Sample records for palladium-catalyzed cross-coupling reactions

  1. Palladium-catalyzed C-H functionalization of acyldiazomethane and tandem cross-coupling reactions.

    PubMed

    Ye, Fei; Qu, Shuanglin; Zhou, Lei; Peng, Cheng; Wang, Chengpeng; Cheng, Jiajia; Hossain, Mohammad Lokman; Liu, Yizhou; Zhang, Yan; Wang, Zhi-Xiang; Wang, Jianbo

    2015-04-08

    Palladium-catalyzed C-H functionalization of acyldiazomethanes with aryl iodides has been developed. This reaction is featured by the retention of the diazo functionality in the transformation, thus constituting a novel method for the introduction of diazo functionality to organic molecules. Consistent with the experimental results, the density functional theory (DFT) calculation indicates that the formation of Pd-carbene species in the catalytic cycle through dinitrogen extrusion from the palladium ethyl diazoacetate (Pd-EDA) complex is less favorable. The reaction instead proceeds through Ag2CO3 assisted deprotonation and subsequently reductive elimination to afford the products with diazo functionality remained. This C-H functionalization transformation can be further combined with the recently evolved palladium-catalyzed cross-coupling reaction of diazo compounds with aryl iodides to develop a tandem coupling process for the synthesis of α,α-diaryl esters. DFT calculation supports the involvement of Pd-carbene as reactive intermediate in the catalytic cycle, which goes through facile carbene migratory insertion with a low energy barrier (3.8 kcal/mol).

  2. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions.

    PubMed

    Ruiz-Castillo, Paula; Buchwald, Stephen L

    2016-10-12

    Pd-catalyzed cross-coupling reactions that form C-N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C-N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

  3. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions

    PubMed Central

    2016-01-01

    Pd-catalyzed cross-coupling reactions that form C–N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C–N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts. PMID:27689804

  4. NiXantphos: a deprotonatable ligand for room-temperature palladium-catalyzed cross-couplings of aryl chlorides.

    PubMed

    Zhang, Jiadi; Bellomo, Ana; Trongsiriwat, Nisalak; Jia, Tiezheng; Carroll, Patrick J; Dreher, Spencer D; Tudge, Matthew T; Yin, Haolin; Robinson, Jerome R; Schelter, Eric J; Walsh, Patrick J

    2014-04-30

    Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd-NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp(2))-H arylations. The advantages and importance of the Pd-NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides.

  5. NiXantphos: A Deprotonatable Ligand for Room-Temperature Palladium-Catalyzed Cross-Couplings of Aryl Chlorides

    PubMed Central

    2015-01-01

    Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd–NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp2)–H arylations. The advantages and importance of the Pd–NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides. PMID:24745758

  6. Synthesis of 1-methyleneindenes via palladium-catalyzed tandem reactions.

    PubMed

    Ye, Shengqing; Gao, Ke; Zhou, Haibo; Yang, Xiaodi; Wu, Jie

    2009-09-28

    Palladium-catalyzed tandem reactions of 2-alkenylphenyl-acetylenes with CuCl2 or CuBr2 afforded 3-chloro- or 3-bromo-1-methyleneindenes in good yields; these compounds could be further elaborated via palladium-catalyzed coupling reactions.

  7. On the stereochemical course of palladium-catalyzed cross-coupling of allylic silanolate salts with aromatic bromides.

    PubMed

    Denmark, Scott E; Werner, Nathan S

    2010-03-17

    The stereochemical course of palladium-catalyzed cross-coupling reactions of an enantioenriched, alpha-substituted, allylic silanolate salt with aromatic bromides has been investigated. The allylic silanolate salt was prepared in high geometrical (Z/E, 94:6) and high enantiomeric (94:6 er) purity by a copper-catalyzed S(N)2' reaction of a resolved allylic carbamate. Eight different aromatic bromides underwent cross-coupling with excellent constitutional site-selectivity and excellent stereospecificity. Stereochemical correlation established that the transmetalation event proceeds through a syn S(E)' mechanism which is interpreted in terms of an intramolecular delivery of the arylpalladium electrophile through a key intermediate that contains a discrete Si-O-Pd linkage.

  8. Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions.

