Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles
Wang, Jia X [East Setauket, NY; Adzic, Radoslav R [East Setauket, NY
2009-03-24
The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.
Interaction of palladium ions with the skin.
Santucci, B; Cristaudo, A; Cannistraci, C; Picardo, M
1995-08-01
87 subjects sensitive to both nickel sulfate and palladium-chloride pet., were contemporaneously patch retested to nickel sulfate 5% pet., metallic palladium chloride 1% pet. and to palladium chloride 1% aq. Whilst all subjects reacted to nickel sulfate and palladium chloride pet., only 3 reacted to palladium chloride aq. No positive reactions were found to metallic palladium. The negative results to palladium chloride aq. are probably due to the formation of a new palladium ion (PdCl4)2-, achieved on adding an amount of hydrocloric acid to the aqueous solution of PdCl2. The findings seem to demonstrate that the allergic reaction to palladium depends on the arrangement of the metal electrons. The sensitization to palladium does not seem to be dependent on the element itself but on the complexes formed by the different compounds. The concomitant reactions to nickel and palladium ions could be dependent on the generation of similar complexes between the ions and the skin proteins.
Low-cost method for fabricating palladium and palladium-alloy thin films on porous supports
Lee, Tae H; Park, Chan Young; Lu, Yunxiang; Dorris, Stephen E; Balachandran, Uthamalingham
2013-11-19
A process for forming a palladium or palladium alloy membrane on a ceramic surface by forming a pre-colloid mixture comprising a powder palladium source, carrier fluid, dispersant and a pore former and a binder. Ultrasonically agitating the precolloid mixture and applying to a substrate with an ultrasonic nozzle and heat curing the coating form a palladium-based membrane.
On the corrosion behavior and biocompatibility of palladium-based dental alloys
NASA Astrophysics Data System (ADS)
Sun, Desheng
Palladium-based alloys have been used as dental restorative materials for about two decades with good clinical history. But there have been clinical case reports showing possible allergy effects from these alloys. The aim of this study was to characterize the corrosion behavior and mechanisms of several palladium-based dental alloys by potentiodynamic polarization methods, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe force microscopy/atomic force microscopy (SKPFM/AFM), and to evaluate their biocompatibility by a cell culture technique and an animal model. Using SKPFM/AFM and scanning electron microscopy, the Ru-enriched phase from the use of ruthenium as a grain-refining element was identified as being slightly more noble than the palladium solid solution matrix in a high-palladium alloy. Other secondary precipitates that exist in the microstructures of these high-palladium alloys have minimal differences in Volta potential compared to the matrix. For high-palladium alloys, corrosion is generally uniform due to the predominant palladium content in the different phases. Potentiodynamic polarization and EIS have shown that representative palladium-silver alloys have low corrosion tendency and high corrosion resistance, which are equivalent to a well-known high-noble gold-palladium alloy in simulated body fluid and oral environments. The palladium-silver alloys tested are resistant to chloride ion corrosion. Passivation and dealloying have been identified for all of the tested palladium-silver alloys. The great similarity in corrosion behavior among the palladium-silver alloys is attributed to their similar chemical compositions. The variation in microstructures of palladium-silver alloys tested does not cause significant difference in corrosion behavior. The corrosion resistance of these palladium-silver alloys at elevated potentials relevant to oral environment is still satisfactory. The release of elements from representative dental palladium alloys into cell culture media did not significantly affect the proliferation and viability of human fibroblast cells. Subcutaneous implantation of samples of one high-palladium alloy, one palladium-silver alloy and a gold alloy into mice did not cause any significant histological change in their skin and spleen. The presence of an oxide layer from dental laboratory processing of these alloys did not cause any adverse reactions from the cells or animals. The biocompatibility of the dental palladium-based alloys evaluated by the cell culture and animal models is satisfactory, suggesting that these alloys are safe for clinical usage.
NASA Astrophysics Data System (ADS)
Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.
2018-03-01
Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.
Effect of silver on the shape of palladium nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Dikshita, E-mail: dgmonugupta@gmail.com; Barman, P. B.; Hazra, S. K.
We report a facile route to prepare palladium-silver nanoparticles at considerably low temperature. First the controlled synthesis of palladium nanoparticles was performed via reduction of sodium tetrachloropalladate (II) in ethylene glycol in the presence of PVP(polyvinylpyrrolidone) as capping agent. The reaction was carried out at three different temperatures-80°C, 100°C and 120°C for one hour. Short reaction time and low synthesis temperature adds advantage to this method over others. Formed palladium nanoparticles were nearly spherical with the average particle size of 7.5±0.5 nm, 9.5±0.5 nm and 10.5±0.5 nm at 80°C, 100°C and 120°C respectively. Secondly, the palladium-silver nanoparticles were prepared bymore » the simultaneous reduction of palladium and silver from their respective precursors in ethylene glycol at 100°C (optimized temperature). The shape and size distribution was studied by TEM (Transmission Electron Microscopy). The role of silver in transforming the shape of palladium nanoparticles from spherical to triangular has been discussed. Spherical symmetry of palladium nanoparticles is disturbed by the interaction of silver ions on the crystal facets of palladium nanoparticles. From UV-vis spectra, the absorption maxima of palladium nanoparticles at 205 nm and absorption maxima of palladium-silver nanoparticles at 272 nm revealed the partial evidence of their formation.« less
Tracey, Matthew P; Pham, Dianne; Koide, Kazunori
2015-07-21
Neither palladium nor platinum is an endogenous biological metal. Imaging palladium in biological samples, however, is becoming increasingly important because bioorthogonal organometallic chemistry involves palladium catalysis. In addition to being an imaging target, palladium has been used to fluorometrically image biomolecules. In these cases, palladium species are used as imaging-enabling reagents. This review article discusses these fluorometric methods. Platinum-based drugs are widely used as anticancer drugs, yet their mechanism of action remains largely unknown. We discuss fluorometric methods for imaging or quantifying platinum in cells or biofluids. These methods include the use of chemosensors to directly detect platinum, fluorescently tagging platinum-based drugs, and utilizing post-labeling to elucidate distribution and mode of action.
NASA Astrophysics Data System (ADS)
Sakamoto, Yuri; Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo
2018-04-01
We have succeeded in fabricating a hydrogen gas sensor based on palladium-modified graphene field-effect transistors (FETs). The negative-voltage shift in the transfer characteristics was observed with exposure to hydrogen gas, which was explained by the change in work function. The hydrogen concentration dependence of the voltage shift was investigated using graphene FETs with palladium deposited by three different evaporation processes. The results indicate that the hydrogen detection sensitivity of the palladium-modified graphene FETs is strongly dependent on the palladium configuration. Therefore, the palladium-modified graphene FET is a candidate for breath analysis.
Palladium/kieselguhr composition and method
Mosley, W.C. Jr.
1993-09-28
A hydrogen-absorbing composition and method for making such a composition are described. The composition comprises a metal hydride, preferably palladium, deposited onto a porous substrate such as kieselguhr, for use in hydrogen-absorbing processes. The composition is made by immersing a substrate in a concentrated solution containing palladium, such as tetra-amine palladium nitrate. Palladium from the solution is deposited onto the porous substrate, which is preferably in the form of kieselguhr particles. The substrate is then removed from the solution, calcined, and heat treated. This process is repeated until the desired amount of palladium has been deposited onto the substrate.
Palladium/kieselguhr composition and method
Mosley, Jr., Wilbur C.
1993-01-01
A hydrogen-absorbing composition and method for making such a composition. The composition comprises a metal hydride, preferably palladium, deposited onto a porous substrate such as kieselguhr, for use in hydrogen-absorbing processes. The composition is made by immersing a substrate in a concentrated solution containing palladium, such as tetra-amine palladium nitrate. Palladium from the solution is deposited onto the porous substrate, which is preferably in the form of kieselguhr particles. The substrate is then removed from the solution, calcined, and heat treated. This process is repeated until the desired amount of palladium has been deposited onto the substrate.
Ahmad, A L; Mustafa, N N N
2006-09-15
The alumina ceramic membrane has been modified by the addition of palladium in order to improve the H(2) permeability and selectivity. Palladium-alumina ceramic membrane was prepared via a sol-gel method and subjected to thermal treatment in the temperature range 500-1100 degrees C. Fractal analysis from nitrogen adsorption isotherm is used to study the pore surface roughness of palladium-alumina ceramic membrane with different chemical composition (nitric acid, PVA and palladium) and calcinations process in terms of surface fractal dimension, D. Frenkel-Halsey-Hill (FHH) model was used to determine the D value of palladium-alumina membrane. Following FHH model, the D value of palladium-alumina membrane increased as the calcinations temperature increased from 500 to 700 degrees C but decreased after calcined at 900 and 1100 degrees C. With increasing palladium concentration from 0.5 g Pd/100 ml H(2)O to 2 g Pd/100 ml H(2)O, D value of membrane decreased, indicating to the smoother surface. Addition of higher amount of PVA and palladium reduced the surface fractal of the membrane due to the heterogeneous distribution of pores. However, the D value increased when nitric acid concentration was increased from 1 to 15 M. The effect of calcinations temperature, PVA ratio, palladium and acid concentration on membrane surface area, pore size and pore distribution also studied.
Palladium-cobalt particles as oxygen-reduction electrocatalysts
Adzic, Radoslav [East Setauket, NY; Huang, Tao [Manorville, NY
2009-12-15
The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.
Recovery of cesium and palladium from nuclear reactor fuel processing waste
Campbell, David O.
1976-01-01
A method of recovering cesium and palladium values from nuclear reactor fission product waste solution involves contacting the solution with a source of chloride ions and oxidizing palladium ions present in the solution to precipitate cesium and palladium as Cs.sub.2 PdCl.sub.6.
Method of making sulfur-resistant composite metal membranes
Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO
2012-01-24
The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.
NASA Astrophysics Data System (ADS)
Meng, Xiangchao; Li, Zizhen; Chen, Jie; Xie, Hongwei; Zhang, Zisheng
2018-03-01
Palladium nanoparticles well-dispersed on BiOBr surfaces were successfully prepared via a two-step process, namely hydrothermal synthesis of BiOBr followed by photodeposition of palladium. Surface-exposed palladium nanoparticles may improve the harvesting capacity of visible light photons via the surface plasmonic resonance effect to produce extra electrons. Palladium is an excellent electron acceptor, and therefore favours the separation of photogenerated electron/hole pairs. As a result, palladium significantly improves the photocatalytic activity of BiOBr in the removal of organic pollutants (phenol) under visible light irradiation. In addition to as-prepared samples which were comprehensively characterized, the mechanism for the enhancement via the deposition of palladium nanoparticles was also proposed based on results. This work may serve as solid evidence to confirm that surface-deposited palladium nanoparticles are capable of improving photocatalytic activity, and that photodeposition may be an effective approach to load metal nanoparticles onto a surface.
High permeance sulfur tolerant Pd/Cu alloy membranes
Ma, Yi Hua; Pomerantz, Natalie
2014-02-18
A method of making a membrane permeable to hydrogen gas (H.sub.2.uparw.) is disclosed. The membrane is made by forming a palladium layer, depositing a layer of copper on the palladium layer, and galvanically displacing a portion of the copper with palladium. The membrane has improved resistance to poisoning by H.sub.2S compared to a palladium membrane. The membrane also has increased permeance of hydrogen gas compared to palladium-copper alloys. The membrane can be annealed at a lower temperature for a shorter amount of time.
Laccases as palladium oxidases.
Mekmouche, Yasmina; Schneider, Ludovic; Rousselot-Pailley, Pierre; Faure, Bruno; Simaan, A Jalila; Bochot, Constance; Réglier, Marius; Tron, Thierry
2015-02-01
The first example of a coupled catalytic system involving an enzyme and a palladium(ii) catalyst competent for the aerobic oxidation of alcohol in mild conditions is described. In the absence of dioxygen, the fungal laccase LAC3 is reduced by a palladium(0) species as evidenced by the UV/VIS and ESR spectra of the enzyme. During the oxidation of veratryl alcohol performed in water, at room temperature and atmospheric pressure, LAC3 regenerates the palladium catalyst, is reduced and catalyzes the four-electron reduction of dioxygen into water with no loss of enzyme activity. The association of a laccase with a water-soluble palladium complex results in a 7-fold increase in the catalytic efficiency of the complex. This is the first step in the design of a family of renewable palladium catalysts for aerobic oxidation.
Process for recovery of palladium from nuclear fuel reprocessing wastes
Campbell, D.O.; Buxton, S.R.
1980-06-16
Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.
Process for recovery of palladium from nuclear fuel reprocessing wastes
Campbell, David O.; Buxton, Samuel R.
1981-01-01
Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M, (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound, (c) heating the solution at reflux temperature until precipitation is complete, and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.
Tafazolian, Hosein; Yoxtheimer, Robert; Thakuri, Rajendr S; Schmidt, Joseph A R
2017-04-19
The catalytic hydrosilylation of alkynes and ketones has been explored utilizing palladium- and nickel(allyl) complexes supported by 3-iminophosphine ligands. Palladium and nickel demonstrated distinctly different reactivity profiles, with palladium proving very effective for the hydrosilylation of electron-deficient alkynes, while nickel excelled with ketones and internal alkynes. Additionally, in many cases, regioselective hydrosilylation was observed.
NASA Astrophysics Data System (ADS)
Ndungu, Patrick Gathura
Bipolar electrochemistry occurs when an isolated conductive substrate inside an electric field supports both oxidation and reduction reactions. The method requires no direct contact between the power supply and the substrate. In the following thesis bipolar electrochemistry has been used to deposit palladium onto isolated graphite platelets, carbon nanofibers (CNF), and carbon nanotubes (CNT), as well as, various metals, a semiconductor, and an electropolymer on CNTs. Initial work used pulsed DC electric fields to deposit palladium onto isolated graphite platelets. Transmission electron microscopy (TEM) studies on the platelets found palladium metal on one area, indicative of a bipolar mechanism, and palladium deposits that varied from surface bound to highly ramified deposits. No correlation was found between the frequency used to prepare the deposits and the palladium metal dispersion. The same field intensities and frequencies used on the graphite platelets were used to produce CNFs with palladium on one tip. The amount of palladium deposited on one tip of a CNF was controlled by adjusting how long the electric field was applied. Preliminary experiments to produce bulk quantities of CNFs with palladium bipolar electrodeposits used CNFs ball milled with silica, and CNFs suspended in tetrahydrofuran or methylene chloride. The palladium content, measured by atomic absorption spectroscopy, of the functionalized CNFs in silica showed no difference with increased CNF loading; however, TEM studies found a small number of functionalized chloride used suspensions with high loadings of CNFs which led to small percentages of CNFs with bipolar electrodeposited palladium. Finally CNTs obtained commercially and CNTs grown using chemical vapor deposition were successfully functionalized using bipolar electrodeposition. These experiments demonstrate a reliable and controlled method to modify nanostructured materials.
Tew, Min Wei; Nachtegaal, Maarten; Janousch, Markus; Huthwelker, Thomas; van Bokhoven, Jeroen A
2012-04-28
The catalytically active phase of silica-supported palladium catalysts in the selective and non-selective hydrogenation of 1-pentyne was determined using in situ X-ray absorption spectroscopy at the Pd K and L(3) edges. Upon exposure to alkyne, a palladium carbide-like phase rapidly forms, which prevents hydrogen to diffuse into the bulk of the nano-sized particles. Both selective and non-selective hydrogenation occur over carbided particles. The palladium carbide-like phase is stable under reaction conditions and only partially decomposes under high hydrogen partial pressure. Non-selective hydrogenation to pentane is not indicative of hydride formation. The palladium carbide phase was detected in the EXAFS analysis and the K edge XANES showed representative features. This journal is © the Owner Societies 2012
Fission product palladium-silicon carbide interaction in htgr fuel particles
NASA Astrophysics Data System (ADS)
Minato, Kazuo; Ogawa, Toru; Kashimura, Satoru; Fukuda, Kousaku; Shimizu, Michio; Tayama, Yoshinobu; Takahashi, Ishio
1990-07-01
Interaction of fission product palladium (Pd) with the silicon carbide (SiC) layer was observed in irradiated Triso-coated uranium dioxide particles for high temperature gas-cooled reactors (HTGR) with an optical microscope and electron probe microanalyzers. The SiC layers were attacked locally or the reaction product formed nodules at the attack site. Although the main element concerned with the reaction was palladium, rhodium and ruthenium were also detected at the corroded areas in some particles. Palladium was detected on both the hot and cold sides of the particles, but the corroded areas and the palladium accumulations were distributed particularly on the cold side of the particles. The observed Pd-SiC reaction depths were analyzed on the assumption that the release of palladium from the fuel kernel controls the whole Pd-SiC reaction.
Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir
2018-03-01
A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.jp
Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.
Palladium catalyzed hydrogenation of bio-oils and organic compounds
Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA
2011-06-07
The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.
Palladium catalyzed hydrogenation of bio-oils and organic compounds
Elliott, Douglas C [Richland, WA; Hu, Jianli [Kennewick, WA; Hart, Todd R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA
2008-09-16
The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.
Fuel cell with Pt/Pd electrocatalyst electrode
Stonehart, Paul
1983-01-01
An electrode for use in a phosphoric acid fuel cell comprising a graphitized or partially graphitized carbon support having a platinum/palladium electrocatalyst thereon. Preferably, the platinum/palladium catalyst comprises 20 to 65 weight percent palladium.
Toyota, Masahiro
2013-07-01
A novel palladium-catalyzed intramolecular oxidative alkylation of unactivated olefins is described. This protocol was devised to solve one of the drawbacks of the original palladium-catalyzed cycloalkenylation that we developed. We call this new procedure the 'second generation palladium-catalyzed cycloalkenylation'. This protocol has been applied to the total syntheses of cis-195A, trans-195A, boonein, scholareins A, C, D, and alpha-skytanthine.
Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions
Horwitz, E. Philip; Delphin, Walter H.
1979-07-24
A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.
Synthesis of 1-methyleneindenes via palladium-catalyzed tandem reactions.
Ye, Shengqing; Gao, Ke; Zhou, Haibo; Yang, Xiaodi; Wu, Jie
2009-09-28
Palladium-catalyzed tandem reactions of 2-alkenylphenyl-acetylenes with CuCl2 or CuBr2 afforded 3-chloro- or 3-bromo-1-methyleneindenes in good yields; these compounds could be further elaborated via palladium-catalyzed coupling reactions.
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.
1993-04-01
Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.
Chen, Fu-Min; Lu, Dong-Dong; Hu, Li-Qun; Huang, Ju; Liu, Feng-Shou
2017-07-21
Based on the strategy of the development of phosphine-free palladium-catalyzed direct C-H arylation, a series of camphyl-based α-diimine palladium complexes bearing sterically bulky substituents were synthesized and characterized. The palladium complexes were applied for the cross-coupling of thiazole derivatives with aryl bromides. The effect of the sterically bulky substituent on the N-aryl moiety as well as the reaction conditions was screened. Under the optimal protocols, a wide range of aryl bromides can be smoothly coupled with thiazoles in good to excellent yields in the presence of a low palladium loading of 0.2 mol% under open-air conditions.
CATALYTIC COMBUSTION OF ATMOSPHERIC CONTAMINANTS IN SPACE VEHICLE ATMOSPHERES.
preheater were devised which allowed precise temperature control. Hopcalite , palladium supported on alumina, vanadium pentoxide, and silver permanganate...were the catalysts considered. Palladium was found to be more effective catalyst than Hopcalite for oxidizing methane. Palladium was also effective in
NASA Astrophysics Data System (ADS)
Li, Yanji; Wang, Zi; Li, Xiaoling; Yin, Tian; Bian, Kexin; Gao, Faming; Gao, Dawei
2017-02-01
Palladium nanomaterials have attracted great attention on the development of electrocatalysts for fuel cells. Herein, we depicted a novel strategy in the synthesis of palladium nanoparticles with superior electrocatalytic activity. The new approach, based on the self-assembly of bacitracin biotemplate and palladium salt for the preparation of bacitracin-palladium nanoparticles (Bac-PdNPs), was simple, low-cost, and green. The complex, composed by a series of spherical Bac-PdNPs with a diameter of 70 nm, exhibited a chain-liked morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The palladium nanoparticles were mono-dispersed and stable in aqueous solution as shown in TEM and zeta potential. Most importantly, compared to the commercial palladium on carbon (Pd/C) catalyst (8.02 m2 g-1), the Bac-PdNPs showed a larger electrochemically active surface area (47.57 m2 g-1), which endowed the products an excellent electrocatalytic activity for ethanol oxidation in alkaline medium. The strategy in synthesis of Bac-PdNPs via biotemplate approach might light up new ideas in anode catalysts for direct ethanol fuel cells.
Synergistic effect of graphene oxide on the methanol oxidation for fuel cell application
NASA Astrophysics Data System (ADS)
Siwal, Samarjeet; Ghosh, Sarit; Nandi, Debkumar; Devi, Nishu; Perla, Venkata K.; Barik, Rasmita; Mallick, Kaushik
2017-09-01
Aromatic polypyrene was synthesized by the oxidative polymerization of pyrene with potassium tetrachloropalladate (II), as oxidant. During the polymerization process the palladium salt was reduced to metallic palladium and forms the metal-polymer composite material. Polypyrene stabilized palladium nanoparticles showed electrocatalytic activity toward the oxidation of methanol. The performance of the electrocatalytic activity was substantially improved with the incorporation of graphene oxide to the palladium-polypyrene composite and the synergistic performance was attributed to the electronic and structural properties of the system.
Study of palladium plating components
NASA Technical Reports Server (NTRS)
1977-01-01
Palladium deposits were prepared by electrolysis for evaluation as catalytic materials. Electrolysis was carried out in acidic solutions consisting of either 1.0 M in NaCl and 0.01 M PdCl2 or 1.0 M NaCl and 0.04 M PdCl2. It was during the preparation of the palladium deposits that unexpected observations were made that led to the request for analytical services. The analyses did not, nor were they intended to, answer all of the questions. They did, however, shed light on the nature and magnitude of some of the contaminants in the solutions and in the palladium electrodes, as well as characterize the forms of the palladium deposits. Results of analyses are grouped into solution, deposit, and electrode categories for comparison purposes.
Saadi, Jakub; Bentz, Christoph; Redies, Kai; Lentz, Dieter; Zimmer, Reinhold
2016-01-01
Summary Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II) back to palladium(0) which is apparently achieved by the present triethylamine. PMID:27559374
NASA Astrophysics Data System (ADS)
Chan, Chun Wong Aaron; Mahadi, Abdul Hanif; Li, Molly Meng-Jung; Corbos, Elena Cristina; Tang, Chiu; Jones, Glenn; Kuo, Winson Chun Hsin; Cookson, James; Brown, Christopher Michael; Bishop, Peter Trenton; Tsang, Shik Chi Edman
2014-12-01
Lindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases. Here we report that a non-surface modification of palladium gives rise to the formation of an ultra-selective nanocatalyst. Boron atoms are found to take residence in palladium interstitial lattice sites with good chemical and thermal stability. This is favoured due to a strong host-guest electronic interaction when supported palladium nanoparticles are treated with a borane tetrahydrofuran solution. The adsorptive properties of palladium are modified by the subsurface boron atoms and display ultra-selectivity in a number of challenging alkyne hydrogenation reactions, which outclass the performance of Lindlar catalysts.
NASA Technical Reports Server (NTRS)
Park, C.; Poppa, H.; Soria, F.
1984-01-01
Islands and continuous layers of palladium were grown in an ultrahigh vacuum on substrates of Mo(110)c(14 x 7)-O, designated MoO(x), and of clean Mo(110). It was found that as-deposited islands and layers exhibited bulk palladium adsorption properties for CO when deposited at room temperature and for palladium thicknesses in excess of about 3 monolayers. CO adsorption was drastically reduced, however, on annealing. For islands, annealing temperatures of as low as 400 K led to some reduction in CO adsorption whereas more severe reductions were found to occur at 600 K for islands and at 800 K for continuous multilayers. The deactivation depended on the palladium thickness, the substrate species and the extent of thermal treatments. Auger electron spectroscopy, temperature-programmed desorption and Delta-Phi measurements were combined to interpret the deactivation behavior in terms of substrate-support interactions involving the diffusion of substrate species towards the palladium surface.
Meteor Beliefs Project: The Palladium in ancient and early Medieval sources
NASA Astrophysics Data System (ADS)
McBeath, A. Alistair; Gheorghe, A. D.
2004-08-01
An examination of the, apparently meteoritic, object, anciently called the Palladium after the Greek goddess Pallas Athene, is presented, as discussed in various ancient and early medieval sources. Although made of wood, the Palladium was believed to have fallen from the sky. In myths, it was a powerful totemic object, first at the legendary city of Troy, then later at Rome, and had magically protective properties associated with it. Despite its implausibly meteoritic nature, the Palladium can be suggested as supporting the case for ancient meteorite worship.
Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof
Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir Branko
2010-04-06
The present invention relates to particle and nanoparticle composites useful as oxygen-reduction electrocatalysts. The particle composites are composed of a palladium or palladium-alloy particle or nanoparticle substrate coated with an atomic submonolayer, monolayer, bilayer, or trilayer of zerovalent platinum atoms. The invention also relates to a catalyst and a fuel cell containing the particle or nanoparticle composites of the invention. The invention additionally includes methods for oxygen reduction and production of electrical energy by using the particle and nanoparticle composites of the invention.
Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang
2010-12-21
The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.
Nanostructuring of Palladium with Low-Temperature Helium Plasma
Fiflis, P.; Christenson, M.P.; Connolly, N.; Ruzic, D.N.
2015-01-01
Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium. PMID:28347109
Nanostructuring of Palladium with Low-Temperature Helium Plasma.
Fiflis, P; Christenson, M P; Connolly, N; Ruzic, D N
2015-11-25
Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium.
Process for forming sulfuric acid
Lu, Wen-Tong P.
1981-01-01
An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Haiming; van Rooyen, Isabella J.; Hunn, John D.
Here, a detailed electron microscopy study was performed on focused ion beam-prepared lamellae from different locations relative to a crack across the inner pyrolytic carbon layer of a neutron-irradiated tristructural isotropic-coated particle. The distribution and composition of fission products across the inner pyrolytic carbon and silicon carbide (SiC) layers were studied. Previously, this crack was identified in the particle that released significant inventory fractions of cesium and silver during irradiation and displayed localized palladium pileup with SiC degradation. In this study, carbon areas were found in the SiC layer close to the crack tip and they had precipitates that consistedmore » mostly of palladium silicides or palladium, with silver and/or cadmium frequently identified. Results confirmed that areas in the SiC layer close to the crack tip with localized accumulation of palladium were corroded by palladium, forming pure carbon areas and palladium silicide that provided pathways for silver, cadmium and cesium migration.« less
Schneider, Ludovic; Rousselot-Pailley, Pierre; Faure, Bruno; Simaan, A. Jalila; Bochot, Constance; Réglier, Marius
2015-01-01
The first example of a coupled catalytic system involving an enzyme and a palladium(ii) catalyst competent for the aerobic oxidation of alcohol in mild conditions is described. In the absence of dioxygen, the fungal laccase LAC3 is reduced by a palladium(0) species as evidenced by the UV/VIS and ESR spectra of the enzyme. During the oxidation of veratryl alcohol performed in water, at room temperature and atmospheric pressure, LAC3 regenerates the palladium catalyst, is reduced and catalyzes the four-electron reduction of dioxygen into water with no loss of enzyme activity. The association of a laccase with a water-soluble palladium complex results in a 7-fold increase in the catalytic efficiency of the complex. This is the first step in the design of a family of renewable palladium catalysts for aerobic oxidation. PMID:29560210
Isakova, Anna; Murdoch, Billy J; Novakovic, Katarina
2018-04-04
The oscillatory palladium-catalysed carbonylation reaction opens new horizons for applications in smart materials due to the versatility of its conditions and substrates, as well as the adjustability of amplitude and period of pH oscillations. A variety of viable substrates have been demonstrated, including polymeric alkyne-terminated substrates. However, so far, there have not been any reports of polymer-based palladium catalysts in oscillatory mode. In this paper, we demonstrate pH oscillations in various systems, using commercially available palladium acetate, a triphenylphosphine palladium acetate complex and a polymer-bound palladium catalyst. While palladium acetate was able to generate oscillations under the conditions already established in our previous research on PdI2-catalysed oscillators, the other two catalysts needed the addition of HI to induce oscillations. HI forced an initial pH drop, bringing pH into the range where oscillations generally occur. Addition of HI had a significant effect on all catalysts, modifying the amplitude and period of oscillations, oscillation mode, as well as starting material conversion and product distribution.
Wen, Haiming; van Rooyen, Isabella J.; Hunn, John D.; ...
2018-05-07
Here, a detailed electron microscopy study was performed on focused ion beam-prepared lamellae from different locations relative to a crack across the inner pyrolytic carbon layer of a neutron-irradiated tristructural isotropic-coated particle. The distribution and composition of fission products across the inner pyrolytic carbon and silicon carbide (SiC) layers were studied. Previously, this crack was identified in the particle that released significant inventory fractions of cesium and silver during irradiation and displayed localized palladium pileup with SiC degradation. In this study, carbon areas were found in the SiC layer close to the crack tip and they had precipitates that consistedmore » mostly of palladium silicides or palladium, with silver and/or cadmium frequently identified. Results confirmed that areas in the SiC layer close to the crack tip with localized accumulation of palladium were corroded by palladium, forming pure carbon areas and palladium silicide that provided pathways for silver, cadmium and cesium migration.« less
Zhang, Guoying; Gao, Bao; Huang, Hanmin
2015-06-22
A novel and efficient palladium-catalyzed hydroaminocarbonylation of alkenes with aminals has been developed under mild reaction conditions, and allows the synthesis of a wide range of N-alkyl linear amides in good yields with high regioselectivity. On the basis of this method, a cooperative catalytic system operating by the synergistic combination of palladium, paraformaldehyde, and acid was established for promoting the hydroaminocarbonylation of alkenes with both aromatic and aliphatic amines, which do not react well under conventional palladium-catalyzed hydroaminocarbonylation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Culkin, Darcy A; Hartwig, John F
2002-08-14
A new coupling process, the palladium-catalyzed alpha-arylation of nitriles, was developed by exploring the structure and reactivity of arylpalladium cyanoalkyl complexes. Complexes of 1,2-bis(diphenylphosphino)benzene (DPPBz), 1,1'-bis(di-i-propylphosphino)ferrocene (D(i)()PrPF), racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), and diphenylethylphosphine (PPh(2)Et) were prepared. Coordination to palladium through the alpha-carbon was observed for DPPBz-ligated complexes and for complexes of primary and benzylic nitrile anions. However, the anion of isobutyronitrile was coordinated to palladium through the cyano-nitrogen when the complex was ligated by D(i)()PrPF. The isobutyronitrile anion displaced a phosphine ligand to form a C,N-bridged dimer when generated from PPh(2)Et-ligated palladium. These results suggest that the nitrile anion preferentially coordinates to palladium through the carbon atom in the absence of steric effects. Thermolysis of the arylpalladium cyanoalkyl complexes led to reductive elimination that formed alpha-aryl nitriles. The high yields and short reaction times observed for BINAP-ligated complexes suggested that BINAP-ligated palladium catalysts might be appropriate for the arylation of nitriles. Initial results on a palladium-catalyzed process for the direct coupling of aryl bromides and primary, benzylic, and secondary nitrile anions to form alpha-aryl nitriles in good yields are reported.
Doped palladium containing oxidation catalysts
Mohajeri, Nahid
2014-02-18
A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.
Size-Selective Detection of Picric Acid by Fluorescent Palladium Macrocycles.
Kumar, Sushil; Kishan, Ram; Kumar, Pramod; Pachisia, Sanya; Gupta, Rajeev
2018-02-19
This work presents the synthesis and characterization of two palladium-based fluorescent macrocycles offering hydrogen-bonding cavities of contrasting dimensions. Both palladium macrocycles function as chemosensors for the detection of nitroaromatics, whereas the larger macrocycle not only illustrates nanomolar detection of picric acid but also transports its significant amount from an aqueous to an organic phase.
Nano-palladium is a cellular catalyst for in vivo chemistry
NASA Astrophysics Data System (ADS)
Miller, Miles A.; Askevold, Bjorn; Mikula, Hannes; Kohler, Rainer H.; Pirovich, David; Weissleder, Ralph
2017-07-01
Palladium catalysts have been widely adopted for organic synthesis and diverse industrial applications given their efficacy and safety, yet their biological in vivo use has been limited to date. Here we show that nanoencapsulated palladium is an effective means to target and treat disease through in vivo catalysis. Palladium nanoparticles (Pd-NPs) were created by screening different Pd compounds and then encapsulating bis[tri(2-furyl)phosphine]palladium(II) dichloride in a biocompatible poly(lactic-co-glycolic acid)-b-polyethyleneglycol platform. Using mouse models of cancer, the NPs efficiently accumulated in tumours, where the Pd-NP activated different model prodrugs. Longitudinal studies confirmed that prodrug activation by Pd-NP inhibits tumour growth, extends survival in tumour-bearing mice and mitigates toxicity compared to standard doxorubicin formulations. Thus, here we demonstrate safe and efficacious in vivo catalytic activity of a Pd compound in mammals.
Palladium-Zeolite nanofiber as an effective recyclable catalyst membrane for water treatment.
Choi, Jungsu; Chan, Sophia; Yip, Garriott; Joo, Hyunjong; Yang, Heejae; Ko, Frank K
2016-09-15
Zeolite is an exciting natural material due to its unique capability of ammonium nitrogen (NH3N) adsorption in water. In this study, multifunctional hybrid composites of zeolite/palladium (Ze/Pd) on polymer nanofiber membranes were fabricated and explored for sustainable contaminant removal. SEM and XRD demonstrated that zeolite and palladium nanoparticles were uniformly distributed and deposited on the nanofibers. NH3N recovery rate was increased from 23 to 92% when palladium coated zeolite was embedded on the nanofiber. Multifunctional nanofibers of Ze/Pd membranes were able to adsorb NH3N on the zeolites placed on the surface of fibers and palladium catalysts were capable of selective oxidation of NH3N to N2 gas. The cycling of NH3N adsorption-oxidation, high flux, hydrophilicity, and flexibility of the membrane makes it a strong candidate for water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kuttiyiel, Kurian A; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R
2014-11-06
Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here we report on a structurally ordered Au10Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that, at elevated temperatures, palladium cobalt nanoparticles undergo an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets via addition of gold atoms. The superior stability of this catalyst compared with platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matter.
Yamada, Yoichi M A; Watanabe, Toshihiro; Ohno, Aya; Uozumi, Yasuhiro
2012-02-13
We have developed a variety of polymeric palladium-nanoparticle membrane-installed microflow devices. Three types of polymers were convoluted with palladium salts under laminar flow conditions in a microflow reactor to form polymeric palladium membranes at the laminar flow interface. These membranes were reduced with aqueous sodium formate or heat to create microflow devices that contain polymeric palladium-nanoparticle membranes. These microflow devices achieved instantaneous hydrodehalogenation of aryl chlorides, bromides, iodides, and triflates by 10-1000 ppm within a residence time of 2-8 s at 50-90 °C by using safe, nonexplosive, aqueous sodium formate to quantitatively afford the corresponding hydrodehalogenated products. Polychlorinated biphenyl (10-1000 ppm) and polybrominated biphenyl (1000 ppm) were completely decomposed under similar conditions, yielding biphenyl as a fungicidal compound. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Palladium coated porous anodic alumina membranes for gas reforming processes
NASA Astrophysics Data System (ADS)
Wu, Jeremy P.; Brown, Ian W. M.; Bowden, Mark E.; Kemmitt, Timothy
2010-11-01
Nanostructured ceramic membranes with ultrathin coatings of palladium metal have been demonstrated to separate hydrogen gas from a gas mixture containing nitrogen with 10% carbon dioxide and 10% hydrogen at temperatures up to 550 °C. The mechanically robust and thermally durable membranes were fabricated using a combination of conventional and high-efficiency anodisation processes on high purity aluminium foils. A pH-neutral plating solution has also been developed to enable electroless deposition of palladium metal on templates which were normally prone to chemical corrosion in strong acid or base environment. Activation and thus seeding of palladium nuclei on the surface of the template were essential to ensure uniform and fast deposition, and the thickness of the metal film was controlled by time of deposition. The palladium coated membranes showed improved hydrogen selectivity with increased temperature as well as after prolonged exposure to hydrogen, demonstrating excellent potential for gas separation technologies.
ERIC Educational Resources Information Center
Fernandez, Alberto; Lopez-Torres, Margarita; Fernandez, Jesus J.; Vazquez-Garcia, Digna; Vila, Jose M.
2012-01-01
A laboratory experiment for students in advanced inorganic chemistry is described. Students prepare palladium(II) cyclometalated complexes. A terdentate [C,N,O] Schiff base ligand is doubly deprotonated upon reaction with palladium(II) acetate in a self-assembly process to give a palladacycle with a characteristic tetranuclear structure. This…
Dong, Cheng-Guo; Hu, Qiao-Sheng
2008-01-01
The palladium associated aryne generation strategy and Pd(OAc)2-catalyzed annulative Domino reactions of 1-chloro-2-halobenzenes and 2-haloaryl tosylates with hindered Grignard reagents via palladium associated arynes are described. The palladium associated aryne generation strategy described here not only allows the high yield, one-step access to potentially useful substituted fluorenes from readily available 1-chloro-2-halobenzenes and 2-haloaryl tosylates, but may also lead to the development of other tandem reactions based on these readily available o-leaving group bearing haloarenes PMID:17048842
Dong, Cheng-Guo; Hu, Qiao-Sheng
2006-10-26
The palladium-associated aryne generation strategy and Pd(OAc)(2)-catalyzed annulative Domino reactions of 1-chloro-2-halobenzenes and 2-haloaryl tosylates with hindered Grignard reagents via palladium-associated arynes are described. The palladium-associated aryne generation strategy described here not only allows the high yield, one-step access to potentially useful substituted fluorenes from readily available 1-chloro-2-halobenzenes and 2-haloaryl tosylates, but may also lead to the development of other tandem reactions based on these readily available ortho leaving group bearing haloarenes. [reaction: see text
Evaluation of cytotoxicity of new trans-palladium(II) complex in human cells in vitro.
Kontek, Renata; Matławska-Wasowska, Ksenia; Kalinowska-Lis, Urszula; Kontek, Bogdan; Ochocki, Justyn
2011-01-01
Studies of cytotoxicity allow to elucidate the mechanisms by which chemical compounds influence cells and tissues. On the basis of the structural analogy between platinum(II) and palladium(II) complexes, a variety of studies on palladium(II) compounds as potential anticancer drugs have been carried out (1, 2). The cytotoxicity was evaluated by MTT assay. Abilities of trans-palladium(II) complex containing diethyl (pyridin-2-ylmethyl)phosphates as non-leaving ligands (trans-[PdCl2(2-pmOpe 2)]) to induce apoptosis and necrosis in normal lymphocytes, A549 cells and HT29 cell lines were performed by use of fluorochrome staining. The obtained results revealed, that the new trans-palladium(II) complex was more cytotoxic against A549 and HT29 tumor cells than on the normal lymphocytes in vitro. The novel complex induces apoptosis in all tested cells, but in lymphocytes to a lesser degree. The compound tested also induced significant amounts of necrotic cells, which exceeded the level of apoptotic cell fractions. The results demonstrate that the trans-Pd(II) complex showed substantial cytotoxic activity against A549 and HT29 tumor cells and indicate that the new trans-palladium(II) complex effectively inhibited cancer cells growth.
Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors
NASA Astrophysics Data System (ADS)
Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik
2015-12-01
Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer. Electronic supplementary information (ESI) available: BET surface area and pore distribution of palladium architectures without CPPyNPs; Hydrogen sensing ability of palladium architectures without CPPyNPs; HR-TEM image of Pd@CPPy_C16 after 100 cycle exposure of H2. See DOI: 10.1039/c5nr06193h
NASA Astrophysics Data System (ADS)
Vats, Tripti; Siril, Prem Felix
2017-12-01
Pristine graphene (G) has not received much attention as a catalyst support, presumably due to its relative inertness as compared to reduced graphene oxide (RGO). In the present work, we used swollen liquid crystals (SLCs) as nano-reactors for graphene-palladium nanocomposites synthesis. The 'soft' confinement of SLCs directs the growth of palladium (Pd) nanoparticles over the G sheets. In this dataset we include all the parameters and details of different techniques used for the characterization of G, SLCs and synthesized G-Pd nanocomposites. The synthesized G-palladium nanocomposites (Pd-G) exhibited improved catalytic activity compared with Pd-RGO and Pd nanoparticles, in the hydrogenation of nitrophenols and C-C coupling reactions.
Oxidation of methane over palladium catalysts: effect of the support.
Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V
2005-01-01
This work is focused on the deep catalytic oxidation of methane over supported palladium catalysts. The influences of the metal loading, oxidation state of palladium, nature of supports, presence of promoters in the supports (for zirconia-based supports), and thermal stability have been studied experimentally. Catalysts were prepared by incipient wetness of commercially available supports with aqueous solutions of palladium nitrate. For gamma-alumina support, it was observed that the optimal amount of palladium is between 0.5% and 2%, with higher amounts leading to a loss in specific activity. Concerning the oxidation state of the catalyst, it is concluded that for all the supports tested in the present work, a reduction of the catalyst is not needed, yielding the same conversion at steady state catalysts reduced and oxidised. The thermal stability of various supported catalysts were also studied, zirconia supports being the most active. These supports, specially Y-modified zirconia support, do not suffer appreciable deactivation below 500 degrees C.
Recovery of fission product palladium from acidic high level waste solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizvi, G.H.; Mathur, J.N.; Murali, M.S.
1996-07-01
The recovery of palladium from a synthetic pressurized heavy water reactor high level waste (PHWR-HLW) solution has been carried out, and the best reagents to use for the actual HLW solutions are discussed. The extraction of palladium from nitric acid solutions has been carried out using Cyanex-471X (triisobutylphosphine sulfide, TIPS) as the extractant. The metal ion could be quantitatively extracted from solutions with nitric acid concentrations between 2.0 and 6.0 M. The species extracted into the organic phase was found to be Pd(NO{sub 3}){sub 2}{center_dot}TIPS. Nitric acid in the range of 2.0 to 5.0 M had no effect on TIPSmore » for at least 71 hours. A systematic study of gamma irradiation on loading and stripping of palladium from loaded organic phases using several potential extractants, TIPS, alpha benzoin oxime, dioctylsulfide, and dioctylsulfoxide has been made. A flow sheet for the recovery of palladium from actual HLW solutions using TIPS is proposed.« less
Palladium-catalyzed substitution of (coumarinyl)methyl acetates with C-, N-, and S-nucleophiles
Chattopadhyay, Kalicharan; Fenster, Erik; Grenning, Alexander J
2012-01-01
Summary The palladium-catalyzed nucleophilic substitution of (coumarinyl)methyl acetates is described. The reaction proceeds though a palladium π-benzyl-like complex and allows for many different types of C-, N-, and S-nucleophiles to be regioselectively added to the biologically active coumarin motif. This new method was utilized to prepare a 128-membered library of aminated coumarins for biological screening. PMID:23019448
Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R
2013-05-15
Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.
González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Chávez-Ramírez, Fernando
2017-01-01
A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen. PMID:28878161
Hubicki, Zbigniew; Wołowicz, Anna
2009-05-30
The increasing demand for palladium for technological application requires the development of ion exchange chromatography. Recently ion exchange chromatography has developed largely as a result of new types of ion exchangers available on the market of which two types are widely applied. One of them are selective (chelating) and modified ion exchangers and the other one are liquid exchangers. Two types of ion exchange resins such as chelating (Lewatit TP 214, Purolite S 920) and cationic (Chelite S, Duolite GT 73) ion exchangers are used for the recovery of palladium(II) complexes from chloride media (0.1-2.0M HCl-1.0M NaCl-0.0011 M Pd(II); 0.1-2.0M HCl-2.0M NaCl-0.0011M Pd(II)). The influence of concentration of hydrochloric acid, sodium chloride as well as the phase contact time on the degree of recovery of palladium(II) complexes was studied. Moreover, the amount of palladium(II) chlorocomplexes sorbed onto ion exchangers, the working ion exchange capacities and the weight and bed distribution coefficients were calculated in order to judge which of two types of resins possesses the best performance towards palladium(II) complexes.
González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz Del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Muñoz-Pacheco, Jesús Manuel; Chávez-Ramírez, Francisco
2017-09-06
A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen.
Sun, Desheng; Monaghan, Peter; Brantley, William A; Johnston, William M
2002-01-01
Corrosion of cast alloy restorations may lead to their failure or adversely affect their biocompatibility. Although some documentation of the corrosion behavior of the high-palladium dental alloys exists, questions remain about their corrosion resistance and mechanisms. This study compared the in vitro corrosion characteristics of 3 high-palladium alloys and 1 gold-palladium alloy in simulated body fluid and oral environments. Two Pd-Cu-Ga alloys and 1 Pd-Ga alloy were selected; an Au-Pd alloy served as the control. The corrosion behavior for the as-cast and simulated porcelain-firing (heat-treated) conditions of each alloy (N = 5) was evaluated in 0.9% NaCl, 0.09% NaCl, and Fusayama solutions. Heat-treated specimens of each alloy (N = 5) were also tested in N(2)-deaerated 0.09% NaCl and Fusayama solutions (pH 4). After immersion in the electrolyte for 24 hours, the open-circuit potential (OCP) was measured, and linear polarization was performed from -20 mV to +20 mV (vs. OCP) at a scanning rate of 0.125 mV/s. Cyclic polarization was performed from -300 mV to +1000 mV and back to -300 mV (vs. OCP) at a scanning rate of 1 mV/s. Data were evaluated with analysis of variance and the Ryan-Einot-Gabriel-Welsch multiple-range test (alpha=.05). The OCP of each alloy varied with the condition (as-cast or heat-treated) and electrolyte used. Corrosion resistance was similar for the 4 alloys tested. For cyclic polarization, all alloys showed active-passive or spontaneous passive behavior in nearly all electrolytes. During some reverse scans, the 3 high-palladium alloys displayed 3 or 5 anodic peaks. No positive hysteresis was observed for any of the alloy/electrolyte combinations evaluated. The corrosion resistances of the 3 high-palladium alloys in simulated body fluid and oral environments were comparable to that of the gold-palladium alloy. The similar corrosion resistance for the 3 high-palladium alloys was attributed to their high noble metal content and theorized stable structure at the submicron level. Selective corrosion of different phases and elements, surface enrichment of palladium, and adsorption of species are possible corrosion mechanisms. The cyclic polarization results suggest that none of the 4 alloys would be prone to pitting or crevice corrosion under in vivo conditions, but crevice conditions should nonetheless be avoided for these alloys in the oral environment.
