and kinematics since the late Paleozoic

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Maloney, Kayla T.; Zahirovic, Sabin; Williams, Simon E.; Seton, Maria; Müller, R. Dietmar

    2016-11-01

    Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep Earth carbon cycle, require high-resolution plate motion models that include the evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to present-day global plate model with evolving plate boundaries, building on and extending two previously published models for the late Paleozoic (410-250 Ma) and Mesozoic-Cenozoic (230-0 Ma). We ensure continuity during the 250-230 Ma transition period between the two models, update the absolute reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica-derived Alexander Terrane, now accreted to western North America. This 410-0 Ma open access model provides a framework for deep-time whole Earth modelling and acts as a base for future extensions and refinement. We analyse the model in terms of the number of plates, predicted plate size distribution, plate and continental root mean square (RMS) speeds, plate velocities and trench migration through time. Overall model trends share many similarities to those for recent times, which we use as a first order benchmark against which to compare the model and identify targets for future model refinement. Except for during the period 260-160 Ma, the number of plates (16-46) and ratio of "large" plates (≥ 107.5 km2) to smaller plates ( 2.7-6.6) are fairly similar to present-day values (46 and 6.6, respectively), with lower values occurring during late Paleozoic assembly and growth of Pangea. This temporal pattern may also reflect difficulties in reconstructing small, now subducted oceanic plates further back in time, as well as whether a supercontinent is assembling or breaking up. During the 260-160 Ma timeframe the model reaches a minima in the number of plates, in contrast to what we would expect during initial Pangea breakup and thus highlighting the need for refinement

  18. The Last Glacial Maximum and Termination in the Torres del Paine Region, Southern South America

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Hall, B. L.; Kaplan, M. R.; Vega, R. M.; Binnie, S.; Gómez, G.; Santana, F.

    2012-12-01

    Deciphering the timing, structure and termination of the local last glacial maximum (LGM) throughout Patagonia (42-55 S) remains one of the key unsolved paleoclimate questions in Quaternary sciences. During the last glaciation, the Patagonian ice sheet formed one ice body along the Patagonian Andes (42-55 S) in southern South America, but previous work has revealed different spatiotemporal ice dynamics along the eastern and western ice margins. The Patagonian Andes is the only landmass that exists at this latitude confronting the southern westerly wind belt, which seems to have played a key role in past glacial and climate changes. Therefore, reconstructing southern Andes glacier history constitutes a key element for understanding the causes of glaciations in the Southern Hemisphere. Major progress has been made to document the local Late-Pleistocene glacier history, particularly in response to recent application of exposure-cosmogenic dating technique in the region, although only sparse well-dated paleoclimate records exist in this vast area. LGM moraine-based records in south Patagonia (~48-55 S) have been developed for the Strait of Magellan area, where full glacial conditions seems to have occurred between ~28.0 - 17.5 ka. Despite that these data seem to confirm previous glacial chronologies developed in north Patagonia and the Chilean Lake District (40-42 S), recent works in Torres del Paine and Última Esperanza basins (50-51 S), suggest that glacial maximum conditions may have occurred earlier (i.e., during Marine Isotope Stage 3) and that ice extent could have been twice the size of previously thought. Here, we discuss paleoclimatological implications from our 10Be and 26Al-dating program of moraines in the Torres del Paine region in southern Patagonia. We focused our efforts in the previously undated Río de las Viscachas (RV) I and II moraines, which occur distal to the late-glacial TDP II, III and IV moraines that enclose present lake bodies at the

  19. Late Quaternary and Future Biome Simulations for Alaska and Eastern Russia

    NASA Astrophysics Data System (ADS)