    PubMed

    Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2013-02-19

    Transition-metal-catalyzed carbene transformations and cross-couplings represent two major reaction types in organometallic chemistry and organic synthesis. However, for a long period of time, these two important areas have evolved separately, with essentially no overlap or integration. Thus, an intriguing question has emerged: can cross-coupling and metal carbene transformations be merged into a single reaction cycle? Such a combination could facilitate the development of novel carbon-carbon bond-forming methodologies. Although this concept was first explored about 10 years ago, rapid developments inthis area have been achieved recently. Palladium catalysts can be used to couple diazo compounds with a wide variety of organic halides. Under oxidative coupling conditions, diazo compounds can also react with arylboronic acids and terminal alkynes. Both of these coupling reactions form carbon-carbon double bonds. As the key step in these catalytic processes, Pd carbene migratory insertion plays a vital role in merging the elementary steps of Pd intermediates, leading to novel carbon-carbon bond formations. Because the diazo substrates can be generated in situ from N-tosylhydrazones in the presence of base, the N-tosylhydrazones can be used as reaction partners, making this type of cross-coupling reaction practical in organic synthesis. N-Tosylhydrazones are easily derived from the corresponding aldehydes or ketones. The Pd-catalyzed cross-coupling of N-tosylhydrazones is considered a complementary reaction to the classic Shapiro reaction for converting carbonyl functionalities into carbon-carbon double bonds. It can also serve as an alternative approach for the Pd-catalyzed cross-coupling of carbonyl compounds, which is usually achieved via triflates. The combination of carbene formation and cross-coupling in a single catalytic cycle is not limited to Pd-catalyzed reactions. Recent studies of Cu-, Rh-, Ni-, and Co-catalyzed cross-coupling reactions with diazo

  9. Palladium- and nickel-catalyzed Kumada cross-coupling reactions of gem-difluoroalkenes and monofluoroalkenes with Grignard reagents.

    PubMed

    Dai, Wenpeng; Xiao, Juan; Jin, Guanyi; Wu, Jingjing; Cao, Song

    2014-11-07

    A novel Kumada-Tamao-Corriu cross-coupling reaction of gem-di- or monofluoroalkenes with Grignard reagents, with or without β-hydrogen atoms, in the presence of a catalytic amount of palladium- or nickel-based catalysts has been developed. The reaction is performed under mild conditions (room temperature or reflux in diethyl ether for 1-2 h) and leads to di-cross- or mono-cross-coupled products in good to high yields.

  10. Palladium-catalyzed domino C,N-coupling/carbonylation/Suzuki coupling reaction: an efficient synthesis of 2-aroyl-/heteroaroylindoles.

    PubMed

    Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude

    2009-10-15

    A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.

  11. Palladium-catalyzed Heck-type cross-couplings of unactivated alkyl iodides.

    PubMed

    McMahon, Caitlin M; Alexanian, Erik J

    2014-06-02

    A palladium-catalyzed, intermolecular Heck-type coupling of alkyl iodides and alkenes is described. This process is successful with a variety of primary and secondary unactivated alkyl iodides as reaction partners, including those with hydrogen atoms in the β position. The mild catalytic conditions enable intermolecular C-C bond formations with a diverse set of alkyl iodides and alkenes, including substrates containing base- or nucleophile-sensitive functionality. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cobalt-catalyzed cross-coupling reactions of alkyl halides with allylic and benzylic Grignard reagents and their application to tandem radical cyclization/cross-coupling reactions.

    PubMed

    Ohmiya, Hirohisa; Tsuji, Takashi; Yorimitsu, Hideki; Oshima, Koichiro

    2004-11-05

    Details of cobalt-catalyzed cross-coupling reactions of alkyl halides with allylic Grignard reagents are disclosed. A combination of cobalt(II) chloride and 1,2-bis(diphenylphosphino)ethane (DPPE) or 1,3-bis(diphenylphosphino)propane (DPPP) is suitable as a precatalyst and allows secondary and tertiary alkyl halides--as well as primary ones--to be employed as coupling partners for allyl Grignard reagents. The reaction offers a facile synthesis of quaternary carbon centers, which has practically never been possible with palladium, nickel, and copper catalysts. Benzyl, methallyl, and crotyl Grignard reagents can all couple with alkyl halides. The benzylation definitely requires DPPE or DPPP as a ligand. The reaction mechanism should include the generation of an alkyl radical from the parent alkyl halide. The mechanism can be interpreted in terms of a tandem radical cyclization/cross-coupling reaction. In addition, serendipitous tandem radical cyclization/cyclopropanation/carbonyl allylation of 5-alkoxy-6-halo-4-oxa-1-hexene derivatives is also described. The intermediacy of a carbon-centered radical results in the loss of the original stereochemistry of the parent alkyl halides, creating the potential for asymmetric cross-coupling of racemic alkyl halides.

  13. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    PubMed

    Bedford, Robin B

    2015-05-19

    The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the

  14. Palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate: A practical synthesis of unsymmetrical ureas

    PubMed Central

    Vinogradova, Ekaterina V.; Fors, Brett P.; Buchwald, Stephen L.

    2012-01-01

    An efficient method for palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate is reported. The protocol allows for the synthesis of unsymmetrical N,N'-di- and N,N,N'-trisubstituted ureas in one pot, and is tolerant of a wide range of functional groups. Insight into the mechanism of aryl isocyanate formation is gleaned through studies of the transmetallation and reductive elimination steps of the reaction, including the first demonstration of reductive elimination from an arylpalladium isocyanate complex to produce an aryl isocyanate. PMID:22716197

  15. Palladium-Catalyzed Arylation of Fluoroalkylamines

    PubMed Central

    Brusoe, Andrew T.; Hartwig, John F.

