Science.gov

Sample records for palladium technologies enable

  1. Technology Enabled Learning. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers on technology-enabled learning and human resource development. Among results found in "Current State of Technology-enabled Learning Programs in Select Federal Government Organizations: a Case Study of Ten Organizations" (Letitia A. Combs) are the following: the dominant delivery method is traditional…

  2. A Technology Enabled Journey

    ERIC Educational Resources Information Center

    Devine, Pamela Albert

    2012-01-01

    This article features Point Road School, a pre-K-4 school in New Jersey that enhances student learning by integrating new and emerging technologies into the curriculum. Point Road School's technology story began in 1996 with a grant for a classroom modem so students could email their university literacy buddies. The New Jersey school has moved…

  3. Flexible display enabling technology

    NASA Astrophysics Data System (ADS)

    Wagner, Sigurd; Fonash, Stephen J.; Jackson, Thomas N.; Sturm, James C.

    2001-09-01

    In a collaboration between Pennsylvania State University and Princeton University, we have been laying the foundations for flexible display technology. Flexible substrates including plastic or steel foil, backplanes of organic or silicone transistors, and directly printed RGB organic light emitting diodes are issues central to this collaboration. We present an overview of key recent results. Silicon based thin film transistors have been processed at the ultralow temperatures required for processing on plastic substrates. Organic thin film transistors and circuits with record mobilities have been fabricated that are naturally matched to low temperature substrates. Organic light emitting diodes have been made by inkjet printing in an approach that solves the RGB patterning problem of OLED displays. The mechanics of flexible substrates have been defined and thin film silicon transistor performance is shown to be unaffected by bending. Substantial progress has been made toward the realization of rugged, lightweight, flexible and even conformal displays.

  4. Palladium-Catalyzed Arylation of Carbasugars Enables the Discovery of Potent and Selective SGLT2 Inhibitors.

    PubMed

    Ng, Wai-Lung; Lau, Kit-Man; Lau, Clara B-S; Shing, Tony K M

    2016-10-24

    Selective inhibition of the transporter protein sodium-glucose cotransporter 2 (SGLT2) has emerged as a promising way to control blood glucose level in diabetes patients. Reported herein is a short and convergent synthetic route towards some small-molecule SGLT2 inhibitors by a chemo- and diastereospecific palladium-catalyzed arylation reaction. This synthetic strategy enabled the discovery of two highly selective and potent SGLT2 inhibitors, thereby paving the way towards the development of carbasugar SGLT2 inhibitors as potential antidiabetic/antitumor agents.

  5. Aerobic, Palladium-Catalyzed Dioxygenation of Alkenes Enabled by Catalytic Nitrite**

    PubMed Central

    Wickens, Zachary K.; Guzmán, Pablo E.; Grubbs, Robert H.

    2014-01-01

    Catalytic nitrite was found to enable carbon-oxygen bond-forming reductive elimination from unstable alkyl palladium intermediates, providing dioxygenated products from alkenes. A variety of functional groups are tolerated and high yields (up to 94%) are observed with many substrates, including a multi-gram scale reaction. Nitrogen dioxide, which could form from nitrite under the reaction conditions, was shown to be kinetically competent in the dioxygenation of alkenes. Furthermore, the reductive elimination event was probed with 18 O-labeling experiments, which demonstrated that both oxygen atoms in the difunctionalized products are derived from one molecule of acetic acid. PMID:25376666

  6. Technologies for Networked Enabled Operations

    NASA Technical Reports Server (NTRS)

    Glass, B.; Levine, J.

    2005-01-01

    Current point-to-point data links will not scale to support future integration of surveillance, security, and globally-distributed air traffic data, and already hinders efficiency and capacity. While the FAA and industry focus on a transition to initial system-wide information management (SWIM) capabilities, this paper describes a set of initial studies of NAS network-enabled operations technology gaps targeted for maturity in later SWIM spirals (201 5-2020 timeframe).

  7. Secure Enclaves-Enabled Technologies

    DTIC Science & Technology

    2014-04-25

    William Vine, Benjamin Vowell Team Advisor: Capt Nick Mastronardi UNITED STATES AIR FORCE ACADEMY Introduction Secure Enclaves-Enabled...Technologies’ software goes a layer deeper, activating a hardware solution to put a stop to the death spiral. Utilizing the silicon of the computer chip...veritable impenetrable fortress to be placed inside modern day computer systems. Few digital security solutions on today’s market are hardware based, and

  8. Good pharmacovigilance practices: technology enabled.

    PubMed

    Nelson, Robert C; Palsulich, Bruce; Gogolak, Victor

    2002-01-01

    The assessment of spontaneous reports is most effective it is conducted within a defined and rigorous process. The framework for good pharmacovigilance process (GPVP) is proposed as a subset of good postmarketing surveillance process (GPMSP), a functional structure for both a public health and corporate risk management strategy. GPVP has good practices that implement each step within a defined process. These practices are designed to efficiently and effectively detect and alert the drug safety professional to new and potentially important information on drug-associated adverse reactions. These practices are enabled by applied technology designed specifically for the review and assessment of spontaneous reports. Specific practices include rules-based triage, active query prompts for severe organ insults, contextual single case evaluation, statistical proportionality and correlational checks, case-series analyses, and templates for signal work-up and interpretation. These practices and the overall GPVP are supported by state-of-the-art web-based systems with powerful analytical engines, workflow and audit trials to allow validated systems support for valid drug safety signalling efforts. It is also important to understand that a process has a defined set of steps and any one cannot stand independently. Specifically, advanced use of technical alerting methods in isolation can mislead and allow one to misunderstand priorities and relative value. In the end, pharmacovigilance is a clinical art and a component process to the science of pharmacoepidemiology and risk management.

  9. Enabling technology for human collaboration.

    SciTech Connect

    Murphy, Tim Andrew; Jones, Wendell Bruce; Warner, David Jay; Doser, Adele Beatrice; Johnson, Curtis Martin; Merkle, Peter Benedict

    2003-11-01

    This report summarizes the results of a five-month LDRD late start project which explored the potential of enabling technology to improve the performance of small groups. The purpose was to investigate and develop new methods to assist groups working in high consequence, high stress, ambiguous and time critical situations, especially those for which it is impractical to adequately train or prepare. A testbed was constructed for exploratory analysis of a small group engaged in tasks with high cognitive and communication performance requirements. The system consisted of five computer stations, four with special devices equipped to collect physiologic, somatic, audio and video data. Test subjects were recruited and engaged in a cooperative video game. Each team member was provided with a sensor array for physiologic and somatic data collection while playing the video game. We explored the potential for real-time signal analysis to provide information that enables emergent and desirable group behavior and improved task performance. The data collected in this study included audio, video, game scores, physiological, somatic, keystroke, and mouse movement data. The use of self-organizing maps (SOMs) was explored to search for emergent trends in the physiological data as it correlated with the video, audio and game scores. This exploration resulted in the development of two approaches for analysis, to be used concurrently, an individual SOM and a group SOM. The individual SOM was trained using the unique data of each person, and was used to monitor the effectiveness and stress level of each member of the group. The group SOM was trained using the data of the entire group, and was used to monitor the group effectiveness and dynamics. Results suggested that both types of SOMs were required to adequately track evolutions and shifts in group effectiveness. Four subjects were used in the data collection and development of these tools. This report documents a proof of concept

  10. Enabling Exploration: NASA's Technology Needs

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.

    2012-01-01

    Deputy Director of Science, Carol W. Carroll has been invited by University of Oregon's Materials Science Institute to give a presentation. Carol's Speech explains NASA's Technologies that are needed where NASA was, what NASA's current capabilities are. Carol will highlight many of NASA's high profile projects and she will explain what NASA needs for its future by focusing on the next steps in space exploration. Carol's audience will be University of Oregon's future scientists and engineer's and their professor's along with various other faculty members.

  11. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols.

    PubMed

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  12. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols

    NASA Astrophysics Data System (ADS)

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W.; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J.

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  13. Technology-Enabled Crime, Policing and Security

    ERIC Educational Resources Information Center

    McQuade, Sam

    2006-01-01

    Crime, policing and security are enabled by and co-evolve with technologies that make them possible. As criminals compete with security and policing officials for technological advantage perpetually complex crime, policing and security results in relatively confusing and therefore unmanageable threats to society. New, adaptive and ordinary crimes…

  14. Enabling technologies: fermentation and downstream processing.

    PubMed

    Weuster-Botz, Dirk; Hekmat, Dariusch; Puskeiler, Robert; Franco-Lara, Ezequiel

    2007-01-01

    Efficient parallel tools for bioprocess design, consequent application of the concepts for metabolic process analysis as well as innovative downstream processing techniques are enabling technologies for new industrial bioprocesses from an engineering point of view. Basic principles, state-of-the-art techniques and cutting-edge technologies are briefly reviewed. Emphasis is on parallel bioreactors for bioprocess design, biochemical systems characterization and metabolic control analysis, as well as on preparative chromatography, affinity filtration and protein crystallization on a process scale.

  15. Survey of Enabling Technologies for CAPS

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.

    2005-01-01

    The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.

  16. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  17. Focus on atomtronics-enabled quantum technologies

    NASA Astrophysics Data System (ADS)

    Amico, Luigi; Birkl, Gerhard; Boshier, Malcolm; Kwek, Leong-Chuan

    2017-02-01

    Atomtronics is an emerging field in quantum technology that promises to realize ‘atomic circuit’ architectures exploiting ultra-cold atoms manipulated in versatile micro-optical circuits generated by laser fields of different shapes and intensities or micro-magnetic circuits known as atom chips. Although devising new applications for computation and information transfer is a defining goal of the field, atomtronics wants to enlarge the scope of quantum simulators and to access new physical regimes with novel fundamental science. With this focus issue we want to survey the state of the art of atomtronics-enabled quantum technology. We collect articles on both conceptual and applicative aspects of the field for diverse exploitations, both to extend the scope of the existing atom-based quantum devices and to devise platforms for new routes to quantum technology.

  18. Health-Enabled Smart Sensor Fusion Technology

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2012-01-01

    A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.

  19. Enabling MEMS technologies for communications systems

    NASA Astrophysics Data System (ADS)

    Lubecke, Victor M.; Barber, Bradley P.; Arney, Susanne

    2001-11-01

    Modern communications demands have been steadily growing not only in size, but sophistication. Phone calls over copper wires have evolved into high definition video conferencing over optical fibers, and wireless internet browsing. The technology used to meet these demands is under constant pressure to provide increased capacity, speed, and efficiency, all with reduced size and cost. Various MEMS technologies have shown great promise for meeting these challenges by extending the performance of conventional circuitry and introducing radical new systems approaches. A variety of strategic MEMS structures including various cost-effective free-space optics and high-Q RF components are described, along with related practical implementation issues. These components are rapidly becoming essential for enabling the development of progressive new communications systems technologies including all-optical networks, and low cost multi-system wireless terminals and basestations.

  20. Technology Enabling the First 100 Exoplanets

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.

    2014-01-01

    The discoveries of the first 100 exoplanets by precise radial velocities in the late 1990's at Lick Observatory and Observatoire de Haute-Provence were enabled by several technological advances and a cultural one. A key ingredient was a cross-dispersed echelle spectrometer at a stable, coude focus, with a CCD detector, offering high spectral resolution, large wavelength coverage, and a linear response to photons. A second ingredient was a computer capable of storing the megabyte images from such spectrometers and analyzing them for Doppler shifts. Both Lick and OHP depended on these advents. A third ingredient was a stable wavelength calibration. Here, two technologies emerged independently, with iodine gas employed by Marcy's group (used first by solar physicists doing helioseismology) and simultaneous thorium-argon spectra (enabled by fiber optics) used by Mayor's group. A final ingredient was a new culture emerging in the 1990's of forward-modeling of spectra on computers, enabled by the well-behaved photon noise of CCDs, giving Poisson errors amenable to rigorous statistical algorithms for measuring millipixel Doppler shifts. The prospect of detecting the 12 meter/sec reflex velocity (1/100 pixel) of a Jupiter-like planet was considered impossible, except to a few who asked, "What actually limits Doppler precision?". Inspired insights were provided by Robert Howard, Paul Schechter, Bruce Campbell, and Gordon Walker, leading to the first 100 exoplanets.

  1. Enabling technologies for autonomous MAV operations

    NASA Astrophysics Data System (ADS)

    Elbanhawi, M.; Mohamed, A.; Clothier, R.; Palmer, J. L.; Simic, M.; Watkins, S.

    2017-05-01

    The utility of micro air vehicles (MAVs) has expanded significantly in the last decade, and there are now numerous commercial systems available at relatively low cost. This expansion has arisen mainly due to the miniaturisation of flight control systems and advances in energy storage and propulsion technologies. Several emerging applications involve routine operation of MAVs in complex urban environments such as parcel delivery, communications relay and environmental monitoring. However, MAVs currently rely on one or more operators-in-the-loop and, whilst desirable, full autonomous operation has not yet been achieved. In this review paper, autonomous MAV operation in complex environments is explored with conceptualisation for future MAV operation in urban environments. Limitations of current technologies are systematically examined through consideration of the state-of-the-art and future trends. The main limitations challenging the realisation of fully autonomous MAVs are mainly attributed to: computational power, communication and energy storage. These limitations lead to poor sensing and planning capabilities, which are essential components of autonomous MAVs. Possible solutions are explored with goal of enabling MAVs to reliably operate autonomously in urban environments.

  2. Technology-enabled Airborne Spacing and Merging

    NASA Technical Reports Server (NTRS)

    Hull, James; Barmore, Bryan; Abbott, Tetence

    2005-01-01

    Over the last several decades, advances in airborne and groundside technologies have allowed the Air Traffic Service Provider (ATSP) to give safer and more efficient service, reduce workload and frequency congestion, and help accommodate a critically escalating traffic volume. These new technologies have included advanced radar displays, and data and communication automation to name a few. In step with such advances, NASA Langley is developing a precision spacing concept designed to increase runway throughput by enabling the flight crews to manage their inter-arrival spacing from TRACON entry to the runway threshold. This concept is being developed as part of NASA s Distributed Air/Ground Traffic Management (DAG-TM) project under the Advanced Air Transportation Technologies Program. Precision spacing is enabled by Automatic Dependent Surveillance-Broadcast (ADS-B), which provides air-to-air data exchange including position and velocity reports; real-time wind information and other necessary data. On the flight deck, a research prototype system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR) processes this information and provides speed guidance to the flight crew to achieve the desired inter-arrival spacing. AMSTAR is designed to support current ATC operations, provide operationally acceptable system-wide increases in approach spacing performance and increase runway throughput through system stability, predictability and precision spacing. This paper describes problems and costs associated with an imprecise arrival flow. It also discusses methods by which Air Traffic Controllers achieve and maintain an optimum interarrival interval, and explores means by which AMSTAR can assist in this pursuit. AMSTAR is an extension of NASA s previous work on in-trail spacing that was successfully demonstrated in a flight evaluation at Chicago O Hare International Airport in September 2002. In addition to providing for precision inter-arrival spacing, AMSTAR

  3. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section

  4. Human Support Technology Research to Enable Exploration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra

    2003-01-01

    Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.

  5. Packaging Predictable Assembly with Prediction-Enabled Component Technology

    DTIC Science & Technology

    2001-11-01

    This report describes the use of prediction-enabled component technology (PECT) as a means of packaging predictable assembly as a deployable product...A PECT results from integrating a component technology with one or more analysis technologies . Analysis technologies allow analysis and prediction of...assembly-level properties prior to component assembly, and, presumably, prior to component acquisition. Analysis technologies also identify required

  6. Palladium-catalyzed oxidative amination of alkenes: improved catalyst reoxidation enables the use of alkene as the limiting reagent.

    PubMed

    Rogers, Michelle M; Kotov, Vasily; Chatwichien, Jaruwan; Stahl, Shannon S

    2007-10-11

    Palladium-catalyzed methods for intermolecular aerobic oxidative amination of alkenes have been identified that are compatible with the use of alkene as the limiting reagent. These procedures, which enhance the utility of this reaction with alkenes that are not commercially available, are demonstrated with substrates bearing dialkyl ether, carboxyester, epoxide, and silyl ether groups.

  7. Enabling technologies for petascale electromagnetic accelerator simulation

    NASA Astrophysics Data System (ADS)

    Lee, Lie-Quan; Akcelik, Volkan; Chen, Sheng; Ge, Lixin; Prudencio, Ernesto; Schussman, Greg; Uplenchwar, Ravi; Ng, Cho; Ko, Kwok; Luo, Xiaojun; Shephard, Mark

    2007-07-01

    The SciDAC2 accelerator project at SLAC aims to simulate an entire three-cryomodule radio frequency (RF) unit of the International Linear Collider (ILC) main Linac. Petascale computing resources supported by advances in Applied Mathematics (AM) and Computer Science (CS) and INCITE Program are essential to enable such very large-scale electromagnetic accelerator simulations required by the ILC Global Design Effort. This poster presents the recent advances and achievements in the areas of CS/AM through collaborations.

  8. Enabling Technologies for Petascale Electromagnetic Accelerator Simulation

    SciTech Connect

    Lee, Lie-Quan; Akcelik, Volkan; Chen, Sheng; Ge, Li-Xin; Prudencio, Ernesto; Schussman, Greg; Uplenchwar, Ravi; Ng, Cho; Ko, Kwok; Luo, Xiaojun; Shephard, Mark; /Rensselaer Poly.

    2007-11-09

    The SciDAC2 accelerator project at SLAC aims to simulate an entire three-cryomodule radio frequency (RF) unit of the International Linear Collider (ILC) main Linac. Petascale computing resources supported by advances in Applied Mathematics (AM) and Computer Science (CS) and INCITE Program are essential to enable such very large-scale electromagnetic accelerator simulations required by the ILC Global Design Effort. This poster presents the recent advances and achievements in the areas of CS/AM through collaborations.

  9. Petascale Computing Enabling Technologies Project Final Report

    SciTech Connect

    de Supinski, B R

    2010-02-14

    The Petascale Computing Enabling Technologies (PCET) project addressed challenges arising from current trends in computer architecture that will lead to large-scale systems with many more nodes, each of which uses multicore chips. These factors will soon lead to systems that have over one million processors. Also, the use of multicore chips will lead to less memory and less memory bandwidth per core. We need fundamentally new algorithmic approaches to cope with these memory constraints and the huge number of processors. Further, correct, efficient code development is difficult even with the number of processors in current systems; more processors will only make it harder. The goal of PCET was to overcome these challenges by developing the computer science and mathematical underpinnings needed to realize the full potential of our future large-scale systems. Our research results will significantly increase the scientific output obtained from LLNL large-scale computing resources by improving application scientist productivity and system utilization. Our successes include scalable mathematical algorithms that adapt to these emerging architecture trends and through code correctness and performance methodologies that automate critical aspects of application development as well as the foundations for application-level fault tolerance techniques. PCET's scope encompassed several research thrusts in computer science and mathematics: code correctness and performance methodologies, scalable mathematics algorithms appropriate for multicore systems, and application-level fault tolerance techniques. Due to funding limitations, we focused primarily on the first three thrusts although our work also lays the foundation for the needed advances in fault tolerance. In the area of scalable mathematics algorithms, our preliminary work established that OpenMP performance of the AMG linear solver benchmark and important individual kernels on Atlas did not match the predictions of our

  10. Enabling technologies for fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-04-01

    In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.

  11. Aging System Sustainment and Enabling Technologies (ASSET)

    DTIC Science & Technology

    2014-03-31

    Lindsay Oklahoma DB Paint and Drywall , LLC Lawton Oklahoma Del Nero Manufacturing Co., Inc. Norman Oklahoma Delavan Inc d/b/a Turbine Fuel Technologies...Oklahoma Fokker Aerotron Lagrange Georgia Fonncrete Fiberglass Products, Inc. Seminole Oklahoma Frontier Electronic Systems CORP Stillwater Oklahoma G

  12. Cost Optimization and Technology Enablement COTSAT-1

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Lindsay, Michael C.; Klupar, Peter Damian; Swank, Aaron J.

    2010-01-01

    Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) is an ongoing spacecraft research and development project at NASA Ames Research Center (ARC). The space industry was a hot bed of innovation and development at its birth. Many new technologies were developed for and first demonstrated in space. In the recent past this trend has reversed with most of the new technology funding and research being driven by the private industry. Most of the recent advances in spaceflight hardware have come from the cell phone industry with a lag of about 10 to 15 years from lab demonstration to in space usage. NASA has started a project designed to address this problem. The prototype spacecraft known as Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) and CheapSat work to reduce these issues. This paper highlights the approach taken by NASA Ames Research center to achieve significant subsystem cost reductions. The COSTAT-1 research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing spacecraft. The COTSAT-1 team demonstrated building a fully functional spacecraft for $500K parts and $2.0M labor. The COTSAT-1 system, including a selected science payload, is described within this paper. Many of the advancements identified in the process of cost reduction can be attributed to the use of a one-atmosphere pressurized structure to house the spacecraft components. By using COTS hardware, the spacecraft program can utilize investments already made by commercial vendors. This ambitious project development philosophy/cycle has yielded the COTSAT-1 flight hardware. This paper highlights the advancements of the COTSAT-1 spacecraft leading to the delivery of the current flight hardware that is now located at NASA Ames Research Center. This paper also addresses the plans for COTSAT-2.

  13. Explosive Pulsed Power: An Enabling Technology

    DTIC Science & Technology

    2008-12-01

    began a systematic investigation of FEGs. This work was continued by Loki , Inc. [13] and HEM Technologies [14]. Loki has developed FEGs (Fig. 3) to...significant improvement in FEGs is due to advances in ferroelectric ceramics. Texas Tech and Loki used standard commercial PZT in their FEGs, but...Generator developed by Loki Inc. From their systematic study of FEGs, Loki observed the following trends:  The output voltage produced by an FEG is

  14. Technology enables value-based nursing care.

    PubMed

    Simpson, Roy L

    2012-01-01

    Although America spends more per capita on health care than any other nation in the world, care is neither consistent nor effective. The rising prominence of value-based care initiatives gives nurse executives an opportunity to lead clinical practice into a new evidence-fueled decision-making era. Technology holds the key to making emerging better practices and the latest clinical breakthroughs available at the point of care.

  15. Provision of enabling technology in professional sports.

    PubMed

    McBride, D K

    2000-06-01

    Multiple-round golf tournaments are designed intentionally to separate individuals' scores as play proceeds. Variance analyses and consideration of individual differences (vs group mean effects) for a sample of professional events confirm that 3-, 4-, and 5-round tournaments show significantly increased variability (though stable means) from first to last rounds. It is argued here that the dispersion of scores increases as play proceeds because the more physically or mentally fit players emerge and continue to perform best. Furthermore, a marginal income analysis indicates that the average gain in earnings from a one-shot improvement in score is approximately $8,000. An interpretation based on fatigue, competition, and stress supports the Professional Golf Association's claim that provision of enabling devices, like a golf cart for disabled players, is also an enhancement and is thus unfair.

  16. Enabling Computational Technologies for Terascale Scientific Simulations

    SciTech Connect

    Ashby, S.F.

    2000-08-24

    We develop scalable algorithms and object-oriented code frameworks for terascale scientific simulations on massively parallel processors (MPPs). Our research in multigrid-based linear solvers and adaptive mesh refinement enables Laboratory programs to use MPPs to explore important physical phenomena. For example, our research aids stockpile stewardship by making practical detailed 3D simulations of radiation transport. The need to solve large linear systems arises in many applications, including radiation transport, structural dynamics, combustion, and flow in porous media. These systems result from discretizations of partial differential equations on computational meshes. Our first research objective is to develop multigrid preconditioned iterative methods for such problems and to demonstrate their scalability on MPPs. Scalability describes how total computational work grows with problem size; it measures how effectively additional resources can help solve increasingly larger problems. Many factors contribute to scalability: computer architecture, parallel implementation, and choice of algorithm. Scalable algorithms have been shown to decrease simulation times by several orders of magnitude.

  17. Scientific Data Management Center for Enabling Technologies

    SciTech Connect

    Vouk, Mladen A.

    2013-01-15

    Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systems is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced

  18. Enantioselective Aminomethylamination of Conjugated Dienes with Aminals Enabled by Chiral Palladium Complex-Catalyzed C-N Bond Activation.

    PubMed

    Liu, Yang; Xie, Yinjun; Wang, Hongli; Huang, Hanmin

    2016-04-06

    A novel highly enantioselective aminomethylamination of conjugated dienes with aminals catalyzed by a chiral palladium complex ligated with BINOL-derived chiral diphosphinite has been successfully developed. This reaction proceeds via a Pd-catalyzed cascade C-N bond activation, aminomethylation, and asymmetric allylic amination reaction under mild reaction conditions, providing a unique and efficient strategy for the synthesis of enantiomerically pure allylic 1,3-diamines.

  19. Distributive Distillation Enabled by Microchannel Process Technology

    SciTech Connect

    Arora, Ravi

    2013-01-22

    The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.

  20. Laser peening of metals- enabling laser technology

    SciTech Connect

    Dane, C.B.; Hackel, L.A.; Daly, J.; Harrisson, J.

    1997-11-13

    Laser peening, a surface treatment for metals, employs laser induced shocks to create deep and intense residual stresses in critical components. In many applications this technology is proving to be superior to conventional treatments such as shot peening. The laser peening process has generated sufficiently impressive results to move it from a laboratory demonstration phase into a significant industrial process. However until now this evolution has been slowed because a laser system meeting the average power requirements for a high throughput process has been lacking.

  1. Enabling Technologies for Missiles and Rockets

    DTIC Science & Technology

    2007-11-02

    requirements (horizontal & vertical). MMW Millimeter Wave IIR Imaging Infrared SAL Semi-Active Laser Multimode Seeker Technology Ground Range[ Close...time of flight in “direct fire” mode (100s/20km) – Multimode terminal guidance – Low cost configuration – LOAL to 50 km • Hunter Killer LAM – 3-D...LADAR seeker w/ATR – Significant loiter – Multi-mission including BDA – Can update / coordinate PAM/LAM attacks • Common features – GPS/INS guidance

  2. Enabling technologies for nanostructuring (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Gerlinger, Hermann

    2005-06-01

    Galileo Galilei once said in the 17th century that "anyone who understands geometry can understand everything in this world." But he had never heard of molecules, atoms or even smaller components. These days we would imitate Galileo by saying "anyone who understands the processes inside atoms and molecules understands the world." This nano world has its own unique appeal: something that is invisible to the naked eye, yet has dimensions that the mind still requires images/comparisons to understand, is a source of tremendous fascination. Even if we are a long way from understanding these processes, we now know one thing for certain: these days, decisive technological progress is made in the world of the minuscule. Specific examples of this come from the areas of gene technology, materials research and electronics on a daily basis. As a result, nanotechnologies have become the focal point of research and development - not only in industry but also in politics. For example, in March 2004, the German Federal Government launched the German innovation initiative for nanotechnology under the slogan "Nanotechnology Conquers Markets". According to a press release by the German Federal Ministry of Education and Research (BMBF), euro 200 million in funding will be made available to four leading-edge innovations over the next four years. However, there is still some debate about how to define the term "nanotechnology". While some see the essence of nanotechnology as the creation of a large entity from the minutest components by means of partly self-organizing processes, such as car paint consisting of nanoparticles, others simply regard the scale of particles or structures as the area of crucial significance. Scientists set a value of 100 nanometers as the "limit". A BMBF brochure argues: "It [nanotechnology] does not, therefore, represent a basic technology in the classical sense-one with clearly defined parameters. Instead, it describes a new interdisciplinary approach that

  3. CVD-Enabled Graphene Manufacture and Technology

    PubMed Central

    2015-01-01

    Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for “electronic-grade” large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Chemical vapor deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus is the emerging understanding of the underlying growth mechanisms, in particular on the role of the required catalytic growth substrate, which brings together the latest progress in the fields of heterogeneous catalysis and classic crystal/thin-film growth. PMID:26240694

  4. Web-enabling technologies for the factory floor: a web-enabling strategy for emanufacturing

    NASA Astrophysics Data System (ADS)

    Velez, Ricardo; Lastra, Jose L. M.; Tuokko, Reijo O.

    2001-10-01

    This paper is intended to address the different technologies available for Web-enabling of the factory floor. It will give an overview of the importance of Web-enabling of the factory floor, in the application of the concepts of flexible and intelligent manufacturing, in conjunction with e-commerce. As a last section, it will try to define a Web-enabling strategy for the application in eManufacturing. This is made under the scope of the electronics manufacturing industry, so every application, technology or related matter is presented under such scope.

  5. Enabling Technology for Lunar Surface Science

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Beaman, B.; Choi, M.; Cooper, L.; Feng, S.; King, R.; Leshin, L.; Lewis, R.; Yeh, P. S.; Young, E.; Lorenz, J.

    2009-03-01

    Implementation of Lunar Exploration Initiative goals will require deployment of science packages at sites with the appropriate vantage point for obtaining the desired measurements and remote from potential (human) sources of contamination, thus requiring stand alone operation. Chief instruments/instrument package candidates include those which could provide long-term monitoring of the surface and subsurface environments for fundamental lunar science and crew safety. The major challenge such packages face will be operating during long periods of darkness in extreme cold potentially without the Pu238 based power and thermal systems available to Apollo era packages (ALSEP). The initial attempt to design a 10 instrument environmental monitoring package with a solar/battery based power system led to a package with a unacceptably large mass (500 kg) of which over half was battery mass. We achieved considerable reduction in this mass, first through the introduction of high performance electronics capable of operating at far lower temperature, reducing the initial mass estimate by a factor of 2, and then through the use of innovative thermal balance strategies involving the use of multi-layer thin materials and gravity-assisted heat pipes, reducing the initial mass estimate by a factor of 5. Yet to be implemented are strategies involving the universal incorporation of ULT/ULP (Ultra Low Temperature/Ultra Low Power) digital and analog electronics, distributed or non-conventionally packaged power systems, and state of the art solar power technology. These strategies will be required to meet the far more challenging thermal requirements of operating through a normal 28 day diurnal cycle. Limited battery survival temperature range remains the largest obstacle.

  6. A survey of enabling technologies in synthetic biology

    PubMed Central

    2013-01-01

    Background Realizing constructive applications of synthetic biology requires continued development of enabling technologies as well as policies and practices to ensure these technologies remain accessible for research. Broadly defined, enabling technologies for synthetic biology include any reagent or method that, alone or in combination with associated technologies, provides the means to generate any new research tool or application. Because applications of synthetic biology likely will embody multiple patented inventions, it will be important to create structures for managing intellectual property rights that best promote continued innovation. Monitoring the enabling technologies of synthetic biology will facilitate the systematic investigation of property rights coupled to these technologies and help shape policies and practices that impact the use, regulation, patenting, and licensing of these technologies. Results We conducted a survey among a self-identifying community of practitioners engaged in synthetic biology research to obtain their opinions and experiences with technologies that support the engineering of biological systems. Technologies widely used and considered enabling by survey participants included public and private registries of biological parts, standard methods for physical assembly of DNA constructs, genomic databases, software tools for search, alignment, analysis, and editing of DNA sequences, and commercial services for DNA synthesis and sequencing. Standards and methods supporting measurement, functional composition, and data exchange were less widely used though still considered enabling by a subset of survey participants. Conclusions The set of enabling technologies compiled from this survey provide insight into the many and varied technologies that support innovation in synthetic biology. Many of these technologies are widely accessible for use, either by virtue of being in the public domain or through legal tools such as non

  7. Enabling Science and Technology Research Teams: A Breadmaking Metaphor

    ERIC Educational Resources Information Center

    Pennington, Deana

    2010-01-01

    Anyone who has been involved with a cross-disciplinary team that combines scientists and information technology specialists knows just how tough it can be to move these efforts forward. Decades of experience point to the transformative potential of technology-enabled science efforts, and the success stories offer hope for future efforts. But for…

  8. Enabling Science and Technology Research Teams: A Breadmaking Metaphor

    ERIC Educational Resources Information Center

    Pennington, Deana

    2010-01-01

    Anyone who has been involved with a cross-disciplinary team that combines scientists and information technology specialists knows just how tough it can be to move these efforts forward. Decades of experience point to the transformative potential of technology-enabled science efforts, and the success stories offer hope for future efforts. But for…

  9. SciDAC Visualization and Analytics Center for Enabling Technologies

    SciTech Connect

    Joy, Kenneth I.

    2014-09-14

    This project focuses on leveraging scientific visualization and analytics software technology as an enabling technology for increasing scientific productivity and insight. Advances in computational technology have resulted in an "information big bang," which in turn has created a significant data understanding challenge. This challenge is widely acknowledged to be one of the primary bottlenecks in contemporary science. The vision for our Center is to respond directly to that challenge by adapting, extending, creating when necessary and deploying visualization and data understanding technologies for our science stakeholders. Using an organizational model as a Visualization and Analytics Center for Enabling Technologies (VACET), we are well positioned to be responsive to the needs of a diverse set of scientific stakeholders in a coordinated fashion using a range of visualization, mathematics, statistics, computer and computational science and data management technologies.

  10. Enabling technologies for Chinese Mars lander guidance system

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang

    2017-04-01

    Chinese first Mars exploration activity, orbiting landing and roaming collaborative mission, has been programmed and started. As a key technology, Mars lander guidance system is intended to serve atmospheric entry, descent and landing (EDL) phases. This paper is to report the formation process of enabling technology road map for Chinese Mars lander guidance system. First, two scenarios of the first-stage of the Chinese Mars exploration project are disclosed in detail. Second, mission challenges and engineering needs of EDL guidance, navigation, and control (GNC) are presented systematically for Chinese Mars exploration program. Third, some useful related technologies developed in China's current aerospace projects are pertinently summarized, especially on entry guidance, parachute descent, autonomous hazard avoidance and safe landing. Finally, an enabling technology road map of Chinese Mars lander guidance is given through technological inheriting and improving.

  11. Increasing the Capacity of Primary Care Through Enabling Technology.

    PubMed

    Young, Heather M; Nesbitt, Thomas S

    2017-02-27

    Primary care is the foundation of effective and high-quality health care. The role of primary care clinicians has expanded to encompass coordination of care across multiple providers and management of more patients with complex conditions. Enabling technology has the potential to expand the capacity for primary care clinicians to provide integrated, accessible care that channels expertise to the patient and brings specialty consultations into the primary care clinic. Furthermore, technology offers opportunities to engage patients in advancing their health through improved communication and enhanced self-management of chronic conditions. This paper describes enabling technologies in four domains (the body, the home, the community, and the primary care clinic) that can support the critical role primary care clinicians play in the health care system. It also identifies challenges to incorporating these technologies into primary care clinics, care processes, and workflow.

  12. Designing Technology-Enabled Instruction to Utilize Learning Analytics

    ERIC Educational Resources Information Center

    Davies, Randall; Nyland, Robert; Bodily, Robert; Chapman, John; Jones, Brian; Young, Jay

    2017-01-01

    A key notion conveyed by those who advocate for the use of data to enhance instruction is an awareness that learning analytics has the potential to improve instruction and learning but is not currently reaching that potential. Gibbons (2014) suggested that a lack of learning facilitated by current technology-enabled instructional systems may be…

  13. Jamming as an enabling technology for soft robotics

    NASA Astrophysics Data System (ADS)

    Steltz, E.; Mozeika, A.; Rembisz, J.; Corson, N.; Jaeger, H. M.

    2010-04-01

    This paper presents a new architecture in soft robotics that utilizes particulate jamming technology. A novel concept of actuation is described that utilizes jamming technology to modulate the direction and magnitude of the work performed by a single central actuator. Jamming "activators" modulate work by jamming and unjamming (solidifying and liquifying) a granular medium coupled to a core actuator. These ideas are demonstrated in the Jamming Skin Enabled Locomotion (JSEL) prototype which can morph its shape and achieve locomotion. Next, a new actuator, denoted a Jamming Modulated Unimorph (JMU), is presented in addition to the JSEL topology. The JMU uses a single linear actuator and a discrete number of jamming cells to turn the 1 degree of freedom (DOF) linear actuator into a multi DOF bending actuator. Full characterization of the JMU actuator is presented, followed by a concluding argument for jamming as an enabling mechanism for soft robots in general, regardless of actuation technology.

  14. ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT.

    PubMed

    Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, K C

    2016-01-01

    Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies.

  15. ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT

    PubMed Central

    Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC

    2017-01-01

    Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678

  16. Cardiac patients show high interest in technology enabled cardiovascular rehabilitation.

    PubMed

    Buys, Roselien; Claes, Jomme; Walsh, Deirdre; Cornelis, Nils; Moran, Kieran; Budts, Werner; Woods, Catherine; Cornelissen, Véronique A

    2016-07-19

    Cardiac rehabilitation (CR) can slow or reverse the progression of cardiovascular disease (CVD). However, uptake of community-based CR is very low. E-cardiology, e-health and technology solutions for physical activity uptake and monitoring have evolved rapidly and have potential in CVD management. However, it is unclear what the current technology usage is of CVD patients, and their needs and interests for technology enabled CR. A technology usage questionnaire was developed and completed by patients from a supervised ambulatory CR program and an adult congenital heart disease clinic and from two community-based CR programs. Results were described and related with age, gender and educational level by Spearman correlations. Of 310 patients, 298 patients (77 % male; mean age 61,7 ± 14,5 years) completed at least 25 questions of the survey and were included in the analysis (completion rate 96 %). Most (97 %) patients had a mobile phone and used the internet (91 %). Heart rate monitors were used by 35 % and 68 % reported to find heart rate monitoring important when exercising at home. Physical activity monitoring was reported by 12 % of the respondents. Respondents were interested in CR support through internet (77 %) and mobile phone (68 %). Many patients reported interest in game-based CR (67 %) and virtual rehabilitation (58 %). At least medium interest in technology enabled CR was reported by 75 % of the patients. Interest decreased with increasing age (r = -0.16; p = 0.005). CVD patients show interest for technology enabled home-based CR. Our results could guide the design of a technology-based, virtual CR intervention.

  17. A Successful Infusion Process for Enabling Lunar Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Over, Ann P.; Klem, Mark K.; Motil, Susan M.

    2008-01-01

    The NASA Vision for Space Exploration begins with a more reliable flight capability to the International Space Station and ends with sending humans to Mars. An important stepping stone on the path to Mars encompasses human missions to the Moon. There is little doubt throughout the stakeholder community that new technologies will be required to enable this Vision. However, there are many factors that influence the ability to successfully infuse any technology including the technical risk, requirement and development schedule maturity, and, funds available. This paper focuses on effective infusion processes that have been used recently for the technologies in development for the lunar exploration flight program, Constellation. Recent successes with Constellation customers are highlighted for the Exploration Technology Development Program (ETDP) Projects managed by NASA Glenn Research Center (GRC). Following an overview of the technical context of both the flight program and the technology capability mapping, the process is described for how to effectively build an integrated technology infusion plan. The process starts with a sound risk development plan and is completed with an integrated project plan, including content, schedule and cost. In reality, the available resources for this development are going to change over time, necessitating some level of iteration in the planning. However, the driving process is based on the initial risk assessment, which changes only when the overall architecture changes, enabling some level of stability in the process.

  18. Wearable sensors and systems. From enabling technology to clinical applications.

    PubMed

    Bonato, Paolo

    2010-01-01

    It is now more than 50 years since the time when clinical monitoring of individuals in the home and community settings was first envisioned. Until recently, technologies to enable such vision were lacking. However, wearable sensors and systems developed over the past decade have provided the tools to finally implement and deploy technology with the capabilities required by researchers in the field of patients' home monitoring. As discussed, potential applications of these technologies include the early diagnosis of diseases such as congestive heart failure, the prevention of chronic conditions such as diabetes, improved clinical management of neurodegenerative conditions such as Parkinson's disease, and the ability to promptly respond to emergency situations such as seizures in patients with epilepsy and cardiac arrest in subjects undergoing cardiovascular monitoring. Current research efforts are now focused on the development of more complex systems for home monitoring of individuals with a variety of preclinical and clinical conditions. Recent research on the clinical assessment of wearable technology promises to deliver methodologies that are expected to lead to clinical adoption within the next five to ten years. In particular, combining home robots and wearable technology is likely to be a key step toward achieving the goal of effectively monitoring patients in the home. These efforts to merge home robots and wearable technology are expected to enable a new generation of complex systems with the ability to monitor subjects' status, facilitate the administration of interventions, and provide an invaluable tool to respond to emergency situations.

  19. Enabling Technologies for the Future of Chemical Synthesis

    PubMed Central

    2016-01-01

    Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic–industry relationships, and future trends in the area of chemical synthesis. PMID:27163040

  20. Plasma Modeling Enabled Technology Development Empowered by Fundamental Scattering Data

    NASA Astrophysics Data System (ADS)

    Kushner, Mark J.

    2016-05-01

    Technology development increasingly relies on modeling to speed the innovation cycle. This is particularly true for systems using low temperature plasmas (LTPs) and their role in enabling energy efficient processes with minimal environmental impact. In the innovation cycle, LTP modeling supports investigation of fundamental processes that seed the cycle, optimization of newly developed technologies, and prediction of performance of unbuilt systems for new applications. Although proof-of-principle modeling may be performed for idealized systems in simple gases, technology development must address physically complex systems that use complex gas mixtures that now may be multi-phase (e.g., in contact with liquids). The variety of fundamental electron and ion scattering, and radiation transport data (FSRD) required for this modeling increases as the innovation cycle progresses, while the accuracy required of that data depends on the intended outcome. In all cases, the fidelity, depth and impact of the modeling depends on the availability of FSRD. Modeling and technology development are, in fact, empowered by the availability and robustness of FSRD. In this talk, examples of the impact of and requirements for FSRD in the innovation cycle enabled by plasma modeling will be discussed using results from multidimensional and global models. Examples of fundamental studies and technology optimization will focus on microelectronics fabrication and on optically pumped lasers. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids. Work supported by DOE Office of Fusion Energy Science and the National Science Foundation.

  1. LENS(Registered) and SFF: Enabling Technologies for Optimized Structures

    DTIC Science & Technology

    2007-08-01

    LENS® and SFF: Enabling Technologies for Optimized Structures D.D. Gill, C.J. Atwood , T.E. Voth, J. Robbins Sandia National Laboratories...manufacturing development required for LENS to make these complex structures has included the addition of rotational axes to Sandia’s LENS machine ...conventional machining process. Advances in computing power and research into better design methods for optimizing structures, and developments toward fully

  2. Key Enabling Physical Layer Technologies for LTE-Advanced

    NASA Astrophysics Data System (ADS)

    Jiang, Meilong; Prasad, Narayan; Xin, Yan; Yue, Guosen; Khojastepour, Amir; Liu, Le; Inoue, Takamichi; Koyanagi, Kenji; Kakura, Yoshikazu

    The 3GPP Long Term Evolution Advanced (LTE-A) system, as compared to the LTE system, is anticipated to include several new features and enhancements, such as the usage of channel bandwidth beyond 20MHz (up 100MHz), higher order multiple input multiple output (MIMO) for both downlink and uplink transmissions, larger capacity especially for cell edge user equipment, and voice over IP (VoIP) users, and wider coverage and etc. This paper presents some key enabling technologies including flexible uplink access schemes, advanced uplink MIMO receiver designs, cell search, adaptive hybrid ARQ, and multi-resolution MIMO precoding, for the LTE-A system.

  3. Enabling technologies built on a sonochemical platform: challenges and opportunities.

    PubMed

    Cintas, Pedro; Tagliapietra, Silvia; Caporaso, Marina; Tabasso, Silvia; Cravotto, Giancarlo

    2015-07-01

    Scientific and technological progress now occurs at the interface between two or more scientific and technical disciplines while chemistry is intertwined with almost all scientific domains. Complementary and synergistic effects have been found in the overlay between sonochemistry and other enabling technologies such as mechanochemistry, microwave chemistry and flow-chemistry. Although their nature and effects are intrinsically different, these techniques share the ability to significantly activate most chemical processes and peculiar phenomena. These studies offer a comprehensive overview of sonochemistry, provide a better understanding of correlated phenomena (mechanochemical effects, hot spots, etc.), and pave the way for emerging applications which unite hybrid reactors. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Enabling technologies and building blocks for large planetary orbiters

    NASA Astrophysics Data System (ADS)

    Poncy, J.; Roser, X.; Couzin, P.

    2013-09-01

    Thales Alenia Space reports how, beyond ExoMars, enabling technologies and their corresponding building blocks for large orbiters and mother ships will play a key-role in the exploration of our System. We first make a census of the targets, of the induced missions for the next decades and of the constraints they place on the physical and functional architecture of the main spacecraft. As a function of the maturity of the related technologies, and of the urgency of scientific and exploration needs, we then introduce the time dimension per target and mission type, as an input for establishing a future comprehensive road map. We conclude by recalling the most urgent developments.

  5. ACES: An Enabling Technology for Next Generation Space Transportation

    NASA Astrophysics Data System (ADS)

    Crocker, Andrew M.; Wuerl, Adam M.; Andrews, Jason E.; Andrews, Dana G.

    2004-02-01

    Andrews Space has developed the ``Alchemist'' Air Collection and Enrichment System (ACES), a dual-mode propulsion system that enables safe, economical launch systems that take off and land horizontally. Alchemist generates liquid oxygen through separation of atmospheric air using the refrigeration capacity of liquid hydrogen. The key benefit of Alchemist is that it minimizes vehicle takeoff weight. All internal and NASA-funded activities have shown that ACES, previously proposed for hypersonic combined cycle RLVs, is a higher payoff, lower-risk technology if LOX generation is performed while the vehicle cruises subsonically. Andrews Space has developed the Alchemist concept from a small system study to viable Next Generation launch system technology, conducting not only feasibility studies but also related hardware tests, and it has planned a detailed risk reduction program which employs an experienced, proven contractor team. Andrews also has participated in preliminary studies of an evolvable Next Generation vehicle architecture-enabled by Alchemist ACES-which could meet civil, military, and commercial space requirements within two decades.

  6. Solar Sail Propulsion: An Enabling Technology for Fundamental Physics Missions

    NASA Astrophysics Data System (ADS)

    Dachwald, Bernd; Seboldt, Wolfgang; Lämmerzahl, Claus

    Solar sails enable a wide range of high-energy missions, many of which are difficult or even impossible to accomplish with any other type of conventional propulsion system. They are also an enabling propulsion technology for two types of deep-space missions that are very favorable for testing current gravitational theories and the large-scale gravitational field of the solar system: the first type comprises missions that go very close to the Sun (<8 solar radii) and the second one comprises missions that go fast very far away from the Sun ( 200AU). Being propelled solely by the freely available solar radiation pressure, solar sails do not consume any propellant. Therefore, their capability to gain (or reduce) orbital energy is theoretically unlimited and practically only limited by their lifetime in the space environment and their distance from the Sun (because the solar radiation pressure decreases with the square of solar distance). Nevertheless, solar sails make also missions that go far away from the Sun feasible because they can gain a large amount of orbital energy by first making one or more close solar approaches that turn the trajectory hyperbolic. For both mission types, the temperature limit of the sail film is a critical issue. In this chapter, we briefly review the physics and the current technological status of solar sails, and then present mission outlines and trade-offs for both mission types. Thereby, we will show that even near- or medium-term solar sails with a relatively moderate performance enable these kinds of missions.

  7. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    NASA Astrophysics Data System (ADS)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental

  8. Extending green technology innovations to enable greener fabs

    NASA Astrophysics Data System (ADS)

    Takahisa, Kenji; Yoo, Young Sun; Fukuda, Hitomi; Minegishi, Yuji; Enami, Tatsuo

    2015-03-01

    Semiconductor manufacturing industry has growing concerns over future environmental impacts as fabs expand and new generations of equipment become more powerful. Especially rare gases supply and price are one of prime concerns for operation of high volume manufacturing (HVM) fabs. Over the past year it has come to our attention that Helium and Neon gas supplies could be unstable and become a threat to HVM fabs. To address these concerns, Gigaphoton has implemented various green technologies under its EcoPhoton program. One of the initiatives is GigaTwin deep ultraviolet (DUV) lithography laser design which enables highly efficient and stable operation. Under this design laser systems run with 50% less electric energy and gas consumption compared to conventional laser designs. In 2014 we have developed two technologies to further reduce electric energy and gas efficiency. The electric energy reduction technology is called eGRYCOS (enhanced Gigaphoton Recycled Chamber Operation System), and it reduces electric energy by 15% without compromising any of laser performances. eGRYCOS system has a sophisticated gas flow design so that we can reduce cross-flow-fan rotation speed. The gas reduction technology is called eTGM (enhanced Total gas Manager) and it improves gas management system optimizing the gas injection and exhaust amount based on laser performances, resulting in 50% gas savings. The next steps in our roadmap technologies are indicated and we call for potential partners to work with us based on OPEN INNOVATION concept to successfully develop faster and better solutions in all possible areas where green innovation may exist.

  9. An Enabling Technology for New Planning and Scheduling Paradigms

    NASA Technical Reports Server (NTRS)

    Jaap, John; Davis, Elizabeth

    2004-01-01

    The Night Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called ?ask models," from the scientists and technologists for the tasks that are to be scheduled. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next, a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, the models are modified to be compatible with the scheduling engine. Then the models are submitted to the scheduling engine for automatic scheduling or, when requirements are expressed in notes, the timeline is built manually. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components: (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphical methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models without the

  10. An Enabling Technology for New Planning and Scheduling Paradigms

    NASA Technical Reports Server (NTRS)

    Jaap, John; Davis, Elizabeth

    2004-01-01

    The Night Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called ?ask models," from the scientists and technologists for the tasks that are to be scheduled. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next, a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, the models are modified to be compatible with the scheduling engine. Then the models are submitted to the scheduling engine for automatic scheduling or, when requirements are expressed in notes, the timeline is built manually. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components: (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphical methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models without the

  11. A review of the Technologies Enabling Agile Manufacturing program

    SciTech Connect

    Gray, W.H.; Neal, R.E.; Cobb, C.K.

    1996-10-01

    Addressing a technical plan developed in consideration with major US manufacturers, software and hardware providers, and government representatives, the Technologies Enabling Agile Manufacturing (TEAM) program is leveraging the expertise and resources of industry, universities, and federal agencies to develop, integrate, and deploy leap-ahead manufacturing technologies. One of the TEAM program`s goals is to transition products from design to production faster, more efficiently, and at less cost. TEAM`s technology development strategy also provides all participants with early experience in establishing and working within an electronic enterprise that includes access to high-speed networks and high-performance computing and storage systems. The TEAM program uses the cross-cutting tools it collects, develops, and integrates to demonstrate and deploy agile manufacturing capabilities for three high-priority processes identified by industry: material removal, sheet metal forming, electro-mechanical assembly. This paper reviews the current status of the TEAM program with emphasis upon TEAM`s information infrastructure.