    Hendricks, Amy; Walsh, John; Saito, Kazuyuki; Bigelow, Nancy

    2015-04-01

    We simulated Arctic biomes across a region including Alaska and Eastern Russia using the BIOME4 biogeochemical and biogeography vegetation model. BIOME4, which produces an equilibrium vegetation distribution under a given climate condition, was forced by CMIP5/PMIP3 climate data. We are exploring vegetation and permafrost distributions during the last 21,000 years and future projections (2100 C.E.) to gain an understanding of the effects of climate shifts on this complex subsystem. When forced with the baseline modern climatology, compiled from the University of Delaware temperature and precipitation climatology and ERA-40 sunshine data, our biome simulations were generally consistent with current vegetation observations in the study region. Much of the study area was simulated to have evergreen and deciduous taiga and shrub tundras. Paleoclimatological simulations were compared with pollen data samples taken through the study region. Simulations for the Last Glacial Maximum show the Bering Land Bridge covered almost entirely by cushion forb, lichen, and moss tundra, shrub tundra, and graminoid tundra. Three out of the five models' climate data produce evergreen and deciduous taiga in what is now southwestern Alaska. The distributions of cushion forb, lichen, and moss tundra and graminoid tundra differ noticeably between models, however, shrub tundra distributions are generally in agreement. Simulations for the Mid-Holocene are in better agreement on pollen-based distributions of biomes. Shrub tundra is simulated along the Arctic coast, and in some cases along the eastern coast of Russia. All models show evergreen taiga along the southern coast of Russia as well as covering the southern half of present-day Alaska. Deciduous taiga is simulated in the interior regions of eastern Russia and Alaska, though the distributions in Alaska differ between models. Pre-Industrial biome simulations were very similar to Mid-Holocene simulations. Differences include more shrub

  20. Impact of volcanism on the evolution of Lake Van II: Temporal evolution of explosive volcanism of Nemrut Volcano (eastern Anatolia) during the past ca. 0.4 Ma

    NASA Astrophysics Data System (ADS)

    Sumita, Mari; Schmincke, Hans-Ulrich

    2013-03-01

    triggering increased partial melting or magma reservoir unloading following massive glacier melting. The ages of 5 dated ignimbrites span ca. 250 000 years suggesting that Nemrut Volcano went through a polycyclic evolution with multiple caldera collapses and major pyroclastic flow eruptions, the oldest dated so far as 265 ka. The widely held view of the impressive Nemrut Caldera now dated to have formed at ca. 30 ka, as the main paroxysmal event during the evolution of the volcano is no longer tenable. Distinct and coherent compositional characteristics, especially in trace element concentrations, characterize several groups of trachytic tephras. We speculate that the growth of Nemrut Volcano caused the isolation of the Lake Van basin. On account of their mineralogical (anorthoclase, hedenbergite, fayalite, aenigmatite) and alkalic chemical compositions and large volume, dated Nemrut fallout tephras are likely to represent excellent markers in lakes and other sites of paleoclimatological or archeological interest in neighboring countries to the northeast of Lake Van as far as the Caspian Sea in what may be called the East Anatolian Tephra Province.

  1. Reconstruction of sea surface water dynamics in the North Atlantic during the Mid-Pleistocene (~540-400 ka)

    NASA Astrophysics Data System (ADS)

    Martinez-Sanchez, Marta; Flores, José-Abel; Palumbo, Eliana; Alonso-García, Montserrat; Sierro, Francisco-Javier; Ornella Amore, Filomena

    2014-05-01

    . Sierro, José A. Flores, Arctic front shifts in the subpolar North Atlantic during the Mid-Pleistocene (800-400ka) and their implications for ocean circulation, Palaeogeography, Palaeoclimatology, Palaeoecology,Volume 311, Issues 3-4, 15 November 2011, Pages 268-280, http://dx.doi.org/10.1016/j.palaeo.2011.09.004. F.O. Amore, J.A. Flores, A.H.L. Voelker, S.M. Lebreiro, E. Palumbo, F.J. Sierro, A Middle Pleistocene Northeast Atlantic coccolithophore record: Paleoclimatology and paleoproductivity aspects, Marine Micropaleontology, Volumes 90-91, June 2012, Pages 44-59, , http://dx.doi.org/10.1016/j.marmicro.2012.03.006. E. Palumbo, J.A. Flores, C. Perugia, Z. Petrillo, A.H.L. Voelker, F.O. Amore, Millennial scale coccolithophore paleoproductivity and surface water changes between 445 and 360ka (Marine Isotope Stages 12/11) in the Northeast Atlantic, Palaeogeography, Palaeoclimatology, Palaeoecology, Volumes 383-384, August 2013, Pages 27-41, http://dx.doi.org/10.1016/j.palaeo.2013.04.024.