    2015-01-01

    We report the synthesis of fluorinated anilines by palladium-catalyzed coupling of fluoroalkylamines with aryl bromides and aryl chlorides. The products of these reactions are valuable because anilines typically require the presence of an electron-withdrawing substituent on nitrogen to suppress aerobic or metabolic oxidation, and the fluoroalkyl groups have steric properties and polarity distinct from those of more common electron-withdrawing amide and sulfonamide units. The fluoroalkylaniline products are unstable under typical conditions for C–N coupling reactions (heat and strong base). However, the reactions conducted with the weaker base KOPh, which has rarely been used in cross-coupling to form C–N bonds, occurred in high yield in the presence of a catalyst derived from commercially available AdBippyPhos and [Pd(allyl)Cl]2. Under these conditions, the reactions occur with low catalyst loadings (<0.50 mol % for most substrates) and tolerate the presence of various functional groups that react with the strong bases that are typically used in Pd-catalyzed C–N cross-coupling reactions of aryl halides. The resting state of the catalyst is the phenoxide complex, (BippyPhosPd(Ar)OPh); due to the electron-withdrawing property of the fluoroalkyl substituent, the turnover-limiting step of the reaction is reductive elimination to form the C–N bond. PMID:26065341

  16. Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions--a synthetic chemist's perspective.

    PubMed

    Kantchev, Eric Assen B; O'Brien, Christopher J; Organ, Michael G

    2007-01-01

    Palladium-catalyzed C-C and C-N bond-forming reactions are among the most versatile and powerful synthetic methods. For the last 15 years, N-heterocyclic carbenes (NHCs) have enjoyed increasing popularity as ligands in Pd-mediated cross-coupling and related transformations because of their superior performance compared to the more traditional tertiary phosphanes. The strong sigma-electron-donating ability of NHCs renders oxidative insertion even in challenging substrates facile, while their steric bulk and particular topology is responsible for fast reductive elimination. The strong Pd-NHC bonds contribute to the high stability of the active species, even at low ligand/Pd ratios and high temperatures. With a number of commercially available, stable, user-friendly, and powerful NHC-Pd precatalysts, the goal of a universal cross-coupling catalyst is within reach. This Review discusses the basics of Pd-NHC chemistry to understand the peculiarities of these catalysts and then gives a critical discussion on their application in C-C and C-N cross-coupling as well as carbopalladation reactions.

  17. Palladium coupling catalysts for pharmaceutical applications.

    PubMed

    Doucet, Henri; Hierso, Jean-Cyrille

    2007-11-01

    This review discusses recent advances made in the area of palladium-catalyzed coupling reactions and describes a selection of the catalytic systems that are useful in the preparation of valuable compounds for the pharmaceutical industry. Most of these types of syntheses have used either simple palladium salts or palladium precursors associated with electron-rich mono- or bidentate phosphine ligands as catalysts. For some reactions, ligands such as triphenyl phosphine, 1,1'-bis(diphenylphosphino)ferrocene, a carbene or a bipyridine have also been employed. Several new procedures for the Suzuki cross-coupling reaction, the activation of aryl chlorides, the functionalization of aromatics and the synthesis of heteroaromatics are discussed. The C-H activation/ functionalization reactions of aryl and heteroaryl derivatives have emerged as powerful tools for the preparation of biaryl compounds, and the recent procedures and catalysts employed in this promising field are also highlighted herein.

  18. Resting State and Elementary Steps of the Coupling of Aryl Halides with Thiols Catalyzed by Alkylbisphosphine Complexes of Palladium

    PubMed Central

    Alvaro, Elsa

    2010-01-01

    Detailed mechanistic studies on the coupling of aryl halides with thiols catalyzed by palladium complexes of the alkylbisphosphine ligand CyPF-tBu (1-dicyclohexylphosphino-2-di-tert-butylphosphinoethylferrocene) are reported. The elementary steps that constitute the catalytic cycle, i.e. oxidative addition, transmetalation and reductive elimination, have been studied, and their relative rates are reported. Each of the steps of the catalytic process occurs at temperatures that are much lower than those required for the reactions catalyzed by a combination of palladium precursors and CyPF-tBu. To explain these differences in rates between the catalytic and stoichiometric reactions, studies were conducted to identify the resting state of the catalyst of the reactions catalyzed by a combination of Pd(OAc)2 and CyPF-tBu, a combination of Pd(dba)2 and CyPF-tBu, or the likely intermediate Pd(CyPF-tBu)(Ar)(Br). These show that the major palladium complex in each case lies off of the catalytic cycle. The resting state of the reactions catalyzed by Pd(OAc)2 and CyPF-tBu was the palladium bis-thiolate complex [Pd(CyPF-tBu)(SR)2] (R = alkyl or aryl). The resting state in reactions catalyzed by Pd2(dba)3 and CyPF-tBu was the binuclear complex [Pd(CyPF-tBu)]2(μ2, η2-dba) (9). The resting state of reactions of both aromatic and aliphatic thiols catalyzed by [Pd(CyPF-tBu)(p-tolyl)(Br)] (3a) was the hydridopalladium thiolate complex [Pd(CyPF-tBu)(H)(SR)] (R= alkyl and aryl). All these palladium species have been prepared independently, and the mechanisms by which they enter the catalytic cycle have been examined in detail. These features of the reaction catalyzed by palladium and CyPF-tBu have been compared with those of reactions catalyzed by the alkylbisphosphine DiPPF and Pd(OAc)2 or Pd(dba)2. Our data indicate that the resting states of these reactions are similar to each other and that our mechanistic conclusions about reactions catalyzed by palladium and CyPF-tBu can be