Palladium-Catalyzed Indole, Pyrrole, and Furan Arylation by Aryl Chlorides
Nadres, Enrico T.; Lazareva, Anna; Daugulis, Olafs
2011-01-01
The palladium-catalyzed direct arylation of indoles, pyrroles, and furans by aryl chlorides has been demonstrated. The method employs a palladium acetate catalyst, 2-(dicyclohexylphosphino)-biphenyl ligand, and an inorganic base. Electron-rich and electron-poor aryl chlorides as well as chloropyridine coupling partners can be used and arylated heterocycles are obtained in moderate to good yields. Optimization of base, ligand, and solvent is required for achieving best results. PMID:21192652
Sorption of silver, gold and palladium with a polythioether foam.
Khan, A S; Chow, A
1986-02-01
Silver, gold and palladium can be sorbed by a thiopolymer of the type [HO(CH(2)CH(2)CH(2)SS)(n)CH(2)CH(2)OH]. The distribution coefficient for palladium increases with halide concentration, with iodide having the largest effect. Silver can be extracted from chloride, nitrate or picrate media. The different distribution coefficients for gold in hydrochloric acid and in sodium chloride suggest that different sorption mechanisms predominate.
Catalytic Oxidation of Carbon Monoxide at High Humidity and Low Temperature
1980-06-10
Hopcalite Palladium Low temperature 20. ABSTRACT (Continue on r.eee side It nec.esay and Identify by block num~ber) ;Two catalysts ( hopcalite and palladium...dichlorotetrafluoroethane (R-114) in addition to approximately 5000 ppmn of CO. Hopcalite was further tested under similar conditions except that the air was...8 Hopcalite Catalyst in 50% R.H.-Air ..................... 9 Palladium Catalyst in 50% R.H.-Air .................... 10 Hopealite Catalyst in 100
Method of producing .sup.67 Cu
O'Brien, Jr., Harold A.; Barnes, John W.; Taylor, Wayne A.; Thomas, Kenneth E.; Bentley, Glenn E.
1984-01-01
A method of producing carrier-free .sup.67 Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including .sup.67 Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.
A study of Pd/SO4/ZrO2/Al2O3 catalysts in n-hexane isomerization
NASA Astrophysics Data System (ADS)
Dzhikiya, O. V.; Smolikov, M. D.; Kazantsev, K. V.; Yablokova, S. S.; Kireeva, T. V.; Paukshtis, E. A.; Gulyaeva, T. I.; Belyi, A. S.
2017-08-01
The effect of palladium concentration in a range from 0.02 to 1.6 wt.% on characteristics of n-hexane isomerization was studied. The (O2-Hchem) titration and O2 chemisorption study revealed that palladium in Pd/SO4/ZrO2/Al2O3 systems adsorbs hydrogen in a ratio H/Pds = 1.13-1.65 at./at. Investigation of the charge state of the metal by IR spectroscopy of adsorbed CO showed the presence of both the metallic (Pd0) and charged palladium species. Pd/SO4/ZrO2/Al2O3 catalysts with charged palladium atoms exhibit high activity and selectivity in n-hexane isomerization.
Method for producing /sup 67/Cu
O'Brien, H.A. Jr.; Barnes, J.W.; Taylor, W.A.; Thomas, K.E.; Bentley, G.E.
A method of producing carrier-free /sup 67/Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including /sup 67/Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.
Ichio, Hiroaki; Murakami, Hidetoshi; Chen, Yen-Chou; Takahashi, Tamotsu; Ogasawara, Masamichi
2017-07-21
A palladium-catalyzed reaction for preparing various endocyclic allenes was developed. The substrates for the reaction were readily available ω-(pronucleophile-tethered)-3-bromo-1,3-alkadienes, and a palladium-catalyst facilitated their unimolecular S N 2'-cyclization in the presence of potassium tert-butoxide to give the corresponding 9- to 16-membered endocyclic allenes in fair yields of up to 67% together with the dimeric 16- to 32-membered endocyclic bis-allenes and other oligomeric/polymeric intermolecular reaction products. For higher yields of the monomeric endocyclic allenes, the reaction needed to be conducted under high-dilution conditions. Using a chiral palladium catalyst, axially chiral endocyclic allenes were obtained in up to 70% ee.
2007-06-01
runoff from Drainage Area B. Potentially contaminated surface runoff from Drainage Area B may enter the soil , and subsequently the groundwater, along...an estimated 250,000 gallons of JP-4 jet fuel were released. Soil was excavated and approximately 100,000 gallons of fuel were recovered during...Monitoring wells (4 wells, $4,000 per well) $16,000 Palladium catalyst treatment system $61,000 Palladium catalyst with eggshell coating (20 kg, $245
Metallization of Large Silicon Wafers
NASA Technical Reports Server (NTRS)
Pryor, R. A.
1978-01-01
A metallization scheme was developed which allows selective plating of silicon solar cell surfaces. The system is comprised of three layers. Palladium, through the formation of palladium silicide at 300 C in nitrogen, makes ohmic contact to the silicon surface. Nickel, plated on top of the palladium silicide layer, forms a solderable interface. Lead-tin solder on the nickel provides conductivity and allows a convenient means for interconnection of cells. To apply this metallization, three chemical plating baths are employed.
Dong, Kaiwu; Sang, Rui; Wei, Zhihong; Liu, Jie; Dühren, Ricarda; Spannenberg, Anke; Jiao, Haijun; Neumann, Helfried; Jackstell, Ralf; Franke, Robert
2018-01-01
Mechanistic studies of the catalyst [Pd2(dba)3/1,1′-bis(tert-butyl(pyridin-2-yl)phosphanyl)ferrocene, L2] for olefin alkoxycarbonylation reactions are described. X-ray crystallography reveals the coordination of the pyridyl nitrogen atom in L2 to the palladium center of the catalytic intermediates. DFT calculations on the elementary steps of the industrially relevant carbonylation of ethylene (the Lucite α-process) indicate that the protonated pyridyl moiety is formed immediately, which facilitates the formation of the active palladium hydride complex. The insertion of ethylene and CO into this intermediate leads to the corresponding palladium acyl species, which is kinetically reversible. Notably, this key species is stabilized by the hemilabile coordination of the pyridyl nitrogen atom in L2. The rate-determining alcoholysis of the acyl palladium complex is substantially facilitated by metal–ligand cooperation. Specifically, the deprotonation of the alcohol by the built-in base of the ligand allows a facile intramolecular nucleophilic attack on the acyl palladium species concertedly. Kinetic measurements support this mechanistic proposal and show that the rate of the carbonylation step is zero-order dependent on ethylene and CO. Comparing CH3OD and CH3OH as nucleophiles suggests the involvement of (de)protonation in the rate-determining step. PMID:29732128
Lim, Su Hui; Radha, Boya; Chan, Jie Yong; Saifullah, Mohammad S M; Kulkarni, Giridhar U; Ho, Ghim Wei
2013-08-14
Flexible palladium-based H2 sensors have a great potential in advanced sensing applications, as they offer advantages such as light weight, space conservation, and mechanical durability. Despite these advantages, the paucity of such sensors is due to the fact that they are difficult to fabricate while maintaining excellent sensing performance. Here, we demonstrate, using direct nanoimprint lithography of palladium, the fabrication of a flexible, durable, and fast responsive H2 sensor that is capable of detecting H2 gas concentration as low as 50 ppm. High resolution and high throughput patterning of palladium gratings over a 2 cm × 1 cm area on a rigid substrate was achieved by heat-treating nanoimprinted palladium benzyl mercaptide at 250 °C for 1 h. The flexible and robust H2 sensing device was fabricated by subsequent transfer nanoimprinting of these gratings into a polycarbonate film at its glass transition temperature. This technique produces flexible H2 sensors with improved durability, sensitivity, and response time in comparison to palladium thin films. At ambient pressure and temperature, the device showed a fast response time of 18 s at a H2 concentration of 3500 ppm. At 50 ppm concentration, the response time was found to be 57 s. The flexibility of the sensor does not appear to compromise its performance.
Jadhav, Dipak A; Deshpande, Parag A; Ghangrekar, Makarand M
2017-08-01
Application of ZrO 2 , MnO 2 , palladium, palladium-substituted-zirconium oxide (Zr 0.98 Pd 0.02 O 2 ) and palladium-substituted-manganese oxide (Mn 0.98 Pd 0.02 O 2 ) cathode catalysts in a single-chambered microbial fuel cell (MFC) was explored. The highest power generation (1.28W/m 3 ) was achieved in MFC with Mn 0.98 Pd 0.02 O 2 catalyst, which was higher than that with MnO 2 (0.58W/m 3 ) alone; whereas, MFC having Zr 0.98 Pd 0.02 O 2 catalyzed cathode and non-catalyzed cathode produced powers of 1.02 and 0.23W/m 3 , respectively. Also, low-cost zirconium-palladium-composite showed better catalytic activity and capacitance over ZrO 2 with 20A/m 3 current production and demonstrated its suitability for MFC applications. Cyclic voltammetry analyses showed higher well-defined redox peaks in composite catalysts (Mn/Zr-Pd-C) over other catalyzed MFCs containing MnO 2 or ZrO 2 . Electrochemical behaviour of composite catalysts on cathode showed higher availability of adsorption sites for oxygen reduction and, hence, enhanced the rate of cathodic reactions. Thus, Mn/Zr-Pd-C-based composite catalysts exhibited superior cathodic performance and could be proposed as alternatives to costly Pd-catalyst for field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pal, Hemant; Sharma, Vimal
2014-11-01
The mechanical, electrical, and thermal expansion properties of carbon nanotube (CNT)-based silver and silver-palladium (10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver-palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion (CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%-40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver-palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.
Zhong, Hong; Liu, Caiping; Zhou, Hanghui; Wang, Yangxin; Wang, Ruihu
2016-08-22
Three porous organic polymers (POPs) containing H, COOMe, and COO(-) groups at 2,6-bis(1,2,3-triazol-4-yl)pyridyl (BTP) units (i.e., POP-1, POP-2, and POP-3, respectively) were prepared for the immobilization of metal nanoparticles (NPs). The ultrafine palladium NPs are uniformly encapsulated in the interior pores of POP-1, whereas uniform- and dual-distributed palladium NPs are located on the external surface of POP-2 and POP-3, respectively. The presence of carboxylate groups not only endows POP-3 an outstanding dispersibility in H2 O/EtOH, but also enables the palladium NPs at the surface to show the highest catalytic activity, stability, and recyclability in dehalogenation reactions of chlorobenzene at 25 °C. The palladium NPs on the external surface are effectively stabilized by the functionalized POPs containing BTP units and carboxylate groups, which provides a new insight for highly efficient catalytic systems based on surface metal NPs of porous materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diao, Tianning; Stahl, Shannon S
2014-12-14
Palladium-catalyzed acetoxylation of allylic C-H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate formation from well-defined π-allyl palladium(II) complexes. Here, we assess the ability of O 2 to promote similar reactions with a series of "unligated" π-allyl palladium(II) complexes (i.e., in the absence of ancillary phosphorus, nitrogen or related donor ligands). Stoichiometric and catalytic allyl acetate formation is observed under aerobic conditions with several different alkenes. Mechanistic studies are most consistent with a "pull" mechanism in which O 2 traps the Pd 0 intermediate following reversible C-O bond-formation from an allyl-palladium(II) species. A "push" mechanism, involving oxidatively induced C-O bond formation, does not appear to participate. These results and conclusions are compared with benzoquinone-promoted allylic acetoxylation, in which a "push" mechanism seems to be operative.
Luo, Wenhao; Sankar, Meenakshisundaram; Beale, Andrew M.; He, Qian; Kiely, Christopher J.; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.
2015-01-01
The catalytic hydrogenation of levulinic acid, a key platform molecule in many biorefinery schemes, into γ-valerolactone is considered as one of the pivotal reactions to convert lignocellulose-based biomass into renewable fuels and chemicals. Here we report on the development of highly active, selective and stable supported metal catalysts for this reaction and on the beneficial effects of metal nano-alloying. Bimetallic random alloys of gold-palladium and ruthenium-palladium supported on titanium dioxide are prepared with a modified metal impregnation method. Gold-palladium/titanium dioxide shows a marked,~27-fold increase in activity (that is, turnover frequency of 0.1 s−1) compared with its monometallic counterparts. Although ruthenium-palladium/titanium dioxide is not only exceptionally active (that is, turnover frequency of 0.6 s−1), it shows excellent, sustained selectivity to γ-valerolactone (99%). The dilution and isolation of ruthenium by palladium is thought to be responsible for this superior catalytic performance. Alloying, furthermore, greatly improves the stability of both supported nano-alloy catalysts. PMID:25779385
NASA Astrophysics Data System (ADS)
Liu, Yangqing; Wang, Kai; Hou, Wei; Shan, Wanjian; Li, Jing; Zhou, Yu; Wang, Jun
2018-01-01
Multi-functional mesoporous poly(ionic liquid) (MPIL) containing pyridine-based ionic liquid (IL) moieties and adjacent double sbnd COOH groups was synthesized through the free radical copolymerization of IL monomer N-propane sulfonate-4-vinylpyridine, maleic anhydride and divinylbenzene. Palladium(II) species were anchored on this MPIL support, affording the first efficient heterogeneous catalyst for the oxidative coupling of benzene to biphenyl under atmospheric oxygen at low temperature. The biphenyl yield of 15.0% (selectivity: 98.5%, turnover number: 62) was even higher than the one over the homogeneous counterpart palladium acetate. The catalyst can be facilely separated and reused. The IL moiety in the polymeric framework endowed the formation of immobilized palladium(II) species with high electrophilicity, which responds to the high performance.
Brett, Gemma L; Miedziak, Peter J; He, Qian; Knight, David W; Edwards, Jennifer K; Taylor, Stuart H; Kiely, Christopher J; Hutchings, Graham J
2013-10-01
The oxidation of 1,4-butanediol and butyrolactone have been investigated by using supported gold, palladium and gold-palladium nanoparticles. The products of such reactions are valuable chemical intermediates and, for example, can present a viable pathway for the sustainable production of polymers. If both gold and palladium were present, a significant synergistic effect on the selective formation of dimethyl succinate was observed. The support played a significant role in the reaction, with magnesium hydroxide leading to the highest yield of dimethyl succinate. Based on structural characterisation of the fresh and used catalysts, it was determined that small gold-palladium nanoalloys supported on a basic Mg(OH)2 support provided the best catalysts for this reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of forming supported doped palladium containing oxidation catalysts
Mohajeri, Nahid
2014-04-22
A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.
High-Valent Organometallic Copper and Palladium in Catalysis
Hickman, Amanda J.; Sanford, Melanie S.
2015-01-01
Preface Copper and palladium catalysts are critically important for numerous commercial chemical processes. Improvements in the activity, selectivity, and scope of these catalysts have the potential to dramatically reduce the environmental impact and increase the sustainability of chemical reactions. One rapidly emerging strategy to achieve these goals is to exploit “high-valent” copper and palladium intermediates in catalysis. This review describes exciting recent advances involving both the fundamental chemistry and the applications of these high-valent metal complexes in numerous synthetically useful catalytic transformations. PMID:22498623
Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst
Gorer, Alexander
2002-01-01
A noble metal alloy composition for a fuel cell catalyst, a ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.
Ciszek, Benjamin; Fleischer, Ivana
2018-04-12
Herein we report the first homogeneous palladium-based transfer hydrogenolysis of benzylic alcohols using an in situ formed palladium-phosphine complex and formic acid as reducing agent. The reaction requires a catalyst loading as low as only 1 mol% of palladium and just a slight excess of reductant to obtain the deoxygenated alkylarenes in good to excellent yields. Besides demonstrating the broad applicability for primary, secondary and tertiary benzylic alcohols, a reaction intermediate could be identified. Additionally, it could be shown that partial oxidation of the applied phosphine ligand was beneficial for the course of the reaction, presumably by stabilizing the active catalyst. Reaction profiles and catalyst poisoning experiments were used to characterize the catalyst, the results indicate a homogeneous metal complex as active species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Freestanding palladium nanosheets with plasmonic and catalytic properties
NASA Astrophysics Data System (ADS)
Huang, Xiaoqing; Tang, Shaoheng; Mu, Xiaoliang; Dai, Yan; Chen, Guangxu; Zhou, Zhiyou; Ruan, Fangxiong; Yang, Zhilin; Zheng, Nanfeng
2011-01-01
Ultrathin metal films can exhibit quantum size and surface effects that give rise to unique physical and chemical properties. Metal films containing just a few layers of atoms can be fabricated on substrates using deposition techniques, but the production of freestanding ultrathin structures remains a significant challenge. Here we report the facile synthesis of freestanding hexagonal palladium nanosheets that are less than 10 atomic layers thick, using carbon monoxide as a surface confining agent. The as-prepared nanosheets are blue in colour and exhibit a well-defined but tunable surface plasmon resonance peak in the near-infrared region. The combination of photothermal stability and biocompatibility makes palladium nanosheets promising candidates for photothermal therapy. The nanosheets also exhibit electrocatalytic activity for the oxidation of formic acid that is 2.5 times greater than that of commercial palladium black catalyst.
Palladium coupling catalysts for pharmaceutical applications.
Doucet, Henri; Hierso, Jean-Cyrille
2007-11-01
This review discusses recent advances made in the area of palladium-catalyzed coupling reactions and describes a selection of the catalytic systems that are useful in the preparation of valuable compounds for the pharmaceutical industry. Most of these types of syntheses have used either simple palladium salts or palladium precursors associated with electron-rich mono- or bidentate phosphine ligands as catalysts. For some reactions, ligands such as triphenyl phosphine, 1,1'-bis(diphenylphosphino)ferrocene, a carbene or a bipyridine have also been employed. Several new procedures for the Suzuki cross-coupling reaction, the activation of aryl chlorides, the functionalization of aromatics and the synthesis of heteroaromatics are discussed. The C-H activation/ functionalization reactions of aryl and heteroaryl derivatives have emerged as powerful tools for the preparation of biaryl compounds, and the recent procedures and catalysts employed in this promising field are also highlighted herein.
Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells
NASA Astrophysics Data System (ADS)
Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.
2016-12-01
One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.
Silver-palladium catalysts for the direct synthesis of hydrogen peroxide
NASA Astrophysics Data System (ADS)
Khan, Zainab; Dummer, Nicholas F.; Edwards, Jennifer K.
2017-11-01
A series of bimetallic silver-palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver-palladium alloy. The optimal 1% Ag-4% Pd/TiO2 bimetallic catalyst was able to produce approximately 200 ppm of H2O2 in 30 min. The findings demonstrate that AgPd/TiO2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.
Diao, Tianning
2014-01-01
Palladium-catalyzed acetoxylation of allylic C–H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate formation from well-defined π-allyl palladium(II) complexes. Here, we assess the ability of O2 to promote similar reactions with a series of “unligated” π-allyl palladium(II) complexes (i.e., in the absence of ancillary phosphorus, nitrogen or related donor ligands). Stoichiometric and catalytic allyl acetate formation is observed under aerobic conditions with several different alkenes. Mechanistic studies are most consistent with a “pull” mechanism in which O2 traps the Pd0 intermediate following reversible C–O bond-formation from an allyl-palladium(II) species. A “push” mechanism, involving oxidatively induced C–O bond formation, does not appear to participate. These results and conclusions are compared with benzoquinone-promoted allylic acetoxylation, in which a “push” mechanism seems to be operative. PMID:25435646
Su, Gaoxing; Jiang, Huaqiao; Zhu, Hongyan; Lv, Jing-Jing; Yang, Guohai; Yan, Bing; Zhu, Jun-Jie
2017-08-31
Plasmonic Au-Pd nanostructures have drawn significant attention for use in heterogeneous catalysis. In this study, palladium nanodendrite-tipped gold nanorods (PdND-T-AuNRs) were subjected to a facile fabrication under mild reaction conditions. The palladium amounts on the two tips were tunable. In the preparation of PdND-T-AuNRs, dense capped AuNRs, a low reaction temperature, and suitable stabilizing agents were identified as critical reaction parameters for controlling palladium nanodendrites deposited on both ends of AuNRs. After overgrowth with palladium nanodendrites, the longitudinal surface plasmonic resonance peaks of PdND-T-AuNRs were red-shifted from 810 nm to 980 nm. The electrocatalytic activity of PdND-T-AuNRs for ethanol oxidation was examined, which was a bit weaker than that of cuboid core-shell Au-Pd nanodendrites; however, PdND-T-AuNRs were more stable in ethanol electrooxidation. Moreover, the photocatalytic activity of PdND-T-AuNRs for Suzuki cross-coupling reactions was investigated. At room temperature, nearly 100% yield was obtained under laser irradiation. The results can further enhance our capability of fine-tuning the optical, electronic, and catalytic properties of the bimetallic Au-Pd nanostructures.
2015-01-01
In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591
Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian
2014-12-16
In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.
PROCESS FOR REMOVING NOBLE METALS FROM URANIUM
Knighton, J.B.
1961-01-31
A pyrometallurgical method is given for purifying uranium containing ruthenium and palladium. The uranium is disintegrated and oxidized by exposure to air and then the ruthenium and palladium are extracted from the uranium with molten zinc.
48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify whether...
48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify whether...
48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify whether...
48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify whether...
NASA Astrophysics Data System (ADS)
Laborda, Francisco; Medrano, Jesús; Cortés, José I.; Mir, José M.; Castillo, Juan R.
1999-02-01
Zirconium treated graphite tubes were investigated and compared with non-treated and palladium coated ones for in situ trapping of selenium hydride generated in a flow injection system. Selenium was effectively trapped on zirconium treated tubes at trapping temperatures of 300-600°C, similar to those observed for palladium, whereas trapping temperatures higher than 600°C had to be used with non-treated tubes. Zirconium treated tubes used in this work showed good stability up to 300 trapping/atomization cycles, with precision better than 5%, characteristic masses of 42 (peak height) and 133 pg (peak area) of selenium were obtained. Sensitivity of zirconium and palladium treatments were similar, but zirconium offered the advantage of a single application per tube. Detection limits were 0.11 (peak height) and 0.23 ng (peak area) for a 1 ml sample volume.
Preparation of Supported Palladium Catalysts using Deep Eutectic Solvents.
Iwanow, Melanie; Finkelmeyer, Jasmin; Söldner, Anika; Kaiser, Manuela; Gärtner, Tobias; Sieber, Volker; König, Burkhard
2017-09-12
Deep eutectic solvents (DESs) dissolve metal salts or oxides and are used as solvent and carbon source for the preparation of supported palladium catalysts. After dissolving of the palladium salt in the DES, the pyrolysis of the mixture under nitrogen atmosphere yields catalytically active palladium on supporting material composed of carbon, nitrogen and oxygen (CNO) by a simple single step preparation method without further activation. The catalysts were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and CHNS/O elementary analysis. The amount of functional groups on the surface of the supporting material was determined by Boehm titrations. Moreover, the activity of the prepared catalysts was evaluated in the hydrogenation of linear alkenes and compared with a commercial Pd/C catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jianjun; Zhang, Yanxing; Chu, Xingli
2016-05-28
The adsorption, diffusion, and dissociation of O{sub 2} on the palladium monolayer supported on TiC(001) surface, MLPd/TiC(001), are investigated using ab initio density functional theory calculations. Strong adhesion of palladium monolayer to the TiC(001) support, accompanied by a modification of electronic structure of the supported palladium, is evidenced. Compared with Pt(111) surface, the MLPd/TiC(001) can enhance the adsorption of O{sub 2}, leading to comparable dissociation barrier and a smaller diffusion barrier of O{sub 2}. Whilst the adsorption strength of atomic O (the dissociation product of O{sub 2}) on MLPd/TiC(001) is similar to that on the Pt(111) surface, possessing high mobility,more » our theoretical results indicate that MLPd/TiC(001) may serve as a good catalyst for the oxygen reduction reaction.« less
Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long
2016-01-01
The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism—nucleophilic attack of enolate oxygen on Palladium followed by C–C bond-forming [3,3']-reductive elimination. PMID:27283477
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying
The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less
Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying; ...
2016-06-10
The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less
Alvaro, Elsa
2010-01-01
Detailed mechanistic studies on the coupling of aryl halides with thiols catalyzed by palladium complexes of the alkylbisphosphine ligand CyPF-tBu (1-dicyclohexylphosphino-2-di-tert-butylphosphinoethylferrocene) are reported. The elementary steps that constitute the catalytic cycle, i.e. oxidative addition, transmetalation and reductive elimination, have been studied, and their relative rates are reported. Each of the steps of the catalytic process occurs at temperatures that are much lower than those required for the reactions catalyzed by a combination of palladium precursors and CyPF-tBu. To explain these differences in rates between the catalytic and stoichiometric reactions, studies were conducted to identify the resting state of the catalyst of the reactions catalyzed by a combination of Pd(OAc)2 and CyPF-tBu, a combination of Pd(dba)2 and CyPF-tBu, or the likely intermediate Pd(CyPF-tBu)(Ar)(Br). These show that the major palladium complex in each case lies off of the catalytic cycle. The resting state of the reactions catalyzed by Pd(OAc)2 and CyPF-tBu was the palladium bis-thiolate complex [Pd(CyPF-tBu)(SR)2] (R = alkyl or aryl). The resting state in reactions catalyzed by Pd2(dba)3 and CyPF-tBu was the binuclear complex [Pd(CyPF-tBu)]2(μ2, η2-dba) (9). The resting state of reactions of both aromatic and aliphatic thiols catalyzed by [Pd(CyPF-tBu)(p-tolyl)(Br)] (3a) was the hydridopalladium thiolate complex [Pd(CyPF-tBu)(H)(SR)] (R= alkyl and aryl). All these palladium species have been prepared independently, and the mechanisms by which they enter the catalytic cycle have been examined in detail. These features of the reaction catalyzed by palladium and CyPF-tBu have been compared with those of reactions catalyzed by the alkylbisphosphine DiPPF and Pd(OAc)2 or Pd(dba)2. Our data indicate that the resting states of these reactions are similar to each other and that our mechanistic conclusions about reactions catalyzed by palladium and CyPF-tBu can be extrapolated to reactions catalyzed by complexes of other electron-rich bisphosphines. PMID:19453106
DETERMINATION OF GOLD, PLATINUM AND PALLADIUM IN BELGIAN CONGO ORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, A.B. et al.
1955-01-31
A survey of analytical methods for determination of gold, platinum, and palladium in urauium ore is presented. A fire assay method to obtain a silver load in which the other elements are determined appears feasible. (J.R.D.)
Palladium Catalyzed Reduction of Nitrobenzene.
ERIC Educational Resources Information Center
Mangravite, John A.
1983-01-01
Compares two palladium (Pd/C) reducing systems to iron/tin-hydrochloric acid (Fe/HCl and Sn/HCl) reductions and suggests an efficient, clean, and inexpensive procedures for the conversion of nitrobenzene to aniline. Includes laboratory procedures used and discussion of typical results obtained. (JN)
Palladium-109 labeled anti-melanoma monoclonal antibodies
Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.
1984-04-30
The invention consists of new monoclonal antibodies labelled with Palladium 109, a beta-emitting radionuclide, the method of preparing this material, and its use in the radiotherapy of melanoma. The antibodies are chelate-conjugated and demonstrate a high uptake in melanomas. (ACR)
Palladium nanoparticles formed on titanium silicate ETS-10.
Lin, Christopher C H; Danaie, Mohsen; Mitlin, David; Kuznicki, Steven M
2011-03-01
We report that surface templated and supported palladium nanoparticles self assemble on ETS-10 type molecular sieve surfaces by simple exchange and activation procedures in the absence of a reductant. This procedure is similar to the one previously reported for silver nanoparticle self assembly on ETS-10. We observed a bimodal distribution with particle sizes ranging from 2-5 and 15-30 nm. This simple, economical method generates high concentrations (approximately 12 wt% of total composite) of uniform, metallic palladium nanoparticles that are multiply twinned and thermally stable making them potentially unique for advanced catalytic and electronic applications.
Viditha, V; Srilatha, K; Himabindu, V
2016-05-01
Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.
NASA Astrophysics Data System (ADS)
Godlewska-Żyłkiewicz, Beata
2003-08-01
Inexpensive baker's yeast Saccharomyces cerevisiae and green algae Chlorella vulgaris, either free or immobilized on silica gel have been shown to selectively accumulate platinum and palladium from water samples in acidic medium (pH 1.6-1.8). Optimization of conditions of metals biosorption (sample pH, algae and yeast masses, adsorption time, temperature) was performed in batch mode. The procedure of matrix separation based on biosorption of platinum and palladium on algae C. vulgaris covalently immobilized on silica gel in flow mode was developed. The use of algae in flow procedure offers several advantages compared with its use in the batch mode. The procedure shows better reproducibility (<2%), improved efficiency of platinum retention on the column (93.3±1.6%), is less laborious and less time consuming. The best recovery of biosorbed metals from column (87.7±3.3% for platinum and 96.8±1.1 for palladium) was obtained with solution of 0.3 mol l -1 thiourea in 1 mol l -1 hydrochloric acid. The influence of thiourea on analytical signals of examined metals during GFAAS determination is discussed. The procedure has been applied for separation of noble metals from tap and waste water samples spiked with platinum and palladium.
Temperature Dependence of Diffusion and Reaction at a Pd/SiC Contact
NASA Technical Reports Server (NTRS)
Shi, D.T.; Lu, W. J.; Bryant, E.; Elshot, K.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.
1998-01-01
Schottky diodes of Palladium/SiC are good candidates for hydrogen and hydrocarbon gas sensors at elevated temperature. The detection sensibility of the diodes has been found heavily temperature dependent. In this work, emphasis has been put on the understanding of changes of physical and chemical properties of the Schottky diodes with variation of temperature. Schottky diodes were made by depositing ultra-thin palladium films onto silicon carbide substrates. The electrical and chemical properties of Pd/SiC Schottky contacts were studied by XPS and AES at different annealing temperatures. No significant change in the Schottky barrier height of the Pd/SiC contact was found in the temperature range of RT-400 C. However, both palladium diffused into SiC and silicon migrated into palladium thin film as well as onto surface were observed at room temperature. The formation of palladium compounds at the Pd/SiC interface was also observed. Both diffusion and reaction at the Pd/SiC interface became significant at 300 C and higher temperature. In addition, silicon oxide was found also at the interface of the Pd/SiC contact at high temperature. In this report, the mechanism of diffusion and reaction at the Pd/SiC interface will be discussed along with experimental approaches.
Palladium-assisted electrocatalytic dechlorination of 2-chlorobiphenyl (2-Cl BP) in aqueous solutions was conducted in a membrane-separated electrochemical reactor with granular-graphite packed electrodes. The dechlorination took place at a granular-graphite cathode while Pd was ...
N-Allylation of amines with allyl acetates using chitosan-immobilized palladium
A simple procedure for N-Allylation of allyl Acetates has been developed using a biodegradable and easily recyclable heterogeneous chitosan-supported palladium catalyst. The general methodology, applicable to wide range of substrates, has sustainable features that include a ligan...
Electrochemistry has been used to synthesize nano-structured materials. In this project, we have conducted the application of electrochemistry for the synthesis of nano-palladium catalysts that may have application in the area of green chemistry. The electrochemical technique use...
Tufekci, Eser; Mitchell, John C; Olesik, John W; Brantley, William A; Papazoglou, Efstratios; Monaghan, Peter
2002-01-01
The biocompatibility of high-palladium alloy restorations has been of some concern due to the release of palladium into the oral environment and sensitivity reactions in patients. This study measured the in vitro elemental release from a Pd-Cu-Ga alloy and a Pd-Ga alloy into a corrosion testing medium. Both alloys were cast into 12-mm-diameter x 1-mm-thick disks, subjected to heat treatment that simulated porcelain firing cycles, polished to a 0.05-mm surface finish, and ultrasonically cleaned in ethanol. Two specimens of each alloy were immersed 3 times (at 7, 70, and 700 hours) in an aqueous lactic acid/NaCl solution used for in vitro corrosion testing and maintained at 37 degrees C. The specimens were removed after each immersion time, and the elemental compositions of the solutions were analyzed with inductively coupled plasma-mass spectroscopy (ICP-MS). Elemental concentrations for the 2 alloys at each immersion time were compared with Student t test (alpha=.05). No significant differences in palladium release were found for the 7- and 70-hour solutions, but significant differences were found for the 700-hour solutions. Mean concentrations of palladium and gallium in the 700-hour solutions, expressed as mass per unit area of alloy surface, were 97 (Pd) and 46 (Ga) microg/cm(2) for the Pd-Cu-Ga alloy and 5 (Pd) and 18 (Ga) microg/cm(2) for the Pd-Ga alloy. Relative proportions of the elements in the solutions were consistent with the release of palladium and breakdown of microstructural phases found in the alloys. The results suggest that there may be a lower risk of adverse biological reactions with the Pd-Ga alloy than with the Pd-Cu-Ga alloy tested.
Mineral resource of the month: platinum-group metals
Hilliard, Henry
2003-01-01
The precious metals commonly referred to as platinum-group metals (PGM) include iridium, osmium, palladium, platinum, rhodium and ruthenium. PGM are among the rarest of elements, and their market values — particularly for palladium, platinum and rhodium — are the highest of all precious metals.
PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)
The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...
NASA Astrophysics Data System (ADS)
Bagheri Gh., A.; Yosefi rad, A.; Rezvani, M.; Roshanzamir, S.
2012-04-01
The complexation reaction of cephalosporins namely cefotaxime (CTX), cefuroxime (CRX), and cefazolin (CEFAZ) with palladium (II) ions have been studied in water and DMF in 25 °C by the spectrophotometric methods. The method is based on the formation of yellow to yellowish brown complex between palladium (II) chloride and the investigated cephalosporins in the presence of sodium lauryl sulfate (SLS) as surfactant. The complexation process was optimized in terms of pH, temperature and contact time. The stoichiometry of all the complexes was found to be 2:1 (metal ion/ligand) for CTX, CRX, and 1:2 for CEFAZ. The stoichiometry of palladium (II)-cephalosporins was estimated by mole ratio and continuous variation methods and emphasized by the KINFIT program. These drugs could be determined by measuring the absorbance of each complex at its specific λmax. The results obtained are in good agreement with those obtained using the official methods. The proposed method was successfully applied for the determination of these compounds in their dosage forms.
Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.
2016-01-01
Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications. PMID:27336795
NASA Astrophysics Data System (ADS)
Majumdar, Rakhi; Tantayanon, Supawan; Bag, Braja Gopal
2017-10-01
A simple green chemical method for the one-step synthesis of palladium nanoparticles (PdNPs) has been described by reducing palladium (II) chloride with the leaf extract of Chrysophyllum cainito in aqueous medium. The synthesis of the palladium nanoparticles completed within 2-3 h at room temperature, whereas on heat treatment (70-80 °C), the synthesis of colloidal PdNPs completed almost instantly. The stabilized PdNPs have been characterized in detail by spectroscopic, electron microscopic and light scattering measurements. The synthesized PdNPs have been utilized as a green catalyst for C-C coupling reactions under aerobic and phosphine-free conditions in aqueous medium. In addition, the synthesized PdNPs have also been utilized as a catalyst for a very efficient sodium borohydride reduction of 3- and 4-nitrophenols. The synthesized PdNPs can retain their catalytic activity for several months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong
2014-11-06
Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributedmore » to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.« less
Signs of antimetastatic activity of palladium complexes of methylenediphosphonic acid in IR spectra
NASA Astrophysics Data System (ADS)
Tolstorozhev, G. B.; Skornyakov, I. V.; Pekhnio, V. I.; Kozachkova, A. N.; Sharykina, N. I.
2012-07-01
We have used Fourier transform IR spectroscopy methods to study normal mouse lung tissue and also after subcutaneous transplantation of a B-16 melanoma tumor in the tissue. We also studied tissues with B-16 melanoma after they were treated with coordination compounds based on palladium complexes of methylenediphosphonic acid. The IR spectra of the lung tissues with metastases in the region of the C = O stretching vibrations are different from the IR spectra of normal tissue. We identified spectroscopic signs of the presence of metastases in the lung. We show that when a cancerous tumor is treated with a preparation of palladium complexes of methylenediphosphonic acid, the spectroscopic signs of the presence of metastases in the lung are missing. After treatment with the optimal dose of this drug, the IR spectrum of the lung tissue in which multiple metastases were present before treatment corresponds to the spectrum of normal tissue. We have determined the efficacy of the antitumor activity of coordination compounds based on palladium complexes of methylenediphosphonic acid.
Refractory metal joining for first wall applications
NASA Astrophysics Data System (ADS)
Cadden, C. H.; Odegard, B. C.
2000-12-01
The potential use of high temperature coolant (e.g. 900°C He) in first wall structures would preclude the applicability of copper alloy heat sink materials and refractory metals would be potential replacements. Brazing trials were conducted in order to examine techniques to join tungsten armor to high tungsten (90-95 wt%) or molybdenum TZM heat sink materials. Palladium-, nickel- and zirconium-based filler metals were investigated using brazing temperatures ranging from 1000°C to 1275°C. Palladium-nickel and palladium-cobalt braze alloys were successful in producing generally sound metallurgical joints in tungsten alloy/tungsten couples, although there was an observed tendency for the pure tungsten armor material to exhibit grain boundary cracking after bonding. The zirconium- and nickel-based filler metals produced defect-containing joints, specifically cracking and porosity, respectively. The palladium-nickel braze alloy produced sound joints in the Mo TZM/tungsten couple. Substitution of a lanthanum oxide-containing, fine-grained tungsten material (for the pure tungsten) eliminated the observed tungsten grain boundary cracking.
NASA Astrophysics Data System (ADS)
Bagherzadeh-Nobari, S.; Hosseini-Istadeh, K.; Kalantarinejad, R.; Elahi, S. M.; Shokri, A. A.
2018-03-01
Our aim is to study theoretically, the sensitivity of a hydrogen sulfide gas sensor, with regard to electrical conductance behavior. Our senor consists of a semiconductor single-wall carbon nanotube (SWCNT), functionalized with palladium nanoclusters, sandwiched between two gold electrodes. Initially, we have computed the optimized structure of the sensor, via molecular dynamic simulations. Then by using non-equilibrium Green's function method, combined with density functional theory, the electronic and transport properties of the sensor were calculated, and compared before and after adsorption of H2S gas, at different bias voltages. The highest sensitivity is achieved at 40 mV bias voltage. In this bias voltage, H2S gas adsorption causes a significant decrease of current, because as a result of charge transfer from the CNT and palladium nanoclusters, to H2S gas, majority carriers (electrons) decrease. The results show that CNT decorated with palladium nanoclusters can be a promising candidate in gas-sensorics.
Hexaacetato calix(6)arene as the novel extractant for palladium.
Mathew, V J; Khopkar, S M
1997-10-01
A novel method is proposed for the solvent extraction of palladium. A superamolecular compound, hexaacetato calix(6)arene in low concentration in toluene quantitatively extracts microgram concentration of palladium at pH 7.5. It can be stripped from the organic phase with 2 M nitric acid and determined spectrophotometrically as its stannous chloride complex at 635 nm. The probable composition of the extracted species is Pd(HR)(2)Cl. As low as 1x10(-3) M of extractant is adequate for quantitative extraction. Toluene was the best diluent. With nitric and perchloric acid (1.5-3 M) the stripping was complete. Palladium was separated in large ratios from alkali and alkaline earths (1:50). The main group elements were tolerated in higher ratios (1:25), but ions like zinc, cadmium, iron, nickel, platinium, thorium, vanadium and molydenum were tolerated at low concentrations (1:1). The ions showing strong interference were copper, chromium. The relative standard deviation is +/-1.1%.
Wang, Liang; Zhang, Bingsen; Meng, Xiangju; Su, Dang Sheng; Xiao, Feng-Shou
2014-06-01
A composite catalyst including palladium nanoparticles on titania (TiO2) and on nitrogen-modified porous carbon (Pd/TiO2@N-C) is synthesized from palladium salts, tetrabutyl titanate, and chitosan. N2 sorption isotherms show that the catalyst has a high BET surface area (229 m(2) g(-1)) and large porosity. XPS and TEM characterization of the catalyst shows that palladium species with different chemical states are well dispersed across the TiO2 and nitrogen-modified porous carbon, respectively. The Pd/TiO2@N-C catalyst is very active and shows excellent stability towards hydrogenation of vanillin to 2-methoxy-4-methylphenol using formic acid as hydrogen source. This activity can be attributed to a synergistic effect between the Pd/TiO2 (a catalyst for dehydrogenation of formic acid) and Pd/N-C (a catalyst for hydrogenation of vanillin) sites. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Palladium-catalyzed C-H functionalization of acyldiazomethane and tandem cross-coupling reactions.
Ye, Fei; Qu, Shuanglin; Zhou, Lei; Peng, Cheng; Wang, Chengpeng; Cheng, Jiajia; Hossain, Mohammad Lokman; Liu, Yizhou; Zhang, Yan; Wang, Zhi-Xiang; Wang, Jianbo
2015-04-08
Palladium-catalyzed C-H functionalization of acyldiazomethanes with aryl iodides has been developed. This reaction is featured by the retention of the diazo functionality in the transformation, thus constituting a novel method for the introduction of diazo functionality to organic molecules. Consistent with the experimental results, the density functional theory (DFT) calculation indicates that the formation of Pd-carbene species in the catalytic cycle through dinitrogen extrusion from the palladium ethyl diazoacetate (Pd-EDA) complex is less favorable. The reaction instead proceeds through Ag2CO3 assisted deprotonation and subsequently reductive elimination to afford the products with diazo functionality remained. This C-H functionalization transformation can be further combined with the recently evolved palladium-catalyzed cross-coupling reaction of diazo compounds with aryl iodides to develop a tandem coupling process for the synthesis of α,α-diaryl esters. DFT calculation supports the involvement of Pd-carbene as reactive intermediate in the catalytic cycle, which goes through facile carbene migratory insertion with a low energy barrier (3.8 kcal/mol).
Wang, Deli; Liu, Sufen; Wang, Jie; ...
2016-06-23
Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. Themore » uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.« less
Spatial and temporal distribution of platinum, palladium and rhodium in Zagreb air.
Rinkovec, Jasmina; Pehnec, Gordana; Godec, Ranka; Davila, Silvije; Bešlić, Ivan
2018-09-15
Platinum (Pt), palladium (Pd) and rhodium (Rh) are most widely used in the production of automotive catalytic converters that serve to reduce toxic emissions from motor vehicles. The aim of this study was to quantitatively determine the levels of platinum, palladium and rhodium in the PM 10 and PM 2.5 fraction of airborne particle matter and find their spatial and temporal distribution at different polluted areas of the city of Zagreb, Croatia. The method used in this paper included weekly sampling of airborne particle matter on quartz filters, microwave digestion in acid under high pressure and temperature, and analysis by inductively coupled plasma mass spectrometry (ICP MS). The results have shown that the highest mean values at all three sampling stations (North, Center, South) were obtained for palladium (3.856 pg m -3 , 5.396 pg m -3 , 5.600 pg m -3 ) and the lowest for rhodium (0.444 pg m -3 , 0.643 pg m -3 , 0.750 pg m -3 ). The average mass concentrations of platinum group elements (PGE) in PM 10 increased for all three elements in the direction North < Center < South which had to do with the traffic load nearby the monitoring stations. The ratio of measured mass concentrations to all measuring stations was similar to platinum, palladium and rhodium content in automotive catalytic converters. Factor analysis grouped platinum, palladium and rhodium at all of the monitoring stations, and their relation to other metals together with the aforementioned results indicate that their main source of pollution is traffic or precisely automotive catalytic converters. At all three of the monitoring sites, higher values were measured during the colder part of the year. The results of measuring platinum, palladium and rhodium levels in the city of Zagreb are the first results of their kind for this area and will provide insights into the contribution of catalytic converters to the presence of these elements in the environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Exposure to Palladium Nanoparticles Affects Serum Levels of Cytokines in Female Wistar Rats
Iavicoli, Ivo; Fontana, Luca; Corbi, Maddalena; Leso, Veruscka; Marinaccio, Alessandro; Leopold, Kerstin; Schindl, Roland; Sgambato, Alessandro
2015-01-01
Background Information currently available on the impact of palladium on the immune system mainly derives from studies assessing the biological effects of palladium salts. However, in the last years, there has been a notable increase in occupational and environmental levels of fine and ultrafine palladium particles released from automobile catalytic converters, which may play a role in palladium sensitization. In this context, the evaluation of the possible effects exerted by palladium nanoparticles (Pd-NPs) on the immune system is essential to comprehensively assess palladium immunotoxic potential. Aim Therefore, the aim of this study was to investigate the effects of Pd-NPs on the immune system of female Wistar rats exposed to this xenobiotic for 14 days, by assessing possible quantitative changes in a number of cytokines: IL-1α, IL-2, IL-4, IL-6, IL-10, IL-12, GM-CSF, INF-γ and TNF-α. Methods Twenty rats were randomly divided into four exposure groups and one of control. Animals were given a single tail vein injection of vehicle (control group) and different concentrations of Pd-NPs (0.012, 0.12, 1.2 and 12 μg/kg). A multiplex biometric enzyme linked immunosorbent assay was used to evaluate cytokine serum levels. Results The mean serum concentrations of all cytokines decreased after the administration of 0.012 μg/kg of Pd-NPs, whereas exceeded the control levels at higher exposure doses. The highest concentration of Pd-NPs (12 μg/kg) induced a significant increase of IL-1α, IL-4, IL-6, IL-10, IL-12, GM-CSF and INF-γ compared to controls. Discussion and Conclusions These results demonstrated that Pd-NP exposure can affect the immune response of rats inducing a stimulatory action that becomes significant at the highest administered dose. Our findings did not show an imbalance between cytokines produced by CD4+ T helper (Th) cells 1 and 2, thus suggesting a generalized stimulation of the immune system with a simultaneous activation and polarization of the naïve T cells towards Th1 and Th2 phenotype. PMID:26618704
Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao
2016-02-08
The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Heck Reaction: A Microscale Synthesis Using a Palladium Catalyst
NASA Astrophysics Data System (ADS)
Martin, William B.; Kateley, Laura J.