  2. Terrestrial cosmogenic 3He: where are we 30 years after its discovery?

    NASA Astrophysics Data System (ADS)

    Blard, Pierre-Henri; Pik, Raphaël; Farley, Kenneth A.; Lavé, Jérôme; Marrocchi, Yves

    2016-04-01

    It is now 30 years since cosmogenic 3He has been detected for the first time in a terrestrial sample (Kurz, 1986). 3He is now a widely used geochemical tool in many fields of Earth sciences: volcanology, tectonics, paleoclimatology. 3He has the advantage to have a high "production rate" to "detection limit" ratio, allowing surfaces as young as hundred of years to be dated. Although its nuclear stability implies several limitations, it moreover represents a useful alternative to 10Be in mafic environments. This contribution is a review of the progresses that have been accomplished since this discovery, and discuss strategies to improve both the accuracy and the precision of this geochronometer. 1) Measurement of cosmogenic 3He Correction of magmatic 3He. To estimate the non-cosmogenic magmatic 3He, Kurz (1986) invented a two steps method involving crushing of phenocrysts (to analyze the isotopic ratio of the magmatic component), followed by a subsequent melting of the sample, to extract the remaining components, including the cosmogenic 3He: 3Hec = 3Hemelt -4Hemelt x (3He/4He)magmatic (1) Several studies suggested that the preliminary crushing may induce a loss of cosmogenic 3He (Hilton et al., 1993; Yokochi et al., 2005; Blard et al., 2006), implying an underestimate of the cosmogenic 3He measurement. However, subsequent work did not replicate these observations (Blard et al., 2008; Goerhing et al., 2010), suggesting an influence of the used apparatus. An isochron method (by directly melting several phenocrysts aliquots) is an alternative to avoid the preliminary crushing step (Blard and Pik, 2008). Atmospheric contamination. Protin et al. (in press) provides robust evidences for a large and irreversible contamination of atmospheric helium on silicate surfaces. This unexpected behavior may reconcile the contrasted observations about the amplitude of crushing loss. This undesirable atmospheric contamination is negligible if grain fractions smaller than 150 mm are

  3. Earth2Class Overview: An Innovative Program Linking Classroom Educators and Research Scientists

    NASA Astrophysics Data System (ADS)

    Passow, M.; Iturrino, G. J.; Baggio, F. D.; Assumpcao, C. M.

    2005-12-01

    The Earth2Class (E2C) workshops, held at the Lamont-Doherty Earth Observatory (LDEO), provide an effective model for improving knowledge, teaching, and technology skills of middle and high school science educators through ongoing interactions with research scientists and educational technology. With support from an NSF GeoEd grant, E2C has developed monthly workshops, web-based resources, and summer institutes in which classroom teachers and research scientists have produced exemplar curriculum materials about a wide variety of cutting-edge geoscience investigations suitable for dissemination to teachers and students. Some of the goals of this program are focused to address questions such as: (1) What aspects of the E2C format and educational technology most effectively connect research discoveries with classroom teachers and their students? (2) What benefits result through interactions among teachers from highly diverse districts and backgrounds with research scientists, and what benefits do the scientists gain from participation? (3) How can the E2C format serve as a model for other research institution-school district partnerships as a mechanism for broader dissemination of scientific discoveries? E2C workshops have linked LDEO scientists from diverse research specialties-seismology, marine geology, paleoclimatology, ocean drilling, dendrochronology, remote sensing, impact craters, and others-with teachers from schools in the New York metropolitan area. Through the workshops, we have trained teachers to enhance content knowledge in the Earth Sciences and develop skills to incorporate new technologies. We have made a special effort to increase the teaching competency of K-12 Earth Sciences educators serving in schools with high numbers of students from underrepresented groups, thereby providing greater role models to attract students into science and math careers. E2C sponsored Earth Science Teachers Conferences, bringing together educators from New York and New

  4. The late glacial paleoclimate of the central Altiplano constrained by cosmogenic 3He dating and 'clumped-isotope' paleothermometry

    NASA Astrophysics Data System (ADS)

    Blard, P.; Lave, J.; Farley, K. A.; Tripati, A.; Eiler, J.; Sylvestre, F.