  12. Technologies Enabling Scientific Exploration of Asteroids and Moons

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Fulford, P.; Chappell, L.

    2016-12-01

    Scientific exploration of moons and asteroids is enabled by several key technologies that yield topographic information, allow excavation of subsurface materials, and allow delivery of higher-mass scientific payloads to moons and asteroids. These key technologies include lidar systems, robotics, and solar-electric propulsion spacecraft buses. Many of these technologies have applications for a variety of planetary targets. Lidar systems yield high-resolution shape models of asteroids and moons. These shape models can then be combined with radio science information to yield insight into density and internal structure. Further, lidar systems allow investigation of topographic surface features, large and small, which yields information on regolith properties. Robotic arms can be used for a variety of purposes, especially to support excavation, revealing subsurface material and acquiring material from depth for either in situ analysis or sample return. Robotic arms with built-in force sensors can also be used to gauge the strength of materials as a function of depth, yielding insight into regolith physical properties. Mobility systems allow scientific exploration of multiple sites, and also yield insight into regolith physical properties due to the interaction of wheels with regolith. High-power solar electric propulsion (SEP) spacecraft bus systems allow more science instruments to be included on missions given their ability to support greater payload mass. In addition, leveraging a cost-effective commercially-built SEP spacecraft bus can significantly reduce mission cost.

  13. Stratified Charge Rotary Engine Critical Technology Enablement, Volume 1

    NASA Technical Reports Server (NTRS)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This report summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation, and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems.

  14. Exploration of Terminal Procedures Enabled by NASA Wake VAS Technologies

    NASA Technical Reports Server (NTRS)

    Lunsford, Clark R.; Smith, Arthur P., III; Cooper, Wayne W., Jr.; Mundra, Anand D.; Gross, Amy E.; Audenaerd, Laurence F.; Killian, Bruce E.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) tasked The MITRE Corporation's Center for Advanced Aviation System Development (CAASD) to investigate potential air traffic control (ATC) procedures that could benefit from technology used or developed in NASA's Wake Vortex Advisory System (WakeVAS). The task also required developing an estimate of the potential benefits of the candidate procedures. The main thrust of the investigation was to evaluate opportunities for improved capacity and efficiency in airport arrival and departure operations. Other procedures that would provide safety enhancements were also considered. The purpose of this investigation was to provide input to the WakeVAS program office regarding the most promising areas of development for the program. A two-fold perspective was desired: First, identification of benefits from possible procedures enabled by both incremental components and the mature state of WakeVAS technology; second identification of procedures that could be expected to evolve from the current Federal Aviation Administration (FAA) procedures. The evolution of procedures should provide meaningful increments of benefit and a low risk implementation of the WakeVAS technologies.

  15. Stratified charge rotary engine critical technology enablement. Volume 2: Appendixes

    NASA Technical Reports Server (NTRS)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This second volume of appendixes is a companion to Volume 1 of this report which summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation; and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems. A family of four-stage third-order explicit Runge-Kutta schemes is derived that required only two locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.

  16. Enabling technologies and green processes in cyclodextrin chemistry

    PubMed Central

    Caporaso, Marina; Jicsinszky, Laszlo; Martina, Katia

    2016-01-01

    Summary The design of efficient synthetic green strategies for the selective modification of cyclodextrins (CDs) is still a challenging task. Outstanding results have been achieved in recent years by means of so-called enabling technologies, such as microwaves, ultrasound and ball mills, that have become irreplaceable tools in the synthesis of CD derivatives. Several examples of sonochemical selective modification of native α-, β- and γ-CDs have been reported including heterogeneous phase Pd- and Cu-catalysed hydrogenations and couplings. Microwave irradiation has emerged as the technique of choice for the production of highly substituted CD derivatives, CD grafted materials and polymers. Mechanochemical methods have successfully furnished greener, solvent-free syntheses and efficient complexation, while flow microreactors may well improve the repeatability and optimization of critical synthetic protocols. PMID:26977187

  17. CHOIS: enabling grid technologies for obesity surveillance and control.

    PubMed

    Datta, Arun K; Jackson, Victoria; Nandkumar, Radha; Sproat, Jill; Zhu, Weimo; Krahling, Heidi

    2010-01-01

    CHOIS, the Child Health and Obesity Informatics System, is developed using open source portal technology with three-tiered Open Grid Services Architecture, an accepted standard for accessing Grid Computing and other services under Open Grid Collaborating Environments (OGCE). Its web application provides web based forms with 112 different fields to enter data ranging from demographic, height & weight for BMI, to genomic information. Automatic computation of BMI, BMI percentile and the risk of obesity alert are embedded into this system. After successful testing of the prototype, CHOIS is now ready to be used by the Illinois Department of Human Services (DHS) for obesity surveillance. This HIPAA & FERPA compliant secure system, integrating large databases in a high performance grid computing environment, enables school-nurse to collect data on school children and report statistical and surveillance information on BMI to identify those at-risk and obese for obesity prevention and intervention programs.

  18. Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines

    PubMed Central

    Mallapragada, Surya K.; Brenza, Timothy M.; McMillan, JoEllyn M.; Narasimhan, Balaji; Sakaguchi, Donald S.; Sharma, Anup D.; Zbarska, Svitlana; Gendelman, Howard E.

    2015-01-01

    Nanoparticulate delivery systems represent an area of particular promise for nanoneuromedicines. They possess significant potential for desperately needed therapies designed to combat a range of disorders associated with aging. As such, the field was selected as the focus for the 2014 meeting of the American Society for Nanomedicine. Regenerative, protective, immune modulatory, anti-microbial and anti-inflammatory products, or imaging agents are readily encapsulated in or conjugated to nanoparticles and as such facilitate the delivery of drug payloads to specific action sites across the blood-brain barrier. Diagnostic imaging serves to precisely monitor disease onset and progression while neural stem cell replacement can regenerate damaged tissue through control of stem cell fates. These, taken together, can improve disease burden and limit systemic toxicities. Such enabling technologies serve to protect the nervous system against a broad range of degenerative, traumatic, metabolic, infectious and immune disorders. PMID:25652894

  19. Enabling Campus Grids with Open Science Grid Technology

    NASA Astrophysics Data System (ADS)

    Weitzel, Derek; Bockelman, Brian; Fraser, Dan; Pordes, Ruth; Swanson, David

    2011-12-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  20. Enabling technologies for the rapid dechlorination of polychloroarenes and PCBs.

    PubMed

    Cravotto, Giancarlo; Garella, Davide; Beltramo, Lara; Carnaroglio, Diego; Mantegna, Stefano; Roggero, Carlo Maria

    2013-07-01

    Dielectric heating and acoustic cavitation (ultrasound or high-performance disperser) may all dramatically enhance conversion rates and yields in heterogeneous metal-assisted organic reactions even when low reagent excesses are used. These so called "enabling technologies" bring with them process intensification, safer protocols, cost reduction and energy savings. We herein describe a series of rapid polychlorinated aromatic and PCBs dechlorinations (15min) carried out in a moderate excess of metallic sodium and using non-conventional techniques. We compared the results with those obtained for reactions carried out under conventional heating and with those performed with less reactive metals such as magnesium and zinc. In this comparison, high-intensity ultrasound stands out as the technique of choice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Enabling technologies and green processes in cyclodextrin chemistry.

    PubMed

    Cravotto, Giancarlo; Caporaso, Marina; Jicsinszky, Laszlo; Martina, Katia

    2016-01-01

    The design of efficient synthetic green strategies for the selective modification of cyclodextrins (CDs) is still a challenging task. Outstanding results have been achieved in recent years by means of so-called enabling technologies, such as microwaves, ultrasound and ball mills, that have become irreplaceable tools in the synthesis of CD derivatives. Several examples of sonochemical selective modification of native α-, β- and γ-CDs have been reported including heterogeneous phase Pd- and Cu-catalysed hydrogenations and couplings. Microwave irradiation has emerged as the technique of choice for the production of highly substituted CD derivatives, CD grafted materials and polymers. Mechanochemical methods have successfully furnished greener, solvent-free syntheses and efficient complexation, while flow microreactors may well improve the repeatability and optimization of critical synthetic protocols.

  2. Enabling Technologies for High Penetration of Wind and Solar Energy

    SciTech Connect

    Denholm, P.

    2011-01-01

    High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

  3. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  4. Technology Advances Enabling a New Class of Hybrid Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Bowen, A.

    2016-02-01

    Both tethered (ROV) and untethered (AUV) systems have proven to be highly valuable tools for a range of application undersea. Certain enabling technologies coupled with recent advances in robotic systems make it possible to consider supplementing many of the functions performed by these platforms with appropriately designed semi-autonomous vehicles that may be less expensive operate than traditional deep-water ROVs. Such vehicles can be deployed from smaller ships and may lead to sea-floor resident systems able to perform a range of interventions under direct human control when required. These systems are effectively a hybrid cross between ROV and AUV vehicles and poised to enable an important new class of undersea vehicle. It is now possible to radically redefine the meaning of the words "tethered vehicle" to include virtual tethering via acoustic and optical means or through the use of small diameter re-useable tethers, providing not power but only high bandwidth communications. The recent developments at Woods Hole Oceanographic Institution (WHOI), paves the way for a derivative vehicle type able to perform a range of interventions in deep water. Such battery-powered, hybrid-tethered vehicles will be able to perform tasks that might otherwise require a conventional ROV. These functions will be possible from less complex ships because of a greatly reduced dependence on large, heavy tethers and associated vehicle handling equipment. In certain applications, such vehicles can be resident within subsea facilities, able to provide operators with near instant access when required. Several key emerging technologies and capabilities make such a vehicle possible. Advances in both acoustic and optical "wireless" underwater communications and mico-tethers as pioneered by the HROV Nereus offer the potential to transform ROV type operations and thus offer planners and designers an important new dimension to subsea robotic intervention

  5. The key to enabling biosurveillance is cooperative technology development.

    PubMed

    Emanuel, Peter; Jones, Franca; Smith, Michael; Huff, William; Jaffe, Richard; Roos, Jason

    2011-12-01

    The world population will continue to face biological threats, whether they are naturally occurring or intentional events. The speed with which diseases can emerge and spread presents serious challenges, because the impact on public health, the economy, and development can be huge. The U.S. government recognizes that global public health can also have an impact on national security. This global perspective manifests itself in U.S. policy documents that clearly articulate the importance of biosurveillance in providing early warning, detection, and situational awareness of infectious disease threats in order to mount a rapid response and save lives. In this commentary, we suggest that early recognition of infectious disease threats, whether naturally occurring or man-made, requires a globally distributed array of interoperable hardware and software fielded in sufficient numbers to create a network of linked collection nodes. We argue that achievement of this end state will require a degree of cooperation that does not exist at this time-either across the U.S. federal government or among our global partners. Successful fielding of a family of interoperable technologies will require interagency research, development, and purchase ("acquisition") of biosurveillance systems through cooperative ventures that likely will involve our strategic allies and public-private partnerships. To this end, we propose leveraging an existing federal interagency group to integrate the acquisition of technologies to enable global biosurveillance.

  6. Enabling Technologies for Scalable Trapped Ion Quantum Computing

    NASA Astrophysics Data System (ADS)

    Crain, Stephen; Gaultney, Daniel; Mount, Emily; Knoernschild, Caleb; Baek, Soyoung; Maunz, Peter; Kim, Jungsang

    2013-05-01

    Scalability is one of the main challenges of trapped ion based quantum computation, mainly limited by the lack of enabling technologies needed to trap, manipulate and process the increasing number of qubits. Microelectromechanical systems (MEMS) technology allows one to design movable micromirrors to focus laser beams on individual ions in a chain and steer the focal point in two dimensions. Our current MEMS system is designed to steer 355 nm pulsed laser beams to carry out logic gates on a chain of Yb ions with a waist of 1.5 μm across a 20 μm range. In order to read the state of the qubit chain we developed a 32-channel PMT with a custom read-out circuit operating near the thermal noise limit of the readout amplifier which increases state detection fidelity. We also developed a set of digital to analog converters (DACs) used to supply analog DC voltages to the electrodes of an ion trap. We designed asynchronous DACs to avoid added noise injection at the update rate commonly found in synchronous DACs. Effective noise filtering is expected to reduce the heating rate of a surface trap, thus improving multi-qubit logic gate fidelities. Our DAC system features 96 channels and an integrated FPGA that allows the system to be controlled in real time. This work was supported by IARPA/ARO.

  7. Combined technologies enable high-pressure slickline work

    SciTech Connect

    Davis, G.; West, T.

    1998-10-01

    Operators conducting wireline operations can combine the attributes of the slickline grease head and conventional stuffing box to enable work in gas wells at wellhead pressures above 15,000 psi. Wireline/slickline work in high-pressure wells requires meeting the dual challenges of well control and freedom of movement (up and down) for the lines. In a notable application of the combined-technology technique, an operator offshore Louisiana attempted to conduct wireline operations in an 18,000-ft gas and condensate well with 15,600 psi wellhead pressure, using a standard slickline stuffing box to contain the pressure. The standard equipment could not perform the needed function, which involved several trips to depths of 5,000 ft and 18,000 ft. Using a combined-technology, flow-tube stuffing box, the operator was able to conduct the wireline operation without incident; the control arrangement resulted in use of only 3 gal of lubricating oil throughout the job. Post-job analysis of the packing showed only the minimal wear normally associated with low-pressure wireline operations. Although slickline work can be performed in low-pressure gas wells without using the flow-tube stuffing box, the device and the oil used with it isolate the stuffing-box packing from the dry gases, reducing friction swell. This isolation speeds up the operation and reduces packing wear.

  8. In-Situ Geochronology as a Mission-Enabling Technology

    NASA Technical Reports Server (NTRS)

    Coleman, Max; Hecht, Michael; Hurowitz, Joel; Neidholdt, Evan; Polk, James; Sinha, Mahadeva P.; Sturhahn, Wolfgang; Zimmerman, Wayne

    2012-01-01

    Although there are excellent estimates of ages of terrains on Mars from crater counting, even a few absolute ages would serve to validate the calibration. Results with uncertainties, although much larger than those that could be achieved in labs on Earth, would be extremely valuable. While there are other possibilities for in-situ geochronology instruments, we describe here to alternative technologies, being developed in JPL. There are two common features of both. The first is analysis by means of miniature mass spectrometer. The second is use of laser sampling to reduce or avoid sample handling, preparation and pre-treatment and equally importantly, to allow analysis of individual, textually resolved minerals in coarse-grained rocks. This textural resolved minerals in coarse-grained rocks. This textural resolution will aid in selection of grains more or less enriched in the relevant elements and allow construction of isochrons for more precise dating. Either of these instruments could enable missions to Mars and other planetary bodies.

  9. Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines.

    PubMed

    Mallapragada, Surya K; Brenza, Timothy M; McMillan, JoEllyn M; Narasimhan, Balaji; Sakaguchi, Donald S; Sharma, Anup D; Zbarska, Svitlana; Gendelman, Howard E

    2015-04-01

    Nanoparticulate delivery systems represent an area of particular promise for nanoneuromedicines. They possess significant potential for desperately needed therapies designed to combat a range of disorders associated with aging. As such, the field was selected as the focus for the 2014 meeting of the American Society for Nanomedicine. Regenerative, protective, immune modulatory, anti-microbial and anti-inflammatory products, or imaging agents are readily encapsulated in or conjugated to nanoparticles and as such facilitate the delivery of drug payloads to specific action sites across the blood-brain barrier. Diagnostic imaging serves to precisely monitor disease onset and progression while neural stem cell replacement can regenerate damaged tissue through control of stem cell fates. These, taken together, can improve disease burden and limit systemic toxicities. Such enabling technologies serve to protect the nervous system against a broad range of degenerative, traumatic, metabolic, infectious and immune disorders. From the clinical editor: Nanoneuromedicine is a branch of nanomedicine that specifically looks at the nervous system. In the clinical setting, a fundamental hurdle in nervous system disorders is due to an inherent inability of nerve cells to regenerate after damage. Nanotechnology can offer new approaches to overcome these challenges. This review describes recent developments in nanomedicine delivery systems that would affect stem cell repair and regeneration in the nervous system. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. In-Situ Geochronology as a Mission-Enabling Technology

    NASA Technical Reports Server (NTRS)

    Coleman, Max; Hecht, Michael; Hurowitz, Joel; Neidholdt, Evan; Polk, James; Sinha, Mahadeva P.; Sturhahn, Wolfgang; Zimmerman, Wayne

    2012-01-01

    Although there are excellent estimates of ages of terrains on Mars from crater counting, even a few absolute ages would serve to validate the calibration. Results with uncertainties, although much larger than those that could be achieved in labs on Earth, would be extremely valuable. While there are other possibilities for in-situ geochronology instruments, we describe here to alternative technologies, being developed in JPL. There are two common features of both. The first is analysis by means of miniature mass spectrometer. The second is use of laser sampling to reduce or avoid sample handling, preparation and pre-treatment and equally importantly, to allow analysis of individual, textually resolved minerals in coarse-grained rocks. This textural resolved minerals in coarse-grained rocks. This textural resolution will aid in selection of grains more or less enriched in the relevant elements and allow construction of isochrons for more precise dating. Either of these instruments could enable missions to Mars and other planetary bodies.

  11. Review of Enabling Technologies to Facilitate Secure Compute Customization

    SciTech Connect

    Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine; Koch, Scott M; Naughton, III, Thomas J; Pelfrey, Daniel S; Pogge, James R; Scott, Stephen L; Shipman, Galen M; Sorrillo, Lawrence

    2014-12-01

    High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data for a variety of users, often requiring strong separation between job allocations. There are many challenges to establishing these secure enclaves within the shared infrastructure of high-performance computing (HPC) environments. The isolation mechanisms in the system software are the basic building blocks for enabling secure compute enclaves. There are a variety of approaches and the focus of this report is to review the different virtualization technologies that facilitate the creation of secure compute enclaves. The report reviews current operating system (OS) protection mechanisms and modern virtualization technologies to better understand the performance/isolation properties. We also examine the feasibility of running ``virtualized'' computing resources as non-privileged users, and providing controlled administrative permissions for standard users running within a virtualized context. Our examination includes technologies such as Linux containers (LXC [32], Docker [15]) and full virtualization (KVM [26], Xen [5]). We categorize these different approaches to virtualization into two broad groups: OS-level virtualization and system-level virtualization. The OS-level virtualization uses containers to allow a single OS kernel to be partitioned to create Virtual Environments (VE), e.g., LXC. The resources within the host's kernel are only virtualized in the sense of separate namespaces. In contrast, system-level virtualization uses hypervisors to manage multiple OS kernels and virtualize the physical resources (hardware) to create Virtual Machines (VM), e.g., Xen, KVM. This terminology of VE and VM, detailed in Section 2, is used throughout the report to distinguish between the two different approaches to providing virtualized execution environments

  12. Enabling patient-centered care through health information technology.

    PubMed

    Finkelstein, Joseph; Knight, Amy; Marinopoulos, Spyridon; Gibbons, M Christopher; Berger, Zackary; Aboumatar, Hanan; Wilson, Renee F; Lau, Brandyn D; Sharma, Ritu; Bass, Eric B

    2012-06-01

    The main objective of the report is to review the evidence on the impact of health information technology (IT) that supports patient-centered care (PCC) on: health care processes; clinical outcomes; intermediate outcomes (patient or provider satisfaction, health knowledge and behavior, and cost); responsiveness to needs and preferences of patients; shared decisionmaking and patient-clinician communication; and access to information. Additional objectives were to identify barriers and facilitators for using health IT to deliver PCC, and to identify gaps in evidence and information needed by patients, providers, payers, and policymakers. MEDLINE®, Embase®, Cochrane Library, Scopus, Cumulative Index to Nursing and Allied Health Literature, PsycINFO, INSPEC, and Compendex databases through July 31, 2010. Paired members of our team reviewed citations to identify randomized controlled trials of PCC-related health IT interventions and studies that addressed barriers and facilitators for health IT for delivery of PCC. Independent assessors rated studies for quality. Paired reviewers abstracted data. The search identified 327 eligible articles, including 184 articles on the impact of health IT applications implemented to support PCC and 206 articles addressing barriers or facilitators for such health IT applications. Sixty-three articles addressed both questions. The study results suggested positive effects of PCC-related health IT interventions on health care process outcomes, disease-specific clinical outcomes (for diabetes mellitus, heart disease, cancer, and other health conditions), intermediate outcomes, responsiveness to the needs and preferences of patients, shared decisionmaking, patient-clinician communication, and access to medical information. Studies reported a number of barriers and facilitators for using health IT applications to enable PCC. Barriers included: lack of usability; problems with access to the health IT application due to older age, low income

  13. Disease patterns addressed by mobile health-enabling technologies--a literature review.

    PubMed

    Von Bargen, Tobias; Schwartze, Jonas; Haux, Reinhold

    2013-01-01

    Health-enabling technologies can contribute to a better living with diverse disease patterns, especially at home. Ambient Assisted Living (AAL) provides security and convenience at the main place of residence, but usually cannot be taken on the road. Mobile health-enabling technologies could overcome this barrier of immobility and enable its' users to take advantages of assistive technology with them. The presented literature review examines disease patterns, which can be addressed by mobile health-enabling technologies. Especially chronic diseases, like diabetes, are very responsive for continuous support by portable support technology.

  14. MONTANA PALLADIUM RESEARCH INITIATIVE

    SciTech Connect

    Peters, John; McCloskey, Jay; Douglas, Trevor; Young, Mark; Snyder, Stuart; Gurney, Brian

    2012-05-09

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4 will

  15. Science, engineering and enabling technologies for exploration of the universe

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.; Hudson, Wayne R.; Mankins, John C.

    1992-01-01

    This report by NASA's Office of Aeronautics, Exploration, and Technology identifies a list of critical technologies needed to support the exploration of the universe. The concept of the Integrated Technology Plan (ITP) is introduced with specific attention given to the strategic planning framework for NASA and other participants involved in the development of space technologies. The required technologies are identified for the Mission to Planet Earth, the Space Exploration Initiative, information systems, spacecraft advancement, and critical astrophysics issues. The ITP presents the basis for strategically planning the development of such technologies as observation systems, on-board processing, EVA systems, aerobraking, nuclear propulsion, scientific information acquisition, and high-energy sensors. The ITP is a significant step towards the planned and prioritized advancement of critical technologies related to the exploration of the universe.

  16. Science, engineering and enabling technologies for exploration of the universe

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.; Hudson, Wayne R.; Mankins, John C.

    1992-01-01

    This report by NASA's Office of Aeronautics, Exploration, and Technology identifies a list of critical technologies needed to support the exploration of the universe. The concept of the Integrated Technology Plan (ITP) is introduced with specific attention given to the strategic planning framework for NASA and other participants involved in the development of space technologies. The required technologies are identified for the Mission to Planet Earth, the Space Exploration Initiative, information systems, spacecraft advancement, and critical astrophysics issues. The ITP presents the basis for strategically planning the development of such technologies as observation systems, on-board processing, EVA systems, aerobraking, nuclear propulsion, scientific information acquisition, and high-energy sensors. The ITP is a significant step towards the planned and prioritized advancement of critical technologies related to the exploration of the universe.

  17. How Does Technology-Enabled Active Learning Affect Undergraduate Students' Understanding of Electromagnetism Concepts?

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Belcher, John

    2005-01-01

    Educational technology supports meaningful learning and enables the presentation of spatial and dynamic images, which portray relationships among complex concepts. The Technology-Enabled Active Learning (TEAL) Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman…

  18. How Does Technology-Enabled Active Learning Affect Undergraduate Students' Understanding of Electromagnetism Concepts?

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Belcher, John

    2005-01-01

    Educational technology supports meaningful learning and enables the presentation of spatial and dynamic images, which portray relationships among complex concepts. The Technology-Enabled Active Learning (TEAL) Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman…

  19. Enabling kinetic micro-penetrator technology for Solar System research

    NASA Astrophysics Data System (ADS)

    Gowen, R. A.

    2008-09-01

    Whilst the concept of high speed impacting penetrator probes is not new, recent highly successful ground test results have considerably improved the perception that these can be a viable and useful addition to the current toolbox of planetary probes. Previous developments only led to a single deployment (Deep Space-2 to Mars on the ill fated NASA Mars Polar Lander mission in 1999) where neither the soft lander nor penetrator was ever heard from, which is not a logical basis for dismissing penetrator technology. Other space penetrator programmes have included the Russian Mars'96 ~80m/s penetrators for which the whole mission was lost before the spacecraft left Earth orbit, and the Japanese Lunar-A program which was cancelled after a lengthy development program which however saw multiple successful ground trials. The Japanese penetrators were designed for ~300m/s impact. The current UK penetrator developments are actively working towards full space qualification for a Lunar penetrators (MoonLITE mission), which would also provide a significant technical demonstration towards the development of smaller, shorter lived penetrators for exploring other solar system objects. We are advocating delivered micro-penetrators in the mass range ~4-10Kg, (preceded by ~13Kg Lunar penetrator MoonLITE development program), impacting at around 100-500m/s and carrying a scientific payload of around 2Kg. Additional mass is required to deliver the probes from `orbit' to surface which is dependent upon the particular planetary body in question. The mass per descent module therefore involves and additional element which, for a descent through an atmosphere could be quite modest, while for a flyby deployment, can be substantial. For Europa we estimate a descent module mass of ~13 Kg, while for Enceladus the value is ~40Kg for Enceladus since a deceleration of ~3.8 kms-1 is needed from a Titan orbit. The delivery system could consist of a rocket deceleration motor and attitude control system

  20. Factors Enabling the Use of Technology in Subject Teaching

    ERIC Educational Resources Information Center

    Cubukcuoglu, Begum

    2013-01-01

    The importance of information and communication technologies in the teaching and learning process has been proven by many research studies to be an effective way of supporting teaching and learning. Although many teachers do not use new technologies as instructional tools, some are integrating information and communication technologies…

  1. Technology Mentors: Enablers of ICT Uptake in Australian Small Business

    ERIC Educational Resources Information Center

    Woodley, Carolyn J.; Burgess, Stephen; Paguio, Rafael; Bingley, Scott

    2015-01-01

    Purpose: The purpose of this paper is to report on the innovative employment of students as technology mentors as part of a Blended Learning Program (BLP) that supported a group of owner-managers of small businesses to adopt appropriate information and communication technologies (ICT) to enhance their work practices. Design/methodology/approach:…

  2. Technology Mentors: Enablers of ICT Uptake in Australian Small Business

    ERIC Educational Resources Information Center

    Woodley, Carolyn J.; Burgess, Stephen; Paguio, Rafael; Bingley, Scott

    2015-01-01

    Purpose: The purpose of this paper is to report on the innovative employment of students as technology mentors as part of a Blended Learning Program (BLP) that supported a group of owner-managers of small businesses to adopt appropriate information and communication technologies (ICT) to enhance their work practices. Design/methodology/approach:…

  3. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  4. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  5. Enabling Technologies for a Future Lunar and Planetary Geophysical Network

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Currie, D.; Grimm, R.; Kedar, S.; Nagihara, S.; Siegler, M.; Weber, R.; Zacny, K.

    2017-02-01

    A long-lived, multi-station, global lunar geophysical network will yield information about primary terrestrial differentiation, as well as potential hazards to long term human surface exploration. The technology can be applied to other planets.

  6. Sample Return from Water Worlds: Requirements, Risks, and Enabling Technologies

    NASA Astrophysics Data System (ADS)

    Venkatapathy, E.; Gage, P.; Munk, M.; Ellerby, D.; Stackpoole, M.

    2017-02-01

    Planetary protection requirements make sample return missions from Mars, Enceladus, Titan, and Europa a grand challenge for entry, descent, and landing. Ways to address the challenges are explored with emerging new technologies.

  7. Technologically Reflective Individuals as Enablers of Social Innovation*

    PubMed Central

    Rau, Christiane; Gassmann, Oliver; van den Hende, Ellis

    2015-01-01

    This paper identifies technologically reflective individuals and demonstrates their ability to develop innovations that benefit society. Technological reflectiveness (TR) is the tendency to think about the societal impact of an innovation, and those who display this capability in public are individuals who participate in online idea competitions focused on technical solutions for social problems (such as General Electric's eco‐challenge, the James Dyson Award, and the BOSCH Technology Horizon Award). However, technologically reflective individuals also reflect in private settings (e.g., when reading news updates), thus requiring a scale to identify them. This paper describes the systematic development of an easy‐to‐administer multi‐item scale to measure an individual's level of TR. Applying the TR scale in an empirical study on a health monitoring system confirmed that individuals' degree of TR relates positively to their ability to generate (1) more new product features and uses, (2) features with higher levels of societal impact, and (3) features that are more elaborated. This scale allows firms seeking to implement co‐creation in their new product development (NPD) process and sustainable solutions to identify such individuals. Thus, this paper indicates that companies wishing to introduce new technological products with a positive societal impact may profit from involving technologically reflective individuals in the NPD process. PMID:27134342

  8. Technologically Reflective Individuals as Enablers of Social Innovation.

    PubMed

    Schweitzer, Fiona; Rau, Christiane; Gassmann, Oliver; van den Hende, Ellis

    2015-11-01

    This paper identifies technologically reflective individuals and demonstrates their ability to develop innovations that benefit society. Technological reflectiveness (TR) is the tendency to think about the societal impact of an innovation, and those who display this capability in public are individuals who participate in online idea competitions focused on technical solutions for social problems (such as General Electric's eco-challenge, the James Dyson Award, and the BOSCH Technology Horizon Award). However, technologically reflective individuals also reflect in private settings (e.g., when reading news updates), thus requiring a scale to identify them. This paper describes the systematic development of an easy-to-administer multi-item scale to measure an individual's level of TR. Applying the TR scale in an empirical study on a health monitoring system confirmed that individuals' degree of TR relates positively to their ability to generate (1) more new product features and uses, (2) features with higher levels of societal impact, and (3) features that are more elaborated. This scale allows firms seeking to implement co-creation in their new product development (NPD) process and sustainable solutions to identify such individuals. Thus, this paper indicates that companies wishing to introduce new technological products with a positive societal impact may profit from involving technologically reflective individuals in the NPD process.

  9. Operator overloading as an enabling technology for automatic differentiation

    SciTech Connect

    Corliss, G.F. |; Griewank, A.

    1993-05-01

    We present an example of the science that is enabled by object-oriented programming techniques. Scientific computation often needs derivatives for solving nonlinear systems such as those arising in many PDE algorithms, optimization, parameter identification, stiff ordinary differential equations, or sensitivity analysis. Automatic differentiation computes derivatives accurately and efficiently by applying the chain rule to each arithmetic operation or elementary function. Operator overloading enables the techniques of either the forward or the reverse mode of automatic differentiation to be applied to real-world scientific problems. We illustrate automatic differentiation with an example drawn from a model of unsaturated flow in a porous medium. The problem arises from planning for the long-term storage of radioactive waste.

  10. Operator overloading as an enabling technology for automatic differentiation

    SciTech Connect

    Corliss, G.F. Argonne National Lab., IL ); Griewank, A. )

    1993-01-01

    We present an example of the science that is enabled by object-oriented programming techniques. Scientific computation often needs derivatives for solving nonlinear systems such as those arising in many PDE algorithms, optimization, parameter identification, stiff ordinary differential equations, or sensitivity analysis. Automatic differentiation computes derivatives accurately and efficiently by applying the chain rule to each arithmetic operation or elementary function. Operator overloading enables the techniques of either the forward or the reverse mode of automatic differentiation to be applied to real-world scientific problems. We illustrate automatic differentiation with an example drawn from a model of unsaturated flow in a porous medium. The problem arises from planning for the long-term storage of radioactive waste.

  11. Technical Assessment: Data-Enabled Technology Watch and Horizon Scanning

    DTIC Science & Technology

    2015-10-01

    Data-Enabled TW/HS With the growth of worldwide S&T and constrained budgets, decision makers must make difficult choices as to how to allocate...tailor the TW/HS program to the customer. To do so, analysts must work with decision makers to make evaluation criteria explicit and define them as...portions of their findings into a cohesive whole in order to make their efforts useful to decision makers. Creating a decision support product requires

  12. Technical Assessment: Data-Enabled Technology Watch & Horizon Scanning

    DTIC Science & Technology

    2015-10-01

    number. 1. REPORT DATE OCT 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Technical Assessment: Data-Enabled... Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is... Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no

  13. A Technology Plan for Enabling Commercial Space Business

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  14. Enabling advanced mirror blank design through modern optical fabrication technology

    NASA Astrophysics Data System (ADS)

    Wilson, Timothy J.; Genberg, Victor L.

    1994-02-01

    Mirror blanks used in high-reliability optical systems for airborne and spaceborne applications have many requirements in terms of weight, stiffness and moment of inertia, as well as mounting and gravitational influences. Lightweight and ultra-lightweight mirror blank design techniques have been enhanced by recent technological developments in mirror blank fabrication and optical figuring. This paper briefly reviews traditional mirror blank design considerations in light of new fabrication technologies such as abrasive water jet machining of mirror cores and ion figuring of optical surfaces. The impact of these new technologies on mirror blank design is also discussed, as well as new design and analytical techniques using NASTRAN. Actual production data using these techniques are presented.

  15. Silicon Cell Technology Enabling Cost Effective CPV System

    NASA Astrophysics Data System (ADS)

    Finot, Marc; Mayo, Aster; MacDonald, Bob

    2011-12-01

    Recent manufacturing technology developments in monocrystalline Silicon cells simultaneously improve efficiency in conventional flat-plate applications and provide a path for high efficiency low cost cells to be optimized for low and medium concentration applications. High volume cell suppliers are utilizing multiple approaches to improve efficiencies, including selective emitter doping, back passivation technology, n-type wafers, low resistance and high minority lifetime wafers, and high quality screen printing. Skyline Solar has developed a CPV system that leverages 1-sun standard Silicon cells and minimizes the total cost of energy that fully takes advantage of these technologies. Cell budget, size and geometries for optimized CPV systems will be discussed. The Skyline High Gain Solar architecture will be used as case study.

  16. The Earth System Grid Center for Enabling Technologies: Focusing Technologies on Climate Datasets and Resource Needs

    SciTech Connect

    Williams, Dean N.

    2007-09-26

    This report discusses a project that used prototyping technology to access and analyze climate data. This project was initially funded under the DOE’s Next Generation Internet (NGI) program, with follow-on support from BER and the Mathematical, Information, and Computational Sciences (MICS) office. In this prototype, we developed Data Grid technologies for managing the movement and replication of large datasets, and applied these technologies in a practical setting (i.e., an ESG-enabled data browser based on current climate data analysis tools), achieving cross-country transfer rates of more than 500 Mb/s. Having demonstrated the potential for remotely accessing and analyzing climate data located at sites across the U.S., we won the “Hottest Infrastructure” award in the Network Challenge event. While the ESG I prototype project substantiated a proof of concept (“Turning Climate Datasets into Community Resources”), the SciDAC Earth System Grid (ESG) II project made this a reality. Our efforts targeted the development of metadata technologies (standard schema, XML metadata extraction based on netCDF, and a Metadata Catalog Service), security technologies (Web-based user registration and authentication, and community authorization), data transport technologies (GridFTPenabled OPeNDAP-G for high-performance access, robust multiple file transport and integration with mass storage systems, and support for dataset aggregation and subsetting), as well as web portal technologies to provide interactive access to climate data holdings. At this point, the technology was in place and assembled, and ESG II was poised to make a substantial impact on the climate modelling community.

  17. Developing enabling optics finishing technologies for the National Ignition Facility

    SciTech Connect

    Aikens, D.M.; Rich, L.; Bajuk, D.; Slomba, A.

    1998-01-08

    Lawrence Livermore National Laboratory is in the process of constructing the National Ignition Facility, a half million square foot facility which will house a 192 beam laser system capable of generating the 2 million joules of ultraviolet light energy necessary to achieve fusion ignition with inertial targets by 2004. More than 7,000 meter class optics will need to be manufactured by LLNL`s industrial partners to construct the laser system. The components will be manufactured starting in 1998 and will be finished by 2003. In 1994 it became clear through a series of funded cost studies that, in order to fabricate such an unprecedented number of large precision optics in so short a time for the lowest possible cost, new technologies would need to be developed and new factories constructed based on those technologies. At that time, LLNL embarked on an ambitious optics finishing technology development program costing more than $6M over 3 years to develop these technologies, working with three suppliers of large precision optics. While each development program centered upon the specialties and often proprietary technologies already existing in the suppliers facility, many of the technologies required for manufacturing large precision optics at the lowest cost possible are common to two and in some cases all three efforts. Since many of the developments achieved during this program stemmed from intellectual property and trade secrets at the vendors, the program cannot be described completely in a public forum. Nevertheless, many non-proprietary advances were made during this program which the vendors are willing to share with the greater community. This presentation will describe the manufacturing process in a general sense which is used by all three of the companies under contract; Zygo Corporation, Tinsley Laboratories, and Eastman Kodak. In each of the principle process steps of shaping, grinding, polishing, figuring, and metrology, development highlights will be

  18. Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan E.; Kibbey, Timothy P.; Cobb, C. Brent; Harris, Lawanna L.

    2014-01-01

    A launch vehicle at the scale and price point which allows developers to take reasonable risks with high payoff propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial technology "valley of death" that lies between demonstration in laboratory and flight environments. NASA's NanoLaunch effort will provide the framework to mature both earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low earth orbit for cubesat class payloads.

  19. Enabling instrumentation and technology for 21st century light sources

    SciTech Connect

    Byrd, J.M.; Shea, T.J.; Denes, P.; Siddons, P.; Attwood, D.; Kaertner, F.; Moog, L.; Li, Y.; Sakdinawat, A.; Schlueter, R.

    2010-06-01

    We present the summary from the Accelerator Instrumentation and Technology working group, one of the five working groups that participated in the BES-sponsored Workshop on Accelerator Physics of Future Light Sources held in Gaithersburg, MD September 15-17, 2009. We describe progress and potential in three areas: attosecond instrumentation, photon detectors for user experiments, and insertion devices.

  20. Management as the enabling technology for space exploration

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt C., Jr.; Griffin, Michael D.

    1992-01-01

    This paper addresses the dilemma which NASA faces in starting a major new initiative within the constraints of the current national budget. It addressed the fact that unlike previous NASA programs, the major mission constraints come from management factors as opposed to technologies. An action plan is presented, along with some results from early management simplification processes.

  1. Enabling National Security Through Dual-Use Technology

    DTIC Science & Technology

    2014-04-30

    efforts. Kratz leads Lockheed Martin’s Automatic Identification Technology implementation, including RFID and UID. After successfully completing eight...pilot projects, Kratz is now guiding Lockheed Martin’s enterprise implementation of RFID . He also guides Lockheed Martin’s logistics strategic

  2. Management as the enabling technology for space exploration

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt C., Jr.; Griffin, Michael D.

    1992-01-01

    This paper addresses the dilemma which NASA faces in starting a major new initiative within the constraints of the current national budget. It addressed the fact that unlike previous NASA programs, the major mission constraints come from management factors as opposed to technologies. An action plan is presented, along with some results from early management simplification processes.

  3. Miniaturized Power Processing Unit Study: A Cubesat Electric Propulsion Technology Enabler Project

    NASA Technical Reports Server (NTRS)

    Ghassemieh, Shakib M.

    2014-01-01

    This study evaluates High Voltage Power Processing Unit (PPU) technology and driving requirements necessary to enable the Microfluidic Electric Propulsion technology research and development by NASA and university partners. This study provides an overview of the state of the art PPU technology with recommendations for technology demonstration projects and missions for NASA to pursue.

  4. Collaboration forum: an innovation in information exchange for enabling technologies

    NASA Astrophysics Data System (ADS)

    Stephenson, Mark M.

    2001-09-01

    Collaboration technologies represent a new approach for performing distributed experiments using multiple and disparate simulations. While Collaboration technologies provide potential solutions, there is also a problem in understanding the capabilities of the many technologies in existence, technologies under development, and new concepts. The problem now is keeping up with the rapidly evolving products and concepts within the collaboration community. A new non-commercial web site (www.CollaborationForum.org) has just come on-line to support the collaboration community. This unique web site is designed exclusively by and for the collaboration community. The web site has three primary goals: 1) to be the portal for all information about electronic collaboration. For example, the site includes links to most other related web sites, lists of conferences, and a list of collaboration tools. 2) To promote collaboration as a way of doing business. This web site, will educate industry and the Department of Defense on the tremendous gains that can be realized through proper implementation of electronic collaboration. 3) To support organizations in the development and incorporation of collaboration technology into their enterprises. This may take a variety of forms such as learning from others who have used and commented on a collaboration tool, linking tools vendors with collaboration experts, on-line teaching, and more. The web site itself is a collaboration. Most of the sections within the site itself is a collaboration. Most of the sections within the site offer the user the opportunity to participate by providing their knowledge, experience, and opinions. The site also offers on-line discussion forums where users can discuss a variety of different topics in a free from discussion format. Topics range from getting started in collaboration to advanced collaboration science research. Get on-line and join us in this collaboration of collaborators.

  5. Enabling Smart Workflows over Heterogeneous ID-Sensing Technologies

    PubMed Central

    Giner, Pau; Cetina, Carlos; Lacuesta, Raquel; Palacios, Guillermo

    2012-01-01

    Sensing technologies in mobile devices play a key role in reducing the gap between the physical and the digital world. The use of automatic identification capabilities can improve user participation in business processes where physical elements are involved (Smart Workflows). However, identifying all objects in the user surroundings does not automatically translate into meaningful services to the user. This work introduces Parkour, an architecture that allows the development of services that match the goals of each of the participants in a smart workflow. Parkour is based on a pluggable architecture that can be extended to provide support for new tasks and technologies. In order to facilitate the development of these plug-ins, tools that automate the development process are also provided. Several Parkour-based systems have been developed in order to validate the applicability of the proposal. PMID:23202193

  6. Evaluation of a technology enabled garment for older walkers.

    PubMed

    Burns, William P; Nugent, Chris D; McCullagh, Paul J; Finlay, Dewar D; Cleland, Ian; Scotney, Bryan W; McClean, Sally I; McCann, Jane; Gueldenring, Daniel

    2012-01-01

    Walking is often cited as the best form of activity for persons over the age of 60. In this paper we outline the development and evaluation of a smart garment system that aims to monitor the wearer's wellbeing and activity regimes during walking activities. Functional requirements were ascertained using a combination of questionnaires and two workshops with a target cohort. The requirements were subsequently mapped onto current technologies as part of the technical design process. In this paper we outline the development and second round of evaluations of a prototype as part of a three-phase iterative development cycle. The evaluation was undertaken with 6 participants aged between 60 and 73 years of age. The results of the evaluation demonstrate the potential role that technology can play in the promotion of activity regimes for the older population.

  7. Utilizing Advanced Vibration Isolation Technology to Enable Microgravity Science Operations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean Carl

    1999-01-01

    Microgravity scientific research is performed in space to determine the effects of gravity upon experiments. Until recently, experiments had to accept the environment aboard various carriers: reduced-gravity aircraft, sub-orbital payloads, Space Shuttle, and Mir. If the environment is unacceptable, then most scientists would rather not expend the resources without the assurance of true microgravity conditions. This is currently the case on the International Space Station, because the ambient acceleration environment will exceed desirable levels. For this reason, the g-LIMIT (Glovebox Integrated Microgravity Isolation Technology) system is currently being developed to provide a quiescent acceleration environment for scientific operations. This sub-rack isolation system will provide a generic interface for a variety of experiments for the Microgravity Science Glovebox. This paper describes the motivation for developing of the g-LIMIT system, presents the design concept and details some of the advanced technologies utilized in the g-LIMIT flight design.

  8. Enabling smart workflows over heterogeneous ID-sensing technologies.

    PubMed

    Giner, Pau; Cetina, Carlos; Lacuesta, Raquel; Palacios, Guillermo

    2012-11-05

    Sensing technologies in mobile devices play a key role in reducing the gap between the physical and the digital world. The use of automatic identification capabilities can improve user participation in business processes where physical elements are involved(Smart Workflows). However, identifying all objects in the user surroundings does not automatically translate into meaningful services to the user. This work introduces Parkour,an architecture that allows the development of services that match the goals of each of the participants in a smart workflow. Parkour is based on a pluggable architecture that can be extended to provide support for new tasks and technologies. In order to facilitatethe development of these plug-ins, tools that automate the development process are also provided. Several Parkour-based systems have been developed in order to validate the applicability of the proposal.

  9. Ultra-High Capacity Networking Enabled By Optical Technologies

    DTIC Science & Technology

    2003-08-01

    available component that monolithically integrated the EAM (electro absorption modulator). Liquid crystal switch (dynamic) To band or wavelength...Ratovelomanana, A. Enard, G. Glastre, D. Rondi, R. Blondeau “Wavelength conversion by optimized monolithic integrated Mach-Zehnder interferometer,” IEEE...been integrated by various groups. In order to fabricate these devices, both monolithic and hybrid technologies have been used. The first

  10. Stroke education for nurses through a technology-enabled program.

    PubMed

    Carter, Lorraine; Rukholm, Ellen; Kelloway, Linda

    2009-12-01

    Today's nurse faces many challenges in the workplace. Required to keep up in a constantly changing knowledge-based environment, he or she must balance complex professional responsibilities, staffing shortages, and increased acuity among the patient population. Continuing education must, therefore, be highly flexible and responsive to the personal and professional needs of the nurse learner. Technology-supported continuing education is suggested to be an appropriate way of meeting the learning needs of busy working nurses. The Stroke Best Practices for Nursing project used three complementary and integrated educational technologies-a-Web-based learning site, Web casting (live and archived), and two-way interactive videoconferencing--to deliver a minicourse focused on best practice stroke care to nurses working in northeastern and northwestern Ontario, a geographical area of approximately 600 km. In total, 96 nurses participated in the educational part of the program; 46 of the 96 (47%) took part in the assessment of the program. On the basis of this assessment strategy and the nurses' requests for other programs that do not use traditional face-to-face classrooms and lecture, the value of using educational technologies in health-based continuing education was strongly identified. This article describes key components of the project and celebrates the partnership among the organizing stakeholders: faculty in the school of nursing at the Laurentian University, the West Greater Toronto Area Stroke Network, and the Ontario Telemedicine Network. The article further describes findings related to the program's impact on participants' perceptions of competence as caregivers for stroke patients, participants' confidence using technology for educational purposes, and participants' satisfaction with the overall program.

  11. Enabling Detailed Energy Analyses via the Technology Performance Exchange: Preprint

    SciTech Connect

    Studer, D.; Fleming, K.; Lee, E.; Livingood, W.

    2014-08-01

    One of the key tenets to increasing adoption of energy efficiency solutions in the built environment is improving confidence in energy performance. Current industry practices make extensive use of predictive modeling, often via the use of sophisticated hourly or sub-hourly energy simulation programs, to account for site-specific parameters (e.g., climate zone, hours of operation, and space type) and arrive at a performance estimate. While such methods are highly precise, they invariably provide less than ideal accuracy due to a lack of high-quality, foundational energy performance input data. The Technology Performance Exchange was constructed to allow the transparent sharing of foundational, product-specific energy performance data, and leverages significant, external engineering efforts and a modular architecture to efficiently identify and codify the minimum information necessary to accurately predict product energy performance. This strongly-typed database resource represents a novel solution to a difficult and established problem. One of the most exciting benefits is the way in which the Technology Performance Exchange's application programming interface has been leveraged to integrate contributed foundational data into the Building Component Library. Via a series of scripts, data is automatically translated and parsed into the Building Component Library in a format that is immediately usable to the energy modeling community. This paper (1) presents a high-level overview of the project drivers and the structure of the Technology Performance Exchange; (2) offers a detailed examination of how technologies are incorporated and translated into powerful energy modeling code snippets; and (3) examines several benefits of this robust workflow.

  12. The Communications of Influence through Technology-Enabled Media

    DTIC Science & Technology

    2006-12-01

    states (Dillard, Anderson, & Knobloch, 2002; Meyers & Brashers, 1999). Influence is a fundamental concept to the human experience because humans are...appropriate to the situation? Finally, consider the notion of leadership absent from the consideration of influence over others-the concept itself becomes...specifically addresses the interplay between technology and the overt, symbolic behaviors and communicated messages commonly associated with the concept of

  13. Enabling Telescopes of the Future: Long-Range Technology Investing

    NASA Technical Reports Server (NTRS)

    Thronson, Harley

    2004-01-01

    The Office of Space Science at NASA Headquarters has a current staff of about 60 professionals (aka, scientists, engineers, budget analysts) and an annual budget of $2.5 B out of NASA s $15.0 B. About 35 missions or programs in various stages of development or operation are managed by OSS, notable among them are Hubble Space Telescope, Mars Global Surveyor, Mars 2001 Odyssey, Chandra X-ray Observatory, TRACE (solar observatory), Cassini (mission to Saturn), Galileo (mission at Jupiter), and Next Generation Space Telescope. OSS has an annual technology budget of several hundred million dollars. So, what is it that we are doing?

  14. Three-Dimensional Printing: An Enabling Technology for IR.

    PubMed

    Sheth, Rahul; Balesh, Elie R; Zhang, Yu Shrike; Hirsch, Joshua A; Khademhosseini, Ali; Oklu, Rahmi

    2016-06-01

    Rapid prototyping, also known as three-dimensional (3D) printing, is a recent technologic advancement with tremendous potential for advancing medical device design. A wide range of raw materials can be incorporated into complex 3D structures, including plastics, metals, biocompatible polymers, and even living cells. With its promise of highly customized, adaptable, and personalized device design at the point of care, 3D printing stands to revolutionize medical care. The present review summarizes the methods for 3D printing and their current and potential roles in medical device design, with an emphasis on their potential relevance to interventional radiology.

  15. Can wireless technology enable new diabetes management tools?

    PubMed

    Hedtke, Paul A

    2008-01-01

    Mobile computing and communications technology embodied in the modern cell phone device can be employed to improve the lives of diabetes patients by giving them better tools for self-management. Several companies are working on the development of diabetes management tools that leverage the ubiquitous cell phone to bring self-management tools to the hand of the diabetes patient. Integration of blood glucose monitoring (BGM) technology with the cell phone platform adds a level of convenience for the person with diabetes, but, more importantly, allows BGM data to be automatically captured, logged, and processed in near real time in order to provide the diabetes patient with assistance in managing their blood glucose levels. Other automatic measurements can estimate physical activity, and information regarding medication events and food intake can be captured and analyzed in order to provide the diabetes patient with continual assistance in managing their therapy and behaviors in order to improve glycemic control. The path to realization of such solutions is not, however, without obstacles.