  19. Palladium-catalyzed Kumada coupling reaction of bromoporphyrins with silylmethyl Grignard reagents: preparation of silylmethyl-substituted porphyrins as a multipurpose synthon for fabrication of porphyrin systems.

    PubMed

    Sugita, Noriaki; Hayashi, Satoshi; Hino, Fumio; Takanami, Toshikatsu

    2012-12-07

    We have developed an efficient method for preparing silylmethyl-substituted porphyrins via the palladium-catalyzed Kumada cross-coupling reaction of bromoporphyrins with silylmethyl Grignard reagents. We demonstrated the synthetic utility of these silylmethylporphyrins as a multipurpose synthon for fabricating porphyrin derivatives through a variety of transformations of the silylmethyl groups, including the DDQ-promoted oxidative conversion to CHO, CH(2)OH, CH(2)OMe, and CH(2)F functionalities and the fluoride ion-mediated desilylative introduction of carbon-carbon single and double bonds.

  20. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    PubMed

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  1. Cu-catalyzed cross-coupling reactions of epoxides with organoboron compounds.

    PubMed

    Lu, Xiao-Yu; Yang, Chu-Ting; Liu, Jing-Hui; Zhang, Zheng-Qi; Lu, Xi; Lou, Xin; Xiao, Bin; Fu, Yao

    2015-02-11

    A copper-catalyzed cross-coupling reaction of epoxides with arylboronates is described. This reaction is not limited to aromatic epoxides, because aliphatic epoxides are also suitable substrates. In addition, N-sulfonyl aziridines can be successfully converted into the products. This reaction provides convenient access to β-phenethyl alcohols, which are valuable synthetic intermediates.

  2. Tandem reactions initiated by copper-catalyzed cross-coupling: a new strategy towards heterocycle synthesis.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2011-10-21

    Copper-catalyzed cross-coupling reactions which lead to the formation of C-N, C-O, C-S and C-C bonds have been recognized as one of the most useful strategies in synthetic organic chemistry. During past decades, important breakthroughs in the study of Cu-catalyzed coupling processes demonstrated that Cu-catalyzed reactions are broadly applicable to a variety of research fields related to organic synthesis. Representatively, employing these coupling transformations as key steps, a large number of tandem reactions have been developed for the construction of various heterocyclic compounds. These tactics share the advantages of high atom economics of tandem reactions as well as the broad tolerance of Cu-catalyst systems. Therefore, Cu-catalyzed C-X (X = N, O, S, C) coupling transformation-initiated tandem reactions were quickly recognized as a strategy with great potential for synthesizing heterocyclic compounds and gained worldwide attention. In this review, recent research progress in heterocycle syntheses using tandem reactions initiated by copper-catalyzed coupling transformations, including C-N, C-O, C-S as well as C-C coupling processes are summarized.

  3. Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions.

    PubMed

    Birkholz, Mandy-Nicole; Freixa, Zoraida; van Leeuwen, Piet W N M

    2009-04-01

    Catalytic reactions of C-C and C-X bond formation are discussed in this critical review with particular emphasis on cross coupling reactions catalyzed by palladium and wide bite angle bidentate diphosphine ligands. Especially those studies have been collected that allow comparison of the ligand bite angles for the selected ligands: dppp, BINAP, dppf, DPEphos and Xantphos. Similarities with hydrocyanation and CO/ethene/MeOH reactions have been highlighted, while rhodium hydroformylation has been mentioned as a contrasting example, in which predictability is high and steric and electronic effects follow smooth trends. In palladium catalysis wide bite angles and bulkiness of the ligands facilitate generally the reductive elimination thus giving more efficient cross coupling catalysis (174 references).

  4. Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates

    PubMed Central

    Dooleweerdt, Karin; Fors, Brett P.; Buchwald, Stephen L.