    2007-12-01

    One of the ongoing debates in paleoclimatology is whether climate change in the tropics is simply a response to global climate change, or actually forces it. The Altiplano is a highland area (>3600 m) located in the tropical Andes that is particularly well-suited to address this question since both paleo-glacier footprints and paleolake shorelines are very well preserved in this region. Because glacier extents and lake levels have differential sensitivity to change in temperature and in precipitation, they can be used to place tight constraints on the amplitude of past changes in these atmospheric variables. However, because the timing of the deglaciation in this region is still uncertain and poorly documented, this task requires new chronological constraints on paleoglacier fluctuations. New cosmogenic 3He dates from several glacial moraines and striated rocks of the Cerro Tunupa (Bolivia, 20 ° S) show that, in the central part of the Altiplano, glaciers persisted at their maximum extent between 18 and 15 ka, synchronously with the highest level of paleolake Tauca at 17-15 ka (Placzek et al., 2006) (Clayton and Clapperton, 1997). Abrupt glacial retreat occurred approximately 15 ka and was followed by a small amplitude readvance during the Younger Dryas. This result is different from previous moraine dating (Smith et al., 2005) that indicates an earlier (~34 ka) local glacial maximum in the northern part of the Altiplano. This discrepancy most probably reflects spatial variations in past precipitation. Consequently, climatic conditions inferred from the past extent of mountain glaciers must take into account local atmospheric variations before being interpreted in a global context. To this end, we have coupled a numerical modeling approach with an independent estimate of past air temperature based on "clumped isotope" thermometry, a technique based on the temperature dependence of the abundances of 13C-18O bonds in carbonate minerals (Ghosh et al., 2006). This

  5. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  6. Precipitation rates and atmospheric heat transport during the Cenomanian greenhouse warming in North America: Estimates from a stable isotope mass-balance model

    USGS Publications Warehouse

    Ufnar, David F.; Ludvigson, Greg A.; Gonzalez, L.; Grocke, D.R.

    2008-01-01

    correlate with a mean annual average heat loss of 48??W/m2 at 10??N paleolatitude (present, 8??W/m2 at 15??N). The increased precipitation flux and moisture surplus in the mid-latitudes corresponds to a mean average annual heat gain of 180??W/m2 at 50??N paleolatitude (present, 17??W/m2 at 50??N). The Cenomanian low-latitude moisture deficit is similar to that of the Albian, however the mid-latitude (40-60??N) precipitation flux values and precipitation rates are significantly higher (Albian: 2200??mm/yr at 45??N; Cenomanian: 3600??mm/yr at 45??N). Furthermore, the heat transferred to the atmosphere via latent heat of condensation was approximately 10.6?? that of the present at 50??N. The intensified hydrologic cycle of the mid-Cretaceous greenhouse warming may have played a significant role in the poleward transfer of heat and more equable global conditions. Paleoclimatological reconstructions from multiple time periods during the mid-Cretaceous will aid in a better understanding of the dynamics of the hydrologic cycle and latent heat flux during greenhouse world conditions.

  7. Buried glacier ice in permafrost, a window to the past: examples from Bylot Island, Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Coulombe, S.; Kanevskiy, M. Z.; Paquette, M.; Shur, Y.; Stephani, E.

    2011-12-01

    related to glacio-hydrologic supercooling, that we observed at the Matanuska Glacier in Alaska. Interestingly, the various types of ice contained in buried glacier ice permafrost date back to the englacial ice formation and its subsequent deformation by glacier flow and glacio-hydrological dynamics. It is thus older by several centuries to millennia than the permafrost aggradation itself (burial and active layer development) and we used the term antegenetic, in opposition to epigenetic or syngenetic, to characterize this type of permafrost. Buried glacier ice is a window to the past and a unique tool to reconstruct the paleogeography and paleoclimatology of Arctic regions. In a warming climate, as glaciers are receding, the burial of ice in the proglacial environment will offer opportunities to characterize antegenetic permafrost aggradation and its related cryofacies. In warming permafrost environments, as active layers on slope deepen and detachment slides are triggered, more buried Pleistocene glacier ice will likely be exposed.