  16. Adaptive Nulling: A New Enabling Technology for Interferometric Exoplanet

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Jeganathan, Muthu; Peters, Robert

    2003-01-01

    Deep, stable nulling of starlight requires careful control of the amplitudes and phases of the beams that are being combined. The detection of earth-like planets using the interferometer architectures currently being considered for the Terrestrial Planet Finder mission require that the E-field amplitudes are balanced at the level of approx. 0.1%, and the phases are controlled at the level of 1 mrad (corresponding to approx.1.5 nm for a wavelength of 10 microns). These conditions must be met simultaneously at all wavelengths across the science band, and for both polarization states, imposing unrealistic tolerances on the symmetry between the optical beamtrains. We introduce the concept of a compensator that is inserted into the beamtrain, which can adaptively correct for the mismatches across the spectrum, enabling deep nulls with realistic, imperfect optics. The design presented uses a deformable mirror to adjust the amplitude and phase of each beam as an arbitrary function of wavelength and polarization. A proof-of-concept experiment will be conducted at visible/near-IR wavelengths, followed by a system operating in the Mid-IR band.

  17. Synthetic Biology as an Enabling Technology for Space Exploration

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  18. Enabling Technologies for Microfluidic Flow Control and Detection

    NASA Astrophysics Data System (ADS)

    Leslie, Daniel Christopher

    Advances in microfluidic technologies have expanded conventional chemical and biological techniques to the point where we can envision rapid, inexpensive and portable analysis. Among the numerous challenges in the development of portable, chip-based technologies are simple flow control and detection strategies, which will be essential to widespread acceptance and implementation at both the point-of-care and in locales with limited facilities/resources. The research presented in this dissertation is focused on the development of precise flow control techniques and new, simplified detection technologies aimed at addressing these challenges. An introduction to the concepts important to microfluidics and a brief history to the field are presented in Chapter 1. Chapter 2 will present the development of a technique for the precise control of small volumes of liquids, where well-studied electrical circuit concepts are employed to create frequency-dependent microfluidic circuits. In this system, elastomeric thin films act as fluidic capacitors and diodes, which, when combined with resistors (channels), make fluidic circuits that are described by analytical models. Metering of two separate chemical inputs with a single oscillatory pneumatic control line is demonstrated by combining simple fluidic circuits (i.e., band-pass filters) to significantly reduce the external hardware required for microfluidic flow control. In order to quantify multiple flow profiles in microfluidic circuits, a novel multiplexed flow measurement method using visible dyes is introduced in Chapter 3 and rapidly determines individual flow in connected channels, post-fabrication device quality and solution viscosity. Another thrust of this dissertation research has been to develop miniaturized bioanalytical systems. Chapter 4 describes the adaption of a nucleic-acid-tagged antibody protein detection reaction to a microfluidic platform for detection of down to 5 E. coli O157:H7 cells. Furthermore, a

  19. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  20. Ultrafast laser inscription: an enabling technology for astrophotonics.

    PubMed

    Thomson, Robert R; Kar, Ajoy K; Allington-Smith, Jeremy

    2009-02-02

    The application of photonics to astronomy offers major advantages in the area of highly-multiplexed spectroscopy, especially when applied to extremely large telescopes. These include the suppression of the near-infrared night-sky spectrum [J. Bland-Hawthorn et al, Opt. Express 12, 5902 (2004), S. G. Leon-Saval et al, Opt. Lett. 30, 2545 (2005)] and the miniaturisation of spectrographs so that they may integrated into the lightpath of individual spatial samples [J. Bland-Hawthorn et al, Proc SPIE 6269, 62690N (2006)]. Efficient collection of light from the telescope requires multimode optical fibres and three-dimensional photonic devices. We propose ultrafast laser inscription (ULI) [R. R. Thomson et al, Opt. Express 15, 11691 (2007)] as the best technology to fabricate 3D photonic devices for astrophotonic applications.

  1. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  2. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    DOE PAGES

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah; ...

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of impartially joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Finally, although the frictionmore » stir scribe process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.« less

  3. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah; Carlson, Blair; Boettcher, Eric; Ruokolainen, Robert

    2017-04-01

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of impartially joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Although the friction stir scribe process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.

  4. SAR data exploitation: computational technology enabling SAR ATR algorithm development

    NASA Astrophysics Data System (ADS)

    Majumder, Uttam K.; Casteel, Curtis H., Jr.; Buxa, Peter; Minardi, Michael J.; Zelnio, Edmund G.; Nehrbass, John W.

    2007-04-01

    A fundamental issue with synthetic aperture radar (SAR) application development is data processing and exploitation in real-time or near real-time. The power of high performance computing (HPC) clusters, FPGA, and the IBM Cell processor presents new algorithm development possibilities that have not been fully leveraged. In this paper, we will illustrate the capability of SAR data exploitation which was impractical over the last decade due to computing limitations. We can envision that SAR imagery encompassing city size coverage at extremely high levels of fidelity could be processed at near-real time using the above technologies to empower the warfighter with access to critical information for the war on terror, homeland defense, as well as urban warfare.

  5. GeoPro: Technology to Enable Scientific Modeling

    SciTech Connect

    C. Juan

    2004-02-09

    Development of the ground-water flow model for the Death Valley Regional Groundwater Flow System (DVRFS) required integration of numerous supporting hydrogeologic investigations. The results from recharge, discharge, hydraulic properties, water level, pumping, model boundaries, and geologic studies were integrated to develop the required conceptual and 3-D framework models, and the flow model itself. To support the complex modeling process and the needs of the multidisciplinary DVRFS team, a hardware and software system called GeoPro (Geoscience Knowledge Integration Protocol) was developed. A primary function of GeoPro is to manage the large volume of disparate data compiled for the 100,000-square-kilometer area of southern Nevada and California. The data are primarily from previous investigations and regional flow models developed for the Nevada Test Site and Yucca Mountain projects. GeoPro utilizes relational database technology (Microsoft SQL Server{trademark}) to store and manage these tabular point data, groundwater flow model ASCII data, 3-D hydrogeologic framework data, 2-D and 2.5-D GIS data, and text documents. Data management consists of versioning, tracking, and reporting data changes as multiple users access the centralized database. GeoPro also supports the modeling process by automating the routine data transformations required to integrate project software. This automation is also crucial to streamlining pre- and post-processing of model data during model calibration. Another function of GeoPro is to facilitate the dissemination and use of the model data and results through web-based documents by linking and allowing access to the underlying database and analysis tools. The intent is to convey to end-users the complex flow model product in a manner that is simple, flexible, and relevant to their needs. GeoPro is evolving from a prototype system to a production-level product. Currently the DVRFS pre- and post-processing modeling tools are being re

  6. Ion Propulsion: An Enabling Technology for the Dawn Mission

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Mark M.; Whiffen, Greg J.; Brophy, John R.; Mikes, Steven C.

    2013-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, 4 Vesta, and the dwarf planet 1 Ceres. The Dawn spacecraft was launched from the Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 rocket that placed the 1218-kg spacecraft into an Earth-escape (heliocentic) trajectory with an escape velocity of 11 km/s. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide an additional delta-V of approximately 11 km/s for the heliocentric transfers to each body and for all orbit transfers including orbit capture/escape and transition to the various science orbits. Deterministic thrusting to Vesta began in December 2007 and concluded with orbit capture at Vesta in July 2011. The transfer to Vesta included a Mars gravity assist flyby in February 2009 that provided an additional delta-V of 2.6 km/s and was the only post-launch mission delta-V not provided by IPS. The IPS was used during the 14 months at Vesta for all science orbit transfers and then for Vesta escape. Deterministic thrusting for Ceres began in late August 2012 with a planned arrival date at Ceres in early 2015, whereupon IPS will be used for all science orbit transfers. As of January 2013 the IPS has been operated for approximately 28,000 hours, consumed approximately 280 kg of xenon, and provided a delta-V of approximately 7.5 km/s, the most post-launch delta-V of any spacecraft yet flown. IPS performance characteristics are very close to the expected performance based on analysis and testing performed pre-launch. Use of the IPS together with a medium-priced launch vehicle enabled this high delta-V mission to be performed within the Discovery Program cost cap. This paper provides an overview of the Dawn IPS and its mission operations through departure for Ceres.

  7. Results of DIII-D operation with new enabling technologies

    SciTech Connect

    Simonen, T.C.

    1997-03-01

    Recent experiments on DIII-D have been carried out to understand and explore optimized tokamak operating modes by exploiting control of the plasma current and pressure profiles using new RF current drive and divertor technology. DIII-D emphasizes plasma shape and divertor experiments using a digital plasma control system and extensive diagnostics to develop improved understanding and control of transport barriers in high performance plasmas. The emphasis of the program is to extend the duration of high performance operating modes beyond the plasma current relaxation time by using ICRF and ECH current drive. Engineering features of the new RF systems being developed for these experiments as well as new divertor results are described. DIII-D employs multi-element ICRF antennas for fast-wave electron heating and on-axis current drive and is beginning 110 GHz ECH experiments with MW-level gyrotrons for off-axis current drive. DIII-D employs active cryogenic divertor neutral particle pumping for plasma density and plasma pressure profile control. A divertor modification is now being implemented on DIII-D to pump higher triangularity plasmas and to better baffle neutral backflow from the recycling divertor region.

  8. Novel Serial Positive Enrichment Technology Enables Clinical Multiparameter Cell Sorting

    PubMed Central

    Tschulik, Claudia; Piossek, Christine; Bet, Jeannette; Yamamoto, Tori N.; Schiemann, Matthias; Neuenhahn, Michael; Martin, Klaus; Schlapschy, Martin; Skerra, Arne; Schmidt, Thomas; Edinger, Matthias; Riddell, Stanley R.; Germeroth, Lothar; Busch, Dirk H.

    2012-01-01

    A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated from other cells by combinations of multiple markers, which is still difficult to achieve – especially for clinical cell products. Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4high/CD25high/CD45RAhigh ‘regulatory T cells’ and CD8high/CD62Lhigh/CD45RAneg ‘central memory T cells’, have been established to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell sorting as well as basic research. PMID:22545138

  9. Aerobraking at Venus: A science and technology enabler

    NASA Astrophysics Data System (ADS)

    Hibbard, Kenneth; Glaze, Lori; Prince, Jill

    2012-04-01

    activities to onboard the spacecraft. A defined aerobraking temperature corridor, based on spacecraft component maximum temperatures, can be employed on a spacecraft specifically designed for aerobraking, and will predict subsequent aerobraking orbits and prescribe apoapsis propulsive maneuvers to maintain the spacecraft within its specified temperature limits. A spacecraft specifically designed for aerobraking in the Venus environment can provide a cost-effective platform for achieving these expanded science and technology goals.This paper discusses the scientific merits of a low-altitude, near-circular orbit at Venus, highlights the differences in aerobraking at Venus versus Mars, and presents design data using a flight system specifically designed for an aerobraking mission at Venus. Using aerobraking to achieve a low altitude orbit at Venus may pave the way for various technology demonstrations, such as autonomous aerobraking techniques and/or new science measurements like a multi-mode, synthetic aperture radar capable of altimetry and radiometry with performance that is significantly more capable than Magellan.

  10. Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan; Kibbey, Tim; Lampton, Pat; Brown, Thomas

    2014-01-01

    demonstration in laboratory and flight environments. This effort will provide the framework to mature both on-orbit and earth-to-orbit avionics and propulsion technologies while also providing dedicated, affordable access to LEO for cubesat class payloads.

  11. Recce and UAV: mass memory an enabling technology for merger

    NASA Astrophysics Data System (ADS)

    Hall, Walter J., Jr.

    1996-11-01

    In the era of Declining Defense Dollars, the cost of sophisticated aircraft and highly trained personnel has heightened interest in Unmanned Air Vehicles (UAVs). The obvious lure is the lower vehicle cost (no crew station and crew support systems) and reduced needs for highly skilled air crews. Reconnaissance (commonly called recce) aircraft and their missions are among the commonly sighted applications for UAVs. Today's UAV recce aircraft (such as the Predator) are the genesis of much more sophisticated UAVs of the future. The evolution of the UAV will not be constrained to recce aircraft, but the recce mission will be significant for UAVs. The recce hole has historically been that of a battlefield data collector for post mission review and planning. In the electronic battlefield of the future, that role will be expanded. Envisioned mission for future recce aircraft include real-time scout, target location and fire coordination, battle damage assessment, and large area surveillance. Associated with many of these new roles is the need to store or assess much higher volumes of data. The higher volume data requirements are the result of higher resolution sensors (the Advanced Helicopter Pilotage infrared sensor has a data rate of near 1.2 Gigabits per second) and multi-sensor applications (the Multi-Sensor Aided Targeting program considered infrared, TV, and radar). The evolution of the UAV recce role, and associated increased data storage needs (from higher data rates and increased coverage requirements), requires the development of new data storage equipment. One solution to the increased storage needs is solid-state memory. As solid-state memories become faster, smaller, and cheaper they will enable the UAV recce mission capability to expand. Because of the speed of the memory, it will be possible to buffer and assess (identify the existence of targets or other points of interest) data before committing to consumption of limited storage assets. Faster memory

  12. Enabling Technologies for Direct Detection Optical Phase Modulation Formats

    NASA Astrophysics Data System (ADS)

    Xu, Xian

    Phase modulation formats are believed to be one of the key enabling techniques for next generation high speed long haul fiber-optic communication systems due to the following main advantages: (1) with a balanced detection, a better receiver sensitivity over conventional intensity modulation formats, e.g., a ˜3-dB sensitivity improvement using differential phase shift keying (DPSK) and a ˜1.3-dB sensitivity improvement using differential quadrature phase shift keying (DQPSK); (2) excellent robustness against fiber nonlinearities; (3) high spectrum efficiency when using multilevel phase modulation formats, such as DQPSK. As the information is encoded in the phase of the optical field, the phase modulation formats are sensitive to the phase-related impairments and the deterioration induced in the phase-intensity conversion. This consequently creates new challenging issues. The research objective of this thesis is to depict some of the challenging issues and provide possible solutions. The first challenge is the cross-phase modulation (XPM) penalty for the phase modulated channels co-propagating with the intensity modulated channels. The penalty comes from the pattern dependent intensity fluctuations of the neighboring intensity modulated channels being converted into phase noise in the phase modulation channels. We propose a model to theoretically analyze the XPM penalty dependence on the walk off effect. From this model, we suggest that using fibers with large local dispersion or intentionally introducing some residual dispersion per span would help mitigate the XPM penalty. The second challenge is the polarization dependent frequency shift (PDf) induced penalty during the phase-intensity conversion. The direct detection DPSK is usually demodulated in a Mach-Zehnder delay interferometer (DI). The polarization dependence of DI introduces a PDf causing a frequency offset between the laser's frequency and the transmissivity peak of DI, degrading the demodulated DPSK

  13. Solid Freeform Fabrication: An Enabling Technology for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Hafley, Robert A.; Dicus, Dennis L.

    2002-01-01

    The emerging class of direct manufacturing processes known as Solid Freeform Fabrication (SFF) employs a focused energy beam and metal feedstock to build structural parts directly from computer aided design (CAD) data. Some variations on existing SFF techniques have potential for application in space for a variety of different missions. This paper will focus on three different applications ranging from near to far term to demonstrate the widespread potential of this technology for space-based applications. One application is the on-orbit construction of large space structures, on the order of tens of meters to a kilometer in size. Such structures are too large to launch intact even in a deployable design; their extreme size necessitates assembly or erection of such structures in space. A low-earth orbiting satellite with a SFF system employing a high-energy beam for high deposition rates could be employed to construct large space structures using feedstock launched from Earth. A second potential application is a small, multifunctional system that could be used by astronauts on long-duration human exploration missions to manufacture spare parts. Supportability of human exploration missions is essential, and a SFF system would provide flexibility in the ability to repair or fabricate any part that may be damaged or broken during the mission. The system envisioned would also have machining and welding capabilities to increase its utility on a mission where mass and volume are extremely limited. A third example of an SFF application in space is a miniaturized automated system for structural health monitoring and repair. If damage is detected using a low power beam scan, the beam power can be increased to perform repairs within the spacecraft or satellite structure without the requirement of human interaction or commands. Due to low gravity environment for all of these applications, wire feedstock is preferred to powder from a containment, handling, and safety

  14. Photon counting readout pixel array in 0.18-μm CMOS technology for on-line gamma-ray imaging of 103palladium seeds for permanent breast seed implant (PBSI) brachytherapy

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Karim, K. S.; Reznik, A.; Caldwell, C. B.; Rowlands, J. A.

    2008-03-01

    Permanent breast seed implant (PBSI) brachytherapy technique was recently introduced as an alternative to high dose rate (HDR) brachytherapy and involves the permanent implantation of radioactive 103Palladium seeds into the surgical cavity of the breast for cancer treatment. To enable accurate seed implantation, this research introduces a gamma camera based on a hybrid amorphous selenium detector and CMOS readout pixel architecture for real-time imaging of 103Palladium seeds during the PBSI procedure. A prototype chip was designed and fabricated in 0.18-μm n-well CMOS process. We present the experimental results obtained from this integrated photon counting readout pixel.

  15. Enabling medication management through health information technology (Health IT).

    PubMed

    McKibbon, K Ann; Lokker, Cynthia; Handler, Steve M; Dolovich, Lisa R; Holbrook, Anne M; O'Reilly, Daria; Tamblyn, Robyn; J Hemens, Brian; Basu, Runki; Troyan, Sue; Roshanov, Pavel S; Archer, Norman P; Raina, Parminder

    2011-04-01

    The objective of the report was to review the evidence on the impact of health information technology (IT) on all phases of the medication management process (prescribing and ordering, order communication, dispensing, administration and monitoring as well as education and reconciliation), to identify the gaps in the literature and to make recommendations for future research. We searched peer-reviewed electronic databases, grey literature, and performed hand searches. Databases searched included MEDLINE®, Embase, CINAHL (Cumulated Index to Nursing and Allied Health Literature), Cochrane Database of Systematic Reviews, International Pharmaceutical Abstracts, Compendex, Inspec (which includes IEEE Xplore), Library and Information Science Abstracts, E-Prints in Library and Information Science, PsycINFO, Sociological Abstracts, and Business Source Complete. Grey literature searching involved Internet searching, reviewing relevant Web sites, and searching electronic databases of grey literatures. AHRQ also provided all references in their e-Prescribing, bar coding, and CPOE knowledge libraries. Paired reviewers looked at citations to identify studies on a range of health IT used to assist in the medication management process (MMIT) during multiple levels of screening (titles and abstracts, full text and final review for assignment of questions and data abstrction). Randomized controlled trials and cohort, case-control, and case series studies were independently assessed for quality. All data were abstracted by one reviewer and examined by one of two different reviewers with content and methods expertise. 40,582 articles were retrieved. After duplicates were removed, 32,785 articles were screened at the title and abstract phase. 4,578 full text articles were assessed and 789 articles were included in the final report. Of these, 361 met only content criteria and were listed without further abstraction. The final report included data from 428 articles across the seven key

  16. Enabling medication management through health information technology (Health IT).

    PubMed Central

    McKibbon, K Ann; Lokker, Cynthia; Handler, Steve M; Dolovich, Lisa R; Holbrook, Anne M; O'Reilly, Daria; Tamblyn, Robyn; J Hemens, Brian; Basu, Runki; Troyan, Sue; Roshanov, Pavel S; Archer, Norman P; Raina, Parminder

    2011-01-01

    OBJECTIVES The objective of the report was to review the evidence on the impact of health information technology (IT) on all phases of the medication management process (prescribing and ordering, order communication, dispensing, administration and monitoring as well as education and reconciliation), to identify the gaps in the literature and to make recommendations for future research. DATA SOURCES We searched peer-reviewed electronic databases, grey literature, and performed hand searches. Databases searched included MEDLINE®, Embase, CINAHL (Cumulated Index to Nursing and Allied Health Literature), Cochrane Database of Systematic Reviews, International Pharmaceutical Abstracts, Compendex, Inspec (which includes IEEE Xplore), Library and Information Science Abstracts, E-Prints in Library and Information Science, PsycINFO, Sociological Abstracts, and Business Source Complete. Grey literature searching involved Internet searching, reviewing relevant Web sites, and searching electronic databases of grey literatures. AHRQ also provided all references in their e-Prescribing, bar coding, and CPOE knowledge libraries. METHODS Paired reviewers looked at citations to identify studies on a range of health IT used to assist in the medication management process (MMIT) during multiple levels of screening (titles and abstracts, full text and final review for assignment of questions and data abstrction). Randomized controlled trials and cohort, case-control, and case series studies were independently assessed for quality. All data were abstracted by one reviewer and examined by one of two different reviewers with content and methods expertise. RESULTS 40,582 articles were retrieved. After duplicates were removed, 32,785 articles were screened at the title and abstract phase. 4,578 full text articles were assessed and 789 articles were included in the final report. Of these, 361 met only content criteria and were listed without further abstraction. The final report included data

  17. Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Thomas, Herbert D.; Wiegmann, Bruce M.; Heaton, Andrew F.; Johnson, Les; Beers, Benjamin R.

    2015-01-01

    The Advanced Concepts Office at NASA’s George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system’s heliopause, approximately 100 AU from the sun, within 10 years. The advanced propulsion system trade study consisted of three candidates, including a Magnetically Shielded Miniature Hall thruster, a solar sail and an electric sail. A second analysis was conducted to determine which solid rocket motor kick stage(s) would be required to provide additional thrust at various points in the trajectory, assuming a characteristic energy capability provided by a Space Launch System Block 1B vehicle architecture carrying an 8.4 meter payload fairing. Two trajectory profiles were considered, including an escape trajectory using a Jupiter gravity assist and an escape trajectory first performing a Jupiter gravity assist followed by an Oberth maneuver around the sun and an optional Saturn gravity assist. Results indicated that if the Technology Readiness Level of an electric sail could be increased in time, this technology could not only enable a satellite to reach 100 AU in 10 years but it could potentially do so in even less time.

  18. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  19. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  20. Fluorometric imaging methods for palladium and platinum and the use of palladium for imaging biomolecules.

    PubMed

    Tracey, Matthew P; Pham, Dianne; Koide, Kazunori

    2015-07-21

    Neither palladium nor platinum is an endogenous biological metal. Imaging palladium in biological samples, however, is becoming increasingly important because bioorthogonal organometallic chemistry involves palladium catalysis. In addition to being an imaging target, palladium has been used to fluorometrically image biomolecules. In these cases, palladium species are used as imaging-enabling reagents. This review article discusses these fluorometric methods. Platinum-based drugs are widely used as anticancer drugs, yet their mechanism of action remains largely unknown. We discuss fluorometric methods for imaging or quantifying platinum in cells or biofluids. These methods include the use of chemosensors to directly detect platinum, fluorescently tagging platinum-based drugs, and utilizing post-labeling to elucidate distribution and mode of action.

  1. Connectivism: Its Place in Theory-Informed Research and Innovation in Technology-Enabled Learning

    ERIC Educational Resources Information Center

    Bell, Frances

    2011-01-01

    The sociotechnical context for learning and education is dynamic and makes great demands on those trying to seize the opportunities presented by emerging technologies. The goal of this paper is to explore certain theories for our plans and actions in technology-enabled learning. Although presented as a successor to previous learning theories,…

  2. Enabling Laser and Lidar Technologies for NASA's Science and Exploration Mission's Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA s Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  3. A Classification Framework for Exploring Technology-Enabled Practice--Frame TEP

    ERIC Educational Resources Information Center

    Prestridge, Sarah; de Aldama, Carlos

    2016-01-01

    This article theorizes the construction of a classification framework to explore teachers' beliefs and pedagogical practices for the use of digital technologies in the classroom. There are currently many individual schemas and models that represent both developmental and divergent concepts associated with technology-enabled practice. This article…

  4. A Classification Framework for Exploring Technology-Enabled Practice--Frame TEP

    ERIC Educational Resources Information Center

    Prestridge, Sarah; de Aldama, Carlos

    2016-01-01

    This article theorizes the construction of a classification framework to explore teachers' beliefs and pedagogical practices for the use of digital technologies in the classroom. There are currently many individual schemas and models that represent both developmental and divergent concepts associated with technology-enabled practice. This article…

  5. Space power systems technology enablement study. [for the space transportation system

    NASA Technical Reports Server (NTRS)

    Smith, L. D.; Stearns, J. W.

    1978-01-01

    The power system technologies which enable or enhance future space missions requiring a few kilowatts or less and using the space shuttle were assessed. The advances in space power systems necessary for supporting the capabilities of the space transportation system were systematically determined and benefit/cost/risk analyses were used to identify high payoff technologies and technological priorities. The missions that are enhanced by each development are discussed.

  6. Pointing and control system enabling technology for future automated space missions

    NASA Technical Reports Server (NTRS)

    Dahlgren, J. B.

    1978-01-01

    Future automated space missions present challenging opportunities in the pointing-and-control technology disciplines. The enabling pointing-and-control system technologies for missions from 1985 to the year 2000 were identified and assessed. A generic mission set including Earth orbiter, planetary, and other missions which predominantly drive the pointing-and-control requirements was selected for detailed evaluation. Technology candidates identified were prioritized as planning options for future NASA-OAST advanced development programs. The primary technology thrusts in each candidate program were cited, and advanced development programs in pointing-and-control were recommended for the FY 80 to FY 87 period, based on these technology thrusts.

  7. Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Thomas, Herbert D.; Wiegmann, Bruce M.; Heaton, Andrew F.; Johnson, Les; Baysinger, Michael F.; Beers, Benjamin R.

    2016-01-01

    's Solar Probe Plus mission, which is slated to launch in July 2018. With respect to a SLS Block 1B earth departure characteristic energy capability of 100 km2/sq s for the E-Ju trajectory option, results indicated that compared to having no advanced propulsion system onboard, both the MaSMi Hall thruster and solar sail options subtract approximately 8 to 10 years from the total trip time while the electric sail outperforms all options by subtracting up to 20 years. With respect to an average kick stage velocity capability of 2.5 to 3.5 km/s at perihelion, the most sensitive segment of the E-Ju-Su-Sa trajectory option, results indicated that both the MaSMi Hall thrust and solar sail options only subtract 1 to 3 years from the total trip time whereas the electric sail again outperforms all other options by subtracting up to 5 years. In other words, if the Technology Readiness Level of an electric sail could be increased in time, this propulsion technology could not only enable a satellite to reach 100 AU in 10 years but it could potentially do so even faster. Completing such an ambitious mission in that short of a timespan would be very attractive to many as it would be well within the average career span of any of those involved.

  8. Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Thomas, Herbert D.; Wiegmann, Bruce M.; Heaton, Andrew F.; Johnson, Les; Baysinger, Michael F.; Beers, Benjamin R.

    2016-01-01

    maneuver was assumed to be similar to that of NASA’s Solar Probe Plus mission, which is slated to launch in July 2018. With respect to a SLS Block 1B earth departure characteristic energy capability of 100 km(exp 2)/s(exp 2) for the E-Ju trajectory option, results indicated that compared to having no advanced propulsion system onboard, both the MaSMi Hall thruster and solar sail options subtract approximately 8 to 10 years from the total trip time while the electric sail outperforms all options by subtracting up to 20 years. With respect to an average kick stage velocity capability of 2.5 to 3.5 km/s at perihelion, the most sensitive segment of the E-Ju-Su-Sa trajectory option, results indicated that both the MaSMi Hall thrust and solar sail options only subtract 1 to 3 years from the total trip time whereas the electric sail again outperforms all other options by subtracting up to 5 years. In other words, if the Technology Readiness Level of an electric sail could be increased in time, this propulsion technology could not only enable a satellite to reach 100 AU in 10 years but it could potentially do so even faster. Completing such an ambitious mission in that short of a timespan would be very attractive to many as it would be well within the average career span of any of those involved.

  9. Propulsion Technology Assessment: Science & Enabling Technologies to Explore the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Thomas, Herbert D.; Wiegmann, Bruce M.; Heaton, Andrew F.; Johnson, Les; Baysinger, Michael F.; Beers, Benjamin R.

    2015-01-01

    similar to that of NASA's Solar Probe Plus mission, which is slated to launch in July 2018. With respect to a SLS Block 1B earth departure characteristic energy capability of 100 sq km/s2 for the E-Ju trajectory option, results indicated that compared to having no advanced propulsion system onboard, both the MaSMi Hall thruster and solar sail options subtract approximately 8 to 10 years from the total trip time while the electric sail outperforms all options by subtracting up to 20 years. With respect to an average kick stage velocity capability of 2.5 to 3.5 km/s at perihelion, the most sensitive segment of the E-Ju-Su-Sa trajectory option, results indicated that both the MaSMi Hall thrust and solar sail options only subtract 1 to 3 years from the total trip time whereas the electric sail again outperforms all other options by subtracting up to 5 years. In other words, if the Technology Readiness Level of an electric sail could be increased in time, this propulsion technology could not only enable a satellite to reach 100 AU in 10 years but it could potentially do so even faster. Completing such an ambitious mission in that short of a timespan would be very attractive to many as it would be well within the average career span of any of those involved.

  10. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Greg; Menrad, Robert J.; Hudiburg, John J.; Boroson, Don M.; Robinson, Bryan S.; Cornwell, Donald M.

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) Team proposed a fundamentally new architectural concept, with enabling technologies, that defines an evolutionary pathway out to the 2040 timeframe in which an increasing user community comprised of more diverse space science and exploration missions can be supported. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network through implementation of select technologies resulting in a global communication and navigation network that provides communication and navigation services to a wide range of space users in the Near Earth regime, defined as an Earth-centered sphere with radius of 2M Km. The enabling technologies include: High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology (PNT). This paper describes this new architecture, the key technologies that enable it and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  11. Experience with Palladium Diffusers in Tritium Processing

    SciTech Connect

    Motyka, T.; Clark, E.A.; Dauchess, D.A.; Heung, L.K.; Rabum, R.L.

    1995-01-27

    Hydrogen isotopes are separated from other gases by permeation through palladium and palladium-silver alloy diffusers in the Tritium Facilities at the US Department of Energy Savannah River Site (SRS). Diffusers have provided effective service for almost forty years. This paper is an overview of the operational experience with the various diffuser types that have been employed at SRS. Alternative technologies being developed at SRS for purifying hydrogen isotopes are also discussed.

  12. Recent Development of Palladium-Supported Catalysts for Chemoselective Hydrogenation.

    PubMed

    Monguchi, Yasunari; Ichikawa, Tomohiro; Sajiki, Hironao

    2017-01-01

    This paper describes practical and selective hydrogenation methodologies using heterogeneous palladium catalysts. Chemoselectivity develops dependent on the catalyst activity based on the characteristic of the supports, derived from structural components, functional groups, and/or morphologies. We especially focus on our recent development of heterogeneous palladium catalysts supported on chelate resin, ceramic, and spherically shaped activated carbon. In addition, the application of flow technology for chemoselective hydrogenation using the palladium catalysts immobilized on molecular sieves 3A and boron nitride is outlined.

  13. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    SciTech Connect

    Zipperer, A.; Aloise-Young, P. A.; Suryanarayanan, S.; Zimmerle, D.; Roche, R.; Earle, L.; Christensen, D.; Bauleo, P.

    2013-08-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and trans-forming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  14. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    SciTech Connect

    Zipperer, Adam; Aloise-Young, Patricia A.; Suryanarayanan, Siddharth; Roche, Robin; Earle, Lieko; Christensen, Dane; Bauleo, Pablo; Zimmerle, Daniel

    2013-11-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  15. Enabling Technologies for Ultra-Safe and Secure Modular Nuclear Energy

    SciTech Connect

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Middleton, Bobby; Rodriguez, Salvador B.; Rodriguez, Carmelo; Schleicher, Robert

    2016-06-01

    Sandia National Laboratories and General Atomics are pleased to respond to the Advanced Research Projects Agency-Energy (ARPA-e)’s request for information on innovative developments that may overcome various current reactor-technology limitations. The RFI is particularly interested in innovations that enable ultra-safe and secure modular nuclear energy systems. Our response addresses the specific features for reactor designs called out in the RFI, including a brief assessment of the current state of the technologies that would enable each feature and the methods by which they could be best incorporated into a reactor design.

  16. Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.; hide

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.

  17. Heat Treatment Used to Strengthen Enabling Coating Technology for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    Edmonds, Brian J.; DellaCorte, Christopher

    2002-01-01

    The PS304 high-temperature solid lubricant coating is a key enabling technology for Oil- Free turbomachinery propulsion and power systems. Breakthroughs in the performance of advanced foil air bearings and improvements in computer-based finite element modeling techniques are the key technologies enabling the development of Oil-Free aircraft engines being pursued by the Oil-Free Turbomachinery team at the NASA Glenn Research Center. PS304 is a plasma spray coating applied to the surface of shafts operating against foil air bearings or in any other component requiring solid lubrication at high temperatures, where conventional materials such as graphite cannot function.

  18. SciDAC Visualization and Analytics Center for EnablingTechnologies

    SciTech Connect

    Bethel, E. Wes; Johnson, Chris; Joy, Ken; Ahern, Sean; Pascucci,Valerio; Childs, Hank; Cohen, Jonathan; Duchaineau, Mark; Hamann, Bernd; Hansen, Charles; Laney, Dan; Lindstrom, Peter; Meredith, Jermey; Ostrouchov, George; Parker, Steven; Silva, Claudio; Sanderson, Allen; Tricoche, Xavier.

    2007-06-30

    The Visualization and Analytics Center for EnablingTechnologies (VACET) focuses on leveraging scientific visualization andanalytics software technology as an enabling technology for increasingscientific productivity and insight. Advances in computational technologyhave resulted in an 'information big bang,' which in turn has created asignificant data understanding challenge. This challenge is widelyacknowledged to be one of the primary bottlenecks in contemporaryscience. The vision of VACET is to adapt, extend, create when necessary,and deploy visual data analysis solutions that are responsive to theneeds of DOE'scomputational and experimental scientists. Our center isengineered to be directly responsive to those needs and to deliversolutions for use in DOE's large open computing facilities. The researchand development directly target data understanding problems provided byour scientific application stakeholders. VACET draws from a diverse setof visualization technology ranging from production quality applicationsand application frameworks to state-of-the-art algorithms forvisualization, analysis, analytics, data manipulation, and datamanagement.

  19. Supporting Pre-Service Teachers' Technology-Enabled Learning Design Thinking through Whole of Programme Transformation

    ERIC Educational Resources Information Center

    Bower, Matt; Highfield, Kate; Furney, Pam; Mowbray, Lee

    2013-01-01

    This paper explains a development and evaluation project aimed at transforming two pre-service teacher education programmes at Macquarie University to more effectively cultivate students' technology-enabled learning design thinking. The process of transformation was based upon an explicit and sustained focus on developing university academics'…

  20. Integrating Technology into Instruction at a Public University in Kyrgyzstan: Barriers and Enablers

    ERIC Educational Resources Information Center

    Muhametjanova, Gulshat; Cagiltay, Kursat

    2016-01-01

    The purpose of this study was to determine enablers and barriers to the technology integration into education based on the example of the situation at the Kyrgyz-Turkish Manas University as reported by students and instructors. The study employed the mixed-methods research design, combining data obtained from 477 student and 57 instructor…

  1. Integrating Technology into Instruction at a Public University in Kyrgyzstan: Barriers and Enablers

    ERIC Educational Resources Information Center

    Muhametjanova, Gulshat; Cagiltay, Kursat

    2016-01-01

    The purpose of this study was to determine enablers and barriers to the technology integration into education based on the example of the situation at the Kyrgyz-Turkish Manas University as reported by students and instructors. The study employed the mixed-methods research design, combining data obtained from 477 student and 57 instructor…

  2. Technology Enabled Active Learning (TEAL) in Introductory Physics: Impact on Genders and Achievement Levels

    ERIC Educational Resources Information Center

    Shieh, Ruey S.; Chang, Wheijen; Liu, Eric Zhi-Feng

    2011-01-01

    This study explored the impact of "Technology Enabled Active Learning" (TEAL) on students learning general physics, focusing on differences between genders and among various achievement levels. A quasi-experimental investigation was conducted on two semesters of courses offered in 2008. Data sources consisted of pre-tests, post-tests,…

  3. A Case Study of Enabling Factors in the Technology Integration Change Process

    ERIC Educational Resources Information Center

    Hsu, Pi-Sui; Sharma, Priya

    2008-01-01

    The purpose of this qualitative case study was to analyze enabling factors in the technology integration change process in a multi-section science methods course, SCIED 408 (pseudonym), from 1997 to 2003 at a large northeastern university in the United States. We used two major data collection methods, in-depth interviewing and document reviews.…

  4. Supporting Pre-Service Teachers' Technology-Enabled Learning Design Thinking through Whole of Programme Transformation

    ERIC Educational Resources Information Center

    Bower, Matt; Highfield, Kate; Furney, Pam; Mowbray, Lee

    2013-01-01

    This paper explains a development and evaluation project aimed at transforming two pre-service teacher education programmes at Macquarie University to more effectively cultivate students' technology-enabled learning design thinking. The process of transformation was based upon an explicit and sustained focus on developing university academics'…

  5. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    SciTech Connect

    Maloy, Stuart Andrew

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  6. VACET: Proposed SciDAC2 Visualization and Analytics Center forEnabling Technologies

    SciTech Connect

    Bethel, W.; Johnson, Chris; Hansen, Charles; Parker, Steve; Sanderson, Allen; Silva, Claudio; Tricoche, Xavier; Pascucci, Valerio; Childs, Hank; Cohen, Jonathon; Duchaineau, Mark; Laney, Dan; Lindstrom,Peter; Ahern, Sean; Meredith, Jeremy; Ostrouchov, George; Joy, Ken; Hamann, Bernd

    2006-06-19

    This paper accompanies a poster that is being presented atthe SciDAC 2006 meeting in Denver, CO. This project focuses on leveragingscientific visualization and analytics software technology as an enablingtechnology for increasing scientific productivity and insight. Advancesincomputational technology have resultedin an "information big bang,"which in turn has createda significant data understanding challenge. Thischallenge is widely acknowledged to be one of the primary bottlenecks incontemporary science. The vision for our Center is to respond directly tothat challenge by adapting, extending, creating when necessary anddeploying visualization and data understanding technologies for ourscience stakeholders. Using an organizational model as a Visualizationand Analytics Center for Enabling Technologies (VACET), we are wellpositioned to be responsive to the needs of a diverse set of scientificstakeholders in a coordinated fashion using a range of visualization,mathematics, statistics, computer and computational science and datamanagement technologies.

  7. Tritium Production from Palladium Alloys

    SciTech Connect

    Claytor, T.N.; Schwab, M.J.; Thoma, D.J.; Teter, D.F.; Tuggle, D.G.

    1998-04-19

    A number of palladium alloys have been loaded with deuterium or hydrogen under low energy bombardment in a system that allows the continuous measurement of tritium. Long run times (up to 200 h) result in an integration of the tritium and this, coupled with the high intrinsic sensitivity of the system ({approximately}0.1 nCi/l), enables the significance of the tritium measurement to be many sigma (>10). We will show the difference in tritium generation rates between batches of palladium alloys (Rh, Co, Cu, Cr, Ni, Be, B, Li, Hf, Hg and Fe) of various concentrations to illustrate that tritium generation rate is dependent on alloy type as well as within a specific alloy, dependent on concentration.

  8. Using Multi Criteria Decision Making in Analysis of Alternatives for Selection of Enabling Technology

    NASA Astrophysics Data System (ADS)

    Georgiadis, Daniel

    Prior to Milestone A, the Department of Defense (DoD) requires that service sponsors conduct an Analysis of Alternatives (AoA), an analytical comparison of multiple alternatives, to be completed prior to committing and investing costly resources to one project or decision. Despite this requirement, sponsors will circumvent or dilute the process in an effort to save money or schedule, and specific requirements are proposed that can effectively eliminate all but the preselected alternatives. This research focuses on identifying decision aiding methods which can lead to the selection of specific criteria that are key performance drivers thus enabling an informed selection of the enabling technology. This work defines the enabling technology as the sub-system which presents the most risk within the system design. After a thorough literature review of available Multi Criteria Decision Making methods, a case study example is presented demonstrating the selection of the enabling technology of a Light Detection and Ranging (LIDAR) system. Using subjective criteria in the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is shown to successfully account for tacit knowledge of expert practitioners.

  9. Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.

    2013-01-01

    Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.

  10. PACFEST 2004 : enabling technologies for maritime security in the Pacific region.

    SciTech Connect

    Moore, Judy Hennessey; Whitley, John B.; Chellis, Craig

    2005-06-01

    In October of 2003 experts involved in various aspects of homeland security from the Pacific region met to engage in a free-wheeling discussion and brainstorming (a 'fest') on the role that technology could play in winning the war on terrorism in the Pacific region. The result was a concise and relatively thorough definition of the terrorism problem in the Pacific region, emphasizing the issues unique to Island nations in the Pacific setting, along with an action plan for developing working demonstrations of advanced technological solutions to these issues. Since PacFest 2003, the maritime dimensions of the international security environment have garnered increased attention and interest. To this end, PacFest 2004 sought to identify gaps and enabling technologies for maritime domain awareness and responsive decision-making in the Asia-Pacific region. The PacFest 2004 participants concluded that the technologies and basic information building blocks exist to create a system that would enable the Pacific region government and private organizations to effectively collaborate and share their capabilities and information concerning maritime security. The proposed solution summarized in this report integrates national environments in real time, thereby enabling effective prevention and first response to natural and terrorist induced disasters through better use of national and regional investments in people, infrastructure, systems, processes and standards.

  11. Advanced light source technologies that enable high-volume manufacturing of DUV lithography extensions

    NASA Astrophysics Data System (ADS)

    Cacouris, Theodore; Rao, Rajasekhar; Rokitski, Rostislav; Jiang, Rui; Melchior, John; Burfeindt, Bernd; O'Brien, Kevin

    2012-03-01

    Deep UV (DUV) lithography is being applied to pattern increasingly finer geometries, leading to solutions like double- and multiple-patterning. Such process complexities lead to higher costs due to the increasing number of steps required to produce the desired results. One of the consequences is that the lithography equipment needs to provide higher operating efficiencies to minimize the cost increases, especially for producers of memory devices that experience a rapid decline in sales prices of these products over time. In addition to having introduced higher power 193nm light sources to enable higher throughput, we previously described technologies that also enable: higher tool availability via advanced discharge chamber gas management algorithms; improved process monitoring via enhanced on-board beam metrology; and increased depth of focus (DOF) via light source bandwidth modulation. In this paper we will report on the field performance of these technologies with data that supports the desired improvements in on-wafer performance and operational efficiencies.

  12. S-BVT for next-generation optical metro networks: benefits, design, and key enabling technologies

    NASA Astrophysics Data System (ADS)

    Svaluto Moreolo, Michela; Fabrega, Josep M.; Nadal, Laia

    2017-01-01

    This work elaborates on: i) why the sliceable bandwidth variable transceiver (S-BVT) represents a key enabler for next-generation optical metro networks; ii) how it should be designed to take benefit of its capabilities and advanced features; and iii) which are the promising technologies to be adopted addressing the most relevant requirements and challenges. Specifically, S-BVT architectures based on multicarrier modulation and flexi-grid technologies, adopting cost-effective optoelectronic front-ends, enable flexible adaptation to dynamic traffic and variable path condition, targeting high capacity and scalability, while saving network resources and costs. Programmability and modularity are envisioned for integration in software-defined optical metro networks.

  13. SciDAC Visualization and Analytics Center for EnablingTechnology

    SciTech Connect

    Bethel, E. Wes; Johnson, Chris; Joy, Ken; Ahern, Sean; Pascucci,Valerio; Childs, Hank; Cohen, Jonathan; Duchaineau, Mark; Hamann, Bernd; Hansen, Charles; Laney, Dan; Lindstrom, Peter; Meredith, Jeremy; Ostrouchov, George; Parker, Steven; Silva, Claudio; Sanderson, Allen; Tricoche, Xavier

    2006-11-28

    The SciDAC2 Visualization and Analytics Center for EnablingTechnologies (VACET) began operation on 10/1/2006. This document, dated11/27/2006, is the first version of the VACET project management plan. Itwas requested by and delivered to ASCR/DOE. It outlines the Center'saccomplishments in the first six weeks of operation along with broadobjectives for the upcoming future (12-24 months).

  14. Current status and future prospects for enabling chemistry technology in the drug discovery process.

    PubMed

    Djuric, Stevan W; Hutchins, Charles W; Talaty, Nari N

    2016-01-01

    This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of "dangerous" reagents. Also featured are advances in the "computer-assisted drug design" area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities.

  15. Current status and future prospects for enabling chemistry technology in the drug discovery process

    PubMed Central

    Djuric, Stevan W.; Hutchins, Charles W.; Talaty, Nari N.

    2016-01-01

    This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of “dangerous” reagents. Also featured are advances in the “computer-assisted drug design” area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities. PMID:27781094

  16. Palladium on kieselguhr

    SciTech Connect

    Mosley, W.C.

    1988-01-11

    Palladium supported in kieselguhr (Pd/K) is a candidate material for processing of hydrogen isotopes at Savannah River Laboratory (SRL) and Savannah River Plant (SRP). Kieselguhr is a porous, sedimentary rock composed of silicified skeletal remains of single-celled aquatic plants called diatoms. SRL has developed a process for deposition of palladium on kieselguhr particles using immersion in an ammonical palladium chloride solution followed by heating in hydrogen to decompose the chloride to metallic palladium. The goal is to produce Pd/K particles with less than 250 ppm chlorine.

  17. Palladium alloys for biomedical devices.

    PubMed

    Wataha, John C; Shor, Kavita

    2010-07-01

    In the biomedical field, palladium has primarily been used as a component of alloys for dental prostheses. However, recent research has shown the utility of palladium alloys for devices such as vascular stents that do not distort magnetic resonance images. Dental palladium alloys may contain minor or major percentages of palladium. As a minor constituent, palladium hardens, strengthens and increases the melting range of alloys. Alloys that contain palladium as the major component also contain copper, gallium and sometimes tin to produce strong alloys with high stiffness and relatively low corrosion rates. All current evidence suggests that palladium alloys are safe, despite fears about harmful effects of low-level corrosion products during biomedical use. Recent evidence suggests that palladium poses fewer biological risks than other elements, such as nickel or silver. Hypersensitivity to palladium alone is rare, but accompanies nickel hypersensitivity 90-100% of the time. The unstable price of palladium continues to influence the use of palladium alloys in biomedicine.

  18. Advanced Functional Tumor Imaging and Precision Nuclear Medicine Enabled by Digital PET Technologies

    PubMed Central

    2017-01-01

    The purpose of this article is to provide a brief overview of the background, basic principles, technological evolution, clinical capabilities, and future directions for functional tumor imaging as PET evolves from the conventional photomultiplier tube-based platform into a fully digital detector acquisition platform. The recent introduction of solid-state digital photon counting PET detector is the latest evolution of clinical PET which enables faster time-of-flight timing resolution that leads to more precise localization of the annihilation events and further contributes to reduction in partial volume and thus makes high definition and ultrahigh definition PET imaging feasible with current standard acquisition procedures. The technological advances of digital PET can be further leveraged by optimizing many of the acquisition and reconstruction methodologies to achieve faster image acquisition to improve cancer patient throughput, lower patient dose in accordance with ALARA, and improved quantitative accuracy to enable biomarker capability. Digital PET technology will advance molecular imaging capabilities beyond oncology and enable Precision Nuclear Medicine.

  19. A Systematic Review of Reviews Evaluating Technology-Enabled Diabetes Self-Management Education and Support.

    PubMed

    Greenwood, Deborah A; Gee, Perry M; Fatkin, Kathy J; Peeples, Malinda

    2017-09-01

    Since the introduction of mobile phones, technology has been increasingly used to enable diabetes self-management education and support. This timely systematic review summarizes how currently available technology impacts outcomes for people living with diabetes. A systematic review of high quality review articles and meta analyses focused on utilizing technology in diabetes self-management education and support services was conducted. Articles were included if published between January 2013 and January 2017. Twenty-five studies were included for analysis. The majority evaluated the use of mobile phones and secure messaging. Most studies described healthy eating, being active and metabolic monitoring as the predominant self-care behaviors evaluated. Eighteen of 25 reviews reported significant reduction in A1c as an outcome measure. Four key elements emerged as essential for improved A1c: (1) communication, (2) patient-generated health data, (3) education, and (4) feedback. Technology-enabled diabetes self-management solutions significantly improve A1c. The most effective interventions incorporated all the components of a technology-enabled self-management feedback loop that connected people with diabetes and their health care team using 2-way communication, analyzed patient-generated health data, tailored education, and individualized feedback. The evidence from this systematic review indicates that organizations, policy makers and payers should consider integrating these solutions in the design of diabetes self-management education and support services for population health and value-based care models. With the widespread adoption of mobile phones, digital health solutions that incorporate evidence-based, behaviorally designed interventions can improve the reach and access to diabetes self-management education and ongoing support.

  20. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants

    SciTech Connect

    Kenneth A. Yackly

    2004-09-30

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

  1. HTS machines as enabling technology for all-electric airborne vehicles

    NASA Astrophysics Data System (ADS)

    Masson, P. J.; Brown, G. V.; Soban, D. S.; Luongo, C. A.

    2007-08-01

    Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.

  2. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    SciTech Connect

    Kenneth A. Yackly

    2005-12-01

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was

  3. The Technology-Enabled Patient Advocate: A Valuable Emerging Healthcare Partner.

    PubMed

    Kent, Susan M; Yellowlees, Peter

    2015-12-01

    The U.S. healthcare system is changing and is becoming more patient-centered and technology-supported, with greater emphasis on population health outcomes and team-based care. The roles of healthcare providers are changing, and new healthcare roles are developing such as that of the patient advocate. This article reviews the history of this type of role, the changes that have taken place over time, the technological innovations in service delivery that further enable the role, and how the role could increasingly be developed in the future. Logical future extensions of the current typical patient advocate are the appearance of a virtual or avatar-driven care navigator, using telemedicine and related information technologies, as healthcare provision moves increasingly in a hybrid direction, with care being given both in-person and online.