2000-06-01
Palladium catalysts are central to a large variety of modern organic syntheses. Heck reactions use palladium acetate as the preferred precatalyst to effect vinylic substitutions involving haloarenes and haloalkenes. The microscale synthesis described uses a reaction between a bromoiodobenzene and acrylic acid to produce a bromocinnamic acid. Structure verification for the product uses IR and 1H NMR spectroscopy. This experiment is appropriate for a second-semester introductory organic chemistry laboratory or an intermediate-level organic synthesis laboratory. It could be adapted as a project for two or three students, with each member of the group preparing a different isomer or using a different catalyst source.
Palladium-catalyzed heteroannulation of 1,3-dienes to form alpha-alkylidene-gamma-butyrolactones.
Gagnier, S V; Larock, R C
2000-03-10
alpha-Alkylidene-gamma-butyrolactones are readily prepared by the palladium-catalyzed heteroannulation of a variety of 1,3-dienes by alpha-iodo and alpha-bromo acrylic acids. The best results are obtained by employing a catalytic amount of the sterically hindered chelating alkyl phosphine D-t-BPF [(di-tert-butylphosphino)ferrocene]. In most cases, this process is highly regioselective. The reaction is believed to proceed via (1) oxidative addition of the vinylic halide to Pd(0), (2) organopalladium addition to the less hindered end of the 1,3-diene to form a pi-allylpalladium intermediate, and (3) nucleophilic displacement of the palladium by the carboxylate ion.
Chen, Min; Yang, Bangpei; Chen, Changle
2015-12-14
The facile and reversible interconversion between neutral and oxidized forms of palladium complexes containing ferrocene-bridged phosphine sulfonate ligands was demonstrated. The activity of these palladium complexes could be controlled using redox reagents during ethylene homopolymerization, ethylene/methyl acrylate copolymerization, and norbornene oligomerization. Specifically in norbornene oligomerization, the neutral complexes were not active at all whereas the oxidized counterparts showed appreciable activity. In situ switching between the neutral and oxidized forms resulted in an interesting "off" and "on" behavior in norbornene oligomerization. This work provides a new strategy to control the olefin polymerization process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for producing electricity using a platinum-ruthenium-palladium catalyst in a fuel cell
Gorer, Alexander
2004-01-27
A method for producing electricity using a fuel cell that utilizes a ternary alloy composition as a fuel cell catalyst, the ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.
Metal/ceramic composites with high hydrogen permeability
Dorris, Stephen E.; Lee, Tae H.; Balachandran, Uthamalingam
2003-05-27
A membrane for separating hydrogen from fluids is provided comprising a sintered homogenous mixture of a ceramic composition and a metal. The metal may be palladium, niobium, tantalum, vanadium, or zirconium or a binary mixture of palladium with another metal such as niobium, silver, tantalum, vanadium, or zirconium.
Catalytic oxidation of dimethyl ether
Zelenay, Piotr; Wu, Gang; Johnston, Christina M.; Li, Qing
2016-05-10
A composition for oxidizing dimethyl ether includes an alloy supported on carbon, the alloy being of platinum, ruthenium, and palladium. A process for oxidizing dimethyl ether involves exposing dimethyl ether to a carbon-supported alloy of platinum, ruthenium, and palladium under conditions sufficient to electrochemically oxidize the dimethyl ether.
Synthesis of PD particles by alcohols-assisted photoreduction for use in supported catalysts
Burton, Patrick David; Boyle, Timothy J; Datye, Abhaya
2015-02-24
The present disclosure provides a novel synthesis method for palladium nanoparticles and palladium nanoparticles made using the method. The nanoparticles resulting from the method are highly reactive and, when deposited on a support, are highly suitable for use as catalytic material.
Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water
A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...
METHOD OF SEPARATING HYDROGEN ISOTOPES
Salmon, O.N.
1958-12-01
The process of separating a gaseous mixture of hydrogen and tritium by contacting finely dlvided palladium with the mixture in order to adsorb the gases, then gradually heating the palladium and collecting the evolved fractlons, is described. The fraction first given off is richer in trltium than later fractions.
Passive fit of frameworks in titanium and palladium-silver alloy submitted the laser welding.
de Sousa, S A; de Arruda Nobilo, M A; Henriques, G E P; Mesquita, M F
2008-02-01
This study evaluated the precision of fit of implant frameworks cast in titanium (cp Ti) and palladium-silver alloy (Pd-Ag), made by the one-piece cast and laser welding techniques. From a metal matrix with five implants, 20 master casts were obtained, to which replicas of implants were incorporated. On these masters 10 frameworks were made for each type of material (cp Ti and Pd-Ag alloy). Half of these were made by the one-piece cast technique and the other half by the laser welding technique. The implant/prosthesis interface was analysed and measured in the vestibular and lingual regions of the central and distal implants with the help of a measuring microscope. The results indicated that in the central cylinders, the Tukey test (P<0.0005) showed a significant difference in the passive fit between the laser-welded frameworks (34.73 microm) and those one-piece cast frameworks (151.39 microm), and as regards materials, the palladium-silver alloy (66.30 microm) showed better results than the titanium (119.83 microm). In the distal cylinders there was no significant difference between the frameworks cast in titanium and palladium-silver by the one-piece technique. However, after laser welding, there was a significant difference for the frameworks cast in titanium (31.37 microm) and palladium-silver (106.59 microm).
X-Ray Photoelectron Spectroscopy Study of the Heating Effects on Pd/6H-SiC Schottky Structure
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak
1998-01-01
X-ray photoelectron spectroscopy is used to study the effects of heat treatment on the Pd/6H-SiC Schottky diode structure. After heating the structure at 425 C for 140 h, a very thin surface layer of PdO mixed with SiO(x) formed on the palladium surface of the Schottky structure. Heat treatment promoted interfacial diffusion and reaction which significantly broadened the interfacial region. In the interfacial region, the palladium concentration decreases with depth, and the interfacial products are Pd(x)Si (x = 1,2,3,4). In the high Pd concentration regions, Pd4Si is the major silicide component while gr and Pd2Si are major components in the low Pd concentration region. At the center of the interface, where the total palladium concentration equals that of silicon, the concentrations of palladium associated with various palladium silicides (Pd(x)Si, x= 1,2,3,4) are approximately equal. The surface passivation layer composed of PdO and SiO, may significantly affect the electronic and catalytic properties of the surface of the Schottky diode which plays a major role in gas detection. The electronic properties of the Schottky structure may be dominated by a (Pd+Pd(x)Si)/SiC interface. In order to stabilize the properties of the Schottky structure the surface and interface diffusion and reactions must be controlled.
GREENER SYNTHESIS OF ALIGNED PALLADIUM NANOBELTS AND NANOPLATES IN AQUEOUS MEDIUM USING VITAMIN B1
Palladium (Pd) plays an important role in many industrial and technological applications such as reduction of automobile pollutants, and Suzuki, Heck, and Stille coupling reactions. Consequently, a great deal of effort has been devoted to the synthesis of Pd nanostructures. Her...
Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitrile
Zhang, Wandi; Haskins, Christopher W.; Yang, Yang; Dai, Mingji
2014-01-01
Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield. PMID:25316145
Synthesis of nitriles via palladium-catalyzed water shuffling from amides to acetonitrile.
Zhang, Wandi; Haskins, Christopher W; Yang, Yang; Dai, Mingji
2014-12-07
Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, A.P.; Kitching, W.
1992-08-01
This report provides information regarding the selectivity of alkyl groups and the nature of the transition state for C-H palladation by oxime-bound palladium(II) (the Shaw reaction). The kinetic deuterium isotope effects are also presented. 21 refs.
Palladium-Catalyzed Conversion of Aryl and Vinyl Triflates to Bromides and Chlorides
Shen, Xiaoqiang; Hyde, Alan M.; Buchwald, Stephen L.
2010-01-01
The palladium-catalyzed conversion of aryl and vinyl triflates to aryl and vinyl halides (bromides and chlorides) has been developed using dialkylbiaryl phosphine ligands. A variety of aryl, heteroaryl and vinyl halides can be prepared via this method in good to excellent yields. PMID:20857936
Bellabarba, Ronan M; Tooze, Robert P; Slawin, Alexandra M Z
2003-08-07
The novel complex (tbpx)PdCO (1), the first example of a structurally characterised sixteen electron, trigonal planar palladium(0) carbonyl complex, was prepared, characterised by NMR spectroscopy and X-ray crystallography, and some unusual aspects of its reactivity were studied.
Lu, Xiao-Xia; Tang, Hau-San; Ko, Chi-Chiu; Wong, Jenny Ka-Yan; Zhu, Nianyong; Yam, Vivian Wing-Wah
2005-03-28
The anion-assisted shift of trans-cis isomerization equilibrium of a palladium(II) complex containing acetanilide functionalities brought about by allosteric hydrogen bonding interactions has been established by UV/Vis, 1H NMR, 31P NMR and ESI-MS studies.
Kinetic Characteristics of Hydrogen Transfer Through Palladium-Modified Membrane
NASA Astrophysics Data System (ADS)
Petriev, I. S.; Frolov, V. Yu.; Bolotin, S. N.; Baryshev, M. G.; Kopytov, G. F.
2018-01-01
The paper deals with hydrogen transfer through Pd-23%Ag alloy membrane, the surface of which is modified by the electrolytic deposition of highly dispersed palladium. The dependence between the density of hydrogen flow and its excess pressure on the input surface of membrane is well approximated by the first-order curve. This fact indicates that the process of hydrogen permeability is defined by its dissociation on the input surface. Activation energy of this process is 47.9 kJ/mol which considerably exceeds that of the process of hydrogen transfer through palladium (22-30 kJ/mol). This confirms the fact that the chemisorption is a rate-controlling step of the hydrogen transfer through membrane.
Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.
1981-01-01
A number of electrocatalyst combinations were prepared and characterized. These electrocatalysts were formulated to contain platinum combined with transition metal carbide forming elements (W, Mo, V) for cathodes and platinum combined with palladium for anodes. High resolution electron microscopy was used to determine the crystallite size and dispersion of platinum-palladium alloy electrocatalysts in order to provide analytical support for the electrochemical determinations of the particle dispersions. An equation was derived which correlates palladium crystallite size with electrochemical hydrogen adsorption. Based on comparisons of electrocatalyst performances in the presence of pure hydrogen and hydrogen containing carbon monoxide, it was shown that the apparent poisoning of the electrocatalyst by carbon monoxide is influenced by the electrode structure.
Tanabe, Katsuaki
2016-01-01
We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.
NASA Astrophysics Data System (ADS)
Ontalba Salamanca, M. Á.; Gómez-Tubío, B.; Ortega-Feliu, I.; Respaldiza, M. Á.; Luisa de la Bandera, M.; Ovejero Zappino, G.; Bouzas, A.; Gómez-Morón, A.
2006-08-01
This paper presents the study of a set of Punic gold items (400 B.C.), from the Museum of Cádiz (Spain). An external beam set-up has been employed for the absolutely non-destructive analysis of the objects. PIXE spectrometry has been performed in order to characterize the metallic alloys and the manufacturing techniques. Compositional differences have been found and soldering procedures have been identified. By comparison with the rings and other coetaneous jewellery, the presence of palladium in the bulk alloy of the earrings can be pointed out. The geographical provenance of the palladium-bearing gold is discussed based on geological and archaeological considerations.
Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications
ERIC Educational Resources Information Center
Feliciano-Ramos, Ileana; Casan~as-Montes, Barbara; García-Maldonado, María M.; Menendez, Christian L.; Mayol, Ana R.; Díaz-Vazquez, Liz M.; Cabrera, Carlos R.
2015-01-01
Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and…
An extremely simple green approach that generates bulk quantities of nanocrystals of noble metals such as silver (Ag) and palladium (Pd) using coffee and tea extract at room temperature is described. The single-pot method uses no surfactant, capping agent, and/or template. The ob...
Hydrogen and Palladium Foil: Two Classroom Demonstrations
ERIC Educational Resources Information Center
Klotz, Elsbeth; Mattson, Bruce
2009-01-01
In these two classroom demonstrations, students observe the reaction between H[subscript 2] gas and Pd foil. In the first demonstration, hydrogen and palladium combine within one minute at 1 atm and room temperature to yield the non-stoichiometric, interstitial hydride with formula close to the maximum known value, PdH[subscript 0.7]. In the…
On the palladium-on-charcoal disproportionation of rosin
Zhan-Qian Song; Eugene Zavarin; Duane F. Zinkel
1985-01-01
Changes in the composition of gum rosin during disproportionation in the presence of 5% palladium-on-charcoal have been determined by gas chromatography. The principal reaction product was dehydroabietic acid. The exocyclic vinyl group of the pimaric/isopimarictype resin acids was hydrogenated completely. Only a small amount of dihydroabietic acids was formed. Eight...
Gold-nickel-titanium brazing alloy
Mizuhara, Howard
1995-01-03
A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.
Gold-nickel-titanium brazing alloy
Mizuhara, Howard
1990-07-03
A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.
1,10-Phenanthroline-stabilized palladium nanoparticles dispersed in a polyethylene glycol (PEG) matrix is synthesized which is found to be a stable and active catalyst for the selective hydrogenation of olefins using molecular hydrogen under mild reaction conditions. A variety of...
NASA Astrophysics Data System (ADS)
Jia, Lishan; Zhang, Qian; Li, Qingbiao; Song, Hao
2009-09-01
Gardenia jasminoides Ellis' water crude extract was used for the bioreduction of palladium chloride in this paper. The UV-vis spectrum, x-ray diffraction spectrum measurement, the Fourier transform infrared spectroscopy and TEM technique confirmed the formation of palladium nanoparticles and identified antioxidants including geniposide, chlorogenic acid, crocins and crocetin were reducing and stabilizing agents for synthesizing palladium nanoparticles in water crude extract. The particle size and dispersity were temperature-dependent. The particle sizes ranged from 3 to 5 nm and revealed the best dispersity at 70 °C. Catalytic performance of the biosynthetic Pd nanoparticles with good dispersity was investigated by hydrogenation of p-nitrotoluene. The catalysts showed a conversion of 100% under conditions of 5 MPa, 150 °C for 2 h. The selectivity of p-methyl-cyclohexylamine achieved 26.3%. The catalyst was recycled five times with no agglomeration and maintained activity, which was attributed to the appropriate protection of the antioxidants. On the basis of the study, it appears to be a new promising biosynthetic nanocatalyst for the development of an industrial process.
Wang, Jun; Yu, Liang; Hu, Lin; Chen, Gang; Xin, Hongliang; Feng, Xiaofeng
2018-05-15
Electrochemical reduction of N 2 to NH 3 provides an alternative to the Haber-Bosch process for sustainable, distributed production of NH 3 when powered by renewable electricity. However, the development of such process has been impeded by the lack of efficient electrocatalysts for N 2 reduction. Here we report efficient electroreduction of N 2 to NH 3 on palladium nanoparticles in phosphate buffer solution under ambient conditions, which exhibits high activity and selectivity with an NH 3 yield rate of ~4.5 μg mg -1 Pd h -1 and a Faradaic efficiency of 8.2% at 0.1 V vs. the reversible hydrogen electrode (corresponding to a low overpotential of 56 mV), outperforming other catalysts including gold and platinum. Density functional theory calculations suggest that the unique activity of palladium originates from its balanced hydrogen evolution activity and the Grotthuss-like hydride transfer mechanism on α-palladium hydride that lowers the free energy barrier of N 2 hydrogenation to *N 2 H, the rate-limiting step for NH 3 electrosynthesis.
Hung, Chang-Mao
2009-04-15
Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.
NASA Astrophysics Data System (ADS)
Muench, Falk; Oezaslan, Mehtap; Svoboda, Ingrid; Ensinger, Wolfgang
2015-10-01
We present new electroless palladium plating reactions, which can be applied to complex-shaped substrates and lead to homogeneous, dense and conformal palladium films consisting of small nanoparticles. Notably, autocatalytic and surface-selective metal deposition could be achieved on a wide range of materials without sensitization and activation pretreatments. This provides a facile and competitive route to directly deposit well-defined palladium nanofilms on e.g. carbon, paper, polymers or glass substrates. The reactions proceed at mild conditions and are based on easily accessible chemicals (reducing agent: hydrazine; metal source: PdCl2; ligands: ethylenediaminetetraacetic acid (EDTA), acetylacetone). Additionally, the water-soluble capping agent 4-dimethylaminopyridine (DMAP) is employed to increase the bath stability, to ensure the formation of small particles and to improve the film conformity. The great potential of the outlined reactions for micro- and nanofabrication is demonstrated by coating an ion-track etched polycarbonate membrane with a uniform Pd film of approximately 20 nm thickness. The as-prepared membrane is then employed as a highly miniaturized flow reactor, using the reduction of 4-nitrophenol with NaBH4 as a model reaction.
Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach
NASA Astrophysics Data System (ADS)
Balakrishnan, A.; Mueller, C.; Reinecke, H.
2013-12-01
A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.
Ray, Chaiti; Dutta, Soumen; Sahoo, Ramkrishna; Roy, Anindita; Negishi, Yuichi; Pal, Tarasankar
2016-05-20
Inspired by the attractive catalytic properties of palladium and the inert nature of carbon supports in catalysis, a concise and simple methodology for in situ nitrogen-doped mesoporous-carbon-supported palladium nanoparticles (Pd/N-C) has been developed by carbonizing a palladium dimethylglyoximate complex. The as-synthesized Pd/N-C has been exfoliated as a fuel cell catalyst by studying the electro-oxidation of methanol and formic acid. The material synthesized at 400 °C,namely, Pd/N-C-400,exhibitssuperior mass activity and stability among catalysts synthesized under different carbonization temperaturesbetween300 and 500 °C. The unique 1D porous structure in Pd/N-C-400 helps better electron transport at the electrode surface, which eventually leads to about five times better catalytic activity and about two times higher stability than that of commercial Pd/C. Thus, our designed sacrificial metal-organic templatedirected pathway becomes a promising technique for Pd/N-C synthesis with superior catalytic performances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organometallic Palladium Reagents for Cysteine Bioconjugation
Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.
2015-01-01
Transition-metal based reactions have found wide use in organic synthesis and are used frequently to functionalize small molecules.1,2 However, there are very few reports of using transition-metal based reactions to modify complex biomolecules3,4, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature, and mild pH) and the existence of multiple, reactive functional groups found in biopolymers. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation reactions. The bioconjugation reaction is rapid and robust under a range of biocompatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants, and external thiol nucleophiles. The broad utility of the new bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as a new set of benchtop reagents for diverse bioconjugation applications. PMID:26511579
Gu, Shaojin; Xu, Hui; Zhang, Na; Chen, Wanzhi
2010-07-05
Imidazolium salts bearing triazole groups are synthesized via a copper catalyzed click reaction, and the silver, palladium, and platinum complexes of their N-heterocyclic carbenes are studied. [Ag(4)(L1)(4)](PF(6))(4), [Pd(L1)Cl](PF(6)), [Pt(L1)Cl](PF(6)) (L1=3-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1-(pyrimidin-2-yl)-1H-imidazolylidene), [Pd(2)(L2)(2)Cl(2)](PF(6))(2), and [Pd(L2)(2)](PF(6))(2) (L2=1-butyl-3-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methyl)imidazolylidene) have been synthesized and fully characterized by NMR, elemental analysis, and X-ray crystallography. The silver complex [Ag(4)(L1)(4)](PF(6))(4) consists of a Ag(4) zigzag chain. The complexes [Pd(L1)Cl](PF(6)) and [Pt(L1)Cl](PF(6)), containing a nonsymmetrical NCN' pincer ligand, are square planar with a chloride trans to the carbene donor. [Pd(2)(L2)(2)Cl(2)](PF(6))(2) consists of two palladium centers with CN(2)Cl coordination mode, whereas the palladium in [Pd(L2)(2)](PF(6))(2) is surrounded by two carbene and two triazole groups with two uncoordinated pyridines. The palladium compounds are highly active for Suzuki-Miyaura cross coupling reactions of aryl bromides and 1,1-dibromo-1-alkenes in neat water under an air atmosphere.
NASA Astrophysics Data System (ADS)
Radić, Gordana P.; Glođović, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Garcia-Granda, Santiago; Roces, Laura; Menéndez-Taboada, Laura; Radojević, Ivana D.; Stefanović, Olgica D.; Čomić, Ljiljana R.; Trifunović, Srećko R.
2012-12-01
In the reaction of meso-1,2-diphenyl-ethylenediamine (1,2-dphen) with neutralized 3-chlor-propanoic acid, the new linear tetradentate edda-like ligand (edda = ethylenediamine-N,N'-diacetic ion) meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoic acid dihydrochloride monohydrate (H2-1,2-dpheddp·2HCl·H2O) was prepared. The corresponding platinum(IV) complex, s-cis-dichlorido-(meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoate)-platinum(IV) ([PtCl2(1,2-dpheddp)]) was synthesized by heating potassium-hexachloridoplatinate(IV) and H2-1,2-dpheddp·2HCl·H2O on steam bath for 12 h with neutralization by means of lithium-hydroxide. The palladium(II) complex, cis-dichlorido-(meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoate)-palladium(II) ([PdCl2(1,2-dpheddp)]) was obtained in the similar way using potassium-tetrachloridopalladate(II), H2-1,2-dpheddp·2HCl·H2O and lithium-hydroxide. The compounds were characterized by elemental analysis and infrared spectroscopy. The spectroscopically predicted structure of the synthesized tetradentate ligand was confirmed by X-ray analysis of the H2-1,2-dpheddp·2HCl·H2O. Antimicrobial activity of the ligand and corresponding palladium(II) and platinum(IV) complexes is investigated against 25 species of microorganisms. Testing is preformed by microdilution method and minimum inhibitory concentrations (MIC) and minimum microbicidal concentration (MMC) have been determined. The difference between antimicrobial activity of the ligand and corresponding platinum(IV) and palladium(II) complex is noticed and, in general, palladium(II) complex was the most active.
MONTANA PALLADIUM RESEARCH INITIATIVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, John; McCloskey, Jay; Douglas, Trevor
2012-05-09
Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows highmore » potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4 will determine how fuel cells taken as systems behave over periods of time that should show how their reformers and other subsystems deteriorate with time.« less
Supported palladium (Pd) metal catalysts along with H2 gas show
significant potential as a technology which can provide rapid, on-site
destruction of halogenated groundwater contaminants. Pd catalyzes the rapid
hydrodehalogenation of nine 1- to 3-carbon ...
Dai, Qiang; Jiang, Yan; Yu, Jin-Tao; Cheng, Jiang
2015-12-04
A palladium-catalyzed three-component reaction between N-tosyl hydrazones, aryl isonitriles and amines was developed, leading to amidines in moderate to good yields. This procedure features the rapid construction of amidine frameworks with high diversity and complexity. Ketenimines serve as intermediates, which encounter nucleophilic attack by amines to produce amidines.
STRONTIUM AS AN EFFICIENT PROMOTER FOR SUPPORTED PALLADIUM HYDROGENATION CATALYSTS
The effect of strontium promotion is studied for a series of supported palladium catalysts such as Pd/zeolite-β, Pd/Al2O3, Pd/SiO2, Pd/hydrotalcite and Pd/MgO. Strontium is found to be an effective promoter for enhancing the metal area, perce...
Synthesis and antimicrobial activity of palladium nanoparticles from Prunus × yedoensis leaf extract
USDA-ARS?s Scientific Manuscript database
The eco-friendly production of palladium nanoparticles (PdNPs) by Prunus × yedoensis tree leaf extract was studied for the first time. Initial confirmation of PdNP production was confirmed by a color change from light yellow to dark brown. The optimization parameters show that pH 7, 8% leaf extract,...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-30
... information barriers and controls between itself and the broker- dealer affiliate so that the broker-dealer... Palladium Custodian's control. The Manager, with the consent of the Trustee, may determine to change the... beyond the Platinum and Palladium Custodian's control. The Manager, with the consent of the Trustee, may...
Cattopadhyay, Kalicharan; Recio, Antonio; Tunge, Jon A
2012-09-14
We report the palladium-catalyzed, pyrrolidine-mediated α-benzylation of enamines generated from aldehydes and ketones. The method allows for direct coupling of medicinally relevant coumarin moieties with aldehydes and ketones in good yield under mild conditions. The reaction is believed to proceed via a Pd-π-benzyl complex generated from (coumarinyl)methyl acetates.
NASA Astrophysics Data System (ADS)
Vincenti, Maria Antonietta; Trevisi, Simona; De Sario, Marco; Petruzzelli, Vincenzo; D'Orazio, Antonella; Prudenzano, Francesco; Cioffi, Nicola; de Ceglia, Domenico; Scalora, Michael
2008-03-01
In this paper we report a numerical study of a palladium-based metallo-dielectric photonic band gap structure for the purpose of detecting H2. In particular, and as an example, we will explore applications to the diagnosis of lactose malabsorption, more commonly known as lactose intolerance condition. This pathology occurs as a result of an incomplete absorption or digestion of different substances, causing an increased spontaneous emission of H2 in human breath. Palladium is considered in order to exploit its well known ability to absorb hydrogen spontaneously. The proposed structure is particularly able to detect the lactose malabsorption level of the patient with relatively high sensitivity and rapidity.
Dickstein, Joshua S.; Curto, John M.; Gutierrez, Osvaldo; Mulrooney, Carol A.; Kozlowski, Marisa C.
2013-01-01
Mechanism studies of a mild palladium catalyzed decarboxylation of aromatic carboxylic acids are described. In particular, reaction orders and activation parameters for the two stages of the transformation were determined. These studies guided development of a catalytic system capable of turnover. Further evidence reinforces that the second stage, protonation of the aryl palladium intermediate, is the rate-determining step of the reaction. The first step, decarboxylative palladation is proposed to occur through an intramolecular electrophilic palladation pathway, which is supported by computational and mechansim studies. In contrast to the reverse reaction (C-H insertion), the data support an electrophilic aromatic substitution mechanism involving a stepwise intramolecular protonation sequence for the protodepalladation portion of the reaction. PMID:23590518
Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors
NASA Technical Reports Server (NTRS)
Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)
2008-01-01
A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.
NASA Astrophysics Data System (ADS)
Goldan, A. H.; Karim, K. S.; Reznik, A.; Caldwell, C. B.; Rowlands, J. A.
2008-03-01
Permanent breast seed implant (PBSI) brachytherapy technique was recently introduced as an alternative to high dose rate (HDR) brachytherapy and involves the permanent implantation of radioactive 103Palladium seeds into the surgical cavity of the breast for cancer treatment. To enable accurate seed implantation, this research introduces a gamma camera based on a hybrid amorphous selenium detector and CMOS readout pixel architecture for real-time imaging of 103Palladium seeds during the PBSI procedure. A prototype chip was designed and fabricated in 0.18-μm n-well CMOS process. We present the experimental results obtained from this integrated photon counting readout pixel.
Conversion of Arylboronic Acids to Tetrazoles Catalyzed by ONO Pincer-Type Palladium Complex.
Vignesh, Arumugam; Bhuvanesh, Nattamai S P; Dharmaraj, Nallasamy
2017-01-20
A convenient synthesis of a library of tetrazoles through a novel and operationally simple protocol effecting the direct conversion of arylboronic acids catalyzed by a new ONO pincer-type Pd(II) complex under mild reaction conditions using the readily available reagents is reported. The palladium complex was reused up to four cycles in an open-flask condition.
2015-01-01
The exomethylenes of 2,6-disubstituted bicyclo[3.3.1]nonan-9-ones 2 are readily isomerized over a palladium catalyst under an atmosphere of hydrogen to predominantly form the isomer 3 with C2 symmetry with very little formation of the analogous product with Cs symmetry. A hydrogen source is essential to effect the rearrangement. PMID:24720691
An environmentally friendly one-step method to synthesize palladium (Pd) nanobelts, nanoplates and nanotrees using vitamin B1 without using any special capping agents at room temperature is described. This greener method, which uses water as benign solvent and vitamin B1 as a red...
ERIC Educational Resources Information Center
Hill, Nicholas J.; Bowman, Matthew D.; Esselman, Brian J.; Byron, Stephen D.; Kreitinger, Jordan; Leadbeater, Nicholas E.
2014-01-01
An inexpensive procedure for introducing the Suzuki-Miyaura coupling reaction into a high-enrollment undergraduate organic chemistry laboratory course is described. The procedure employs an aqueous palladium solution as the catalyst and a range of para-substituted aryl bromides and arylboronic acids as substrates. The coupling reactions proceed…
The Mechanochemical Reaction of Palladium(II) Chloride with a Bidentate Phosphine
ERIC Educational Resources Information Center
Berry, David E.; Carrie, Philippa; Fawkes, Kelli L.; Rebner, Bruce; Xing, Yao
2010-01-01
This experiment describes the reaction of palladium(II) chloride with 1,5-bis(diphenylphosphino)pentane by grinding the two powders together in the solid state. The product is the precursor for the metalation reaction at one of the methylene carbon atoms of the ligand's backbone. The final product is known to be a catalyst for Suzuki-Miyaura…
Palladium-catalyzed cocyclotrimerization of arynes with a pyramidalized alkene.
Alonso, José M; Quiroga, Sabela; Codony, Sandra; Turcu, Andreea L; Barniol-Xicota, Marta; Pérez, Dolores; Guitián, Enrique; Vázquez, Santiago; Peña, Diego
2018-05-23
The metal-catalyzed [2+2+2] cocycloaddition of arynes with pyramidalized alkenes is presented. The generation of a highly reactive pyramidalized alkene in the presence of a large excess of in situ-produced arynes led to the corresponding cocyclotrimerization (1 : 2)-adducts in good yields, establishing the first example of a palladium-based reaction of a pyramidalized alkene.
ERIC Educational Resources Information Center
Fernández, Alberto; López-Torres, Margarita; Fernández, Jesús J.; Vázquez-García, Digna; Marcos, Ismael
2017-01-01
A laboratory experiment for students in advanced inorganic chemistry is described. In this experiment, students prepare two metal complexes with a potentially bidentate-carbene ligand. The complexes are synthesized by reaction of a bisimidazolium salt with silver(I) oxide or palladium(II) acetate. Silver and palladium complexes are binuclear and…
Remote C-H Functionalization by a Palladium-Catalyzed Transannular Approach.
De Sarkar, Suman
2016-08-26
Now within reach: In the remote C-H arylation of alicyclic amines the key step is the transannular coordination of the palladium catalyst (see picture, DG=directing group). This strategy is convenient for the late-stage functionalization of complex bioactive molecules in order to probe structure-activity relationships. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cattopadhyay, Kalicharan; Recio, Antonio; Tunge, Jon A.
2012-01-01
We report the palladium-catalyzed, pyrrolidine-mediated α-benzylation of enamines generated from aldehydes and ketones. The method allows for direct coupling of medicinally relevant coumarin moieties with aldehydes and ketones in good yield under mild conditions. The reaction is believed to proceed via a Pd-π-benzyl complex generated from (coumarinyl)methyl acetates. PMID:22832549
Jarusiewicz, Jamie; Choe, Yvonne; Yoo, Kyung Soo; Park, Chan Pil
2009-01-01
A simple and efficient one-pot three-component method has been developed for the synthesis of α-aminonitriles. This Strecker reaction is applicable for aldehydes and ketones with aliphatic or aromatic amines and trimethyl siliyl cyanide in the presence of a palladium Lewis aid catalyst in dichloromethane solvent at room temperature. PMID:19265413
Chen, Zhen; Zhao, Kong-Shuang; Guo, Lin; Feng, Cai-Hong
2007-04-28
Dielectric measurements were carried out on colloidal suspensions of palladium nanoparticle chains dispersed in poly(vinyl pyrrolidone)/ethylene glycol (PVP/EG) solution with different particle volume fractions, and dielectric relaxation with relaxation time distribution and small relaxation amplitude was observed in the frequency range from 10(5) to 10(7) Hz. By means of the method based on logarithmic derivative of the dielectric constant and a numerical Kramers-Kronig transform method, two dielectric relaxations were confirmed and dielectric parameters were determined from the dielectric spectra. The dielectric parameters showed a strong dependence on the volume fraction of palladium nanoparticle chain. Through analyzing limiting conductivity at low frequency, the authors found the conductance percolation phenomenon of the suspensions, and the threshold volume fraction is about 0.18. It was concluded from analyzing the dielectric parameters that the high frequency dielectric relaxation results from interfacial polarization and the low frequency dielectric relaxation is a consequence of counterion polarization. They also found that the dispersion state of the palladium nanoparticle chain in PVP/EG solution is dependent on the particle volume fraction, and this may shed some light on a better application of this kind of materials.
Kluwer, Alexander M; Koblenz, Tehila S; Jonischkeit, Thorsten; Woelk, Klaus; Elsevier, Cornelis J
2005-11-09
The kinetics of the stereoselective semi-hydrogenation of 4-octyne in THF by the highly active catalyst [Pd{(m,m'-(CF(3))(2)C(6)H(3))-bian}(ma)] (2) (bian = bis(imino)acenaphthene; ma = maleic anhydride) has been investigated. The rate law under hydrogen-rich conditions is described by r = k[4-octyne](0.65)[Pd][H(2)], showing first order in palladium and dihydrogen and a broken order in substrate. Parahydrogen studies have shown that a pairwise transfer of hydrogen atoms occurs in the rate-limiting step. In agreement with recent theoretical results, the proposed mechanism consists of the consecutive steps: alkyne coordination, heterolytic dihydrogen activation (hydrogenolysis of one Pd-N bond), subsequent hydro-palladation of the alkyne, followed by addition of N-H to palladium, reductive coupling of vinyl and hydride and, finally, substitution of the product alkene by the alkyne substrate. Under hydrogen-limiting conditions, side reactions occur, that is, formation of catalytically inactive palladacycles by oxidative alkyne coupling. Furthermore, it has been shown that (Z)-oct-4-ene is the primary reaction product, from which the minor product (E)-oct-4-ene is formed by an H(2)-assisted, palladium-catalyzed isomerization reaction.
NASA Astrophysics Data System (ADS)
Dash, John; Wang, Q.
2009-03-01
Recently, we have observed particles floating on the surfaces of electrolytes after electrolysis, in four cells, each of which contained a heavy water electrolyte and a Pd cathode. Solid particles were unexpected from electrolysis, so it seemed important to characterize these particles. Cu grids were used to collect particles from the electrolyte surface. Then, a scanning electron microscope ( SEM ) and an energy dispersive spectrometer ( EDS ) were used to study the surfaces of these particles and to record time-dependent changes which were occurring. The morphology and composition of the particles were determined . After storage at ambient for 11 days, there were large changes in the morphology and composition of the particles. For example, one portion of the particles contained a large number of microspheres. A typical microsphere contained mostly carbon and palladium, whereas the matrix near the microsphere contained mostly palladium with less carbon and a significant amount of silver. One day later the same microsphere had increased carbon and reduced palladium, but there was no significant change in the composition of the matrix. Results for other particles from other cells will also be presented.
NASA Astrophysics Data System (ADS)
Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt
2018-05-01
Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.
Baran, Talat
2017-06-15
In catalytic systems, the support materials need to be both eco friendly and low cost as well as having high thermal and chemical stability. In this paper, a novel starch supported palladium catalyst, which had these outstanding properties, was designed and its catalytic activity was evaluated in a Suzuki coupling reaction under microwave heating with solvent-free and mild reaction conditions. The starch supported catalyst gave remarkable reaction yields after only 5min as a result of the coupling reaction of the phenyl boronic acid with 23 different substrates, which are bearing aril bromide, iodide, and chloride. The longevity of the catalyst was also investigated, and the catalyst could be reused for 10 runs. The starch supported Pd(II) catalyst yielded remarkable TON (up to 25,000) and TOF (up to 312,500) values by using a simple, fast and eco-friendly method. In addition, the catalytic performance of the catalyst was tested against different commercial palladium catalysts, and the green starch supported catalyst had excellent selectivity. The catalytic tests showed that the novel starch based palladium catalyst proved to be an economical and practical catalyst for the synthesis of biaryl compounds. Copyright © 2017 Elsevier Inc. All rights reserved.
Houk, Ronald J. T.; Wallace, Karl J.; Hewage, Himali S.; Anslyn, Eric V.
2008-01-01
A colorimetric chemodosimeter (SQ1) for the detection of trace palladium salts in cross-coupling reactions mediated by palladium is described. Decolorization of SQ1 is affected by nucleophilic attack of ethanethiol in basic DMSO solutions. Thiol addition is determined to have an equilibrium constant (Keq) of 2.9 × 106 M-1, with a large entropic and modest enthalpic driving force. This unusual result is attributed to solvent effects arising from a strong coordinative interaction between DMSO and the parent squaraine. Palladium detection is achieved through thiol scavenging from the SQ1-ethanethiol complex leading to a color “turn-on” of the parent squaraine. It was found that untreated samples obtained directly from Suzuki couplings showed no response to the assay. However, treatment of the samples with aqueous nitric acid generates a uniform Pd(NO3)2 species, which gives an appropriate response. “Naked-eye” detection of Pd(NO3)2 was estimated to be as low as 0.5 ppm in solution, and instrument-based detection was tested as low as 100 ppb. The average error over the working range of the assay was determined to be 7%. PMID:19122841
NASA Astrophysics Data System (ADS)
Yang, M.; Geng, X.; Wang, Y. L.; Li, D. X.
2017-05-01
Three orthogonal tests are separately designed for each hydrometallurgical gold leaching process to finding the optimum reaction conditions of melting gold and palladium in each process. Under the optimum condition, the determination amount of gold and palladium in aqua regia—hydrofluoric acid, Sodium thiosulfate, and potassium iodide reaches 2.87g/kg and 8.34 g/kg, 2.39g/kg and 8.12 g/kg, 2.51g/kg and 7.84g/kg. From the result, the content of gold and palladium using the leaching process of combining Aqua regia, hydrofluoric acid and hydrogen peroxide is relatively higher than the other processes. In addition, the experiment procedure of aqua regia digestion operates easily, using less equipment, and its period is short.
Fu, Ching-Feng; Lee, Chun-Chin; Liu, Yi-Hung; Peng, Shie-Ming; Warsink, Stefan; Elsevier, Cornelis J; Chen, Jwu-Ting; Liu, Shiuh-Tzung
2010-03-15
A series of designed palladium biscarbene complexes including saturated and unsaturated N-heterocyclic carbene (NHC) moieties have been prepared by the carbene transfer methods. All of these complexes have been characterized by (1)H and (13)C NMR spectroscopy as well as X-ray diffraction analysis. The reactivity of Pd-C((saturated NHC)) is distinct from that of Pd-C((unsaturated NHC)). The Pd-C((saturated NHC)) bonds are fairly stable toward reagents such as CF(3)COOH, AgBF(4) and I(2), whereas Pd-C((unsaturated NHC)) bonds are readily cleaved under the similar conditions. Notably, the catalytically activity of these palladium complexes on Suzuki-Miyaura coupling follows the order: (sat-NHC)(2)PdCl(2) > (sat-NHC)(unsat-NHC)PdCl(2 )> (unsat-NHC)(2)PdCl(2).
Synthesis of Water-Soluble Palladium Nanoparticles Stabilized by Sulfonated N-Heterocyclic Carbenes.
Asensio, Juan M; Tricard, Simon; Coppel, Yannick; Andrés, Román; Chaudret, Bruno; de Jesús, Ernesto
2017-09-27
A strategy involving the decomposition of palladium(II) organometallic complexes with sulfonated N-heterocyclic carbene ligands leads to the formation of stable and water-soluble Pd nanoparticles. Three different methodologies (thermal decomposition, reduction under 13 CO atmosphere, and reduction with H 2 ) gave particles with different shapes and sizes, ranging from 1.5 to 7 nm. The structures of the organometallic intermediates and organic decomposition products were elucidated by NMR spectroscopy. To check the accessibility of the surface, the nanoparticles were tested as catalysts for the chemoselective hydrogenation of styrene in water. An effect of the particle size on the catalyst activity was observed. The aqueous phase was recycled up to ten times without any precipitation of metallic palladium. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ju, Xiaohui; Igarashi, Kensuke; Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Inagaki, Kazumi; Fujii, Shin-Ichiro; Sawada, Hitomi; Kuwabara, Tomohiko; Minoda, Ayumi
2016-07-01
The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption. In this study, over 90% of gold and palladium could be selectively recovered from aqua regia-based metal wastewater by using G. sulphuraria. These metals were eluted from the cells into ammonium solutions containing 0.2M ammonium salts without other contaminating metals. The use of G. sulphuraria is an eco-friendly and cost-effective way of recovering low concentrations of gold and palladium discarded in metal wastewater. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, L. D.; Zhao, T. S.; Xu, J. B.; Liang, Z. X.
Carbon-supported gold nanoparticles (Au/C) are successfully decorated with mono- or sub-monolayer palladium atoms with different Pd/Au atomic ratios by a chemically epitaxial seeded growth method. TEM, UV-vis spectrometry and XRD techniques are used to characterize the particle size, dispersion, palladium coverage on gold seeds and crystal structures of the prepared catalysts. Cyclic voltammetric tests show that the Pd-decorated Au/C (denoted by Pd@Au/C) have higher specific activities than that of Pd/C for the oxidation of ethanol in alkaline media. This suggests that the Pd utilization is improved with such a surface-alloyed nanostructure. In addition, stable chronoamperometric responses are achieved with the so-prepared electrocatalysts during ethanol oxidation.
Hilton, Margaret J; Xu, Li-Ping; Norrby, Per-Ola; Wu, Yun-Dong; Wiest, Olaf; Sigman, Matthew S
2014-12-19
The mechanism of the redox-relay Heck reaction was investigated using deuterium-labeled substrates. Results support a pathway through a low energy palladium-alkyl intermediate that immediately precedes product formation, ruling out a tautomerization mechanism. DFT calculations of the relevant transition structures at the M06/LAN2DZ+f/6-31+G* level of theory show that the former pathway is favored by 5.8 kcal/mol. Palladium chain-walking toward the alcohol, following successive β-hydride eliminations and migratory insertions, is also supported in this study. The stereochemistry of deuterium labels is determined, lending support that the catalyst remains bound to the substrate during the relay process and that both cis- and trans-alkenes form from β-hydride elimination.
Influence of voids distribution on the deformation behavior of nanocrystalline palladium
NASA Astrophysics Data System (ADS)
Bachurin, D. V.
2018-07-01
Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.
Rull, Silvia G; Álvarez, Eleuterio; Fructos, Manuel R; Belderrain, Tomás R; Pérez, Pedro J
2017-06-07
The first example of a diazo palladium adduct is reported. The complexes [(ArNHC-PPh 2 )M(η 2 -N 2 C(Ph)CO 2 Et)] (M=Ni, 3; M=Pd, 4; ArNHC-PPh 2 =3-(2,6-diisopropylphenyl)-1-[(diphenylphosphino)ethyl]imidazol-2-ylidene) were prepared by ligand exchange with styrene-coordinated precursors [(ArNHC-PPh 2 )M(styrene)] (M=Ni, 1; M=Pd, 2). Complex 4 was fully characterized, including X-ray analyses; this constitutes the first example of a diazo adduct compound with palladium, thereby closing the gap between Groups 8 and 10 regarding this type of compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anionic Palladium(0) and Palladium(II) Ate Complexes.
Kolter, Marlene; Böck, Katharina; Karaghiosoff, Konstantin; Koszinowski, Konrad
2017-10-16
Palladium ate complexes are frequently invoked as important intermediates in Heck and cross-coupling reactions, but so far have largely eluded characterization at the molecular level. Here, we use electrospray-ionization mass spectrometry, electrical conductivity measurements, and NMR spectroscopy to show that the electron-poor catalyst [L 3 Pd] (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) readily reacts with Br - ions to afford the anionic, zero-valent ate complex [L 3 PdBr] - . In contrast, more-electron-rich Pd catalysts display lower tendencies toward the formation of ate complexes. Combining [L 3 Pd] with LiI and an aryl iodide substrate (ArI) results in the observation of the Pd II ate complex [L 2 Pd(Ar)I 2 ] - . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors
NASA Technical Reports Server (NTRS)
Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)
2011-01-01
A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.
Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors
NASA Technical Reports Server (NTRS)
Xu, Jennifer C. (Inventor); Hunter, Gary W. (Inventor); Lukco, Dorothy (Inventor)
2008-01-01
A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darsell, Jens T.; Weil, K. Scott
2007-05-16
As a means of increasing the use temperature of ceramic-ceramic and ceramic-metal air brazes, palladium was investigated as possible ternary addition to the currently employed silver - copper oxide system. The silver component was directly substituted with palladium to form the following series of alloys: (100-y)[(100-z)Pd - (z)Ag] - (y)CuOx where y = 0 - 34 mol% CuOx, z = 50 - 100 mol% silver, and x = 0, 0.5, and 1, denoting copper metal, Cu2O, or CuO. From differential scanning calorimetry, it was determined that the addition of palladium causes an increase in the solidus and liquidus temperatures ofmore » the resulting Pd-Ag-CuO brazes. In general, the liquidus was found to increase by approximately 220°C for the (100-y)(25Pd - 75Ag) - (z)CuOx filler metal compositions relative to comparable Ag-CuOx alloys. Likewise, the solidus was found to increase for these alloys, respectively by 185°C and 60°C, respectively for CuOx contents of y = 0 - 1mol% and 4 - 10 mol%. For the (100-y)(50Pd - 50Ag) - (y)CuOx alloys, the solidus increased between 280 - 390°C over a copper oxide compositional range of x = 0 to 8 mol%. It was determined from sessile drop experiments conducted on alumina substrates that in all cases the palladium causes an increase in the wetting angle relative to the corresponding binary braze. Alloy compositions of (100-y)(25Pd - 75Ag) - (y)CuOx displayed increased wetting angles of 5-20° relative to comparable binary compositions. (100-y)(50Pd - 50Ag) - (y)CuOx alloys exhibited an increase in contact angle of 10-60° and compositions containing less than 10 mol% CuOx were not able to wet the substrate. Scanning electron microscopy indicated that the microstructure of the braze consists of discrete CuOx precipitates in an alloyed silver-palladium matrix. In both the binary and ternary filler metal formulations, a reaction layer consisting of CuAlO2 was observed along the interface with the alumina substrate. This reaction product appears to be beneficial in promoting wetting by the remaining braze filler metal. However the formation of this layer is hindered as the concentration of palladium in the filler metal is increased, which appears to be the primary cause of poor wettability in these compositions, as indicated by the substantial amount of porosity found along the braze/substrate interface.« less
Pierre, Cathleen; Baudoin, Olivier
2011-04-01
Polycyclic molecules were obtained in good yields by double C(sp(2))-H/C(sp(3))-H arylations mediated by a single palladium/phosphine catalyst. Both double intermolecular/intramolecular and intramolecular/intramolecular C-C couplings were performed successfully, which indicates that this concept has a broad applicability for the rapid construction of molecular complexity.