    2010-01-01

    A catalyst, based on a biarylphosphine ligand, for the Pd-catalyzed cross-coupling reactions of amides and aryl mesylates is described. This system allows an array of aryl and heteroaryl mesylates to be transformed into the corresponding N-arylamides in moderate to excellent yields. PMID:20420379

  5. Nitrous Oxide-dependent Iron-catalyzed Coupling Reactions of Grignard Reagents.

    PubMed

    Döhlert, Peter; Weidauer, Maik; Enthaler, Stephan

    2015-01-01

    The formation of carbon-carbon bonds is one of the fundamental transformations in chemistry. In this regard the application of palladium-based catalysts has been extensively investigated during recent years, but nowadays research focuses on iron catalysis, due to sustainability, costs and toxicity issues; hence numerous examples for iron-catalyzed cross-coupling reactions have been established, based on the coupling of electrophiles (R(1)-X, X = halide) with nucleophiles (R(2)-MgX). Only a small number of protocols deals with the iron-catalyzed oxidative coupling of nucleophiles (R(1)-MgX + R(2)-MgX) with the aid of oxidants (1,2-dihaloethanes). However, some issues arise with these oxidants; hence more recently the potential of the industrial waste product nitrous oxide (N(2)O) was investigated, because the unproblematic side product N(2) is formed. Based on that, we demonstrate the catalytic potential of easily accessible iron complexes in the oxidative coupling of Grignard reagents. Importantly, nitrous oxide was essential to obtain yields up to >99% at mild conditions (e.g. 1 atm, ambient temperature) and low catalyst loadings (0.1 mol%) Excellent catalyst performance is realized with turnover numbers of up to 1000 and turnover frequencies of up to 12000 h(-1). Moreover, a good functional group tolerance is observed (e.g. amide, ester, nitrile, alkene, alkyne). Afterwards the reaction of different Grignard reagents revealed interesting results with respect to the selectivity of cross-coupling product formation.

  6. General Synthesis of Alkenyl Sulfides by Palladium-Catalyzed Thioetherification of Alkenyl Halides and Tosylates.

    PubMed

    Velasco, Noelia; Virumbrales, Cintia; Sanz, Roberto; Suárez-Pantiga, Samuel; Fernández-Rodríguez, Manuel A

    2018-05-08

    The cross-coupling reaction of alkenyl bromides with thiols catalyzed by palladium complexes derived from inexpensive dppf ligand is reported. These reactions occur under low catalyst loading and in high yields and display wide scope, including the coupling of bulky thiols and trisubstituted bromoolefins, and functional group tolerance. In addition, the thioetherification of less reactive chloroalkenes and, for the first time, alkenyl tosylates was accomplished using a catalyst generated from CyPF tBu alkylbisphosphine ligand.

  7. Practical Iron- and Cobalt-Catalyzed Cross-Coupling Reactions between N-Heterocyclic Halides and Aryl or Heteroaryl Magnesium Reagents.

    PubMed

    Kuzmina, Olesya M; Steib, Andreas K; Fernandez, Sarah; Boudot, Willy; Markiewicz, John T; Knochel, Paul

    2015-05-26

    The reaction scope of iron- and cobalt-catalyzed cross-coupling reactions in the presence of isoquinoline (quinoline) in the solvent mixture tBuOMe/THF has been further investigated. Various 2-halogenated pyridine, pyrimidine, and triazine derivatives were arylated under these mild conditions in excellent yields. The presence of isoquinoline allows us to perform Fe-catalyzed cross-coupling reactions between 6-chloroquinoline and aryl magnesium reagents. Furthermore, it was found that the use of 10% N,N-dimethylquinoline-8-amine increases the yields of some Co-catalyzed cross-coupling reactions with chloropyridines bearing electron-withdrawing substituents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanistic Significance of the Si–O–Pd Bond in the Palladium-Catalyzed Cross-Coupling Reactions of Arylsilanolates

    PubMed Central

    2016-01-01

    Through the combination of reaction kinetics (both stoichiometric and catalytic), solution- and solid-state characterization of arylpalladium(II) arylsilanolates, and computational analysis, the intermediacy of covalent adducts containing Si–O–Pd linkages in the cross-coupling reactions of arylsilanolates has been unambiguously established. Two mechanistically distinct pathways have been demonstrated: (1) transmetalation via a neutral 8-Si-4 intermediate that dominates in the absence of free silanolate (i.e., stoichiometric reactions of arylpalladium(II) arylsilanolate complexes), and (2) transmetalation via an anionic 10-Si-5 intermediate that dominates in the cross-coupling under catalytic conditions (i.e., in the presence of free silanolate). Arylpalladium(II) arylsilanolate complexes bearing various phosphine ligands have been isolated, fully characterized, and evaluated for their kinetic competence under thermal (stoichiometric) and anionic (catalytic) conditions. Comparison of the rates for thermal and anionic activation suggested, but did not prove, that intermediates containing the Si–O–Pd linkage were involved in the cross-coupling process. The isolation of a coordinatively unsaturated, T-shaped arylpalladium(II) arylsilanolate complex ligated with t-Bu3P allowed the unambiguous demonstration of the operation of both pathways involving 8-Si-4 and 10-Si-5 intermediates. Three kinetic regimes were identified: (1) with 0.5–1.0 equiv of added silanolate (with respect to arylpalladium bromide), thermal transmetalation via a neutral 8-Si-4 intermediate; (2) with 1.0–5.0 equiv of added silanolate, activated transmetalation via an anionic 10-Si-5 intermediate; and (3) with >5.0 equiv of added silanolate, concentration-independent (saturation) activated transmetalation via an anionic 10-Si-5 intermediate. Transition states for the intramolecular transmetalation of neutral (8-Si-4) and anionic (10-Si-5) intermediates have been located computationally

  9. Tetrachlorinated Polycyclic Aromatic Dicarboximides: New Electron-Poor Π-Scaffolds and NIR Emitters by Palladium-Catalyzed Annulation Reaction.