  4. System concepts and enabling technologies for an ESA low-cost mission to Jupiter / Europa

    NASA Astrophysics Data System (ADS)

    Renard, P.; Koeck, C.; Kemble, Steve; Atzei, Alessandro; Falkner, Peter

    2004-11-01

    The European Space Agency is currently studying the Jovian Minisat Explorer (JME), as part of its Technology Reference Studies (TRS), used for its development plan of technologies enabling future scientific missions. The JME focuses on the exploration of the Jovian system and particularly of Europa. The Jupiter Minisat Orbiter (JMO) study concerns the first mission phase of JME that counts up to three missions using pairs of minisats. The scientific objectives are the investigation of Europa's global topography, the composition of its (sub)surface and the demonstration of existence of a subsurface ocean below its icy crust. The present paper describes the candidate JMO system concept, based on a Europa Orbiter (JEO) supported by a communications relay satellite (JRS), and its associated technology development plan. It summarizes an analysis performed in 2004 jointly by ESA and the EADS-Astrium Company in the frame of an industrial technical assistance to ESA.

  5. Measuring Cognition of Students with Disabilities Using Technology-Enabled Assessments: Recommendations for a National Research Agenda

    ERIC Educational Resources Information Center

    Bechard, Sue; Sheinker, Jan; Abell, Rosemary; Barton, Karen; Burling, Kelly; Camacho, Christopher; Cameto, Renee; Haertel, Geneva; Hansen, Eric; Johnstone, Chris; Kingston, Neal; Murray, Elizabeth; Parker, Caroline E.; Redfield, Doris; Tucker, Bill

    2010-01-01

    This article represents one outcome from the "Invitational Research Symposium on Technology-Enabled and Universally Designed Assessments," which examined technology-enabled assessments (TEA) and universal design (UD) as they relate to students with disabilities (SWD). It was developed to stimulate research into TEAs designed to better understand…

  6. Status of Technology Development to enable Large Stable UVOIR Space Telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; MSFC AMTD Team

    2017-01-01

    NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.

  7. Enabling Spacecraft Formation Flying in Any Earth Orbit Through Spaceborne GPS and Enhanced Autonomy Technologies

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.; hide

    2000-01-01

    Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.

  8. Enabling Spacecraft Formation Flying in Any Earth Orbit Through Spaceborne GPS and Enhanced Autonomy Technologies

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.; Busse, F.

    2000-01-01

    Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.

  9. Study of creep/relaxation mechanisms in thin freestanding nanocrystalline palladium films through the lab-on-chip technology

    NASA Astrophysics Data System (ADS)

    Guisbiers, G.; Colla, M.-S.; Coulombier, M.; Raskin, J.-P.; Pardoen, T.

    2013-01-01

    A nanomechanical lab-on-chip set-up has been used to study the creep/relaxation response of thin palladium films with temperature. The basic idea is to use residual stresses present in a silicon nitride thin beam to load the test film after etching the underneath sacrificial layer. The main advantage of this experimental method is that we can simultaneously perform thousands of creep/relaxation tests without monopolizing any external actuating/loading equipment and without using any time consuming calibration procedures. A signature of the dominant relaxation mechanism is given by the activation volume which has been determined for different levels of plastic deformation and different temperatures. The activation volume is equal to ˜15-40 b3 at room temperature and tends to decrease with increasing plastic deformation. The activation volume decreases when relaxation takes place at 50 °C down to ˜7-20 b3. These variations of the activation volume indicate the competition between two different thermally activated deformation mechanisms in the temperature range between 20 °C and 50 °C.

  10. Maturation of enabling technologies for the next generation reignitable cryogenic upper stage

    NASA Astrophysics Data System (ADS)

    Mueller, Mark

    Following the ESA decision in November 2008, a pre-development phase (Phase 1) of a future evolution of the Ariane 5 launcher (named Ariane 5 Midlife Evolution, A5ME) was started under Astrium Prime leadership. This upgraded version of the Ariane 5 launcher is based on an enhanced performance Upper Stage including the cryogenic re-ignitable VINCI engine. Thanks to this reignition capability, this new Upper Stage shall be "versatile" in the sense that it shall fulfil customer needs on a broader spectrum of orbits than the "standard" orbits (i.e. Geosynchronous Transfer Orbits, GTO) typically used for commercial telecommunications satellites. In order to meet the challenges of versatility, new technologies are currently being investigated. These technologies are mainly related -but not limited-to propellant management during the extended coasting phases with the related heat transfer into the tanks and the required multiple engine re-ignitions. Within the frame of the ESA Future Launchers Preparatory Programme (Period 2 Slice 1), the Cryogenic Upper Stage Technology project (CUST) aims to mature critical technologies to such a Technology Readiness Level (TRL) that they can be integrated into the baseline A5ME Upper Stage development schedule. In addition to A5ME application, these technologies can also be used on the future next generation European launcher. This paper shows the down-selection process implemented to identify the most crucial enabling technologies for a future versatile Upper Stage and gives a description of each technology finally selected for maturation in the frame of CUST. These include -amongst others-a Sandwich Common Bulkhead for the propellant tank, an external thermal insulation kit and various propellant management devices for the coasting phase. The paper also gives an overview on the related development and maturation plan including the tests to be conducted, as well as first results of the maturation activities themselves.

  11. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential.

    PubMed

    Janero, David R

    2014-08-01

    Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.

  12. Enabling Equal Access to Molecular Diagnostics: What Are the Implications for Policy and Health Technology Assessment?

    PubMed

    Plun-Favreau, Juliette; Immonen-Charalambous, Kaisa; Steuten, Lotte; Strootker, Anja; Rouzier, Roman; Horgan, Denis; Lawler, Mark

    2016-01-01

    Molecular diagnostics can offer important benefits to patients and are a key enabler of the integration of personalised medicine into health care systems. However, despite their promise, few molecular diagnostics are embedded into clinical practice (especially in Europe) and access to these technologies remains unequal across countries and sometimes even within individual countries. If research translation and the regulatory environments have proven to be more challenging than expected, reimbursement and value assessment remain the main barriers to providing patients with equal access to molecular diagnostics. Unclear or non-existent reimbursement pathways, together with the lack of clear evidence requirements, have led to significant delays in the assessment of molecular diagnostics technologies in certain countries. Additionally, the lack of dedicated diagnostics budgets and the siloed nature of resource allocation within certain health care systems have significantly delayed diagnostics commissioning. This article will consider the perspectives of different stakeholders (patients, health care payers, health care professionals, and manufacturers) on the provision of a research-enabled, patient-focused molecular diagnostics platform that supports optimal patient care. Through the discussion of specific case studies, and building on the experience from countries that have successfully integrated molecular diagnostics into clinical practice, this article will discuss the necessary evolutions in policy and health technology assessment to ensure that patients can have equal access to appropriate molecular diagnostics.

  13. Advances in Front-end Enabling Technologies for Thermal Infrared ` THz Torch' Wireless Communications

    NASA Astrophysics Data System (ADS)

    Hu, Fangjing; Lucyszyn, Stepan

    2016-09-01

    The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The ` THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.

  14. Adoption of information technology enabled innovations by primary care physicians: model and questionnaire development.

    PubMed Central

    Dixon, D. R.; Dixon, B. J.

    1994-01-01

    A survey instrument was developed based on a model of the substantive factors influencing the adoption of Information Technology (IT) enabled innovations by physicians. The survey was given to all faculty and residents in a Primary Care teaching institution. Computerized literature searching was the IT innovation studied. The results support the role of the perceived ease of use and the perceived usefulness of an innovation as well as the intent to use an innovation as factors important for implementation. The model and survey instruments developed show significant potential to enhance our understanding of the process of implementing IT innovations such that Physicians will adopt them. PMID:7950004

  15. The Lunar Ultraviolet Telescope Experiment (LUTE): Enabling technology for an early lunar surface payload

    NASA Technical Reports Server (NTRS)

    Nein, M. E.; Hilchey, J. D.

    1995-01-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-m aperture, fixed declination, optical telescope to be operated on the surface of the Moon. This autonomous science payload will provide an unprecedented ultraviolet stellar survey even before manned lunar missions are resumed. This paper very briefly summarizes the LUTE concept analyzed by the LUTE Task Team of NASA's Marshall Space Flight Center (MSFC). Scientific capabilities and the Reference Design Concept are identified, and the expected system characteristics are summarized. Technologies which will be required to enable the early development, deployment, and operation of the LUTE are identified, and the principle goals and approaches for their advancement are described.

  16. New silicon technologies enable high-performance arrays of Single Photon Avalanche Diodes

    PubMed Central

    Gulinatti, Angelo; Rech, Ivan; Maccagnani, Piera; Cova, Sergio; Ghioni, Massimo

    2013-01-01

    In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency at the longer wavelengths (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we will analyze the factors the currently prevent the fabrication of arrays of SPADs by adopting such a Red-Enhanced (RE) technology and we will propose further modifications to the device structure that will enable the fabrication of high performance RE-SPAD arrays for photon timing applications. PMID:24353395

  17. Effect of Knowledge Management on Organizational Performance: Enabling Thought Leadership and Social Capital through Technology Management

    NASA Astrophysics Data System (ADS)

    Chalhoub, Michel S.

    The present paper studies the relationship between social networks enabled by technological advances in social software, and overall business performance. With the booming popularity of online communication and the rise of knowledge communities, businesses are faced with a challenge as well as an opportunity - should they monitor the use of social software or encourage it and learn from it? We introduce the concept of user-autonomy and user-fun, which go beyond the traditional user-friendly requirement of existing information technologies. We identified 120 entities out of a sample of 164 from Mediterranean countries and the Gulf region, to focus on the effect of social exchange information systems in thought leadership.

  18. Emission Control Research to Enable Fuel Efficiency: Department of Energy Heavy Vehicle Technologies

    SciTech Connect

    Gurpreet Singh; Ronald L. Graves; John M. Storey; William P. Partridge; John F. Thomas; Bernie M. Penetrante; Raymond M. Brusasco; Bernard T. Merritt; George E. Vogtlin; Christopher L. Aardahl; Craig F. Habeger; M.L. Balmer

    2000-06-19

    The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 rules and expected heavy duty engine standards will require effective exhaust emission controls (after-treatment) for diesels in these applications. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and tests of prototype devices. This paper provides an overview of these R and D efforts, with examples of key findings and developments.

  19. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-11-19

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.

  20. Chemical mechanical polishing: An enabling fabrication process for surface micromachining technologies

    SciTech Connect

    Sniegowski, J.J.

    1998-08-01

    Chemical-Mechanical-Polishing (CMP), first used as a planarization technology in the manufacture of multi-level metal interconnects for high-density Integrated Circuits (IC), is readily adapted as an enabling technology in MicroElectroMechanical Systems (MEMS) fabrication, particularly polysilicon surface micromachining. The authors have demonstrated that CMP enhances the design and manufacturability of MEMS devices by eliminating several photolithographic definition and film etch issues generated by severe topography. In addition, CMP planarization readily allows multi-level polysilicon structures comprised of 4- or more levels of polysilicon, eliminates design compromise generated by non-planar topography, and provides an avenue for integrating different process technologies. A recent investigation has also shown that CMP is a valuable tool for assuring acceptable optical flatness of micro-optical components such as micromirrors. Examples of these enhancements include: an extension of polysilicon surface-micromachining fabrication to a 5-level technology, a method of monolithic integration of electronics and MEMS, and optically flat micromirrors.

  1. Technological evaluation of gesture and speech interfaces for enabling dismounted soldier-robot dialogue

    NASA Astrophysics Data System (ADS)

    Kattoju, Ravi Kiran; Barber, Daniel J.; Abich, Julian; Harris, Jonathan

    2016-05-01

    With increasing necessity for intuitive Soldier-robot communication in military operations and advancements in interactive technologies, autonomous robots have transitioned from assistance tools to functional and operational teammates able to service an array of military operations. Despite improvements in gesture and speech recognition technologies, their effectiveness in supporting Soldier-robot communication is still uncertain. The purpose of the present study was to evaluate the performance of gesture and speech interface technologies to facilitate Soldier-robot communication during a spatial-navigation task with an autonomous robot. Gesture and speech semantically based spatial-navigation commands leveraged existing lexicons for visual and verbal communication from the U.S Army field manual for visual signaling and a previously established Squad Level Vocabulary (SLV). Speech commands were recorded by a Lapel microphone and Microsoft Kinect, and classified by commercial off-the-shelf automatic speech recognition (ASR) software. Visual signals were captured and classified using a custom wireless gesture glove and software. Participants in the experiment commanded a robot to complete a simulated ISR mission in a scaled down urban scenario by delivering a sequence of gesture and speech commands, both individually and simultaneously, to the robot. Performance and reliability of gesture and speech hardware interfaces and recognition tools were analyzed and reported. Analysis of experimental results demonstrated the employed gesture technology has significant potential for enabling bidirectional Soldier-robot team dialogue based on the high classification accuracy and minimal training required to perform gesture commands.

  2. Annotated Bibliography of Enabling Technologies for the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    ONeil, Patrick D.; Tarry, Scott E.

    2002-01-01

    The following collection of research summaries are submitted as fulfillment of a request from NASA LaRC to conduct research into existing enabling technologies that support the development of the Small Aircraft Transportation System aircraft and accompanying airspace management infrastructure. Due to time and fiscal constraints, the included studies focus primarily on visual systems and architecture, flight control design, instrumentation and display, flight deck design considerations, Human-Machine Interface issues, and supporting augmentation technologies and software. This collation of summaries is divided in sections in an attempt to group similar technologies and systems. However, the reader is advised that many of these studies involve multiple technologies and systems that span across many categories. Because of this fact, studies are not easily categorized into single sections. In an attempt to help the reader more easily identify topics of interest, a SATS application description is provided for each summary. In addition, a list of acronyms provided at the front of the report to aid the reader.

  3. Electrochemical properties of palladium adlayers on Pt(1 0 0) substrates

    NASA Astrophysics Data System (ADS)

    Álvarez, B.; Berná, A.; Rodes, A.; Feliu, J. M.

    2004-12-01

    The formation of submonolayers of palladium on well-defined Pt(1 0 0) electrodes is described. It has been found that the adsorption of NO at open circuit and its further reductive stripping enable the possibility to prepare Pt(1 0 0) electrodes fully covered by the first palladium layer, without contributions coming from palladium in the subsequent layers. This method enables a better characterization of the palladium islands formed in the submonolayer range. The CO displacement method points out that hydrogen and anion adsorption play a role in the charge transfer processes involved in the voltammetric profile. The analysis of the charge-potential curves is used to determine the values of the potentials of zero total charge (pztc) of the different adelectrodes. The pztc diminishes almost linearly with palladium coverage, this shift being related to increasing anion adsorption at low potentials. Adsorbed palladium does not electrocatalyze the oxidation of adsorbed CO.

  4. Aerospace laser communications technology as enabler for worldwide quantum key distribution

    NASA Astrophysics Data System (ADS)

    Moll, Florian; Weinfurter, Harald; Rau, Markus; Schmidt, Christopher; Melén, Gwen; Vogl, Tobias; Nauerth, Sebastian; Fuchs, Christian

    2016-04-01

    A worldwide growing interest in fast and secure data communications pushes technology development along two lines. While fast communications can be realized using laser communications in fiber and free-space, inherently secure communications can be achieved using quantum key distribution (QKD). By combining both technologies in a single device, many synergies can be exploited, therefore reducing size, weight and power of future systems. In recent experiments we demonstrated quantum communications over large distances as well as between an aircraft and a ground station which proved the feasibility of QKD between moving partners. Satellites thus may be used as trusted nodes in combination with QKD receiver stations on ground, thereby enabling fast and secure communications on a global scale. We discuss the previous experiment with emphasis on necessary developments to be done and corresponding ongoing research work of German Aerospace Center (DLR) and Ludwig Maximilians University Munich (LMU). DLR is performing research on satellite and ground terminals for the high-rate laser communication component, which are enabling technologies for the QKD link. We describe the concept and hardware of three generations of OSIRIS (Optical High Speed Infrared Link System) laser communication terminals for low Earth orbiting satellites. The first type applies laser beam pointing solely based on classical satellite control, the second uses an optical feedback to the satellite bus and the third, currently being in design phase, comprises of a special coarse pointing assembly to control beam direction independent of satellite orientation. Ongoing work also targets optical terminals for CubeSats. A further increase of beam pointing accuracy can be achieved with a fine pointing assembly. Two ground stations will be available for future testing, an advanced stationary ground station and a transportable ground station. In parallel the LMU QKD source size will be reduced by more than an

  5. In Space Nuclear Power as an Enabling Technology for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Houts, Michael

    2000-01-01

    Deep Space Exploration missions, both for scientific and Human Exploration and Development (HEDS), appear to be as weight limited today as they would have been 35 years ago. Right behind the weight constraints is the nearly equally important mission limitation of cost. Launch vehicles, upper stages and in-space propulsion systems also cost about the same today with the same efficiency as they have had for many years (excluding impact of inflation). Both these dual mission constraints combine to force either very expensive, mega systems missions or very light weight, but high risk/low margin planetary spacecraft designs, such as the recent unsuccessful attempts for an extremely low cost mission to Mars during the 1998-99 opportunity (i.e., Mars Climate Orbiter and the Mars Polar Lander). When one considers spacecraft missions to the outer heliopause or even the outer planets, the enormous weight and cost constraints will impose even more daunting concerns for mission cost, risk and the ability to establish adequate mission margins for success. This paper will discuss the benefits of using a safe in-space nuclear reactor as the basis for providing both sufficient electric power and high performance space propulsion that will greatly reduce mission risk and significantly increase weight (IMLEO) and cost margins. Weight and cost margins are increased by enabling much higher payload fractions and redundant design features for a given launch vehicle (higher payload fraction of IMLEO). The paper will also discuss and summarize the recent advances in nuclear reactor technology and safety of modern reactor designs and operating practice and experience, as well as advances in reactor coupled power generation and high performance nuclear thermal and electric propulsion technologies. It will be shown that these nuclear power and propulsion technologies are major enabling capabilities for higher reliability, higher margin and lower cost deep space missions design to reliably

  6. In Space Nuclear Power as an Enabling Technology for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Houts, Michael

    2000-01-01

    Deep Space Exploration missions, both for scientific and Human Exploration and Development (HEDS), appear to be as weight limited today as they would have been 35 years ago. Right behind the weight constraints is the nearly equally important mission limitation of cost. Launch vehicles, upper stages and in-space propulsion systems also cost about the same today with the same efficiency as they have had for many years (excluding impact of inflation). Both these dual mission constraints combine to force either very expensive, mega systems missions or very light weight, but high risk/low margin planetary spacecraft designs, such as the recent unsuccessful attempts for an extremely low cost mission to Mars during the 1998-99 opportunity (i.e., Mars Climate Orbiter and the Mars Polar Lander). When one considers spacecraft missions to the outer heliopause or even the outer planets, the enormous weight and cost constraints will impose even more daunting concerns for mission cost, risk and the ability to establish adequate mission margins for success. This paper will discuss the benefits of using a safe in-space nuclear reactor as the basis for providing both sufficient electric power and high performance space propulsion that will greatly reduce mission risk and significantly increase weight (IMLEO) and cost margins. Weight and cost margins are increased by enabling much higher payload fractions and redundant design features for a given launch vehicle (higher payload fraction of IMLEO). The paper will also discuss and summarize the recent advances in nuclear reactor technology and safety of modern reactor designs and operating practice and experience, as well as advances in reactor coupled power generation and high performance nuclear thermal and electric propulsion technologies. It will be shown that these nuclear power and propulsion technologies are major enabling capabilities for higher reliability, higher margin and lower cost deep space missions design to reliably

  7. A Palladium-Binding Deltarhodopsin for Light-Activated Conversion of Protonic to Electronic Currents.

    PubMed

    Soto-Rodríguez, Jessica; Hemmatian, Zahra; Josberger, Erik E; Rolandi, Marco; Baneyx, François

    2016-08-01

    Fusion of a palladium-binding peptide to an archaeal rhodopsin promotes intimate integration of the lipid-embedded membrane protein with a palladium hydride protonic contact. Devices fabricated with the palladium-binding deltarhodopsin enable light-activated conversion of protonic currents to electronic currents with on/off responses complete in seconds and a nearly tenfold increase in electrical signal relative to those made with the wild-type protein.

  8. Visible quality aluminum and nickel superpolish polishing technology enabling new missions

    NASA Astrophysics Data System (ADS)

    Carrigan, Keith G.

    2011-06-01

    It is now well understood that with US Department of Defense (DoD) budgets shrinking and the Services and Agencies demanding new systems which can be fielded more quickly, cost and schedule are being emphasized more and more. At the same time, the US has ever growing needs for advanced capabilities to support evolving Intelligence, Surveillance and Reconnaissance objectives. In response to this market demand for ever more cost-effective, faster to market, single-channel, athermal optical systems, we have developed new metal polishing technologies which allow for short-lead, low-cost metal substrates to replace more costly, longer-lead material options. In parallel, the commercial marketplace is being driven continually to release better, faster and cheaper electronics. Growth according to Moore's law, enabled by advancements in photolithography, has produced denser memory, higher resolution displays and faster processors. While the quality of these products continues to increase, their price is falling. This seeming paradox is driven by industry advancements in manufacturing technology. The next steps on this curve can be realized via polishing technology which allows low-cost metal substrates to replace costly Silicon based optics for use in ultra-short wavelength systems.

  9. Protocol of a Pilot Study of Technology-Enabled Coproduction in Pediatric Chronic Illness Care.

    PubMed

    Kaplan, Heather C; Thakkar, Sunny Narendra; Burns, Lisa; Chini, Barbara; Dykes, Dana Mh; McPhail, Gary L; Moore, Erin; Saeed, Shehzad Ahmed; Eslick, Ian; Margolis, Peter A; Opipari-Arrigan, Lisa

    2017-04-28

    dramatic transformation to support more collaborative, effective, and patient-centered care. This study is unique in that it is testing not only the impact of technology, but also the necessary processes that facilitate patient and clinician collaboration. This pilot study is designed to examine how technology-enabled coproduction can be implemented in real-life clinical contexts. Once the Orchestra technology and intervention are optimized to ensure feasibility and acceptability, future studies can test the effectiveness of this approach to improve patient outcomes and health care value.

  10. Protocol of a Pilot Study of Technology-Enabled Coproduction in Pediatric Chronic Illness Care

    PubMed Central

    Thakkar, Sunny Narendra; Burns, Lisa; Chini, Barbara; Dykes, Dana MH; McPhail, Gary L; Moore, Erin; Saeed, Shehzad Ahmed; Eslick, Ian; Margolis, Peter A

    2017-01-01

    . Conclusions Chronic disease management needs a dramatic transformation to support more collaborative, effective, and patient-centered care. This study is unique in that it is testing not only the impact of technology, but also the necessary processes that facilitate patient and clinician collaboration. This pilot study is designed to examine how technology-enabled coproduction can be implemented in real-life clinical contexts. Once the Orchestra technology and intervention are optimized to ensure feasibility and acceptability, future studies can test the effectiveness of this approach to improve patient outcomes and health care value. PMID:28455274

  11. Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul

    2003-01-01

    Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.

  12. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    NASA Technical Reports Server (NTRS)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  13. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    SciTech Connect

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  14. A home-centered ICT architecture for health-enabling technologies.

    PubMed

    Song, Bianying; Marschollek, Michael; Wolf, Klaus-Hendrik; Gietzelt, Matthias; Franken, Thomas; Haux, Reinhold

    2010-01-01

    Population ageing needs health-enabling technologies for delivering pervasive health care. Home care plays an import role in pervasive health care. In this paper, we aim to construct a home-centered health information system architecture which can efficiently manage multi sensors, actuators and decision support systems. Open Services Gateway initiative (OSGI) was used for constructing the service oriented architecture. HL 7 Arden Syntax for medical logic module (MLM) was used to describe the medical knowledge; An Arden compiler was used to interpret the MLMs. The Arden compiler was packed in an OSGI bundle. All of the knowledge bases can share the compiler within the OSGI platform. System within the OSGI-based architecture can change their behaviors during runtime. The proposed prototype architecture was deployed in a case study.

  15. SLAE-CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies.

    PubMed

    Ma, Jing; Wang, Qiang; Zhao, Zhibiao

    2017-06-28

    In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE-CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE-CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE-CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology.

  16. CMOS technology: a critical enabler for free-form electronics-based killer applications

    NASA Astrophysics Data System (ADS)

    Hussain, Muhammad M.; Hussain, Aftab M.; Hanna, Amir

    2016-05-01

    Complementary metal oxide semiconductor (CMOS) technology offers batch manufacturability by ultra-large-scaleintegration (ULSI) of high performance electronics with a performance/cost advantage and profound reliability. However, as of today their focus has been on rigid and bulky thin film based materials. Their applications have been limited to computation, communication, display and vehicular electronics. With the upcoming surge of Internet of Everything, we have critical opportunity to expand the world of electronics by bridging between CMOS technology and free form electronics which can be used as wearable, implantable and embedded form. The asymmetry of shape and softness of surface (skins) in natural living objects including human, other species, plants make them incompatible with the presently available uniformly shaped and rigidly structured today's CMOS electronics. But if we can break this barrier then we can use the physically free form electronics for applications like plant monitoring for expansion of agricultural productivity and quality, we can find monitoring and treatment focused consumer healthcare electronics - and many more creative applications. In our view, the fundamental challenge is to engage the mass users to materialize their creative ideas. Present form of electronics are too complex to understand, to work with and to use. By deploying game changing additive manufacturing, low-cost raw materials, transfer printing along with CMOS technology, we can potentially stick high quality CMOS electronics on any existing objects and embed such electronics into any future objects that will be made. The end goal is to make them smart to augment the quality of our life. We use a particular example on implantable electronics (brain machine interface) and its integration strategy enabled by CMOS device design and technology run path.

  17. SLAE–CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies

    PubMed Central

    Ma, Jing; Wang, Qiang; Zhao, Zhibiao

    2017-01-01

    In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE–CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE–CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE–CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology. PMID:28657577

  18. DOE's SciDAC Visualization and Analytics Center for EnablingTechnologies -- Strategy for Petascale Visual Data Analysis Success

    SciTech Connect

    Bethel, E Wes; Johnson, Chris; Aragon, Cecilia; Rubel, Oliver; Weber, Gunther; Pascucci, Valerio; Childs, Hank; Bremer, Peer-Timo; Whitlock, Brad; Ahern, Sean; Meredith, Jeremey; Ostrouchov, George; Joy, Ken; Hamann, Bernd; Garth, Christoph; Cole, Martin; Hansen, Charles; Parker, Steven; Sanderson, Allen; Silva, Claudio; Tricoche, Xavier

    2007-10-01

    The focus of this article is on how one group of researchersthe DOE SciDAC Visualization and Analytics Center for EnablingTechnologies (VACET) is tackling the daunting task of enabling knowledgediscovery through visualization and analytics on some of the world slargest and most complex datasets and on some of the world's largestcomputational platforms. As a Center for Enabling Technology, VACET smission is the creation of usable, production-quality visualization andknowledge discovery software infrastructure that runs on large, parallelcomputer systems at DOE's Open Computing facilities and that providessolutions to challenging visual data exploration and knowledge discoveryneeds of modern science, particularly the DOE sciencecommunity.

  19. CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications.

    PubMed

    Hussain, Aftab M; Hussain, Muhammad M

    2016-06-01

    Flexible and stretchable electronics can dramatically enhance the application of electronics for the emerging Internet of Everything applications where people, processes, data and devices will be integrated and connected, to augment quality of life. Using naturally flexible and stretchable polymeric substrates in combination with emerging organic and molecular materials, nanowires, nanoribbons, nanotubes, and 2D atomic crystal structured materials, significant progress has been made in the general area of such electronics. However, high volume manufacturing, reliability and performance per cost remain elusive goals for wide commercialization of these electronics. On the other hand, highly sophisticated but extremely reliable, batch-fabrication-capable and mature complementary metal oxide semiconductor (CMOS)-based technology has facilitated tremendous growth of today's digital world using thin-film-based electronics; in particular, bulk monocrystalline silicon (100) which is used in most of the electronics existing today. However, one fundamental challenge is that state-of-the-art CMOS electronics are physically rigid and brittle. Therefore, in this work, how CMOS-technology-enabled flexible and stretchable electronics can be developed is discussed, with particular focus on bulk monocrystalline silicon (100). A comprehensive information base to realistically devise an integration strategy by rational design of materials, devices and processes for Internet of Everything electronics is offered.

  20. Enabling quantitative screening in retinal organoids: 3D automated reporter quantification technology (3D-ARQ).

    PubMed

    Vergara, M Natalia; Flores-Bellver, Miguel; Aparicio-Domingo, Silvia; McNally, Minda; Wahlin, Karl J; Saxena, Meera T; Mumm, Jeff S; Canto-Soler, M Valeria

    2017-09-04

    The advent of stem cell-derived retinal organoids has brought forth unprecedented opportunities for developmental and physiological studies, while presenting new therapeutic promise for retinal degenerative diseases. From a translational perspective, organoid systems provide exciting new prospects for drug discovery, offering the possibility to perform compound screening in a 3-dimensional (3D) human tissue context that resembles the native histoarchitecture and cellular interactions. However, inherent variability issues and a general lack of robust quantitative technologies for analyzing organoids in large-scale pose severe limitations for their use in translational applications. To address this need, we have developed a screening platform that enables accurate quantification of fluorescent reporters in complex human iPSC-derived retinal organoids. This platform incorporates a fluorescence microplate reader that allows XYZ-dimensional detection and fine-tuned wavelength selection. We have established optimal parameters for fluorescent reporter signal detection, devised methods to compensate for organoid size variability, evaluated performance and sensitivity parameters, and validated this technology for functional applications. © 2017. Published by The Company of Biologists Ltd.

  1. Using Vision System Technologies to Enable Operational Improvements for Low Visibility Approach and Landing Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Ellis, Kyle K. E.; Bailey, Randall E.; Williams, Steven P.; Severance, Kurt; Le Vie, Lisa R.; Comstock, James R.

    2014-01-01

    Flight deck-based vision systems, such as Synthetic and Enhanced Vision System (SEVS) technologies, have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. To achieve this potential, research is required for effective technology development and implementation based upon human factors design and regulatory guidance. This research supports the introduction and use of Synthetic Vision Systems and Enhanced Flight Vision Systems (SVS/EFVS) as advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in NextGen low visibility approach and landing operations. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and two color head-down primary flight display (PFD) concepts (conventional PFD, SVS PFD) were evaluated in a simulated NextGen Chicago O'Hare terminal environment. Additionally, the instrument approach type (no offset, 3 degree offset, 15 degree offset) was experimentally varied to test the efficacy of the HUD concepts for offset approach operations. The data showed that touchdown landing performance were excellent regardless of SEVS concept or type of offset instrument approach being flown. Subjective assessments of mental workload and situation awareness indicated that making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD may be feasible.

  2. A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies

    NASA Astrophysics Data System (ADS)

    Becker, Keith Frederick

    Commercial aviation has become an integral part of modern society and enables unprecedented global connectivity by increasing rapid business, cultural, and personal connectivity. In the decades following World War II, passenger travel through commercial aviation quickly grew at a rate of roughly 8% per year globally. The FAA's most recent Terminal Area Forecast predicts growth to continue at a rate of 2.5% domestically, and the market outlooks produced by Airbus and Boeing generally predict growth to continue at a rate of 5% per year globally over the next several decades, which translates into a need for up to 30,000 new aircraft produced by 2025. With such large numbers of new aircraft potentially entering service, any negative consequences of commercial aviation must undergo examination and mitigation by governing bodies so that growth may still be achieved. Options to simultaneously grow while reducing environmental impact include evolution of the commercial fleet through changes in operations, aircraft mix, and technology adoption. Methods to rapidly evaluate fleet environmental metrics are needed to enable decision makers to quickly compare the impact of different scenarios and weigh the impact of multiple policy options. As the fleet evolves, interdependencies may emerge in the form of tradeoffs between improvements in different environmental metrics as new technologies are brought into service. In order to include the impacts of these interdependencies on fleet evolution, physics-based modeling is required at the appropriate level of fidelity. Evaluation of environmental metrics in a physics-based manner can be done at the individual aircraft level, but will then not capture aggregate fleet metrics. Contrastingly, evaluation of environmental metrics at the fleet level is already being done for aircraft in the commercial fleet, but current tools and approaches require enhancement because they currently capture technology implementation through post

  3. Palladium-Catalyzed Fluorosulfonylvinylation of Organic Iodides.

    PubMed

    Zha, Gao-Feng; Zheng, Qinheng; Leng, Jing; Wu, Peng; Qin, Hua-Li; Sharpless, K Barry

    2017-03-29

    A palladium-catalyzed fluorosulfonylvinylation reaction of organic iodides is described. Catalytic Pd(OAc)2 with a stoichiometric amount of silver(I) trifluoroacetate enables the coupling process between either an (hetero)aryl or alkenyl iodide with ethenesulfonyl fluoride (ESF). The method is demonstrated in the successful syntheses of eighty-eight otherwise difficult to access compounds, in up to 99 % yields, including the unprecedented 2-heteroarylethenesulfonyl fluorides and 1,3-dienylsulfonyl fluorides.

  4. SENSE IT: Student Enabled Network of Sensors for the Environment using Innovative Technology

    NASA Astrophysics Data System (ADS)

    Hotaling, L. A.; Stolkin, R.; Kirkey, W.; Bonner, J. S.; Lowes, S.; Lin, P.; Ojo, T.

    2010-12-01

    SENSE IT is a project funded by the National Science Foundation (NSF) which strives to enrich science, technology, engineering and mathematics (STEM) education by providing teacher professional development and classroom projects in which high school students build from first principles, program, test and deploy sensors for water quality monitoring. Sensor development is a broad and interdisciplinary area, providing motivating scenarios in which to teach a multitude of STEM subjects, from mathematics and physics to biology and environmental science, while engaging students with hands on problems that reinforce conventional classroom learning by re-presenting theory as practical tools for building real-life working devices. The SENSE IT program is currently developing and implementing a set of high school educational modules which teach environmental science and basic engineering through the lens of fundamental STEM principles, at the same time introducing students to a new set of technologies that are increasingly important in the world of environmental research. Specifically, the project provides students with the opportunity to learn the engineering design process through the design, construction, programming and testing of a student-implemented water monitoring network in the Hudson and St. Lawrence Rivers in New York. These educational modules are aligned to state and national technology and science content standards and are designed to be compatible with standard classroom curricula to support a variety of core science, technology and mathematics classroom material. For example, while designing, programming and calibrating the sensors, the students are led through a series of tasks in which they must use core mathematics and physics theory to solve the real problems of making their sensors work. In later modules, students can explore environmental science and environmental engineering curricula while deploying and monitoring their sensors in local rivers. This

  5. Earth System Grid Center for Enabling Technologies: Building a Global Infrastructure for Climate Change Research

    SciTech Connect

    Williams, Dean N.; Ahrens, J.; Ananthakrishnan, R.; Bell, G.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Hankin, S.; Harper, D.; Hook, N.; Jones, P.; Middleton, D. E.; Miller, R.; Nienhouse, E.; Schweitzer, R.; Schuler, R.; Shipman, G.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wang, F.; Wilcox, H.; Wilhelmi, N.

    2010-08-16

    Established within DOE’s Scientific Discovery through Advanced Computing (SciDAC-) 2 program, with support from ASCR and BER, the Earth System Grid Center for Enabling Technologies (ESG-CET) is a consortium of seven laboratories (Argonne National Laboratory [ANL], Los Alamos National Laboratory [LANL], Lawrence Berkeley National Laboratory [LBNL], Lawrence Livermore National Laboratory [LLNL], National Center for Atmospheric Research [NCAR], Oak Ridge National Laboratory [ORNL], and Pacific Marine Environmental Laboratory [PMEL]), and two institutes (Rensselaer Polytechnic Institute [RPI] and the University of Southern California, Information Sciences Institute [USC/ISI]). The consortium’s mission is to provide climate researchers worldwide with a science gateway to access data, information, models, analysis tools, and computational capabilities required to evaluate extreme-scale data sets. Its stated goals are to (1) make data more useful to climate researchers by developing collaborative technology that enhances data usability; (2) meet the specific needs that national and international climate projects have for distributed databases, data access, and data movement; (3) provide a universal and secure web-based data access portal for broad-based multi-model data collections; and (4) provide a wide range of climate data-analysis tools and diagnostic methods to international climate centers and U.S. government agencies. To this end, the ESG-CET is working to integrate all highly publicized climate data sets—from climate simulations to observations—using distributed storage management, remote high-performance units, high-bandwidth wide-area networks, and user desktop platforms in a collaborative problem-solving environment.

  6. The CYGNSS flight segment; A major NASA science mission enabled by micro-satellite technology

    NASA Astrophysics Data System (ADS)

    Rose, R.; Ruf, C.; Rose, D.; Brummitt, M.; Ridley, A.

    While hurricane track forecasts have improved in accuracy by ~50% since 1990, there has been essentially no improvement in the accuracy of intensity prediction. This lack of progress is thought to be caused by inadequate observations and modeling of the inner core due to two causes: 1) much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the inner rain bands and 2) the rapidly evolving stages of the tropical cyclone (TC) life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. NASA's most recently awarded Earth science mission, the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) has been designed to address these deficiencies by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a satellite constellation. This paper provides an overview of the CYGNSS flight segment requirements, implementation, and concept of operations for the CYGNSS constellation; consisting of 8 microsatellite-class spacecraft (<; 100kg) each hosting a GNSS receiver, operating in a 500 km orbit, inclined at 35° to provide 70% coverage of the historical TC track. The CYGNSS mission is enabled by modern electronic technology; it is an example of how nanosatellite technology can be applied to replace traditional "old school" solutions at significantly reduced cost while providing an increase in performance. This paper provides an overview of how we combined a reliable space-flight proven avionics design with selected microsatellite components to create an innovative, low-cost solution for a mainstream science investigation.

  7. The ``Micro'' Aethalometer - an enabling technology for new applications in the measurement of Aerosol Black Carbon

    NASA Astrophysics Data System (ADS)

    Hansen, A. D.; Močnik, G.

    2010-12-01

    Aerosol Black Carbon (BC) is a tracer for combustion emissions; a primary indicator of adverse health effects; and the second leading contributor to Global Climate Change. The “Micro” Aethalometer is a recently-developed miniature instrument that makes a real-time measurement of BC on a very short timebase in a self-contained, battery-powered package that is lightweight and pocket sized. This technological development critically enables new areas of research: Measurements of the vertical profile of BC, by carrying the sampler aloft on a balloon (tethered or released) or aircraft (piloted or UAV); Estimates of the concentration of BC in the troposphere and lower stratosphere in the 8 - 12 km. altitude range, by measurements in the passenger cabin during commercial air travel; Epidemiological studies of personal exposure to BC, by carrying the sampler on a subject person in health studies; Measurements of the concentration of BC in rural and remote regions, by means of a small, battery-powered instrument that is convenient to deploy; measurements of high concentrations of “smoke” in indoor and outdoor environments in developing countries; Unobtrusive monitoring of BC infiltration into indoor environments, by means of a small, quiet instrument that can be placed in publicly-used spaces, school classrooms, museums, and other potentially-impacted locations; Adaptation of the technology to the direct source measurement of BC concentrations in emissions from diesel exhausts, combustion plumes, and other sources. We will show examples of data from various recent projects to illustrate the capabilities and applications of this new instrument.

  8. Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity

    PubMed Central

    Zander, Thorsten O.; Krol, Laurens R.; Birbaumer, Niels P.; Gramann, Klaus

    2016-01-01

    The effectiveness of today’s human–machine interaction is limited by a communication bottleneck as operators are required to translate high-level concepts into a machine-mandated sequence of instructions. In contrast, we demonstrate effective, goal-oriented control of a computer system without any form of explicit communication from the human operator. Instead, the system generated the necessary input itself, based on real-time analysis of brain activity. Specific brain responses were evoked by violating the operators’ expectations to varying degrees. The evoked brain activity demonstrated detectable differences reflecting congruency with or deviations from the operators’ expectations. Real-time analysis of this activity was used to build a user model of those expectations, thus representing the optimal (expected) state as perceived by the operator. Based on this model, which was continuously updated, the computer automatically adapted itself to the expectations of its operator. Further analyses showed this evoked activity to originate from the medial prefrontal cortex and to exhibit a linear correspondence to the degree of expectation violation. These findings extend our understanding of human predictive coding and provide evidence that the information used to generate the user model is task-specific and reflects goal congruency. This paper demonstrates a form of interaction without any explicit input by the operator, enabling computer systems to become neuroadaptive, that is, to automatically adapt to specific aspects of their operator’s mindset. Neuroadaptive technology significantly widens the communication bottleneck and has the potential to fundamentally change the way we interact with technology. PMID:27956633

  9. Global biosurveillance: enabling science and technology. Workshop background and motivation: international scientific engagement for global security

    SciTech Connect

    Cui, Helen H

    2011-01-18

    Through discussion the conference aims to: (1) Identify core components of a comprehensive global biosurveillance capability; (2) Determine the scientific and technical bases to support such a program; (3) Explore the improvement in biosurveillance to enhance regional and global disease outbreak prediction; (4) Recommend an engagement approach to establishing an effective international community and regional or global network; (5) Propose implementation strategies and the measures of effectiveness; and (6) Identify the challenges that must be overcome in the next 3-5 years in order to establish an initial global biosurveillance capability that will have significant positive impact on BioNP as well as public health and/or agriculture. There is also a look back at the First Biothreat Nonproliferation Conference from December 2007. Whereas the first conference was an opportunity for problem solving to enhance and identify new paradigms for biothreat nonproliferation, this conference is moving towards integrated comprehensive global biosurveillance. Main reasons for global biosurveillance are: (1) Rapid assessment of unusual disease outbreak; (2) Early warning of emerging, re-emerging and engineered biothreat enabling reduced morbidity and mortality; (3) Enhanced crop and livestock management; (4) Increase understanding of host-pathogen interactions and epidemiology; (5) Enhanced international transparency for infectious disease research supporting BWC goals; and (6) Greater sharing of technology and knowledge to improve global health.

  10. Pharmacy on demand: New technologies to enable miniaturized and mobile drug manufacturing.

    PubMed

    Lewin, John J; Choi, Eugene J; Ling, Geoffrey

    2016-01-15

    Developmental pharmaceutical manufacturing systems and techniques designed to overcome the shortcomings of traditional batch processing methods are described. Conventional pharmaceutical manufacturing processes do not adequately address the needs of military and civilian patient populations and healthcare providers. Recent advances within the Defense Advanced Research Projects Agency (DARPA) Battlefield Medicine program suggest that miniaturized, flexible platforms for end-to-end manufacturing of pharmaceuticals are possible. Advances in continuous-flow synthesis, chemistry, biological engineering, and downstream processing, coupled with online analytics, automation, and enhanced process control measures, pave the way for disruptive innovation to improve the pharmaceutical supply chain and drug manufacturing base. These new technologies, along with current and ongoing advances in regulatory science, have the future potential to (1) permit "on demand" drug manufacturing on the battlefield and in other austere environments, (2) enhance the level of preparedness for chemical, biological, radiological, and nuclear threats, (3) enhance health authorities' ability to respond to natural disasters and other catastrophic events, (4) minimize shortages of drugs, (5) address gaps in the orphan drug market, (6) support and enable the continued drive toward precision medicine, and (7) enhance access to needed medications in underserved areas across the globe. Modular platforms under development by DARPA's Battlefield Medicine program may one day improve the safety, efficiency, and timeliness of drug manufacturing. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  11. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication.

    PubMed

    Teoh, Wey Yang; Amal, Rose; Mädler, Lutz

    2010-08-01

    Combustion of appropriate precursor sprays in a flame spray pyrolysis (FSP) process is a highly promising and versatile technique for the rapid and scalable synthesis of nanostuctural materials with engineered functionalities. The technique was initially derived from the fundamentals of the well-established vapour-fed flame aerosols reactors that was widely practised for the manufacturing of simple commodity powders such as pigmentary titania, fumed silica, alumina, and even optical fibers. In the last 10 years however, FSP knowledge and technology was developed substantially and a wide range of new and complex products have been synthesised, attracting major industries in a diverse field of applications. Key innovations in FSP reactor engineering and precursor chemistry have enabled flexible designs of nanostructured loosely-agglomerated powders and particulate films of pure or mixed oxides and even pure metals and alloys. Unique material morphologies such as core-shell structures and nanorods are possible using this essentially one step and continuous FSP process. Finally, research challenges are discussed and an outlook on the next generation of engineered combustion-made materials is given.

  12. Increasing physical activity through health-enabling technologies: the project "being strong without violence".

    PubMed

    Scharnweber, Corinna; Ludwig, Wolfram; Marschollek, Michael; Pein, Wolfgang; Schack, Peter; Schubert, Reiner; Haux, Reinhold

    2011-01-01

    Due to the increasing prevalence of adiposity in children numerous schools are introducing prevention programmes. Among these is "Gewaltlos Starksein" ("Being strong without violence"), a project of Hauptschule Sophienstraße Braunschweig, Germany (a general education secondary school for grades 5-10). This study aims to discover possible increases in activity through "Gewaltlos Starksein" where health-enabling technologies play a major role. A prospective intervention study with a span of 1.5 years was designed to measure this increase in activity. Partners in this study were Hauptschule Sophienstraße as the intervention group and Grund- und Hauptschule Pestalozzistraße as control group. Data collection was performed using a multi-sensor device, and questionnaires. Confirmatory data analysis of average metabolic equivalent (METs) yielded no significant results. Exploratory analysis showed interesting results, especially concerning the number of steps during leisure time. Descriptive analysis of questionnaires showed that all children enjoy physical activity. There were differences in sports team participation, open-air games and club affiliation. The study could not prove that the intervention "Gewaltlos Starksein" improves physical activity in children. However, the increased leisure activity step count indicates that "Gewaltlos Starksein" has positive effects on children's behaviour. This should be investigated in a further study in cooperation with psychologists.

  13. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication

    NASA Astrophysics Data System (ADS)

    Teoh, Wey Yang; Amal, Rose; Mädler, Lutz

    2010-08-01

    Combustion of appropriate precursor sprays in a flame spray pyrolysis (FSP) process is a highly promising and versatile technique for the rapid and scalable synthesis of nanostuctural materials with engineered functionalities. The technique was initially derived from the fundamentals of the well-established vapour-fed flame aerosols reactors that was widely practised for the manufacturing of simple commodity powders such as pigmentary titania, fumed silica, alumina, and even optical fibers. In the last 10 years however, FSP knowledge and technology was developed substantially and a wide range of new and complex products have been synthesised, attracting major industries in a diverse field of applications. Key innovations in FSP reactor engineering and precursor chemistry have enabled flexible designs of nanostructured loosely-agglomerated powders and particulate films of pure or mixed oxides and even pure metals and alloys. Unique material morphologies such as core-shell structures and nanorods are possible using this essentially one step and continuous FSP process. Finally, research challenges are discussed and an outlook on the next generation of engineered combustion-made materials is given.

  14. Framework for preventing falls in acute hospitals using passive sensor enabled radio frequency identification technology.

    PubMed

    Visvanathan, Renuka; Ranasinghe, Damith C; Shinmoto Torres, Roberto L; Hill, Keith

    2012-01-01

    We describe a distributed architecture for a real-time falls prevention framework capable of providing a technological intervention to mitigate the risk of falls in acute hospitals through the development of an AmbIGeM (Ambient Intelligence Geritatric Management system). Our approach is based on using a battery free, wearable sensor enabled Radio Frequency Identification device. Unsupervised classification of high risk falls activities are used to facilitate an immediate response from caregivers by alerting them of the high risk activity, the particular patient, and their location. Early identification of high risk falls activities through a longitudinal and unsupervised setting in real-time allows the preventative intervention to be administered in a timely manner. Furthermore, real-time detection allows emergency protocols to be deployed immediately in the event of a fall. Finally, incidents of high risk activities are automatically documented to allow clinicians to customize and optimize the delivery of care to suit the needs of patients identified as being at most risk.

  15. Structured grid technology to enable flow simulation in an integrated system environment

    NASA Astrophysics Data System (ADS)

    Remotigue, Michael Gerard

    An application-driven Computational Fluid Dynamics (CFD) environment needs flexible and general tools to effectively solve complex problems in a timely manner. In addition, reusable, portable, and maintainable specialized libraries will aid in rapidly developing integrated systems or procedures. The presented structured grid technology enables the flow simulation for complex geometries by addressing grid generation, grid decomposition/solver setup, solution, and interpretation. Grid generation is accomplished with the graphical, arbitrarily-connected, multi-block structured grid generation software system (GUM-B) developed and presented here. GUM-B is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a solid-modeling data structure that utilizes a structured grid generation library and a geometric library based on Non-Uniform Rational B-Splines (NURBS). A presented modification of the solid-modeling data structure provides the capability for arbitrarily-connected regions between the grid blocks. The presented grid generation library provides algorithms that are reliable and accurate. GUM-B has been utilized to generate numerous structured grids for complex geometries in hydrodynamics, propulsors, and aerodynamics. The versatility of the libraries that compose GUM-B is also displayed in a prototype to automatically regenerate a grid for a free-surface solution. Grid decomposition and solver setup is accomplished with the graphical grid manipulation and repartition software system (GUMBO) developed and presented here. GUMBO is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a structured grid-tools library. The described functions within the grid-tools library reduce the possibility of human error during decomposition and setup for the numerical solver by accounting for boundary conditions and connectivity. GUMBO is

  16. Combine palladium with iron for enhanced dechlorination

    SciTech Connect

    1995-07-01

    Research Corporation Technologies (RCT; Tucson, Arizona) is completing bench-scale testing of a new groundwater-treatment process that uses particles of palladium-coated iron to dechlorinate organic compounds. The palladized-iron process, developed by a research team at the University of Arizona, dechlorinates low-molecular-weight hydrocarbons by converting the chlorinated organics to chloride ions and either methane or ethane gas. A three-month test of an above-ground treatment unit is scheduled to begin in September. The key to the new process is the palladium. When elemental iron is immersed in water, it oxidizes and releases electrons, which create a reducing environment. This reducing environment breaks down chlorinated and fluorinated organic compounds. Unfortunately, a layer of metal oxide (rust) forms on the iron surface. This layer ultimately impedes the flow of electrons into the water and makes the reduction process slow and inefficient. To overcome this, RCT deposits a small amount (0.05 wt%) of palladium as discrete islands on the iron particles. This palladium prevents rust from coating the iron but does not impede the steady flow of the electrons needed to sustain a reducing environment.