Nielsen, Dennis U; Neumann, Karoline; Taaning, Rolf H; Lindhardt, Anders T; Modvig, Amalie; Skrydstrup, Troels
2012-07-20
A novel and general approach for (13)C(2)- and (2)H-labeled phenethylamine derivatives has been developed, based on a highly convergent single-step assembly of the carbon skeleton. The efficient incorporation of two carbon-13 isotopes into phenethylamines was accomplished using a palladium-catalyzed double carbonylation of aryl iodides with near stoichiometric carbon monoxide.
One-pot synthesis of keto thioethers by palladium/gold-catalyzed click and pinacol reactions.
Cadu, Alban; Watile, Rahul A; Biswas, Srijit; Orthaber, Andreas; Sjöberg, Per J R; Samec, Joseph S M
2014-11-07
An atom-efficient synthesis of keto thioethers was devised via tandem gold/palladium catalysis. The reaction proceeds through a regioselective thiol attack at the β-position of the alcohol, followed by an alkyl, aryl, or benzyl 1,2-shift. Both acyclic and cyclic systems were studied, in the latter case leading to the ring expansion of cyclic substrates.
Yasuda, Shigeo; Ishii, Takuya; Takemoto, Shunsuke; Haruki, Hiroki; Ohmiya, Hirohisa
2018-03-05
Benzylation and allylation of aldehyde acyl anions were enabled by the merger of a thiazolium N-heterocyclic carbene (NHC) catalyst and a palladium/bisphosphine catalyst in a synergistic manner. Owing to the mildness of the reaction conditions, various functional groups were tolerated in the substrates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Xiao-Feng; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias
2013-09-09
Cute CO! An interesting and straightforward procedure for the carbonylative synthesis of chromenones from readily available salicylic aldehydes and benzyl chlorides has been developed (see scheme; DPPP = 1,3-bis(diphenylphosphino)propane). In the presence of a palladium catalyst, various coumarins were produced in good to excellent yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude
2009-10-15
A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.
Temperature-dependent Study of Isobutanol Decomposition
2012-11-01
dimensional Al2O3 alumina CO2 carbon dioxide FTIR Fourier transform infrared Pd palladium Rh rhodium TPD temperature-programmed desorption TPO...that increasing temperature promotes aldehyde formation on the surface of each catalyst. In addition, it is shown that palladium (Pd) activates the...formation of aldehydes and CO2 at a lower temperature than a rhodium (Rh) catalyst. 15. SUBJECT TERMS Isobutanol, FTIR, spectroscopy 16. SECURITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrondo, M.
We calculate the equilibrium configurations of a system of deuterium atoms absorbed in palladium. The interaction potential energy is taken as a sum of pair functionals including non-additive effects, which are crucial for this case. We conclude from our calculations that the most probable configuration for the deuterium in the {beta}-phase of PdD involves at least a partial occupation of the tetrahedral sites of the fcc palladium unit cell.
The abilities of zero-valent iron powder and hydrogen with a palladium catalyst (H2/Pd-alumina) to hydrodehalogenate 1,2-dibromo-3-chloropropane (DBCP) to propane under water treatment conditions (ambient temperature and circumneutral pH) were compa...
Properties of the carbon-palladium nanocomposites studied by Raman spectroscopy method
NASA Astrophysics Data System (ADS)
Belka, Radosław; Suchańska, Małgorzata
2013-10-01
In this paper, the results for thin carbon-palladium (C-Pd) nanocomposites obtained by PVD (Physical Vapour Deposition) and PVD/CVD (Chemical Vapour Deposition) method, carried out using Raman spectroscopy method are presented. Studies reveal the dominance of fullerene-like structure for PVD samples and graphite-like structures for CVD samples. The type of substrate and metal content have great impact on spectra shapes.
Biaryl Phosphine Ligands in Palladium-Catalyzed Amination
Surry, David S.
2012-01-01
Palladium-catalyzed amination of aryl halides has undergone rapid development in the last 12 years. This has been largely driven by implementation of new classes of ligands. Biaryl phosphines have proven to provide especially active catalysts in this context. This review discusses the applications that these catalysts have found in C-N cross-coupling in heterocycle synthesis, pharmaceuticals, materials science and natural product synthesis. PMID:18663711
Beccalli, Egle M; Broggini, Gianluigi; Gazzola, Silvia; Mazza, Alberto
2014-09-21
The double functionalization of carbon-carbon multiple bonds in one-pot processes has emerged in recent years as a fruitful tool for the rapid synthesis of complex molecular scaffolds. This review covers the advances in domino reactions promoted by the couple palladium(ii)/copper(ii), which was proven to be an excellent catalytic system for the functionalization of substrates.
Abidi, Ahlem; Oueslati, Yosra
2016-01-01
A practical and efficient palladium-catalyzed direct allylation of β-dicarbonyl compounds with both cyclic and acyclic Morita–Baylis–Hillman (MBH) alcohols, using Et3B as a Lewis acid promoter, is described herein. A wide range of the corresponding functionalized allylated derivatives have been obtained in good yields and with high selectivity. PMID:28144308
New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qinhua
2004-12-19
The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I 2, ICl, PhSeCl, PhSCl and p-O 2NC 6H 4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellentmore » yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that these palladium-catalyzed C-H activation reactions parallel electrophilic aromatic substitution. A relatively efficient synthesis of cyclopropanes has been developed using palladium-catalyzed C-H activation chemistry, in which two new carbon-carbon bonds are formed in a single step. This method involves the palladium-catalyzed activation of relatively unreactive C-H bonds, and provides a very efficient way to synthesize cyclopropapyrrolo[1,2-a]indoles, analogues of the mitomycin antibiotics.« less
Ester versus polyketone formation in the palladium-diphosphine catalyzed carbonylation of ethene.
Zuidema, Erik; Bo, Carles; van Leeuwen, Piet W N M
2007-04-04
The origin of the chemoselectivity of palladium catalysts containing bidentate phosphine ligands toward either methoxycarbonylation of ethene or the copolymerization of ethene and carbon monoxide was investigated using density functional theory based calculations. For a palladium catalyst containing the electron-donating bis(dimethylphosphino)ethane (dmpe) ligand, the rate determining step for chain propagation is shown to be the insertion of ethene into the metal-acyl bond. The high barrier for chain propagation is attributed to the low stability of the ethene intermediate, (dmpe)Pd(ethene)(C(O)CH3). For the competing methanolysis process, the most likely pathway involves the formation of (dmpe)Pd(CH3OH)(C(O)CH3) via dissociative ligand exchange, followed by a solvent mediated proton-transfer/reductive- elimination process. The overall barrier for this process is higher than the barrier for ethene insertion into the palladium-acetyl bond, in line with the experimentally observed preference of this type of catalyst toward the formation of polyketone. Electronic bite angle effects on the rates of ethene insertion and ethanoyl methanolysis were evaluated using four electronically and sterically related ligands (Me)2P(CH2)nP(Me)2 (n = 1-4). Steric effects were studied for larger tert-butyl substituted ligands using a QM/MM methodology. The results show that ethene coordination to the metal center and subsequent insertion into the palladium-ethanoyl bond are disfavored by the addition of steric bulk around the metal center. Key intermediates in the methanolysis mechanism, on the other hand, are stabilized because of electronic effects caused by increasing the bite angle of the diphosphine ligand. The combined effects explain successfully which ligands give polymer and which ones give methyl propionate as the major products of the reaction.
Colloidal lithography nanostructured Pd/PdO x core-shell sensor for ppb level H2S detection.
Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta
2018-06-22
In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core-shell sensor for ppb level H 2 S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H 2 S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H 2 S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H 2 S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.
Colloidal lithography nanostructured Pd/PdO x core–shell sensor for ppb level H2S detection
NASA Astrophysics Data System (ADS)
Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta
2018-06-01
In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core–shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H2S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H2S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H2S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV–vis spectroscopy and x-ray photoemission spectroscopy.
Spectroscopic and theoretical investigation of oxali-palladium interactions with β-lactoglobulin.
Ghalandari, Behafarid; Divsalar, Adeleh; Saboury, Ali Akbar; Haertlé, Thomas; Parivar, Kazem; Bazl, Roya; Eslami-Moghadam, Mahbube; Amanlou, Massoud
2014-01-24
The possibility of using a small cheap dairy protein, β-lactoglobulin (β-LG), as a carrier for oxali-palladium for drug delivery was studied. Their binding in an aqueous solution at two temperatures of 25 and 37°C was investigated using spectroscopic techniques in combination with a molecular docking study. Fluorescence intensity changes showed combined static and dynamic quenching during β-LG oxali-palladium binding, with the static mode being predominant in the quenching mechanism. The binding and thermodynamic parameters were determined by analyzing the results of quenching and those of the van't Hoff equation. According to obtained results the binding constants at two temperatures of 25 and 37°C are 3.3×10(9) M(-1) and 18.4×10(6) M(-1) respectively. Fluorescence resonance energy transfer (FRET) showed that the experimental results and the molecular docking results were coherent. An absence change of β-LG secondary structure was confirmed by the CD results. Molecular docking results agreed fully with the experimental results since the fluorescence studies also revealed the presence of two binding sites with a negative value for the Gibbs free energy of binding of oxali-palladium to β-LG. Furthermore, molecular docking and experimental results suggest that the hydrophobic effect plays a critical role in the formation of the oxali-palladium complex with β-LG. This agreement between molecular docking and experimental results implies that docking studies may be a suitable method for predicting and confirming experimental results, as shown in this study. Hence, the combination of molecular docking and spectroscopy methods is an effective innovative approach for binding studies, particularly for pharmacophores. Copyright © 2013 Elsevier B.V. All rights reserved.
Optical hydrogen sensors based on metal-hydrides
NASA Astrophysics Data System (ADS)
Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.
2012-06-01
For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.
van Haaren, R J; Goubitz, K; Fraanje, J; van Strijdonck, G P; Oevering, H; Coussens, B; Reek, J N; Kamer, P C; van Leeuwen, P W
2001-07-02
X-ray crystal structures of a series of cationic (P-P)palladium(1,1-(CH(3))(2)C(3)H(3)) complexes (P-P = dppe (1,2-bis(diphenylphosphino)ethane), dppf (1,1'-bis(diphenylphosphino)ferrocene), and DPEphos (2,2'-bis(diphenylphosphino)diphenyl ether)) and the (Xantphos)Pd(C(3)H(5))BF(4) (Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) complex have been determined. In the solid state structure, the phenyl rings of the ligand are oriented in the direction of the nonsymmetrically bound [1,1-(CH(3))(2)C(3)H(3)] moiety. An increase of the bite angle of the chelating ligand results in an increase of the cone angle. In complexes containing ligands having a large cone angle, the distances between the phenyl rings and the allyl moiety become small, resulting in a distortion of the symmetry of the palladium-allyl bond. In solution, two types of dynamic exchange have been observed, the pi-sigma rearrangement and the apparent rotation of the allyl moiety. At the same time, the folded structure of the ligand changes from an endo to an exo orientation or vice versa. The regioselectivity in the palladium-catalyzed allylic alkylation of 3-methyl-but-2-enyl acetate is determined by the cone angle of the bidentate phosphine ligand. Nucleophilic attack by a malonate anion takes place preferentially at the allylic carbon atom having the largest distance to palladium. Ligands with a larger cone angle direct the regioselectivity to the formation of the branched product, from 8% for dppe (1) to 61% found for Xantphos (6). The influence of the cone angle on the regioselectivity has been assigned to a sterically induced electronic effect.
NASA Astrophysics Data System (ADS)
Oleshko, V.; Volkov, V.; Gijbels, R.; Jacob, W.; Vargaftik, M.; Moiseev, I.; van Tendeloo, G.
1995-12-01
Combined structural and chemical characterization of cationic polynuclear palladium coordination compounds Pd561L60(OAc)180, where L=1,10-phenantroline or 2,2'-bipyridine has been carried out by high-resolution electron microscopy (HREM) and analytical electron microscopy methods including electron energy-loss spectroscopy (EELS), zero-loss electron spectroscopic imaging, and energy-dispersive X-ray spectroscopy (EDX). The cell structure of the cluster matter with almost completely uniform metal core size distributions centered around 2.3 ±0.5 nm was observed. Zero-loss energy filtering allowed to improve the image contrast and resolution. HREM images showed that most of the palladium clusters had a cubo-octahedral shape. Some of them had a distorted icosahedron structure exhibiting multiple twinning. The selected-area electron diffraction patterns confirmed the face centered cubic structure with lattice parameter close to that of metallic palladium. The energy-loss spectra of the populations of clusters contained several bands, which could be assigned to the delayed Pd M4, 5-edge at 362 eV, the Pd M3-edge at 533 eV and the Pd M2-edge at 561 eV, the NK-edge at about 400 eV, the O K-edge at 532 eV overlapping with the Pd M3-edge and the carbon C K-edge at 284 eV. Background subtraction was applied to reveal the exact positions and fine structure of low intensity elemental peaks. EELS evaluations have been confirmed by EDX. The recorded series of the Pd M-edges and the N K-edge in the spectra of the giant palladium clusters obviously were related to Pd-Pd- and Pd-ligand bonding.
Platinum-ruthenium-palladium fuel cell electrocatalyst
Gorer, Alexander
2006-02-07
A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum at a concentration that is between about 20 and about 60 atomic percent, ruthenium at a concentration that is between about 20 and about 60 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having an atomic ratio of platinum to ruthenium that is between about 0.7 and about 1.2. Alternatively, the catalyst may contain platinum at a concentration that is between about 25 and about 50 atomic percent, ruthenium at a concentration that is between about 25 and about 55 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having a difference between the concentrations of ruthenium and platinum that is no greater than about 20 atomic percent.
NASA Astrophysics Data System (ADS)
Stepińska, Izabela; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław; Wronka, Halina
2017-08-01
In this work molecular and crystalline structure of new type of nanocomposite films were investigated. These films compose of CNT decorated with palladium nanograins. They were prepared on a base of C-Ni films modified in CVD process. C-Ni nanocomposite films were obtained by PVD process and their modification by CVD leads to a growth of CNT film. CNTs-Ni or C-Ni films were treated with additional PVD process with palladium. Nickel and palladium acetate and fulleren C60 are precursors of films in PVD process. FTIR spectroscopy was used to studied the molecular structure of film in every stage of preparation . The crystalline structure of these films was studied by X-ray diffraction. SEM (scanning electron microscopy) was applied to investigate film's surface topography.
A Palladium-Tin Modified Microband Electrode Array for Nitrate Determination
Fu, Yexiang; Bian, Chao; Kuang, Jian; Wang, Jinfen; Tong, Jianhua; Xia, Shanhong
2015-01-01
A microband electrode array modified with palladium-tin bimetallic composite has been developed for nitrate determination. The microband electrode array was fabricated by Micro Electro-Mechanical System (MEMS) technique. Palladium and tin were electrodeposited successively on the electrode, forming a double-layer structure. The effect of the Pd-Sn composite was investigated and its enhancement of catalytic activity and lifetime was revealed. The Pd-Sn modified electrode showed good linearity (R2 = 0.998) from 1 mg/L to 20 mg/L for nitrate determination with a sensitivity of 398 μA/(mg∙L−1∙cm2). The electrode exhibited a satisfying analytical performance after 60 days of storage, indicating a long lifetime. Good repeatability was also displayed by the Pd-Sn modified electrodes. The results provided an option for nitrate determination in water. PMID:26389904
Larksarp; Alper
2000-05-09
A catalyst system comprising palladium acetate-bidentate phosphine is effective for the cyclocarbonylation of o-iodoanilines with heterocumulenes at 70-100 degrees C for 12-24 h to give the corresponding 4(3H)-quinazolinone derivatives in good yields. Utilizing o-iodoaniline with isocyanates, carbodiimides, and ketenimines for the reaction, 2,4-(1H,3H)-quinazolinediones, 2-amino-4(3H)-quinazolinones and 2-alkyl-4(3H)-quinazolinones were obtained, respectively. The nature of the substrates including the electrophilicity of the carbon center of the carbodiimide, and the stability of the ketenimine, influence the product yields of this reaction. Urea-type intermediates are believed to be generated first in situ from the reaction of o-iodoanilines with heterocumulenes, followed by palladium-catalyzed carbonylation and cyclization to yield the products.
Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins
NASA Astrophysics Data System (ADS)
Liu, Guosheng; Wu, Yichen
Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.
Selective growth of palladium and titanium dioxide nanostructures inside carbon nanotube membranes
NASA Astrophysics Data System (ADS)
Hevia, Samuel; Homm, Pía; Cortes, Andrea; Núñez, Verónica; Contreras, Claudia; Vera, Jenniffer; Segura, Rodrigo
2012-06-01
Hybrid nanostructured arrays based on carbon nanotubes (CNT) and palladium or titanium dioxide materials have been synthesized using self-supported and silicon-supported anodized aluminum oxide (AAO) as nanoporous template. It is well demonstrated that carbon nanotubes can be grown using these membranes and hydrocarbon precursors that decompose at temperatures closer to 600°C without the use of a metal catalyst. In this process, carbonic fragments condensate to form stacked graphitic sheets, which adopt the shape of the pores, yielding from these moulds' multi-walled carbon nanotubes. After this process, the ends of the tubes remain open and accessible to other substances, whereas the outer walls are protected by the alumina. Taking advantage of this fact, we have performed the synthesis of palladium and titanium dioxide nanostructures selectively inside carbon nanotubes using these CNT-AAO membranes as nanoreactors.
Reduction of hexavalent chromium with colloidal and supported palladium nanocatalysts
NASA Astrophysics Data System (ADS)
Tu, Weixia; Li, Kunjing; Shu, Xiaohui; Yu, William W.
2013-04-01
The Cr(VI) pollutants are known to cause serious harm to the environment and human health. Chemical reduction is one of the efficient methods to eliminate the Cr(VI) pollutants. We synthesized polyvinylpyrrolidone-stabilized palladium (PVP-Pd) colloidal nanoparticles to catalytically reduce Cr(VI). The PVP-Pd colloidal nanocatalysts were active on the complete reduction of Cr(VI) to Cr(III) with a rate of 22.2 molCr/(molPd min) or a turn-over frequency (TOF) of 1,329 h-1 at pH 4.0 and 45 °C. Magnetic Fe3O4 support was used for recycling the palladium nanocatalysts. The as-prepared Pd-Fe3O4 catalyst was easy to be separated from the reaction system by simply applying an external magnet and it exhibited efficient and stable reduction performance even after eight recycles.
Selective growth of palladium and titanium dioxide nanostructures inside carbon nanotube membranes.
Hevia, Samuel; Homm, Pía; Cortes, Andrea; Núñez, Verónica; Contreras, Claudia; Vera, Jenniffer; Segura, Rodrigo
2012-06-25
Hybrid nanostructured arrays based on carbon nanotubes (CNT) and palladium or titanium dioxide materials have been synthesized using self-supported and silicon-supported anodized aluminum oxide (AAO) as nanoporous template. It is well demonstrated that carbon nanotubes can be grown using these membranes and hydrocarbon precursors that decompose at temperatures closer to 600°C without the use of a metal catalyst. In this process, carbonic fragments condensate to form stacked graphitic sheets, which adopt the shape of the pores, yielding from these moulds' multi-walled carbon nanotubes. After this process, the ends of the tubes remain open and accessible to other substances, whereas the outer walls are protected by the alumina. Taking advantage of this fact, we have performed the synthesis of palladium and titanium dioxide nanostructures selectively inside carbon nanotubes using these CNT-AAO membranes as nanoreactors.
Palladium-Catalyzed Direct C-H Allylation of Electron-Deficient Polyfluoroarenes with Alkynes.
Zheng, Jun; Breit, Bernhard
2018-04-06
A palladium-catalyzed intermolecular direct C-H allylation of polyfluoroarenes with alkynes is reported. Unlike classic hydroarylation reactions, alkynes are used as allylic electrophile surrogates in this direct aromatic C-H allylation. As an atom-economic and efficient method, various linear allylated fluoroarenes were synthesized from two simple and easy-to-access feedstocks in good to excellent yields, as well as regio- and stereoselectivity.
Processing precious metals in a top-blown rotary converter
NASA Astrophysics Data System (ADS)
Whellock, John G.; Matousek, Jan W.
1990-09-01
Copper-nickel/platinum-palladium flotation concentrates produced by the Stillwater Mining Company were smelted and refined in an integrated pilot plant consisting of a submerged-arc electric furnace and top-blown rotary converter. The conversion of high-iron electric furnace mattes was achieved with apparent oxygen efficiencies in excess of 100 percent. Platinum and palladium recoveries averaged 99 percent, and copper and nickel recoveries were 94 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuttiyiel, Kurian A.; Sasaki, Kotaro; Adzic, Radoslav R.
Embodiments of the disclosure relate to intermetallic nanoparticles. Embodiments include nanoparticles having an intermetallic core including a first metal and a second metal. The first metal may be palladium and the second metal may be at least one of cobalt, iron, nickel, or a combination thereof. The nanoparticles may further have a shell that includes palladium and gold.
Metin, Önder; Sun, Xiaolian; Sun, Shouheng
2013-02-07
Monodisperse 4 nm AuPd alloy nanoparticles with controlled composition were synthesized by co-reduction of hydrogen tetrachloroaurate(III) hydrate and palladium(II) acetylacetonate with a borane-morpholine complex in oleylamine. These NPs showed high activity (TOF = 230 h(-1)) and stability in catalyzing formic acid dehydrogenation and hydrogen production in water at 50 °C without any additives.
Zhang, Zhihui; Liebeskind, Lanny S.
2008-01-01
A new method for the synthesis of nitriles is described. As a complement to the classic cyanation of aryl halides using cyanide sources and a transition metal catalyst, the palladium-catalyzed cross-coupling of thiocyanates with boronic acids in the presence of copper(I) thiophene-2-carboxylate (CuTC) affords nitriles in good to excellent yields. PMID:16956219
Unsupported palladium alloy membranes and methods of making same
Way, J. Douglas; Thoen, Paul; Gade, Sabina K.
2015-06-02
The invention provides support-free palladium membranes and methods of making these membranes. Single-gas testing of the unsupported foils produced hydrogen permeabilities equivalent to thicker membranes produced by cold-rolling. Defect-free films as thin as 7.2 microns can be fabricated, with ideal H.sub.2/N.sub.2 selectivities as high as 40,000. Homogeneous membrane compositions may also be produced using these methods.
Nascimento de Oliveira, Marllon; Arseniyadis, Stellios; Cossy, Janine
2018-04-03
We report here an unprecedented and highly enantioselective palladium-catalyzed allylic alkylation applied to 4-substituted isoxazolidin-5-ones. Ultimately, the process provides a straightforward access to β 2,2 -amino acids bearing an all-carbon quaternary stereogenic center in great yields and a high degree of enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficient palladium-catalyzed asymmetric allylic alkylation of ketones and aldehydes.
Zhao, Xiaohu; Liu, Delong; Xie, Fang; Liu, Yangang; Zhang, Wanbin
2011-03-21
Palladium-catalyzed asymmetric allylic alkylation of ketones, via enamines generated in situ as nucleophiles, were carried out smoothly with chiral metallocene-based P,N-ligands. Under the same conditions, however, reactions of aldehydes could hardly be observed. Subsequently, this obstacle was resolved by using chiral metallocene-based P,P-ligands. Both ketones and aldehydes afforded excellent enantioselectivities with up to 98% ee and 94% ee, respectively.
Ligand-accelerated non-directed C-H functionalization of arenes.
Wang, Peng; Verma, Pritha; Xia, Guoqin; Shi, Jun; Qiao, Jennifer X; Tao, Shiwei; Cheng, Peter T W; Poss, Michael A; Farmer, Marcus E; Yeung, Kap-Sun; Yu, Jin-Quan
2017-11-22
The directed activation of carbon-hydrogen bonds (C-H) is important in the development of synthetically useful reactions, owing to the proximity-induced reactivity and selectivity that is enabled by coordinating functional groups. Palladium-catalysed non-directed C-H activation could potentially enable further useful reactions, because it can reach more distant sites and be applied to substrates that do not contain appropriate directing groups; however, its development has faced substantial challenges associated with the lack of sufficiently active palladium catalysts. Currently used palladium catalysts are reactive only with electron-rich arenes, unless an excess of arene is used, which limits synthetic applications. Here we report a 2-pyridone ligand that binds to palladium and accelerates non-directed C-H functionalization with arene as the limiting reagent. This protocol is compatible with a broad range of aromatic substrates and we demonstrate direct functionalization of advanced synthetic intermediates, drug molecules and natural products that cannot be used in excessive quantities. We also developed C-H olefination and carboxylation protocols, demonstrating the applicability of our methodology to other transformations. The site selectivity in these transformations is governed by a combination of steric and electronic effects, with the pyridone ligand enhancing the influence of sterics on the selectivity, thus providing complementary selectivity to directed C-H functionalization.
Ligand-accelerated non-directed C-H functionalization of arenes
NASA Astrophysics Data System (ADS)
Wang, Peng; Verma, Pritha; Xia, Guoqin; Shi, Jun; Qiao, Jennifer X.; Tao, Shiwei; Cheng, Peter T. W.; Poss, Michael A.; Farmer, Marcus E.; Yeung, Kap-Sun; Yu, Jin-Quan
2017-11-01
The directed activation of carbon-hydrogen bonds (C-H) is important in the development of synthetically useful reactions, owing to the proximity-induced reactivity and selectivity that is enabled by coordinating functional groups. Palladium-catalysed non-directed C-H activation could potentially enable further useful reactions, because it can reach more distant sites and be applied to substrates that do not contain appropriate directing groups; however, its development has faced substantial challenges associated with the lack of sufficiently active palladium catalysts. Currently used palladium catalysts are reactive only with electron-rich arenes, unless an excess of arene is used, which limits synthetic applications. Here we report a 2-pyridone ligand that binds to palladium and accelerates non-directed C-H functionalization with arene as the limiting reagent. This protocol is compatible with a broad range of aromatic substrates and we demonstrate direct functionalization of advanced synthetic intermediates, drug molecules and natural products that cannot be used in excessive quantities. We also developed C-H olefination and carboxylation protocols, demonstrating the applicability of our methodology to other transformations. The site selectivity in these transformations is governed by a combination of steric and electronic effects, with the pyridone ligand enhancing the influence of sterics on the selectivity, thus providing complementary selectivity to directed C-H functionalization.
Zhang, Jiadi; Bellomo, Ana; Trongsiriwat, Nisalak; Jia, Tiezheng; Carroll, Patrick J; Dreher, Spencer D; Tudge, Matthew T; Yin, Haolin; Robinson, Jerome R; Schelter, Eric J; Walsh, Patrick J
2014-04-30
Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd-NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp(2))-H arylations. The advantages and importance of the Pd-NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides.
2015-01-01
Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd–NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp2)–H arylations. The advantages and importance of the Pd–NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides. PMID:24745758
NASA Astrophysics Data System (ADS)
Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad
2014-07-01
A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.
Gómez, Natalia; Santos, Diego; Vázquez, Ramiro; Suescun, Leopoldo; Mombrú, Alvaro; Vermeulen, Monica; Finkielsztein, Liliana; Shayo, Carina; Moglioni, Albertina; Gambino, Dinorah; Davio, Carlos
2011-08-01
In the search for alternative chemotherapeutic strategies against leukemia, various 1-indanone thiosemicarbazones, as well as eight novel platinum(II) and palladium(II) complexes, with the formula [MCl₂(HL)] and [M(HL)(L)]Cl, derived from two 1-indanone thiosemicarbazones were synthesized and tested for antiproliferative activity against the human leukemia U937 cell line. The crystal structure of [Pt(HL1)(L1)]Cl·2MeOH, where L1=1-indanone thiosemicarbazone, was solved by X-ray diffraction. Free thiosemicarbazone ligands showed no antiproliferative effect, but the corresponding platinum(II) and palladium(II) complexes inhibited cell proliferation and induced apoptosis. Platinum(II) complexes also displayed selective apoptotic activity in U937 cells but not in peripheral blood monocytes or the human hepatocellular carcinoma HepG2 cell line used to screen for potential hepatotoxicity. Present findings show that, in U937 cells, 1-indanone thiosemicarbazones coordinated to palladium(II) were more cytotoxic than those complexed with platinum(II), although the latter were found to be more selective for leukemic cells suggesting that they are promising compounds with potential therapeutic application against hematological malignancies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gu, Shaojin; Xu, Daichao; Chen, Wanzhi
2011-02-21
Mono- and polynuclear complexes containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L), [NiL(2)](PF(6))(2) (2), [CoL(2)](PF(6))(3) (3), [PtLCl](PF(6)) (4), [PdAgL(2)](PF(6))(3) (5), [PdCuL(2)](PF(6))(3) (6), [Pd(2)L(2)Cl(2)](PF(6))(2) (7), and [Pd(3)L(2)Cl(4)](PF(6))(2) (8) have been prepared and fully characterized by NMR, ESI-MS spectroscopy, and X-ray crystallography. In complexes 2-4, the ligand binds to metals in a pincer NNC fashion with the pyridine group uncoordinated. Complexes 5 and 6 are isostructural to each other in which the palladium ions are surrounded by two pyridines and two imidazolylidenes and Ag(I) or Cu(I) is coordinated by two 1,10-phenanthroline moieties. In the trinuclear palladium complex 8, one palladium ion has an identical coordination mode as in 5 and 6, and the other two palladium ions are bonded to the 1,10-phenanthroline. Complex 6 exhibits excellent catalytic activity for the tandem click/Sonogashira reaction of 1-(bromomethyl)-4-iodobenzene, NaN(3), and ethynylbenzene in which three C-N bonds and one C-C bond are formed in a single flask.
NASA Astrophysics Data System (ADS)
Vazquez, Gerardo; Magana, Fernando; Salas-Torres, Osiris
We explore the structural interactions between graphene and transition metals such as palladium (Pd) and titanium (Ti) and the possibility of inducing superconductivity in a graphene sheet in two cases, one by doping its surface with palladium atoms sit on the center of the hexagons of the graphene layer and other by covering the graphene layer with two layers of titanium metal atoms. The results here were obtained from first-principles density functional theory in the local density approximation. The Quantum-Espresso package was used with norm conserving pseudopotentials. All of the structures considered were relaxed to their minimum energy configuration. Phonon frequencies were calculated using the linear-response technique on several phonon wave-vector mesh. The electron-phonon coupling parameter was calculated with several electron momentum k-mesh. The superconducting critical temperature was estimated using the Allen-Dynes formula with μ* = 0.1 - 0.15. We note that palladium and titanium are good candidate materials to show a metal-to-superconductor transition. We thank Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México, partial financial support by Grant IN-106514 and we also thank Miztli Super-Computing center the technical assistance.
Bonarowska, Magdalena; Wojciechowska, Maria; Zieliński, Maciej; Kiderys, Angelika; Zieliński, Michał; Winiarek, Piotr; Karpiński, Zbigniew
2016-11-25
Pd/MgO, Pd/MgF₂ and Pd/MgO-MgF₂ catalysts were investigated in the reaction of CCl₄ hydrodechlorination. All the catalysts deactivated in time on stream, but the degree of deactivation varied from catalyst to catalyst. The MgF₂-supported palladium with relatively large metal particles appeared the best catalyst, characterized by good activity and selectivity to C₂-C₅ hydrocarbons. Investigation of post-reaction catalyst samples allowed to find several details associated with the working state of hydrodechlorination catalysts. The role of support acidity was quite complex. On the one hand, a definite, although not very high Lewis acidity of MgF₂ is beneficial for shaping high activity of palladium catalysts. The MgO-MgF₂ support characterized by stronger Lewis acidity than MgF₂ contributes to very good catalytic activity for a relatively long reaction period (~5 h) but subsequent neutralization of stronger acid centers (by coking) eliminates them from the catalyst. On the other hand, the role of acidity evolution, which takes place when basic supports (like MgO) are chlorided during HdCl reactions, is difficult to assess because different events associated with distribution of chlorided support species, leading to partial or even full blocking of the surface of palladium, which plays the role of active component in HdCl reactions.
Synthesis of substituted isoquinolines utilizing palladium-catalyzed α-arylation of ketones
Donohoe, Timothy J.; Pilgrim, Ben S.; Jones, Geraint R.; Bassuto, José A.
2012-01-01
The utilization of sequential palladium-catalyzed α-arylation and cyclization reactions provides a general approach to an array of isoquinolines and their corresponding N-oxides. This methodology allows the convergent combination of readily available precursors in a regioselective manner and in excellent overall yields. This powerful route to polysubstituted isoquinolines, which is not limited to electron rich moieties, also allows rapid access to analogues of biologically active compounds. PMID:22753504
DeKorver, Kyle A.; Hsung, Richard P.; Lohse, Andrew G.; Zhang, Yu
2010-01-01
A fascinating mechanistic study of ynamido-palladium-π-allyl complexes is described that features isolation of a unique silyl-ketenimine via aza-Claisen rearrangement, which can be accompanied by an unusual thermal N-to-C 1,3-Ts shift in the formation of tertiary nitriles, and a novel cyclopentenimine formation via a palladium catalyzed aza-Rautenstrauch-type cyclization pathway. PMID:20337418
USDA-ARS?s Scientific Manuscript database
In an effort to expand the number of biobased chemicals available from sugars, xylose has been converted to 1,6,9,13-tetraoxadispiro(4.2.4.2)tetradecane in a one-pot reaction using palladium supported on silica-alumina as the catalyst. The title compound is produced in 35-40% yield under 7 MPa H2 pr...
1982-07-01
palladium acetate and the appropriate phosphine . This procedure is known to be effective for bromoarenes. In the early screen- ing runs, 4...Delaware), he indicated that he also had screened many phosphines , and the likelihood of success was very small. Dr. Heck reported that the palladium...any simple modification of the palla- dium phosphine catalyst system will effect the desired reaction. 5 III. PREPARATION OF OLIGOMERIC BENZILS AND
NASA Astrophysics Data System (ADS)
Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem
2016-04-01
This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.
Mori, Miwako; Nakanishi, Masato; Kajishima, Daisuke; Sato, Yoshihiro
2003-08-13
A method of palladium-catalyzed asymmetric allylic substitution for synthesizing 2-substituted cyclohexenylamine derivatives was established. Treatment of a 2-silyloxymethylcyclohexenol derivative with ortho-bromo-N-tosylaniline in the presence of Pd(2)dba(3).CHCl(3) and (S)-BINAPO in THF afforded a cyclohexenylamine derivative with 84% ee in 80% yield. The Heck reaction was carried out to produce an indolenine derivative in good yield. Using this method, we synthesized indolenine derivative 7, which was recrystallized from EtOH to give an optically pure compound. From this compound, tetracyclic ketone 13, which should be a useful intermediate for the synthesis of indole alkaloids, could be synthesized. The total syntheses of (-)-dehydrotubifoline, (-)-tubifoline, and (-)-strychnine were achieved from 13. All ring constructions for the syntheses of these natural products were achieved using a palladium catalyst.
Phenomenological in-situ TEM gas exposure studies of palladium particles on MgO at room temperature
NASA Technical Reports Server (NTRS)
Heinemann, K.; Poppa, H.; Osaka, T.
1983-01-01
It has been found that very small vapor-deposited catalytically active metal particles in the 1-2 nm size range on metal oxide substrates can undergo significant changes when they are exposed to gases such as oxygen or air, or even when allowed to 'anneal' at room temperature (RT) under vacuum conditions. The present investigation is concerned with continued in-situ gas exposures of as-deposited, 1 to 2 nm size palladium particles on MgO to air, oxygen, nitrogen, hydrogen, CO, and water vapor at RT. It is found that the low-pressure exposure to various gases at RT can significantly affect small palladium particles supported on MgO surfaces. Exposure to oxygen for 3 min at 0.0002 m bar produces a considerable amount of coalescence, flattening of the particles, and some distinct crystallographic particle shapes.
NASA Astrophysics Data System (ADS)
González-Montiel, Simplicio; Valdez-Calderón, Alejandro; Vásquez-Pérez, J. Manuel; Torres-Valencia, J. Martín; Martínez-Otero, Diego; López, Jorge A.; Cruz-Borbolla, Julián
2017-10-01
A new series of chrysin derivatives containing the di-(2-picolyl)amine (2a-d) moiety have been designed, synthesized, and treated with PdCl2·2CH3CN allowing the preparation of new cationic Palladium(II) complexes (3a-d). Solution-phase studies by 1H NMR spectroscopy of 3a-d revealed that the protons of the methylene groups of the di(2-picolyl)amine fragment are diasterotopic. GIAO/DFT studies were performed to predict the molecular structures of 3a-d by comparing the experimental and theoretical 1H-NMR chemical shifts. The molecular structure of 3c was determined by X-ray crystallographic analysis revealing that di-(2-picolyl)amine fragment is coordinated to the palladium center in a κ3-N,N,N-tridentate fashion in an overall square-planar geometry completed with a chloride atom.
Hapfty, J.; Riley, L.B.
1968-01-01
A method is described for the determination of palladium down to 4ppb (parts per billion, 109), platinum down to 10 ppb and rhodium down to 5 ppb in 15 g of sample. Fire-assay techniques are used to preconcentrate the platinum metals into a gold bead, then the bead is dissolved in aqua regia and diluted to volume with 1M hydrochloric acid. The solution is analysed by optical emission spectrography of the residue from 200 ??l of it evaporated on a pair of flat-top graphite electrodes. This method requires much less sample handling than most published methods for these elements. Data are presented for G-1, W-1, and six new standard rocks of the U.S. Geological Survey. The values for palladium in W-1 are in reasonable agreement with previously published data. ?? 1968.
Davies, Alyn T.; Curto, John M.
2017-01-01
A mild, efficient synthesis of sulfonyl fluorides from aryl and heteroaryl bromides utilizing palladium catalysis is described. The process involves the initial palladium-catalyzed sulfonylation of aryl bromides using DABSO as an SO2 source, followed by in situ treatment of the resultant sulfinate with the electrophilic fluorine source NFSI. This sequence represents the first general method for the sulfonylation of aryl bromides, and offers a practical, one-pot alternative to previously described syntheses of sulfonyl fluorides, allowing rapid access to these biologically important molecules. Excellent functional group tolerance is demonstrated, with the transformation successfully achieved on a number of active pharmaceutical ingredients, and their precursors. The preparation of peptide-derived sulfonyl fluorides is also demonstrated. PMID:28451264
Pd-Ni-MWCNT nanocomposite thin films: preparation and structure
NASA Astrophysics Data System (ADS)
Kozłowski, Mirosław; Czerwosz, ElŻbieta; Sobczak, Kamil
2017-08-01
The properties of nanocomposite palladium-nickel-multi-walled (Pd-Ni-MWCNT) films deposited on aluminum oxide (Al2O3) substrate have been prepared and investigated. These films were obtained by 3 step process consisted of PVD/CVD/PVD methods. The morphology and structure of the obtained films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques at various stages of the film formation. EDX spectrometer was used to measurements of elements segregation in the obtained film. TEM and STEM (Scanning Transmission Electron Microscopy) observations showed MWCNTs decorated with palladium nanoparticles in the film obtained in the last step of film formation (final PVD process). The average size of the palladium nanoparticles observed both on MWCNTs and carbonaceous matrix does not exceed 5 nm. The research was conducted on the use of the obtained films as potential sensors of gases (e.g. H2, NH3, CO2) and bio-sensors or optical sensors.
Selective growth of palladium and titanium dioxide nanostructures inside carbon nanotube membranes
2012-01-01
Hybrid nanostructured arrays based on carbon nanotubes (CNT) and palladium or titanium dioxide materials have been synthesized using self-supported and silicon-supported anodized aluminum oxide (AAO) as nanoporous template. It is well demonstrated that carbon nanotubes can be grown using these membranes and hydrocarbon precursors that decompose at temperatures closer to 600°C without the use of a metal catalyst. In this process, carbonic fragments condensate to form stacked graphitic sheets, which adopt the shape of the pores, yielding from these moulds' multi-walled carbon nanotubes. After this process, the ends of the tubes remain open and accessible to other substances, whereas the outer walls are protected by the alumina. Taking advantage of this fact, we have performed the synthesis of palladium and titanium dioxide nanostructures selectively inside carbon nanotubes using these CNT-AAO membranes as nanoreactors. PMID:22731888
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.
Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less
Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.; ...
2018-03-09
Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less
Scalzullo, Stefania; Mondal, Kartick; Witcomb, Mike; Deshmukh, Amit; Scurrell, Mike; Mallick, Kaushik
2008-02-20
A single-step synthesis route is described for the preparation of a metal-polymer composite in which palladium acetate and meta-amino benzoic acid were used as the precursors for palladium nanoparticles and poly(meta-amino benzoic acid) (PABA). The palladium nanoparticles were found to be uniformly dispersed and highly stabilized throughout the macromolecule matrix. The resultant composite material was characterized by means of different techniques, such as IR and Raman spectroscopy, which provided information regarding the chemical structure of the polymer, whereas electron microscopy images yielded information regarding the morphology of the composite material and the distribution of the metal particles in the composite material. The composite material was used as a catalyst for the ethylene hydrogenation reaction and showed catalytic activity at higher temperatures. TEM studies confirmed the changed environment of the nanoparticles at these temperatures.
Catalytic Copolymerization of Ethene and Carbon Monoxide on Nickel Complexes.
Domhöver, Bernd; Kläui, Wolfgang; Kremer-Aach, Andreas; Bell, Ralf; Mootz, Dietrich
1998-11-16
Can palladium be replaced by nickel? For the industrial copolymerization of carbon monoxide and ethene a palladium catalyst is used which cannot be recovered-a cheaper procedure would be desirable. The presented complex 1 is the first structurally characterized nickel compound which does not polymerize ethene but a mixture from carbon monoxide and ethene unter mild conditions to give a perfectly alternating polyketone. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan
2017-10-27
Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan
Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).
Dai, Wenpeng; Xiao, Juan; Jin, Guanyi; Wu, Jingjing; Cao, Song
2014-11-07
A novel Kumada-Tamao-Corriu cross-coupling reaction of gem-di- or monofluoroalkenes with Grignard reagents, with or without β-hydrogen atoms, in the presence of a catalytic amount of palladium- or nickel-based catalysts has been developed. The reaction is performed under mild conditions (room temperature or reflux in diethyl ether for 1-2 h) and leads to di-cross- or mono-cross-coupled products in good to high yields.
Catalytic method for synthesizing hydrocarbons
Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.
A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.
Catalytic method for synthesizing hydrocarbons
Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.
1984-01-01
A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.
Process for recovery of hydrogen and
James, Brian R.; Li-Lee, Chung; Lilga, Michael A.; Nelson, David A.
1987-01-01
on of sulfur Abstract A process of abstracting sulfur from H.sub.2 S and generating hydrogen is disclosed comprising dissolving Pd.sub.2 X.sub.2 (.mu.-dppm).sub.2 in a solvent and then introducing H.sub.2 S. The palladium complex abstracts sulfur, forming hydrogen and a (.mu.-S) complex. The (.mu.-S) complex is readily oxidizable to a (.mu.-SO.sub.2) adduct which spontaneously loses SO.sub.2 and regenerates the palladium complex.
Degradation of TATP, TNT, and RDX using mechanically alloyed metals
NASA Technical Reports Server (NTRS)
Geiger, Cherie (Inventor); Sigman, Michael (Inventor); Fidler, Rebecca (Inventor); Clausen, Christian (Inventor)
2012-01-01
Bimetallic alloys prepared in a ball milling process, such as iron nickel (FeNi), iron palladium (FePd), and magnesium palladium (MgPd) provide in situ catalyst system for remediating and degrading nitro explosive compounds. Specifically, munitions, such as, 2,4,6-trinitrotoluene (TNT), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), nitrocellulose and nitroglycerine that have become contaminants in groundwater, soil, and other structures are treated on site to remediate explosive contamination.
Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH
2011-07-12
A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.
NASA Astrophysics Data System (ADS)
Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.; Narayanan, V.; Stephen, A.
2016-05-01
Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH4. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10-3 S-1 by NaBH4 using Spectrophotometer.
NASA Astrophysics Data System (ADS)
Seo, Min Ho; Choi, Sung Mook; Lee, Dong Un; Kim, Won Bae; Chen, Zhongwei
2015-12-01
The oxygen reduction reaction, ORR, performances of graphene-supported palladium (Pd) and palladium alloys (Pd3X: X = Ag, Co and Fe) catalysts with highly dispersed catalyst particles are investigated in acidic and alkaline conditions using a rotating disk electrode, RDE. Graphene nanosheet, GNS, supported Pd based catalysts are fabricated without surfactant through the impregnation of Pd and 2nd metal precursors on GNS, leading to small and uniformly dispersed nanoparticles, even when high metal loading of up to 60 wt.% are deposited on supports. The ab-initio density functional theory, DFT, calculations, which are based on the d-band center theory, have been applied to correlate with the results of the ORR performances obtained by half-cell tests. Additionally, the cohesive energy, Ecoh, and dissolution potential, Um, for the Pd nanoparticles have been calculated to understand thermodynamic stability. To elucidate the d-band center shift, the Pd 3d5/2 core-level binding energies for Pd/GNS, Pd3Ag/GNS, Pd3Fe/GNS and Pd3Co/GNS have been investigated by X-ray photoelectron spectroscopy, XPS. The GNS-supported Pd, or Pd-based alloy-nanoparticle catalyst shows good ORR activity under acidic and alkaline conditions, suggesting it may offer potential replacement for Pt for use in cathode electrodes of anion-exchange membrane fuel cell, AEMFC, and acid based polymer electrolyte fuel cell, PEMFC.