    PubMed

    Mahl, Magnus; Shoyama, Kazutaka; Rühe, Jessica; Grande, Vincenzo; Würthner, Frank

    2018-04-24

    Herein we report a palladium-catalyzed annulation reaction consisting of a Suzuki-Miyaura cross-coupling and a C-H arylation cascade for the synthesis of tetrachlorinated polycyclic aromatic dicarboximides (PADIs). This convergent synthetic route afforded a broad series of hitherto unknown electron-deficient PADIs under optimized reaction conditions by coupling of a dibromo-tetrachloro-perylene dicarboximide with different polycyclic aromatic hydrocarbon (PAH) boronic acid pinacol esters in up to 89% yields. The new PADI compounds show broad absorption in the visible range and some of them emit in the near-infrared (NIR) region. Cyclic and square wave voltammetric studies revealed that these tetrachlorinated PADIs are more electron-deficient than a non-chlorinated reference compound and they possess lower lying frontier orbitals. Thus, the newly synthesized electron-poor PADIs are potential n-type semiconductors. Moreover, these chlorinated PADIs are interesting building blocks for the construction of large π-extended arrays by metal-mediated coupling reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Palladium-Catalyzed Oxidative Couplings and Applications to the Synthesis of Macrocycles and Strained Cyclic Dienes

    NASA Astrophysics Data System (ADS)

    Boon, Byron Adrian

    The palladium(II)-catalyzed oxidative macrocyclization of bis(vinylboronate esters) is demonstrated as an efficient method for the synthesis of macrocyclic dienes. The macrocyclization reactions feature mild conditions due to a palladium(II) catalytic cycle which obviates the need for a high energy oxidative addition step of standard palladium(0) catalytic cycles. Instead, this oxidative coupling is promoted by chloroacetone as a terminal re-oxidant in the catalytic cycle. An extension of the oxidative coupling/macrocyclization strategy is highlighted where molecular oxygen may be used in place of chloroacetone as the terminal re-oxidant. Homocoupling reactions of vinylboronate esters served as a template to screen reaction conditions for this method. From these experiments, multiple reaction conditions gave the oxidative homocoupling product in high yield. These reaction conditions were successfully applied to the oxidative macrocyclization of a bis(vinylboronate ester) using molecular oxygen as a re-oxidant. Syntheses of strained cyclic dienes were accomplished via the palladium(II)-catalyzed oxidative cyclizations of terminal bis(vinylboronate esters). The reactions generated strained (E,E)-1,3-dienes that underwent spontaneous 4?-electrocyclizations to form bicyclic cyclobutenes. Formation of the cyclobutenes is driven by strain in the medium-ring (E,E)-1,3-diene intermediates. Thermal ring openings of the cyclobutenes give (Z,Z)-1,3-diene products, again for thermodynamic reasons. These results are in contrast with typical acyclic trans-3,4-dialkyl cyclobutenes, which favor outward torquoselective ring-openings to give (E,E)-1,3-dienes. DFT calculations verified the thermodynamic versus kinetic control of the reactions and kinetic studies are in excellent agreement with the calculated energy changes. Investigations on the transannular Pauson-Khand reaction are also highlighted. The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones

  11. Palladium-Catalyzed Dehydrogenative Coupling: An Efficient Synthetic Strategy for the Construction of the Quinoline Core

    PubMed Central

    Carral-Menoyo, Asier; Ortiz-de-Elguea, Verónica; Martinez-Nunes, Mikel; Sotomayor, Nuria; Lete, Esther

    2017-01-01

    Palladium-catalyzed dehydrogenative coupling is an efficient synthetic strategy for the construction of quinoline scaffolds, a privileged structure and prevalent motif in many natural and biologically active products, in particular in marine alkaloids. Thus, quinolines and 1,2-dihydroquinolines can be selectively obtained in moderate-to-good yields via intramolecular C–H alkenylation reactions, by choosing the reaction conditions. This methodology provides a direct method for the construction of this type of quinoline through an efficient and atom economical procedure, and constitutes significant advance over the existing procedures that require preactivated reaction partners. PMID:28867803

  12. Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross-Coupling of Amide Derivatives.