  17. Stress management as an enabling technology for high-field superconducting dipole magnets

    NASA Astrophysics Data System (ADS)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  18. Simulation Evaluation of Synthetic Vision as an Enabling Technology for Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.

    2008-01-01

    Enhanced Vision (EV) and synthetic vision (SV) systems may serve as enabling technologies to meet the challenges of the Next Generation Air Transportation System (NextGen) Equivalent Visual Operations (EVO) concept ? that is, the ability to achieve or even improve on the safety of Visual Flight Rules (VFR) operations, maintain the operational tempos of VFR, and even, perhaps, retain VFR procedures independent of actual weather and visibility conditions. One significant challenge lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A piloted simulation experiment was conducted to evaluate the effects of the presence or absence of Synthetic Vision, the location of this information during an instrument approach (i.e., on a Head-Up or Head-Down Primary Flight Display), and the type of airport lighting information on landing minima. The quantitative data from this experiment were analyzed to begin the definition of performance-based criteria for all-weather approach and landing operations. Objective results from the present study showed that better approach performance was attainable with the head-up display (HUD) compared to the head-down display (HDD). A slight performance improvement in HDD performance was shown when SV was added, as the pilots descended below 200 ft to a 100 ft decision altitude, but this performance was not tested for statistical significance (nor was it expected to be statistically significant). The touchdown data showed that regardless of the display concept flown (SV HUD, Baseline HUD, SV HDD, Baseline HDD) a majority of the runs were within the performance-based defined approach and landing criteria in all the visibility levels, approach lighting systems, and decision altitudes tested. For this visual flight maneuver, RVR appeared to be the most significant influence in touchdown performance. The approach lighting system clearly impacted the pilot's ability to descend to 100 ft

  19. Using Enabling Technologies to Advance Data Intensive Analysis Tools in the JPL Tropical Cyclone Information System

    NASA Astrophysics Data System (ADS)

    Knosp, B.; Gangl, M. E.; Hristova-Veleva, S. M.; Kim, R. M.; Lambrigtsen, B.; Li, P.; Niamsuwan, N.; Shen, T. P. J.; Turk, F. J.; Vu, Q. A.

    2014-12-01

    Automated Rotational Center Hurricane Eye Retrieval (ARCHER) tools. In this presentation, we will compare the enabling technologies we tested and discuss which ones we selected for integration into the TCIS' data analysis tool architecture. We will also show how these techniques have been automated to provide access to NRT data through our analysis tools.

  20. SWIFTER - Space Weather Informatics, Forecasting, and Technology through Enabling Research and Virtual Organizations

    NASA Astrophysics Data System (ADS)

    Schaefer, R. K.; Morrison, D.; Paxton, L.; Holm, J.; Weiss, M.; Hsieh, S.

    2009-05-01

    SWIFTER will build a virtual organization to enable collaboration among research, military, and commercial communities to find new ways to understand, characterize, and forecast space weather to meet the needs of our technology based society. In this paper we discuss how knowledge is shared in organizations and how a virtual organization can be formed. A key element of a "virtual" organization is that it is a fluid collection of members that share some means of communicating relevant information among some of its members. The members also share ideas in evolution (such as analysis, new technologies, and predictive trending). As concepts mature they can be matured or discarded more quickly as the power of the network is brought to bear early and often. Space weather, the changes in the near-Earth space environment, is important to a wide range of users as well as the public. The public is interested in a variety of phenomena including meteors, solar flares, the aurora, noctilucent clouds and climate change. Industry focus tends to be on more concrete problems such as ground-induced currents in power lines and communications with aircraft in transpolar routes as well as geolocation (i.e. the use of GPS systems to precisely map a function to a position). Other government-oriented users service specialized communities who may be more or less unaware of the research and development upon which the forecasts or nowcasts rely for accuracy. The basic research community may be more or less unaware of the details of the applications, or potential applications of their research. The problem, then, is that each of these constituencies may share elements in common but there is no umbrella organization that ties them together, nor is there likely to be such an organization. Our goal in this paper is to outline a scheme for a virtual organization, delineate the functions of that VO and illustrate how it might be formed. We also will assess the barriers to knowledge transfer that

  1. Enabling heterogenous multi-scale database for emergency service functions through geoinformation technologies

    NASA Astrophysics Data System (ADS)

    Bhanumurthy, V.; Venugopala Rao, K.; Srinivasa Rao, S.; Ram Mohan Rao, K.; Chandra, P. Satya; Vidhyasagar, J.; Diwakar, P. G.; Dadhwal, V. K.

    2014-11-01

    emergency database systems. These include aspects such as i) data integration procedures namely standard coding scheme, schema, meta data format, spatial format ii) database organisation mechanism covering data management, catalogues, data models iii) database dissemination through a suitable environment, as a standard service for effective service dissemination. National Database for Emergency Management (NDEM) is such a comprehensive database for addressing disasters in India at the national level. This paper explains standards for integrating, organising the multi-scale and multi-source data with effective emergency response using customized user interfaces for NDEM. It presents standard procedure for building comprehensive emergency information systems for enabling emergency specific functions through geospatial technologies.

  2. Robotic planetary science missions enabled with small NTR engine/stage technologies

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.

    1995-10-01

    The high specific impulse (Isp) and engine thrust-to-weight ratio of liquid hydrogen (LH2)-cooled nuclear thermal rocket (NTR) engines makes them ideal for upper stage applications to difficult robotic planetary science missions. A small 15 thousand pound force (klbf) NTR engine using a uranium-zirconium-niobium 'ternary carbide' fuel (Isp approximately 960 seconds at approximately 3025K) developed in the Commonwealth of Independent States (CIS) is examined and its use on an expendable injection stage is shown to provide major increases in payload delivered to the outer planets (Saturn, Uranus, Neptune and Pluto). Using a single 'Titan IV-class' launch vehicle, with a lift capability to low Earth orbit (LEO) of approximately 20 metric tons (t), an expendable NTR upper stage can inject two Pluto 'Fast Flyby' spacecraft (PFF/SC) plus support equipment-combined mass of approximately 508 kg--on high energy, '6.5-9.2 year' direct trajectory missions to Pluto. A conventional chemical propulsion mission would use a liquid oxygen (LOX)/LH2 'Centaur' upper stage and two solid rocket 'kick motors' to inject a single PFF/SC on the same Titan IV launch vehicle. For follow on Pluto missions, the NTR injection stage would utilize a Jupiter 'gravity assist' (JGA) maneuver to launch a LOX/liquid methane (CH4) capture stage (Isp approximately 375 seconds) and a Pluto 'orbiter' spacecraft weighing between approximately 167-312 kg. With chemical propulsion, a Pluto orbiter mission is not a viable option because c inadequate delivered mass. Using a 'standardized' NTR injection stage and the same single Titan IV launch scenario, 'direct flight' (no gravity assist) orbiter missions to Saturn, Uranus and Neptune are also enabled with transit times of 2.3, 6.6, and 12.6 years, respectively. Injected mass includes a storable, nitrogen tetroxide/monomethyl hydrazine (N2O4/MMH) capture stage (Isp approximately 330 seconds) and orbiter payloads 340 to 820% larger than that achievable using a

  3. Robotic Planetary Science Missions Enabled with Small NTR Engine/Stage Technologies

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1995-01-01

    The high specific impulse (Isp) and engine thrust-to-weight ratio of liquid hydrogen (LH2)-cooled nuclear thermal rocket (NTR) engines makes them ideal for upper stage applications to difficult robotic planetary science missions. A small 15 thousand pound force (klbf) NTR engine using a uranium-zirconium-niobium 'ternary carbide' fuel (Isp approximately 960 seconds at approximately 3025K) developed in the Commonwealth of Independent States (CIS) is examined and its use on an expendable injection stage is shown to provide major increases in payload delivered to the outer planets (Saturn, Uranus, Neptune and Pluto). Using a single 'Titan IV-class' launch vehicle, with a lift capability to low Earth orbit (LEO) of approximately 20 metric tons (t), an expendable NTR upper stage can inject two Pluto 'Fast Flyby' spacecraft (PFF/SC) plus support equipment-combined mass of approximately 508 kg--on high energy, '6.5-9.2 year' direct trajectory missions to Pluto. A conventional chemical propulsion mission would use a liquid oxygen (LOX)/LH2 'Centaur' upper stage and two solid rocket 'kick motors' to inject a single PFF/SC on the same Titan IV launch vehicle. For follow on Pluto missions, the NTR injection stage would utilize a Jupiter 'gravity assist' (JGA) maneuver to launch a LOX/liquid methane (CH4) capture stage (Isp approximately 375 seconds) and a Pluto 'orbiter' spacecraft weighing between approximately 167-312 kg. With chemical propulsion, a Pluto orbiter mission is not a viable option because c inadequate delivered mass. Using a 'standardized' NTR injection stage and the same single Titan IV launch scenario, 'direct flight' (no gravity assist) orbiter missions to Saturn, Uranus and Neptune are also enabled with transit times of 2.3, 6.6, and 12.6 years, respectively. Injected mass includes a storable, nitrogen tetroxide/monomethyl hydrazine (N2O4/MMH) capture stage (Isp approximately 330 seconds) and orbiter payloads 340 to 820% larger than that achievable using a

  4. Emerging Therapeutic Enhancement Enabling Health Technologies and Their Discourses: What Is Discussed within the Health Domain?

    PubMed Central

    Wolbring, Gregor; Diep, Lucy; Yumakulov, Sophya; Ball, Natalie; Leopatra, Verlyn; Yergens, Dean

    2013-01-01

    So far, the very meaning of health and therefore, treatment and rehabilitation is benchmarked to the normal or species-typical body. We expect certain abilities in members of a species; we expect humans to walk but not to fly, but a bird we expect to fly. However, increasingly therapeutic interventions have the potential to give recipients beyond species-typical body related abilities (therapeutic enhancements, TE). We believe that the perfect storm of TE, the shift in ability expectations toward beyond species-typical body abilities, and the increasing desire of health consumers to shape the health system will increasingly influence various aspects of health care practice, policy, and scholarship. We employed qualitative and quantitative methods to investigate among others how human enhancement, neuro/cognitive enhancement, brain machine interfaces, and social robot discourses cover (a) healthcare, healthcare policy, and healthcare ethics, (b) disability and (c) health consumers and how visible various assessment fields are within Neuro/Cogno/Human enhancement and within the BMI and social robotics discourse. We found that health care, as such, is little discussed, as are health care policy and ethics; that the term consumers (but not health consumers) is used; that technology, impact and needs assessment is absent; and that the imagery of disabled people is primarily a medical one. We submit that now, at this early stage, is the time to gain a good understanding of what drives the push for the enhancement agenda and enhancement-enabling devices, and the dynamics around acceptance and diffusion of therapeutic enhancements. PMID:27429129

  5. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors

    NASA Astrophysics Data System (ADS)

    Biyikli, Necmi; Haider, Ali

    2017-09-01

    In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.

  6. Emerging Therapeutic Enhancement Enabling Health Technologies and Their Discourses: What Is Discussed within the Health Domain?

    PubMed

    Wolbring, Gregor; Diep, Lucy; Yumakulov, Sophya; Ball, Natalie; Leopatra, Verlyn; Yergens, Dean

    2013-07-25

    So far, the very meaning of health and therefore, treatment and rehabilitation is benchmarked to the normal or species-typical body. We expect certain abilities in members of a species; we expect humans to walk but not to fly, but a bird we expect to fly. However, increasingly therapeutic interventions have the potential to give recipients beyond species-typical body related abilities (therapeutic enhancements, TE). We believe that the perfect storm of TE, the shift in ability expectations toward beyond species-typical body abilities, and the increasing desire of health consumers to shape the health system will increasingly influence various aspects of health care practice, policy, and scholarship. We employed qualitative and quantitative methods to investigate among others how human enhancement, neuro/cognitive enhancement, brain machine interfaces, and social robot discourses cover (a) healthcare, healthcare policy, and healthcare ethics, (b) disability and (c) health consumers and how visible various assessment fields are within Neuro/Cogno/ Human enhancement and within the BMI and social robotics discourse. We found that health care, as such, is little discussed, as are health care policy and ethics; that the term consumers (but not health consumers) is used; that technology, impact and needs assessment is absent; and that the imagery of disabled people is primarily a medical one. We submit that now, at this early stage, is the time to gain a good understanding of what drives the push for the enhancement agenda and enhancement-enabling devices, and the dynamics around acceptance and diffusion of therapeutic enhancements.

  7. Enabling Remote Activity: Using mobile technology for remote participation in geoscience fieldwork

    NASA Astrophysics Data System (ADS)

    Davies, Sarah; Collins, Trevor; Gaved, Mark; Bartlett, Jessica; Valentine, Chris; McCann, Lewis

    2010-05-01

    Field-based activities are regarded as essential to the development of a range of professional and personal skills within the geosciences. Students enjoy field activities, preferring these to learning with simulations (Spicer and Stratford 2001), and these improve deeper learning and understanding (Kern and Carpenter, 1984; Elkins and Elkins, 2007). However, some students find it difficult to access these field-based learning opportunities. Field sites may be remote and often require travel across uneven, challenging or potentially dangerous terrain. Mobility-impaired students are particularly limited in their opportunities to participate in field-based learning activities and, as higher education institutions have a responsibility to provide inclusive opportunities for students (UK Disability Discrimination Act 1995, UK Special Education Needs and Disability Rights Act 2001), the need for inclusive fieldwork learning is being increasingly recognised. The Enabling Remote Activity (ERA) project has been investigating how mobile communications technologies might allow field learning experiences to be brought to students who would otherwise find it difficult to participate, and also to enhance activities for all participants. It uses a rapidly deployable, battery-powered wireless network to transmit video, audio, and high resolution still images to connect participants at an accessible location with participants in the field. Crucially, the system uses a transient wireless network, allowing multiple locations to be explored during a field visit, and for plans to be changed dynamically if required. Central to the concept is the requirement for independent investigative learning: students are enabled to participate actively in the learning experience and to direct the investigations, as opposed to being simply remote viewers of the experience. Two ways of using the ERA system have been investigated: remote access and collaborative groupwork. In 2006 and 2008 remote

  8. Technology-enabled assessment of health professions education: consensus statement and recommendations from the Ottawa 2010 Conference.

    PubMed

    Amin, Zubair; Boulet, John R; Cook, David A; Ellaway, Rachel; Fahal, Ahmad; Kneebone, Roger; Maley, Moira; Ostergaard, Doris; Ponnamperuma, Gominda; Wearn, Andy; Ziv, Amitai

    2011-01-01

    The uptake of information and communication technologies (ICTs) in health professions education can have far-reaching consequences on assessment. The medical education community still needs to develop a deeper understanding of how technology can underpin and extend assessment practices. This article was developed by the 2010 Ottawa Conference Consensus Group on technology-enabled assessment to guide practitioners and researchers working in this area. This article highlights the changing nature of ICTs in assessment, the importance of aligning technology-enabled assessment with local context and needs, the need for better evidence to support use of technologies in health profession education assessment, and a number of challenges, particularly validity threats, that need to be addressed while incorporating technology in assessment. Our recommendations are intended for all practitioners across health professional education. Recommendations include adhering to principles of good assessment, the need for developing coherent institutional policy, using technologies to broaden the competencies to be assessed, linking patient-outcome data to assessment of practitioner performance, and capitalizing on technologies for the management of the entire life-cycle of assessment.

  9. Design and Implementation of Technology Enabled Affective Learning Using Fusion of Bio-Physical and Facial Expression

    ERIC Educational Resources Information Center

    Ray, Arindam; Chakrabarti, Amlan

    2016-01-01

    Technology Enabled Learning is a cognitive, constructive, systematic, collaborative learning procedure, which transforms teaching-learning pedagogy where role of emotion is very often neglected. Emotion plays significant role in the cognitive process of human being, so the transformation is incomplete without capturing the learner's emotional…

  10. The Flipped Classroom, Disruptive Pedagogies, Enabling Technologies and Wicked Problems: Responding to "The Bomb in the Basement"

    ERIC Educational Resources Information Center

    Hutchings, Maggie; Quinney, Anne

    2015-01-01

    The adoption of enabling technologies by universities provides unprecedented opportunities for flipping the classroom to achieve student-centred learning. While higher education policies focus on placing students at the heart of the education process, the propensity for student identities to shift from partners in learning to consumers of…

  11. Enabling Self-Directed Computer Use for Individuals with Cerebral Palsy: A Systematic Review of Assistive Devices and Technologies

    ERIC Educational Resources Information Center

    Davies, T. Claire; Mudge, Suzie; Ameratunga, Shanthi; Stott, N. Susan

    2010-01-01

    Aim: The purpose of this study was to systematically review published evidence on the development, use, and effectiveness of devices and technologies that enable or enhance self-directed computer access by individuals with cerebral palsy (CP). Methods: Nine electronic databases were searched using keywords "computer", "software", "spastic",…

  12. Design and Implementation of Technology Enabled Affective Learning Using Fusion of Bio-Physical and Facial Expression

    ERIC Educational Resources Information Center

    Ray, Arindam; Chakrabarti, Amlan

    2016-01-01

    Technology Enabled Learning is a cognitive, constructive, systematic, collaborative learning procedure, which transforms teaching-learning pedagogy where role of emotion is very often neglected. Emotion plays significant role in the cognitive process of human being, so the transformation is incomplete without capturing the learner's emotional…

  13. Enabling Self-Directed Computer Use for Individuals with Cerebral Palsy: A Systematic Review of Assistive Devices and Technologies

    ERIC Educational Resources Information Center

    Davies, T. Claire; Mudge, Suzie; Ameratunga, Shanthi; Stott, N. Susan

    2010-01-01

    Aim: The purpose of this study was to systematically review published evidence on the development, use, and effectiveness of devices and technologies that enable or enhance self-directed computer access by individuals with cerebral palsy (CP). Methods: Nine electronic databases were searched using keywords "computer", "software", "spastic",…

  14. Developments in remote sensing technology enable more detailed urban flood risk analysis.

    NASA Astrophysics Data System (ADS)

    Denniss, A.; Tewkesbury, A.

    2009-04-01

    Spaceborne remote sensors have been allowing us to build up a profile of planet earth for many years. With each new satellite launched we see the capabilities improve: new bands of data, higher resolution imagery, the ability to derive better elevation information. The combination of this geospatial data to create land cover and usage maps, all help inform catastrophe modelling systems. From Landsat 30m resolution to 2.44m QuickBird multispectral imagery; from 1m radar data collected by TerraSAR-X which enables rapid tracking of the rise and fall of a flood event, and will shortly have a twin satellite launched enabling elevation data creation; we are spoilt for choice in available data. However, just what is cost effective? It is always a question of choosing the appropriate level of input data detail for modelling, depending on the value of the risk. In the summer of 2007, the cost of the flooding in the UK was approximately £3bn and affected over 58,000 homes and businesses. When it comes to flood risk, we have traditionally considered rising river levels and surge tides, but with climate change and variations in our own construction behaviour, there are other factors to be taken into account. During those summer 2007 events, the Environment Agency suggested that around 70% of the properties damaged were the result of pluvial flooding, where high localised rainfall events overload localised drainage infrastructure, causing widespread flooding of properties and infrastructure. To create a risk model that is able to simulate such an event requires much more accurate source data than can be provided from satellite or radar. As these flood events cause considerable damage within relatively small, complex urban environments, therefore new high resolution remote sensing techniques have to be applied to better model these events. Detailed terrain data of England and Wales, plus cities in Scotland, have been produced by combining terrain measurements from the latest

  15. Practical performance and enabling technologies in immersion scanners for the double patterning generation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Jun; Kohno, Hirotaka; Sato, Shinji; Kosugi, Junichi; Shibazaki, Yuichi

    2011-04-01

    At SPIE2010, excellent performance of the cutting edge immersion lithography scanner, the NSR-S620D, which is based on the new "Streamlign" platform was demonstrated. Last year's work focused mainly on machine evaluation data[1]. Now, many S620Ds are employed at customers' sites and being used in device manufacturing. In this paper, the authors will introduce the latest factory data, as well as various techniques that enable superior yield and enhance productivity in IC manufacturing. It is well understood, that in order to achieve further device shrinks without using traditional techniques such as NA expansion or wavelength reduction, several practical issues must be overcome. Extremely tight overlay performance will be required for pitch splitting double patterning, for example. In addition, it is also necessary to control the image plane and the aberration of the optics much more carefully. Of course these improvements must also be achieved with sufficient productivity (throughput). In order to satisfy all of the requirements for mass production at customer factories, many variable factors must be dealt with. One of these variable factors is the characteristics of the processed wafers that include on-flatness, grid distortion, steep topology around the edge, or topography of the previous layers' patterns. These factors typically impact overlay and/or auto focus accuracy. Another variable is the difference in exposure conditions between layers, which include illumination conditions, dose, reticle transmittance, and the alignment marks. Exposure induced heating in particular is the key issue for today's enhanced throughput capabilities, with regards to achieving both optimal accuracy and productivity. In some IC production facilities, and often foundries, many different kinds of products are manufactured in parallel. However, in order to enhance performance and accuracy, it is sometimes necessary to optimize machine parameters for each product. Cleary this

  16. Enabling Technology for the Exploration of the Arctic Ocean - Multi Channel Seismic Reflection data acquisition

    NASA Astrophysics Data System (ADS)

    Coakley, B.; Anderson, R.; Chayes, D. N.; Goemmer, S.; Oursler, M.

    2009-12-01

    Great advances in mapping the Arctic Ocean have recently been made through the relatively routine acquisition of multibeam data from icebreakers operating on various cruise. The USCGC Healy, the German icebreaker Polarstern, the Canadian icebreaker Amundsen and the Swedish icebreaker Oden all routinely collect multibeam data, even while in heavy ice pack. This increase in data has substantially improved our knowledge of the form of the Arctic Ocean seafloor. Unfortunately, it is not possible to routinely collect Multi Channel Seismic Reflection (MCS) data while underway in the ice pack. Our inability to simply collect these data restricts how we understand many of the features that segment the basin by depriving us of the historical information that can be obtained by imaging the stratigraphy. Without these data, scientific ocean drilling, the ultimate ground truth for Marine Geology, cannot be done. The technology and expertise to collect MCS must be adapted for the particular circumstances of the Arctic Ocean. While MCS data have been collected in the Arctic Ocean, the procedures have relied on icebreakers towing equipment. Since icebreakers follow the path of least resistance through the pack, data are acquired in locations that are not scientifically optimal and rarely in the relatively straight lines necessary for optimal processing. Towing in the ice pack is also difficult, inefficient and puts this equipment at substantial risk of crushing or loss. While icebreakers are one means to collect these data, it is time to conduct a systematic evaluation of the costs and benefits of different platforms for MCS data acquisition. This evaluation should enable collection of high-quality data set at selected locations to solve scientific problems. Substantial uncertainties exist about the relative capabilities, costs and limitations for acquisition of MCS data from various platforms in the Arctic Ocean. For example; - Is it possible to collect multi-channel seismic

  17. ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses

    PubMed Central

    Stokes, Todd H; Torrance, JT; Li, Henry; Wang, May D

    2008-01-01

    Background A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the "curse-of-dimension" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create "intelligent" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources. Results To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers

  18. ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses.

    PubMed

    Stokes, Todd H; Torrance, J T; Li, Henry; Wang, May D

    2008-05-28

    A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the "curse-of-dimension" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create "intelligent" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources. To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers (Semantic Agents

  19. Cas-enabled technologies as `agents provocateurs' in teaching and learning mathematical modelling in secondary school classrooms

    NASA Astrophysics Data System (ADS)

    Geiger, Vince; Faragher, Rhonda; Goos, Merrilyn

    2010-09-01

    This paper draws on a one year study of three secondary school classrooms to examine the nature of student-student-technology interaction when working in partnership with computer algebra systems (CAS) on mathematical modelling tasks and the classroom affordances and constraints that influence such interaction. The analysis of these data indicates that CAS enabled technologies have a role to play as provocateurs of productive student-student-teacher interaction in both small group and whole class settings. Our research indicates that technologies that incorporate CAS capabilities have the potential to mediate collaborative approaches to mathematical enquiry within life-related mathematical tasks.

  20. Enabling technologies: Supporting the development and use of innovative, energy-efficient, and environmentally friendly products and processes

    SciTech Connect

    1999-02-01

    This pamphlet describes the Office of Industrial Technologies cooperative efforts to address industry needs for advanced materials, sensors and controls, process energy and energy efficiency. US industry needs enabling materials that are stronger and lighter, with resistance to high-temperature fatigue and improved resistance to corrosion and wear. New industrial materials such as intermetallic alloys and advanced ceramics have the potential to meet the challenges of the Industries of the Future. The manufacturing industries obtain over 85% of their energy from the on-site combustion of fuels. Enhancements to burners, boilers, and process heating systems can lower energy costs, reduce emissions, enhance fuel options, and increase safety and reliability. Robust, integrated measurement devices linked to intelligent control systems will enable US industry to use resources more efficiently and improve product quality. Through constant process monitoring and adjustment of parameters, these systems can reduce energy use and labor, minimize waste and pollution, and boost productivity. The Enabling Technologies Program is designed to address the cross-cutting needs of the Office of Industrial Technologies (OIT). OIT partners with industry to promote the development and use of energy-efficient, pollution-preventing technologies. The Nation`s environment benefits from greater use of these technologies, and industries benefit from cost savings, improved productivity, and increased competitiveness.

  1. Improving Accountability Models by Using Technology-Enabled Knowledge Systems (TEKS). CSE Report 656

    ERIC Educational Resources Information Center

    Baker, Eva L.

    2005-01-01

    This paper addresses accountability and the role emerging technologies can play in improving education. The connection between accountability and technology can be best summarized in one term: feedback. Technological supports provide ways of designing, collecting and sharing information in order to provide the basis for the improvement of systems…

  2. Principals as Enablers in the Use of Technology in High Schools

    ERIC Educational Resources Information Center

    Pye, Jane M.

    2013-01-01

    Use of educational technology, hardware and software such as whiteboards, simulators, math solvers, and language programs, has been shown to enhance learning by providing a more vivid, interactive experience. Yet a number of studies in the last 5 to 7 years have reported low use of educational technology (e-technology) by high school teachers and…

  3. Palladium catalysis for energy applications

    SciTech Connect

    Pfefferle, L. D.; Datye, Abhaya

    2001-03-01

    Palladium (Pd) is an attractive catalyst for a range of new combustion applications comprising primary new technologies for future industrial energy needs, including gas turbine catalytic combustion, auto exhaust catalysts, heating and fuel cells. Pd poses particular challenges because it changes both chemical state and morphology as a function of temperature and reactant environment and those changes result in positive and negative changes in activity. Interactions with the support, additives, water, and contaminants as well as carbon formation have also been observed to affect Pd catalyst performance. This report describes the results of a 3.5 year project that resolves some of the conflicting reports in the literature about the performance of Pd-based catalysis.

  4. Self-management support interventions that are clinically linked and technology enabled: can they successfully prevent and treat diabetes?

    PubMed

    Kaufman, Neal D; Woodley, Paula D Patnoe

    2011-05-01

    Patients with diabetes need a complex set of services and supports. The challenge of integrating these services into the diabetes regimen can be successfully overcome through self-management support interventions that are clinically linked and technology enabled: self-management support because patients need help mastering the knowledge, attitudes, skills, and behaviors so necessary for good outcomes; interventions because comprehensive theory-based, evidence-proven, long-term, longitudinal interventions work better than direct-to-consumer or nonplanned health promotion approaches; clinically linked because patients are more likely to adopt new behaviors when the approach is in the context of a trusted therapeutic relationship and within an effective medical care system; and technology enabled because capitalizing on the amazing power of information technology leads to the delivery of cost-effective, scalable, engaging solutions that prevent and manage diabetes.

  5. Self-Management Support Interventions That Are Clinically Linked and Technology Enabled: Can They Successfully Prevent and Treat Diabetes?

    PubMed Central

    Kaufman, Neal D; Woodley, Paula D. Patnoe

    2011-01-01

    Patients with diabetes need a complex set of services and supports. The challenge of integrating these services into the diabetes regimen can be successfully overcome through self-management support interventions that are clinically linked and technology enabled: self-management support because patients need help mastering the knowledge, attitudes, skills, and behaviors so necessary for good outcomes; interventions because comprehensive theory-based, evidence-proven, long-term, longitudinal interventions work better than direct-to-consumer or nonplanned health promotion approaches; clinically linked because patients are more likely to adopt new behaviors when the approach is in the context of a trusted therapeutic relationship and within an effective medical care system; and technology enabled because capitalizing on the amazing power of information technology leads to the delivery of cost-effective, scalable, engaging solutions that prevent and manage diabetes. PMID:21722596

  6. Microswitch Technology for Enabling Self-Determined Responding in Children with Profound and Multiple Disabilities: A Systematic Review.

    PubMed

    Roche, Laura; Sigafoos, Jeff; Lancioni, Giulio E; O'Reilly, Mark F; Green, Vanessa A

    2015-01-01

    We reviewed 18 studies reporting on the use of microswitch technology to enable self-determined responding in children with profound and multiple disabilities. Identified studies that met pre-determined inclusion criteria were summarized in terms of (a) participants, (b) experimental design, (c) microswitches and procedures used, and (d) main results. The 18 studies formed three groups based on whether the microswitch technology was primarily intended to enable the child to (a) access preferred stimuli (7 studies), (b) choose between stimuli (6 studies), or (c) recruit attention/initiate social interaction (5 studies). The results of these studies were consistently positive and support the use of microswitch technology in educational programs for children with profound and multiple disabilities as a means to impact their environment and interact with others. Implications for delivery of augmentative and alternative communication intervention to children with profound and multiple disabilities are discussed.

  7. Emerging issues and current trends in assistive technology use 2007-2010: practising, assisting and enabling learning for all.

    PubMed

    Abbott, Chris; Brown, David; Evett, Lindsay; Standen, Penny

    2014-11-01

    Following an earlier review in 2007, a further review of the academic literature relating to the uses of assistive technology (AT) by children and young people was completed, covering the period 2007-2011. As in the earlier review, a tripartite taxonomy: technology uses to train or practise, technology uses to assist learning and technology uses to enable learning, was used in order to structure the findings. The key markers for research in this field and during these three years were user involvement, AT on mobile mainstream devices, the visibility of AT, technology for interaction and collaboration, new and developing interfaces and inclusive design principles. The paper concludes by locating these developments within the broader framework of the Digital Divide.

  8. Toward Financially Viable Phytoextraction and Production of Plant-Based Palladium Catalysts.

    PubMed

    Harumain, Zakuan A S; Parker, Helen L; Muñoz García, Andrea; Austin, Michael J; McElroy, Con Robert; Hunt, Andrew J; Clark, James H; Meech, John A; Anderson, Christopher W N; Ciacci, Luca; Graedel, T E; Bruce, Neil C; Rylott, Elizabeth L

    2017-02-27

    Although a promising technique, phytoextraction has yet to see significant commercialization. Major limitations include metal uptake rates and subsequent processing costs. However, it has been shown that liquid-culture-grown Arabidopsis can take up and store palladium as nanoparticles. The processed plant biomass has catalytic activity comparable to that of commercially available catalysts, creating a product of higher value than extracted bulk metal. We demonstrate that the minimum level of palladium in Arabidopsis dried tissues for catalytic activity comparable to commercially available 3% palladium-on-carbon catalysts was achieved from dried plant biomass containing between 12 and 18 g·kg(-1) Pd. To advance this technology, species suitable for in-the-field application: mustard, miscanthus, and 16 willow species and cultivars, were tested. These species were able to grow, and take up, palladium from both synthetic and mine-sourced tailings. Although levels of palladium accumulation in field-suitable species are below that required for commercially available 3% palladium-on-carbon catalysts, this study both sets the target, and is a step toward, the development of field-suitable species that concentrate catalytically active levels of palladium. Life cycle assessment on the phytomining approaches described here indicates that the use of plants to accumulate palladium for industrial applications has the potential to decrease the overall environmental impacts associated with extracting palladium using present-day mining processes.

  9. Leveraging Information Technology to Enable Army Transformation: Capabilities and Challenges for the Interim Force

    DTIC Science & Technology

    2007-11-02

    is to examine the Interim Force and determine whether or not the higher technical performance expected to be gained from information technology will...which this force is being developed, underscore the capabilities information technology brings to the transformation effort, and examine the...challenges information technology presents Army planners and leaders as they further develop the campaign plan and execute the program. This study will

  10. Enabling technologies to improve area-wide integrated pest management programmes for the control of screwworms.

    PubMed

    Robinson, A S; Vreysen, M J B; Hendrichs, J; Feldmann, U

    2009-06-01

    . Wohlfahrtia magnifica (Schiner) (Diptera: Sarcophagidae) is a screwworm of temperate regions, which, although of limited agricultural importance, has invaded several new locations in the past few years. This special issue reports on the results of a 6-year project funded by the Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency (FAO/IAEA) Programme of Nuclear Techniques in Food and Agriculture entitled 'Enabling Technologies for the Expansion of the SIT for Old and New World Screwworm'. A major goal of the project was to better understand population genetic variation in screwworms as an aid to the identification of isolated populations. The project also addressed issues related to genetic sexing, cuticular hydrocarbons, population dynamics, genetic transformation and chromosome analysis.

  11. Enabling CD SEM metrology for 5nm technology node and beyond

    NASA Astrophysics Data System (ADS)

    Lorusso, Gian Francesco; Ohashi, Takeyoshi; Yamaguchi, Astuko; Inoue, Osamu; Sutani, Takumichi; Horiguchi, Naoto; Bömmels, Jürgen; Wilson, Christopher J.; Briggs, Basoene; Tan, Chi Lim; Raymaekers, Tom; Delhougne, Romain; Van den Bosch, Geert; Di Piazza, Luca; Kar, Gouri Sankar; Furnémont, Arnaud; Fantini, Andrea; Donadio, Gabriele Luca; Souriau, Laurent; Crotti, Davide; Yasin, Farrukh; Appeltans, Raf; Rao, Siddharth; De Simone, Danilo; Rincon Delgadillo, Paulina; Leray, Philippe; Charley, Anne-Laure; Zhou, Daisy; Veloso, Anabela; Collaert, Nadine; Hasumi, Kazuhisa; Koshihara, Shunsuke; Ikota, Masami; Okagawa, Yutaka; Ishimoto, Toru

    2017-03-01

    The CD SEM (Critical Dimension Scanning Electron Microscope) is one of the main tools used to estimate Critical Dimension (CD) in semiconductor manufacturing nowadays, but, as all metrology tools, it will face considerable challenges to keep up with the requirements of the future technology nodes. The root causes of these challenges are not uniquely related to the shrinking CD values, as one might expect, but to the increase in complexity of the devices in terms of morphology and chemical composition as well. In fact, complicated threedimensional device architectures, high aspect ratio features, and wide variety of materials are some of the unavoidable characteristics of the future metrology nodes. This means that, beside an improvement in resolution, it is critical to develop a CD SEM metrology capable of satisfying the specific needs of the devices of the nodes to come, needs that sometimes will have to be addressed through dramatic changes in approach with respect to traditional CD SEM metrology. In this paper, we report on the development of advanced CD SEM metrology at imec on a variety of device platform and processes, for both logic and memories. We discuss newly developed approaches for standard, IIIV, and germanium FinFETs (Fin Field Effect Transistors), for lateral and vertical nanowires (NW), 3D NAND (three-dimensional NAND), STT-MRAM (Spin Transfer Magnetic Torque Random-Access Memory), and ReRAM (Resistive Random Access Memory). Applications for both front-end of line (FEOL) and back-end of line (BEOL) are developed. In terms of process, S/D Epi (Source Drain Epitaxy), SAQP (Self-Aligned Quadruple Patterning), DSA (Dynamic Self-Assembly), and EUVL (Extreme Ultraviolet Lithography) have been used. The work reported here has been performed on Hitachi CG5000, CG6300, and CV5000. In terms of logic, we discuss here the S/D epi defect classification, the metrology optimization for STI (Shallow Trench Isolation) Ge FinFETs, the defectivity of III-V STI Fin

  12. Sustained Manned Mars Presence Enabled by E-sail Technology and Asteroid Water Mining

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Merikallio, Sini; Toivanen, Petri; Envall, M. Jouni

    would be reduced because of intermediate tankings plus opening up the possibility of making the craft reusable for several back and forth trips. The manned spacecraft can be tanked first time at Earth C3, second time in Mars orbit for the return trip, and again in Earth C3 for the next trip if the spacecraft is reusable. When propellant is cheap in Mars orbit, it may also make sense to perform an all-propulsive landing which would make thermal shielding unnecessary. In this case the manned spacecraft would be tanked in Mars orbit two times plus once on the surface per each bidirectional mission. We estimate that the dry mass of cryogenic propellant factories and their associated temporary storage tanks that can process 50 tonnes of water per year is 20 tonnes. By developing the E-sail as enabling technology and by employing asteroid water mining, we think that sustained bidirectional Earth-Mars manned transportation could be created which would asymptotically require no more resources than what running the International Space Station requires today. References [1] Janhunen, P., et. al, Electric solar wind sail: Towards test missions (Invited article), Rev. Sci. Instrum., 81, 111301, 2010. [2] Janhunen, P., A. Quarta and G. Mengali G., Electric solar wind sail mass budget model, Geosci. Instrum. Method. Data Syst., 2, 85-95, 2013.

  13. School Librarians as Technology Integration Leaders: Enablers and Barriers to Leadership Enactment

    ERIC Educational Resources Information Center

    Johnston, Melissa P.

    2012-01-01

    The highly technological environment of 21st-century schools has significantly redefined the role of school librarians by presenting the opportunity to assume leadership through technology integration. Despite the abundance of literature that has suggested the need for and the importance of school librarians to be a proactive leaders in technology…

  14. Removing Obstacles to the Pedagogical Changes Required by Jonassen's Vision of Authentic Technology-Enabled Learning

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Ottenbreit-Leftwich, Anne

    2013-01-01

    Educators have been striving to achieve meaningful technology use in our K-12 classrooms for over 30 years. Yet, despite significant investments of time and money in infrastructure, training, and support "we have few assurances that [educators] are able to use technology for teaching and learning" (NEA, 2008, p. 1). In this article, we call for a…

  15. Speech-enabled technology provides boost to in-house diabetes program.

    PubMed

    2004-03-01

    If there was ever any doubt about the importance of selecting your technology wisely, consider the case of Fallon Community Health Plan. Administrators there recently switched from a vendored diabetes program to an in-house effort, and they're finding that a critical switch in technology is paying early dividends in terms of participation rates.

  16. Removing Obstacles to the Pedagogical Changes Required by Jonassen's Vision of Authentic Technology-Enabled Learning

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Ottenbreit-Leftwich, Anne

    2013-01-01

    Educators have been striving to achieve meaningful technology use in our K-12 classrooms for over 30 years. Yet, despite significant investments of time and money in infrastructure, training, and support "we have few assurances that [educators] are able to use technology for teaching and learning" (NEA, 2008, p. 1). In this article, we call for a…

  17. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report

    SciTech Connect

    Williams, Dean N.

    2011-09-27

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing

  18. Air Launch and LOX Collection as Enabling Technologies for Future Launch Systems

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk; Schafer, Charles (Technical Monitor)

    2001-01-01

    Launch from an aerial, subsonic carrier aircraft yields significant improvements in engine performance and reduced drag and gravity losses. Additionally, the carrier aircraft can fly to latitudes that permit ascent into any desired inclination. Vehicle performance is limited by the takeoff mass constraint of the carrier aircraft, but the inflight collection of liquid oxygen may enable this constraint to be breached.

  19. Single-Electron Transmetalation: An Enabling Technology for Secondary Alkylboron Cross-Coupling

    PubMed Central

    Primer, David N.; Karakaya, Idris; Tellis, John C.; Molander, Gary A.

    2015-01-01

    Single-electron-mediated alkyl transfer affords a novel mechanism for transmetalation, enabling cross-coupling under mild conditions. Here, general conditions are reported for cross-coupling of secondary alkyltrifluoroborates with an array of aryl bromides mediated by an Ir photoredox catalyst and a Ni cross-coupling catalyst. PMID:25650892

  20. Technology Enabling Ultra High Concentration Multi-Junction Cells. Final report

    SciTech Connect

    Bedair, S. M.; Colter, Peter

    2016-03-30

    The project goal is to enable multijunction cells to operate at greater than 2000× suns intensity with efficiency above forty percent. To achieve this goal the recipients have developed a robust high-bandgap tunnel junction, reduce series resistance, and integrated a practical heat dissipation scheme.

  1. Physics-Based Simulations to Enable Game-Changing Novel Explosive and Protective Technologies

    DTIC Science & Technology

    2013-09-25

    physics-based fundamental approach. The core intellectual objective is to radically advance the field of Compressible Multiphase Turbulence ( CMT ) by...systematically answering key outstanding questions. We will advance a rigorous physics-based formulation of CMT and thereby enable accurate high...biological weapons of mass destruction. The core intellectual objective is to radically advance the field of Compressible Multiphase Turbulence ( CMT

  2. Free and Open Source Enabling Technologies for Patient-Centric, Guideline-Based Clinical Decision Support: A Survey

    PubMed Central

    Leong, T.-Y.; Kaiser, K.; Miksch, S.

    2010-01-01

    Summary Objectives: Guideline-based clinical decision support is an emerging paradigm to help reduce error, lower cost, and improve quality in evidence-based medicine. The free and open source (FOS) approach is a promising alternative for delivering cost-effective information technology (IT) solutions in health care. In this paper, we survey the current FOS enabling technologies for patient-centric, guideline-based care, and discuss the current trends and future directions of their role in clinical decision support. Methods: We searched PubMed, major biomedical informatics websites, and the web in general for papers and links related to FOS health care IT systems. We also relied on our background and knowledge for specific subtopics. We focused on the functionalities of guideline modeling tools, and briefly examined the supporting technologies for terminology, data exchange and electronic health record (EHR) standards. Results: To effectively support patient-centric, guideline-based care, the computerized guidelines and protocols need to be integrated with existing clinical information systems or EHRs. Technologies that enable such integration should be accessible, interoperable, and scalable. A plethora of FOS tools and techniques for supporting different knowledge management and quality assurance tasks involved are available. Many challenges, however, remain in their implementation. Conclusions: There are active and growing trends of deploying FOS enabling technologies for integrating clinical guidelines, protocols, and pathways into the main care processes. The continuing development and maturation of such technologies are likely to make increasingly significant contributions to patient-centric, guideline-based clinical decision support. PMID:17700908

  3. The Australian e-Health Research Centre: enabling the health care information and communication technology revolution.

    PubMed

    Hansen, David P; Gurney, Phil; Morgan, Gary; Barraclough, Bruce

    2011-02-21

    The CSIRO (Commonwealth Scientific and Industrial Research Organisation) and the Queensland Government have jointly established the Australian e-Health Research Centre (AEHRC) with the aim of developing innovative information and communication technologies (ICT) for a sustainable health care system. The AEHRC, as part of the CSIRO ICT Centre, has access to new technologies in information processing, wireless and networking technologies, and autonomous systems. The AEHRC's 50 researchers, software engineers and PhD students, in partnership with the CSIRO and clinicians, are developing and applying new technologies for improving patients' experience, building a more rewarding workplace for the health workforce, and improving the efficiency of delivering health care. The capabilities of the AEHRC fall into four broad areas: smart methods for using medical data; advanced medical imaging technologies; new models for clinical and health care interventions; and tools for medical skills development. Since its founding in 2004, new technology from the AEHRC has been adopted within Queensland (eg, a mobile phone-based cardiac rehabilitation program), around Australia (eg, medical imaging technologies) and internationally (eg, our clinical terminology tools).

  4. Enabling Smart Grid Cosimulation Studies: Rapid Design and Development of the Technologies and Controls

    SciTech Connect

    Hansen, Timothy M.; Kadavil, Rahul; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay; Chong, Edwin K. P.; Hale, Elaine

    2016-03-01

    The 21st century electric power grid is transforming with an unprecedented increase in demand and increase in new technologies. In the United States Energy Independence and Security Act of 2007, Title XIII sets the tenets for modernizing the electricity grid through what is known as the 'Smart Grid Initiative.' This initiative calls for increased design, deployment, and integration of distributed energy resources, smart technologies and appliances, and advanced storage devices. The deployment of these new technologies requires rethinking and re-engineering the traditional boundaries between different electric power system domains.

  5. Expedient preparation of nazlinine and a small library of indole alkaloids using flow electrochemistry as an enabling technology.

    PubMed

    Kabeshov, Mikhail A; Musio, Biagia; Murray, Philip R D; Browne, Duncan L; Ley, Steven V

    2014-09-05

    An expedient synthesis of the indole alkaloid nazlinine is reported. Judicious choice of flow electrochemistry as an enabling technology has permitted the rapid generation of a small library of unnatural relatives of this biologically active molecule. Furthermore, by conducting the key electrochemical Shono oxidation in a flow cell, the loading of electrolyte can be significantly reduced to 20 mol % while maintaining a stable, broadly applicable process.

  6. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    PubMed

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies. Published by Elsevier B.V.

  7. Heatshield for Extreme Entry Environment Technology (HEEET) - Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Hamm, K.; Ma, J.; Milos, F.; Nishioka, O.; Poteet, C.; Splinter, S.; Stackpoole, M.; Venkatapathy, E.; Young, Z.

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  8. Heatshield for Extreme Entry Environment Technology (HEEET) Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzaes, G.; Hamm, K.; Kazemba, C.; Ma, J.; Mahzari, M.; Milos, F.; Nishioka, O.; Peterson, K.; Poteet, C.; Prabhu, D.; Splinter, S.; Stackpoole, M.; Venkatapathy, E.; Young, Z.

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  9. CERDEC Co-generation and Absorption System Targets and Enabling Technologies

    DTIC Science & Technology

    2009-05-06

    Vapor compression – low-GWP fluorocarbons and natural refrigerants – Absorption – ammonia, lithium-bromide, and other novel cycles – Adsorption ...Technologies Ph t lt i d• o ovo a c an Solar Concentrators •Wind Turbines Applications •Tactical Mobile Power •Fuel Processing, Waste-to-Energy, and...Technologies: – Novel heat exchanger geometries/materials, compressor designs, fluid handling/mixing refrigeration cycles and work recovery devices

  10. Enabling Chemistry Technologies and Parallel Synthesis-Accelerators of Drug Discovery Programmes.

    PubMed

    Vasudevan, A; Bogdan, A R; Koolman, H F; Wang, Y; Djuric, S W

    There is a pressing need to improve overall productivity in the pharmaceutical industry. Judicious investments in chemistry technologies can have a significant impact on cycle times, cost of goods and probability of technical success. This perspective describes some of these technologies developed and implemented at AbbVie, and their applications to the synthesis of novel scaffolds and to parallel synthesis. © 2017 Elsevier B.V. All rights reserved.

  11. High-Throughput Protein Production (HTPP): a review of enabling technologies to expedite protein production.

    PubMed

    Koehn, Jim; Hunt, Ian

    2009-01-01

    Recombinant protein production plays a crucial role in the drug discovery process, contributing to several key stages of the pathway. These include exploratory research, target validation, high-throughput screening (HTS), selectivity screens, and structural biology studies. Therefore the quick and rapid production of high-quality recombinant proteins is a critical component of the successful development of therapeutic small molecule inhibitors. This chapter will therefore attempt to provide an overview of some of the current "best-in-class" cloning, expression, and purification strategies currently available that enhance protein production capabilities and enable greater throughput. As such the chapter should also enable a reader with limited understanding of the high-throughput protein production (HTPP) process with the necessary information to set up and equip a laboratory for multiparallel protein production.

  12. Doped palladium containing oxidation catalysts

    SciTech Connect

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  13. Enabling Spacecraft Formation Flying through Position Determination, Control and Enhanced Automation Technologies

    NASA Technical Reports Server (NTRS)

    Bristow, John; Bauer, Frank; Hartman, Kate; How, Jonathan

    2000-01-01

    Formation Flying is revolutionizing the way the space community conducts science missions around the Earth and in deep space. This technological revolution will provide new, innovative ways for the community to gather scientific information, share that information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, formation flying will result in numerous sciencecraft acting as virtual platforms and sensor webs, gathering significantly more and better science data than call be collected today. To achieve this goal, key technologies must be developed including those that address the following basic questions posed by the spacecraft: Where am I? Where is the rest of the fleet? Where do I need to be? What do I have to do (and what am I able to do) to get there? The answers to these questions and the means to implement those answers will depend oil the specific mission needs and formation configuration. However, certain critical technologies are common to most formations. These technologies include high-precision position and relative-position knowledge including Global Positioning System (GPS) mid celestial navigation; high degrees of spacecraft autonomy inter-spacecraft communication capabilities; targeting and control including distributed control algorithms, and high precision control thrusters and actuators. This paper provides an overview of a selection of the current activities NASA/DoD/Industry/Academia are working to develop Formation Flying technologies as quickly as possible, the hurdles that need to be overcome to achieve our formation flying vision, and the team's approach to transfer this technology to space. It will also describe several of the formation flying testbeds, such as Orion and University Nanosatellites, that are being developed to demonstrate and validate many of these innovative sensing and formation control technologies.

  14. Prospective Technology Assessment of Synthetic Biology: Fundamental and Propaedeutic Reflections in Order to Enable an Early Assessment.

    PubMed

    Schmidt, Jan Cornelius

    2016-08-01

    Synthetic biology is regarded as one of the key technosciences of the future. The goal of this paper is to present some fundamental considerations to enable procedures of a technology assessment (TA) of synthetic biology. To accomplish such an early "upstream" assessment of a not yet fully developed technology, a special type of TA will be considered: Prospective TA (ProTA). At the center of ProTA are the analysis and the framing of "synthetic biology," including a characterization and assessment of the technological core. The thesis is that if there is any differentia specifica giving substance to the umbrella term "synthetic biology," it is the idea of harnessing self-organization for engineering purposes. To underline that we are likely experiencing an epochal break in the ontology of technoscientific systems, this new type of technology is called "late-modern technology." -I start this paper by analyzing the three most common visions of synthetic biology. Then I argue that one particular vision deserves more attention because it underlies the others: the vision of self-organization. I discuss the inherent limits of this new type of late-modern technology in the attempt to control and monitor possible risk issues. I refer to Hans Jonas' ethics and his early anticipation of the risks of a novel type of technology. I end by drawing conclusions for the approach of ProTA towards an early societal shaping of synthetic biology.