NASA Astrophysics Data System (ADS)
Shabbir, Muhammad; Akhter, Zareen; Ashraf, Ahmad Raza; Ismail, Hammad; Habib, Anum; Mirza, Bushra
2017-12-01
Nickel(II) and palladium(II) triphenylphosphine complexes incorporating tridentate Schiff bases have been prepared and characterized by elemental analysis as well as by spectroscopic techniques (FTIR & NMR). The synthesized compounds were assessed to check their potential biocidal activity by using different biological assays (brine shrimp cytotoxicity, antimicrobial, antioxidant, antitumor and drug-DNA interaction). Results of brine shrimp cytotoxicity assay showed that ligand molecules are more bioactive than metal complexes with LD50 as low as 12.4 μg/mL. The prominent antitumor activity was shown by nickel complexes while the palladium complexes exhibited moderate activity. The synthesized compounds have shown high propensity for DNA binding either through intercalation or groove binding which represents the mechanism of antitumor effect of these compounds. Additionally, ligand molecules and nickel metal complexes showed significant antioxidant activity with IC50 values as low as 3.1 μg/mL and 18.9 μg/mL respectively while palladium complexes exhibited moderate activity. Moreover, in antimicrobial assays H2L1, Ni(L1)PPh3 and H2L3 showed dual inhibition against bacterial and fungal strains while for the rest of the compounds varying degree of activity was recorded against different strains. Overall comparison of results suggests that the synthesized compounds can be promising candidate for drug formulation and development.
Gavrish, Sergey P; Lampeka, Yaroslaw D; Pritzkow, Hans; Lightfoot, Philip
2010-09-07
The crystal structures of the palladium(II) complexes of the open-chain and macrocyclic ligands PdL(1).3H(2)O, PdL(2).6H(2)O and PdL(3).5H(2)O have been determined (H(2)L(1) = 1,4,8,11-tetraazaundecane-5,7-dione, H(2)L(2) = 1,4,8,11-tetraazacyclotetradecane-5,7-dione, H(2)L(3) = 1,4,8,11-tetraazacyclotridecane-5,7-dione). The coordination polyhedra of the palladium(II) ions in all complexes are formed by two deprotonated amide and two amine donors with Pd-N distances being similar in PdL(1) and PdL(2) and substantially shorter in PdL(3). A detailed analysis of the (1)H NMR spectra of the macrocyclic complexes supports the formation in aqueous solution of only N-meso isomers of both compounds in agreement with the X-ray data. The spectra of the palladium(II) macrocyclic complexes are shifted downfield as a whole as compared to those of the nickel(II) analogues with the shifts being essentially non-uniform. The latter feature can be related to the differences in magnetic anisotropy of the M-N bonds. The maxima of d-d absorption bands of the palladium(II) complexes demonstrate weaker dependence on the macrocycle size as compared to those of the nickel(II) analogues. Both macrocyclic compounds PdL(2).6H(2)O and PdL(3).5H(2)O are characterized by lamellar crystal structures consisting of interleaved layers formed by macrocyclic units and by water molecules with similar metal complex layers and different 2D water sheets. A columnar crystal structure is inherent for PdL(1).3H(2)O with the water molecules present as discrete (H(2)O)(3) clusters.
Bordignon, Valentina; Palamara, Francesca; Cordiali-Fei, Paola; Vento, Antonella; Aiello, Arianna; Picardo, Mauro; Ensoli, Fabrizio; Cristaudo, Antonio
2008-01-01
Background Recent attempts to diminish nickel use in most industrial products have led to an increasing utilization of alternative metal compounds for destinations such as the alloys used in orthopaedics, jewellery and dentistry. The present study was undertaken with the aim to evaluate the potential for an allergic response to nickel, palladium and rhodium on the basis of antigen-specific induction of inflammatory/regulatory cytokines, and to characterize, according to the cytokine profiles, the nature of simultaneous positive patch tests elicited in vivo. Peripheral blood mononuclear cells (PBMC) from 40 patients with different patch test results were kept in short term cultures in the presence of optimized concentrations of NiSO4 × 6H2O, PdCl2 and Rh(CH3COO)2. The production of IFN-γ and IL-10 elicited by metal compounds were analyzed by the ELISpot assay. Results We found a specific IFN-γ response by PBMC upon in vitro stimulation with nickel or palladium in well recognized allergic individuals. All controls with a negative patch test to a metal salt showed an in vitro IL-10 response and not IFN-γ production when challenged with the same compound. Interestingly, all subjects with positive patch test to both nickel and palladium (group 3) showed an in vitro response characterized by the release of IFN-γ after nickel stimulation and production of IL-10 in response to palladium. Conclusion These results strongly suggest that the different cytokine profiles elicited in vitro reflect different immune responses which may lead to the control of the allergic responses or to symptomatic allergic contact dermatitis. The development of sensitive and specific in vitro assays based on the determination of the cytokine profiles in response to contact allergens may have important diagnostic and prognostic implications and may prove extremely useful in complementing the diagnostic limits of traditional patch testing. PMID:18482439
NASA Astrophysics Data System (ADS)
Xue, Wenhua
Bio-oils have drawn more and more attention from scientists as a promising new clean, cheap energy source. One of the most interesting relevant issues is the effect of catalysts on the catalytic reactions that are used for producing bio-oils. Furfural, as a very important intermediate during these reactions, has attracted significant studies. However, the effect of catalysts, including particularly the liquid/solid interface formed by a metal catalyst and liquid water, in the catalytic reactions involving furfural still remains elusive. In this research, we performed ab initio molecular dynamics simulations and first-principles density-functional theory calculations to investigate the atomic-scale mechanisms of catalytic hydrogenation of furfural on the palladium surface and at the liquid/state interface formed by the palladium surface and liquid water. We studied all the possible mechanisms that lead to formation of furfuryl alcohol (FOL), formation of tetrahydrofurfural (THFAL), and formation of tetrahydrofurfurfuryl alcohol (THFOL). We found that liquid water plays a significant role in the hydrogenation reactions. During the reaction in the presence of water and the palladium catalyst, in particular, water directly participates in the hydrogenation of the aldehyde group of furfural and facilitates the formation of FOL by reducing the activation energy. Our calculations show that water provides hydrogen for the hydrogenation of the aldehyde group, and at the same time, a pre-existing hydrogen atom, which is resulted from dissociation of molecular hydrogen (experimentally, molecular hydrogen is always supplied for hydrogenation) on the palladium surface, is bonded to water, making the water molecule intact in structure. In the absence of water, on the other hand, formation of FOL and THFAL on the palladium surface involves almost the same energy barriers, suggesting a comparable selectivity. Overall, as water reduces the activation energy for the formation of FOL while increases the energy barrier slightly for hydrogenation of the furan ring, water changes the reaction selectivity and promotes the formation of furfuryl alcohol.
NASA Astrophysics Data System (ADS)
Romano, Esteban Javier
2005-07-01
Cerium and zirconium oxides are important materials in industrial catalysis. Particularly, the great advances attained in the past 30 years in controlling levels of gaseous pollutants released from internal combustion engines can be attributed to the development of catalysts employing these materials. Unfortunately, oxides of sulfur are known threats to the longevity of many catalytic systems by irreversibly interacting with catalytic materials. In this work, polycrystalline cerium-zirconium mixed-metal-oxide (MMO) solid solutions were synthesized. High resolution x-ray photoelectron spectroscopy (XPS) spectral data was collected and examined for revelation of the surface species that form on these metal oxides after in-situ exposures to sulfur dioxide. The model catalysts were exposed to sulfur dioxide using a custom modified in-situ reaction cell and platen heater. The results of this study demonstrate the formation of sulfate and sulfite surface sulfur species. Temperature and compositional dependencies were displayed, with higher temperatures and ceria molar ratios displaying a larger propensity for forming surface sulfur species. In addition to analysis of sulfur photoemission, the photoemission regions of oxygen, zirconium, and cerium were examined for the materials used in this study before and after the aforementioned treatments with sulfur dioxide. The presence of surface hydroxyl groups was observed and metal oxidation state changes were probed to further enhance the understanding of sulfur dioxide adsorption on the synthesized materials. Palladium loaded mixed-metal oxides were synthesized using a unique solid-state methodology to probe the effect of palladium addition on sulfur dioxide adsorption. The addition of palladium to this model system is shown to have a strong effect on the magnitude of adsorption for sulfur dioxide on some material/exposure condition combinations. Ceria/zirconia sulfite and sulfate species are identified on the palladium-loaded MMO materials with adsorption sites located on the exposed oxide sites.
Smith, Graeme; Vautravers, Nicolas R; Cole-Hamilton, David J
2009-02-07
A wide range of unidentate phosphines have been studied as ligands for the palladium-catalysed methoxycarbonylation of ethene in the presence of methanesulfonic acid using methanol as the solvent. At high phosphine to Pd ratios, methyl propanoate is formed at a low rate. However, at P-Pd ratios of 4 : 1, some unidentate phosphines promote the formation of polyketone with moderate rates. Analysis of all the phosphines shows that good electron donating power, combined with small size, favours polyketone formation.
Bulk synthesis of nanoporous palladium and platinum powders
Robinson, David B [Fremont, CA; Fares, Stephen J [Pleasanton, CA; Tran, Kim L [Livermore, CA; Langham, Mary E [Pleasanton, CA
2012-04-17
Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.
Palladium-catalyzed asymmetric quaternary stereocenter formation.
Gottumukkala, Aditya L; Matcha, Kiran; Lutz, Martin; de Vries, Johannes G; Minnaard, Adriaan J
2012-05-29
An efficient palladium catalyst is presented for the formation of benzylic quaternary stereocenters by conjugate addition of arylboronic acids to a variety of β,β-disubstituted carbocyclic, heterocyclic, and acyclic enones. The catalyst is readily prepared from PdCl(2), PhBOX, and AgSbF(6), and provides products in up to 99% enantiomeric excess, with good yields. Based on this strategy, (-)-α-cuparenone has been prepared in only two steps. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2007-10-06
Proffen, A. M. Rappe, S. Scott, and R. Seshadri, "BaCel-xPd,O 3-8 (0<xɘ.1): Redox controlled ingress and egress of palladium in a perovskite...methyl and the surface rhodium atoms. Such multi-center bonding leads to C-H bond depletion and is the cause of experimentally observed mode-softening...The Pd 2 - containing perovskite phases extrude elemental face-centered cubic palladium nanoparticles when heated in a reducing atmosphere. This
Velasco, Noelia; Virumbrales, Cintia; Sanz, Roberto; Suárez-Pantiga, Samuel; Fernández-Rodríguez, Manuel A
2018-05-08
The cross-coupling reaction of alkenyl bromides with thiols catalyzed by palladium complexes derived from inexpensive dppf ligand is reported. These reactions occur under low catalyst loading and in high yields and display wide scope, including the coupling of bulky thiols and trisubstituted bromoolefins, and functional group tolerance. In addition, the thioetherification of less reactive chloroalkenes and, for the first time, alkenyl tosylates was accomplished using a catalyst generated from CyPF tBu alkylbisphosphine ligand.
Selective catalytic reduction system and process using a pre-sulfated zirconia binder
Sobolevskiy, Anatoly; Rossin, Joseph A.
2010-06-29
A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.
Apparatus and method for stripping tritium from molten salt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, David E.; Wilson, Dane F.
A method of stripping tritium from flowing stream of molten salt includes providing a tritium-separating membrane structure having a porous support, a nanoporous structural metal-ion diffusion barrier layer, and a gas-tight, nonporous palladium-bearing separative layer, directing the flowing stream of molten salt into contact with the palladium-bearing layer so that tritium contained within the molten salt is transported through the tritium-separating membrane structure, and contacting a sweep gas with the porous support for collecting the tritium.
Bulk synthesis of nanoporous palladium and platinum powders
Robinson, David B; Fares, Stephen J; Tran, Kim L; Langham, Mary E
2014-04-15
Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.
Karthikeyan, Jaganathan; Cheng, Chien-Hong
2011-10-10
Many steps make light work: substituted phenanthridinones can be obtained with high regioselectivity and in very good yields by palladium-catalyzed cyclization reactions of N-methoxybenzamides with arenes. The reaction proceeds through multiple oxidative C-H activation and C-C/C-N formation steps in one pot at room temperature, and thus provides a simple method for generating bioactive phenanthridinones. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sreedhar, B; Reddy, P Surendra; Devi, D Keerthi
2009-11-20
This note describes the direct reductive amination of carbonyl compounds with nitroarenes using gum acacia-palladium nanoparticles, employing molecular hydrogen as the reductant. This methodology is found to be applicable to both aliphatic and aromatic aldehydes and a wide range of nitroarenes. The operational simplicity and the mild reaction conditions add to the value of this method as a practical alternative to the reductive amination of carbonyl compounds.
Palladium-catalyzed Heck-type cross-couplings of unactivated alkyl iodides.
McMahon, Caitlin M; Alexanian, Erik J
2014-06-02
A palladium-catalyzed, intermolecular Heck-type coupling of alkyl iodides and alkenes is described. This process is successful with a variety of primary and secondary unactivated alkyl iodides as reaction partners, including those with hydrogen atoms in the β position. The mild catalytic conditions enable intermolecular C-C bond formations with a diverse set of alkyl iodides and alkenes, including substrates containing base- or nucleophile-sensitive functionality. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel metal-filled polyimide electrodes
NASA Technical Reports Server (NTRS)
Furtsch, T. A.; Finklea, H. O.; Taylor, L. T.
1984-01-01
Palladium-coated polyimide films are evaluated as electrochemical electrodes. The film electrodes exhibit essentially identical behavior compared to bulk palladium electrodes. In aqueous 0.5M H2SO4, current peaks due to oxide formation, oxide stripping, hydrogen adsorption, and H2 oxidation are observed. The ferri/ferrocyanide redox couple is grossly irreversible in the same electrolyte. Reversible electrochemical behavior is obtained for Fe(EDTA)(1-/2-) in 1M KCl/H2O, and for ferrocene/ferricenium in 0.1M TEAP/dimethylacetamide.
An intermolecular heterobimetallic system for photocatalytic water reduction.
Hansen, Sven; Klahn, Marcus; Beweries, Torsten; Rosenthal, Uwe
2012-04-01
Teamwork: A new intermolecular heterobimetallic system for photocatalytic water reduction, consisting of a photosensitizer of the type [Ru(bpy)(2)(L)](PF(6))(2) (L=bidentate ligand), a dichloro palladium complex PdCl(2)(L) serving as the water reduction catalyst, and triethyl amine as electron donor, is presented. Variations of the ligand as well as of the palladium source results in a significant improvement of the performance of the catalyst system. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Walker, Whitney K; Anderson, Diana L; Stokes, Ryjul W; Smith, Stacey J; Michaelis, David J
2015-02-06
Phosphinoamide-scaffolded heterobimetallic palladium-titanium complexes are highly effective catalysts for allylic aminations of allylic chlorides with hindered secondary amine nucleophiles. Three titanium-containing ligands are shown to assemble active catalysts in situ and enable catalysis at room temperature. A variety of sterically bulky secondary amines are efficiently allylated in high yields with as little as 1 mol % palladium catalyst. Piperidine and pyrrolidine products are also efficiently generated via intramolecular aminations with hindered amine nucleophiles.
Zhang, Lei; Qureshi, Zafar; Sonaglia, Lorenzo; Lautens, Mark
2014-12-08
Compatible combinations of achiral and chiral ligands can be used in rhodium/palladium catalysis to achieve highly enantioselective domino reactions. The difference in rates of catalysis and minimal effects of ligand interference confer control in the domino sequence. The "all-in-one" 1,4-conjugate arylation and C-N cross-coupling through sequential Rh/Pd catalysis provides access to enantioenriched dihydroquinolinone building blocks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Page, Norman J; Riley, Leonard Benjamin; Haffty, Joseph
1969-01-01
Analyses by a combination fire- assay-solution-optical-emission spectrographic method of 137 rocks from the Stillwater Complex, Mont., indicate that platinum, palladium, and rhodium are preferentially concentrated in chromitite zones. The A chromitite zone (21 samples) has an average of 988.9 ppb (pans per billion, 10-9) Pt, 2290.2 ppb Pd, and 245.9 ppb Rh and reaches a maximum (to date) of 8,000 ppb Pt, 11,000 ppb Pd, and 1,700 ppb Rh.
Hydrogen dissolution in palladium: A resistometric study under pressure
NASA Astrophysics Data System (ADS)
Magnouche, A.; Fromageau, R.
1984-09-01
The hydrogen solubility in palladium in equilibrium with H2 gas has been measured, between room temperature and 540 °C, using a resistometric method, for pressures ranging between 0.01 and 10 MPa. In these conditions, the experimentally determined values of the solubility and of the dissolution enthalpy exhibit very close agreement with those obtained by other methods (calorimetry, volumetry, etc.), or after electrolytic charging. This good agreement demonstrates the validity of the resistometric method for determination of the solubility of hydrogen in metals.
NASA Astrophysics Data System (ADS)
Li, Dongmei; Medlin, J. W.; Bastasz, R.
2006-06-01
The detection of dissolved hydrogen in liquids is crucial to many industrial applications, such as fault detection for oil-filled electrical equipment. To enhance the performance of metal-insulator-semiconductor (MIS) sensors for dissolved hydrogen detection, a palladium MIS sensor has been modified by depositing a polyimide (PI) layer above the palladium surface. Response measurements of the PI-coated sensors in mineral oil indicate that hydrogen is sensitively detected, while the effect of interfering gases on sensor response is minimized.
NASA Astrophysics Data System (ADS)
Cabral, Alexandre Raphael; Ließmann, Wilfried; Lehmann, Bernd
2015-10-01
At Roter Bär, a former underground mine in the polymetallic deposits of St. Andreasberg in the middle-Harz vein district, Germany, native gold and palladium minerals occur very locally in clausthalite-hematite pockets of few millimetres across in carbonate veinlets. The native gold is a Au-Ag intermetallic compound and the palladium minerals are characterised as mertieite-II [Pd8(Sb,As)3] and empirical PdCuBiSe3 with some S. The latter coexists with bohdanowiczite (AgBiSe2), a mineral that is stable below 120 °C. The geological setting of Roter Bär, underneath a post-Variscan unconformity, and its hematite-selenide-gold association suggest that oxidising hydrothermal brines of low temperature were instrumental to the Au-Pd mineralisation. The Roter Bär Au-Pd mineralisation can be explained by Permo-Triassic, red-bed-derived brines in the context of post-Variscan, unconformity-related fluid overprint.
Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys
Hale, Lucas M.; Zimmerman, Jonathan A.; Wong, Bryan M.
2016-05-18
Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material’s structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of materialmore » defects, and we compare the material behavior displayed with expectations from experiment and theory. In conclusion, we also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations.« less
NASA Astrophysics Data System (ADS)
Stojković, Danijela Lj; Jevtić, Verica V.; Vuković, Nenad; Vukić, Milena; Čanović, Petar; Zarić, Milan M.; Mišić, Milena M.; Radovanović, Dragče M.; Baskić, Dejan; Trifunović, Srećko R.
2018-04-01
In reaction of 3-acetyl-4-hydroxy coumarine with methionine methyl ester hydrochloride and tryptophane methyl ester hydrochloride the corresponding enamine ligands were obtained. Palladium (II) complexes were prepared in reaction of potassium-tetrachloridopalladate (II) and corresponding enamine. All compounds were characterized by microanalysis, infrared, 1H and 13C NMR spectroscopy. In vitro antitumor activity of the mentioned ligands and corresponding palladium (II) complexes, as well as me-Gly and me-Val ligands and [Pd (me-Gly)]Cl and [Pd (me-Val)2] complexes was determined by MTT assay against two leukemia cell lines (JVM-13 and MOLT-4) and against primary leukemic cells isolated from chronic lymphocytic leukemia (CLL) patients. Antimicrobial activity of the tested compound was evaluated by determining the minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) against three reference bacterial strains: E. faecalis, P. aeruginosa, S. aureus and one clinical isolate of yeast: Candida spp.
Preparation and analysis of particulate metal deposits
NASA Technical Reports Server (NTRS)
Poppa, H.; Moorhead, D.; Heinemann, K.
1985-01-01
Small particles and clusters of palladium were grown by deposition from the vapor phase under ultrahigh vacuum conditions. Amorphous and crystalline support films of Al2O3 and ultrathin amorphous carbon films were used as substrate materials. The growth of the metal deposit was monitored in situ by scanning transmission diffraction of energy-filtered 100 kV electrons and high resolution transmission electron microscopy (TEM) analysis was performed in a separate instrument. It was established by in situ TEM, however, that the transfer of specimens in this case did not unduly affect the size and distribution of deposit particles. It was found that the cleanness, stoichiometry, crystallinity and structural perfection of the support surface play an essential role in determining the crystalline perfection and structure of the particles. The smallest palladium clusters reproducibly prepared contained not more than six atoms but size determinations below 1 nm average particle diameter are very problematic with conventional TEM. Palladium particles grown on carbon supports feature an impurity-stabilized mosaic structure.
Tritium and tritons in cold fusion
NASA Astrophysics Data System (ADS)
Wolf, K. L.; Whitesell, L.; Jabs, H.; Shoemaker, J.
1991-05-01
An analysis is conducted on reports of tritium production and of charged-particle emission from deuterated palladium and titanium. Possible sources of error are outline and the lack of definitive experiments is discussed. Extensive sets of experiments are reported in which two previously reported results are checked in detail. A search for charged-particle emission was conducted on deuterated titanium and 6-6-2 titanium alloy that was subjected to cryogenic cycling. Two delta E-E silicon telescopes were used to count 42 samples for 3-4 cycles each from 84K to room temperature. No charge-one particles were detected and alpha particle yields of a few counters per day corresponded to background levels. A search for tritium production from 1 mm diameter palladium wire was conducted on 130 electrolytic cells in D2O and H2O, and in 250 metal samples. Several samples associated with one lot of palladium stock showed latent tritium levels well above background. No evidence was obtained for the occurrence of nuclear reactions in the electrolytic cells.
Wang, Xue; Choi, Sang-Il; Roling, Luke T.; ...
2015-07-02
Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can bemore » attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. Ultimately, these results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.« less
Denmark, Scott E; Kobayashi, Tetsuya
2003-06-27
The palladium- and copper-catalyzed cross-coupling reactions of cyclic silyl ethers with aryl iodides are reported. Silyl ethers 3 were readily prepared by intramolecular silylformylation of homopropargyl silyl ethers 2 under a carbon monoxide atmosphere. The reaction of cyclic silyl ethers 3with various aryl iodides 7 in the presence of [(allyl)PdCl](2), CuI, a hydrosilane, and KF.2H(2)O in DMF at room temperature provided the alpha,beta-unsaturated aldehyde coupling products 8 in high yields. The need for copper in this process suggested that transmetalation from silicon to copper is an important step in the mechanism. Although siloxane 3 and the product 8 are not stable under basic conditions, KF.2H(2)O provided the appropriate balance of reactivity toward silicon and reduced basicity. The addition of a hydrosilane to [(allyl)PdCl](2) was needed to reduce the palladium(II) to the active palladium(0) form.
Al-Amin, Mohammad; Arai, Satoshi; Hoshiya, Naoyoki; Honma, Tetsuo; Tamenori, Yusuke; Sato, Takatoshi; Yokoyama, Mami; Ishii, Akira; Takeuchi, Masashi; Maruko, Tomohiro; Shuto, Satoshi; Arisawa, Mitsuhiro
2013-08-02
An improved process for the preparation of sulfur-modified gold-supported palladium material [SAPd, second generation] is presented. The developed preparation method is safer and generates less heat (aqueous Na2S2O8 and H2SO4) for sulfur fixation on a gold surface, and it is superior to the previous method of preparing SAPd (first generation), which requires the use of the more heat-generating and dangerous piranha solution (concentrated H2SO4 and 35% H2O2) in the sulfur fixation step. This safer and improved preparation method is particularly important for the mass production of SAPd (second generation) for which the catalytic activity was examined in ligand-free Buchwald-Hartwig cross-coupling reactions. The catalytic activities were the same between the first and second generation SAPds in aromatic aminations, but the lower palladium leaching properties and safer preparative method of second generation SAPd are a significant improvement over the first generation SAPd.
Peiris, Sunari; Sarina, Sarina; Han, Chenhui; Xiao, Qi; Zhu, Huai-Yong
2017-08-15
Silver-palladium (Ag-Pd) alloy nanoparticles strongly absorb visible light and exhibit significantly higher photocatalytic activity compared to both pure palladium (Pd) and silver (Ag) nanoparticles. Photocatalysts of Ag-Pd alloy nanoparticles on ZrO 2 and Al 2 O 3 supports are developed to catalyze the nitroaromatic coupling to the corresponding azo compounds under visible light irradiation. Ag-Pd alloy NP/ZrO 2 exhibited the highest photocatalytic activity for nitrobenzene coupling to azobenzene (yield of ∼80% in 3 hours). The photocatalytic efficiency could be optimized by altering the Ag : Pd ratio of the alloy nanoparticles, irradiation light intensity, temperature and wavelength. The rate of the reaction depends on the population and energy of the excited electrons, which can be improved by increasing the light intensity or by using a shorter wavelength. The knowledge developed in this study may inspire further studies on Ag alloy photocatalysts and organic syntheses using Ag-Pd nanoparticle catalysts driven under visible light Irradiation.
Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalysed by palladium
NASA Astrophysics Data System (ADS)
Feng, Zhang; Min, Qiao-Qiao; Fu, Xia-Ping; An, Lun; Zhang, Xingang
2017-09-01
Difluoromethylated aromatic compounds are of increasing importance in pharmaceuticals, agrochemicals and materials. Chlorodifluoromethane (ClCF2H), an inexpensive, abundant and widely used industrial raw material, represents the ideal and most straightforward difluoromethylating reagent, but introduction of the difluoromethyl group (CF2H) from ClCF2H into aromatics has not been reported. Here, we describe a direct palladium-catalysed difluoromethylation method for coupling ClCF2H with arylboronic acids and esters to generate difluoromethylated arenes with high efficiency. The reaction exhibits a remarkably broad substrate scope, including heteroarylboronic acids, and was used for difluoromethylation of a range of pharmaceuticals and biologically active compounds. Preliminary mechanistic studies revealed that a palladium difluorocarbene intermediate is involved in the reaction. Although numerous metal-difluorocarbene complexes have been prepared, the catalytic synthesis of difluoromethylated or difluoromethylenated compounds involving metal-difluorocarbene complexes has not received much attention. This new reaction therefore also opens the door to understand metal-difluorocarbene complex catalysed reactions.
Vujić, Jelena M; Cvijović, Milica; Kaluderović, Goran N; Milovanović, Marija; Zmejkovski, Bojana B; Volarević, Vladislav; Arsenijević, Nebojsa; Sabo, Tibor J; Trifunović, Srećko R
2010-09-01
Four novel bidentate N,N'-ligand precursors, including O,O'-dialkyl esters (alkyl = ethyl, n-propyl, n-butyl and n-pentyl), L1 x 2 HCl-L4 x 2 HCl, of (S,S)-ethylenediamine-N,N'-di-2-(4-methyl)-pentanoic acid dihydrochloride [(S,S)-H(4)eddl]Cl(2) and the corresponding palladium(II) complexes 1-4, were prepared and characterized by IR, (1)H NMR and (13)C NMR spectroscopy and elemental analysis. In vitro cytotoxicity of all compounds was determined against chronic lymphocytic leukemia cells (CLL). The compounds were found to exhibit higher antitumoral activity than cisplatin. The most active compound 2, [PdCl(2){(S,S)-nPr(2)eddl}], was found to be 13.6 times more active than cisplatin on CLL cells. 2010 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Giri, Soumen; Ghosh, Debasis; Malas, Asish; Das, Chapal Kumar
2013-08-01
Supercapacitors have evolved as the premier choice of the era for storing huge amounts of charge in the field of energy storage devices, but it is still necessary to enhance their performance to meet the increasing requirements of future systems. This could be achieved either through advancing the interfaces of the material at the nanoscale or by using novel material compositions. We report a high-performance material composition prepared by combining a transition metal (palladium)-doped conductive polymer with multiwalled carbon nanotubes (MWCNTs). MWCNTs/palladium-doped polyaniline (MWCNTs/Pd/PANI) composites and multiwalled carbon nanotube/polyaniline (MWCNTs/PANI) composites (for comparison) were prepared via in situ oxidative polymerization of aniline monomer. The reported composites were characterized by Fourier-transform infrared (FTIR), x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) studies. FESEM and TEM studies indicated the narrow size distribution of the π-conjugated polymer-protected palladium nanoparticles on the surface of the carbon nanotubes. All the electrochemical characterizations were executed using a three-electrode system in 1 M H2SO4 electrolyte. Cyclic voltammetry (CV) analysis was performed to observe the capacitive performance and redox behavior of the composites. The ion transfer behavior and cyclic stability of the composites were investigated by electrochemical impedance spectroscopy (EIS) analysis and cyclic charge-discharge (CCD) testing, respectively. The MWCNTs/Pd/PANI composite was found to exhibit an especially high specific capacitance value of 920 F/g at scan rate of 2 mV/s.
Rachmawati, Dessy; Bontkes, Hetty J; Verstege, Marleen I; Muris, Joris; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W
2013-06-01
Nickel was recently identified as a potent activator of dendritic cells through ligating with human Toll-like receptor (TLR)-4. Here, we studied an extended panel of transition metals neighbouring nickel in the periodic table of elements, for their capacity to activate human monocyte-derived dendritic cells (MoDCs). The panel included chromium, cobalt, and palladium, all of which are known to be frequent clinical sensitizers. MoDC activation was monitored by assessment of release of the pro-inflammatory mediator interleukin (IL)-8, a major downstream result of TLR ligation. Results The data obtained in the present study show that cobalt and palladium also have potent MoDC-activating capacities, whereas copper and zinc, but not iron and chromium, have low but distinct MoDC-activating potential. Involvement of endotoxin contamination in MoDC activation was excluded by Limulus assays and consistent stimulation in the presence of polymyxin B. The critical role of TLR4 in nickel-induced, cobalt-induced and palladium-induced activation was confirmed by essentially similar stimulatory patterns obtained in an HEK293 TLR4/MD2 transfectant cell line. Given the adjuvant role of costimulatory danger signals, the development of contact allergies to the stimulatory metals may be facilitated by signals from direct TLR4 ligation, whereas other metal sensitizers, such as chromium, may rather depend on microbial or tissue-derived cofactors to induce clinical sensitization. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hernández, Wilfredo; Paz, Juan; Carrasco, Fernando; Spodine, Evgenia; Manzur, Jorge; Sieler, Joachim; Blaurock, Steffen; Beyer, Lothar
2013-01-01
The palladium(II) bis-chelate complexes of the type [Pd(TSC1-5)2] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2′-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3′-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2′-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-1-(1′-nitro-2′-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to PdII through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (IC50 = 0.01–9.87 μM) exhibited higher antiproliferative activity than their free ligands (IC50 = 23.48–70.86 and >250 μM) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC3)2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 μM, resp.). PMID:24391528
Mild Palladium Catalyzed ortho C-H Bond Functionalizations of Aniline Derivatives.
Tischler, Ms Orsolya; Tóth, Mr Balázs; Novák, Zoltán
2017-02-01
This account collects the developments and transformations which avoid the utilization of harsh reaction conditions in the field of palladium catalyzed, ortho-directed C-H activation of aniline derivatives from the first attempts to up-to-date results, including the results of our research laboratory. The discussed functionalizations performed under mild conditions include acylation, olefination, arylation, alkylation, alkoxylation reactions. Beside the optimization studies and the synthetic applications mechanistic investigations are also presented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cao, Qun; Hughes, N. Louise
2016-01-01
Abstract A homogeneous PdII catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2‐alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures. PMID:27305489
Fabrication of Size-Tunable Metallic Nanoparticles Using Plasmid DNA as a Biomolecular Reactor
Samson, Jacopo; Piscopo, Irene; Yampolski, Alex; Nahirney, Patrick; Parpas, Andrea; Aggarwal, Amit; Saleh, Raihan; Drain, Charles Michael
2011-01-01
Plasmid DNA can be used as a template to yield gold, palladium, silver, and chromium nanoparticles of different sizes based on variations in incubation time at 70 °C with gold phosphine complexes, with the acetates of silver or palladium, or chromium acetylacetonate. The employment of mild synthetic conditions, minimal procedural steps, and aqueous solvents makes this method environmentally greener and ensures general feasibility. The use of plasmids exploits the capabilities of the biotechnology industry as a source of nanoreactor materials. PMID:28348280
Seo, Jungmok; Lee, Soonil; Han, Heetak; Jung, Hwae Bong; Hong, Juree; Song, Giyoung; Cho, Suk Man; Park, Cheolmin; Lee, Wooyoung; Lee, Taeyoon
2013-08-14
A gas-driven ultrafast adhesion switching of water droplets on palladium-coated Si nanowire arrays is demonstrated. By regulating the gas-ambient between the atmosphere and H2 , the super-hydrophobic adhesion is repeatedly switched between water-repellent and water-adhesive. The capability of modulating the super-hydrophobic adhesion on a super-hydrophobic surface with a non-contact mode could be applicable to novel functional lab-on-a-chip platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mayorquín-Torres, Martha C; Romero-Ávila, Margarita; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A
2013-11-01
Palladium-catalyzed cross coupling of phenyboronic acid with acetylated bile acids in which the carboxyl functions have been activated by formation of a mixed anhydride with pivalic anhydride afforded moderate to good yield of 24-phenyl-24-oxo-steroids. Unambiguous assignments of the NMR signals were made with the aid of combined 1D and 2D NMR techniques. X-ray diffraction studies confirmed the obtained structures. Copyright © 2013 Elsevier Inc. All rights reserved.
Determination of palladium and platinum by atomic absorption
Schnepfe, M.M.; Grimaldi, F.S.
1969-01-01
Palladium and platinum are determined by atomic absorption after fire-assay concentration into a gold bead. The limit of determination is ~0??06 ppm in a 20-g sample. Serious depressive interelement interferences are removed by buffering the solutions with a mixture of cadmium and copper sulphates with cadmium and copper concentrations each at 0??5%. Substantial amounts of Ag, Al, Au, Bi, Ca, Co, Cr, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn, and the platinum metals do not interfere in the atomic-absorption determination. ?? 1969.
Casanova, Noelia; Del Rio, Karina P; García-Fandiño, Rebeca; Mascareñas, José L; Gulías, Moisés
2016-05-06
2-Alkenylphenols react with allenes, upon treatment with catalytic amounts of Pd(II) and Cu(II), to give benzoxepine products in high yields and with very good regio- and diastereoselectivities. This contrasts with the results obtained with Rh catalysts, which provided chromene-like products through a pathway involving a β-hydrogen elimination step. Computational studies suggest that the square planar geometry of the palladium is critical to favor the reductive elimination process required for the formation of the oxepine products.
Hydrocarbon synthesis catalyst and method of preparation
Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.
1983-08-02
A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint. 9 figs.
Californium--palladium metal neutron source material
Dahlen, B.L.; Mosly, W.C. Jr.; Smith, P.K.; Albenesius, E.L.
1974-01-22
Californium, as metal or oxide, is uniformly dispersed throughout a noble metal matrix, provided in compact, rod or wire form. A solution of californium values is added to palladium metal powder, dried, blended and pressed into a compact having a uni-form distribution of californium. The californium values are decomposed to californium oxide or metal by heating in an inert or reducing atmosphere. Sintering the compact to a high density closes the matrix around the dispersed californium. The sintered compact is then mechanically shaped into an elongated rod or wire form. (4 claims, no drawings) (Official Gazette)
Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH
2011-08-02
A process and system (18) for reducing NO.sub.x in a gas using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream (29) with a catalyst system (38) comprising sulfated zirconia washcoat particles (41), palladium, a pre-sulfated zirconia binder (44), and a promoter (45) comprising at least one of titanium, zinc, or a mixture thereof. The presence of zinc or titanium increases the resistance of the catalyst system to a sulfur and water-containing gas stream.
Dichlorido[(S,R(S))-1-diphenylphosphino-2-(ethylsulfanylmethyl)ferrocene]palladium(II).
Diab, Lisa; Daran, Jean-Claude; Gouygou, Maryse; Manoury, Eric; Urrutigoïty, Martine
2007-12-01
The reaction of enantiomerically pure planar chiral ferrocene phosphine thioether with bis(acetonitrile)dichloridopalladium yields the title square-planar mononuclear palladium complex as an enantiomerically pure single diastereoisomer, [PdFe(C5H5)(C20H20PS)Cl2]. The planar chirality of the ligand is retained in the complex and fully controls the central chirality on the S atom. The absolute configuration, viz. S for the planar chirality and R for the S atom, is unequivocally determined by refinement of the Flack parameter.
Hydrocarbon synthesis catalyst and method of preparation
Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.
1983-08-02
A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.
Hydrogen sensors based on electrophoretically deposited Pd nanoparticles onto InP
2011-01-01
Electrophoretic deposition of palladium nanoparticles prepared by the reverse micelle technique onto InP substrates is addressed. We demonstrate that the substrate pre-deposition treatment and the deposition conditions can extensively influence the morphology of the deposited palladium nanoparticle films. Schottky diodes based on these films show notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi level pinning. Moreover, electrical characteristics of these diodes are exceptionally sensitive to the exposure to gas mixtures with small hydrogen content. PMID:21711912
Tris(acetonitrile)chloropalladium tetrafluoroborate synthesis, application and structural analysis
NASA Astrophysics Data System (ADS)
Dybała, Izabela; Demchuk, Oleg M.
2016-10-01
Results of the single crystal X-ray diffraction analysis of tris(acetonitrile)chloropalladium tetrafluoroborate [PdCl(CH3CN)3]BF4 are presented in details. It was found that the title compound crystallises in the monoclinic system, in the space group C2/c. The role of charge-assisted C-HṡṡṡF-B interactions in crystal architecture was investigated. Due to its untypical properties the prepared [PdCl(CH3CN)3]BF4 has proved to be an excellent palladium source in the synthesis of phosphine-palladium complexes.
Reaction of carbon dioxide with a palladium-alkyl complex supported by a bis-NHC framework.
Ariyananda, Piyal W G; Yap, Glenn P A; Rosenthal, Joel
2012-07-14
The reactivity of a dimethyl palladium complex supported by a dicarbene chelate (MDC(Mes))PdMe(2) towards CO(2) has been investigated. In the presence of trace H(2)O, this reaction yields the corresponding methyl bicarbonate complex (MDC(Mes))PdMe(O(2)COH), which goes on to give the corresponding κ(2)-carbonato complex upon crystallization (MDC(Mes))Pd(CO(3)). This chemistry, as well as related protonolysis by acetic acid was monitored by a combination of techniques including React-IR spectroscopy.
Associations of Pd, U and Ag in the SiC layer of neutron-irradiated TRISO fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lillo, Thomas; Rooyen, Isabella Van
2015-05-01
Knowledge of the associations and composition of fission products in the neutron irradiated SiC layer of high-temperature gas reactor TRISO fuel is important to the understanding of various aspects of fuel performance that presently are not well understood. Recently, advanced characterization techniques have been used to examine fuel particles from the Idaho National Laboratory’s AGR-1 experiment. Nano-sized Ag and Pd precipitates were previously identified in grain boundaries and triple points in the SiC layer of irradiated TRISO nuclear fuel. Continuation of this initial research is reported in this paper and consists of the characterization of a relatively large number ofmore » nano-sized precipitates in three areas of the SiC layer of a single irradiated TRISO nuclear fuel particle using standardless EDS analysis on focused ion beam-prepared transmission electron microscopy samples. Composition and distribution analyses of these precipitates, which were located on grain boundaries, triple junctions and intragranular precipitates, revealed low levels, generally <10 atomic %, of palladium, silver and/or uranium with palladium being the most common element found. Palladium by itself, or associated with either silver or uranium, was found throughout the SiC layer. A small number of precipitates on grain boundaries and triple junctions were found to contain only silver or silver in association with palladium while uranium was always associated with palladium but never found by itself or in association with silver. Intergranular precipitates containing uranium were found to have migrated ~23 μm along a radial direction through the 35 μm thick SiC coating during the AGR-1 experiment while silver-containing intergranular precipitates were found at depths up to ~24 μm in the SiC layer. Also, Pd-rich, nano-precipitates (~10 nm in diameter), without evidence for the presence of either Ag or U, were revealed in intragranular regions throughout the SiC layer. Because not all grain boundaries and triple junctions contained precipitates with fission products and/or uranium, along with the differences in migration behavior between Pd, Ag and U, it was concluded that crystallographic grain boundary and triple junction parameters likely influence migration behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhitonov, Y.A.
2008-07-01
The prospects for development of nuclear power are intimately associated with solving the problem of safe management and removal from the biosphere of generated radioactive wastes. The most suitable material for fission products and actinides immobilization is the crystalline ceramics. By now numerous literature data are available concerning the synthesis of a large range of various materials with zirconium-based products. It worth mentioning that zirconium is only one of fission products accumulated in the fuel in large amounts. The development of new materials intended for HLW immobilization will allow increasing of radionuclides concentration in solidified product so providing costs reductionmore » at the stage of subsequent storage. At the same time the idea to use for synthesis of compounds, suitable as materials for long-term storage or final disposal of rad-wastes some fission products occurring in spent fuel in considerable amount and capable to form insoluble substances seems to be rather attractive. In authors opinion in the nearest future one can expect the occurrence of publications proposing the techniques allowing the use of 'reactor's zirconium, molybdenum or, perhaps, technetium as well, with the aim of preparing materials suitable for long-lived radionuclides storage or final disposal. The other element, which is generated in the reactor and worth mentioning, is palladium. The prospects for using palladium are defined not only by its higher generation in the reactor, but by a number of its chemical properties as well. It is evident that the use of natural palladium with the purpose of radionuclides immobilization is impossible due to its high cost and deficiency). In author's opinion such materials could be used as targets for long-lived radionuclides transmutation as well. The object of present work was the study on methods that could allow to use 'reactor' palladium with the aim of long-lived radionuclides such as I-129 and TUE immobilization. In the paper the results of experiments on synthesis of matrices with TUE oxides and PdI{sub 2} on palladium base are presented. (authors)« less
Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin.
Larese Filon, Francesca; Crosera, Matteo; Mauro, Marcella; Baracchini, Elena; Bovenzi, Massimo; Montini, Tiziano; Fornasiero, Paolo; Adami, Gianpiero
2016-07-01
The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm(-2) of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm(-2) and 1.06 ± 0.44 μg cm(-2) in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm(-2) h(-1) and 0.057 ± 0.030 μg cm(-2) h(-1) and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively. This study indicates that Pd can penetrate human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmad, Saeed; Nadeem, Shafqat; Anwar, Aneela; Hameed, Abdul; Tirmizi, Syed Ahmed; Zierkiewicz, Wiktor; Abbas, Azhar; Isab, Anvarhusein A.; Alotaibi, Mshari A.
2017-08-01
Palladium(II) cyanide complexes of thioamides (or thiones) having the general formula PdL2(CN)2, where L = Thiourea (Tu), Methylthiourea (Metu), N,N‧-Dimethylthiourea (Dmtu), Tetramethylthiourea (Tmtu), 2-Mercaptopyridine (Mpy) and 2-Mercaptopyrimidine (Mpm) were prepared by reacting K2[PdCl4] with potassium cyanide and thioamides in the molar ratio of 1:2:2. The complexes were characterized by elemental analysis, thermal and spectroscopic methods (IR, 1H and 13C NMR). The structures of three of the complexes were predicted by DFT calculations. The appearance of a band around 2100 cm-1 in IR and resonances around 120-130 ppm in the 13C NMR spectra indicated the coordination of cyanide to palladium(II). More than one resonances were observed for CN- carbon atoms in 13C NMR indicating the existence of equilibrium between different species in solution. DFT calculations revealed that in the case of the palladium(II) complex of Tmtu, the ionic dinuclear [Pd(Tmtu)4][Pd(CN)4] form was more stable than the dimer of mononuclear complex [Pd(Tmtu)2(CN)2] by 0.91 kcal mol-1, while for the complexes of Tu or Mpy ligands, the nonionic [Pd(L)2(CN)2] forms were more stable than the corresponding [Pd(L)4][Pd(CN)4] complexes by 1.26 and 6.49 kcal mol-1 for L = Tu and Mpy, respectively. The complexes were screened for antibacterial effects and some of them showed significant activities against both gram positive as well as gram negative bacteria.
Zhou, Wei Ping; Lewera, Adam; Larsen, Robert; Masel, Rich I; Bagus, Paul S; Wieckowski, Andrzej
2006-07-13
We report a combined X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and chronoamperometry (CA) study of formic acid electrooxidation on unsupported palladium nanoparticle catalysts in the particle size range from 9 to 40 nm. The CV and CA measurements show that the most active catalyst is made of the smallest (9 and 11 nm) Pd nanoparticles. Besides the high reactivity, XPS data show that such nanoparticles display the highest core-level binding energy (BE) shift and the highest valence band (VB) center downshift with respect to the Fermi level. We believe therefore that we found a correlation between formic acid oxidation current and BE and VB center shifts, which, in turn, can directly be related to the electronic structure of palladium nanoparticles of different particle sizes. Clearly, such a trend using unsupported catalysts has never been reported. According to the density functional theory of heterogeneous catalysis, and mechanistic considerations, the observed shifts are caused by a weakening of the bond strength of the COOH intermediate adsorption on the catalyst surface. This, in turn, results in the increase in the formic acid oxidation rate to CO2 (and in the associated oxidation current). Overall, our measurements demonstrate the particle size effect on the electronic properties of palladium that yields different catalytic activity in the HCOOH oxidation reaction. Our work highlights the significance of the core-level binding energy and center of the d-band shifts in electrocatalysis and underlines the value of the theory that connects the center of the d-band shifts to catalytic reactivity.