    PubMed

    Liu, Chengwei; Szostak, Michal

    2017-10-02

    Considering the ubiquity of organophosphorus compounds in organic synthesis, pharmaceutical discovery agrochemical crop protection and materials chemistry, new methods for their construction hold particular significance. A conventional method for the synthesis of C-P bonds involves cross-coupling of aryl halides and dialkyl phosphites (the Hirao reaction). We report a catalytic deamidative phosphorylation of a wide range of amides using a palladium or nickel catalyst giving aryl phosphonates in good to excellent yields. The present method tolerates a wide range of functional groups. The reaction constitutes the first example of a transition-metal-catalyzed generation of C-P bonds from amides. This redox-neutral protocol can be combined with site-selective conventional cross-coupling for the regioselective synthesis of potential pharmacophores. Mechanistic studies suggest an oxidative addition/transmetallation pathway. In light of the importance of amides and phosphonates as synthetic intermediates, we envision that this Pd and Ni-catalyzed C-P bond forming method will find broad application. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A convergent approach to the total synthesis of telmisartan via a Suzuki cross-coupling reaction between two functionalized benzimidazoles.

    PubMed

    Martin, Alex D; Siamaki, Ali R; Belecki, Katherine; Gupton, B Frank

    2015-02-06

    A direct and efficient total synthesis has been developed for telmisartan, a widely prescribed treatment for hypertension. This approach brings together two functionalized benzimidazoles using a high-yielding Suzuki reaction that can be catalyzed by either a homogeneous palladium source or graphene-supported palladium nanoparticles. The ability to perform the cross-coupling reaction was facilitated by the regio-controlled preparation of the 2-bromo-1-methylbenzimidazole precursor. This convergent approach provides telmisartan in an overall yield of 72% while circumventing many issues associated with previously reported processes.

  14. Chemoselective chromium(II)-catalyzed cross-coupling reactions of dichlorinated heteroaromatics with functionalized aryl grignard reagents.

    PubMed

    Steib, Andreas K; Kuzmina, Olesya M; Fernandez, Sarah; Malhotra, Sushant; Knochel, Paul

    2015-01-26

    Chromium(II) chloride catalyzes the chemoselective cross-coupling reaction of dichloropyridines with a range of functionalized (hetero)aromatic Grignard reagents at room temperature. Functional groups, such as esters and acetals, are well tolerated in this transformation. Previously challenging substrates, quinolines and isoquinolines, participate in the selective Cr-catalyzed cross-coupling in cyclopentyl methyl ether (CPME) as the solvent. The effective purging of Cr salts is demonstrated by using various solid supports. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biaryl Phosphine Ligands in Palladium-Catalyzed Amination

    PubMed Central

    Surry, David S.

    2012-01-01

    Palladium-catalyzed amination of aryl halides has undergone rapid development in the last 12 years. This has been largely driven by implementation of new classes of ligands. Biaryl phosphines have proven to provide especially active catalysts in this context. This review discusses the applications that these catalysts have found in C-N cross-coupling in heterocycle synthesis, pharmaceuticals, materials science and natural product synthesis. PMID:18663711

  16. Design, Synthesis, and Validation of an Effective, Reusable Silicon-Based Transfer Agent for Room-Temperature Pd-Catalyzed Cross-Coupling Reactions of Aryl and Heteroaryl Chlorides with Readily Available Aryl Lithium Reagents

    PubMed Central

    Martinez-Solorio, Dionicio; Melillo, Bruno; Sanchez, Luis; Liang, Yong; Lam, Erwin; Houk, K. N.; Smith, Amos B.

    2016-01-01

    A reusable silicon-based transfer agent (1) has been designed, synthesized, and validated for effective room-temperature palladium-catalyzed cross-coupling reactions (CCRs) of aryl and heteroaryl chlorides with readily accessible aryl lithium reagents. The crystalline, bench-stable siloxane transfer agent (1) is easily prepared via a one-step protocol. Importantly, this “green” CCR protocol circumvents prefunctionalization, isolation of organometallic cross-coupling partners, and/or stoichiometric waste aside from LiCl. DFT calculations support a σ-bond metathesis mechanism during transmetalation and lead to insights on the importance of the CF3 groups. PMID:26835838

  17. Palladium-Catalyzed, Copper(I)-Mediated Coupling of Boronic Acids and Benzylthiocyanate. A Cyanide-Free Cyanation of Boronic Acids

    PubMed Central

    Zhang, Zhihui; Liebeskind, Lanny S.

    2008-01-01

    A new method for the synthesis of nitriles is described. As a complement to the classic cyanation of aryl halides using cyanide sources and a transition metal catalyst, the palladium-catalyzed cross-coupling of thiocyanates with boronic acids in the presence of copper(I) thiophene-2-carboxylate (CuTC) affords nitriles in good to excellent yields. PMID:16956219

  18. Synthesis of Rhodamines from Fluoresceins Using Pd-Catalyzed C–N Cross-Coupling

    PubMed Central

    2011-01-01

    A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N′-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C–N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores. PMID:22091952