  15. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  16. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  17. NASA Green Flight Challenge: Conceptual Design Approaches and Technologies to Enable 200 Passenger Miles per Gallon

    NASA Technical Reports Server (NTRS)

    Wells, Douglas P.

    2011-01-01

    The Green Flight Challenge is one of the National Aeronautics and Space Administration s Centennial Challenges designed to push technology and make passenger aircraft more efficient. Airliners currently average around 50 passenger-miles per gallon and this competition will push teams to greater than 200 passenger-miles per gallon. The aircraft must also fly at least 100 miles per hour for 200 miles. The total prize money for this competition is $1.65 Million. The Green Flight Challenge will be run by the Comparative Aircraft Flight Efficiency (CAFE) Foundation September 25 October 1, 2011 at Charles M. Schulz Sonoma County Airport in California. Thirteen custom aircraft were developed with electric, bio-diesel, and other bio-fuel engines. The aircraft are using various technologies to improve aerodynamic, propulsion, and structural efficiency. This paper will explore the feasibility of the rule set, competitor vehicles, design approaches, and technologies used.

  18. Remote patient management: technology-enabled innovation and evolving business models for chronic disease care.

    PubMed

    Coye, Molly Joel; Haselkorn, Ateret; DeMello, Steven

    2009-01-01

    Remote patient management (RPM) is a transformative technology that improves chronic care management while reducing net spending for chronic disease. Broadly deployed within the Veterans Health Administration and in many small trials elsewhere, RPM has been shown to support patient self-management, shift responsibilities to non-clinical providers, and reduce the use of emergency department and hospital services. Because transformative technologies offer major opportunities to advance national goals of improved quality and efficiency in health care, it is important to understand their evolution, the experiences of early adopters, and the business models that may support their deployment.

  19. Chemical mechanical polishing: An enabling fabrication process for surface micromachining technologies

    SciTech Connect

    Sniegowski, J.J.

    1998-08-01

    Chemical-mechanical polishing (CMP), once it is set-up and developed in a fabrication line can be readily adapted as a planarization technique for use in polysilicon surface micromachining technology. Although the planarization is a conceptually simple step, the benefit of its inclusion in the overall fabrication process is immense. Manufacturing impediments are removed while novel, expanded processes and designs become possible. The authors anticipate that CMP planarization, in the near future, will become a standard within the MEMS community for polysilicon surface micromachining. In addition, other MEMS fabrication technologies such as bulk micromachining and LIGA can potentially benefit from CMP.

  20. Technology-Enabled Knowledge Translation: Frameworks to Promote Research and Practice

    ERIC Educational Resources Information Center

    Ho, Kendall; Bloch, Ralph; Gondocz, Tunde; Laprise, Rejean; Perrier, Laure; Ryan, David; Thivierge, Robert; Wenghofer, Elizabeth

    2004-01-01

    Knowledge translation articulates how new scientific insights can be implemented efficiently into clinical practice to reap maximal health benefits. Modern information and communication technologies can be effective tools to help in the collection, processing, and targeted distribution of information from which clinicians, researchers,…

  1. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    ERIC Educational Resources Information Center

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models,…

  2. Dialogue and Structure: Enabling Learner Self-Regulation in Technology-Enhanced Learning Environments

    ERIC Educational Resources Information Center

    Andrade, Maureen Snow

    2014-01-01

    Distance learning that incorporates technology-enhanced learning environments provides a solution to the ever-increasing global demand for higher education. To be successful in these contexts, learners must be self-regulated, or have the ability to control the factors affecting their learning. Based on the theories of transactional distance,…

  3. Enabling Secondary Level Teachers to Integrate Technology through ICT Integrated Instructional System

    ERIC Educational Resources Information Center

    Bose, Sutapa

    2010-01-01

    Institutions providing pre-service teacher education are responsible for preparing teachers capable of functioning in the knowledge society, which India aspires to be. Schools of a knowledge society would require teachers to integrate technology into the instructional system and they are to be prepared for it accordingly through teacher education…

  4. Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace C.; Webb, Evan H.

    2004-01-01

    The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.

  5. Computer Technology Enables Georgetown U. Medical Students to Simulate Dialogue with Patients.

    ERIC Educational Resources Information Center

    Wilson, David L.

    1991-01-01

    A combination of computer, videodisk, and voice-recognition technology lets Georgetown University medical students ask questions of an electronic "patient" who appears on a television monitor and appears to respond. Students can order laboratory tests and study patient behavior inside and outside the hospital. Simulations use actors or…

  6. Enabling Problem Based Learning through Web 2.0 Technologies: PBL 2.0

    ERIC Educational Resources Information Center

    Tambouris, Efthimios; Panopoulou, Eleni; Tarabanis, Konstantinos; Ryberg, Thomas; Buus, Lillian; Peristeras, Vassilios; Lee, Deirdre; Porwol, Lukasz

    2012-01-01

    Advances in Information and Communications Technology (ICT), particularly the so-called Web 2.0, are affecting all aspects of our life: How we communicate, how we shop, how we socialise, how we learn. Facilitating learning through the use of ICT, also known as eLearning, is a vital part of modern educational systems. Established pedagogical…

  7. Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.

    2004-01-01

    The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft, to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.

  8. The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Gear, Gary; Mace, Thomas

    2007-01-01

    This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.

  9. The School Design Model at Brewster Academy, Part II: Technology Enabling School Reform.

    ERIC Educational Resources Information Center

    Bain, Alan; Smith, David

    2000-01-01

    Discussion of the secondary school reform project at Brewster Academy (NH) focuses on the School Design Model and how technology has been used. Highlights include curriculum authoring tools; professional growth tools for teachers; and results of a longitudinal study that show improvements in SAT (Scholastic Assessment Tests) scores. (LRW)

  10. Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.

    2004-01-01

    The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft, to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.

  11. The Mobile Learning Training Needs of Educators in Technology-Enabled Environments

    ERIC Educational Resources Information Center

    Crompton, Helen; Olszewski, Brandon; Bielefeldt, Talbot

    2016-01-01

    Mobile learning (mlearning) is an emerging trend in schools, utilizing mobile technologies that offer the greatest amount of flexibility in teaching and learning. Researchers have found that one of the main barriers to effective mlearning in schools is the lack of teacher professional development. Results from a needs-assessment survey and a…

  12. Towards Individualized Instruction with Technology-Enabled Tools and Methods: An Exploratory Study. CRESST Report 854

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.; Delacruz, Girlie C.; Dionne, Gary B.; Baker, Eva L.; Lee, John J.; Osmundson, Ellen

    2016-01-01

    This report addresses a renewed interest in individualized instruction, driven in part by advances in technology and assessment as well as a persistent desire to increase the access, efficiency, and cost effectiveness of training and education. Using computer-based instruction we delivered extremely efficient instruction targeted to low knowledge…

  13. Technology as the Enabler of a New Wave of Active Learning

    ERIC Educational Resources Information Center

    Rollag, Keith; Billsberry, Jon

    2012-01-01

    Education has always been slow on the uptake of new technology. Instructors have established time-worn methods of teaching, and the performance nature of the job puts an emphasis on reliability and predictability. The last thing an instructor wants to be doing is fumbling around trying to make something work in front of an audience of 200…

  14. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    ERIC Educational Resources Information Center

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models,…

  15. The DOE SunShot Initiative: Science and Technology to enable Solar Electricity at Grid Parity

    NASA Astrophysics Data System (ADS)

    Ramesh, Ramamoorthy

    2012-02-01

    The SunShot Initiative's mission is to develop solar energy technologies through a collaborative national push to make solar Photovoltaic (PV) and Concentrated Solar Power (CSP) energy technologies cost-competitive with fossil fuel based energy by reducing the cost of solar energy systems by ˜ 75 percent before 2020. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour (1/Watt) without subsidies will result in rapid, large-scale adoption of solar electricity across the United States and the world. Achieving this goal will require significant reductions and technological innovations in all PV system components, namely modules, power electronics, and balance of systems (BOS), which includes all other components and costs required for a fully installed system including permitting and inspection costs. This investment will re-establish American technological and market leadership, improve the nation's energy security, strengthen U.S. economic competitiveness and catalyze domestic economic growth in the global clean energy race. SunShot is a cooperative program across DOE, involving the Office of Science, the Office of Energy Efficiency and Renewable Energy and ARPA-E.

  16. Livening up Foreign Language: Technology Enables Language Learning in Authentic Situations

    ERIC Educational Resources Information Center

    Tuttle, Harry Grover

    2007-01-01

    Technology has long been associated with language learning: everyone is familiar with seeing children wearing headsets, reciting in unison recordings of Spanish or French vocabulary words. Nowadays, students can experience real life in real time across the globe, thanks to a host of new Internet applications. In this article, the author envisions…

  17. The Mobile Learning Training Needs of Educators in Technology-Enabled Environments

    ERIC Educational Resources Information Center

    Crompton, Helen; Olszewski, Brandon; Bielefeldt, Talbot

    2016-01-01

    Mobile learning (mlearning) is an emerging trend in schools, utilizing mobile technologies that offer the greatest amount of flexibility in teaching and learning. Researchers have found that one of the main barriers to effective mlearning in schools is the lack of teacher professional development. Results from a needs-assessment survey and a…

  18. Technology-Enabled Knowledge Translation: Frameworks to Promote Research and Practice

    ERIC Educational Resources Information Center

    Ho, Kendall; Bloch, Ralph; Gondocz, Tunde; Laprise, Rejean; Perrier, Laure; Ryan, David; Thivierge, Robert; Wenghofer, Elizabeth

    2004-01-01

    Knowledge translation articulates how new scientific insights can be implemented efficiently into clinical practice to reap maximal health benefits. Modern information and communication technologies can be effective tools to help in the collection, processing, and targeted distribution of information from which clinicians, researchers,…

  19. Learning the Language of Healthcare Enabling Semantic Web Technology in CHCS

    DTIC Science & Technology

    2013-09-01

    Phase I, we began the task of introducing Semantic Healthcare as an open source project by creating a project on github [4]. The front page...our open source repository [10]. The document is a wide ranging analysis of available technologies and current initiatives and provides a guide for...4 Open Source Development Environment and User Community - Aim 1

  20. Advanced Space Robotics and Solar Electric Propulsion: Enabling Technologies for Future Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Tadros, A.

    2017-02-01

    Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.

  1. Technology-Enabled and Universally Designed Assessment: Considering Access in Measuring the Achievement of Students with Disabilities--A Foundation for Research

    ERIC Educational Resources Information Center

    Almond, Patricia; Winter, Phoebe; Cameto, Renee; Russell, Michael; Sato, Edynn; Clarke-Midura, Jody; Torres, Chloe; Haertel, Geneva; Dolan, Robert; Beddow, Peter; Lazarus, Sheryl

    2010-01-01

    This paper represents one outcome from the "Invitational Research Symposium on Technology-Enabled and Universally Designed Assessments," which examined technology-enabled assessments (TEA) and universal design (UD) as they relate to students with disabilities (SWD). It was developed to stimulate research into TEAs designed to make tests…

  2. Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles

    DOEpatents

    Wang, Jia X [East Setauket, NY; Adzic, Radoslav R [East Setauket, NY

    2009-03-24

    The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.

  3. Enabling technologies for space exploration systems: The STEPS project results and perspectives

    NASA Astrophysics Data System (ADS)

    Messidoro, Piero; Perino, Maria Antonietta; Boggiatto, Dario

    2013-05-01

    The project STEPS (Sistemi e Tecnologie per l'EsPlorazione Spaziale) is a joint development of technologies and systems for Space Exploration supported by Regione Piemonte, the European Regional Development Fund (E.R.D.F.) 2007-2013, Thales Alenia Space Italia (TAS-I), SMEs, Universities and public Research Centres belonging to the network "Comitato Distretto Aerospaziale del Piemonte" the Piedmont Aerospace District (PAD) in Italy. The project first part terminated in May 2012 with a final demonstration event that summarizes the technological results of research activities carried-out during a period the three years and half. The project developed virtual and hardware demonstrators for a range of technologies for the descent, soft landing and surface mobility of robotic and manned equipment for Moon and Mars exploration. The two key hardware demonstrators—a Mars Lander and a Lunar Rover—fit in a context of international cooperation for the exploration of Moon and Mars, as envisaged by Space Agencies worldwide. The STEPS project included also the development and utilization of a system of laboratories equipped for technology validation, teleoperations, concurrent design environments, and virtual reality simulation of the Exploration Systems in typical Moon and Mars environments. This paper presents the reached results in several technology domains like: vision-based GNC for the last portion of Mars Entry, Descent and Landing sequence, Hazard avoidance and complete spacecraft autonomy; Autonomous Rover Navigation, based on the determination of the terrain morphology by a stereo camera; Mobility and Mechanisms providing an Integrated Ground Mobility System, Rendezvous and Docking equipment, and protection from Environment effects; innovative Structures such as Inflatable, Smart and Multifunction Structures, an Active Shock Absorber for safe landing, balance restoring and walking; Composite materials Modelling and Monitoring; Human-machine interface features of a

  4. Enabling technologies for transition to utilization of space-based resources and operations

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.; Litty, J. D.

    1985-01-01

    This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.

  5. Enabling technologies for transition to utilization of space-based resources and operations

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.; Litty, J. D.

    1985-01-01

    This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.

  6. Shotgun lipidomics of neutral lipids as an enabling technology for elucidation of lipid-related diseases.

    PubMed

    Gross, Richard W; Han, Xianlin

    2009-08-01

    Neutral lipids fulfill multiple specialized roles in cellular function. These roles include energy storage and utilization, the synthesis of complex lipids in cellular membranes, lipid second messengers for cellular signaling, and the modulation of membrane molecular dynamics. We have developed a novel mass spectrometric technology, now termed shotgun lipidomics, that can identify the types and amounts of thousands of lipids directly from extracts of biological samples. Shotgun lipidomics is well suited for the identification and measurement of the types and amounts of neutral lipid classes and individual molecular species through the use of multidimensional mass spectrometry. This review summarizes the basic principles underlying the use of shotgun lipidomics for the direct measurement of neutral lipids from extracts of biological tissues or fluids. Through exploiting the high information content inherent in shotgun lipidomics, this technology promises to greatly facilitate advances in our understanding of alterations in neutral lipid metabolism in health and disease.

  7. Solid oxide electrolysis--a key enabling technology for sustainable energy scenarios.

    PubMed

    Hansen, John Bøgild

    2015-01-01

    Production of fuels and chemicals from steam and/or CO2 with solid oxide electrolysis cells (SOEC) and electricity have attracted considerable interest recently. This paper is an extended version of the introductory lecture presented at the first Faraday Discussions meeting on the subject. The focus is on the state of the art of cells, stacks and systems. Thermodynamics, performance and degradation are addressed. Remaining challenges and potential application of the technology are discussed from an industrial perspective.

  8. On the cutting edge technology enabling the challenging missions to asteroids and comets, our primitive neighbors

    NASA Astrophysics Data System (ADS)

    Kawaguchi, J.

    2014-07-01

    The world's first sample-and-return mission from an object orbiting outside the sphere of influence of the Earth was successfully performed through Hayabusa in 2010, an engineering demonstration mission of JAXA. And it was followed by another technology demonstrator, Ikaros, the world's first solar-sail mission launched in 2010, the same year of the Hayabusa return. These two demonstrations represent the significance of the technology development that shall precede the real science missions that will follow. The space-exploration community focuses its attention on the use of asteroids and comets as one of the most immediate destinations. Humans will perform voyages to those objects sooner or later. And we will initiate a kind of research as scientific activity for those objects. The missions may include even sample-and-return missions to those bodies for assessing the chance of possible resource utilization in future. The first step for it is, needless to say, science. Combining the sample-and-return technology using the ultra-high-speed reentry for sample recovery with the new propulsion system using both electric and photon force will be the direct conclusion from Hayabusa and Ikaros. And key elements such as autonomy are also among the essential factors in making the sophisticated operation possible around asteroids and comets avoiding the communication difficulty. This presentation will comprehensively touch on what those technology skills are, and how they are applicable to the subsequent new missions, from the mission leader's point of view. They are probably real requisites for planning brand-new innovative challenges in the ACM community.

  9. PACFEST : enabling technologies in the war on terrorism in the Pacific region.

    SciTech Connect

    Moore, Judy Hennessey; Whitley, John B.; Sugimura, Tak; Chellis, Craig

    2003-12-01

    On October 22-24, 2003, about 40 experts involved in various aspects of homeland security from the United States and four other Pacific region countries meet in Kihei, Hawaii to engage in a free-wheeling discussion and brainstorm (a 'fest') of the role that technology could play in winning the war on terrorism in the Pacific region. The result of this exercise is a concise and relatively thorough definition of the terrorism problem in the Pacific region, emphasizing the issues unique to Island nations in the Pacific setting, along with an action plan for developing working demonstrators of advanced technological solutions to these issues. In this approach, the participants were asked to view the problem and their potential solutions from multiple perspectives, and then to identify barriers (especially social and policy barriers) to any proposed technological solution. The final step was to create a roadmap for further action. This roadmap includes plans to: (1) create a conceptual monitoring and tracking system for people and things moving around the region that would be 'scale free', and develop a simple concept demonstrator; (2) pursue the development of a system to improve local terrorism context information, perhaps through the creation of an information clearinghouse for Pacific law enforcement; (3) explore the implementation of a Hawaii based pilot system to explore hypothetical terrorist scenarios and the development of fusion and analysis tools to work with this data (Sandia); and (4) share information concerning the numerous activities ongoing at various organizations around the understanding and modeling of terrorist behavior.

  10. Health geomatics: an enabling suite of technologies in health and healthcare.

    PubMed

    Boulos, M N; Roudsari, A V; Carson, E R

    2001-06-01

    This Methodolical Review describes how health geomatics can improve our understanding of the important relationship between location and health, and thus assist us in Public Health tasks like disease prevention, and also in better healthcare service planning. The reader is first introduced to health geography and its two main divisions, disease ecology and healthcare delivery, followed by an overview of the basic concepts and principles of health geomatics. Topics covered include geographical information systems (GIS), GIS modeling, and GIS-related technologies (remote sensing and the global positioning system). We also present a number of real-life health geomatics applications and projects, with pointers to further studies and resources. Finally, we discuss the barriers facing the adoption of GIS technology in the health sector, including data availability/quality issues. The authors believe that we still need to combat many cultural and organizational barriers, including "spatial illiteracy" among healthcare workers, while making the tools cheaper and easier to learn and use, before health geomatics can become a mainstream technology in the health sector like today's spreadsheets and databases.

  11. Enabling technologies promise to revitalize the role of nursing in an era of patient safety.

    PubMed

    Ball, Marion J; Weaver, Charlotte; Abbott, Patricia A

    2003-01-01

    The application of information technology (IT) in health care has the potential to transform the delivery of care, as well as the health care work environment, by streamlining processes, making procedures more accurate and efficient, and reducing the risk of human error. For nurses, a major aspect of this transformation is the refocusing of their work on direct patient care and away from being a conduit of information and communication among departments. Several of the technologies discussed, such as physician order entry and bar code technology, have existed for years as standalone systems. Many others are just being developed and are being integrated into complex clinical information systems (CISs) with clinical decision support at their core. While early evaluation of these systems shows positive outcome measurements, financial, technical, and organizational hurdles to widespread implementation still remain. One major issue is defining the role nurses, themselves, will play in the selection and implementation of these systems as they become more steeped in the knowledge of nursing informatics. Other challenges revolve around issues of job satisfaction and the attraction and retention of nursing staff in the midst of a serious nursing shortage. Despite these concerns, it is expected that, in the long run, the creation of an electronic work environment with systems that integrate all functions of the health care team will positively impact cost-effectiveness, productivity, and patient safety while helping to revitalize nursing practice. Copyright 2002 Elsevier Science Ireland Ltd.

  12. Enabling technologies for robot assisted ultrasound tomography: system setup and calibration

    NASA Astrophysics Data System (ADS)

    Aalamifar, Fereshteh; Khurana, Rishabh; Cheng, Alexis; Taylor, Russell H.; Iordachita, Iulian; Boctor, Emad M.

    2014-04-01

    In this study, we are proposing a robot-assisted ultrasound tomography system that can offer soft tissue tomographic imaging and deeper or faster scan of the anatomy. This system consists of a robot-held ultrasound probe that tracks the position of another freehand probe, trying to align with it. One of the major challenges is achieving proper alignment of the two ultrasound probes. To enable proper alignment, two ultrasound calibrations and one hand-eye calibration are required. However, the system functionality and design is such that the ultrasound calibrations have become a challenge. In this paper, after providing an overview of the proposed robotic ultrasound tomography system, we focus on the calibrations problem. The results of the calibrations show a point reconstruction precision of a few millimeters for the current prototype, and the two images have at least 50% overlap visually; confirming the feasibility of such a system relying on accurate probe alignments.

  13. Development of the RIOT Web Service and Information Technologies to Enable Mechanism Reduction for HCCI Simulations

    SciTech Connect

    Schuchardt, Karen L.; Oluwole, O.; Pitz, William; Rahn, Larry A.; Green, William H.; Leahy, David; Pancerella, Carmen M.; Sjoberg, Magnus; Dec, J.

    2005-06-30

    New Approaches are being explored to facilitate multidisciplinary collaborative research of Homogenous Charge Compression Ignition (HCCI) combustion processes. In this paper, collaborative sharing of the Range Identification and Optimization Toolkit (RIOT) and related data and models is discussed. RIOT is a developmental approach to reduce the computational complexity of detailed chemical kinetic mechanisms, enabling their use in modeling kinetically controlled combustion applications such as HCCI. These approaches are being developed and piloted as part of the Collaboratory for Multiscale Chemical Sciences (CMCS) project. The capabilities of the RIOT code are shared through a portlet in the MCS portal that allows easy specification and processing of RIOT inputs, remote execution of RIOT, tracking of data pedigree, and translation of RIOT outputs to a table view and to a commonly-used chemical model format.

  14. Development of the RIOT Web Service and Information Technologies to Enable Mechanism Reduction for HCCI Simulations

    SciTech Connect

    Schuchardt, K; Oluwole, O; Pitz, W J; Rahn, L; Green, W H; Leahy, D; Pancerella, C; Sj?berg, M; Dec, J

    2005-06-13

    New approaches are being explored to facilitate multidisciplinary collaborative research of Homogeneous Charge Compression Ignition (HCCI) combustion processes. In this paper, collaborative sharing of the Range Identification and Optimization Toolkit (RIOT) and related data and models is discussed. RIOT is a developmental approach to reduce the computational of detailed chemical kinetic mechanisms, enabling their use in modeling kinetically controlled combustion applications such as HCCI. These approaches are being developed and piloted as a part of the Collaboratory for Multiscale Chemical Sciences (CMCS) project. The capabilities of the RIOT code are shared through a portlet in the CMCS portal that allows easy specification and processing of RIOT inputs, remote execution of RIOT, tracking of data pedigree, and translation of RIOT outputs to a table view and to a commonly-used mechanism format.

  15. Development of the RIOT web service and information technologies to enable mechanism reduction for HCCI simulations

    NASA Astrophysics Data System (ADS)

    Schuchardt, Karen; Oluwole, Oluwayemisi; Pitz, William; Rahn, Larry A.; Green, William H., Jr.; Leahy, David; Pancerella, Carmen; Sjöberg, Magnus; Dec, John

    2005-01-01

    New approaches are being explored to facilitate multidisciplinary collaborative research of Homogenous Charge Compression Ignition (HCCI) combustion processes. In this paper, collaborative sharing of the Range Identification and Optimization Toolkit (RIOT) and related data and models is discussed. RIOT is a developmental approach to reduce the computational complexity of detailed chemical kinetic mechanisms, enabling their use in modeling kinetically controlled combustion applications such as HCCI. These approaches are being developed and piloted as a part of the Collaboratory for Multiscale Chemical Sciences (CMCS) project. The capabilities of the RIOT code are shared through a portlet in the CMCS portal that allows easy specification and processing of RIOT inputs, remote execution of RIOT, tracking of data pedigree, and translation of RIOT outputs to a table view and to a commonly-used chemical model format.

  16. Service and business model for technology enabled and home-based cardiac rehabilitation programs.

    PubMed

    Sarela, Antti; Whittaker, Frank; Korhonen, Ilkka

    2009-01-01

    Cardiac rehabilitation programs are comprehensive life-style programs aimed at preventing recurrence of a cardiac event. However, the current programs have globally significantly low levels of uptake. Home-based model can be a viable alternative to hospital-based programs. We developed and analysed a service and business model for home based cardiac rehabilitation based on personal mentoring using mobile phones and web services. We analysed the different organizational and economical aspects of setting up and running the home based program and propose a potential business model for a sustainable and viable service. The model can be extended to management of other chronic conditions to enable transition from hospital and care centre based treatments to sustainable home-based care.

  17. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  18. Enabling the Space Exploration Initiative - NASA's Exploration Technology Program in space power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Cull, Ronald C.

    1991-01-01

    Space power requirements for SEI are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, AIAA, NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for the exploration technology is addressed, including: photovoltaic, chemical, and thermal energy conversion; power management; thermal management; space nuclear power; high-capacity power; power and thermal management for the surface, earth-orbiting platform, and spacecraft; laser power beaming; and mobile surface systems.

  19. Enabling the space exploration initiative: NASA's exploration technology program in space power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Cull, Ronald C.

    1991-01-01

    Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.

  20. Engineering Review of ANCAUS/AVATAR: An Enabling Technology for the Autonomous Land Systems Program?

    DTIC Science & Technology

    2003-12-01

    des ANCÆUS, SCV, STA ainsi que des efforts similaires commerciaux ou en source libre . L’évaluation comparative ultérieure des ANCÆUS et des...technologies commercialisées / de sources libres a révélé qu’actuellement aucun système unique ne constitue une architecture complète de système autonome de...sources libres sont plus performantes dans un contexte de véhicules multiples et qu’elles présentent un risque technique moindre. Le rapport conclut

  1. Enabling the Space Exploration Initiative - NASA's Exploration Technology Program in space power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Cull, Ronald C.

    1991-01-01

    Space power requirements for SEI are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, AIAA, NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for the exploration technology is addressed, including: photovoltaic, chemical, and thermal energy conversion; power management; thermal management; space nuclear power; high-capacity power; power and thermal management for the surface, earth-orbiting platform, and spacecraft; laser power beaming; and mobile surface systems.

  2. Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

    SciTech Connect

    Downs, James

    2014-12-29

    In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this new technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).

  3. The Role of Instrumentation and Controls Technology in Enabling Deployment of Small Modular Reactors

    SciTech Connect

    Clayton, Dwight A; Wood, Richard Thomas

    2010-01-01

    The development of deployable small modular reactors (SMRs) will provide the United States with another economically viable energy option, diversify the available nuclear power alternatives for the country, and enhance U.S. economic competitiveness by ensuring a domestic capability to supply demonstrated reactor technology to a growing global market for clean and affordable energy sources. Smaller nuclear power plants match the needs of much of the world that lacks highly stable, densely interconnected electrical grids. SMRs can present lower capital and operating costs than large reactors, allow incremental additions to power generation capacity that closely match load growth and support multiple energy applications (i.e., electricity and process heat). Taking advantage of their smaller size and modern design methodology, safety, security, and proliferation resistance may also be increased. Achieving the benefits of SMR deployment requires a new paradigm for plant design and management to address multi-unit, multi-product-stream generating stations. Realizing the goals of SMR deployment also depends on the resolution of technical challenges related to the unique characteristics of these reactor concepts. This paper discusses the primary issues related to SMR deployment that can be addressed through crosscutting research, development, and demonstration involving instrumentation and controls (I&C) technologies.

  4. Palladium: a future key player in the nanomedical field?

    PubMed Central

    Dumas, Anaëlle

    2015-01-01

    Metal nanostructures offer invaluable possibilities for targeted drug delivery, detection/diagnosis and imaging. Whereas iron, gold, silver and platinum nanoarchitectures have largely dominated this field to date, several hurdles impede the widespread application of those nanopharmaceuticals in a clinical context. Therefore, technologies based on alternative metals are now being evaluated for their potential in medical applications. Palladium nanostructures are characterized by remarkable catalytic and optical properties. However, until recently, very few studies have taken advantage of these unique characteristics for applications in the biomedical field. Very recently, palladium nanostructures have been reported as prodrug activator, as photothermal agents and for anti-cancer/anti-microbial therapy. With only a handful of reports available, the pharmaceutical applications of palladium nanostructures reviewed here are in their infancy. Yet their interesting performance and toxicity profiles may qualify them as future key players in the nanomedical field. PMID:28694948

  5. TEAM (Technologies Enabling Agile Manufacturing) macro planner requirements guide: Version 1.0

    SciTech Connect

    1995-03-28

    The Macro Planner will provide required resource identities, bill of material list, routing sequences and identities of all supporting information to the Shop Floor Control System to enable the actual manufacturing activities. The Macro Planner must also collect manufacturing performance data from the shop floor to effectively measure the plan`s performance. The critical feedback will be evaluated during closure of the business cycle and provide the metrics on cost and quality to the planning function. This document is intended to describe the requirements for a Macro Planner system which supports the above environment. The Macro planner should progress to a logically, rule driven processor to automate major portions of the planning cycle. It should do the following: support concurrent product/process design; define a globally optimized manufacturing plan for realization of product; compile a complete manufacturing plan script (routing and operational detail documentation); be based on 3-D CAD models imported via STEP standards; and define an Enterprise Resource Base that maps manufacturing capabilities to component features.

  6. Visual Prostheses: The Enabling Technology to Give Sight to the Blind

    PubMed Central

    Maghami, Mohammad Hossein; Sodagar, Amir Masoud; Lashay, Alireza; Riazi-Esfahani, Hamid; Riazi-Esfahani, Mohammad

    2014-01-01

    Millions of patients are either slowly losing their vision or are already blind due to retinal degenerative diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) or because of accidents or injuries. Employment of artificial means to treat extreme vision impairment has come closer to reality during the past few decades. Currently, many research groups work towards effective solutions to restore a rudimentary sense of vision to the blind. Aside from the efforts being put on replacing damaged parts of the retina by engineered living tissues or microfabricated photoreceptor arrays, implantable electronic microsystems, referred to as visual prostheses, are also sought as promising solutions to restore vision. From a functional point of view, visual prostheses receive image information from the outside world and deliver them to the natural visual system, enabling the subject to receive a meaningful perception of the image. This paper provides an overview of technical design aspects and clinical test results of visual prostheses, highlights past and recent progress in realizing chronic high-resolution visual implants as well as some technical challenges confronted when trying to enhance the functional quality of such devices. PMID:25709777

  7. Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth).

    PubMed

    Rothschild, Lynn J

    2016-08-15

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth. © 2016 The Author(s).

  8. Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth)

    PubMed Central

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth. PMID:27528764

  9. Automated image processing and analysis of cartilage MRI: enabling technology for data mining applied to osteoarthritis.

    PubMed

    Tameem, Hussain Z; Sinha, Usha S

    2007-01-01

    Osteoarthritis (OA) is a heterogeneous and multi-factorial disease characterized by the progressive loss of articular cartilage. Magnetic Resonance Imaging has been established as an accurate technique to assess cartilage damage through both cartilage morphology (volume and thickness) and cartilage water mobility (Spin-lattice relaxation, T2). The Osteoarthritis Initiative, OAI, is a large scale serial assessment of subjects at different stages of OA including those with pre-clinical symptoms. The electronic availability of the comprehensive data collected as part of the initiative provides an unprecedented opportunity to discover new relationships in complex diseases such as OA. However, imaging data, which provides the most accurate non-invasive assessment of OA, is not directly amenable for data mining. Changes in morphometry and relaxivity with OA disease are both complex and subtle, making manual methods extremely difficult. This chapter focuses on the image analysis techniques to automatically localize the differences in morphometry and relaxivity changes in different population sub-groups (normal and OA subjects segregated by age, gender, and race). The image analysis infrastructure will enable automatic extraction of cartilage features at the voxel level; the ultimate goal is to integrate this infrastructure to discover relationships between the image findings and other clinical features.

  10. Automated image processing and analysis of cartilage MRI: enabling technology for data mining applied to osteoarthritis

    NASA Astrophysics Data System (ADS)

    Tameem, Hussain Z.; Sinha, Usha S.

    2007-11-01

    Osteoarthritis (OA) is a heterogeneous and multi-factorial disease characterized by the progressive loss of articular cartilage. Magnetic Resonance Imaging has been established as an accurate technique to assess cartilage damage through both cartilage morphology (volume and thickness) and cartilage water mobility (Spin-lattice relaxation, T2). The Osteoarthritis Initiative, OAI, is a large scale serial assessment of subjects at different stages of OA including those with pre-clinical symptoms. The electronic availability of the comprehensive data collected as part of the initiative provides an unprecedented opportunity to discover new relationships in complex diseases such as OA. However, imaging data, which provides the most accurate non-invasive assessment of OA, is not directly amenable for data mining. Changes in morphometry and relaxivity with OA disease are both complex and subtle, making manual methods extremely difficult. This chapter focuses on the image analysis techniques to automatically localize the differences in morphometry and relaxivity changes in different population sub-groups (normal and OA subjects segregated by age, gender, and race). The image analysis infrastructure will enable automatic extraction of cartilage features at the voxel level; the ultimate goal is to integrate this infrastructure to discover relationships between the image findings and other clinical features.

  11. {sup 238}PuO{sub 2} heat sources: An enabling technology for space exploration

    SciTech Connect

    George, T.G.

    1998-12-31

    Surprisingly, during the 35 yr that {sup 238}PuO{sub 2}-fueled radioisotope power systems have been demonstrated and continuously improved in terms of safety, reliability, and efficiency, US capabilities to produce {sup 238}PuO{sub 2} have significantly decreased. At the same time, progress in the efficiency and longevity of chemical and solar power systems has reduced the suite of potential applications for radioisotope power systems remain a viable option for deep space exploration and planetary missions that must survive hostile operating environments. The enabling aspect of radioisotope power supplies for deep space exploration missions can best be illustrated by a comparative analysis of power supply options available for the National Aeronautics and Space Administration`s most recent planetary explorer, the Cassini mission to Saturn. A comparative evaluation of currently available power supply options for the Cassini mission, demonstrates the significant mass and maneuverability penalties that would result from the use of chemical or solar energy sources in place of the RTGs and heater units. Absent additional nuclear power options, such as a spacecraft reactor, radioisotope power sources were clearly the only viable option for providing electrical and thermal power to the Cassini spacecraft.

  12. Automated image processing and analysis of cartilage MRI: enabling technology for data mining applied to osteoarthritis

    PubMed Central

    Tameem, Hussain Z.; Sinha, Usha S.

    2011-01-01

    Osteoarthritis (OA) is a heterogeneous and multi-factorial disease characterized by the progressive loss of articular cartilage. Magnetic Resonance Imaging has been established as an accurate technique to assess cartilage damage through both cartilage morphology (volume and thickness) and cartilage water mobility (Spin-lattice relaxation, T2). The Osteoarthritis Initiative, OAI, is a large scale serial assessment of subjects at different stages of OA including those with pre-clinical symptoms. The electronic availability of the comprehensive data collected as part of the initiative provides an unprecedented opportunity to discover new relationships in complex diseases such as OA. However, imaging data, which provides the most accurate non-invasive assessment of OA, is not directly amenable for data mining. Changes in morphometry and relaxivity with OA disease are both complex and subtle, making manual methods extremely difficult. This chapter focuses on the image analysis techniques to automatically localize the differences in morphometry and relaxivity changes in different population sub-groups (normal and OA subjects segregated by age, gender, and race). The image analysis infrastructure will enable automatic extraction of cartilage features at the voxel level; the ultimate goal is to integrate this infrastructure to discover relationships between the image findings and other clinical features. PMID:21785520

  13. Enabling technologies research and development structures. [for National Aerospace Plane Program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.; Murrow, Harold N.

    1989-01-01

    The technology-development areas of most critical importance to the definition of the NASP vehicle's airframe and integrated propulsion systems are discussed with a view to the progress made to date and the prospects for the expansion of a definitive NASP design data base on materials, structures, etc. It is necessary to achieve a very low structural-mass fraction, to withstand 6000 F radiation equilibrium fuselage nosecap temperatures, to manage an extensive active cooling network for both airframe and propulsion system capable of dissipating 10,000 BTU/sq ft-sec thermal fluxes, to maintain effective hot-gas sealing, and to manufacture high temperature effectiveness-retaining control surfaces. An account is given of successes thus far achieved.

  14. Nanowires and sidewall Bragg gratings in silicon as enabling technologies for microwave photonic filters.

    PubMed

    Chen, Lawrence R; Li, Jia; Spasojevic, Mina; Adams, Rhys

    2013-08-26

    We describe the use of various silicon photonic device technologies to implement microwave photonic filters (MPFs). We demonstrate four-wave mixing in a silicon nanowire waveguide (SNW) to increase the number of taps for MPFs based on finite impulse response filter designs. Using a 12 mm long SNW reduces the footprint by five orders of magnitude compared to silica highly nonlinear fiber while only requiring approximately two times more input power. We also demonstrate optical delays based on serial sidewall Bragg grating arrays and step-chirped sidewall Bragg gratings in silicon waveguides. We obtain up to 63 ps delay in discrete steps from 15 ps to 32 ps over a wide bandwidth range from 33 nm to at least 62 nm. These components can be integrated with other silicon-based components such as integrated spectral shapers and modulators to realize a fully integrated MPF.

  15. A Research Agenda for Malaria Eradication: Basic Science and Enabling Technologies

    PubMed Central

    2011-01-01

    Today's malaria control efforts are limited by our incomplete understanding of the biology of Plasmodium and of the complex relationships between human populations and the multiple species of mosquito and parasite. Research priorities include the development of in vitro culture systems for the complete life cycle of P. falciparum and P. vivax and the development of an appropriate liver culture system to study hepatic stages. In addition, genetic technologies for the manipulation of Plasmodium need to be improved, the entire parasite metabolome needs to be characterized to identify new druggable targets, and improved information systems for monitoring the changes in epidemiology, pathology, and host-parasite-vector interactions as a result of intensified control need to be established to bridge the gap between bench, preclinical, clinical, and population-based sciences. PMID:21311584

  16. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    PubMed

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels.

  17. Development and Application of Gas Sensing Technologies to Enable Boiler Balancing

    SciTech Connect

    Dutta, Prabir

    2008-12-31

    Identifying gas species and their quantification is important for optimization of many industrial applications involving high temperatures, including combustion processes. CISM (Center for Industrial Sensors and Measurements) at the Ohio State University has developed CO, O{sub 2}, NO{sub x}, and CO{sub 2} sensors based on TiO{sub 2} semiconducting oxides, zirconia and lithium phosphate based electrochemical sensors and sensor arrays for high-temperature emission control. The underlying theme in our sensor development has been the use of materials science and chemistry to promote high-temperature performance with selectivity. A review article presenting key results of our studies on CO, NO{sub x}, CO{sub 2} and O{sub 2} sensors is described in: Akbar, Sheikh A.; Dutta, Prabir K. Development and Application of Gas Sensing Technologies for Combustion Processes, PowerPlant Chemistry, 9(1) 2006, 28-33.

  18. A Radar-Enabled Collaborative Sensor Network Integrating COTS Technology for Surveillance and Tracking

    PubMed Central

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R.; Demirer, R. Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (<$50 US) miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios. PMID:22438713

  19. A radar-enabled collaborative sensor network integrating COTS technology for surveillance and tracking.

    PubMed

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R; Demirer, R Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (<$50 US) miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios.

  20. Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    SciTech Connect

    Abruna, H.D.; DiSalvo, Francis J.

    2012-06-29

    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

  1. Track-etch membranes as templates enabled nano/micro technology: a review

    NASA Astrophysics Data System (ADS)

    Chakarvarti, S. K.

    2009-06-01

    Many techniques are being used in order to synthesize nano-micro materials falling under the realm of nanotechnology. It need not be overemphasized that the miniaturization of devices and synthesis of new materials have a tremendous role in the development of powerful electronics as well as material based technologies in other areas but for the laws of quantum mechanics posing limitations besides the increasing cost and difficulties in manufacturing in such a small scale. The quest, therefore, for the alternative technologies, have stimulated a surge of interest in nano-meter scale materials and devices in the recent years. Metallic as well as semiconducting nano wires are the most attractive materials because of their unique properties having myriad of applications like interconnects for nano-electronics, magnetic devices, chemical and biosensors, whereas the hollow tubules are equally considered to be candidates for more potent applications — both in physical as well as biosciences. Materials' processing for nano-structured devices is indispensable to their rational design. The technique, known as "Template Synthesis", using electrochemical-electro less deposition is one of the most important processes for manufacturing nano-micro structures, nano-composites and devices and is relatively inexpensive and simple. The technique involves using membranes — ion crafted ones (popularly known as Particle Track-Etch Membranes or Nuclear Track Filters), alumite substrate membranes, besides other types of membranes as templates. The parameters viz., diameter as well as length i.e., aspect ratio, shape and wall surface traits in these membranes are controllable. In the present article a detailed review of this technique using track-etch membranes as templates in synthesis of nano-micro materials including hybrid materials and devices like field-ion emitters, resonant tunneling diodes (RTDs) etc. is presented including most of the results obtained in our laboratory.

  2. An exploratory investigation of barriers and enablers affecting investment in renewable companies and technologies in the UK

    PubMed Central

    Wells, Victoria; Greenwell, Felicity; Covey, Judith; Rosenthal, Harriet E. S.; Adcock, Mike; Gregory-Smith, Diana

    2013-01-01

    The last few years have seen considerable research expenditure on renewable fuel technologies. However, in many cases, the necessary sustained and long-term funding from the investment community has not been realized at a level needed to allow technologies to become reality. According to global consulting firm Deloitte's recent renewable energy report (http://www.deloitte.com/energypredictions2012), many renewable energy projects stalled or were not completed because of issues including the global economy, the state of government finances, difficulties in funding and regulatory uncertainty. This investigation concentrates on the funding aspect and explores the perceived barriers and enablers to renewable technologies within the investment and renewables community. Thematic analysis of 14 in-depth interviews with representatives from renewable energy producers, banks and investment companies identified key factors affecting the psychology of investor behaviour in renewables. Eight key issues are highlighted, including a range of barriers and enablers, the role of the government, balance between cost/risk, value/return on investment, investment time scales, personality/individual differences of investors and the level of innovation in the renewable technology. It was particularly notable that in the findings the role of the government was discussed more than other themes and generally in quite critical terms, highlighting the need to ensure consistency in government funding and policy and a greater understanding of how government decision-making happens. Specific findings such as these illustrate the value of crossing disciplinary boundaries and highlight potential further research. Behavioural science and economic psychology in particular have much to offer at the interface of other disciplines such as political science and financial economics. PMID:24427512

  3. An exploratory investigation of barriers and enablers affecting investment in renewable companies and technologies in the UK.

    PubMed

    Wells, Victoria; Greenwell, Felicity; Covey, Judith; Rosenthal, Harriet E S; Adcock, Mike; Gregory-Smith, Diana

    2013-02-06

    The last few years have seen considerable research expenditure on renewable fuel technologies. However, in many cases, the necessary sustained and long-term funding from the investment community has not been realized at a level needed to allow technologies to become reality. According to global consulting firm Deloitte's recent renewable energy report (http://www.deloitte.com/energypredictions2012), many renewable energy projects stalled or were not completed because of issues including the global economy, the state of government finances, difficulties in funding and regulatory uncertainty. This investigation concentrates on the funding aspect and explores the perceived barriers and enablers to renewable technologies within the investment and renewables community. Thematic analysis of 14 in-depth interviews with representatives from renewable energy producers, banks and investment companies identified key factors affecting the psychology of investor behaviour in renewables. Eight key issues are highlighted, including a range of barriers and enablers, the role of the government, balance between cost/risk, value/return on investment, investment time scales, personality/individual differences of investors and the level of innovation in the renewable technology. It was particularly notable that in the findings the role of the government was discussed more than other themes and generally in quite critical terms, highlighting the need to ensure consistency in government funding and policy and a greater understanding of how government decision-making happens. Specific findings such as these illustrate the value of crossing disciplinary boundaries and highlight potential further research. Behavioural science and economic psychology in particular have much to offer at the interface of other disciplines such as political science and financial economics.

  4. Parametric formulation of the dielectric function of palladium and palladium hydride thin films.

    PubMed

    Vargas, William E; Azofeifa, Daniel E; Clark, Neville; Solis, Hugo; Montealegre, Felipe; Cambronero, Michael

    2014-08-20

    A parametric description of the dielectric function of Pd thin films with thicknesses between 10 and 30 nm is reported. These films were grown at room temperature on amorphous quartz substrates by electron beam evaporation, with a base pressure of 7.0×10(-7)  mbar. By using nonpolarized normal incident light, transmission spectra were measured for wavelengths between 240 and 1050 nm. Inversion of the spectra by means of a projected gradient method enables us to obtain the mean dielectric function of the Pd grains in the films. We follow the Brendel-Bormann model to describe the frequency dependence of the dielectric function, with the plasma frequency, collision frequency, and screening factor as parameters in the free electron term. The contributions of bound electrons and their interband transitions, described in terms of Lorentz oscillators, involve the resonance frequencies, decay times, strengths, and Gaussian widths as parameters of the model. All these parameters have been optimized from the Pd grains' dielectric function, which fits the transmission spectra. A similar procedure was followed for Pd films exposed to a hydrogen atmosphere close to one bar. Thus, the dielectric functions of palladium and palladium hydride can easily be calculated through spectral ranges covering near-ultraviolet, visible, and near-infrared wavelengths. This can be used to model the behavior of nano-sized structures in which palladium particles or thin films are exposed to hydrogen pressures close to one bar.

  5. If the Worst Happens: Five Strategies for Developing and Leveraging Information Technology-Enabled Disaster Response in Healthcare.

    PubMed

    Bala, Hillol; Venkatesh, Viswanath; Venkatraman, Srinivasan; Bates, Jack

    2016-11-01

    Natural disasters, such as hurricanes, tornadoes, cyclones, earthquakes, volcanic eruptions, wildfires, and floods, have a profound impact on healthcare by limiting healthcare providers' ability to effectively provide patient care in the affected areas and respond to myriad healthcare needs of the affected population. The situation can potentially be exacerbated if healthcare providers do not have effective mechanisms in place for disaster response. The response to Hurricane Katrina, a Category 3 hurricane that made landfall in August 2005 and affected several states in the southwestern U.S., was a vivid example of how the lack of effective planning and responsiveness can affect healthcare services. In this paper, based on an extensive case study, which included a rigorous examination of the Veterans Health Administration's information technology (IT) infrastructure and its response to Hurricane Katrina, we present five strategies that healthcare organizations can undertake to develop and leverage IT-enabled disaster response. These include the development of: 1) an integrated IT architecture; 2) a universal data repository; 3) web-based disaster communication and coordination; 4) an IT-enabled disaster support system; and 5) standardized and integrated IT-enabled disaster response processes. We discuss how these strategies can help healthcare providers manage continuity and offer quality healthcare during natural disasters.

  6. Scientific Data Management (SDM) Center for Enabling Technologies. 2007-2012

    SciTech Connect

    Ludascher, Bertram; Altintas, Ilkay

    2013-09-06

    Over the past five years, our activities have both established Kepler as a viable scientific workflow environment and demonstrated its value across multiple science applications. We have published numerous peer-reviewed papers on the technologies highlighted in this short paper and have given Kepler tutorials at SC06,SC07,SC08,and SciDAC 2007. Our outreach activities have allowed scientists to learn best practices and better utilize Kepler to address their individual workflow problems. Our contributions to advancing the state-of-the-art in scientific workflows have focused on the following areas. Progress in each of these areas is described in subsequent sections. Workflow development. The development of a deeper understanding of scientific workflows "in the wild" and of the requirements for support tools that allow easy construction of complex scientific workflows; Generic workflow components and templates. The development of generic actors (i.e.workflow components and processes) which can be broadly applied to scientific problems; Provenance collection and analysis. The design of a flexible provenance collection and analysis infrastructure within the workflow environment; and, Workflow reliability and fault tolerance. The improvement of the reliability and fault-tolerance of workflow environments.

  7. Enabling breakthroughs in Parkinson’s disease with wearable technologies and big data analytics

    PubMed Central

    Cohen, Shahar; Martig, Adria K.

    2016-01-01

    Parkinson’s disease (PD) is a progressive, degenerative disorder of the central nervous system that is diagnosed and measured clinically by the Unified Parkinson’s Disease Rating Scale (UPDRS). Tools for continuous and objective monitoring of PD motor symptoms are needed to complement clinical assessments of symptom severity to further inform PD therapeutic development across several arenas, from developing more robust clinical trial outcome measures to establishing biomarkers of disease progression. The Michael J. Fox Foundation for Parkinson’s Disease Research and Intel Corporation have joined forces to develop a mobile application and an Internet of Things (IoT) platform to support large-scale studies of objective, continuously sampled sensory data from people with PD. This platform provides both population and per-patient analyses, measuring gait, activity level, nighttime activity, tremor, as well as other structured assessments and tasks. All data collected will be available to researchers on an open-source platform. Development of the IoT platform raised a number of engineering considerations, including wearable sensor choice, data management and curation, and algorithm validation. This project has successfully demonstrated proof of concept that IoT platforms, wearable technologies and the data they generate offer exciting possibilities for more robust, reliable, and low-cost research methodologies and patient care strategies. PMID:28293596

  8. Fertility tourism: circumventive routes that enable access to reproductive technologies and substances.

    PubMed

    Bergmann, Sven

    2011-01-01

    “Fertility tourism” is a journalistic eye‐catcher focusing on the phenomenon of patients who search for a reproductive treatment in another country in order to circumvent laws, access restrictions, or waiting lists in their home country. In Europe, the reasons why people seek reproductive treatments outside their national boundaries are quite diverse, in part because regulations differ so much among countries. Beginning with four examples of people who crossed borders for an in vitro fertilization (IVF) treatment with gamete donation, this article provides some insight into these transnational circumvention practices based on material from ethnographic fieldwork and interviews in Spain, Denmark, and the Czech Republic. In all three countries, gamete donation is made strictly anonymous. Clinical practices such as egg donor recruitment and phenotypical matching between donors and recipients serve to naturalize the substitution of gametes and to install social legitimacy through resemblance markers with the prospective child. In comparison to other areas of medical tourism, which are subjects of debate as a consequence of neoliberal health politics and international medical competition, mobility in the area of reproductive technologies is deeply intertwined with new forms of doing kinship. For prospective parents, it holds a promise of generating offspring who could pass as biogenetically conceived children. Therefore, IVF with gamete donation is mostly modeled after conceptions of nature. Through anonymity and concealment it creates forms of nonrelatedness that leave space for future imaginings and traces of transnational genetic creators.