Tabassum, Rana; Gupta, Banshi D
2015-02-10
We analyze surface plasmon resonance-based fiber-optic sensor for sensing of small concentrations of hydrogen gas in the visible region of the electromagnetic spectrum. One of the two probes considered has multilayers of zinc oxide (ZnO) and palladium (Pd) while the other has layer of their composite over a silver coated unclad core of the fiber. The analysis is carried out for different volume fractions of palladium nanoparticles dispersed in zinc oxide host material in the nanocomposite layer. For the analysis, a Maxwell-Garnett model is adopted for calculating the dielectric function of a ZnO:Pd nanocomposite having nanoparticles of dimensions smaller than the wavelength of radiation used. The effects of the volume fraction of the nanoparticles in the nanocomposite and the thickness of the nanocomposite layer on the figure of merit of the sensor have been studied. The film thickness of the layer and the volume fraction of nanoparticles in the ZnO:Pd nanocomposite layer have been optimized to achieve the maximum value of the figure of merit of the sensor. It has been found that the figure of merit of the sensing probe coated with ZnO:Pd nanocomposite is more than twofold of the sensing probe coated with multilayers of Pd and ZnO over a silver coated unclad core of the fiber; hence, the sensor with a nanocomposite layer works better than that with multilayers of zinc oxide and palladium. The sensor can be used for online monitoring and remote sensing of hydrogen gas.
Understanding Anionic "Ligandless" Palladium Species in the Mizoroki-Heck Reaction.
Schroeter, Felix; Strassner, Thomas
2018-05-07
The anionic complex [NBu 4 ][Pd(DMSO)Cl 3 ], as a "ligandless" system, was shown to be an active catalyst in the Mizoroki-Heck coupling of aryl chlorides in the absence of strongly σ-donating ligands. To investigate the experimentally observed influence of halides and the amount of water on the catalytic activity, we employed a combination of experiments and theoretical calculations. The presence of water was shown to be critical for the formation of the active palladium(0) species by oxidation of in situ generated tributylamine. Oxidative addition to an anionic palladium(0) species was found to be the rate-determining step of the catalytic cycle. For the ensuing steps, both neutral and anionic pathways were considered. It was shown that, in the absence of strongly σ-donating neutral ligands, chloride ions stabilize the catalytic intermediates. Therefore, an anionic pathway is preferred, which explains the need for tetrabutylammonium chloride as an additive. The study of the influence of bromide ions on the catalytic activity revealed that the strongly exergonic displacement of the neutral substrates by bromide ions lowers the catalytic activity.
Yang, Xiao; Li, Huijian; Ahuja, Rajeev; Kang, Taewon; Luo, Wei
2017-06-14
We present the formation possibility for Pd-hydrides and Pd-Rh hydrides system by density functional theory (DFT) in high pressure upto 50 GPa. Calculation confirmed that PdH 2 in face-centered cubic (fcc) structure is not stable under compression that will decomposition to fcc-PdH and H 2 . But it can be formed under high pressure while the palladium is involved in the reaction. We also indicate a probably reason why PdH 2 can not be synthesised in experiment due to PdH is most favourite to be formed in Pd and H 2 environment from ambient to higher pressure. With Rh doped, the Pd-Rh dihydrides are stabilized in fcc structure for 25% and 75% doping and in tetragonal structure for 50% doping, and can be formed from Pd, Rh and H 2 at high pressure. The electronic structural study on fcc type Pd x Rh 1-x H 2 indicates the electronic and structural transition from metallic to semi-metallic as Pd increased from x = 0 to 1.
Synthesis and investigation of Pd(I) carbonyl complexes with heteroorganic ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberov, A.A.; Polovnyak, V.K.; Akhmetov, N.S.
1987-09-10
Pd(I) carbonyl complexes are attracting attention because they have been shown to have catalytic properties in a series of organic syntheses. The stability and catalytic properties of these compounds are determined by the nature of the phosphine ligand and the bridge coordination of the carbonylgroup. Through the partial replacement of carbonyl and acido ligands by heteroorganic ligands in carbonyl halogenide and carbonyl acetate Pd(I) complexes, new stable Pd(I) complexes were obtained: (PdLX)/sub 2/CO, where L = PPh/sub 3/, X = OAc; L = AsPh/sub 3/, X = Cl, Br, OAc; L = SbPh/sub 3/, X = Cl Br, OAc; Lmore » = Ph/sub 2/PCH/sub 2/PPh/sub 2/, Ph/sub 2/AsCH/sub 2/AsPh/sub 2/, X = OAc. Atoms of the heteroorganic and acido ligands are equivalently coordinated to the palladium atoms. The carbonyl group in the complexes has bridge coordination to palladium atoms in the Pd(CO)Pd fragment; in complexes with bidentate heteroorganic ligands the covalent bond between palladium atoms is absent.« less
Complete dechlorination of DDE/DDD using magnesium/palladium system.
Gautam, Sumit Kumar; Suresh, Sumathi
2007-04-01
Kinetic studies on the dechlorination of 1,1-dichloro-2,2 bis (4,-chlorophenyl) ethane (DDD) and 1,1,dichloro-2,2 bis (4,-chlorophenyl) ethylene (DDE) in 0.05% biosurfactant revealed that the reaction follows second-order kinetics. The rate of reaction was dependent on the presence of acid, initial concentrations of the target compound, and zerovalent magnesium/tetravalent palladium. Gas chromatography-mass spectrometry analyses of DDE dechlorination revealed the formation of a completely dechlorinated hydrocarbon skeleton, with diphenylethane as the end product, thereby implying the removal of all four chlorine atoms of DDE. In the case of DDD, we identified two partially dechlorinated intermediates [namely, 1,1-dichloro-2, 2 bis (phenyl) ethane and 1, chloro-2, 2 bis (phenyl) ethane] and diphenylethane as the end product. On the basis of products formed from DDD dehalogenation, we propose the removal of aryl chlorine atoms as a first step. Our investigation reveals that biosurfactant may be an attractive solubilizing agent for DDT and its residues. The magnesium/palladium system is a promising option because of its high reactivity and ability to achieve complete dechlorination of DDE and DDD.
Palladium-bacterial cellulose membranes for fuel cells.
Evans, Barbara R; O'Neill, Hugh M; Malyvanh, Valerie P; Lee, Ida; Woodward, Jonathan
2003-07-01
Bacterial cellulose is a versatile renewable biomaterial that can be used as a hydrophilic matrix for the incorporation of metals into thin, flexible, thermally stable membranes. In contrast to plant cellulose, we found it catalyzed the deposition of metals within its structure to generate a finely divided homogeneous catalyst layer. Experimental data suggested that bacterial cellulose possessed reducing groups capable of initiating the precipitation of palladium, gold, and silver from aqueous solution. Since the bacterial cellulose contained water equivalent to at least 200 times the dry weight of the cellulose, it was dried to a thin membranous structure suitable for the construction of membrane electrode assemblies (MEAs). Results of our study with palladium-cellulose showed that it was capable of catalyzing the generation of hydrogen when incubated with sodium dithionite and generated an electrical current from hydrogen in an MEA containing native cellulose as the polyelectrolyte membrane (PEM). Advantages of using native and metallized bacterial cellulose membranes in an MEA over other PEMs such as Nafion 117 include its higher thermal stability to 130 degrees C and lower gas crossover.
Bansal, Anil; Singh, Randhir
2000-01-01
Tetraazamacrocyclie complexes of lead and palladium have been synthesized by the template process using the bis(benzil)ethylenediamine precursor. The tetradentate macrocycle (maL) reacts with PbCl2, PdCl2 and different diamines in a 1:1:1 molar ratio in methanol to give several solid complexes of the types [Pb(maL)(R)Cl2] and [Pd(maL)(R)]Cl2 (where R = 2,6-diaminopyridine or 1,2-phenylenediamine). The macrocycle and its metal complexes have been characterized by elemental analysis, molecular weight determinations, molar conductivity, IR, 1H NMR, 13C NMR, electronic, mass and electrochemical studies. The macrocyclic ligand coordinates through the four azomethine nitrogen atoms which are bridged by benzil moieties. IR spectra suggest that the pyridine nitrogen is not coordinating. The palladium complexes exhibit tetracoordinated square-planar geometry, whereas a hexacoordinated octahedral geometry is suggested for lead complexes. The macrocycle along with its complexes have been screened in vitro against a number of pathogenic fungi and bacteria to assess their growth inhibiting potential. PMID:18475947
NASA Technical Reports Server (NTRS)
2008-01-01
Norilsk is a major city in Krasnoyarsk Krai, Russia, and the northernmost city in Siberia. The city was founded in the 1930s as a settlement for the Norilsk mining-metallurgic complex, sitting near the largest nickel-copper-palladium deposits on Earth. Mining and smelting of nickel, copper, cobalt, platinum, palladium are the major industries. The nickel ore is smelted on site at Norilsk. The smelting is directly responsible for severe pollution, generally acid rain and smog. By some estimates, 1 percent of the entire global emissions of sulfur dioxide comes from this one city. Heavy metal pollution near Norilsk is so severe that it is now economically feasible to mine the soil, which has been polluted so severely that it has economic grades of platinum and palladium. The image was acquired July 21, 2000, covers an area of 36.9 x 37.6 km, and is located at 69.3 degrees north latitude, 88.2 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.Bardhan, Sujata; Wacharasindhu, Sumrit; Wan, Zhao-Kui; Mansour, Tarek S
2009-06-18
The oxidative palladium-catalyzed cross-coupling of pyrimidines containing pyridotriazol-1-yloxy (OPt) as either a urea or an amide functional group with arylboronic acids in the presence of Cs(2)CO(3) in DME containing 0.6-1.0% H(2)O is described for the preparation of heteroaryl ethers. The bromo substitution in the case of 3-(5-bromo-pyrimidin-2-yloxy)-3H-[1,2,3]triazolo[4,5-b]pyridine 1 could serve as a handle for further elaborations such as Suzuki coupling for attaching varied aryl groups.
Martin, Alex D; Siamaki, Ali R; Belecki, Katherine; Gupton, B Frank
2015-02-06
A direct and efficient total synthesis has been developed for telmisartan, a widely prescribed treatment for hypertension. This approach brings together two functionalized benzimidazoles using a high-yielding Suzuki reaction that can be catalyzed by either a homogeneous palladium source or graphene-supported palladium nanoparticles. The ability to perform the cross-coupling reaction was facilitated by the regio-controlled preparation of the 2-bromo-1-methylbenzimidazole precursor. This convergent approach provides telmisartan in an overall yield of 72% while circumventing many issues associated with previously reported processes.
AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves.
Brask, Anders; Snakenborg, Detlef; Kutter, Jörg P; Bruus, Henrik
2006-02-01
We present the design, test and theoretical analysis of a novel micropump. The purpose is to make a pump with large flow rate (approximately 10 microL min-1) and high pressure capacity (approximately 1 bar) powered by a low voltage DeltaV<30 V. The pump is operated in AC mode with an electroosmotic actuator in connection with a full wave rectifying valve system. Individual valves are based on a flexible membrane with a slit. Bubble-free palladium electrodes are implemented in order to increase the range of applications and reduce maintenance.
Vercruysse, Sébastien; Cornelissen, Loïc; Nahra, Fady; Collard, Laurent; Riant, Olivier
2014-02-10
This paper describes a tunable and stereoselective dual catalytic system that uses copper and palladium reagents. This cooperative silylcupration and palladium-catalyzed allylation readily affords trisubstituted alkenylsilanes. Fine-tuning the reaction conditions allows selective access to one stereoisomer over the other. This new methodology tolerates different substituents on both coupling partners with high levels of stereoselectivity. The one-pot reaction involving a Cu(I)/Pd(0) cooperative dual catalyst directly addresses the need to develop more time-efficient and less-wasteful synthetic pathways. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and characterization of Pd(II)-methyl complexes with N-heterocyclic carbene-amine ligands.
Warsink, Stefan; de Boer, Sandra Y; Jongens, Lianne M; Fu, Ching-Feng; Liu, Shiuh-Tzung; Chen, Jwu-Ting; Lutz, Martin; Spek, Anthony L; Elsevier, Cornelis J
2009-09-21
A number of palladium(ii) complexes with a heteroditopic NHC-amine ligand and their precursor silver(i) carbene complexes have been efficiently prepared and their structural features have been investigated. The heteroditopic coordination of this ligand class was unequivocally shown by NMR-spectroscopy and X-ray crystallographic analysis. The neutral and cationic cis-methyl-palladium(NHC) complexes are not prone to reductive elimination, which is normally a major degenerative pathway for this type of complex. In contrast, under carbon monoxide atmosphere rapid reductive elimination of the acyl-imidazolium salt was observed.
α-Oxo-Ketenimines from Isocyanides and α-Haloketones: Synthesis and Divergent Reactivity.
Mamboury, Mathias; Wang, Qian; Zhu, Jieping
2017-09-18
The palladium-catalyzed reaction of α-haloketones with isocyanides afforded α-oxo-ketenimines through β-hydride elimination of the β-oxo-imidoyl palladium intermediates. Reaction of these relatively stable α-oxo-ketenimines with nucleophiles such as hydrazines, hydrazoic acid, amines, and Grignard reagent afforded pyrazoles, tetrazole, β-keto amidines, and enaminone, respectively, with high chemoselectivity. Whereas amines attack exclusively on the ketenimine functions, the formal [3+2] cycloaddition between N-monosubstituted hydrazines and α-oxo-ketenimines was initiated by nucleophilic addition to the carbonyl group. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sugita, Noriaki; Hayashi, Satoshi; Hino, Fumio; Takanami, Toshikatsu
2012-12-07
We have developed an efficient method for preparing silylmethyl-substituted porphyrins via the palladium-catalyzed Kumada cross-coupling reaction of bromoporphyrins with silylmethyl Grignard reagents. We demonstrated the synthetic utility of these silylmethylporphyrins as a multipurpose synthon for fabricating porphyrin derivatives through a variety of transformations of the silylmethyl groups, including the DDQ-promoted oxidative conversion to CHO, CH(2)OH, CH(2)OMe, and CH(2)F functionalities and the fluoride ion-mediated desilylative introduction of carbon-carbon single and double bonds.
Vapor deposition of thin films
Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.
1992-01-01
A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.
Zhang, Wenhua; Chen, Zhihao; Al-Naji, Majd; Guo, Penghu; Cwik, Stefan; Halbherr, Olesia; Wang, Yuemin; Muhler, Martin; Wilde, Nicole; Gläser, Roger; Fischer, Roland A
2016-10-14
Simultaneous incorporation of palladium within Pd-Pd and/or Pd-Cu paddlewheels as framework-nodes and Pd nanoparticle (NP) dispersion into MOF have been achieved for the first time via one-pot synthesis. In particular, the framework substitution of Cu(2+) by Pd(2+) as well as the pore loading with PdNPs have been confirmed and characterized by XPS. The obtained solids featuring such multiple Pd-sites show enhanced catalytic activity in the aqueous-phase hydrogenation of p-nitrophenol (PNP) with NaBH4 to p-aminophenol (PAP).
Production cross sections of deuteron-induced reactions on natural palladium for Ag isotopes
NASA Astrophysics Data System (ADS)
Ukon, Naoyuki; Aikawa, Masayuki; Komori, Yukiko; Haba, Hiromitsu
2018-07-01
Activation cross sections for deuteron-induced reactions on natural palladium were measured up to 24 MeV using the stacked-foil method and the high resolution gamma-ray spectroscopy. The production cross sections of 103Ag, the parent of a medical radioactive isotope 103Pd, were obtained. We found that our result is in good agreement with the previous data up to 20.3 MeV, and obtained new data at higher energies. In addition, the production cross sections of 104g+mAg, 105Ag, 106mAg, 110mAg and 111Ag were presented.
Achievement of controlled resistive response of nanogapped palladium film to hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, M.; Wong, M. H.; Ong, C. W., E-mail: c.w.ong@polyu.edu.hk
2015-07-20
Palladium (Pd) film containing nanogaps of well controlled dimension was fabricated on a Si wafer having a high-aspect-ratio micropillar. The Pd film was arranged to experience hydrogen (H{sub 2})-induced volume expansion. (i) If the nanogap is kept open, its width is narrowed down. A discharge current was generated to give a strong, fast, and repeatable on-off type resistive switching response. (ii) If the nanogap is closed, the cross section of the conduction path varies to give continuous H{sub 2}-concentration dependent resistive response. The influence of stresses and related physical mechanisms are discussed.
Vinogradova, Ekaterina V.; Fors, Brett P.; Buchwald, Stephen L.
2012-01-01
An efficient method for palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate is reported. The protocol allows for the synthesis of unsymmetrical N,N'-di- and N,N,N'-trisubstituted ureas in one pot, and is tolerant of a wide range of functional groups. Insight into the mechanism of aryl isocyanate formation is gleaned through studies of the transmetallation and reductive elimination steps of the reaction, including the first demonstration of reductive elimination from an arylpalladium isocyanate complex to produce an aryl isocyanate. PMID:22716197
Osmium isotope constraints on ore metal recycling in subduction zones
McInnes; McBride; Evans; Lambert; Andrew
1999-10-15
Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.
Wu, Bei-Zen; Chen, GuanYu; Yak, HwaKwang; Liao, Weisheng; Chiu, KongHwa; Peng, Shie-Ming
2016-06-01
Palladium nanoparticles stabilized in microcellular high-density polyethylene prepared through supercritical foaming, supercritical impregnation, and H2 reduction are used for the hydrodechlorination of lindane and hexachlorobenzene in supercritical carbon dioxide below 100 °C. Both lindane and hexachlorobenzene can be almost 100% transformed to cyclohexane in 1 h. Reaction intermediates, such as lower chlorinated products or benzene, are not observed or exist in trace amount indicating that most of them may undergo reactions without leaving the metal surface. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shoji, Taku; Araki, Takanori; Sugiyama, Shuhei; Ohta, Akira; Sekiguchi, Ryuta; Ito, Shunji; Okujima, Tetsuo; Toyota, Kozo
2017-02-03
Tetrathiafulvalene (TTF) derivatives with 2-azulenyl substituents 5-11 were prepared by the palladium-catalyzed direct arylation reaction of 2-chloroazulenes with TTF in good yield. Photophysical properties of these compounds were investigated by UV-vis spectroscopy and theoretical calculations. Redox behavior of the novel azulene-substituted TTFs was examined by using cyclic voltammetry and differential pulse voltammetry, which revealed their multistep electrochemical oxidation and/or reduction properties. Moreover, these TTF derivatives showed significant spectral change in the visible region under the redox conditions.
Wang, Bo; Lu, Chengxi; Zhang, Shu-Yu; He, Gang; Nack, William A; Chen, Gong
2014-12-05
A method is reported for palladium-catalyzed N-quinolyl carboxamide-directed olefination of the unactivated C(sp(3))-H bonds of phthaloyl alanine with a broad range of vinyl iodides at room temperature. This reaction represents the first example of the stereoretentive installation of multisubstituted terminal and internal olefins onto unactivated C(sp(3))-H bonds. These methods enable access to a wide range of challenging β-vinyl α-amino acid products in a streamlined and controllable fashion, beginning from simple precursors.
NASA Technical Reports Server (NTRS)
Fralick, Gustave C.; Decker, Arthur J.; Blue, James W.
1989-01-01
An experiment was performed to look for evidence of deuterium fusion in palladium. The experiment, which involved introducing deuterium into the palladium filter of a hydrogen purifier, was designed to detect neutrons produced in the reaction D-2 + D-2 yields He-3 + n as well as heat production. The neutron counts for deuterium did not differ significantly from background or from the counts for a hydrogen control. Heat production was detected when deuterium, but not hydrogen, was pumped from the purifier.
Carral-Menoyo, Asier; Ortiz-de-Elguea, Verónica; Martinez-Nunes, Mikel; Sotomayor, Nuria; Lete, Esther
2017-01-01
Palladium-catalyzed dehydrogenative coupling is an efficient synthetic strategy for the construction of quinoline scaffolds, a privileged structure and prevalent motif in many natural and biologically active products, in particular in marine alkaloids. Thus, quinolines and 1,2-dihydroquinolines can be selectively obtained in moderate-to-good yields via intramolecular C–H alkenylation reactions, by choosing the reaction conditions. This methodology provides a direct method for the construction of this type of quinoline through an efficient and atom economical procedure, and constitutes significant advance over the existing procedures that require preactivated reaction partners. PMID:28867803
Bittner, Dror M.; Zaleski, Daniel P.; Tew, David P.; ...
2016-02-16
Carbenes of platinum and palladium, PtC 3 and PdC 3 , were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and abinitio calculations confirm that both molecules are linear. The geometry of PtC 3 was accurately determined by fitting to the experimental moments of inertia of twenty-six isotopologues. In conclusion, the results are consistent with the proposal of an autogenic isolobal relationship between O, Au + , and Ptatoms.
Ultrafast studies of gold, nickel, and palladium nanorods
NASA Astrophysics Data System (ADS)
Sando, Gerald M.; Berry, Alan D.; Owrutsky, Jeffrey C.
2007-08-01
Steady state and ultrafast transient absorption studies have been carried out for gold, nickel, and palladium high aspect ratio nanorods. For each metal, nanorods were fabricated by electrochemical deposition into ˜6μm thick polycarbonate templates. Two nominal pore diameters(10 and 30nm, resulting in nanorod diameters of about 40 and 60nm, respectively) were used, yielding nanorods with high aspect ratios (>25). Static spectra of nanorods of all three metals reveal both a longitudinal surface plasmon resonance (SPRL) band in the mid-infrared as well as a transverse band in the visible for the gold and larger diameter nickel and palladium nanorods. The appearance of SPRL bands in the infrared for high aspect ratio metal nanorods and the trends in their maxima for the different aspect ratios and metals are consistent with calculations based on the Gans theory. For the gold and nickel samples, time resolved studies were performed with a subpicosecond resolution using 400nm excitation and a wide range of probe wavelengths from the visible to the mid-IR as well as for infrared excitation (near 2000cm-1) probed at 800nm. The dynamics observed for nanorods of both metals and both diameters include transients due to electron-phonon coupling and impulsively excited coherent acoustic breathing mode oscillations, which are similar to those previously reported for spherical and smaller rod-shaped gold nanoparticles. The dynamics we observe are the same within the experimental uncertainty for 400nm and infrared (5μm) excitation probed at 800nm. The transient absorption using 400nm excitation and 800nm probe pulses of the palladium nanorods also reveal coherent acoustic oscillations. The results demonstrate that the dynamics for high aspect ratio metal nanorods are similar to those for smaller nanoparticles.
Neubauer, Nicole; Palomaeki, Jaana; Karisola, Piia; Alenius, Harri; Kasper, Gerhard
2015-01-01
Palladium and nickel nanoparticles with variable but narrowly defined primary particle sizes in the range of 4-27 nm were investigated toward their catalytic activity and their ability to produce reactive oxygen species (ROS). The agglomerate size in the gas phase was between 50 and 150 nm, after transfer into solution probably larger. The catalytic activity was measured on the basis of CO oxidation to CO2. The formation of ROS was determined after transferring the particles into phosphate buffered saline (PBS), via the 2',7'-dichlorofluorescein method in a cell-free environment and with THP-1 cells. Activities were normalized with regard to catalyst surface area to enable a meaningful comparison of size effects. The solubility was measured for both materials and found to be 2 µg/ml for Ni and below the detection limit of 0.8 µg/ml for Pd. In the concentration range of about 4-250 µg/ml both materials induced a significant production of ROS in both acellular and cellular environments, with palladium being more active than nickel by several orders of magnitude. On an equal surface area concentration basis, both acellular and cellular ROS production showed a pronounced dependence on the primary particle size, with a maximum in the vicinity of 12 nm. The surface-specific catalytic activity also had a maximum at that size range. The correlation of these size effects is both surprising and - in combination with the poor solubility of palladium and nickel in PBS solution - a strong argument in favor of a particulate, catalytic mechanism for ROS production.
IgE antibody responses to platinum group metals: a large scale refinery survey.
Murdoch, R D; Pepys, J; Hughes, E G
1986-01-01
All 306 South African platinum refinery workers (116 white, 190 coloured) accepted for employment on grounds of absence of evidence of atopy were investigated using the skin prick test and RAST to detect sensitivity to platinum, palladium, and rhodium salts. RAST studies were made for these, together with HSA and DNP-HSA RAST. Of the 306 workers, 38 had a positive skin prick test to the platinum halide salts; of these, one gave a positive reaction to the palladium salt and six to the rhodium salt. There were no isolated positives to the rhodium and palladium halide salts. Total IgE levels were raised in 24 of the 38 (63%) platinum salt prick test positive workers compared with only 43 of the 268 (16%) prick test negative group (p less than 0.001). Positive RASTs were obtained in 62% of those with positive skin tests to the platinum salts. Four of the six giving positive rhodium salt skin tests gave a positive RAST to rhodium salt. Of these, two gave positive RASTS to HSA and all four to DNP-HSA. The palladium salt RAST was negative in the single skin test reactor. In the platinum salt skin test positive group a raised HSA RAST was obtained in 10.5% compared with only 2.5% in the skin negative group. Twenty one per cent of the platinum salt skin positive group had a raised RAST score to DNP-HSA with only 3.5% (4/116) in the skin test negative group, of whom three also had a raised HSA RAST. The latter findings are suggestive of IgE antibody production to new antigenic determinants in HSA produced by conjugation with the platinum salts. PMID:2936374
Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal
2016-01-01
Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.
Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion.
Voskanyan, Albert A; Li, Chi-Ying Vanessa; Chan, Kwong-Yu
2017-09-27
This article describes a novel method for depositing a dense, high quality palladium thin film via a one-step aqueous combustion process which can be easily scaled up. Film deposition of Pd from aqueous solutions by conventional chemical or electrochemical methods is inhibited by hydrogen embrittlement, thus resulting in a brittle palladium film. The method outlined in this work allows a direct aqueous solution deposition of a mirror-bright, durable Pd film on substrates including glass and glassy carbon. This simple procedure has many advantages including a very high deposition rate (>10 cm 2 min -1 ) and a relatively low deposition temperature (250 °C), which makes it suitable for large-scale industrial applications. Although preparation of various high-quality oxide films has been successfully accomplished via solution combustion synthesis (SCS) before, this article presents the first report on direct SCS production of a metallic film. The mechanism of Pd film formation is discussed with the identification of a complex formed between palladium nitrate and glycine at low temperature. The catalytic properties and stability of films are successfully tested in alcohol electrooxidation and electrochemical oxygen reduction reaction. It was observed that combustion deposited Pd film on a glassy carbon electrode showed excellent catalytic activity in ethanol oxidation without using any binder or additive. We also report for the first time the concept of a reusable "catalytic flask" as illustrated by the Suzuki-Miyaura cross-coupling reaction. The Pd film uniformly covers the inner walls of the flask and eliminates the catalyst separation step. We believe the innovative concept of a reusable catalytic flask is very promising and has the required features to become a commercial product in the future.
Bruk, Lev; Titov, Denis; Ustyugov, Alexander; Chernikova, Valeriya; Tkachenko, Olga; Kustov, Leonid; Murzin, Vadim; Oshanina, Irina; Temkin, Oleg
2018-01-01
The state of palladium and copper on the surface of the PdCl2–CuCl2/γ-Al2O3 nanocatalyst for the low-temperature oxidation of CO by molecular oxygen was studied by various spectroscopic techniques. Using X-ray absorption spectroscopy (XAS), powder X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), freshly prepared samples of the catalyst were studied. The same samples were also evaluated after interaction with CO, O2, and H2O vapor in various combinations. It was shown that copper exists in the form of Cu2Cl(OH)3 (paratacamite) nanophase on the surface of the catalyst. No palladium-containing crystalline phases were identified. Palladium coordination initially is comprised of four chlorine atoms. It was shown by XAS that this catalyst is not capable of oxidizing CO at room temperature in the absence of H2O and O2 over 12 h. Copper(II) and palladium(II) are reduced to Cu(I) and Pd(I,0) species, respectively, in the presence of CO and H2O vapor (without O2). It was found by DRIFTS that both linear (2114 cm−1, 1990 cm−1) and bridging (1928 cm−1) forms of coordinated CO were formed upon adsorption onto the catalyst surface. Moreover, the formation of CO2 was detected upon the interaction of the coordinated CO with oxygen. The kinetics of CO oxidation was studied at 18–38 °C at an atmospheric pressure for CO, O2, N2, and H2O (gas) mixtures in a flow reactor (steady state conditions). PMID:29614029
Detecting Airborne Mercury by Use of Palladium Chloride
NASA Technical Reports Server (NTRS)
Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles
2009-01-01
Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.
Stambuli, James P; Incarvito, Christopher D; Bühl, Michael; Hartwig, John F
2004-02-04
A series of monomeric arylpalladium(II) complexes LPd(Ph)X (L = 1-AdPtBu2, PtBu3, or Ph5FcPtBu2 (Q-phos); X = Br, I, OTf) containing a single phosphine ligand have been prepared. Oxidative addition of aryl bromide or aryl iodide to bis-ligated palladium(0) complexes of bulky, trialkylphosphines or to Pd(dba)2 (dba = dibenzylidene acetone) in the presence of 1 equiv of phosphine produced the corresponding arylpalladium(II) complexes in good yields. In contrast, oxidative addition of phenyl chloride to the bis-ligated palladium(0) complexes did not produce arylpalladium(II) complexes. The oxidative addition of phenyl triflate to PdL2 (L = 1-AdPtBu2, PtBu3, or Q-phos) also did not form arylpalladium(II) complexes. The reaction of silver triflate with (1-AdPtBu2)Pd(Ph)Br furnished the corresponding arylpalladium(II) triflate in good yield. The oxidative addition of phenyl bromide and iodide to Pd(Q-phos)2 was faster than oxidative addition to Pd(1-AdPtBu2)2 or Pd(PtBu3)2. Several of the arylpalladium complexes were characterized by X-ray diffraction. All of the arylpalladium(II) complexes are T-shaped monomers. The phenyl ligand, which has the largest trans influence, is located trans to the open coordination site. The complexes appear to be stabilized by a weak agostic interaction of the metal with a ligand C-H bond positioned at the fourth-coordination site of the palladium center. The strength of the Pd.H bond, as assessed by tools of density functional theory, depended upon the donating properties of the ancillary ligands on palladium.
NASA Astrophysics Data System (ADS)
Rinkevich, A. B.; Nemytova, O. V.; Perov, D. V.; Samoylovich, M. I.; Kuznetsov, E. A.
2018-04-01
High-temperature heat treatment has valuable impact on the structure and physical properties of artificial crystals with 3d metal and palladium particles. Artificial crystals are obtained by means of introduction of particles into the interspherical voids of opal matrices. The magnetic properties are studied at the temperatures ranging from 2 to 300 K and in fields up to 350 kOe. Microwave properties are investigated in the millimeter frequency range. The complex dielectric permittivity of several nanocomposites is measured. The influence of heat treatment up to 960 °C on the structure of artificial crystals is clarified.
Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.
1998-01-01
A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.
The stability of palladium supported on ceria (Pd/CeO 2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.
Rosenkoetter, Kyle E; Ziller, Joseph W; Heyduk, Alan F
2017-05-02
Complexes of the general formula W[SNS] 2 M(dppe) (M = Pd, Pt; [SNS]H 3 = bis(2-mercapto-p-tolyl)amine; dppe = 1,2-bis(diphenylphosphino)ethane) were prepared by combining the corresponding (dppe)MCl 2 synthon with W[SNS] 2 under reducing conditions. X-ray diffraction studies revealed the formation of a heterobimetallic complex supported by a single thiolate bridging ligand and a short metal-metal bond between the tungsten and palladium or platinum. Electrochemical and computational results show that the frontier orbitals lie predominantly on the W[SNS] 2 fragment suggesting that it behaves as a redox-active metalloligand in these complexes.
Effects of electronic excitation on cascade dynamics in nickel–iron and nickel–palladium systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
Using molecular dynamics simulations and the two-temperature model, we provide in this paper a comparison of the surviving damage from single ion irradiation events in nickel-based alloys, for cascades with and without taking into account the effects of the electronic excitations. We find that including the electronic effects impacts the amount of the resulting damage and the production of isolated defects. Finally, irradiation of nickel–palladium systems results in larger numbers of defects compared to nickel–iron systems, with similar numbers of isolated defects. We additionally investigate the mass effect on the two-temperature model in molecular dynamics simulations of cascades.
Trost, Barry M.; Osipov, Maksim; Dong, Guangbin
2010-01-01
We report that nitrogen heterocycles can serve as competent nucleophiles in the palladium-catalyzed dynamic kinetic asymmetric alkylation of vinyl aziridines. The resulting alkylated products were obtained with high regio-, chemo-, and enantioselectivity. Both substituted 1H-pyrroles and 1H-indoles were successfully employed to give exclusively the branched N-alkylated products. The synthetic utility of this process was demonstrated by applying this method to the preparation of several medicinal chemistry lead compounds and bromopyrrole alkaloids including longamide B, longamide B methyl ester, hanishin, agesamides A and B, and cyclooroidin. PMID:20949972
Self-Assembled Novel BODIPY-Based Palladium Supramolecules and Their Cellular Localization.
Gupta, Gajendra; Das, Abhishek; Park, Kyoung Chul; Tron, Artur; Kim, Hyunuk; Mun, Junyoung; Mandal, Nripendranath; Chi, Ki-Whan; Lee, Chang Yeon
2017-04-17
Four new palladium metal supramolecules with triangular/square architectures derived from boron dipyrromethane (BODIPY) ligands were synthesized by self-assembly and fully characterized by 1 H and 31 P NMR, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction. These supramolecules were more cytotoxic to brain cancer (glioblastoma) cells than to normal lung fibroblasts. Their cytotoxicity to the glioblastoma cells was higher than that of a benchmark metal-based chemotherapy drug, cisplatin. The characteristic green fluorescence of the BODIPY ligands in these supramolecules permitted their intracellular visualization using confocal microscopy, and the compounds were localized in the cytoplasm and on the plasma membrane.
Nagymihály, Zoltán; Caturello, Naidel A M S; Takátsy, Anikó; Aragay, Gemma; Kollár, László; Albuquerque, Rodrigo Q; Csók, Zsolt
2017-01-06
Palladium-catalyzed aminocarbonylation reactions have been used to directly convert a tetraiodocavitand intermediate into the corresponding carboxamides and 2-ketocarboxamides. When complex mixtures of the amine reactants are employed in competition experiments using polar solvents, such as DMF, no "mixed" products possessing structurally different amide fragments are detected either by 1 H or 13 C NMR. Only highly symmetrical cavitands are sorted out of a large number of potentially feasible products, which represents a rare example of intramolecular, narcissistic self-sorting. Our experimental results along with thermodynamic energy analysis suggest that the observed self-sorting is a symmetry-driven, kinetically controlled process.
Ozone sensing based on palladium decorated carbon nanotubes.
Colindres, Selene Capula; Aguir, Khalifa; Cervantes Sodi, Felipe; Vargas, Luis Villa; Salazar, José Moncayo; Febles, Vicente Garibay
2014-04-14
Multiwall carbon nanotubes (MWCNTs) were easily and efficiently decorated with Pd nanoparticles through a vapor-phase impregnation-decomposition method starting from palladium acetylacetonates. The sensor device consisted on a film of sensitive material (MWCNTs-Pd) deposited by drop coating on platinum interdigitated electrodes on a SiO₂ substrate. The sensor exhibited a resistance change to ozone (O₃) with a response time of 60 s at different temperatures and the capability of detecting concentrations up to 20 ppb. The sensor shows the best response when exposed to O3 at 120 °C. The device shows a very reproducible sensor performance, with high repeatability, full recovery and efficient response.
Larksarp, C; Sellier, O; Alper, H
2001-05-18
The first palladium-catalyzed ring-expansion reaction of 2-vinylthiiranes with heterocumulenes to form sulfur-containing five-membered-ring heterocycles is described. This regioselective reaction requires 5 mol % of Pd(2)(dba)(3).CHCl(3) and 10 mol % of bidendate phosphine ligand (dppp, BINAP), at 50-80 degrees C, in THF. The reaction of 2-vinylthiiranes with carbodiimides, isocyanates, and ketenimines affords 1,3-thiazolidine derivatives, whereas the reaction with diphenylketene or isothiocyanates results in the formation of 1,3-oxathiolane or 1,3-dithiolane compounds in good to excellent isolated yields and in up to 78% ee.
Chen, Wenyi; Hooper, Thomas N; Ng, Jamues; White, Andrew J P; Crimmin, Mark R
2017-10-02
Through serendipitous discovery, a palladium bis(phosphine) complex was identified as a catalyst for the selective transformation of sp 2 C-F and sp 2 C-H bonds of fluoroarenes and heteroarenes to sp 2 C-Al bonds (19 examples, 1 mol % Pd loading). The carbon-fluorine bond functionalization reaction is highly selective for the formation of organoaluminium products in preference to hydrodefluorination products (selectivity=4.4:1 to 27:1). Evidence is presented for a tandem catalytic process in which hydrodefluorination is followed by sp 2 C-H alumination. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.
1998-04-14
A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.
Simultaneous injection-effective mixing analysis of palladium.
Teshima, Norio; Noguchi, Daisuke; Joichi, Yasutaka; Lenghor, Narong; Ohno, Noriko; Sakai, Tadao; Motomizu, Shoji
2010-01-01
A novel concept of simultaneous injection-effective mixing analysis (SIEMA) is proposed, and a SIEMA method applied to the spectrophotometric determination of palladium using a water-soluble chromogenic reagent has been demonstrated. The flow configuration of SIEMA is a hybrid format of flow injection analysis (FIA), sequential injection analysis (SIA) and multicommutation in flow-based analysis. Sample and reagent solutions are aspirated into each holding coil through each solenoid valve by a syringe pump, and then the zones are simultaneously dispensed (injected) into a mixing coil by reversed flow toward a detector through a confluence point. This results in effective mixing and rapid detection with low reagent consumption.
Electrical properties of palladium-doped CaCu3Ti4O12 ceramics
NASA Astrophysics Data System (ADS)
Singh, Arashdeep; Md Mursalin, Sk.; Rana, P.; Sen, Shrabanee
2015-09-01
The effect of doping palladium (Pd) at the Cu site of CaCu3Ti4O12 powders (CCPTO) synthesized by sol-gel technique on electrical properties was studied. XRD analysis revealed the formation of CCTO and CCPTO ceramics with some minor quantities of impurities. SEM micrographs revealed that the grain size decreased with Pd doping. TEM micrographs of CCPTO powder showed the formation of irregular-shaped particles of ~40 nm. The dielectric constant and dielectric loss showed a significant enhancement with Pd doping. A significant decrease in grain-boundary resistance with Pd doping was ascertained by impedance spectroscopy study.
Bittner, Dror M.; Zaleski, Daniel P.; Tew, David P.
2016-01-01
Abstract Carbenes of platinum and palladium, PtC3 and PdC3, were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and ab initio calculations confirm that both molecules are linear. The geometry of PtC3 was accurately determined by fitting to the experimental moments of inertia of twenty‐six isotopologues. The results are consistent with the proposal of an autogenic isolobal relationship between O, Au+, and Pt atoms. PMID:26879473
Effects of electronic excitation on cascade dynamics in nickel–iron and nickel–palladium systems
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2017-06-10
Using molecular dynamics simulations and the two-temperature model, we provide in this paper a comparison of the surviving damage from single ion irradiation events in nickel-based alloys, for cascades with and without taking into account the effects of the electronic excitations. We find that including the electronic effects impacts the amount of the resulting damage and the production of isolated defects. Finally, irradiation of nickel–palladium systems results in larger numbers of defects compared to nickel–iron systems, with similar numbers of isolated defects. We additionally investigate the mass effect on the two-temperature model in molecular dynamics simulations of cascades.
Timoshenko, J.; Shivhare, A.; Scott, R. W.; ...
2016-06-30
We adopted ab-initio X-ray Absorption Near Edge Structure (XANES) modelling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modelling, where the candidate structures are known, and the inverse modelling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by following the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.
Li, Wen-Hao; Li, Cun-Yao; Li, Yan; Tang, Hai-Tao; Wang, Heng-Shan; Pan, Ying-Ming; Ding, Yun-Jie
2018-06-07
A novel palladium nanoparticle (NP)-metalated porous organic ligand (Pd NPs/POL-xantphos) has been prepared for the chemoselective decarbonylation of aldehydes. This heterogenous catalyst not only has excellent catalytic activity and chemoselectivity, but also holds high activity after 10 runs of reuse. The effective usage of this method is demonstrated through the synthesis of biofuels such as furfuryl alcohol (FFA) via the highly chemoselective decarbonylation of biomass-derived 5-hydroxy-methylfurfural (HMF) with a TON up to 1540. More importantly, 9-fluorenone could be obtained in one step through the decarbonylation of 2-bromobenzaldehyde by using this heterogeneous catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsyganok, A.I.; Yamanaka, Ichiro; Otsuka, Kiyoshi
1998-11-01
Electrocatalytic reductive dehalogenation of 2,4-dichlorophenoxyacetic acid (2,4-D) to phenoxyacetic acid in aqueous solution containing MeOH, trifluoroacetic acid, and tetraalkylammonium salt was studied. A Teflon-made two-compartment flow-through cell with a permeable carbon felt cathode and a platinum foil anode was employed. Several noble metals were tested as electrocatalysts. Palladium-loaded carbon felt was found to be the most suitable significantly enhanced its electrocatalytic activity toward 2,4-D dechlorination. The reaction was hypothesized to proceed at carbon-palladium interface areas through 4-chlorine cleavage to form 2-chlorophenoxyacetic acid as the main reaction intermediate.
Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.
2016-11-21
The stability of palladium supported on ceria (Pd/CeO 2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.
Theoretical study of hydrogen storage in metal hydrides.
Oliveira, Alyson C M; Pavão, A C
2018-05-04
Adsorption, absorption and desorption energies and other properties of hydrogen storage in palladium and in the metal hydrides AlH 3 , MgH 2 , Mg(BH 4 ) 2 , Mg(BH 4 )(NH 2 ) and LiNH 2 were analyzed. The DFT calculations on cluster models show that, at a low concentration, the hydrogen atom remains adsorbed in a stable state near the palladium surface. By increasing the hydrogen concentration, the tetrahedral and the octahedral sites are sequentially occupied. In the α phase the tetrahedral site releases hydrogen more easily than at the octahedral sites, but the opposite occurs in the β phase. Among the hydrides, Mg(BH 4 ) 2 shows the highest values for both absorption and desorption energies. The absorption energy of LiNH 2 is higher than that of the palladium, but its desorption energy is too high, a recurrent problem of the materials that have been considered for hydrogen storage. The release of hydrogen, however, can be favored by using transition metals in the material structure, as demonstrated here by doping MgH 2 with 3d and 4d-transition metals to reduce the hydrogen atomic charge and the desorption energy.
Ensafi, Ali A; Ahmadi, Najmeh; Rezaei, Behzad; Abarghoui, Mehdi Mokhtari
2015-03-01
A porous silicon/palladium nanostructure was prepared and used as a new electrode material for the simultaneous determination of acetaminophen (ACT) and codeine (COD). Palladium nanoparticles were assembled on porous silicon (PSi) microparticles by a simple redox reaction between the Pd precursor and PSi in an aqueous solution of hydrofluoric acid. This novel nanostructure was characterized by different spectroscopic and electrochemical techniques including scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, fourier transform infrared spectroscopy and cyclic voltammetry. The high electrochemical activity, fast electron transfer rate, high surface area and good antifouling properties of this nanostructure enhanced the oxidation peak currents and reduced the peak potentials of ACT and COD at the surface of the proposed sensor. Simultaneous determination of ACT and COD was explored using differential pulse voltammetry. A linear range of 1.0-700.0 µmol L(-1) was achieved for ACT and COD with detection limits of 0.4 and 0.3 µmol L(-1), respectively. Finally, the proposed method was used for the determination of ACT and COD in blood serum, urine and pharmaceutical compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.
El Gowini, Mohamed M; Moussa, Walied A
2010-01-01
Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.
Besar, Kalpana; Dailey, Jennifer; Katz, Howard E
2017-01-18
Ethylene sensing is a highly challenging problem for the horticulture industry because of the limited physiochemical reactivity of ethylene. Ethylene plays a very important role in the fruit life cycle and has a significant role in determining the shelf life of fruits. Limited ethylene monitoring capability results in huge losses to the horticulture industry as fruits may spoil before they reach the consumer, or they may not ripen properly. Herein we present a poly(3-hexylthiophene-2,5-diyl) (P3HT)-based organic field effect transistor as a sensing platform for ethylene with sensitivity of 25 ppm V/V. To achieve this response, we used N-(tert-Butoxy-carbonyloxy)-phthalimide and palladium particles as additives to the P3HT film. N-(tert-Butoxy-carbonyloxy)-phthalimide is used to increase the porosity of the P3HT, thereby increasing the overall sensor surface area, whereas the palladium (<1 μm diameter) particles are used as receptors for ethylene molecules in order to further enhance the sensitivity of the sensor platform. Both modifications give statistically significant sensitivity increases over pure P3HT. The sensor response is reversible and is also highly selective for ethylene compared to common solvent vapors.
Safavi, Afsaneh; Tohidi, Maryam
2014-09-01
Microwave-assisted ionic liquid method was used for synthesis of various noble metals, such as gold, silver, platinum and palladium nanomaterials. This route does not employ any template agent, surface capping agents or reducing agents. The process is fast, simple and of high yield. Different metal precursors in various ionic liquids media (1-butyl-3-methylimidazolium tetrafluoroborate, octyl pyridinium hexaflurophosphate and 1-octyl-3-methylimidazolium hexaflurophosphate) were applied to produce metal nanomaterials. Silver, platinium and palladium nanoparticles exhibit spherical morphology while nanosheets with high aspect ratio were obtained for gold. These metal nanostructures were incorporated into a carbon ionic liquid electrode to investigate their electrocatalytic properties. It was found that synthesis in different ionic liquids result in different activity. Excellent electrocatalytic effects toward adenine, hydrazine, formaldehyde and ethanol were observed for the modified electrodes with different nanoparticles synthesized in 1-butyl-3-methylimidazolium tetrafluoroborate. The high conductivity, large surface-to-volume ratio and active sites of nanosized metal particles are responsible for their electrocatalytic activity. In contrast, the carbon ionic liquid electrode modified with synthesized metal nanoparticles in octyl pyridinium hexaflurophosphate and 1-octyl-3-methylimidazolium hexaflurophosphate showed negligible activity for detection of these probes.