  8. Digital relief 3D model of the Khibiny massive (Kola peninsula)

    NASA Astrophysics Data System (ADS)

    Chesalova, Elena; Asavin, Alex

    2015-04-01

    at the bottom and at the edge of the valley. Changing these parameters for different climatic seasons allows us to estimate the duration of the existence of gas in homogeneities in the aerial under soil and up soil layers. Complex ring structure site and manifestations of recent tectonic movements allow it to allocate more closed areas with different plant-land cover and different geomorphological features. In particular stand out - bogs, forest area on the slopes and riparian forest zone, the zone of mountain tundra and rocky plateau. Designated areas should be considered together with the full history of the evolution relief Khibin, processes of decrease glaciers and their occurrence. One of the results of the work performed is the allocation within the array of closed circuses, paleo-ice landforms drumlin and moraine ridges. These landforms represent the latest stage of the glacial history of glaciation on the Kola Peninsula and the Arctic coast. Estimated areal characteristics of different forms. In some cases it was possible to separate a sequence of glacial relief forms, which suggests staging a retreat of glaciers in the area. The project highlighted areas open mining apatite ores in Khibiny massif. Career located in the inner part of the massif form a closed area drain mine water pollution and wind. While the new career located on the border of the array and the forest zone characterized by a single watershed and accordingly included in the ecological life support cycle of residential villages and towns of Kirovsk and Apatity. This fact forces us to view mining activity as a powerful source of contamination. Designed GIS project thus can be used to solve a number of problems geomorphological orientation. In addition a number of application issues - the environment, paleoclimatology, geotectonic can be successfully addressed on the basis of the digital 3D model.

  9. High Spatial Resolution Isotopic Abundance Measurements by Secondary Ion Mass Spectrometry: Status and Prospects

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.

    2007-12-01

    Secondary Ion Mass Spectrometry, SIMS or ion microprobe analysis, has become an important tool for geochemistry because of its ability study the distributions of elemental and isotopic abundances in situ on polished samples with high (typically a few microns to sub-micron) spatial resolution. In addition, SIMS exhibits high sensitivity for a wide range of elements (H to Pu) so that isotope analyses can sometimes be performed for elements that comprise only trace quantities of some mineral phase (e.g., Pb in zircon) or on major and/or minor elements in very small samples (e.g., presolar dust grains). Offsetting these positive attributes are analytical difficulties due to the complexity of the sputtering source of analyte ions: (1) relatively efficient production of molecular ion species (especially from a complex matrix such as most natural minerals) that cause interferences at the same nominal mass as atomic ions of interest, and (2) quantitation problems caused by variations in the ionization efficiencies of different elements and/or isotopes depending upon the chemical state of the sample surface during sputtering--the so-called "matrix effects". Despite the availability of high mass resolution instruments (e.g., SHRIMP II/RG, CAMECA 1270/1280/NanoSIMS), the molecular ion interferences effectively limit the region of the mass table that can be investigated in most samples to isotope systems at Ni or lighter or at Os or heavier. The matrix effects and the sensitivity of instrumental mass discrimination to the physical state of the sample surface can hamper reproducibility and have contributed to a view that SIMS analyses, especially for so- called stable isotopes, are most appropriate for extraterrestrial samples which are often small, rare, and can exhibit large magnitude isotopic effects. Recent improvements in instrumentation and technique have extended the scope of SIMS isotopic analyses and applications now range from geochronology to paleoclimatology to

  10. Post Rift Evolution of the Indian Margin of Southern Africa

    NASA Astrophysics Data System (ADS)