  9. Enabling breakthroughs in Parkinson's disease with wearable technologies and big data analytics.

    PubMed

    Cohen, Shahar; Bataille, Lauren R; Martig, Adria K

    2016-01-01

    Parkinson's disease (PD) is a progressive, degenerative disorder of the central nervous system that is diagnosed and measured clinically by the Unified Parkinson's Disease Rating Scale (UPDRS). Tools for continuous and objective monitoring of PD motor symptoms are needed to complement clinical assessments of symptom severity to further inform PD therapeutic development across several arenas, from developing more robust clinical trial outcome measures to establishing biomarkers of disease progression. The Michael J. Fox Foundation for Parkinson's Disease Research and Intel Corporation have joined forces to develop a mobile application and an Internet of Things (IoT) platform to support large-scale studies of objective, continuously sampled sensory data from people with PD. This platform provides both population and per-patient analyses, measuring gait, activity level, nighttime activity, tremor, as well as other structured assessments and tasks. All data collected will be available to researchers on an open-source platform. Development of the IoT platform raised a number of engineering considerations, including wearable sensor choice, data management and curation, and algorithm validation. This project has successfully demonstrated proof of concept that IoT platforms, wearable technologies and the data they generate offer exciting possibilities for more robust, reliable, and low-cost research methodologies and patient care strategies.

  10. Multi-parallel open technology to enable collaborative volume visualization: how to create global immersive virtual anatomy classrooms.

    PubMed

    Silverstein, Jonathan C; Walsh, Colin; Dech, Fred; Olson, Eric; E, Michael; Parsad, Nigel; Stevens, Rick

    2008-01-01

    Many prototype projects aspire to develop a sustainable model of immersive radiological volume visualization for virtual anatomic education. Some have focused on distributed or parallel architectures. However, very few, if any others, have combined multi-location, multi-directional, multi-stream sharing of video, audio, desktop applications, and parallel stereo volume rendering, to converge on an open, globally scalable, and inexpensive collaborative architecture and implementation method for anatomic teaching using radiological volumes. We have focused our efforts on bringing this all together for several years. We outline here the technology we're making available to the open source community and a system implementation suggestion for how to create global immersive virtual anatomy classrooms. With the releases of Access Grid 3.1 and our parallel stereo volume rendering code, inexpensive globally scalable technology is available to enable collaborative volume visualization upon an award-winning framework. Based upon these technologies, immersive virtual anatomy classrooms that share educational or clinical principles can be constructed with the setup described with moderate technological expertise and global scalability.

  11. Quantifying the Impacts of Timebased Rates, Enabling Technology, and Other Treatments in Consumer Behavior Studies: Protocols and Guidelines

    SciTech Connect

    Cappers, Peter; Todd, Annika; Perry, Michael; Neenan, Bernie; Boisvert, Richard

    2013-06-27

    This report offers guidelines and protocols for measuring the effects of time-based rates, enabling technology, and various other treatments on customers’ levels and patterns of electricity usage. Although the focus is on evaluating consumer behavior studies (CBS) that involve field trials and pilots, the methods can be extended to assessing the large-scale programs that may follow. CBSs are undertaken to resolve uncertainties and ambiguities about how consumers respond to inducements to modify their electricity demand. Those inducements include price structures; feedback and information; and enabling technologies embedded in programs such as: critical peak, time-of use, real-time pricing; peak time rebate or critical peak rebate; home energy reports and in-home displays; and all manner of device controls for appliances and plug loads. Although the focus of this report is on consumer studies—where the subjects are households—the behavioral sciences principles discussed and many of the methods recommended apply equally to studying commercial and industrial customer electricity demand.

  12. Study of palladium plating components

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Palladium deposits were prepared by electrolysis for evaluation as catalytic materials. Electrolysis was carried out in acidic solutions consisting of either 1.0 M in NaCl and 0.01 M PdCl2 or 1.0 M NaCl and 0.04 M PdCl2. It was during the preparation of the palladium deposits that unexpected observations were made that led to the request for analytical services. The analyses did not, nor were they intended to, answer all of the questions. They did, however, shed light on the nature and magnitude of some of the contaminants in the solutions and in the palladium electrodes, as well as characterize the forms of the palladium deposits. Results of analyses are grouped into solution, deposit, and electrode categories for comparison purposes.

  13. Enabling Factors and Teacher Practices in Using Technology-Assisted Project-Based Learning in Tatweer Schools in Jeddah, Saudi Arabia

    ERIC Educational Resources Information Center

    Kamal, Abdulrahman

    2012-01-01

    The purpose of this study was to investigate teacher practices of enabling factors in the implementation of technology-assisted PBL, in Tatweer schools in Jeddah, Saudi Arabia. This study also explored how the International Society for Technology in Education (ISTE) National Education Technology Standards for Teachers (NETS.T) were used in Tatweer…

  14. Enabling Technologies for Entrepreneurial Opportunities in 3D printing of SmallSats

    NASA Technical Reports Server (NTRS)

    Kwas, Andrew; MacDonald, Eric; Muse, Dan; Wicker, Ryan; Kief, Craig; Aarestad, Jim; Zemba, Mike; Marshall, Bill; Tolbert, Carol; Connor, Brett

    2014-01-01

    A consortium of innovative experts in additive manufacturing (AM) comprising Northrup Grumman Technical Services, University of Texas at El Paso (UTEP), Configurable Space Microsystems Innovations & Applications Center (COSMIAC), NASA Glenn Research Center (GRC), and Youngstown State University, have made significant breakthroughs in the goal of creating the first complete 3D printed small satellite. Since AM machines are relatively inexpensive, this should lead to many entrepreneurial opportunities for the small satellite community. Our technology advancements are focused on the challenges of embedding key components within the structure of the article. We have demonstrated, using advanced fused deposition modeling techniques, complex geometric shapes which optimize the spacecraft design. The UTEP Keck Center has developed a method that interrupts the printing process to insert components into specific cavities, resulting in a spacecraft that has minimal internal space allocated for what traditionally were functional purposes. This allows us to increase experiment and instrument capability by provided added volume in a confined small satellite space. Leveraging initial progress made on a NASA contract, the team investigated the potential of new materials that exploit the AM process, producing candidate compositions that exceed the capabilities of traditional materials. These "new materials" being produced and tested include some that have improved radiation shielding, increased permeability, enhanced thermal properties, better conductive properties, and increased structural performance. The team also investigated materials that were previously not possible to be made. Our testing included standard mechanical tests such as vibration, tensile, thermal cycling, and impact resistance as well as radiation and electromagnetic tests. The initial results of these products and their performance will be presented and compared with standard properties. The new materials with

  15. Molecular imaging by confocal Raman mapping: enabling technologies for speed, multivariate analysis, and convenience

    NASA Astrophysics Data System (ADS)

    Adar, Fran; Lee, Eunah; Whitley, Andrew

    2009-05-01

    In spite of the fact that the original Raman microscope was designed in the early 1970's for Raman imaging, wide-spread practical use of the technology did not appear until the last 5 years. The instruments are smaller, faster, easier-to-use, promoting reports of a variety of interesting applications in fields as diverse as nanomaterials, pharmaceuticals, composites, semiconductors, bio-clinical studies, polymers, ceramics and glasses. While the information content in Raman analysis is quite high, the time to acquire an image has been a deterrent to its application. Recent innovations including Swift and DUO Scan have addressed and are addressing these issues. SWIFT (Scanning with Incredibly Fast Times) is a rapid CCD read-out technique that is based on the synchronization between the XY motion of the motorized or piezo stage and the CCD readout. DUO scanning uses a set of scanning mirrors above the microscope objective to raster rapidly the laser beam across a sample area. This can be used to create a "giant pixel" in the map without compromising the NA of the light collection, or to create a map with step sizes as small as 10nm. Swift, in combination with DUO scan, as been used to produce full spectral maps of pharmaceutical tablets in times as short as 10 minutes, something that was previously believed to be near impossible. Off-line analysis of such a map using multivariate techniques produces Raman images indicating the quality of component mixing, and also the presence of minor, difficult-to-detect components (such as Mgstearate in pharmaceutical tablets).

  16. TEAM (Technologies Enabling Agile Manufacturing) shop floor control requirements guide: Version 1.0

    SciTech Connect

    1995-03-28

    TEAM will create a shop floor control system (SFC) to link the pre-production planning to shop floor execution. SFC must meet the requirements of a multi-facility corporation, where control must be maintained between co-located facilities down to individual workstations within each facility. SFC must also meet the requirements of a small corporation, where there may only be one small facility. A hierarchical architecture is required to meet these diverse needs. The hierarchy contains the following levels: Enterprise, Factory, Cell, Station, and Equipment. SFC is focused on the top three levels. Each level of the hierarchy is divided into three basic functions: Scheduler, Dispatcher, and Monitor. The requirements of each function depend on the hierarchical level in which it is to be used. For example, the scheduler at the Enterprise level must allocate production to individual factories and assign due-dates; the scheduler at the Cell level must provide detailed start and stop times of individual operations. Finally the system shall have the following features: distributed and open-architecture. Open architecture software is required in order that the appropriate technology be used at each level of the SFC hierarchy, and even at different instances within the same hierarchical level (for example, Factory A uses discrete-event simulation scheduling software, and Factory B uses an optimization-based scheduler). A distributed implementation is required to reduce the computational burden of the overall system, and allow for localized control. A distributed, open-architecture implementation will also require standards for communication between hierarchical levels.

  17. Sensitization to palladium in Europe.

    PubMed

    Muris, Joris; Goossens, An; Gonçalo, Margarida; Bircher, Andreas J; Giménez-Arnau, Ana; Foti, Caterina; Bruze, Magnus; Andersen, Klaus Ejner; Rustemeyer, Thomas; Feilzer, Albert J; Kleverlaan, Cornelis J

    2015-01-01

    Recently, sodium tetrachloropalladate (Na2 PdCl4 ) was found to be a more sensitive palladium patch test allergen than palladium dichloride (PdCl2 ). To determine the optimal test concentration of Na2 PdCl4 , to evaluate the prevalence of palladium sensitization with Na2 PdCl4 and PdCl2 , and to compare the results with nickel sensitization in a European multicentre study. In addition to the European or national baseline series including NiSO4 ·6H2 0 5% pet., consecutive patients were tested with PdCl2 and Na2 PdCl4 2%, 3% and 4% pet. in eight European dermatology clinics. The age and sex distributions were also evaluated in patients sensitized to nickel and palladium. In total, 1651 patients were tested. Relative to 3% Na2 PdCl4 , 4% Na2 PdCl4 did not add any information. Two per cent Na2 PdCl4 resulted in more doubtful reactions and showed suboptimal reactivity. The prevalence of palladium sensitization doubled with Na2 PdCl4 and was similar to that of nickel. Interestingly, in contrast to nickel sensitization, palladium sensitization was not related to female sex. Three per cent Na2 PdCl4 pet. is the most suitable patch test concentration. Sensitization to palladium is almost as prevalent as sensitization to nickel. The sex distribution is different between nickel-sensitized and palladium-sensitized patients, suggesting different sources of exposure. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Low-cost method for fabricating palladium and palladium-alloy thin films on porous supports

    DOEpatents

    Lee, Tae H; Park, Chan Young; Lu, Yunxiang; Dorris, Stephen E; Balachandran, Uthamalingham

    2013-11-19

    A process for forming a palladium or palladium alloy membrane on a ceramic surface by forming a pre-colloid mixture comprising a powder palladium source, carrier fluid, dispersant and a pore former and a binder. Ultrasonically agitating the precolloid mixture and applying to a substrate with an ultrasonic nozzle and heat curing the coating form a palladium-based membrane.

  19. Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service

    PubMed Central

    Bao, Shunxing; Plassard, Andrew J.; Landman, Bennett A.; Gokhale, Aniruddha

    2017-01-01

    Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based “medical image processing-as-a-service” offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop’s distributed file system. Despite this promise, HBase’s load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split

  20. Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service.

    PubMed

    Bao, Shunxing; Plassard, Andrew J; Landman, Bennett A; Gokhale, Aniruddha

    2017-04-01

    Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based "medical image processing-as-a-service" offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop's distributed file system. Despite this promise, HBase's load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split policy

  1. Technologies enabling autologous neural stem cell-based therapies for neurodegenerative disease and injury

    NASA Astrophysics Data System (ADS)

    Bakhru, Sasha H.

    The intrinsic abilities of mammalian neural stem cells (NSCs) to self-renew, migrate over large distances, and give rise to all primary neural cell types of the brain offer unprecedented opportunity for cell-based treatment of neurodegenerative diseases and injuries. This thesis discusses development of technologies in support of autologous NSC-based therapies, encompassing harvest of brain tissue biopsies from living human patients; isolation of NSCs from harvested tissue; efficient culture and expansion of NSCs in 3D polymeric microcapsule culture systems; optimization of microcapsules as carriers for efficient in vivo delivery of NSCs; genetic engineering of NSCs for drug-induced, enzymatic release of transplanted NSCs from microcapsules; genetic engineering for drug-induced differentiation of NSCs into specific therapeutic cell types; and synthesis of chitosan/iron-oxide nanoparticles for labeling of NSCs and in vivo tracking by cellular MRI. Sub-millimeter scale tissue samples were harvested endoscopically from subventricular zone regions of living patient brains, secondary to neurosurgical procedures including endoscopic third ventriculostomy and ventriculoperitoneal shunt placement. On average, 12,000 +/- 3,000 NSCs were isolated per mm 3 of subventricular zone tissue, successfully demonstrated in 26 of 28 patients, ranging in age from one month to 68 years. In order to achieve efficient expansion of isolated NSCs to clinically relevant numbers (e.g. hundreds of thousands of cells in Parkinson's disease and tens of millions of cells in multiple sclerosis), an extracellular matrix-inspired, microcapsule-based culture platform was developed. Initial culture experiments with murine NSCs yielded unprecedented expansion folds of 30x in 5 days, from initially minute NSC populations (154 +/- 15 NSCs per 450 mum diameter capsule). Within 7 days, NSCs expanded as almost perfectly homogenous populations, with 94.9% +/- 4.1% of cultured cells staining positive for

  2. The emerging Web 2.0 social software: an enabling suite of sociable technologies in health and health care education.

    PubMed

    Kamel Boulos, Maged N; Wheeler, Steve

    2007-03-01

    Web 2.0 sociable technologies and social software are presented as enablers in health and health care, for organizations, clinicians, patients and laypersons. They include social networking services, collaborative filtering, social bookmarking, folksonomies, social search engines, file sharing and tagging, mashups, instant messaging, and online multi-player games. The more popular Web 2.0 applications in education, namely wikis, blogs and podcasts, are but the tip of the social software iceberg. Web 2.0 technologies represent a quite revolutionary way of managing and repurposing/remixing online information and knowledge repositories, including clinical and research information, in comparison with the traditional Web 1.0 model. The paper also offers a glimpse of future software, touching on Web 3.0 (the Semantic Web) and how it could be combined with Web 2.0 to produce the ultimate architecture of participation. Although the tools presented in this review look very promising and potentially fit for purpose in many health care applications and scenarios, careful thinking, testing and evaluation research are still needed in order to establish 'best practice models' for leveraging these emerging technologies to boost our teaching and learning productivity, foster stronger 'communities of practice', and support continuing medical education/professional development (CME/CPD) and patient education.

  3. Europium palladium hydrides.

    PubMed

    Kohlmann, H; Fischer, H E; Yvon, K

    2001-05-21

    The first fully structurally characterized ternary europium palladium hydrides (deuterides) are reported. The most Eu rich compound is Eu(2)PdD(4). Its beta-K(2)SO(4) type structure (space group Pnma, a = 749.47(1) pm, b = 543.34(1) pm, c = 947.91(1) pm, Z = 4) contains tetrahedral 18-electron [PdD(4)](4)(-) complex anions and divalent Eu cations. The compound is presumably nonmetallic and shows paramagnetic behavior (mu(eff) = 8.0(2) mu(B)) with ferromagnetic ordering at T(C) = 15.1(4) K. A metallic compound at intermediate Eu content is EuPdD(3). It crystallizes with the cubic perovskite structure (space group Pm3m, a = 380.01(2) pm, Z = 1) in which palladium is octahedrally surrounded by fully occupied deuterium sites. Metallic hydrides at low Eu content form by reversible hydrogen absorption of intermetallic EuPd(2) (Fd3m, a = 775.91(1) pm, Z = 8). Depending on the experimental conditions at least three phases with distinctly different hydrogen contents x exist: EuPd(2)H(x) ( approximately )(0.1) (a = 777.02(2) pm, Z = 8, T = 298 K, p(H(2)) = 590 kPa), EuPd(2)H(x) ( approximately )(1.5) (a = 794.47(5) pm, Z = 8, T = 298 K, p(H(2)) = 590 kPa), and EuPd(2)H(x) ( approximately )(2.1) (a = 802.1(1) pm, Z = 8, T = 350 K, p(H(2)) = 610 kPa). All crystallize with cubic Laves phase derivative structures and have presumably disordered hydrogen distributions.

  4. Evaluating complex interventions and health technologies using normalization process theory: development of a simplified approach and web-enabled toolkit

    PubMed Central

    2011-01-01

    Background Normalization Process Theory (NPT) can be used to explain implementation processes in health care relating to new technologies and complex interventions. This paper describes the processes by which we developed a simplified version of NPT for use by clinicians, managers, and policy makers, and which could be embedded in a web-enabled toolkit and on-line users manual. Methods Between 2006 and 2010 we undertook four tasks. (i) We presented NPT to potential and actual users in multiple workshops, seminars, and presentations. (ii) Using what we discovered from these meetings, we decided to create a simplified set of statements and explanations expressing core constructs of the theory (iii) We circulated these statements to a criterion sample of 60 researchers, clinicians and others, using SurveyMonkey to collect qualitative textual data about their criticisms of the statements. (iv) We then reconstructed the statements and explanations to meet users' criticisms, embedded them in a web-enabled toolkit, and beta tested this 'in the wild'. Results On-line data collection was effective: over a four week period 50/60 participants responded using SurveyMonkey (40/60) or direct phone and email contact (10/60). An additional nine responses were received from people who had been sent the SurveyMonkey form by other respondents. Beta testing of the web enabled toolkit produced 13 responses, from 327 visits to http://www.normalizationprocess.org. Qualitative analysis of both sets of responses showed a high level of support for the statements but also showed that some statements poorly expressed their underlying constructs or overlapped with others. These were rewritten to take account of users' criticisms and then embedded in a web-enabled toolkit. As a result we were able translate the core constructs into a simplified set of statements that could be utilized by non-experts. Conclusion Normalization Process Theory has been developed through transparent procedures at

  5. Electrically conductive palladium-containing polyimide films

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Furtsch, T. A.; Taylor, L. T.

    1981-01-01

    Palladium addition makes light, flexible film with low resistivity to relieve space charging. Polyimide film is prepared in four steps: preparation of polyamic acid in polar solvent; addition of soluable palladium complex salt; fabrication of film of "palladium polyamic acid" solution; and thermal imidization of film to palladium-containing polyimide by 300 C heating. Lowered resistivities were achieved without loss in film flexibility or increase in film weight.

  6. Electrically conductive palladium-containing polyimide films

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Furtsch, T. A.; Taylor, L. T.

    1981-01-01

    Palladium addition makes light, flexible film with low resistivity to relieve space charging. Polyimide film is prepared in four steps: preparation of polyamic acid in polar solvent; addition of soluable palladium complex salt; fabrication of film of "palladium polyamic acid" solution; and thermal imidization of film to palladium-containing polyimide by 300 C heating. Lowered resistivities were achieved without loss in film flexibility or increase in film weight.

  7. Air Vehicle Technology Integration Program (AVTIP) Delivery Order 0008: Open Control Platform (OCP) Software Enabled Control (SEC) Hardware in the Loop Simulation Program

    DTIC Science & Technology

    2004-07-01

    AFRL-VA-WP-TR-2006-3074 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0008: Open Control Platform (OCP) Software Enabled...especially the case since the NGC technology software for SEC was completely developed in the Simulink environment. The OCP middleware was put through...STANLEY H. PRUETT GARY K. HELLMANN, Chief Aerospace Vehicles Technology Aerospace Vehicles Technology Assessment & Simulation Branch Assessment

  8. Enabling inspection solutions for future mask technologies through the development of massively parallel E-Beam inspection

    NASA Astrophysics Data System (ADS)

    Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Jindal, Vibhu; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik

    2015-09-01

    The new device architectures and materials being introduced for sub-10nm manufacturing, combined with the complexity of multiple patterning and the need for improved hotspot detection strategies, have pushed current wafer inspection technologies to their limits. In parallel, gaps in mask inspection capability are growing as new generations of mask technologies are developed to support these sub-10nm wafer manufacturing requirements. In particular, the challenges associated with nanoimprint and extreme ultraviolet (EUV) mask inspection require new strategies that enable fast inspection at high sensitivity. The tradeoffs between sensitivity and throughput for optical and e-beam inspection are well understood. Optical inspection offers the highest throughput and is the current workhorse of the industry for both wafer and mask inspection. E-beam inspection offers the highest sensitivity but has historically lacked the throughput required for widespread adoption in the manufacturing environment. It is unlikely that continued incremental improvements to either technology will meet tomorrow's requirements, and therefore a new inspection technology approach is required; one that combines the high-throughput performance of optical with the high-sensitivity capabilities of e-beam inspection. To support the industry in meeting these challenges SUNY Poly SEMATECH has evaluated disruptive technologies that can meet the requirements for high volume manufacturing (HVM), for both the wafer fab [1] and the mask shop. Highspeed massively parallel e-beam defect inspection has been identified as the leading candidate for addressing the key gaps limiting today's patterned defect inspection techniques. As of late 2014 SUNY Poly SEMATECH completed a review, system analysis, and proof of concept evaluation of multiple e-beam technologies for defect inspection. A champion approach has been identified based on a multibeam technology from Carl Zeiss. This paper includes a discussion on the

  9. Wearable and micro and nano technologies for pHealth: R&D achievements to enable future innovation.

    PubMed

    Lymberis, Andreas

    2013-01-01

    The fast developments in information and communication technology as well as R&D work on micro and nano systems in biology and biomedical engineering are stimulating the explosive growth in life sciences, which is leading to an ever increasing understanding of life at sub-cellular and molecular level and so revolutionizing and personalizing diagnosis and therapy. By bringing these parallel developments to biomedicine and health, ultrafast and sensitive systems can be developed to prevention & lifestyle support, to early diagnose or treat diseases with high accuracy and less invasiveness, and to support body functions or to replace lost functionality. Such pHealth systems will enable the delivery of individualized health services with better access & outcomes at lower costs than previously deemed possible, making a substantial contribution to bring healthcare expenditures under control and increase its productivity.

  10. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

  11. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  12. Stable palladium alloys for diffusion of hydrogen

    NASA Technical Reports Server (NTRS)

    Patapoff, M.

    1973-01-01

    Literature search on hydrogen absorption effect on palladium alloys revealed existence of alloy compositions in which alpha--beta transition does not take place. Survey conclusions: 40 percent gold alloy of palladium should be used in place of palladium; alloy must be free of interstitial impurities; and metallic surfaces of tube must be clean.

  13. The Importance of Long-Term Social Research in Enabling Participation and Developing Engagement Strategies for New Dengue Control Technologies

    PubMed Central

    McNaughton, Darlene

    2012-01-01

    Background In recent years, new strategies aimed at reducing the capacity of mosquito vectors to transmit dengue fever have emerged. As with earlier control methods, they will have to be employed in a diverse range of communities across the globe and into the main settings for disease transmission, the homes, businesses and public buildings of residents in dengue-affected areas. However, these strategies are notably different from previous methods and draw on technologies that are not without controversy. Public engagement and authorization are critical to the future success of these programs. Methodology/Principal Findings This paper reports on an Australian case study where long-term social research was used to enable participation and the design of an engagement strategy tailored specifically to the sociopolitical setting of a potential trial release site of Wolbachia-infected Aedes aegytpi mosquitoes. Central themes of the social research, methods used and conclusions drawn are briefly described. Results indicate that different communities are likely to have divergent expectations, concerns and cultural sensibilities with regard to participation, engagement and authorization. Conclusions/Significance The findings show that a range of issues need to be understood and taken into account to enable sensitive, ethical and effective engagement when seeking public support for new dengue control methods. PMID:22953011

  14. The importance of long-term social research in enabling participation and developing engagement strategies for new dengue control technologies.

    PubMed

    McNaughton, Darlene

    2012-01-01

    In recent years, new strategies aimed at reducing the capacity of mosquito vectors to transmit dengue fever have emerged. As with earlier control methods, they will have to be employed in a diverse range of communities across the globe and into the main settings for disease transmission, the homes, businesses and public buildings of residents in dengue-affected areas. However, these strategies are notably different from previous methods and draw on technologies that are not without controversy. Public engagement and authorization are critical to the future success of these programs. This paper reports on an Australian case study where long-term social research was used to enable participation and the design of an engagement strategy tailored specifically to the sociopolitical setting of a potential trial release site of Wolbachia-infected Aedes aegytpi mosquitoes. Central themes of the social research, methods used and conclusions drawn are briefly described. Results indicate that different communities are likely to have divergent expectations, concerns and cultural sensibilities with regard to participation, engagement and authorization. The findings show that a range of issues need to be understood and taken into account to enable sensitive, ethical and effective engagement when seeking public support for new dengue control methods.

  15. Testing the Efficacy of Synthetic Vision during Non-Normal Operations as an Enabling Technology for Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Williams, Steven P.

    2008-01-01

    Synthetic Vision (SV) may serve as a revolutionary crew/vehicle interface enabling technology to meet the challenges of the Next Generation Air Transportation System Equivalent Visual Operations (EVO) concept that is, the ability to achieve or even improve on the safety of Visual Flight Rules (VFR) operations, maintain the operational tempos of VFR, and potentially retain VFR procedures independent of actual weather and visibility conditions. One significant challenge lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. An experiment was conducted to evaluate the effects of the presence or absence of SV, the location (head-up or head-down) of this information during an instrument approach, and the type of airport lighting information on landing minima. Another key element of the testing entailed investigating the pilot s awareness and reaction to non-normal events (i.e., failure conditions) that were unexpectedly introduced into the experiment. These non-normals are critical determinants in the underlying safety of all-weather operations. This paper presents the experimental results specific to pilot response to non-normal events using head-up and head-down synthetic vision displays.

  16. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro.

    PubMed

    Knight, Eleanor; Przyborski, Stefan

    2015-12-01

    Research in mammalian cell biology often relies on developing in vitro models to enable the growth of cells in the laboratory to investigate a specific biological mechanism or process under different test conditions. The quality of such models and how they represent the behavior of cells in real tissues plays a critical role in the value of the data produced and how it is used. It is particularly important to recognize how the structure of a cell influences its function and how co-culture models can be used to more closely represent the structure of real tissue. In recent years, technologies have been developed to enhance the way in which researchers can grow cells and more readily create tissue-like structures. Here we identify the limitations of culturing mammalian cells by conventional methods on two-dimensional (2D) substrates and review the popular approaches currently available that enable the development of three-dimensional (3D) tissue models in vitro. There are now many ways in which the growth environment for cultured cells can be altered to encourage 3D cell growth. Approaches to 3D culture can be broadly categorized into scaffold-free or scaffold-based culture systems, with scaffolds made from either natural or synthetic materials. There is no one particular solution that currently satisfies all requirements and researchers must select the appropriate method in line with their needs. Using such technology in conjunction with other modern resources in cell biology (e.g. human stem cells) will provide new opportunities to create robust human tissue mimetics for use in basic research and drug discovery. Application of such models will contribute to advancing basic research, increasing the predictive accuracy of compounds, and reducing animal usage in biomedical science. © 2014 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  17. Home-centered health-enabling technologies and regional health information systems. An integration approach based on international standards.

    PubMed

    Gietzelt, M; von Bargen, T; Kohlmann, M; Marschollek, M; Schwartze, J; Song, B; Wagner, M; Wolf, K-H; Haux, R

    2014-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Using Data from Ambient Assisted Living and Smart Homes in Electronic Health Records". In this paper, we present a prototype of a Home-Centered Health-Enabling Technology (HET-HC), which is able to capture, store, merge and process data from various sensor systems at people's home. In addition, we present an architecture designed to integrate HET-HC into an exemplary regional Health Information System (rHIS). rHIS are traditionally document-based to fit to the needs in a clinical context. However, HET-HC are producing continuous data streams for which documents might be an inappropriate representation. Therefore, the HET-HC could register placeholder-documents at rHIS. These placeholder-documents are assembled upon user-authenticated request by the HET-HC and are always up-to-date. Moreover, it is not trivial to find a clinical coding system for continuous sensor data and to make the data machine-readable in order to enhance the interoperability of such systems. Therefore, we propose the use of SNOCAP-HET, which is a nomenclature to describe the context of sensor-based measurements in health-enabling technologies. We present an architectural approach to integrate HET-HC into rHIS. Our solution is the centralized registration of placeholder-documents with rHIS and the decentralized data storage at people's home. We concluded that the presented architecture of integrating HET-HC into rHIS might fit well to the traditional approach of document-based data storage. Data security and privacy issues are also duly considered.

  18. Rehearsal Enabling Simulation Technologies

    DTIC Science & Technology

    2011-03-01

    developed by Renaissance Sciences Corporation (RSC) in collaboration with Elmendorf Civil Engineering, Joint Pacific Area Range Complex (JPARC) management...from the Air Force Combat Climatology Center (AFCCC) into Expert Common Immersive Theatre Environment (XCITE) threat simulations. AFCCC created an...L-3 Communications Link Simulation and Training, and Renaissance Science Corporation. The team provided as needed consultation to numerous

  19. Use of eHealth technologies to enable the implementation of musculoskeletal Models of Care: Evidence and practice.

    PubMed

    Slater, Helen; Dear, Blake F; Merolli, Mark A; Li, Linda C; Briggs, Andrew M

    2016-06-01

    Musculoskeletal (MSK) conditions are the second leading cause of morbidity-related burden of disease globally. EHealth is a potentially critical factor that enables the implementation of accessible, sustainable and more integrated MSK models of care (MoCs). MoCs serve as a vehicle to drive evidence into policy and practice through changes at a health system, clinician and patient level. The use of eHealth to implement MoCs is intuitive, given the capacity to scale technologies to deliver system and economic efficiencies, to contribute to sustainability, to adapt to low-resource settings and to mitigate access and care disparities. We follow a practice-oriented approach to describing the 'what' and 'how' to harness eHealth in the implementation of MSK MoCs. We focus on the practical application of eHealth technologies across care settings to those MSK conditions contributing most substantially to the burden of disease, including osteoarthritis and inflammatory arthritis, skeletal fragility-associated conditions and persistent MSK pain. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Ultra-Lightweight Hybrid Thin-Film Solar Cells: A Survey of Enabling Technologies for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; McNatt, Jeremiah S.; Bailey, Sheila G.; Dickman, John E.; Raffaelle, Ryne P.; Landi, Brian J.; Anctil, Annick; DiLeo, Roberta; Jin, Michael H.-C.; Lee, Chung-Young; hide

    2007-01-01

    The development of hybrid inorganic/organic thin-film solar cells on flexible, lightweight, space-qualified, durable substrates provides an attractive solution for fabricating solar arrays with high mass specific power (W/kg). Next generation thin-film technologies may well involve a revolutionary change in materials to organic-based devices. The high-volume, low-cost fabrication potential of organic cells will allow for square miles of solar cell production at one-tenth the cost of conventional inorganic materials. Plastic solar cells take a minimum of storage space and can be inflated or unrolled for deployment. We will explore a cross-section of in-house and sponsored research efforts that aim to provide new hybrid technologies that include both inorganic and polymer materials as active and substrate materials. Research at University of Texas at Arlington focuses on the fabrication and use of poly(isothianaphthene-3,6-diyl) in solar cells. We describe efforts at Norfolk State University to design, synthesize and characterize block copolymers. A collaborative team between EIC Laboratories, Inc. and the University of Florida is investigating multijunction polymer solar cells to more effectively utilize solar radiation. The National Aeronautics and Space Administration (NASA)/Ohio Aerospace Institute (OAI) group has undertaken a thermal analysis of potential metallized substrates as well as production of nanoparticles of CuInS2 and CuInSe2 in good yield at moderate temperatures via decomposition of single-source precursors. Finally, preliminary work at the Rochester Institute of Technology (R.I.T.) to assess the impact on performance of solar cells of temperature and carbon nanotubes is reported. Technologies that must be developed to enable ultra-lightweight solar arrays include: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. For NASA applications, any solar cell or array technology must not only meet

  1. Palladium/kieselguhr composition and method

    DOEpatents

    Mosley, W.C. Jr.

    1993-09-28

    A hydrogen-absorbing composition and method for making such a composition are described. The composition comprises a metal hydride, preferably palladium, deposited onto a porous substrate such as kieselguhr, for use in hydrogen-absorbing processes. The composition is made by immersing a substrate in a concentrated solution containing palladium, such as tetra-amine palladium nitrate. Palladium from the solution is deposited onto the porous substrate, which is preferably in the form of kieselguhr particles. The substrate is then removed from the solution, calcined, and heat treated. This process is repeated until the desired amount of palladium has been deposited onto the substrate.

  2. Palladium/kieselguhr composition and method

    DOEpatents

    Mosley, Jr., Wilbur C.

    1993-01-01

    A hydrogen-absorbing composition and method for making such a composition. The composition comprises a metal hydride, preferably palladium, deposited onto a porous substrate such as kieselguhr, for use in hydrogen-absorbing processes. The composition is made by immersing a substrate in a concentrated solution containing palladium, such as tetra-amine palladium nitrate. Palladium from the solution is deposited onto the porous substrate, which is preferably in the form of kieselguhr particles. The substrate is then removed from the solution, calcined, and heat treated. This process is repeated until the desired amount of palladium has been deposited onto the substrate.

  3. Air Vehicle Technology Integration Program (AVTIP) Delivery Order 0015: Open Control Platform (OCP) Software Enabled Control (SEC) Hardware in the Loop Simulation - OCP Hardware Integration

    DTIC Science & Technology

    2005-06-01

    AFRL-VA-WP-TR-2006-3075 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0015: Open Control Platform (OCP) Software Enabled...2001– 05/28/2004 5a. CONTRACT NUMBER F33615-00-D-3052-0015 5b. GRANT NUMBER 4. TITLE AND SUBTITLE AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM

  4. The Impact of Technology-Enabled Active Learning (TEAL) Implementation on Student Learning and Teachers' Teaching in a High School Context

    ERIC Educational Resources Information Center

    Shieh, Ruey S.

    2012-01-01

    Technology-Enabled Active Learning (TEAL) is a pedagogical innovation established in a technology-enhanced multimedia studio, emphasizing constructivist-oriented teaching and learning. In Taiwan, an increasing number of schools are adopting the TEAL notion to deliver courses. This study examines the impact of TEAL on both student performance and…

  5. Viral-templated Palladium Nanocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Cuixian

    Despite recent progress on nanocatalysis, there exist several critical challenges in simple and readily controllable nanocatalyst synthesis including the unpredictable particle growth, deactivation of catalytic activity, cumbersome catalyst recovery and lack of in-situ reaction monitoring. In this dissertation, two novel approaches are presented for the fabrication of viral-templated palladium (Pd) nanocatalysts, and their catalytic activities for dichromate reduction reaction and Suzuki Coupling reaction were thoroughly studied. In the first approach, viral template based bottom-up assembly is employed for the Pd nanocatalyst synthesis in a chip-based format. Specifically, genetically displayed cysteine residues on each coat protein of Tobacco Mosaic Virus (TMV) templates provide precisely spaced thiol functionalities for readily controllable surface assembly and enhanced formation of catalytically active Pd nanoparticles. Catalysts with the chip-based format allow for simple separation and in-situ monitoring of the reaction extent. Thorough examination of synthesis-structure-activity relationship of Pd nanoparticles formed on surface-assembled viral templates shows that Pd nanoparticle size, catalyst loading density and catalytic activity of viral-templated Pd nanocatalysts can be readily controlled simply by tuning the synthesis conditions. The viral-templated Pd nanocatalysts with optimized synthesis conditions are shown to have higher catalytic activity per unit Pd mass than the commercial Pd/C catalysts. Furthermore, tunable and selective surface assembly of TMV biotemplates is exploited to control the loading density and location of Pd nanocatalysts on solid substrates via preferential electroless deposition. In addition, the catalytic activities of surface-assembled TMV-templated Pd nanocatalysts were also investigated for the ligand-free Suzuki Coupling reaction under mild reaction conditions. The chip-based format enables simple catalyst separation and

  6. Using Enabling Technologies to Facilitate the Comparison of Satellite Observations with the Model Forecasts for Hurricane Study

    NASA Astrophysics Data System (ADS)

    Li, P.; Knosp, B.; Hristova-Veleva, S. M.; Niamsuwan, N.; Johnson, M. P.; Shen, T. P. J.; Tanelli, S.; Turk, J.; Vu, Q. A.

    2014-12-01

    Due to their complexity and volume, the satellite data are underutilized in today's hurricane research and operations. To better utilize these data, we developed the JPL Tropical Cyclone Information System (TCIS) - an Interactive Data Portal providing fusion between Near-Real-Time satellite observations and model forecasts to facilitate model evaluation and improvement. We have collected satellite observations and model forecasts in the Atlantic Basin and the East Pacific for the hurricane seasons since 2010 and supported the NASA Airborne Campaigns for Hurricane Study such as the Genesis and Rapid Intensification Processes (GRIP) in 2010 and the Hurricane and Severe Storm Sentinel (HS3) from 2012 to 2014. To enable the direct inter-comparisons of the satellite observations and the model forecasts, the TCIS was integrated with the NASA Earth Observing System Simulator Suite (NEOS3) to produce synthetic observations (e.g. simulated passive microwave brightness temperatures) from a number of operational hurricane forecast models (HWRF and GFS). An automated process was developed to trigger NEOS3 simulations via web services given the location and time of satellite observations, monitor the progress of the NEOS3 simulations, display the synthetic observation and ingest them into the TCIS database when they are done. In addition, three analysis tools, the joint PDF analysis of the brightness temperatures, ARCHER for finding the storm-center and the storm organization and the Wave Number Analysis tool for storm asymmetry and morphology analysis were integrated into TCIS to provide statistical and structural analysis on both observed and synthetic data. Interactive tools were built in the TCIS visualization system to allow the spatial and temporal selections of the datasets, the invocation of the tools with user specified parameters, and the display and the delivery of the results. In this presentation, we will describe the key enabling technologies behind the design of

  7. Enabling Scientific and Technological Improvements to Meet Core Partner Service Requirements in Alaska - An Arctic Test Bed

    NASA Astrophysics Data System (ADS)

    Petrescu, E. M.; Scott, C. A.

    2014-12-01

    NOAA/NWS Test beds, such as the Joint Hurricane Test Bed (Miami, FL) and the Hazardous Weather Test Bed (Norman, OK) have been highly effective in meeting unique or pressing science and service challenges for the NWS. NWS Alaska Region leadership has developed plans for a significant enhancement to our operational forecast and decision support capabilities in Alaska to address the emerging requirements of the Arctic: An Arctic Test Bed. Historically, the complexity of forecast operations and the inherent challenges in Alaska have not been addressed well by the R&D programs and projects that support the CONUS regions of the NWS. In addition, there are unique science,technology, and support challenges (e.g., sea ice forecasts and arctic drilling prospects) and opportunities (Bilateral agreements with Canada, Russia, and Norway) that would best be worked through Alaska operations. A dedicated test bed will provide a mechanism to transfer technology, research results, and observations advances into operations in a timely and effective manner in support of Weather Ready Nation goals and to enhance decision support services in Alaska. A NOAA Arctic Test Bed will provide a crucial nexus for ensuring NOAA's developers understand Alaska's needs, which are often cross disciplinary (atmosphere, ocean, cryosphere, and hydrologic), to improve NOAA's responsiveness to its Arctic-related science and service priorities among the NWS and OAR (CPO and ESRL), and enable better leveraging of other research initiatives and data sources external to NOAA, including academia, other government agencies, and the private sector, which are particular to the polar region (e.g., WWRP Polar Prediction Project). Organization, capabilities and opportunities will be presentation.

  8. Enabling technologies for millimeter-wave radio-over-fiber systems in next generation heterogeneous mobile access networks

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Yu, Jianjun; Wang, Jing; Xu, Mu; Cheng, Lin; Lu, Feng; Shen, Shuyi; Yan, Yan; Cho, Hyunwoo; Guidotti, Daniel; Chang, Gee-kung

    2017-01-01

    Fifth-generation (5G) wireless access network promises to support higher access data rate with more than 1,000 times capacity with respect to current long-term evolution (LTE) systems. New radio-access-technologies (RATs) based on higher carrier frequencies to millimeter-wave (MMW) radio-over-fiber, and carrier-aggregation (CA) using multi-band resources are intensively studied to support the high data rate access and effectively use of frequency resources in heterogeneous mobile network (Het-Net). In this paper, we investigate several enabling technologies for MMW RoF systems in 5G Het-Net. Efficient mobile fronthaul (MFH) solutions for 5G centralized radio access network (C-RAN) and beyond are proposed, analyzed and experimentally demonstrated based on the analog scheme. Digital predistortion based on memory polynomial for analog MFH linearization are presented with improved EVM performances and receiver sensitivity. We also propose and experimentally demonstrate a novel inter-/intra- RAT CA scheme for 5G Het- Net. The real-time standard 4G-LTE signal is carrier-aggregated with three broadband 60GHz MMW signals based on proposed optical-domain band-mapping method. RATs based on new waveforms have also been studied here to achieve higher spectral-efficiency (SE) in asynchronous environments. Full-duplex asynchronous quasi-gapless carrier aggregation scheme for MMW ROF inter-/intra-RAT based on the FBMC is also presented with 4G-LTE signals. Compared with OFDM-based signals with large guard-bands, FBMC achieves higher spectral-efficiency with better EVM performance at less received power and smaller guard-bands.

  9. A Viewpoint on Wearable Technology-Enabled Measurement of Wellbeing and Health-Related Quality of Life in Parkinson's Disease.

    PubMed

    van Uem, Janet M T; Isaacs, Tom; Lewin, Alan; Bresolin, Eros; Salkovic, Dina; Espay, Alberto J; Matthews, Helen; Maetzler, Walter

    2016-03-10

    In this viewpoint, we discuss how several aspects of Parkinson's disease (PD) - known to be correlated with wellbeing and health-related quality of life-could be measured using wearable devices ('wearables'). Moreover, three people with PD (PwP) having exhaustive experience with using such devices write about their personal understanding of wellbeing and health-related quality of life, building a bridge between the true needs defined by PwP and the available methods of data collection. Rapidly evolving new technologies develop wearables that probe function and behaviour in domestic environments of people with chronic conditions such as PD and have the potential to serve their needs. Gathered data can serve to inform patient-driven management changes, enabling greater control by PwP and enhancing likelihood of improvements in wellbeing and health-related quality of life. Data can also be used to quantify wellbeing and health-related quality of life. Additionally these techniques can uncover novel more sensitive and more ecologically valid disease-related endpoints. Active involvement of PwP in data collection and interpretation stands to provide personally and clinically meaningful endpoints and milestones to inform advances in research and relevance of translational efforts in PD.

  10. The use of smart technologies in enabling construction components reuse: A viable method or a problem creating solution?

    PubMed

    Iacovidou, Eleni; Purnell, Phil; Lim, Ming K

    2017-05-05

    The exploitation of Radio Frequency Identification (RFID) for tracking and archiving the properties of structural construction components could be a potentially innovative disruption for the construction sector. This is because RFID can stimulate the reuse of construction components and reduce their wastage, hence addressing sustainability issues in the construction sector. To test the plausibility of that idea, this study explores the potential pre-conditions for RFID to facilitate construction components reuse, and develops a guidance for promoting their redistribution back to the supply chain. It also looks at how integrating RFID with Building Information Modelling (BIM) can possibly be a valuable extension of its capabilities, providing the opportunity for tracked components to be incorporated into new structures in an informed, sound way. A preliminary assessment of the strengths, weaknesses, opportunities and threats of the RFID technology is presented in order to depict its current and future potential in promoting construction components' sustainable lifecycle management, while emphasis has been laid on capturing their technical, environmental, economic and social value. Findings suggest that the collection of the right amount of information at the design-construction-deconstruction-reuse-disposal stage is crucial for RFID to become a successful innovation in the construction sector. Although a number of limitations related to the technical operability and recycling of RFID tags seem to currently hinder its uptake for structural components' lifecycle management, future technological innovations could provide solutions that would enable it to become a mainstream practice. Taken together these proposals advocate that the use of RFID and its integration with BIM can create the right environment for the development of new business models focused on sustainable resource management. These models may then unlock multiple values that are otherwise dissipated in

  11. SRS history and experience with palladium diffusers. Revision 1

    SciTech Connect

    Clark, E.A.; Dauchess, D.A.; Heung, L.K.; Rabun, R.L.; Motyka, T.

    1995-08-11

    The Savannah River Site (SRS) has processed tritium in support of national defense programs since 1955. Palladium diffusers have been used extensively for separating hydrogen isotopes from inert gases (such as argon, helium, and nitrogen). In almost forty years of service, the design of the diffuser has been steadily improving. Several diffuser designs from different manufacturers have been evaluated at SRS. The operating experience gained from these designs together with failure analyses performed on failed units have led to several recommendations for improved diffuser designs and operating methods. This experience gained at SRS and the following recommendations form the basis of this report. Even though palladium diffuser technology has proven to be reliable, SRS has examined several alternative technologies over the past several years. This report will also review some of these promising alternatives.

  12. Palladium Catalyzed Reduction of Nitrobenzene.

    ERIC Educational Resources Information Center

    Mangravite, John A.

    1983-01-01

    Compares two palladium (Pd/C) reducing systems to iron/tin-hydrochloric acid (Fe/HCl and Sn/HCl) reductions and suggests an efficient, clean, and inexpensive procedures for the conversion of nitrobenzene to aniline. Includes laboratory procedures used and discussion of typical results obtained. (JN)

  13. Palladium Catalyzed Reduction of Nitrobenzene.

    ERIC Educational Resources Information Center

    Mangravite, John A.

    1983-01-01

    Compares two palladium (Pd/C) reducing systems to iron/tin-hydrochloric acid (Fe/HCl and Sn/HCl) reductions and suggests an efficient, clean, and inexpensive procedures for the conversion of nitrobenzene to aniline. Includes laboratory procedures used and discussion of typical results obtained. (JN)

  14. Palladium interaction with silicon carbide

    NASA Astrophysics Data System (ADS)

    Gentile, M.; Xiao, P.; Abram, T.

    2015-07-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC-5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  15. Information and communication technology-enabled person-centered care for the "big five" chronic conditions: scoping review.

    PubMed

    Wildevuur, Sabine E; Simonse, Lianne W L

    2015-03-27

    Person-centered information and communication technology (ICT) could encourage patients to take an active part in their health care and decision-making process, and make it possible for patients to interact directly with health care providers and services about their personal health concerns. Yet, little is known about which ICT interventions dedicated to person-centered care (PCC) and connected-care interactions have been studied, especially for shared care management of chronic diseases. The aim of this research is to investigate the extent, range, and nature of these research activities and identify research gaps in the evidence base of health studies regarding the "big 5" chronic diseases: diabetes mellitus, cardiovascular disease, chronic respiratory disease, cancer, and stroke. The objective of this paper was to review the literature and to scope the field with respect to 2 questions: (1) which ICT interventions have been used to support patients and health care professionals in PCC management of the big 5 chronic diseases? and (2) what is the impact of these interventions, such as on health-related quality of life and cost efficiency? This research adopted a scoping review method. Three electronic medical databases were accessed: PubMed, EMBASE, and Cochrane Library. The research reviewed studies published between January 1989 and December 2013. In 5 stages of systematic scanning and reviewing, relevant studies were identified, selected, and charted. Then we collated, summarized, and reported the results. From the initial 9380 search results, we identified 350 studies that qualified for inclusion: diabetes mellitus (n=103), cardiovascular disease (n=89), chronic respiratory disease (n=73), cancer (n=67), and stroke (n=18). Persons with one of these chronic conditions used ICT primarily for self-measurement of the body, when interacting with health care providers, with the highest rates of use seen in chronic respiratory (63%, 46/73) and cardiovascular (53

  16. Technology-enabled academic detailing: computer-mediated education between pharmacists and physicians for evidence-based prescribing.

    PubMed

    Ho, Kendall; Nguyen, Anne; Jarvis-Selinger, Sandra; Novak Lauscher, Helen; Cressman, Céline; Zibrik, Lindsay

    2013-09-01

    Academic detailing (AD) is the practice of specially trained pharmacists with detailed medication knowledge meeting with physicians to share best practices of prescribing. AD has demonstrated efficacy in positively influencing physicians' prescribing behavior. Nevertheless, a key challenge has been that physicians in rural and remote locations, or physicians who are time challenged, have limited ability to participate in face-to-face meetings with academic detailers, as these specially trained academic detailers are primarily urban-based and limited in numbers. To determine the feasibility of using information technologies to facilitate communication between academic detailers and physicians (known as Technology-Enabled Academic Detailing or TEAD) through a comparison to traditional face-to-face academic detailing (AD). Specifically, TEAD is compared to AD in terms of the ability to aid physicians in acquiring evidence-informed prescribing information on diabetes-related medications, measured in terms of time efficiency, satisfaction of both physicians and pharmacists, and quality of knowledge exchange. General Practitioner Physicians (n=105) and pharmacists (n=12) were recruited from across British Columbia. Pharmacists were trained to be academic detailers on diabetes medication usage. Physicians were assigned to one of four intervention groups to receive four academic detailing sessions from trained pharmacists. Intervention groups included: (1) AD only, (2) TEAD only, (3) TEAD crossed over to AD at midpoint, and (4) AD crossed over to TEAD at midpoint. Evaluation included physician-completed surveys before and after each session, pharmacist logs after each detailing session, interviews and focus groups with physicians and pharmacists at study completion, as well as a technical support log to record all phone calls and emails from physicians and pharmacists regarding any technical challenges during the TEAD sessions, or usage of the web portal. Because

  17. Building a Global Federation System for Climate Change Research: The Earth System Grid Center for Enabling Technologies (ESG-CET)

    SciTech Connect

    Ananthakrishnan, R.; Bernholdt, D. E.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I.; Fox, P.; Fraser, D.; Halliday, K.; Hankin, S.; Jones, P.; Kesselman, C.; Middleton, J. E.; Schwidder, J.; Schweitzer, R.; Schuler, R.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wilhelmi, N.; Su, M.; Williams, Dean N.