Synthesis and reactions of nickel and palladium carbon-bound enolate complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhardt, E.R.; Bergman, R.G.; Heathcock, C.H.
1990-01-01
Nickel and palladium carbon-bound enolates of the general formula {eta}{sup 5}-C{sub 5}R{sub 5}(Ph{sub 3}P)MCHR{prime}COR{double prime} (R = H, CH{sub 3}; R{prime} = H, CH{sub 3}; R{double prime} = t-Bu, Ph, O-t-Bu) were prepared. Cp{sup *}(Ph{sub 3}P)NiCH{sub 2}CO{sub 2}-t-Bu (1e) was characterized by X-ray diffraction. Compound 1e crystallizes in the monoclinic space group P2{sub 1}/n with unit-cell dimensions a = 13.6110 (20) {angstrom}, b = 12.7454 (13) {angstrom}, c = 17.8571 (23) {angstrom}, {beta} = 105.544 (11){degree}, Z = 4, observed data 4,091, R = 4.53%, and R{sub w} = 4.19%. Reactions of these nickel and palladium enolates with aldehydes andmore » other electrophilic reagents were examined. The nickel ketone enolates were shown to react with 2 equiv of benzaldehyde to deliver products resulting from a Tischtschenko-type oxidation/reduction process. Cp(Ph{sub 3}P)NiCH{sub 2}CO-t-Bu reacts with phosphines (L) to yield paramagnetic nickel(I) complexes of general formula Cp(L){sub 2}Ni.« less
Baran, Talat; Sargin, Idris; Kaya, Murat; Menteş, Ayfer; Ceter, Talip
2017-01-15
Bio-based catalyst support materials with high thermal and structural stability are desired for catalysts systems requiring harsh conditions. In this study, a thermally stable palladium catalyst (up to 440°C) was designed from sporopollenin, which occurs naturally in the outer exine layer of pollens and is widely acknowledged as chemically very stable and inert biological material. Catalyst design procedure included (1) extraction of sporopollenin microcapsules from Betula pendula pollens (∼25μm), (2) amino-functionalisation of the microcapsules, (3) Schiff base modification and (4) preparation of Pd(II) catalyst. The catalytic activity of the sporopollenin microcapsule supported palladium catalyst was tested in catalysis of biaryls by following a fast, simple and green microwave-assisted method. We recorded outstanding turnover number (TON: 40,000) and frequency (TOF: 400,000) for the catalyst in Suzuki coupling reactions. The catalyst proved to be reusable at least in eight cycles. The catalyst can be suggested for different catalyst systems due to its thermal and structural durability, reusability, inertness to air and its eco-friendly nature. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schoop, Julius; Balk, T. John
2014-04-01
Thin films of nanoporous palladium (np-Pd) were produced from binary palladium-nickel (Pd-Ni) precursor alloys. A suitable precursor alloy and a method of dealloying to yield optimum nanoporosity (average pore/ligament size of 7 nm) were developed by studying the effects of various processing parameters on final microstructure. To obtain crack-free np-Pd, a 100 nm thin film of 20 at. pct Pd (80 at. pct Ni) can be dealloyed for ~5 hours in a 1 M solution of sulfuric acid, with oleic acid and oleylamine added as surfactants. Both shorter and longer dealloying times, as well as heating, inhibit the formation of crack-free np-Pd. Stress measurements at different stages of dealloying revealed that the necessary dealloying time is determined by the diffusion-controlled corrosion reaction occurring within the thin film during dealloying. Strong interaction between hydrogen and np-Pd was reflected in the stress evolution during dealloying. A mechanism is proposed for the formation of a Ni-rich dense top layer that results from H-induced swelling during initial dealloying and permits the development of defect-free np-Pd beneath, by limiting the speed of dealloying.
Investigation of Pd-Modified Ag-CuO Air Braze Filler Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darsell, Jens T.; Hardy, John S.; Kim, Jin Yong
2006-01-10
Palladium was added as a ternary component to a series of silver - copper oxide alloys in an effort to increase the use temperature of these materials for potential ceramic air brazing applications. Large portions of the silver component of the Ag-CuO system were substituted by palladium forming the following alloys: (100-y)[(100-z)Pd - (z)Ag] - (y)CuOx where y = 0 - 34 mol% CuOx, z = 50 - 100 mol% silver, and x = 0, 0.5, and 1, denoting copper metal, Cu2O, or CuO. From differential scanning calorimetry, it was determined that the addition of palladium causes an increase inmore » the solidus and liquidus temperatures of the resulting Pd-Ag-CuO brazes. In general, the liquidus was found to increase by approximately 220°C for the (100-y)(25Pd - 75Ag) - (z)CuOx filler metal compositions relative to comparable Ag-CuOx alloys. Likewise, the solidus was found to increase for these alloys, respectively by 185°C and 60°C, respectively for CuOx contents of y = 0 - 1mol% and 4 - 10 mol%. For the (100-y)(50Pd - 50Ag) - (y)CuOx alloys, the solidus increased between 280 - 390°C over a copper oxide compositional range of x = 0 to 8 mol%. It was determined from sessile drop experiments that palladium causes an increase in the wetting angle for all of the samples tested. Alloy compositions of (100-y)(25Pd - 75Ag) - (y)CuOx displayed increased wetting angles of 5-20° relative to comparable binary compositions. (100-y)(50Pd - 50Ag) - (y)CuOx alloys exhibited an increase in contact angle of 10-60° and compositions containing less than 10 mol% CuOx were not able to wet the substrate. Scanning electron microscopy indicates that the microstructure of the braze consists of Ag-Pd solid solution with CuOx precipitates. In general, a reaction layer consisting of CuAlO2 forms adjacent to the alumina substrate. However, the formation of this layer is apparently hindered by the addition of large amounts of palladium, causing poor wetting behavior, as denoted by substantial porosity found along the braze/substrate interface. The reduction in wettability can be compensated by increasing the CuO content slightly.« less
Fernández-Rodríguez, Manuel A.; Hartwig, John F.
2010-01-01
The cross-coupling reaction of aryl bromides and iodides with aliphatic and aromatic thiols catalyzed by palladium complexes of the bisphosphine ligand CyPF-tBu (1) is reported. Reactions occur in excellent yields, broad scope, high tolerance of functional groups and with turnover numbers that exceed those of previous catalysts by two or three orders of magnitude. These couplings of bromo- and iodoarenes are more efficient than the corresponding reactions of chloroarenes and could be conducted with less catalyst loading and/or milder reaction conditions. Consequently, limitations regarding scope and functional group tolerance previously reported in the coupling of aryl chlorides are now overcome. PMID:19154131
Stepwise Construction of Heterobimetallic Cages by an Extended Molecular Library Approach.
Hardy, Matthias; Struch, Niklas; Topić, Filip; Schnakenburg, Gregor; Rissanen, Kari; Lützen, Arne
2018-04-02
Two novel heterobimetallic complexes, a trigonal-bipyramidal and a cubic one, have been synthesized and characterized using the same C 3 -symmetric metalloligand, prepared by a simple subcomponent self-assembly strategy. Adopting the molecular library approach, we chose a mononuclear, preorganized iron(II) complex as the metalloligand capable of self-assembly into a trigonal-bipyramidal or a cubic aggregate upon coordination to cis-protected C 2 -symmetric palladium(II) or unprotected tetravalent palladium(II) ions, respectively. The trigonal-bipyramidal complex was characterized by NMR and UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction. The cubic structure was characterized by NMR and UV-vis spectroscopy and ESI-MS.
Edmunds, Michael; Raheem, Mohammed Abdul; Boutin, Rebecca; Tait, Katrina
2016-01-01
Summary Palladium-catalyzed ring-opening reactions of C1 substituted 7-oxanorbornadiene derivatives with aryl iodides were investigated. The optimal conditions for this reaction were found to be PdCl2(PPh3)2, ZnCl2, Et3N and Zn in THF. Both steric and electronic factors played a role in the outcome of the reaction as increasing the steric bulk on the bridgehead carbon decreased the yield. These reactions were found to be highly regioselective, giving only one of the two possible regioisomers in all cases. A diverse collection of novel, highly substituted biphenyl derivatives were obtained. PMID:26977182
Ozone Sensing Based on Palladium Decorated Carbon Nanotubes
Colindres, Selene Capula; Aguir, Khalifa; Sodi, Felipe Cervantes; Vargas, Luis Villa; Moncayo Salazar, José A.; Febles, Vicente Garibay
2014-01-01
Multiwall carbon nanotubes (MWCNTs) were easily and efficiently decorated with Pd nanoparticles through a vapor-phase impregnation-decomposition method starting from palladium acetylacetonates. The sensor device consisted on a film of sensitive material (MWCNTs-Pd) deposited by drop coating on platinum interdigitated electrodes on a SiO2 substrate. The sensor exhibited a resistance change to ozone (O3) with a response time of 60 s at different temperatures and the capability of detecting concentrations up to 20 ppb. The sensor shows the best response when exposed to O3 at 120 °C. The device shows a very reproducible sensor performance, with high repeatability, full recovery and efficient response. PMID:24736133
NASA Astrophysics Data System (ADS)
Ravagnan, Luca; Divitini, Giorgio; Rebasti, Sara; Marelli, Mattia; Piseri, Paolo; Milani, Paolo
2009-04-01
Nanocomposite films were fabricated by supersonic cluster beam deposition (SCBD) of palladium clusters on poly(methyl methacrylate) (PMMA) surfaces. The evolution of the electrical conductance with cluster coverage and microscopy analysis show that Pd clusters are implanted in the polymer and form a continuous layer extending for several tens of nanometres beneath the polymer surface. This allows the deposition, using stencil masks, of cluster-assembled Pd microstructures on PMMA showing a remarkably high adhesion compared with metallic films obtained by thermal evaporation. These results suggest that SCBD is a promising tool for the fabrication of metallic microstructures on flexible polymeric substrates.
Tobisu, Mamoru; Imoto, Shinya; Ito, Sana; Chatani, Naoto
2010-07-16
To demonstrate the utility of isocyanides in catalytic C-H bond functionalization reactions, a palladium-catalyzed cyclocoupling reaction of 2-halobiaryls with isocyanides was developed. The reaction afforded an array of fluorenone imine derivatives via the cleavage of a C-H bond at the 2'-position of 2-halobiaryls. The use of 2,6-disubstituted phenyl isocyanide was crucial for this catalytic cyclocoupling reaction to proceed. The reaction was applicable to heterocyclic and vinylic substrates, allowing the construction of a wide range of ring system. The large kinetic isotope effect observed (k(H)/k(D) = 5.3) indicates that C-H bond activation was the turnover-limiting step in this catalysis.
Denmark, Scott E; Werner, Nathan S
2010-03-17
The stereochemical course of palladium-catalyzed cross-coupling reactions of an enantioenriched, alpha-substituted, allylic silanolate salt with aromatic bromides has been investigated. The allylic silanolate salt was prepared in high geometrical (Z/E, 94:6) and high enantiomeric (94:6 er) purity by a copper-catalyzed S(N)2' reaction of a resolved allylic carbamate. Eight different aromatic bromides underwent cross-coupling with excellent constitutional site-selectivity and excellent stereospecificity. Stereochemical correlation established that the transmetalation event proceeds through a syn S(E)' mechanism which is interpreted in terms of an intramolecular delivery of the arylpalladium electrophile through a key intermediate that contains a discrete Si-O-Pd linkage.
Larionov, Evgeny; Lin, Luqing; Guénée, Laure; Mazet, Clément
2014-12-03
Herein we report the palladium-catalyzed isomerization of highly substituted allylic alcohols and alkenyl alcohols by means of a single catalytic system. The operationally simple reaction protocol is applicable to a broad range of substrates and displays a wide functional group tolerance, and the products are usually isolated in high chemical yield. Experimental and computational mechanistic investigations provide complementary and converging evidence for a chain-walking process consisting of repeated migratory insertion/β-H elimination sequences. Interestingly, the catalyst does not dissociate from the substrate in the isomerization of allylic alcohols, whereas it disengages during the isomerization of alkenyl alcohols when additional substituents are present on the alkyl chain.
Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands.
Rîmbu, Cristina; Danac, Ramona; Pui, Aurel
2014-01-01
Palladium(II) complexes with Schiff bases ligands derived from salicylaldehyde and amino acids (Ala, Gly, Met, Ser, Val) have been synthesized and characterized by Fourier transform (FT)-IR, UV-Vis and (1)H-NMR spectroscopy. The electrospray mass spectrometry (ES-MS) spectrometry confirms the formation of palladium(II) complexes in 1/2 (M/L) molar ratio. All the Pd(II) complexes 1, [Pd(SalAla)2]Cl2; 2, [Pd(SalGly)2]Cl2; 3, [Pd(SalMet)2]Cl2; 4, [Pd(SalSer)2]Cl2; 5, [Pd(SalVal)2]Cl2; have shown antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.
Manna, Manash Kumar; Hossian, Asik; Jana, Ranjan
2015-02-06
A palladium-catalyzed 1,2-carboamination through C-H activation at room temperature is reported for the synthesis of 2-arylindoles, and indolines from readily available, inexpensive aryl ureas and vinyl arenes. The reaction initiates with a urea-directed electrophilic ortho palladation, alkene insertion, and β-hydride elimination sequences to provide the Fujiwara-Moritani arylation product. Subsequently, aza-Wacker cyclization, and β-hydride elimination provide the 2-arylindoles in high yields. Intercepting the common σ-alkyl-Pd intermediate, corresponding indolines are also achieved. The indoline formation is attributed to the generation of stabilized, cationic π-benzyl-Pd species to suppress β-hydride elimination.
A Miniature Palladium-Iron Thermometer for Temperatures Down to 0.05 K
NASA Technical Reports Server (NTRS)
Tuttle, Jim; DiPirro, Michael; Canavan, Ed; Shirron, Peter; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)
2001-01-01
Magnetic thermometers are appealing at temperatures below about 0.1 Kelvin, because the avoid the noise self-heating problems associated with resistive thermometers. In practical, metallic dilute electronic thermometers add the advantages of chemical stability, high thermal conductivity, and easy in heat sinking work we describe a palladium-iron thermometer which was designed to be small and conveniently packaged and optimized for use at temperatures down to 0.05 Kelvin. The device showed Curie-Weiss behavior above about 0.06 Kelvin, and we achieve 41 nK/ square root of z temperature resolution at a temperature of 49 mK. We describe the design and operation of this thermometers and present the test results.
Yoon, Ki-Young; Dong, Guangbin
2018-05-23
Herein, we report the palladium/norbornene cooperatively catalyzed polymerization, which simplifies synthesis of functional aromatic polymers, including conjugated polymers. Specifically, an A2B2C-type multicomponent polymerization is developed using ortho-amination/ipso-alkynylation reaction for preparing various amine-functionalized arylacetylene-containing polymers. Within a single catalytic cycle, the amine side-chains are site-selectively installed in situ via C-H activation during the polymerization process, which represents a major difference from conventional cross-coupling polymerizations. This in situ-functionalization strategy enables modular incorporation of functional side-chains from simple monomers, thereby conveniently affording a diverse range of functional polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection
Noh, Jin-Seo; Lee, Jun Min; Lee, Wooyoung
2011-01-01
Palladium (Pd) has received attention as an ideal hydrogen sensor material due to its properties such as high sensitivity and selectivity to hydrogen gas, fast response, and operability at room temperature. Interestingly, various Pd nanostructures that have been realized by recent developments in nanotechnologies are known to show better performance than bulk Pd. This review highlights the characteristic properties, issues, and their possible solutions of hydrogen sensors based on the low-dimensional Pd nanostructures with more emphasis on Pd thin films and Pd nanowires. The finite size effects, relative strengths and weaknesses of the respective Pd nanostructures are discussed in terms of performance, manufacturability, and practical applicability. PMID:22346605
Laser-induced rocket force on a microparticle in a complex (dusty) plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosenko, V.; Ivlev, A. V.; Morfill, G. E.
2010-12-15
The interaction of a focused powerful laser beam with micron-sized melamine formaldehyde (MF) particles was studied experimentally. The microspheres had a thin palladium coating on their surface and were suspended in a radio frequency argon plasma as a single layer (plasma crystal). A particle hit by the laser beam usually accelerated in the direction of the laser beam, consistent with the radiation pressure force mechanism. However, random-direction acceleration up to the speeds on the order 1 m/s was sometimes observed. Rocket-force mechanism is proposed to account for the random-direction acceleration. Similar, but much less pronounced, effect was also observed formore » MF particles without palladium coating.« less
Thompson, David; Kranbuehl, David; Espuche, Eliane
2016-10-18
This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.
Chen, Peili; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli
2011-01-01
The interaction between palladium(II)-aminophylline and fluorescein sodium was investigated by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum. In pH 4.4 Britton-Robinson (BR) buffer medium, aminophylline (Ami) reacted with palladium(II) to form chelate cation([Pd(Ami)]2+), which further reacted with fluorescein sodium (FS) to form ternary mixed ligand complex [Pd(Ami)(FS)2]. As a result, resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering spectrum (FDS) were enhanced. The maximum scattering wavelengths of [Pd(Ami)(FS)2] were located at 300 nm (RRS), 650 nm (SOS) and 304 nm (FDS). The scattering intensities were proportional to the Ami concentration in a certain range and the detection limits were 7.3 ng mL(-1) (RRS), 32.9 ng mL(-1) (SOS) and 79.1 ng mL(-1) (FDS), respectively. Based on it, the new simple, rapid, and sensitive scattering methods have been proposed to determine Ami in urine and serum samples. Moreover, the formation mechanism of [Pd(Ami)(FS)2] and the reasons for enhancement of RRS were fully discussed. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Anomalous Nernst and Hall effects in magnetized platinum and palladium
NASA Astrophysics Data System (ADS)
Guo, G. Y.; Niu, Q.; Nagaosa, N.
2014-06-01
We study the anomalous Nernst effect (ANE) and anomalous Hall effect (AHE) in proximity-induced ferromagnetic palladium and platinum which is widely used in spintronics, within the Berry phase formalism based on the relativistic band-structure calculations. We find that both the anomalous Hall (σxyA) and Nernst (αxyA) conductivities can be related to the spin Hall conductivity (σxyS) and band exchange splitting (Δex) by relations σxyA=Δex
Shahraki, Somaye; Mansouri-Torshizi, Hassan; Sori Nezami, Ziba; Ghahghaei, Arezou; Yaghoubi, Fatemeh; Divsalar, Adeleh; Saboury, Ali-Akbar; H. Shirazi, Farshad
2014-01-01
In depth interaction studies between calf thymus deoxyribonucleic acid (CT-DNA) and a series of four structurally relative palladium(II) complexes [Pd(en)(HB)](NO3)2 (a-d), where en is ethylenediamine and heterocyclic base (HB) is 2,2'-bipyridine (bpy, a); 1,10-phenanthroline (phen, b); dipyridoquinoxaline (dpq, c) and dipyridophenazine (dppz, d) (Figure 1), were performed. These studies have been investigated by utilizing the electronic absorption spectroscopy, fluorescence spectra and ethidium bromide (EBr) displacement and gel filtration techniques. a-d complexes cooperatively bind and denature the DNA at low concentrations. Their concentration at midpoint of transition, L1/2, follows the order a >> b > c > d. Also the g, the number of binding sites per 1000 nucleotides, follows the order a >> b ~ c > d. EBr and Scatchard experiments for a-d complexes suggest efficient intercalative binding affinity to CT-DNA giving the order: d > c > b > a. Several binding and thermodynamic parameters are also described. The biological activity of these cationic and water soluble palladium complexes were tested against chronic myelogenous leukemia cell line, K562. b, c and d complexes show cytotoxic concentration (Cc50) values much lower than cisplatin. PMID:25587317
Mehri, Afef; Kochkar, Hafedh; Daniele, Stéphane; Mendez, Violaine; Ghorbel, Abdelhamid; Berhault, Gilles
2012-03-01
One-pot deposition of Pd onto TiO(2) has been achieved through directly contacting palladium(II) salt with nanosized functionalized TiO(2) support initially obtained by sol-gel process using titanium isopropoxide and citric acid. Citrate groups act as functional moieties able to directly reduce the Pd salt avoiding any further reducing treatment. Various palladium salts (Na(2)PdCl(4) and Pd(NH(3))(4)Cl(2)·H(2)O) and titanium to citrate (Ti/CA) ratios (20, 50, and 100) were used in order to study the effect of the nature of the precursor and of the citrate content on the final Pd particle size and catalytic properties of the as-obtained Pd/TiO(2) systems. Characterization was performed using N(2) adsorption-desorption isotherms, ICP-AES, FTIR, XRD, XPS, and TEM. The as-obtained hybrid Pd/TiO(2) catalysts were tested in the selective hydrogenation (HYD) of an α,β-unsaturated aldehyde, i.e. cinnamaldehyde. Citrate-free Pd/TiO(2)-based catalysts present lower selectivity into saturated alcohol. However, citrate-functionalized Pd/TiO(2) catalyst seems to control the selectivity, the particle size and dispersion of Pd NPs leading to high intrinsic activity. Copyright © 2011 Elsevier Inc. All rights reserved.
Nandan, R; Nanda, K K
2017-08-31
Geometrical tunability offers sharp edges and an open-armed structure accompanied with a high electrochemical active surface area to ensure the efficient and effective utilization of materials by exposing the electrochemical active sites for facile accessibility of reactant species. Herein, we report a one-step, single-pot, surfactant-free, electroless, and economic route to synthesize palladium sulfide nanostructures with different geometries at mild temperatures and their catalytic properties towards the oxygen reduction reaction (ORR) and methanol electro-oxidation (MOR). For ORR, the positive on-set, half wave potentials, smaller Tafel slope, high electrochemical active surface area, large roughness factor, and better cyclic stability of the proposed nanostructures as compared to those of the commercial state-of-the-art Pt-C/PdS catalysts suggest their superiority in an alkaline medium. In addition, high mass activity (J f ∼ 715 mA mg -1 ), in comparison with that of the commercial state-of-the-art Pt-C/PdS catalysts (J f ∼ 138/41 mA mg -1 , respectively), and high J f /J b (1.52) along with the superior operational stability of the multi-arm palladium sulfide nanostructures towards MOR advocates the bi-functional behavior of the catalyst and its potential as a promising Pt-free anode/cathode electrocatalyst in fuel cells.
El-Safty, Sherif A; Shenashen, Mohamed A; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei
2015-12-06
Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobalt metals.
Yang, Jin; Li, Pinhua; Zhang, Yicheng; Wang, Lei
2014-05-21
Six dinuclear N-heterocyclic carbene (NHC) palladium complexes, [PdCl2(IMes)]2(μ-dppe) (1), [PdCl2(IPr)]2(μ-dppe) (2), [PdCl2(IMes)]2(μ-dppb) (3), [PdCl2(IPr)]2(μ-dppb) (4), [PdCl2(IMes)]2(μ-dpph) (5), and [PdCl2(IPr)]2(μ-dpph) (6) [IMes = N,N'-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene; IPr = N,N'-bis-(2,6-di(iso-propyl)phenyl)imidazol-2-ylidene; dppe = 1,2-bis(diphenylphosphino)ethane, dppb = 1,4-bis(diphenylphosphino)butane; and dpph = 1,6-bis(diphenylphosphino)hexane], have been synthesized through bridge-cleavage reactions of chloro-bridged dimeric compounds, [Pd(μ-Cl)(Cl)(NHC)]2, with the corresponding diphosphine ligands. The obtained compounds were fully characterized by (1)H NMR, (13)C NMR and (31)P NMR spectroscopy, FT-IR, elemental analysis and single-crystal X-ray crystallography. Moreover, further explorations of the catalytic potential of the dinuclear carbene palladium complexes as catalysts for the Pd-catalyzed transformations have been performed under microwave irradiation conditions, and the complexes exhibited moderate to good catalytic activity in the Hiyama coupling reaction of trimethoxyphenylsilane with aryl chlorides.
NASA Astrophysics Data System (ADS)
Jagadeesh, M.; Lavanya, M.; Kalangi, Suresh K.; Sarala, Y.; Ramachandraiah, C.; Varada Reddy, A.
2015-01-01
A new, slightly distorted octahedral complex of copper(II), square planar complexes of nickel(II) and palladium(II) with 2,4‧-dibromoacetophenone thiosemicarbazone (DBAPTSC) are synthesized. The ligand and the complexes are characterized by FT-IR, FT-Raman, powder X-ray diffraction studies. The IR and Raman data are correlated for the presence of the functional groups which specifically helped in the confirmation of the compounds. In addition, the free ligand is unambiguously characterized by 1H and 13C NMR spectroscopy while the copper(II) complex is characterized by electron paramagnetic resonance spectroscopy (EPR). The g values for the same are found to be 2.246 (g1), 2.012 (g2) and 2.005 (g3) which suggested rhombic distortions. The HOMO-LUMO band gap calculations for these compounds are found to be in between 0.5 and 4.0 eV and these compounds are identified as semiconducting materials. The synthesized ligand and its copper(II), nickel(II) and palladium(II) complexes are subjected to antitumour activity against the HepG2 human hepatoblastoma cell lines. Among all the compounds, nickel(II) complex is found to exert better antitumour activity with 57.6% of cytotoxicity.
Irradiation experiment on ZrC-coated fuel particles for high-temperature gas-cooled reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minato, Kazuo; Ogawa, Toru; Sawa, Kazuhiro
2000-06-01
The ZrC coating layer is a candidate to replace the SiC coating layer of the Triso-coated fuel particle. To compare the irradiation performance of the ZrC Triso-coated fuel particles with that of the normal Triso-coated fuel particles at high temperatures, a capsule irradiation experiment was performed, where both types of the coated fuel particles were irradiated under identical conditions. The burnup was 4.5% FIMA and the irradiation temperature was 1,400 to 1,650 C. The postirradiation measurement of the through-coating failure fractions of both types of coated fuel particles revealed better irradiation performance of the ZrC Triso-coated fuel particles. The opticalmore » microscopy and electron probe microanalysis on the polished cross section of the ZrC Triso-coated fuel particles revealed no interaction of palladium with the ZrC coating layer nor accumulation of palladium at the inner surface of the ZrC coating layer, whereas severe corrosion of the SiC coating layer was observed in the normal Triso-coated fuel particles. Although no corrosion of the ZrC coating layer was observed, additional evaluations need to be made of this layer's ability to satisfactorily retain the fission product palladium.« less
Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor
NASA Astrophysics Data System (ADS)
Madan, Jaya; Chaujar, Rishu
2016-12-01
The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.
Hannah, D R; Sherer, E C; Davies, R V; Titman, R B; Laughton, C A; Stevens, M F
2000-04-01
The immunological agent bropirimine 5 is a tetra-substituted pyrimidine with anticancer and interferon-inducing properties. Synthetic routes to novel 5-aryl analogues of bropirimine have been developed and their potential molecular recognition properties analysed by molecular modelling methods. Sterically challenged 2-amino-5-halo-6-phenylpyrimidin-4-ones (halo = Br or I) are poor substrates for palladium catalysed Suzuki cross-coupling reactions with benzeneboronic acid because the basic conditions of the reaction converts the amphoteric pyrimidinones to their unreactive enolic forms. Palladium-mediated reductive dehalogenation of the pyrimidinone substrates effectively competes with cross-coupling. 2-Amino-5-halo-4-methoxy-6-phenylpyrimidines can be converted to a range of 5-aryl derivatives with the 5-iodopyrimidines being the most efficient substrates. Hydrolysis of the 2-amino-5-aryl-4-methoxy-6-phenylpyrimidines affords the required pyrimidin-4-ones in high yields. Semi-empirical quantum mechanical calculations show how the nature of the 5-substituent influences the equilibrium between the 1H- and 3H-tautomeric forms, and the rotational freedom about the bond connecting the 6-phenyl group and the pyrimidine ring. Both of these factors may influence the biological properties of these compounds.
El-Safty, Sherif A.; Shenashen, Mohamed A.; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei
2015-01-01
Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobaltmetals. PMID:26709467
Wang, Meng; Wu, Lan; Hu, Qiufen; Yang, Yaling
2018-03-01
A rapid, sensitive, precise, and accurate dispersive-magnetic solid-phase extraction technique combined with flame atomic absorption spectrometry was established for pre-concentration and separation of Pd (II) in soil samples. In the developed system, 5-amine-1,10-phenanthroline was used as synergistic complexant; sodium dodecyl sulfate and 2-(5-bromo-2-pyridylazo)-5-diethyl aminophenol ligand coated on magnetic nanoparticles were synthesized by a chemical precipitation method, and then employed as the efficient magnetic adsorbent with good magnetic properties and dispersibility. Various operational parameters affecting the extraction efficiency has been studied and optimized in details. Under the optimum experimental conditions, the detection limit of the mentioned method for palladium ions was 0.12 μg/L, while the relative standard deviation was 1.8%. Finally, the developed method was applied for the analysis of palladium ions in three kinds of soil samples and quantitative recoveries were achieved over the range of 96.7-104.0%. It can be a powerful alternative applied to the determination of traces of Pd ions from various real samples in further researches.
NASA Astrophysics Data System (ADS)
Rajegowda, H. R.; Kumar, P. Raghavendra; Hosamani, Amar; Butcher, R. J.; Naveen, S.; Lokanath, N. K.
2018-03-01
A new chiral Schiff base ligand 2-{N-[(2S)-(1-hydroxy-3-phenylpropan-2-yl]ethanimidoyl} phenol ((S)sbnd H2L) was obtained by acid catalyzed condensation of (2S)-(-)-2-amino-3-phenyl-1-propanol with 2‧-hydroxyacetophenone. The palladium complex was prepared by treating a solution of (S)sbnd H2L in acetone with a solution of Na2PdCl4 in water in 1:1 M ratio. The new ligand and its complex were characterized by FT-IR, 1H, 13C{1H} NMR spectroscopy, polarimetry and elemental analysis and their molecular structures were determined by single crystal X-ray diffraction. Both the compounds crystallizes in monoclinic system in the space group P21. There exists an intra [Osbnd H ⋯N (1.62(5) Å)] and intermolecular [Osbnd H ⋯O (1.53(5) Å) and Csbnd H ⋯O (2.59 Å)] hydrogen bonding and secondary interactions in the crystal of (S)sbnd H2L. The structure of the palladium complex was found very interesting wherein the ligand coordinated to metal center as tridentate dianionic (O-, N, O-) fashion, (S)-L, resulting in a tetranuclear palladium cluster, [Pd4((S)-L)4]. In these supramolecular structures phenolate oxygen coordinated to Pd(II) ion as Pdsbnd O terminal bonds [1.934(12) - 1.977(11) Å] and the alkoxide oxygen coordinated as Pdsbnd Osbnd Pd bridging bonds [1.993(11) - 2.012(12) Å]. The Pdsbnd N bond lengths found were in the range of 1.949(13) to 1.919(12) Å. There exists two asymmetric tetranuclear complex molecules in its crystal lattice. There exists very strong metal-metal bond interaction, Pd(2)sbnd Pd(3) [3.0410(18) Å] and Pd(6)sbnd Pd(7) [3.0517(19) Å] respectively in the two asymmetric units.
Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.
Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil
2014-10-01
The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; P<.001). Follow-up multiple comparisons showed a significant difference among all the groups. Microwave soldering resulted in a higher tensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Edler, F.; Huang, K.
2016-12-01
Fifteen miniature fixed-point cells made of three different ceramic crucible materials (Al2O3, ZrO2, and Al2O3(86 %)+ZrO2(14 %)) were filled with pure palladium and used to calibrate type B thermocouples (Pt30 %Rh/Pt6 %Rh). A critical point by using miniature fixed points with small amounts of fixed-point material is the analysis of the melting curves, which are characterized by significant slopes during the melting process compared to flat melting plateaus obtainable using conventional fixed-point cells. The method of the extrapolated starting point temperature using straight line approximation of the melting plateau was applied to analyze the melting curves. This method allowed an unambiguous determination of an electromotive force (emf) assignable as melting temperature. The strict consideration of two constraints resulted in a unique, repeatable and objective method to determine the emf at the melting temperature within an uncertainty of about 0.1 μ V. The lifetime and long-term stability of the miniature fixed points was investigated by performing more than 100 melt/freeze cycles for each crucible of the different ceramic materials. No failure of the crucibles occurred indicating an excellent mechanical stability of the investigated miniature cells. The consequent limitation of heating rates to values below {± }3.5 K min^{-1} above 1100° C and the carefully and completely filled crucibles (the liquid palladium occupies the whole volume of the crucible) are the reasons for successfully preventing the crucibles from breaking. The thermal stability of the melting temperature of palladium was excellent when using the crucibles made of Al2O3(86 %)+ZrO2(14 %) and ZrO2. Emf drifts over the total duration of the long-term investigation were below a temperature equivalent of about 0.1 K-0.2 K.
NASA Astrophysics Data System (ADS)
Kshirasagar, Krushna J.; Markad, Uddhav S.; Saha, Abhijit; Sharma, Kiran Kumar K.; Sharma, Geeta K.
2017-02-01
Palladium nanoparticles doped polyaniline (Pd-PANI) nanocomposite (NCs) is synthesized in surfactant based liquid crystalline mesophase by chemical oxidation followed by radiolysis. The confinement of the liquid crystalline mesophase facilitates polymerization of aniline monomers and their 1D growth into polyaniline (PANI) nanowires by using ammonium persulfate. The PANI nanowires have an average diameter of 30-40 nm. The in situ radiolytic reduction of palladium ions ensures uniform size distribution of the palladium (Pd) nanoparticles on the surface of the PANI nanowires. The synthesized Pd-PANI nanocomposites show wire like structures of PANI (diameter ~30-40 nm) on which Pd nanoparticles of the size 10 nm are decorated. The identical average diameter of the PANI nanowires before and post gamma irradiation suggest high stability of the PANI nanowires in liquid crystalline mesophase. Surface characterization of the NCs were carried out using BET and XPS. The catalytic activity of Pd-PANI NCs are investigated in the reduction of methylene blue (MB) and 4-nitro phenol (4-NP) by sodium borohydride (NaBH4). The kinetics of the Pd-PANI NCs catalysed reactions are analysed using the Langmuir-Hinshelwood model. The apparent rate constant (k app) for the MB and 4-NP reduction reactions is 29 × 10-3 s-1 and 20 × 10-3 s-1 respectively with an actual Pd catalyst loading of 2.665 × 10-4 ppm. Further, the recyclability of the Pd-PANI NCs catalyst in both the reduction reactions shows the stability of the catalyst up to four reaction cycles tested in this investigation and the multifunctional nature of the catalyst. The study provides a new approach for the directional synthesis of conducting polymer-metal nanocomposites and their possible application as a nanocatalyst in environmental remediation.
Kitto, Heather J; Rae, A David; Webster, Richard D; Willis, Anthony C; Wild, S Bruce
2007-09-17
The ligand (S,S)-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane, (S,S)-tetraphos, reacts with hexa(aqua)nickel(II) chloride in the presence of trimethylsilyl triflate (TMSOTf) in dichloromethane to give the yellow square-planar complex [Ni{(R,R)-tetraphos}](OTf)2, which has been crystallographically characterized as the square-pyramidal, acetonitrile adduct [Ni(NCMe){(R,R)-tetraphos}]OTf. Cyclic voltammograms of the nickel(II) complex in dichloromethane and acetonitrile at 20 degrees C showed two reduction processes at negative potentials with oxidative (E(p)(ox)) and reductive (E(p)(red)) peak separations similar to those observed for ferrocene/ferrocenium under identical conditions, suggesting two one-electron steps. The cyclic voltammetric data for the divalent nickel complex in acetonitrile at temperatures below -20 degrees C were interpreted according to reversible coordination of acetonitrile to the nickel(I) and nickel(0) complexes. The divalent palladium and platinum complexes [M{(R,R)-tetraphos}](PF6)2 and [M2{(R,R)-tetraphos}2](OTf)4 have been prepared. The reduction potentials for the complexes [M{(R,R)-tetraphos}](PF6)2 increase in the order nickel(II) < palladium(II) < platinum(II). The reaction of (S,S)-tetraphos with bis(cycloocta-1,5-diene)nickel(0) in benzene affords orange [Ni{(R,R)-tetraphos}], which slowly rearranges into the thermodynamically more stable, yellow, double-stranded helicate [Ni2{(R,R)-tetraphos}2]; the crystal structures of both complexes have been determined. The reactions of (S,S)-tetraphos with [M(PPh3)4] in toluene (M = Pd) or benzene (M = Pt) furnish the double-stranded helicates [M2{(R,R)-tetraphos}2]; the palladium complex crystallizes from hot benzene as the 2-benzene solvate and was structurally characterized by X-ray crystallography. In each of the three zerovalent complexes, the coordinated (R,R)-tetraphos stereospecifically generates tetrahedral M(PP)2 stereocenters of M configuration.
Krittayavathananon, Atiweena; Srimuk, Pattarachai; Luanwuthi, Santamon; Sawangphruk, Montree
2014-12-16
Although metal nanoparticle/graphene composites have been widely used as the electrode in electrochemical sensors, two effects, consisting of the particle size of the nanoparticles and the hydrodynamic diffusion of analytes to the electrodes, are not yet fully understood. In this work, palladium nanoparticles/reduced graphene oxide (PdNPs/rGO) composites were synthesized using an in situ polyol method. Palladium(II) ions and graphene oxide were reduced together with a reducing agent, ethylene glycol. By varying the concentration of palladium(II) nitrate, PdNPs with different sizes were decorated on the surface of rGO sheets. The as-fabricated PdNPs/rGO rotating disk electrodes (RDEs) were investigated toward hydrazine detection. Overall, a 3.7 ± 1.4 nm diameter PdNPs/rGO RDE exhibits high performance with a rather low limit of detection of about 7 nM at a rotation speed of 6000 rpm and provides a wide linear range of 0.1-1000 μM with R(2) = 0.995 at 2000 rpm. This electrode is highly selective to hydrazine without interference from uric acid, glucose, ammonia, caffeine, methylamine, ethylenediamine, hydroxylamine, n-butylamine, adenosine, cytosine, guanine, thymine, and l-arginine. The PdNPs/rGO RDEs with larger sizes show lower detection performance. Interestingly, the detection performance of the electrodes is sensitive to the hydrodynamic diffusion of hydrazine. The as-fabricated electrode can detect trace hydrazine in wastewater with high stability, demonstrating its practical use as an electrochemical sensor. These findings may lead to an awareness of the effect of the hydrodynamic diffusion of analyte that has been previously ignored, and the 3.7 ± 1.4 nm PdNPs/rGO RDE may be useful toward trace hydrazine detection, especially in wastewater from related chemical industries.
Khmaj, Mofida R; Khmaj, Abdulfatah B; Brantley, William A; Johnston, William M; Dasgupta, Tridib
2014-11-01
New noble alloys for metal ceramic restorations introduced by manufacturers are generally lower-cost alternatives to traditional higher-gold alloys. Information about the metal-to-ceramic bond strength for these alloys, which is needed for rational clinical selection, is often lacking. The purpose of this study was to evaluate the bond strength of 4 recently introduced noble alloys by using 2 techniques for porcelain application. Aquarius Hard (high-gold: 86.1 gold, 8.5 platinum, 2.6 palladium, 1.4 indium; values in wt. %), Evolution Lite (reduced-gold: 40.3 gold, 39.3 palladium, 9.3 indium, 9.2 silver, 1.8 gallium), Callisto 75 Pd (palladium-silver containing gold: 75.2 palladium, 7.1 silver, 2.5 gold, 9.3 tin, 1.0 indium), and Aries, (conventional palladium-silver: 63.7 palladium, 26.0 silver, 7.0 tin, 1.8 gallium, 1.5 indium) were selected for bonding to leucite-containing veneering porcelains. Ten metal ceramic specimens that met dimensional requirements for International Organization for Standardization (ISO) Standard 9693 were prepared for each alloy by using conventional porcelain layering and press-on-metal methods. The 3-point bending test in ISO Standard 9693 was used to determine bond strength. Values were compared with 2-way ANOVA (maximum likelihood analysis, SAS Mixed Procedure) and the Tukey test (α=.05). Means (standard deviations) for bond strength with conventional porcelain layering were as follows: Aquarius Hard (50.7 ±5.5 MPa), Evolution Lite (40.2 ±3.3 MPa), Callisto 75 Pd (37.2 ±3.9 MPa), and Aries (34.0 ±4.9 MPa). For the press-on-metal technique, bond strength results were as follows: Aquarius Hard (33.7 ±11.5 MPa), Evolution Lite (34.9 ±4.5 MPa), Callisto 75 Pd (37.2 ±11.9 MPa), and Aries (30.7 ±10.8 MPa). From statistical analyses, the following 3 significant differences were found for metal-to-ceramic bond strength: the bond strength for Aquarius Hard was significantly higher for conventional porcelain layers compared with the press-on-metal technique; the bond strength for Aquarius Hard with conventional porcelain layers was significantly higher than the bond strengths for the other 3 alloys with conventional porcelain layers; and the bond strength for Aquarius Hard with conventional porcelain layers was significantly higher than the bond strength for Callisto 75 Pd with conventional porcelain layers and the other 3 alloys with the press-on-metal technique. For both conventional layering and press-on-metal techniques, all 4 noble alloys had a mean metal-to-ceramic bond strength that substantially exceeded the 25 MPa minimum in the ISO Standard 9693. The results for Aries support the manufacturer's recommendation not to use the press-on-metal technique for alloys that contain more than 10% silver. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Boon, Byron Adrian
The palladium(II)-catalyzed oxidative macrocyclization of bis(vinylboronate esters) is demonstrated as an efficient method for the synthesis of macrocyclic dienes. The macrocyclization reactions feature mild conditions due to a palladium(II) catalytic cycle which obviates the need for a high energy oxidative addition step of standard palladium(0) catalytic cycles. Instead, this oxidative coupling is promoted by chloroacetone as a terminal re-oxidant in the catalytic cycle. An extension of the oxidative coupling/macrocyclization strategy is highlighted where molecular oxygen may be used in place of chloroacetone as the terminal re-oxidant. Homocoupling reactions of vinylboronate esters served as a template to screen reaction conditions for this method. From these experiments, multiple reaction conditions gave the oxidative homocoupling product in high yield. These reaction conditions were successfully applied to the oxidative macrocyclization of a bis(vinylboronate ester) using molecular oxygen as a re-oxidant. Syntheses of strained cyclic dienes were accomplished via the palladium(II)-catalyzed oxidative cyclizations of terminal bis(vinylboronate esters). The reactions generated strained (E,E)-1,3-dienes that underwent spontaneous 4?-electrocyclizations to form bicyclic cyclobutenes. Formation of the cyclobutenes is driven by strain in the medium-ring (E,E)-1,3-diene intermediates. Thermal ring openings of the cyclobutenes give (Z,Z)-1,3-diene products, again for thermodynamic reasons. These results are in contrast with typical acyclic trans-3,4-dialkyl cyclobutenes, which favor outward torquoselective ring-openings to give (E,E)-1,3-dienes. DFT calculations verified the thermodynamic versus kinetic control of the reactions and kinetic studies are in excellent agreement with the calculated energy changes. Investigations on the transannular Pauson-Khand reaction are also highlighted. The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2+2+1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Our successful transannular Pauson-Khand reaction required a cyclic enyne incorporating one short three-membered linker chain and a rigid aryl linker in the backbone of the long linker chain. This rigidity of the aryl linker is proposed to facilitate the transannular [2+2+1] cyclization. Computational studies revealed that transannular Pauson-Khand reactions are thermodynamically favored for cyclic enynes featuring a long linker of at least 5 carbons, but with smaller chains the reactions are thermodynamically disfavored. Experimental studies show that long linking chains with more than 5 members are required to prevent to steric interactions between the dicobalt hexacarbonyl moiety and the linking chain to allow the reaction to be kinetically favored. The final part of this work highlights progress towards the total synthesis of (+)-kingianin A. This natural product was isolated as a racemic mixture from the bark of Endiandra kingiana and is an inhibitor of antiapoptotic protein Bcl-Xl, highlighting its potential use in cancer treatments. Its structure is proposed to arise from an intermolecular Diels-Alder dimerization reaction of bicyclo[4.2.0]octadiene fragments derived from an 8pi/6pi-electrocyclization cascade. Although two total syntheses of (+/-)-kingianin A have been reported, an enantioselective synthesis has not been achieved and is the purpose of this study. This synthetic route begins from L-(+)-dimethyl tartrate, a cheap and commercially available starting material, and aims to follow a biomimetic synthetic pathway featuring a substrate controlled diastereoselective palladium(II)-catalyzed oxidative cyclization and 8pi/6pi-electrocyclization cascade. Although the feasibility of this cascade pathway has not yet been realized, key synthetic transformations to install the requisite carbocyclic framework of (+)-kingianin A have been discovered, paving the way for future investigations on the palladium(II)-catalyzed coupling/electrocyclization cascade and completion of the synthesis.
NASA Astrophysics Data System (ADS)
Conley, Nicholas R.