    Baby, Guillaume; Guillocheau, François; Robin, Cécile; Dall'asta, Massimo

    2016-04-01

    The objective of this study is to discuss the evolution of the South African Plateau along the Indian margin of Southern Africa. Since the classical works of A. du Toit and L.C. King and the improvement of thermochronological methods and numerical models, the question of the uplift of South African Plateau was highly debated with numerous scenarios: early Cretaceous at time of rifting (Van der Beek et al., J.Geophys.Res., 2002), late Cretaceous (Braun et al., Solid Earth, 2014), late Cenozoic (Burke & Gunnell, Geol.Soc.of America, 2008). Limited attention has been paid on the constraints provided by the offshore stratigraphic record of the surrounding margins. The objective of our study is to integrate onshore and offshore data (seismic profiles and industrial wells) to (1) analyse the infill of the whole margin (21°S to 31°S) from its hinterland to the distal deep water basin, (2) to constrain and quantify the vertical movements. We discuss the impact on accommodation and sediments partitioning, and their significance on South African Plateau uplift history. 1. Sedimentary basins of the Indian margin of Southern Africa are related to the break-up of Gondwana during late Jurassic, resulting in rifts and flexural basins. First marine incursions started during early Cretaceous times (oldest marine outcropping sediments are of Barremian age ~128 Ma). The region developed as a normal continental shelf at the Aptian-Albian transition (~113 Ma). 2. The Cretaceous geological history of the basins is characterized by differential uplift and subsidence of the basement, controlled by structures inherited from break up. As example, major early Cretaceous depocenters of the margin are located on the north of Save-Limpopo uplift (Forster, Paleogography, Paleoclimatology, Paleoecology, 1975) showing an eastward drainage pattern, maybe related to a proto Limpopo drainage. Those observations suggest that the escarpment bordering the Bushveld depression is an old relief inherited

  11. Reconciling late Quaternary transgressions in the Bohai Sea, China to the global sea level changes, and new linkage of sedimentary records to three astronomical rhythms

    NASA Astrophysics Data System (ADS)

    Yi, Liang

    2013-04-01

    The Bohai Sea in China was formed by subsidence during the Cenozoic. Some 2000-3000 m of fluvial, lacustrine and marine sediments has been deposited in the basin (IOCAS 1985), and these sediments have great potentials in high-/low-latitude interaction, environmental impacts on ancient human activities, and other important issues (Liu, 2009; Yi et al. 2012a), because it is influenced by the Siberian-Mongolian Highs and the ITCZ, and is close to the Nihewan basin and the Zhoukoudian site which are both world-renowned for the discovery of Homo erectus. Since the 1970s, hundreds of studies have been conducted around the Bohai Sea and the major results could be summarized as follows (Zhao et al., 1978; IOCAS, 1985; Liu, 2009, and references therein): (1) constrained by radiocarbon dating, TL/OSL or geomagnetic excursion, three transgressions (T1, T2, T3) developed during the Holocene, marine isotopic stage (MIS) 3 and MIS 5, respectively; and (2) regressions occurred at the beginning of glacial stages, i.e. MIS2 and MIS4. However, apparent inconsistency could be found between T2 and T3, and the question is that in the context that MIS 3 is an inter-stadial stage with a global sea level of 60~80 m lower than the present (Chappell et al. 1996), how did T2 occur in the Bohai Sea, and why did T2 have much larger influence than T3 which occurred at the beginning of MIS 5? To correlate regional environmental changes with global pattern and thus to detect the potential interaction between various driving factors on orbital timescales, three cores with a high recovery rate were drilled in the south Bohai Sea. This study was conducted following three perspectives: chronology (Yi et al. 2012b), sea-level change (Yi et al. 2012c) and paleoclimatology (Yi et al. 2012a), and the main results are as follows: 1. Chronology. Luminescence and radiocarbon dating methods were applied in dating these coastal/marine sediments: (1) For Holocene samples, most of the radiocarbon dates agree

  12. Organic-geochemical characterization of sedimentary organic matter deposited during the Valanginian carbon isotope excursion (Vocontian Basin, SE France)

    NASA Astrophysics Data System (ADS)

    Kujau, Ariane; Heimhofer, Ulrich; Ostertag-Henning, Christian; Mutterlose, Jörg; Gréselle, Benjamin