    2007-07-13

    The recent release of the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report (AR4) has generated significant media attention. Much has been said about the U.S. role in this report, which included significant support from the Department of Energy through the Scientific Discovery through Advanced Computing (SciDAC) and other Department of Energy (DOE) programs for climate model development and the production execution of simulations. The SciDAC-supported Earth System Grid Center for Enabling Technologies (ESG-CET) also played a major role in the IPCC AR4: all of the simulation data that went into the report was made available to climate scientists worldwide exclusively via the ESG-CET. At the same time as the IPCC AR4 database was being developed, the National Center for Atmospheric Research (NCAR), a leading U.S. climate science laboratory and a ESG participant, began publishing model runs from the Community Climate System Model (CCSM), and its predecessor the Parallel Coupled Model (PCM) through ESG. In aggregate, ESG-CET provides seamless access to over 250 terabytes of distributed climate simulation data to over 6,000 registered users worldwide, who have taken delivery of more than 280 terabytes from the archive. Not only does this represent a substantial advance in scientific knowledge, it is also a major step forward in how we conduct the research process on a global scale. Moving forward, the next IPCC assessment report, AR5, will demand multi-site metadata federation for data discovery and cross-domain identity management for single signon of users in a more diverse federation enterprise environment. Towards this aim, ESG is leading the effort in the climate community towards standardization of material for the global federation of metadata, security, and data services required to standardize, analyze, and access data worldwide.

  18. A Research Agenda for Helminth Diseases of Humans: Basic Research and Enabling Technologies to Support Control and Elimination of Helminthiases

    PubMed Central

    Lustigman, Sara; Geldhof, Peter; Grant, Warwick N.; Osei-Atweneboana, Mike Y.; Sripa, Banchob; Basáñez, María-Gloria

    2012-01-01

    Successful and sustainable intervention against human helminthiases depends on optimal utilisation of available control measures and development of new tools and strategies, as well as an understanding of the evolutionary implications of prolonged intervention on parasite populations and those of their hosts and vectors. This will depend largely on updated knowledge of relevant and fundamental parasite biology. There is a need, therefore, to exploit and apply new knowledge and techniques in order to make significant and novel gains in combating helminthiases and supporting the sustainability of current and successful mass drug administration (MDA) programmes. Among the fields of basic research that are likely to yield improved control tools, the Disease Reference Group on Helminth Infections (DRG4) has identified four broad areas that stand out as central to the development of the next generation of helminth control measures: 1) parasite genetics, genomics, and functional genomics; 2) parasite immunology; 3) (vertebrate) host–parasite interactions and immunopathology; and 4) (invertebrate) host–parasite interactions and transmission biology. The DRG4 was established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR). The Group was given the mandate to undertake a comprehensive review of recent advances in helminthiases research in order to identify notable gaps and highlight priority areas. This paper summarises recent advances and discusses challenges in the investigation of the fundamental biology of those helminth parasites under the DRG4 Group's remit according to the identified priorities, and presents a research and development agenda for basic parasite research and enabling technologies that will help support control and elimination efforts against human helminthiases. PMID:22545160

  19. Application of bioinformatics in probe design enables detection of enteroviruses on different taxonomic levels by advanced in situ hybridization technology.

    PubMed

    Laiho, Jutta E; Oikarinen, Sami; Oikarinen, Maarit; Larsson, Pär G; Stone, Virginia M; Hober, Didier; Oberste, Steven; Flodström-Tullberg, Malin; Isola, Jorma; Hyöty, Heikki

    2015-08-01

    Enteroviral infections are common, affecting humans across all age groups. RT-PCR is widely used to detect these viruses in clinical samples. However, there is a need for sensitive and specific in situ detection methods for formalin-fixed tissues, allowing for the anatomical localization of the virus and identification of its serotype. The aim was to design novel enterovirus probes, assess the impact of probe design for the detection and optimize the new single molecule in situ hybridization technology for the detection of enteroviruses in formalin-fixed paraffin-embedded samples. Four enterovirus RNA-targeted oligonucleotide RNA probes - two probes for wide range enterovirus detection and two for serotype-targeted detection of Coxsackievirus B1 (CVB1) - were designed and validated for the commercially available QuantiGene ViewRNA in situ hybridization method. The probe specificities were tested using a panel of cell lines infected with different enterovirus serotypes and CVB infected mouse pancreata. The two widely reactive probe sets recognized 19 and 20 of the 20 enterovirus serotypes tested, as well as 27 and 31 of the 31 CVB1 strains tested. The two CVB1 specific probe sets detected 30 and 14 of the 31 CVB1 strains, with only minor cross-reactivity to other serotypes. Similar results were observed in stained tissues from CVB -infected mice. These novel in-house designed probe sets enable the detection of enteroviruses from formalin-fixed tissue samples. Optimization of probe sequences makes it possible to tailor the assay for the detection of enteroviruses on the serotype or species level. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Building a global federation system for climate change research: the earth system grid center for enabling technologies (ESG-CET)

    NASA Astrophysics Data System (ADS)

    Ananthakrishnan, R.; Bernholdt, D. E.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Fraser, D.; Halliday, K.; Hankin, S.; Jones, P.; Kesselman, C.; Middleton, D. E.; Schwidder, J.; Schweitzer, R.; Schuler, R.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wilhelmi, N.; Su, M.; Williams, D. N.

    2007-07-01

    The recent release of the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report (AR4) has generated significant media attention. Much has been said about the US role in this report, which included significant support from the Department of Energy through the Scientific Discovery through Advanced Computing (SciDAC) and other Department of Energy (DOE) programs for climate model development and the production execution of simulations. The SciDAC-supported Earth System Grid Center for Enabling Technologies (ESG-CET) also played a major role in the IPCC AR4: all of the simulation data that went into the report was made available to climate scientists worldwide exclusively via the ESG-CET At the same time as the IPCC AR4 database was being developed, the National Center for Atmospheric Research (NCAR), a leading US climate science laboratory and a ESG participant, began publishing model runs from the Community Climate System Model (CCSM), and its predecessor the Parallel Coupled Model (PCM) through ESG In aggregate, ESG-CET provides seamless access to over 180 terabytes of distributed climate simulation data to over 6,000 registered users worldwide, who have taken delivery of more than 250 terabytes from the archive. Not only does this represent a substantial advance in scientific knowledge, it is also a major step forward in how we conduct the research process on a global scale. Moving forward, the next IPCC assessment report, AR5, will demand multi-site metadata federation for data discovery and cross-domain identity management for single sign-on of users in a more diverse federation enterprise environment. Towards this aim, ESG is leading the effort in the climate community towards standardization of material for the global federation of metadata, security, and data services required to standardize, analyze, and access data worldwide.

  1. Electrically conductive palladium containing polyimide films

    NASA Technical Reports Server (NTRS)

    Taylor, L. T.; St.clair, A. K.; Carver, V. C.; Furtsch, T. A. (Inventor)

    1982-01-01

    Lightweight, high temperature resistant, electrically conductive, palladium containing polyimide films and methods for their preparation are described. A palladium (II) ion-containing polyamic acid solution is prepared by reacting an aromatic dianhydride with an equimolar quantity of a palladium II ion-containing salt or complex and the reactant product is cast as a thin film onto a surface and cured at approximately 300 C to produce a flexible electrically conductive cyclic palladium containing polyimide. The source of palladium ions is selected from the group of palladium II compounds consisting of LiPdCl4, PdS(CH3)2Cl2Na2PdCl4, and PdCl2. The films have application to aerodynamic and space structures and in particular to the relieving of space charging effects.

  2. Electrochemical impedance spectroscopy study of high-palladium dental alloys. Part I: behavior at open-circuit potential.

    PubMed

    Sun, D; Monaghan, P; Brantley, W A; Johnston, W M

    2002-05-01

    Electrochemical impedance spectroscopy (EIS) was used to study the in vitro corrosion of three representative high-palladium alloys and a gold-palladium alloy for comparison. The corrosion resistances (measured as the charge transfer resistance R(CT) from an equivalent circuit) of the high-palladium alloys and the gold-palladium alloy were comparable in simulated body fluid and oral environments, and under simulated dental plaque. The great similarity in corrosion behavior for the three high-palladium alloys is largely attributed to their substantial palladium content and passivity in the laboratory test media, and possibly to their similar structure at the submicron level. Differences in composition and microstructure at the micron level and greater, including the effects of heat treatment simulating the firing cycles for dental porcelain, do not have noteworthy effects on the in vitro corrosion of the three high-palladium alloys. Good accuracy and convenience of extracting corrosion characteristics from equivalent circuit modeling, along with the capability of providing intrinsic information about the corrosion mechanism, enable EIS to be an excellent alternative method to conventional potentiodynamic polarization for evaluating the corrosion behavior of noble dental alloys.

  3. Titanium(IV) oxide photocatalysts with palladium

    SciTech Connect

    Papp, J.; Shen, H.S.; Kershaw, R.; Dwight, K.; Wold, A. )

    1993-03-01

    Samples of palladium decomposed onto TiO[sub 2] particles were prepared by two methods: the dispersion of a PdCl[sub 2] solution followed by thermal decomposition, and the photodecomposition of PdCl[sub 2]. The addition of palladium to all samples increased their photocatalytic activity toward the degradation of 1,4-dichlorobenzene. This increase was optimized and compared for these two preparative methods. Palladium was also decomposed onto TiO[sub 2] thin films by the photodecomposition of PdCl[sub 2]. The addition of palladium to the films increased their photocatalytic activity toward the degradation of salicylic acid. 35 refs., 4 figs., 4 tabs.

  4. Texture of gold-palladium couples

    SciTech Connect

    Chung, Y.S.; Evans, K.; Glaunsinger, W.

    1997-07-01

    The crystal textures of polycrystalline films of gold-palladium couples on an oxidized silicon (100) substrates were investigated via x-ray diffraction (XRD) pole figures. Studies were performed on both as-deposited and thermally annealed films. Scanning electron microscopy (SEM) was used to examine the microstructures of the seed layer thin films as deposited. The {l{underscore}brace}111{r{underscore}brace} texture formation of gold-palladium thin film couples displayed a strong dependence on the nature of the underlying seed layer. Gold films deposited on a palladium seed layer revealed much less degree of {l{underscore}brace}111{r{underscore}brace} texture, than gold films deposited directly on a silicon dioxide surface. In contrast, palladium films deposited on polycrystalline gold films showed a higher degree of {l{underscore}brace}111{r{underscore}brace} texture, compared to palladium films deposited directly on silicon dioxide. The {l{underscore}brace}111{r{underscore}brace} texture of annealed gold-palladium alloy thin films was greater for palladium on gold than for gold on palladium. These results are interpreted in terms of the gold-palladium diffusion mechanism and the interaction of the condensing metals with the oxygens of the SiO{sub 2} substrate surface.

  5. Palladium in cubic silicon carbide: Stability and kinetics

    NASA Astrophysics Data System (ADS)

    Roma, Guido

    2009-12-01

    Several technological applications of silicon carbide are concerned with the introduction of palladium impurities. Be it intentional or not, this may lead to the formation of silicides. Not only this process is not well understood, but the basic properties of palladium impurities in silicon carbide, such as solubility or diffusion mechanisms, are far from being known. Here the stability and kinetics of isolated Pd impurities in cubic silicon carbide are studied by first principles calculations in the framework of density functional theory. The preferential insertion sites, as well as the main migration mechanisms, are analyzed and presented here, together with the results for solution and migration energies. The early stages of nucleation are discussed based on the properties of isolated impurities and the smallest clusters.

  6. Ortho C-H Acylation of Aryl Iodides by Palladium/Norbornene Catalysis.

    PubMed

    Dong, Zhe; Wang, Jianchun; Ren, Zhi; Dong, Guangbin

    2015-10-19

    Reported herein is a palladium/norbornene-catalyzed ortho-arene acylation of aryl iodides by a Catellani-type C-H functionalization. This transformation is enabled by isopropyl carbonate anhydrides, which serve as both an acyl cation equivalent and a hydride source.

  7. Usage test with palladium-coated earrings in patients with contact allergy to palladium and nickel.

    PubMed

    Tillman, Cecilia; Engfeldt, Malin; Hindsén, Monica; Bruze, Magnus

    2013-11-01

    Since the EU Nickel Directive came into force, concern has been raised that palladium may increasingly replace nickel in alloys used in jewellery and dentistry, and that it may cause as many allergy problems as nickel. (i) To investigate the clinical relevance of contact allergy to palladium resulting from the wearing of palladium-coated earrings, and (ii) to evaluate the concordance in test results between palladium chloride (PdCl2 ), sodium tetrachloropalladate (Na2 PdCl4 ), and nickel(II) sulfate hexahydrate (NiSO4 .6H2 O), as well as variability in patch test reactivity. Forty female patients with pierced earlobes and previously known contact allergy to palladium and nickel were patch tested with dilution series of nickel and palladium salts. They wore earrings covered with palladium and titanium for 9 weeks to monitor the appearance of any clinical manifestations. There is a low risk of eczema in palladium-allergic and nickel-allergic individuals when they wear jewellery coated with pure palladium, but further studies are needed to determine whether palladium, when present in alloys, could cause allergic reactions. PdCl2 , like NiSO4 .6H2 O, shows variability in patch test reactivity over time. Furthermore, Na2 PdCl4 seems to be a more sensitive test substance than PdCl2 for the detection of palladium allergy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The Combination Design of Enabling Technologies in Group Learning: New Study Support Service for Visually Impaired University Students

    ERIC Educational Resources Information Center

    Tangsri, Chatcai; Na-Takuatoong, Onjaree; Sophatsathit, Peraphon

    2013-01-01

    This article aims to show how the process of new service technology-based development improves the current study support service for visually impaired university students. Numerous studies have contributed to improving assisted aid technology such as screen readers, the development and the use of audiobooks, and technology that supports individual…

  9. Electronic transitions of palladium dimer

    SciTech Connect

    Qian, Yue; Ng, Y. W.; Chen, Zhihua; Cheung, A. S.-C.

    2013-11-21

    The laser induced fluorescence spectrum of palladium dimer (Pd{sub 2}) in the visible region between 480 and 700 nm has been observed and analyzed. The gas-phase Pd{sub 2} molecule was produced by laser ablation of palladium metal rod. Eleven vibrational bands were observed and assigned to the [17.1] {sup 3}II{sub g} - X{sup 3}Σ{sub u}{sup +} transition system. The bond length (r{sub o}) and vibrational frequency (ΔG{sub 1/2}) of the ground X{sup 3}Σ{sub u}{sup +} state were determined to be 2.47(4) Å and 211.4(5) cm{sup −1}, respectively. A molecular orbital energy level diagram was used to understand the observed ground and excited electronic states. This is the first gas-phase experimental investigation of the electronic transitions of Pd{sub 2}.

  10. Wet processing of palladium for use in the tritium facility at Westinghouse, Savannah River, SC. Preparation of palladium using the Mound Muddy Water process

    SciTech Connect

    Baldwin, D.P.; Zamzow, D.S.

    1998-11-10

    Palladium used at Savannah River for tritium storage is currently obtained from a commercial source. In order to better understand the processes involved in preparing this material, Savannah River is supporting investigations into the chemical reactions used to synthesize this material and into the conditions necessary to produce palladium powder that meets their specifications. This better understanding may help to guarantee a continued reliable source for this material in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and the Ames Laboratory Metallurgy and Ceramics Program was initiated. During FY98, the process for producing palladium powder developed in 1986 by Dan Grove of Mound Applied Technologies (USDOE) was studied to understand the processing conditions that lead to changes in morphology in the final product. This report details the results of this study of the Mound Muddy Water process, along with the results of a round-robin analysis of well-characterized palladium samples that was performed by Savannah River and Ames Laboratory. The Mound Muddy Water process is comprised of three basic wet chemical processes, palladium dissolution, neutralization, and precipitation, with a number of filtration steps to remove unwanted impurity precipitates.

  11. Palladium-Catalyzed Direct Cyclopropylation of Heterocycles.

    PubMed

    Wu, Xiaojin; Lei, Chuanhu; Yue, Guizhou; Zhou, Jianrong Steve

    2015-08-10

    Many 1,3-azoles and thiophenes are directly cyclopropylated in the presence of a simple palladium catalyst. The relative configuration on the three-membered rings is retained in the products. Thus, the cyclopropyl-halide bond undergoes concerted oxidative addition to palladium(0) and cyclopropyl radicals are not involved in the productive pathway.

  12. Biaxially textured metal substrate with palladium layer

    DOEpatents

    Robbins, William B [Maplewood, MN

    2002-12-31

    Described is an article comprising a biaxially textured metal substrate and a layer of palladium deposited on at least one major surface of the metal substrate; wherein the palladium layer has desired in-plane and out-of-plane crystallographic orientations, which allow subsequent layers that are applied on the article to also have the desired orientations.

  13. SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011

    SciTech Connect

    Williams, Dean N.

    2011-04-02

    This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators and stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National

  14. Low temperature and cost-effective growth of vertically aligned carbon nanofibers using spin-coated polymer-stabilized palladium nanocatalysts

    NASA Astrophysics Data System (ADS)

    Saleem, Amin M.; Shafiee, Sareh; Krasia-Christoforou, Theodora; Savva, Ioanna; Göransson, Gert; Desmaris, Vincent; Enoksson, Peter

    2015-02-01

    We describe a fast and cost-effective process for the growth of carbon nanofibers (CNFs) at a temperature compatible with complementary metal oxide semiconductor technology, using highly stable polymer-Pd nanohybrid colloidal solutions of palladium catalyst nanoparticles (NPs). Two polymer-Pd nanohybrids, namely poly(lauryl methacrylate)-block-poly((2-acetoacetoxy)ethyl methacrylate)/Pd (LauMAx-b-AEMAy/Pd) and polyvinylpyrrolidone/Pd were prepared in organic solvents and spin-coated onto silicon substrates. Subsequently, vertically aligned CNFs were grown on these NPs by plasma enhanced chemical vapor deposition at different temperatures. The electrical properties of the grown CNFs were evaluated using an electrochemical method, commonly used for the characterization of supercapacitors. The results show that the polymer-Pd nanohybrid solutions offer the optimum size range of palladium catalyst NPs enabling the growth of CNFs at temperatures as low as 350 °C. Furthermore, the CNFs grown at such a low temperature are vertically aligned similar to the CNFs grown at 550 °C. Finally the capacitive behavior of these CNFs was similar to that of the CNFs grown at high temperature assuring the same electrical properties thus enabling their usage in different applications such as on-chip capacitors, interconnects, thermal heat sink and energy storage solutions.

  15. The enabling technology for recovery of valued components from minerals in the upper and Mid Amur region

    SciTech Connect

    Sorokin, A.P.; Rimkevich, V.S.; Dem'yanova, L.P.; Artemenko, T.V.

    2009-05-15

    Based on the physico-technical operations involved in the mineral processing technologies, the optimal production conditions are found for refractory fiber materials, aluminium, silicium, their compounds and other valued components. Ecologically safe and efficient aggregate technologies are developed for recovery of valued components from nonmetallic minerals and anthracides (brown coals).

  16. Palladium-catalysed synthesis of triaryl(heteroaryl)methanes

    NASA Astrophysics Data System (ADS)

    Zhang, Shuguang; Kim, Byeong-Seon; Wu, Chen; Mao, Jianyou; Walsh, Patrick J.

    2017-03-01

    Tetraarylmethane derivatives are desirable for a variety of applications, but difficult to access with modern C-C bond-forming reactions. Here we report a straightforward method for palladium-catalysed arylation of aryl(heteroaryl)methanes and diaryl(heteroaryl)methanes with aryl chlorides. This reaction enables introduction of various aryl groups to construct triaryl(heteroaryl)methanes via a C-H functionalization in good to excellent yield, and represents the first step towards a general transition metal catalysed synthesis of tetraarylmethanes.

  17. Palladium-catalysed synthesis of triaryl(heteroaryl)methanes

    PubMed Central

    Zhang, Shuguang; Kim, Byeong-Seon; Wu, Chen; Mao, Jianyou; Walsh, Patrick J.

    2017-01-01

    Tetraarylmethane derivatives are desirable for a variety of applications, but difficult to access with modern C–C bond-forming reactions. Here we report a straightforward method for palladium-catalysed arylation of aryl(heteroaryl)methanes and diaryl(heteroaryl)methanes with aryl chlorides. This reaction enables introduction of various aryl groups to construct triaryl(heteroaryl)methanes via a C–H functionalization in good to excellent yield, and represents the first step towards a general transition metal catalysed synthesis of tetraarylmethanes. PMID:28290445

  18. Seamless transitions from early prototypes to mature operational software - A technology that enables the process for planning and scheduling applications

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Wunderlich, Dana A.; Willoughby, John K.

    1992-01-01

    New and innovative software technology is presented that provides a cost effective bridge for smoothly transitioning prototype software, in the field of planning and scheduling, into an operational environment. Specifically, this technology mixes the flexibility and human design efficiency of dynamic data typing with the rigor and run-time efficiencies of static data typing. This new technology provides a very valuable tool for conducting the extensive, up-front system prototyping that leads to specifying the correct system and producing a reliable, efficient version that will be operationally effective and will be accepted by the intended users.

  19. Technology-Enabled Capability Demonstration 4A Sustainability and Logistics-Basing: Initial Quality of Life and Soldier Readiness User Assessment

    DTIC Science & Technology

    2014-10-30

    CAPABILITY DEMONSTRATION 4A SUSTAINABILITY AND LOGISTICS-BASING: INITIAL QUALITY OF LIFE AND SOLDIER READINESS USER ASSESSMENT by Justine Federici...CAPABILITY DEMONSTRATION 4A SUSTAINABILITY AND LOGISTICS-BASING: INITIAL QUALITY OF LIFE AND SOLDIER READINESS USER ASSESSMENT 5a. CONTRACT NUMBER...ABSTRACT This report documents an initial user assessment on Soldier quality of life (QoL) performed for the Technology-Enabled Capability

  20. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect

    Ludtka, Gail Mackiewicz-; Chourey, Aashish

    2010-08-01

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  1. GREENER SYNTHESIS OF ALIGNED PALLADIUM NANOBELTS AND NANOPLATES IN AQUEOUS MEDIUM USING VITAMIN B1

    EPA Science Inventory

    Palladium (Pd) plays an important role in many industrial and technological applications such as reduction of automobile pollutants, and Suzuki, Heck, and Stille coupling reactions. Consequently, a great deal of effort has been devoted to the synthesis of Pd nanostructures. Her...

  2. GREENER SYNTHESIS OF ALIGNED PALLADIUM NANOBELTS AND NANOPLATES IN AQUEOUS MEDIUM USING VITAMIN B1

    EPA Science Inventory

    Palladium (Pd) plays an important role in many industrial and technological applications such as reduction of automobile pollutants, and Suzuki, Heck, and Stille coupling reactions. Consequently, a great deal of effort has been devoted to the synthesis of Pd nanostructures. Her...

  3. Palladium on plastic substrates for plasmonic devices.

    PubMed

    Zuppella, Paola; Pasqualotto, Elisabetta; Zuccon, Sara; Gerlin, Francesca; Corso, Alain Jody; Scaramuzza, Matteo; De Toni, Alessandro; Paccagnella, Alessandro; Pelizzo, Maria Guglielmina

    2015-01-09

    Innovative chips based on palladium thin films deposited on plastic substrates have been tested in the Kretschmann surface plasmon resonance (SPR) configuration. The new chips combine the advantages of a plastic support that is interesting and commercially appealing and the physical properties of palladium, showing inverted surface plasmon resonance (ISPR). The detection of DNA chains has been selected as the target of the experiment, since it can be applied to several medical early diagnostic tools, such as different biomarkers of cancers or cystic fibrosis. The results are encouraging for the use of palladium in SPR-based sensors of interest for both the advancement of biodevices and the development of hydrogen sensors.

  4. The broadband-enabled innovation program: a working demonstration of the effective use of technology in community-based patient care.

    PubMed

    Towers, Carolyn; Tyler, Mathew

    2014-12-01

    Given the socioeconomic demands of the Australian society, both now and in the future, the Royal District Nursing Service (RDNS) has identified the importance of exploring suitable commercial forms of telehealth technologies to enable robust and sustainable models of care for their clients. The aim of this article is to illustrate the practical application of technology in community-based patient care through an overview of a project that the RDNS has trialled to provide remote medicines management. The results of this project demonstrate that technology can be successfully applied in community-based patient care to enhance the capacity of RDNS to deliver medications management for clients. It showed benefits in terms of increasing the efficiency of service delivery as well as staff and patient satisfaction. On the basis of this success, the program is being expanded and undergoing further evaluation to assess its impact.

  5. CAS-Enabled Technologies as "Agents Provocateurs" in Teaching and Learning Mathematical Modelling in Secondary School Classrooms

    ERIC Educational Resources Information Center

    Geiger, Vince; Faragher, Rhonda; Goos, Merrilyn

    2010-01-01

    This paper draws on a one year study of three secondary school classrooms to examine the nature of student-student-technology interaction when working in partnership with computer algebra systems (CAS) on mathematical modelling tasks and the classroom affordances and constraints that influence such interaction. The analysis of these data indicates…

  6. Pulse communication technology enables remote actuation and manipulation of downhole completion equipment in extended reach and deepwater applications

    SciTech Connect

    Hopmann, M.; Smith, M.

    1996-12-31

    Pulse frequency communication techniques have been employed to remotely actuate electronically enhanced downhole completion tools. In extended-reach and deepwater applications, remote actuation systems based on pulse technology reduce rig time and costs required to actuate downhole completion tools, and eliminate the risks associated with conventionally actuated completions which require invasive well intervention.

  7. A Digital Ecosystem of Diabetes Data and Technology: Services, Systems, and Tools Enabled by Wearables, Sensors, and Apps.

    PubMed

    Heintzman, Nathaniel D

    2015-12-20

    The management of type 1 diabetes (T1D) ideally involves regimented measurement of various health signals; constant interpretation of diverse kinds of data; and consistent cohesion between patients, caregivers, and health care professionals (HCPs). In the context of myriad factors that influence blood glucose dynamics for each individual patient (eg, medication, activity, diet, stress, sleep quality, hormones, environment), such coordination of self-management and clinical care is a great challenge, amplified by the routine unavailability of many types of data thought to be useful in diabetes decision-making. While much remains to be understood about the physiology of diabetes and blood glucose dynamics at the level of the individual, recent and emerging medical and consumer technologies are helping the diabetes community to take great strides toward truly personalized, real-time, data-driven management of this chronic disease. This review describes "connected" technologies--such as smartphone apps, and wearable devices and sensors--which comprise part of a new digital ecosystem of data-driven tools that can link patients and their care teams for precision management of diabetes. These connected technologies are rich sources of physiologic, behavioral, and contextual data that can be integrated and analyzed in "the cloud" for research into personal models of glycemic dynamics, and employed in a multitude of applications for mobile health (mHealth) and telemedicine in diabetes care. © 2015 Diabetes Technology Society.

  8. Enabling all young Australians to grow up safe, happy, healthy and resilient: a Collaboration for Young People, Technology and Wellbeing.

    PubMed

    2011-07-01

    This paper describes a framework for a multi-disciplinary collaboration to investigate the role of technology for improving young Australians' mental health and wellbeing. The poor mental health of young Australians poses a significant challenge to Australia's future. Half of all Australians will experience a mental health difficulty in their lifetime and 75% of mental illness has its onset before age 25. Cross-sectoral collaboration is critical for meeting this challenge. In order to establish a world-first multi-partner collaboration, leading researchers and institutes, commercial, non-profit and end-user organization and young people were identified and invited to participate. Together we have developed an international research framework that explores the role of technologies in young people's lives, their potential and how this can be harnessed to address challenges facing young people. This research framework will: (i) conduct empirical research that tests the utility of technology across mental health promotion, prevention, early intervention and treatment and, (ii) translate existing and new knowledge into products and services that help create a generation of safe, happy, healthy and resilient young people. Research undertaken by the Collaboration will be the most comprehensive investigation of technologies' potential to improve the wellbeing of young people ever conducted, leading to significant benefits for Australian young people and their mental health.

  9. Transforming Education: Enabling Learning for All Arizona Students. The Arizona Long-Range Strategic Educational Technology Plan

    ERIC Educational Resources Information Center

    Johnson, Christopher G.

    2009-01-01

    The purpose of The Arizona Long-Range Strategic Educational Technology Plan is to map the future of the "education support systems" necessary for Arizona's children to succeed in today's world. The plan details goals and strategies for policy makers, the State Board of Education, the State Department of Education, Institutions of Higher…

  10. Enabling Technologies for High-Throughput Screening of Nano-Porous Materials: Collaboration with the Nanoporous Materials Genome Center

    SciTech Connect

    Schmidt, Jordan

    2016-01-21

    The overarching goal of this research was to develop new methodologies to enable the accurate and efficient modeling of complex materials using computer simulations. Using inter-molecular interaction energies calculated via an accurate but computationally expensive approach (symmetry-adapted perturbation theory), we parameterized efficient next-generation “force fields” to utilize in subsequent simulations. Since the resulting force fields incorporate much of the relevant physics of inter-molecular interactions, they consequently exhibit high transferability from one material to another. This transferability enables the modeling of a wide range of novel materials without additional computational cost. While this approach is quite general, a particular emphasis of this research involved applications to so-called “metal-organic framework”(MOF) materials relevant to energy-intensive gas separations. We focused specifically on CO2/N2 selectivity, which is a key metric for post combustion CO2 capture efforts at coal-fired power plants. The gas adsorption capacities and selectivity of the MOFs can be tailored via careful functionalization. We have demonstrated that our force fields exhibit predictive accuracy for a wide variety of functionalized MOFs, thus opening the door for the computational design of “tailored” materials for particular separations. Finally, we have also demonstrated the importance of accounting for the presence of reactive contaminant species when evaluating the performance of MOFs in practical applications.

  11. Integrating web portlet technologies with caGrid to enable rapid application development: the CRC Patient Study Calendar.

    PubMed

    Payne, Philip R O; Payne, Philip Richard Orrin; Kwok, Alan; Greaves, Andrew W

    2008-11-06

    The caGrid middleware provides an extensible platform for the integration of heterogeneous data sources and services; such as those found in geographically distributed research consortia. We describe an architectural approach to the integration of web portlet technologies with caGrid in order to facilitate the rapid development of highly usable presentation models for grid-based data sources and services, using the development of a patient study calendar for the CLL Research Consortium as a motivating use case.

  12. Microsystems Enabled Photovoltaics

    ScienceCinema

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2016-07-12

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  13. Microsystems Enabled Photovoltaics

    SciTech Connect

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  14. Residential Customer Enrollment in Time-based Rate and Enabling Technology Programs: Smart Grid Investment Grant Consumer Behavior Study Analysis

    SciTech Connect

    Todd, Annika; Cappers, Peter; Goldman, Charles

    2013-05-01

    The U.S. Department of Energy’s (DOE’s) Smart Grid Investment Grant (SGIG) program is working with a subset of the 99 SGIG projects undertaking Consumer Behavior Studies (CBS), which examine the response of mass market consumers (i.e., residential and small commercial customers) to time-varying electricity prices (referred to herein as time-based rate programs) in conjunction with the deployment of advanced metering infrastructure (AMI) and associated technologies. The effort presents an opportunity to advance the electric industry’s understanding of consumer behavior.

  15. Palladium and its alloys as membrane catalysts

    SciTech Connect

    Gryaznov, V.M.

    1983-05-01

    Possibilities have been examined for the use of selective transport of hydrogen through palladium alloy membranes in order to increase the efficiency of hydrogen recovery from gas mixtures and catalytic reactions in which hydrogen is consumed or formed. By varying the hydrogen concentration in the bulk and on the surface of a palladium alloy, it becomes possible to increase the selectivity of hydrogenation reactions. Continuous and semicontinuous methods have been developed for obtaining valuable products on membrane catalysts.

  16. Applying Registry Services to Spaceflight Technologies to Aid in the Assignment of Assigned Numbers to Disparate Systems and their Technologies to Further Enable Interoperability

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Nichols, Kelvin F.; Witherspoon, Keith R.

    2006-01-01

    To date very little effort has been made to provide interoperability between various space agency projects. To effectively get to the Moon and beyond systems must interoperate. To provide interoperability, standardization and registries of various technologies will be required. These registries will be created as they relate to space flight. With the new NASA Moon/Mars initiative, a requirement to standardize and control the naming conventions of very disparate systems and technologies is emerging. The need to provide numbering to the many processes, schemas, vehicles, robots, space suits and technologies (e.g. versions), to name a few, in the highly complex Constellation initiative is imperative. The number of corporations, developer personnel, system interfaces, people interfaces will require standardization and registries on a scale not currently envisioned. It would only take one exception (stove piped system development) to weaken, if not, destroy interoperability. To start, a standardized registry process must be defined that allows many differing engineers, organizations and operators the ability to easily access disparate registry information across numerous technological and scientific disciplines. Once registries are standardized the need to provide registry support in terms of setup and operations, resolution of conflicts between registries and other issues will need to be addressed. Registries should not be confused with repositories. No end user data is "stored" in a registry nor is it a configuration control system. Once a registry standard is created and approved, the technologies that should be registered must be identified and prioritized. In this paper, we will identify and define a registry process that is compatible with the Constellation initiative and other non related space activities and organizations. We will then identify and define the various technologies that should use a registry to provide interoperability. The first set of

  17. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  18. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  19. GRISSOM platform: enabling distributed processing and management of biological data through fusion of grid and web technologies.

    PubMed

    Chatziioannou, Aristotelis A; Kanaris, Ioannis; Doukas, Charalampos; Moulos, Panagiotis; Kolisis, Fragiskos N; Maglogiannis, Ilias

    2011-01-01

    Transcriptomic technologies have a critical impact in the revolutionary changes that reshape biological research. Through the recruitment of novel high-throughput instrumentation and advanced computational methodologies, an unprecedented wealth of quantitative data is produced. Microarray experiments are considered high-throughput, both in terms of data volumes (data intensive) and processing complexity (computationally intensive). In this paper, we present grids for in silico systems biology and medicine (GRISSOM), a web-based application that exploits GRID infrastructures for distributed data processing and management, of DNA microarrays (cDNA, Affymetrix, Illumina) through a generic, consistent, computational analysis framework. GRISSOM performs versatile annotation and integrative analysis tasks, through the use of third-party application programming interfaces, delivered as web services. In parallel, by conforming to service-oriented architectures, it can be encapsulated in other biomedical processing workflows, with the help of workflow enacting software, like Taverna Workbench, thus rendering access to its algorithms, transparent and generic. GRISSOM aims to set a generic paradigm of efficient metamining that promotes translational research in biomedicine, through the fusion of grid and semantic web computing technologies.

  20. Drug Delivery: Enabling Technology for Drug Discovery and Development. iPRECIO Micro Infusion Pump: Programmable, Refillable, and Implantable.

    PubMed

    Tan, Tsung; Watts, Stephanie W; Davis, Robert Patrick

    2011-01-01

    Successful drug delivery using implantable pumps may be found in over 12,500 published articles. Their versatility in delivering continuous infusion, intermittent or complex infusion protocols acutely or chronically has made them ubiquitous in drug discovery and basic research. The recent availability of iPRECIO(®), a programmable, refillable, and implantable infusion pump has made it possible to carry out quantitative pharmacology (PKPD) in single animals. When combined with specialized catheters, specific administration sites have been selected. When combined with radiotelemetry, the physiologic gold standard, more sensitive and powerful means of detecting drug induced therapeutic, and/or adverse effects has been possible. Numerous application examples are cited from iPRECIO(®) use in Japan, United States, and Europe with iPRECIO(®) as an enabling drug delivery device where the refillable and programmability functionality were key benefits. The ability to start/stop drug delivery and to have control periods prior dosing made it possible to have equivalent effects at a much lower dose than previously studied. Five different iPRECIO(®) applications are described in detail with references to the original work where the implantable, refillable, and programmable benefits are demonstrated with their different end-points.

  1. An LMS Programming Scheme and Floating-Gate Technology Enabled Trimmer-Less and Low Voltage Flame Detection Sensor

    PubMed Central

    Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio

    2017-01-01

    In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame. PMID:28613250

  2. An LMS Programming Scheme and Floating-Gate Technology Enabled Trimmer-Less and Low Voltage Flame Detection Sensor.

    PubMed

    Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio

    2017-06-14

    In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame.

  3. eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident

    SciTech Connect

    Blumenthal, Daniel J.; Clark, Harvey W.; Essex, James J.; Wagner, Eric C.

    2013-07-01

    The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administration’s Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

  4. Technology.

    ERIC Educational Resources Information Center

    Giorgis, Cyndi; Johnson, Nancy J.

    2002-01-01

    Presents annotations of 30 works of children's literature that support the topic of technology and its influences on readers' daily lives. Notes some stories tell about a time when simple tools enabled individuals to accomplish tasks, and others feature visionaries who used technology to create buildings, bridges, roads, and inventions. Considers…

  5. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect

    Lutdka, G. M.; Chourey, A.

    2010-05-12

    As the original magnet designer and manufacturer of ORNL’s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL’s Materials Processing Group’s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  6. Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles.

    PubMed

    Roopan, Selvaraj Mohana; Bharathi, Annadurai; Kumar, Rajendran; Khanna, Venkatesh Gopiesh; Prabhakarn, Arunachalam

    2012-04-01

    In recent years the utilization of secondary metabolites from plant extract has emerged as a novel technology for the synthesis of various nanoparticles. In this paper we studied the potential of nanocrystalline palladium nanoparticles production using acaricidal, insecticidal and larvicidal efficacy of Annona squamosa L aqueous peel extract as the biomaterial for the first time. The synthesized nanoparticles were characterized and confirmed as palladium nanoparticles by using UV-visible spectroscopy, XRD and TEM analysis. The results clearly showed that the compounds containing -OH as a functional group played a critical role in capping the nanoparticles. Also the results highlight the possibility of green pathways to produce palladium nanoparticles.

  7. Applying Registry Services to Spaceflight Technologies to Aid in the Assignment of Assigned Numbers to Disparate Systems and Their Technologies to Further Enable Interoperability

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Nichols, Kelvin F.

    2006-01-01

    To date very little effort has been made to provide interoperability between various space agency projects. To effectively get to the Moon and beyond systems must interoperate. To provide interoperability, standardization and registries of various technologies will be required. These registries will be created as they relate to space flight. With the new NASA Moon/Mars initiative a requirement to standardize and control the naming conventions of very disparate systems and technologies are emerging. The need to provide numbering to the many processes, schemas, vehicles, robots, space suits and technologies (e.g. versions), to name a few, in the highly complex Constellation Initiative is imperative. The number of corporations, developer personnel, system interfaces, people interfaces will require standardization and registries on a scale not currently envisioned. It would only take one exception (stove piped system development) to weaken, if not, destroy interoperability. To start, a standardized registry process must be defined that allows many differing engineers, organizations and operators the ability to easily access disparate registry information across numerous technological and scientific disciplines. Once registries are standardized the need to provide registry support in terms of setup and operations, resolution of conflicts between registries and other issues will need to be addressed. Registries should not be confused with repositories. No end user data is "stored" in a registry nor is it a configuration control system. Once a registry standard is created and approved, the technologies that should be registered must be identified and prioritized. In this paper, we will identify and define a registry process that is compatible with the Constellation Initiative and other non related space activities and organizations. We will then identify and define the various technologies that should use a registry to provide interoperability. The first set of

  8. Applying Registry Services to Spaceflight Technologies to Aid in the Assignment of Assigned Numbers to Disparate Systems and Their Technologies to Further Enable Interoperability

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Nichols, Kelvin F.

    2006-01-01

    To date very little effort has been made to provide interoperability between various space agency projects. To effectively get to the Moon and beyond systems must interoperate. To provide interoperability, standardization and registries of various technologies will be required. These registries will be created as they relate to space flight. With the new NASA Moon/Mars initiative a requirement to standardize and control the naming conventions of very disparate systems and technologies are emerging. The need to provide numbering to the many processes, schemas, vehicles, robots, space suits and technologies (e.g. versions), to name a few, in the highly complex Constellation Initiative is imperative. The number of corporations, developer personnel, system interfaces, people interfaces will require standardization and registries on a scale not currently envisioned. It would only take one exception (stove piped system development) to weaken, if not, destroy interoperability. To start, a standardized registry process must be defined that allows many differing engineers, organizations and operators the ability to easily access disparate registry information across numerous technological and scientific disciplines. Once registries are standardized the need to provide registry support in terms of setup and operations, resolution of conflicts between registries and other issues will need to be addressed. Registries should not be confused with repositories. No end user data is "stored" in a registry nor is it a configuration control system. Once a registry standard is created and approved, the technologies that should be registered must be identified and prioritized. In this paper, we will identify and define a registry process that is compatible with the Constellation Initiative and other non related space activities and organizations. We will then identify and define the various technologies that should use a registry to provide interoperability. The first set of

  9. Innovative Use of Palladium Compounds To Selectively Detect Live Enterobacteriaceae in Milk by PCR

    PubMed Central

    Iwatsuki, Kei-ji

    2016-01-01

    ABSTRACT Ethidium monoazide and propidium monoazide (EMA and PMA) have been used in combination with PCR for more than a decade to facilitate the discrimination of live and dead bacteria (LD discrimination). These methods, however, require many laborious procedures, including the use of a darkroom. Here, we demonstrate an innovative use of palladium compounds involving lower limits of detection and quantification of targeted live cells, fewer laborious procedures, lower costs, and potentially higher-throughput analysis than the use of EMA and PMA. We have also recently reported platinum compounds for LD discrimination, but platinum compounds carry costs that are 3 times higher because of the requirement for much larger amounts for LD discrimination than palladium compounds. Palladium compounds can penetrate dead (compromised) but not live bacteria and can be chelated primarily by chromosomal DNA and cell wall transmembrane proteins, with small amounts of DNA-binding proteins in vivo. The new mechanism for palladium compounds is obviously different from that of platinum compounds, which primarily target DNA. Combining palladium compounds with PCR (Pd-PCR) in water resulted in discrimination between live and dead Enterobacteriaceae bacteria that was much clearer than that seen with the PMA method. Pd-PCR correlated with reference plating or with the currently used PMA-PCR method for pasteurized milk, based on EN ISO 16140:2003 validation. Pd-PCR enabled us to specifically detect and assay viable Enterobacteriaceae cells at concentrations of 5 to 10 CFU/ml in milk while following U.S./EU regulations after a 4.5-h process in a typical laboratory exposed to natural or electric light, as specified by U.S./EU regulations. IMPORTANCE Ethidium monoazide and propidium monoazide (EMA and PMA) facilitate the discrimination of live and dead bacteria (LD discrimination). These methods, however, require many laborious procedures, including the use of a darkroom. Here, we

  10. Fano profiles in palladium nanoconstrictions

    NASA Astrophysics Data System (ADS)

    Islam, M. S.; Takata, H.; Ienaga, K.; Inagaki, Y.; Tsujii, H.; Kawae, T.

    2017-08-01

    We have performed the differential conductance (dI/dV) measurements of palladium (Pd) nanoconstrictions made by a mechanically controllable break junction technique to examine the origin of Fano resonance observed in atomic sized contacts of ferromagnetic metals such as Ni. As a quasimagnetic metal of Pd undergoing ferromagnetic transition by downsizing, the dI/dV spectra exhibit zero-bias anomalies with a dip, peak or asymmetric shape and are well-fitted by the Fano formula. Moreover, the amplitude of the anomalies varies with the temperature in logarithmic scale, suggesting that the origin of the anomaly is caused by the Kondo effect. These results indicate that the appearance of Kondo effect would be ubiquitous in ferromagnetic atomic scale contacts.

  11. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  12. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  13. PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies

    SciTech Connect

    Hankin, Steve

    2012-06-01

    Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG software now known as the Earth System Grid Federation (ESGF) has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

  14. A New Paradigm of Technology Enabled “Vital Signs” for Early Detection of Health Change for Older Adults

    PubMed Central

    Rantz, Marilyn J.; Skubic, Marjorie; Popescu, Mihail; Galambos, Colleen; Koopman, Richelle J.; Alexander, Gregory L.; Phillips, Lorraine J.; Musterman, Katy; Back, Jessica; Miller, Steven J.

    2014-01-01

    Environmentally embedded (non-wearable) sensor technology is in continuous use in elder housing to monitor a new set of “vital signs” that continuously measure the functional status of older adults, detect potential changes in health or functional status, and alert healthcare providers for early recognition and treatment of those changes. Older adult participants’ respiration, pulse, and restlessness are monitored as they sleep. Gait speed, stride length, and stride time are calculated daily, and automatically assess for increasing fall risk. Activity levels are summarized and graphically displayed for easy interpretation. Falls are detected when they occur and alerts are sent immediately to healthcare providers, so time to rescue may be reduced. Automated health alerts are sent to health care staff, based on continuously running algorithms applied to the sensor data, days and weeks before typical signs or symptoms are detected by the person, family members, or health care providers. Discovering these new functional status “vital signs,” developing automated methods for interpreting them, and alerting others when changes occur has the potential to transform chronic illness management and facilitate aging in place through the end of life. Key findings of research in progress at the University of Missouri are discussed in this viewpoint article, as well as obstacles to widespread adoption. PMID:25428525

  15. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    SciTech Connect

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-06-05

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome some of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.

  16. Fast Technology Analysis (FTA) Enables Identification of Species and Genotypes of Latent Microsporidia Infections in Healthy Native Cameroonians

    PubMed Central

    Ndzi, Edward S.; Asonganyi, Tazoacha; Nkinin, Mary Bello; Xiao, Lihua; Didier, Elizabeth S.; Bowers, Lisa C.; Nkinin, Stephenson W.; Kaneshiro, Edna S.

    2015-01-01

    Several enteric microsporidia species have been detected in humans and other vertebrates and their identifications at the genotype level are currently being elucidated. As advanced methods, reagents, and disposal kits for detecting and identifying pathogens become commercially available, it is important to test them in settings other than in laboratories with “state-of-the-art” equipment and well-trained staff members. In the present study, we sought to detect microsporidia DNA preserved and extracted from FTA (fast technology analysis) cards spotted with human fecal suspensions obtained from Cameroonian volunteers living in the capital city of Yaoundé to preclude the need for employing spore-concentrating protocols. Further, we tested whether amplicon nucleotide sequencing approaches could be used on small aliquots taken from the cards to elucidate the diversity of microsporidia species and strains infecting native residents. Of 196 samples analyzed, 12 (6.1%) were positive for microsporidia DNA; Enterocytozoon bieneusi (Type IV and KIN-1), Encephalitozoon cuniculi, and Encephalitozoon intestinalis were identified. These data demonstrate the utility of the FTA cards in identifying genotypes of microsporidia DNA in human fecal samples that may be applied to field testing for prevalence studies. PMID:26303263

  17. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE PAGES

    Sakadjian, B.; Hu, S.; Maryamchik, M.; ...

    2015-06-05

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  18. Mid-IR quantum cascade lasers as an enabling technology for a new generation of chemical analyzers for liquids

    NASA Astrophysics Data System (ADS)

    Lendl, B.; Reidl-Leuthner, C.; Ritter, W.

    2011-01-01

    This presentation introduces a chemical analyzer (The ERACHECK) which is based on quantum cascade laser technology for measuring oil-in-water. Using these mid-IR lasers, it was possible to develop a portable, robust and highly precise analyzer for the measurement of oil-in-water, a parameter which is vital in the petrochemical industry for process control and environmental analysis. The overall method employs a liquid-liquid extraction step of the aqueous sample using a cyclic, aliphatic hydrocarbon such as cyclohexane. Quantification is based on measurement of the C-H deformation vibrations of the extracted hydrocarbons in the cyclic extraction solvent. The developed method is linear from 0.5 - 2000 ppm of oil in water, with precisions well below 15% in terms of r.s.d for repeated measurements. The portability of the ERACHECK and its robustness has been key for its successful use on oil rigs as well as petrochemical production sites on land. The values provided by the ERACHECK correlate well with those obtained by the former CFC (Freon 113) based method for oil in water, which is no longer in use in industrialized countries due to the ozone depleting effect of the CFCs employed.

  19. ENCAPSULATION OF PALLADIUM IN POROUS WALL HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Heung, L; George Wicks, G; Ray Schumacher, R

    2008-04-09

    A new encapsulation method was investigated in an attempt to develop an improved palladium packing material for hydrogen isotope separation. Porous wall hollow glass microspheres (PWHGMs) were produced by using a flame former, heat treating and acid leaching. The PWHGMs were then filled with palladium salt using a soak-and-dry process. The palladium salt was reduced at high temperature to leave palladium inside the microspheres.

  20. In-situ spectroscopic ellipsometry study of copper selective-area atomic layer deposition on palladium

    SciTech Connect

    Jiang, Xiaoqiang; Wang, Han; Qi, Jie; Willis, Brian G.

    2014-07-01

    Selective area copper atomic layer deposition on palladium seed layers has been investigated with in-situ real-time spectroscopic ellipsometry to probe the adsorption/desorption and reaction characteristics of individual deposition cycles. The reactants are copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) vapor and hydrogen gas. Self-limiting atomic layer deposition was observed in the temperature range of 135–230 °C in a low pressure reactor. Under optimal conditions, growth occurs selectively on palladium and not on silicon dioxide or silicon nitride layers. Based on in-situ ellipsometry data and supporting experiments, a new mechanism for growth is proposed. In the proposed mechanism, precursor adsorption is reversible, and dissociatively adsorbed hydrogen are the stable surface intermediates between growth cycles. The mechanism is enabled by continuous diffusion of palladium from the seed layer into the deposited copper film and strong H* binding to palladium sites. Less intermixing can be obtained at low growth temperatures and short cycle times by minimizing Cu/Pd inter-diffusion.