The field of synthetic organic chemistry has reached such maturity that, with sufficient effort and resources, the synthesis of virtually any small molecule which exhibits reasonable stability at room temperature can be realized. While representing a monumental achievement for the field, the ability to exert precise control over molecular structure is just a means to an end, and it is frequently the responsibility of the synthetic chemist to determine which molecules should actually be synthesized. For better or worse, there exists no competitive free market in academia for new molecules, and as a result, the decision of which compounds should be synthesized is seldom driven by the forces of supply and demand; rather, it is guided by the synthetic chemist's interest in an anticipated structure-function relationship or in the properties of a previously unstudied class of molecules. As a consequence, there exists a pervasive need for chemists with synthetic expertise in fields (e.g., molecular imaging) and subdisciplines of chemistry (e.g., physical chemistry) in which the identification of promising synthetic targets dramatically outpaces the synthetic output in that field or subdiscipline, and ample opportunities are available for synthetic chemists who choose to pursue such cross-disciplinary research. This thesis describes synthetic efforts that leverage these opportunities to realize applications in biological imaging and in palladium catalysis. In Part I, the synthesis and characterization of three novel luminophores and their imaging applications are discussed. The first is a molecular beacon that utilizes a fluorophorefluorophore pair which exhibits H-dimer quenching in the closed conformation. This probe offers several advantages over conventional fluorophore-quencher molecular beacons in the detection of oligonucleotides, both in bulk and at the single-molecule level. Secondly, a fluorescent, Cy3-Cy5 covalent heterodimer is reported, which on account of the proximity of the Cy3 and Cy5 fluorophores, behaves as an optical photoswitch in the presence of a thiol reagent. This unique property was employed to achieve sub-diffraction-limited imaging of the stalks of Caulobacter crescentus cells with 30-nm resolution using STORM (stochastic optical reconstruction microscopy). Lastly, the synthesis of the first selenium analogue of firefly luciferin is described, and this analogue is shown to be a competent substrate for firefly luciferase (fLuc). Remarkably, it exhibits red-shifted bioluminescence emission relative to the native sulfur analogue. The in vivo performance of the selenium and sulfur analogues in imaging are compared by tail-vein injection into nude mice bearing subcutaneous tumor xenografts of a human breast cancer cell line that was stably transduced to express fLuc. Part II of this thesis begins by addressing design considerations in the development of palladium catalysts that effect oxidative transformations under mild conditions (i.e., 1 atm air, room temperature) using molecular oxygen as the terminal oxidant. A newly synthesized cationic palladium complex, [(2,9-dimethylphenanthroline)Pd(OAc)]2[OTf]2, is shown to catalyze aerobic alcohol oxidation under such conditions with an unprecedented initial turnover frequency, but the presence of partially reduced oxygen species results in competitive ligand oxidation with concomitant decrease in catalyst activity. To remedy this, oxidatively resistant ligands, which are essential for the development of next-generation, high-turnover-frequency palladium catalysts that utilize oxygen as a terminal oxidant, have been prepared and effectively employed. In addition, the first general palladium-catalyzed route to the carbonylation of diols is reported. In this system, carbon monoxide (1 atm) serves the carbonyl source, (2,9-dimethylphenanthroline)Pd(OAc) 2 acts as the catalyst, and N-chlorosuccinimide and iodosobenzene are the oxidants for 1,2- and 1,3-diols, respectively. This thesis illustrates the power of synthetic organic chemistry to exert precise control over the structure of molecules, thereby enabling applications in single-molecule fluorescence imaging, bioluminescence imaging, and palladium catalysis.
Su, Ji; Yang, Lisha; Lu, Mi; Lin, Hongfei
2015-03-01
A highly efficient, reversible hydrogen storage-evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions.
Birkholz, Mandy-Nicole; Freixa, Zoraida; van Leeuwen, Piet W N M
2009-04-01
Catalytic reactions of C-C and C-X bond formation are discussed in this critical review with particular emphasis on cross coupling reactions catalyzed by palladium and wide bite angle bidentate diphosphine ligands. Especially those studies have been collected that allow comparison of the ligand bite angles for the selected ligands: dppp, BINAP, dppf, DPEphos and Xantphos. Similarities with hydrocyanation and CO/ethene/MeOH reactions have been highlighted, while rhodium hydroformylation has been mentioned as a contrasting example, in which predictability is high and steric and electronic effects follow smooth trends. In palladium catalysis wide bite angles and bulkiness of the ligands facilitate generally the reductive elimination thus giving more efficient cross coupling catalysis (174 references).
Sluijter, Soraya N; Warsink, Stefan; Lutz, Martin; Elsevier, Cornelis J
2013-05-28
A transmetallation route, using silver(I) precursors, to several zero- and di-valent palladium complexes with chelating bis(N-heterocyclic carbene) ligands bearing various N-substituents has been established. The resulting complexes have been characterized by NMR and mass spectroscopy. In addition, the structure of a representative compound, [Pd(0)(bis-(Mes)NHC)(η(2)-ma)] (3a), was confirmed by X-ray crystal structure determination. In contrast to the transfer semihydrogenation, in which only low activity was observed, complex 3a showed activity (TOF = 49 mol(sub) mol(cat)(-1) h(-1)) and selectivity comparable to its monodentate counterparts in the semihydrogenation of 1-phenyl-1-propyne with molecular hydrogen.
Distribution of Pd, Ag & U in the SiC Layer of an Irradiated TRISO Fuel Particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas M. Lillo; Isabella J. van Rooyen
2014-08-01
The distribution of silver, uranium and palladium in the silicon carbide (SiC) layer of an irradiated TRISO fuel particle was studied using samples extracted from the SiC layer using focused ion beam (FIB) techniques. Transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy was used to identify the presence of the specific elements of interest at grain boundaries, triple junctions and precipitates in the interior of SiC grains. Details on sample fabrication, errors associated with measurements of elemental migration distances and the distances migrated by silver, palladium and uranium in the SiC layer of an irradiated TRISO particle frommore » the AGR-1 program are reported.« less
Errea, Ion; Calandra, Matteo; Mauri, Francesco
2013-10-25
Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savara, Aditya Ashi; Chan-Thaw, Carine E.; Sutton, Jonathan E.
The same mechanism and microkinetic model used for benzyl alcohol oxidation over Pd/C was shown to apply to benzyl alcohol oxidation over AuPd/C. Almost all of the selectivity differences could be explained by a decrease in oxygen adsorption on AuPd. After isolating oxygen adsorption as being the origin of the selectivity differences, density functional theory was used to investigate the oxygen adsorption properties of a pure Pd surface, a pure Au surface, and an alloyed AuPd surface. Finally, the calculations showed that Au–Pd alloying decreased the oxygen adsorption properties relative to pure Pd, which explained the selectivity differences, consistent withmore » the microkinetic modeling.« less
SAVAGE RUN WILDERNESS, WYOMING.
McCallum, M.E.; Kluender, Steven E.
1984-01-01
Mineral evaluation and related surveys were conducted in the Savage Run Wilderness in Wyoming and results of these studies indicate probable mineral-resource potential in four areas. Gold and (or) silver mineralization in veins associated with faults was found in two areas; all known occurrences inside the wilderness are very small in size. Slightly anomalous values of platinum, palladium, and nickel were recorded from rock-chip and stream- sediment samples from the southeast portion of the wilderness where layered mafic rocks predominate, and a probable resource potential exists for platinum, palladium, and nickel. An area of sheared rocks in the northeastern corner of the wilderness has a probable resource potential for copper. The nature of the geologic terrane precludes the occurrence of organic fuels.
Palladium-catalyzed reactions in the synthesis of 3- and 4-substituted indoles. 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegedus, L.S.; Sestrick, M.R.; Michaelson, E.T.
1989-08-18
4-Bromo-1-tosylindole (1) was converted to tricyclic indole enone 11, a potential intermediate in the synthesis of tetracyclic ergot alkaloids, by a series of palladium-catalyzed processes. Attempts to construct the ergot D ring by the hetero-Diels-Alder reaction of enone 11 and 1-azabutadiene 12 produced not the expected (4 + 2) adduct 13 but the benz(cd)indoline derivative 14 resulting from attack of the aza diene at the indole 2-position. The thermodynamic stability of the naphthol nucleus makes enone 11 generally susceptible to attack at the indole 2-position, as evidenced by the attack of hydride and methyl cuprate nucleophiles at this portion formingmore » indolines 16 and 17, respectively.« less
Confinement of hydrogen at high pressure in carbon nanotubes
Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA
2011-12-13
A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.
Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Novák, Zoltán; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.
2012-01-01
α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursors: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center. PMID:22083969
ERIC Educational Resources Information Center
Olsen, Florence
2003-01-01
Discusses how the potential effectiveness of Palladium, Microsoft's new approach to computer security, is worrying academics, who say it could allow publishers to dam the free flow of online information. (EV)
NASA Astrophysics Data System (ADS)
Abdollahi, Tahereh; Farmanzadeh, Davood
2018-03-01
In this work, by density functional theory, the palladium nanoclusters were investigated in order to design new catalysts for the selective hydrogenation of acetylene present in olefin feeds. At first, the palladium nanoclusters were studied using PBE-G functional with DNP-ECP basis set. According to the performed calculations, among all the Pdn (n = 2-15) nanoclusters, two Pd12 and Pd2 nanoclusters can be used as catalysts in the reactions of hydrogenation of acetylene and ethylene. The adsorption energy of hydrogen on the Pd12 nanocluster is higher than that of acetylene and ethylene, and therefore, the Pd12 nanocluster is more appropriate for the hydrogenation of acetylene and ethylene. However, the calculated activation energy barriers for the reactions of hydrogenation of acetylene and ethylene showed that the Pd2 nanocluster has more selectivity in comparison to the Pd12 nanocluster. According to our results, the activation energy of the hydrogenation of acetylene to vinyl on the Pd2 nanocluster is 23.96 kJ/mol lower than that on the Pd12 nanocluster. Also, the activation energy of the hydrogenation of ethylene to ethyl on the Pd2 nanocluster is higher than that on the Pd12 nanocluster Therefore, it seems that the Pd2 surface can be used as a catalyst for the selective hydrogenation of acetylene.
Holder, Jeffrey C; Zou, Lufeng; Marziale, Alexander N; Liu, Peng; Lan, Yu; Gatti, Michele; Kikushima, Kotaro; Houk, K N; Stoltz, Brian M
2013-10-09
Enantioselective conjugate additions of arylboronic acids to β-substituted cyclic enones have been previously reported from our laboratories. Air- and moisture-tolerant conditions were achieved with a catalyst derived in situ from palladium(II) trifluoroacetate and the chiral ligand (S)-t-BuPyOx. We now report a combined experimental and computational investigation on the mechanism, the nature of the active catalyst, the origins of the enantioselectivity, and the stereoelectronic effects of the ligand and the substrates of this transformation. Enantioselectivity is controlled primarily by steric repulsions between the t-Bu group of the chiral ligand and the α-methylene hydrogens of the enone substrate in the enantiodetermining carbopalladation step. Computations indicate that the reaction occurs via formation of a cationic arylpalladium(II) species, and subsequent carbopalladation of the enone olefin forms the key carbon-carbon bond. Studies of nonlinear effects and stoichiometric and catalytic reactions of isolated (PyOx)Pd(Ph)I complexes show that a monomeric arylpalladium-ligand complex is the active species in the selectivity-determining step. The addition of water and ammonium hexafluorophosphate synergistically increases the rate of the reaction, corroborating the hypothesis that a cationic palladium species is involved in the reaction pathway. These additives also allow the reaction to be performed at 40 °C and facilitate an expanded substrate scope.
Holder, Jeffrey C.; Zou, Lufeng; Marziale, Alexander N.; Liu, Peng; Lan, Yu; Gatti, Michele; Kikushima, Kotaro; Houk, K. N.; Stoltz, Brian M.
2013-01-01
Enantioselective conjugate additions of arylboronic acids to β-substituted cyclic enones have been reported previously from our laboratories. Air and moisture tolerant conditions were achieved with a catalyst derived in situ from palladium(II) trifluoroacetate and the chiral ligand (S)-t-BuPyOx. We now report a combined experimental and computational investigation on the mechanism, the nature of the active catalyst, the origins of the enantioselectivity, and the stereoelectronic effects of the ligand and the substrates of this transformation. Enantioselectivity is controlled primarily by steric repulsions between the t-Bu group of the chiral ligand and the α-methylene hydrogens of the enone substrate in the enantiodetermining carbopalladation step. Computations indicate that the reaction occurs via formation of a cationic arylpalladium(II) species, and subsequent carbopalladation of the enone olefin forms the key carbon-carbon bond. Studies of non-linear effects and stoichiometric and catalytic reactions of isolated (PyOx)Pd(Ph)I complexes show that a monomeric arylpalladium-ligand complex is the active species in the selectivity-determining step. The addition of water and ammonium hexafluorophosphate synergistically increases the rate of the reaction, corroborating the hypothesis that a cationic palladium species is involved in the reaction pathway. These additives also allow the reaction to be performed at 40 °C and facilitate an expanded substrate scope. PMID:24028424
NASA Astrophysics Data System (ADS)
Sharmila, G.; Farzana Fathima, M.; Haries, S.; Geetha, S.; Manoj Kumar, N.; Muthukumaran, C.
2017-06-01
Synthesis of metal nanoparticles through green chemistry route is an emerging eco-friendly approach in the present days. An eco-friendly, biogenic synthesis of palladium nanoparticles (PdNPs) using Filicium decipiens leaf extract was reported in the present study. The synthesized PdNPs were characterized by UV-visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The PdNPs formation was confirmed by UV-visible spectrophotometer and spherical shaped PdNPs with size range of 2-22 nm was observed in TEM analysis. Energy dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of palladium in the synthesized nanoparticles. The crystalline nature of PdNPs was confirmed by XRD pattern and compared with the standard. The phytochemicals and proteins were identified by their functional groups in FT-IR spectrum and revealed the amide, amine groups present in F. decipiens may have involved in the bio-reduction reaction for PdNPs synthesis. Prepared PdNPs showed potential antibacterial activity against both Gram-positive and Gram-negative bacteria. F. decipiens leaf extract based PdNPs showed high bactericidal activity against Escherichia coli, Pseudomonas aeruginosa as compared to Staphylococcus aureus and Bacillus subtilis Results showed that phytochemicals rich F. decipiens leaf extract may be utilized as an effective non-toxic reducing agent for PdNPs synthesis and prepared PdNPs may useful in biomedical applications.
NASA Astrophysics Data System (ADS)
Manzo-Robledo, A.; Costa, Natália J. S.; Philippot, K.; Rossi, Liane M.; Ramírez-Meneses, E.; Guerrero-Ortega, L. P. A.; Ezquerra-Quiroga, S.
2015-12-01
Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd90Ni10, Pd50Ni50, Pd10Ni90, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd2(dba)3, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod)2. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i- E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i- E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions' interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.
Vo, Giang D.
2010-01-01
We report that the complex generated from Pd[P(o-tol)3]2 and the alkylbisphosphine CyPF-t-Bu is a highly active and selective catalyst for the coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates. The couplings of ammonia with this catalyst conducted with a solution of ammonia in dioxane form primary arylamines from a variety of aryl electrophiles in high yields. Catalyst loadings as low as 0.1 mol % were sufficient for reactions of many aryl chlorides and bromides. In the presence of this catalyst, aryl sulfonates also coupled with ammonia for the first time in high yields. A comparison of reactions in the presence of this catalyst versus those in the presence of existing copper and palladium systems revealed a complementary, if not broader substrate scope. The utility of this method to generate amides, imides and carbamates is illustrated by a one-pot synthesis of a small library of these carbonyl compounds from aryl bromides and chlorides. Mechanistic studies show that Pd[P(o-tol)3]2 and CyPF-t-Bu generate a more active and general catalyst than that generated from CyPF-t-Bu and palladiun(II) precursors because of the low concentration of active catalyst that is generated from the combination of palladium(II), ammonia and base. PMID:19591470
Sudheesh, N P; Ajith, T A; Janardhanan, K K; Krishnan, C V
2009-08-01
Age-related decline in the capacity to withstand stress, such as ischemia and reperfusion, results in congestive heart failure. Though the mechanisms underlying cardiac decay are not clear, age dependent somatic damages to mitochondrial DNA (mtDNA), loss of mitochondrial function, and a resultant increase in oxidative stress in heart muscle cells may be responsible for the increased risk for cardiovascular diseases. The effect of a safe nutritional supplement, POLY-MVA, containing the active ingredient palladium alpha-lipoic acid complex, was evaluated on the activities of the Krebs cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, II, III, and IV in heart mitochondria of aged male albino rats of Wistar strain. Administration of 0.05 ml/kg of POLY-MVA (which is equivalent to 0.38 mg complexed alpha-lipoic acid/kg, p.o), once daily for 30 days, was significantly (p<0.05) effective to enhance the Krebs cycle dehydrogenases, and mitochondrial electron transport chain complexes. The unique electronic and redox properties of palladium alpha-lipoic acid complex appear to be a key to this physiological effectiveness. The results strongly suggest that this formulation might be effective to protect the aging associated risk of cardiovascular and neurodegenerative diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, S., E-mail: steffen.hartmann@etit.tu-chemnitz.de; Blaudeck, T.; Hermann, S.
2014-04-14
In this paper, we present our results of experimental and numerical pull-out tests on carbon nanotubes (CNTs) embedded in palladium. We prepared simple specimens by employing standard silicon wafers, physical vapor deposition of palladium and deposition of CNTs with a simple drop coating technique. An AFM cantilever with known stiffness connected to a nanomanipulation system was utilized inside a scanning electron microscope (SEM) as a force sensor to determine forces acting on a CNT during the pull-out process. SEM-images of the cantilever attached to a CNT have been evaluated for subsequent displacement steps with greyscale correlation to determine the cantilevermore » deflection. We compare the experimentally obtained pull-out forces with values of numerical investigations by means of molecular dynamics and give interpretations for deviations according to material impurities or defects and their influence on the pull-out data. We find a very good agreement of force data from simulation and experiment, which is 17 nN and in the range of 10–61 nN, respectively. Our findings contribute to the ongoing research of the mechanical characterization of CNT-metal interfaces. This is of significant interest for the design of future mechanical sensors utilizing the intrinsic piezoresistive effect of CNTs or other future devices incorporating CNT-metal interfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin-Flores, Oscar G.; Karim, Ayman M.; Wang, Yong
2014-11-15
The focus of the present work was specifically on the elucidation of the role played by tungsten on the catalytic activity and selectivity of tungstated zirconia supported palladium (Pd-mWZ) for the aqueous phase hydrodeoxygenation (APHDO) of ethylene glycol (EG). Zirconia supported palladium (Pd-mZ) was used as reference. The catalysts were prepared via incipient wet impregnation and characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR), CO pulse chemisorption, CO-DRIFTS, ammonia temperature-programmed desorption (NH3-TPD) and pyridine adsorption. The presence of W results in larger Pd particles on supported Pd catalysts, i.e., 0.9 and 6.1 nm Pd particles are for Pd-mZ and Pd-mWZ,more » respectively. For comparison purposes, the activity of the catalytic materials used in this work was obtained using a well-defined set of operating conditions. The catalytic activity measurements show that the overall intrinsic activity of Pd particles on mWZ is 1.9 times higher than on mZ. APHDO process appears to be highly favored on Pd-mWZ whereas Pd-mZ exhibits a higher selectivity for reforming. This difference in terms of selectivity seems to be related to the high concentration of Brønsted acid sites and electron-deficient Pd species present on Pd-mWZ.« less
NASA Astrophysics Data System (ADS)
Yurdakul, Ş.; Bilkana, M. T.
2015-10-01
The structural features such as geometric parameters, vibration frequencies and intensities of the vibrational bands of 2,2'-dipyridylamine ligand (DPA), its palladium (Pd(DPA)Cl2) and platinum (Pt(DPA)Cl2) complexes were studied by the density functional theory (DFT). The calculations were carried out by DFT / B3LYP method with 6-311++G(d,p) and LANL2DZ basis sets. All vibrational frequencies assigned in detail with the help of total energy distribution analysis (TED). Optimized geometric bond lengths and bond angles were compared with experimental X-ray data. Using DPA, K2PtCl4, and Na2PdCl4, the synthesized complex structures were characterized by the combination of elemental analysis, FT-IR (mid and far IR) and Raman spectroscopy.
Palladium Coated Copper Nanowires as a Hydrogen Oxidation Electrocatalyst in Base
Alia, Shaun M.; Yan, Yushan
2015-05-09
The palladium (Pd) nanotubes we synthesized by the spontaneous galvanic displacement of copper (Cu) nanowires, are forming extended surface nanostructures highly active for the hydrogen oxidation reaction (HOR) in base. The synthesized catalysts produce specific activities in rotating disk electrode half-cells 20 times greater than Pd nanoparticles and about 80% higher than polycrystalline Pd. Although the surface area of the Pd nanotubes was low compared to conventional catalysts, partial galvanic displacement thrifted the noble metal layer and increased the Pd surface area. Moreover, the use of Pd coated Cu nanowires resulted in a HOR mass exchange current density 7 timesmore » greater than the Pd nanoparticles. The activity of the Pd coated Cu nanowires further nears Pt/C, producing 95% of the mass activity.« less
Comparative Corrosion Behavior of Two Palladium Containing Titanium Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, T; Yashiki, T; Nakayama, T
2006-02-05
The ASTM standard B 265 provides the requirements for the chemical composition of titanium (Ti) alloys. It is planned to use corrosion resistant and high strength titanium alloys to fabricate the drip shield at the proposed Yucca Mountain Repository. Titanium grade (Gr) 7 (R52400) and other Ti alloys are currently being characterized for this application. Ti Gr 7 contains 0.15% Palladium (Pd) to increase its corrosion performance. In this article we report results on the comparative short term corrosion behavior of Ti Gr 7 and a Ruthenium (Ru) containing alloy (Ti Gr 33). Ti Gr 33 also contains a smallmore » amount of Pd. Limited electrochemical testing such as polarization resistance and cyclic potentiodynamic curves showed that both alloys have a similar corrosion behavior in the tested environments.« less
COMPARATIVE CORROSION BEHAVIOR OF TWO PALLADIUM CONTAINING TITANIUM ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Lian, T. Yashiki, T. Nakayama, T. Nakanishi, R. B. Rebak
2006-07-23
The ASTM standard B 265 provides the requirements for the chemical composition of titanium (Ti) alloys. It is planned to use corrosion resistant and high strength titanium alloys to fabricate the drip shield at the proposed Yucca Mountain Repository. Titanium grade (Gr) 7 (R52400) and other Ti alloys are currently being characterized for this application. Ti Gr 7 contains 0.15% Palladium (Pd) to increase its corrosion performance. In this article we report results on the comparative short term corrosion behavior of Ti Gr 7 and a Ruthenium (Ru) containing alloy (Ti Gr 33). Ti Gr 33 also contains a smallmore » amount of Pd. Limited electrochemical testing such as polarization resistance and cyclic potentiodynamic curves showed that both alloys have a similar corrosion behavior in the tested environments.« less
Green Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles
NASA Astrophysics Data System (ADS)
Siddiqi, Khwaja Salahuddin; Husen, Azamal
2016-11-01
Biogenic synthesis of palladium (Pd) and platinum (Pt) nanoparticles from plants and microbes has captured the attention of many researchers because it is economical, sustainable and eco-friendly. Plant and their parts are known to have various kinds of primary and secondary metabolites which reduce the metal salts to metal nanoparticles. Shape, size and stability of Pd and Pt nanoparticles are influenced by pH, temperature, incubation time and concentrations of plant extract and that of the metal salt. Pd and Pt nanoparticles are broadly used as catalyst, as drug, drug carrier and in cancer treatment. They have shown size- and shape-dependent specific and selective therapeutic properties. In this review, we have discussed the biogenic fabrication of Pd/Pt nanoparticles, their potential application as catalyst, medicine, biosensor, medical diagnostic and pharmaceuticals.
NASA Astrophysics Data System (ADS)
Baran, Talat; Yılmaz Baran, Nuray; Menteş, Ayfer
2018-05-01
In this study, we reported production, characterization, and catalytic behavior of two novel heterogeneous palladium(II) and platinum(II) catalysts derived from cellulose biopolymer. In order to eliminate the use of toxic organic or inorganic solvents and to reduce the use of excess energy in the coupling reactions, we have developed a very simple, rapid, and eco-friendly microwave irradiation protocol. The developed microwave-assisted method of Suzuki cross coupling reactions produced excellent reaction yields in the presence of cellulose supported palladium and platinum (II) catalysts. Moreover, the catalysts easily regenerated after simple filtration, and they gave good reusability. This study revealed that the designed catalysts and method provide clean, simple, rapid, and impressive catalytic performance for Suzuki coupling reactions.
Ligand-accelerated enantioselective methylene C(sp3)-H bond activation.
Chen, Gang; Gong, Wei; Zhuang, Zhe; Andrä, Michal S; Chen, Yan-Qiao; Hong, Xin; Yang, Yun-Fang; Liu, Tao; Houk, K N; Yu, Jin-Quan
2016-09-02
Effective differentiation of prochiral carbon-hydrogen (C-H) bonds on a single methylene carbon via asymmetric metal insertion remains a challenge. Here, we report the discovery of chiral acetyl-protected aminoethyl quinoline ligands that enable asymmetric palladium insertion into prochiral C-H bonds on a single methylene carbon center. We apply these palladium complexes to catalytic enantioselective functionalization of β-methylene C-H bonds in aliphatic amides. Using bidentate ligands to accelerate C-H activation of otherwise unreactive monodentate substrates is crucial for outcompeting the background reaction driven by substrate-directed cyclopalladation, thereby avoiding erosion of enantioselectivity. The potential of ligand acceleration in C-H activation is also demonstrated by enantioselective β-C-H arylation of simple carboxylic acids without installing directing groups. Copyright © 2016, American Association for the Advancement of Science.
A general catalytic β-C-H carbonylation of aliphatic amines to β-lactams.
Willcox, Darren; Chappell, Ben G N; Hogg, Kirsten F; Calleja, Jonas; Smalley, Adam P; Gaunt, Matthew J
2016-11-18
Methods for the synthesis and functionalization of amines are intrinsically important to a variety of chemical applications. We present a general carbon-hydrogen bond activation process that combines readily available aliphatic amines and the feedstock gas carbon monoxide to form synthetically versatile value-added amide products. The operationally straightforward palladium-catalyzed process exploits a distinct reaction pathway, wherein a sterically hindered carboxylate ligand orchestrates an amine attack on a palladium anhydride to transform aliphatic amines into β-lactams. The reaction is successful with a wide range of secondary amines and can be used as a late-stage functionalization tactic to deliver advanced, highly functionalized amine products of utility for pharmaceutical research and other areas. Copyright © 2016, American Association for the Advancement of Science.
Yempala, Thirumal; Sridevi, Jonnalagadda Padma; Yogeeswari, Perumal; Sriram, Darmarajan; Kantevari, Srinivas
2013-10-01
A series of novel natural product like 2-substiuted-3H-benzofurobenzofurans designed by molecular hybridization were synthesized in very good yields. The key reactions involved in the synthesis are iodination of 2-dibenzofuranol using iodine monochloride followed by palladium-copper catalyzed Sonagashira-coupling of 1-iododibenzofuran-2-ol with various alkyl and aryl acetylenes. Among the all 10 new compounds screened for in vitro anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv, 2-(4-methoxy-2-methyl phenyl)-3H-benzofuro[3,2-e]benzofuran (7c) was found to be most active with MIC 3.12 μg/mL and has shown lower cytotoxicity with good therapeutic index. Copyright © 2013 Elsevier Ltd. All rights reserved.
High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors
Deligianni, Hariklia; Gallagher, William J.; Mason, Maurice; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang
2017-03-07
An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
Liquid metal ion source and alloy for ion emission of multiple ionic species
Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.
1987-06-02
A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.
Gas sensor with attenuated drift characteristic
Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT
2008-05-13
A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention
The influence of CO adsorption on the surface composition of cobalt/palladium alloys
NASA Astrophysics Data System (ADS)
Murdoch, A.; Trant, A. G.; Gustafson, J.; Jones, T. E.; Noakes, T. C. Q.; Bailey, P.; Baddeley, C. J.
2016-04-01
Segregation induced by the adsorption of gas phase species can strongly influence the composition of bimetallic surfaces and can therefore play an important role in influencing heterogeneous catalytic reactions. The addition of palladium to cobalt catalysts has been shown to promote Fischer Tropsch catalysis. We investigate the adsorption of CO onto bimetallic CoPd surfaces on Pd{111} using a combination of reflection absorption infrared spectroscopy and medium energy ion scattering. The vibrational frequency of adsorbed CO provides crucial information on the adsorption sites adopted by CO and medium energy ion scattering probes the surface composition before and after CO exposure. We show that cobalt segregation is induced by CO adsorption and rationalise these observations in terms of the strength of adsorption of CO in various surface adsorption sites.
Kamlet, Adam S.; Neumann, Constanze N.; Lee, Eunsung; Carlin, Stephen M.; Moseley, Christian K.; Stephenson, Nickeisha; Hooker, Jacob M.; Ritter, Tobias
2013-01-01
New chemistry methods for the synthesis of radiolabeled small molecules have the potential to impact clinical positron emission tomography (PET) imaging, if they can be successfully translated. However, progression of modern reactions from the stage of synthetic chemistry development to the preparation of radiotracer doses ready for use in human PET imaging is challenging and rare. Here we describe the process of and the successful translation of a modern palladium-mediated fluorination reaction to non-human primate (NHP) baboon PET imaging–an important milestone on the path to human PET imaging. The method, which transforms [18F]fluoride into an electrophilic fluorination reagent, provides access to aryl–18F bonds that would be challenging to synthesize via conventional radiochemistry methods. PMID:23554994
Catalyst–Controlled C–O versus C–N Allylic Functionalization of Terminal Olefins
Strambeanu, Iulia I.; White, M. Christina
2014-01-01
The divergent synthesis of syn-1, 2-aminoalcohol or syn-1,2-diamine precursors from a common terminal olefin has been accomplished using a combination of palladium(II) catalysis with Lewis acid co-catalysis. Palladium(II)/bis-sulfoxide catalysis with a silver triflate co-catalyst leads for the first time to anti-2-aminooxazolines (C—O) in good to excellent yields. Simple removal of the bis-sulfoxide ligand from this reaction results in a complete switch in reactivity to afford anti-imidazolidinone products (C—N) in good yields and excellent diastereoselectivities. Mechanistic studies suggest the divergent C—O versus C—N reactivity from a common ambident nucleophile arises due to a switch in mechanism from allylic C—H cleavage/functionalization to olefin isomerization/oxidative amination. PMID:23855956
Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang
2014-01-01
To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779
NASA Astrophysics Data System (ADS)
Ping, Eric Wayne
2011-12-01
The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and EXAFS ruled out morphological alterations in the supported nanoparticles. Significant decreases in pore volume and surface area via N2 physisorption put deposition under suspicion and TGA confirmed the presence of organic species in the material. Initial attempts to remove the deposits via calcination were successful, but at the expense of severe nanoparticle growth. GC-MS, NMR and FT-IR helped speciate the deposition, mainly confirming the presence of residual reactant acid. A regeneration scheme was developed to remove these compounds, and subsequent catalyst reuses exhibited high decarboxylation activity. Finally, the Pd-MCF catalyst was applied to a real feedstock: a wastewater-derived brown grease from a poultry rendering facility. Attempts at decarboxylating the raw material failed, so efforts to polish the material via dewaxing and degumming were undertaken. The treatments were able to optimize a three-phase separation, and the resultant polished brown grease was successfully decarboxylated to diesel-length hydrocarbons with high conversions and selectivities.
40 CFR 421.261 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... apply to this subpart. (b) The term precious metals shall mean gold, platinum, palladium, rhodium, iridium, osmium, and ruthenium. (c) The term Combined Metals, shall mean the total of gold, platinum and...
40 CFR 421.261 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... apply to this subpart. (b) The term precious metals shall mean gold, platinum, palladium, rhodium, iridium, osmium, and ruthenium. (c) The term Combined Metals, shall mean the total of gold, platinum and...
40 CFR 421.261 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... apply to this subpart. (b) The term precious metals shall mean gold, platinum, palladium, rhodium, iridium, osmium, and ruthenium. (c) The term Combined Metals, shall mean the total of gold, platinum and...
40 CFR 421.261 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... apply to this subpart. (b) The term precious metals shall mean gold, platinum, palladium, rhodium, iridium, osmium, and ruthenium. (c) The term Combined Metals, shall mean the total of gold, platinum and...
NASA Astrophysics Data System (ADS)
Puri, Raghav
Recently introduced to the market has been an entirely new subclass of casting alloy composition whereby palladium (˜25 wt%) is added to traditional base metal alloys such as CoCr and NiCr. Objectives. The purpose of this study was to evaluate the microstructure and Vickers hardness of two new CoPdCr and one new NiPdCr alloy and compare them to traditional CoCr and NiCr alloys. Methods. The casting alloys investigated were: CoPdCr-A (Noble Crown NF, The Argen Corporation), CoPdCr-I (Callisto CP+, Ivoclar Vivadent), NiPdCr (Noble Crown, Argen), CoCr (Argeloy N.P. Special, Argen), and NiCr (Argeloy N.P. Star, Argen). As-cast cylindrical alloy specimens were mounted in epoxy resin and prepared with standard metallographic procedures, i.e. grinding with successive grades of SiC paper and polishing with alumina suspensions. The alloys were examined with an optical microscope, SEM/EPMA, and XRD to gain insight into their microstructure, composition, and crystal structure. Vickers hardness (VHN) was measured and statistically analyzed by one way ANOVA and Tukey's HSD test (alpha=0.05). Results. Optical microscopy showed a dendritic microstructure for all alloys. The Pd-containing alloys appear to possess a more complex microstructure. SEM/EPMA showed Cr to be rather uniformly distributed in the matrix with palladium tending to be segregated apart from Mo and Ni or Co. Areas of different composition may explain the poor electrochemical results noted in previous studies. XRD suggested the main phase in the Ni-containing solutions was a face centered cubic Ni solid solution, whereas the CoCr exhibited a hexagonal crystal structure that was altered to face centered cubic when Pd was included in the composition. For Vickers hardness, the Co-containing alloys possessed a greater hardness than the Ni-containing alloys. However, the incorporation of Pd in CoCr and NiCr had only a slight effect on microhardness. Conclusion. Overall, the inclusion of palladium increases the microstructural complexity of NiCr and CoCr alloys.
Hutchings, Graham J; Kiely, Christopher J
2013-08-20
The discovery that supported gold nanoparticles are exceptionally effective catalysts for redox reactions has led to an explosion of interest in gold nanoparticles. In addition, incorporating a second metal as an alloy with gold can enhance the catalyst performance even more. The addition of small amounts of gold to palladium, in particular, and vice versa significantly enhances the activity of supported gold-palladium nanoparticles as redox catalysts through what researchers believe is an electronic effect. In this Account, we describe and discuss methodologies for the synthesis of supported gold-palladium nanoparticles and their use as heterogeneous catalysts. In general, three key challenges need to be addressed in the synthesis of bimetallic nanoparticles: (i) control of the particle morphology, (ii) control of the particle size distribution, and (iii) control of the nanoparticle composition. We describe three methodologies to address these challenges. First, we discuss the relatively simple method of coimpregnation. Impregnation allows control of particle morphology during alloy formation but does not control the particle compositions or the particle size distribution. Even so, we contend that this method is the best preparation method in the catalyst discovery phase of any project, since it permits the investigation of many different catalyst structures in one experiment, which may aid the identification of new catalysts. A second approach, sol-immobilization, allows enhanced control of the particle size distribution and the particle morphology, but control of the composition of individual nanoparticles is not possible. Finally, a modified impregnation method can allow the control of all three of these crucial parameters. We discuss the effect of the different methodologies on three redox reactions: benzyl alcohol oxidation, toluene oxidation, and the direct synthesis of hydrogen peroxide. We show that the coimpregnation method provides the best reaction selectivity for benzyl alcohol oxidation and the direct synthesis of hydrogen peroxide. However, because of the reaction mechanism, the sol-immobilzation method gives very active and selective catalysts for toluene oxidation. We discuss the possible nature of the preferred active structures of the supported nanoparticles for these reactions. This paper is based on the IACS Heinz Heinemann Award Lecture entitled "Catalysis using gold nanoparticles" which was given in Munich in July 2012.
Palladium- and Copper-Catalyzed Arylation of Carbon-Hydrogen Bonds
Daugulis, Olafs; Do, Hien-Quang; Shabashov, Dmitry
2010-01-01
The transition-metal-catalyzed functionalization of C-H bonds is a powerful method for generating carbon-carbon bonds. Although significant advances to this field have been reported during the last decade, many challenges remain. First, most of the methods are substrate-specific and thus cannot be generalized. Second, conversions of unactivated (i.e. not benzylic or alpha to heteroatom) sp3 C–H bonds to C–C bonds are rare, with most examples limited to t-butyl groups—a conversion that is inherently simple because there are no β-hydrogens that can be eliminated. Finally, the palladium, rhodium, and ruthenium catalysts routinely used for the conversion of C–H bonds to C–C bonds are expensive. Catalytically active metals that are cheaper and less exotic (e.g. copper, iron, and manganese) are rarely used. This Account describes our attempts to provide solutions to these three problems. We have developed a general method for directing-group-containing arene arylation by aryl iodides. Using palladium acetate as the catalyst, we arylated anilides, benzamides, benzoic acids, benzylamines, and 2-substituted pyridine derivatives under nearly identical conditions. We have also developed a method for the palladium-catalyzed auxiliary-assisted arylation of unactivated sp3 C–H bonds. This procedure allows for the β-arylation of carboxylic acid derivatives and the γ-arylation of amine derivatives. Furthermore, copper catalysis can be used to mediate the arylation of acidic arene C–H bonds (i.e. those with pKa values <35 in DMSO). Using a copper iodide catalyst in combination with a base and a phenanthroline ligand, we successfully arylated electron-rich and electron-deficient heterocycles and electron-poor arenes possessing at least two electron-withdrawing groups. The reaction exhibits unusual regioselectivity: arylation occurs at the most hindered position. This copper-catalyzed method supplements the well-known C–H activation/borylation methodology, in which functionalization usually occurs at the least hindered position. We also describe preliminary investigations to determine the mechanisms of these transformations. We anticipate that other transition metals, including iron, nickel, cobalt, and silver, will also be able to facilitate deprotonation/arylation reaction sequences. PMID:19552413
Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds.
Daugulis, Olafs; Do, Hien-Quang; Shabashov, Dmitry
2009-08-18
The transition-metal-catalyzed functionalization of C-H bonds is a powerful method for generating carbon-carbon bonds. Although significant advances to this field have been reported during the past decade, many challenges remain. First, most of the methods are substrate-specific and thus cannot be generalized. Second, conversions of unactivated (i.e., not benzylic or alpha to heteroatom) sp(3) C-H bonds to C-C bonds are rare, with most examples limited to t-butyl groups, a conversion that is inherently simple because there are no beta-hydrogens that can be eliminated. Finally, the palladium, rhodium, and ruthenium catalysts routinely used for the conversion of C-H bonds to C-C bonds are expensive. Catalytically active metals that are cheaper and less exotic (e.g., copper, iron, and manganese) are rarely used. This Account describes our attempts to provide solutions to these three problems. We have developed a general method for directing-group-containing arene arylation by aryl iodides. Using palladium acetate as the catalyst, we arylated anilides, benzamides, benzoic acids, benzylamines, and 2-substituted pyridine derivatives under nearly identical conditions. We have also developed a method for the palladium-catalyzed auxiliary-assisted arylation of unactivated sp(3) C-H bonds. This procedure allows for the beta-arylation of carboxylic acid derivatives and the gamma-arylation of amine derivatives. Furthermore, copper catalysis can be used to mediate the arylation of acidic arene C-H bonds (i.e., those with pK(a) values <35 in DMSO). Using a copper iodide catalyst in combination with a base and a phenanthroline ligand, we successfully arylated electron-rich and electron-deficient heterocycles and electron-poor arenes possessing at least two electron-withdrawing groups. The reaction exhibits unusual regioselectivity: arylation occurs at the most hindered position. This copper-catalyzed method supplements the well-known C-H activation/borylation methodology, in which functionalization usually occurs at the least hindered position. We also describe preliminary investigations to determine the mechanisms of these transformations. We anticipate that other transition metals, including iron, nickel, cobalt, and silver, will also be able to facilitate deprotonation/arylation reaction sequences.
NASA Astrophysics Data System (ADS)
Yates, Matthew D.
Microbial Electrochemical Technologies (METs) are emerging technological platforms for the conversion of waste into usable products. METs utilize naturally occurring bacteria, called exoelectrogens, capable of transferring electrons to insoluble terminal electron acceptors. Electron transfer processes in the exoelectrogen Geobacter sulfurreducens were exploited here to develop sustainable processes for synthesis of industrially and socially relevant end products. The first process examined was the removal of soluble metals from solution to form catalytic nanoparticles and nanoporous structures. The second process examined was the biocatalytic conversion of electrons into hydrogen gas using electrons supplied directly to an electrode. Nanoparticle formation is desirable because materials on the nanoscale possess different physical, optical, electronic, and mechanical properties compared to bulk materials. In the first process, soluble palladium was used to form catalytic palladium nanoparticles using extracellular electron transfer (EET) processes of G. sulfurreducens, typically the dominant member of mixedculture METs. Geobacter cells reduced the palladium extracellularly using naturally produced pili, which provided extracellular adsorption and reduction sites to help delay the diffusion of soluble metals into the cell. The extracellular reduction prevented cell inactivation due to formation of intracellular particles, and therefore the cells could be reused in multiple palladium reduction cycles. A G. sulfurreducens biofilm was next investigated as a biotemplate for the formation of a nanoporous catalytic palladium structure. G. sulfurreducens biofilms have a dense network of pili and extracellular cytochromes capable of high rates of electron transfer directly to an electrode surface. These pili and cytochromes provide a dense number of reduction sites for nanoparticle formation without the need for any synthetic components. The cells within the biofilm also can act as natural agents for preventing agglomeration of nanoparticles, and subsequent decrease of active surface area, on the electrode surface. The cell template was carbonized and removed via thermal treatments, leaving a catalytically active mesoporous palladium structure. The biotemplated mesoporous structure had a high surface area composed of nanoparticles, and a high pore volume and surface area. The biotemplated porous structure also exhibited an increased catalytic activity compared to an electroplated palladium electrode and an electrode coated with synthetically produced palladium nanoparticles attached to the surface with a Nafion binder. The biotemplated mesoporous structure was found to be an alternative process to form a porous structure directly on an electrode using only materials and processes that naturally occur in G. sulfurreducens biofilms. Biotemplated catalytic structures are an alternative method to form a porous structure with high catalytic activity without using any synthetic compounds. However, their uses in large scale processes require that the catalyst layer be durable. The electrochemical and mechanical stability of biotemplated mesoporous structures was tested on different support materials (polished graphite, carbon paper, carbon cloth, and stainless steel) subjected to electrochemical and/or mechanical stress. Carbon paper was found to withstand the most electrochemical and mechanical stress of the four different support materials tested. Polished graphite was able to withstand electrochemical stress, but deteriorated under a combination of electrochemical and mechanical stress. Different readily available and inexpensive polymers (polyaniline and polydimethylsiloxane) were also tested against a widely used polymer (NafionRTM) to stabilize the palladium catalyst on the polished graphite surface. The polyaniline was the most effective binder because it enhanced the catalytic activity and could be electropolymerized around the catalyst, giving the greatest amount of control over the thickness of the polymer layer. The second process studied used exoelectrogenic bacteria in METs for the conversion of electrons to hydrogen via water electrolysis in a biocathodic system. Naturally occurring biocatalytic cell material on the cathode surface was used to lower the cathode overpotential. Different cell cultures ( G. sulfurreducens, Methanosarcina barkeri, and Escherichia coli) were tested for their effect on hydrogen formation using electrons supplied to an insoluble electrode. The mode of hydrogen production was investigated by monitoring hydrogen production over three to five months using G. sulfurreducens biofilms (pregrown under anodic conditions with acetate) that were: (1) not supplied with an organic carbon source for cell growth and maintenance, (2) killed with ethanol, or (3) supplied with lactate, an organic carbon source and electron donor for G. sulfurreducens. Hydrogen was produced at a rate 10--20 times higher over five months in reactors that were either not given organic carbon or killed with ethanol, compared to reactors with lactate added. The methanogen, M. barkeri, was also tested as a biocatalyst because it is able to grow autotrophically. However, M. barkeri cells did not grow in the reactor with the electrode potential poised, based on the lack of evidence for methane production. Despite the lack of cell activity, the rate of hydrogen production with M. barkeri was similar to the rate observed in killed G. sulfurreducens reactors. The addition of E. coli, a non-exoelectrogenic bacteria, resulted in an initial elevated hydrogen gas production, but hydrogen production rates similar to background levels after three months. No cells were detected on the electrode surfaces after five months using scanning electron microscopy and unique metals, such as iron, nickel, cobalt, and zinc, were detected on the electrode surfaces exposed to cells. The identifiable peptides extracted from the electrodes were found to be derived primarily from metalloproteins produced by G. sulfurreducens and M. barkeri cells. These findings show that hydrogen can be produced in a biocathodic system by abiotic cell material attached to a graphite electrode surface and that it does not require electron uptake by living cells.
Alloy solution hardening with solute pairs
Mitchell, John W.
1976-08-24
Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.
Heterobimetallic Pd–K carbene complexes via one-electron reductions of palladium radical carbenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Peng; Hoffbauer, Melissa R.; Vyushkova, Mariya
2016-03-24
Unprecedented sequential substitution/reduction synthetic strategy on the Pd radical carbenes afforded heterobimetallic Pd–K carbene complexes, which features novel Pd–C carbene–K structural moieties.
Heterobimetallic Pd–K carbene complexes via one-electron reductions of palladium radical carbenes
Cui, Peng; Hoffbauer, Melissa R.; Vyushkova, Mariya; ...
2016-01-01
Unprecedented sequential substitution/reduction synthetic strategy on the Pd radical carbenes afforded heterobimetallic Pd–K carbene complexes, which features novel Pd–C carbene–K structural moieties.
Gates, Willard G.; Hale, Gerald J.
1980-01-01
The disclosure relates to an improved sputter target for use in the deposition of hard coatings. An exemplary target is given wherein titanium diboride is brazed to a tantalum backing plate using a gold-palladium-nickel braze alloy.
Shoyama, Kazutaka; Mahl, Magnus; Seifert, Sabine; Würthner, Frank
2018-03-20
Here we report a general method for the synthesis of polycyclic aromatic dicarboximides (PADIs) by palladium-catalyzed annulation of naphthalene dicarboximide to different types of aromatic substrates. Reaction conditions were optimized by systematic variation of ligand, solvent, and additive. It was shown that solvent has a decisive effect on the yield of the reaction products, and thus 1-chloronaphthalene as solvent afforded the highest yield. By applying the optimized reaction conditions, a broad series of planar carbo- and heterocycle containing PADIs were synthesized in up to 97% yield. Moreover, this approach could be applied to curved aromatic scaffold to achieve the respective bowl-shaped PADI. Two-fold annulation was accomplished by employing arene diboronic esters, affording polycyclic aromatic bis(dicarboximides). The optical and electrochemical properties of this broad series of PADIs were explored as well.