    2010-05-01

    typical for this time interval, including a prominent positive CIE. The high-resolution delta13Ccarb record allows for detailed correlation and comparison with existing chemostratigraphic records across this event. TOC values fluctuate between 0.20 and 4.05%, Rock-Eval pyrolysis results depict HI values of 134 to 383 mgHC/g TOC and OI values of 19 to 160 mg CO2/g TOC indicating the predominance of marine OM with only minor terrestrial inputs in all investigated samples. The aliphatic fraction of the OM extractable by organic solvents is dominated by n-alkanes, isoprenoids, and a variety of hopanes and steranes. No distinct changes during the CIE in the abundances of biomarkers specific for Dinoflagellates and methanotrophic bacteria are observed, pointing to no significant response of the marine biota in this basin to the carbon cycle perturbation. There is no indication for an anoxic water column during the CIE. Steranes show slightly enhanced values for the plateau phase of the excursion, and increasing values during the decline of the delta13C shift (e.g. dinosterane) what may just as well be due to the cooling episode or a change in sea-level (Melinte and Mutterlose, 2001). At this stage, the detailed analysis of the sedimentary OM does not provide evidence for the existence of an OAE or enhanced accumulation/preservation of OM associated with the Valanginian CIE. These findings point to paleoenvironmental changes on continents rather than in marine settings as causes for the isotope shift. References: Erba E. et al. (2004). Geology 32, 149-152. Gréselle B. (2007). PhD thesis, University Lyon1, Lyon. Gröcke D. et al. (2005). EPSL 240, 495-509. Lini A. et al. (1992). Terra Nova 4, 374-384. Melinte M. and Mutterlose J. (2001). Marine Micropaleontology 43, 1-25. Ogg J.G. et al. (2004). In: Gradstein FM, Ogg JG, Smith AG (eds.). A Geological Timescale 2004. Cambridge University Press, 63-86. Weissert H. et al. (1998). Paleogeography, Paleoclimatology, Palaeoecology 137

  13. Comparing Apples to Apples: Paleoclimate Model-Data comparison via Proxy System Modeling

    NASA Astrophysics Data System (ADS)

    Dee, Sylvia; Emile-Geay, Julien; Evans, Michael; Noone, David

    2014-05-01

    variability over the past millennium. part i: Methodology and validation. Journal of Climate 26 (7), 2302-2328. URL http://search.proquest.com/docview/1350277733?accountid=14749 Evans, M., Tolwinski-Ward, S. E., Thompson, D. M., Anchukaitis, K. J., 2013. Applications of proxy system modeling in high resolution paleoclimatology. Quaternary Science Reviews. URL http://adsabs.harvard.edu/abs/2012QuInt.279U.134E Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Capotondi, A., Lawrence, P. J., Teng, H., 2012. Last Millennium Climate and Its Variability in CCSM4. Journal of Climate (submitted) Molteni, F., 2003. Atmospheric simulations using a GCM with simplified physical parametrizations. I model climatology and variability in multi-decadal experiments. Climate Dynamics, 175-191

  14. Changements climatiques et variations du champ magnetique terrestre dans le sud de la Patagonie (Argentine) depuis 51 200 ans reconstitues a partir des proprietes magnetiques des sediments du lac Laguna Potrok Aike

    NASA Astrophysics Data System (ADS)

    Lise-Pronovost, Agathe

    and climatic evidence. The runoff events are generally associated with mass movement deposits during time of enhanced lake productivity in Laguna Potrok Aike and are also coeval within the limit of the chronology to warm atmospheric conditions recorded in Antarctica. In addition, we show that the authigenic formation of iron sulfide such as greigite is strictly associated to reworked sands and tephra layers providing the required suboxic conditions and dissolved sulfate. As a whole, rock magnetism of the sediment from Laguna Potrok Aike provides a high quality full-vector paleomagnetic record as well as rock-magnetic proxies of past climate changes in southeastern Patagonia that are also associated with climate changes in Antarctica. Keywords: [Paleomagnetism, sediment magnetism, paleoclimatology, Laguna Potrok Aike, Patagonia, Southern Hemisphere, millennial- to centennial-scale variability, last Glacial period, Holocene, wind intensity].