  19. Palladium-catalyzed cross coupling reactions of 4-bromo-6H-1,2-oxazines

    PubMed Central

    Schmidt, Elmar; Andrä, Michal; Duhs, Marcel-Antoine; Linder, Igor

    2009-01-01

    Summary A number of 4-aryl- and 4-alkynyl-substituted 6H-1,2-oxazines 8 and 9 have been prepared in good yields via cross coupling reactions of halogenated precursors 2, which in turn are easily accessible by bromination of 6H-1,2-oxazines 1. Lewis-acid promoted reaction of 1,2-oxazine 9c with 1-hexyne provided alkynyl-substituted pyridine derivative 12 thus demonstrating the potential of this approach for the synthesis of pyridines. PMID:19936264

  20. Stereospecific nickel-catalyzed cross-coupling reactions of benzylic ethers and esters.

    PubMed

    Tollefson, Emily J; Hanna, Luke E; Jarvo, Elizabeth R

    2015-08-18

    This Account presents the development of a suite of stereospecific alkyl-alkyl cross-coupling reactions employing nickel catalysts. Our reactions complement related nickel-catalyzed stereoconvergent cross-coupling reactions from a stereochemical and mechanistic perspective. Most reactions of alkyl electrophiles with low-valent nickel complexes proceed through alkyl radicals and thus are stereoablative; the correct enantioselective catalyst can favor the formation of one enantiomer. Our reactions, in contrast, are stereospecific. Enantioenriched ethers and esters are cleanly converted to cross-coupled products with high stereochemical fidelity. While mechanistic details are still to be refined, our results are consistent with a polar, two-electron oxidative addition that avoids the formation of radical intermediates. This reactivity is unusual for a first-row transition metal. The cross-coupling reactions engage a range of benzylic ethers and esters, including methyl ethers, tetrahydropyrans, tetrahydrofurans, esters, and lactones. Coordination of the arene substituent to the nickel catalyst accelerates the reactions. Arenes with low aromatic stabilization energies, such as naphthalene, benzothiophene, and furan, serve as the best ligands and provide the highest reactivity. Traceless directing groups that accelerate reactions of sluggish substrates are described, providing partial compensation for arene coordination. Kumada, Negishi, and Suzuki reactions provide incorporation of a broad range of transmetalating agents. In Kumada coupling reactions, a full complement of Grigard reagents, including methyl, n-alkyl, and aryl Grignard reagents, are employed. In reactions employing methylmagnesium iodide, ligation of the nickel catalyst by rac-BINAP or DPEphos provides the highest yield and stereospecificity. For all other Grignard reagents, Ni(dppe)Cl2 has emerged as the best catalyst. Negishi cross-coupling reactions employing dimethylzinc are reported as a strategy to

  1. Copper-catalyzed oxidative homo- and cross-coupling of Grignard reagents using diaziridinone.

    PubMed

    Zhu, Yingguang; Xiong, Tao; Han, Wenyong; Shi, Yian

    2014-12-05

    Transition-metal-catalyzed cross-coupling reactions are among the most powerful synthetic transformations. This paper describes an efficient copper-catalyzed homo- and cross-coupling of Grignard reagents with di-tert-butyldiaziridinone as oxidant under mild conditions, giving the coupling products in good to excellent yields. The reaction process has a broad substrate scope and is also effective for the C(sp)-C(sp(3)) coupling.

  2. Remarkable co-catalysis by copper(I) oxide in the palladium catalyzed cross-coupling of arylboronic acids with ethyl bromoacetate.

    PubMed

    Liu, Xing-xin; Deng, Min-zhi

    2002-03-21

    Copper(I) oxide can effectively co-catalyze the Suzuki type cross-coupling reactions of arylboronic acids with ethyl bromoacetate. As an alternative protocol for introducing the methylenecarboxy group into functionalized molecules, this reaction occurs in the absence of highly toxic thallium compounds or special ligands and should be convenient and practical.

  3. Synthesis of 24-phenyl-24-oxo steroids derived from bile acids by palladium-catalyzed cross coupling with phenylboronic acid. NMR characterization and X-ray structures.

    PubMed

    Mayorquín-Torres, Martha C; Romero-Ávila, Margarita; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2013-11-01

    Palladium-catalyzed cross coupling of phenyboronic acid with acetylated bile acids in which the carboxyl functions have been activated by formation of a mixed anhydride with pivalic anhydride afforded moderate to good yield of 24-phenyl-24-oxo-steroids. Unambiguous assignments of the NMR signals were made with the aid of combined 1D and 2D NMR techniques. X-ray diffraction studies confirmed the obtained structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Copper-Catalyzed Oxidative Homo- and Cross-Coupling of Grignard Reagents Using Diaziridinone

    PubMed Central

    2015-01-01

    Transition-metal-catalyzed cross-coupling reactions are among the most powerful synthetic transformations. This paper describes an efficient copper-catalyzed homo- and cross-coupling of Grignard reagents with di-tert-butyldiaziridinone as oxidant under mild conditions, giving the coupling products in good to excellent yields. The reaction process has a broad substrate scope and is also effective for the C(sp)–C(sp3) coupling. PMID:25420218

  5. Tandem intramolecular silylformylation and silicon-assisted cross-coupling reactions. synthesis of geometrically defined alpha,beta-unsaturated aldehydes.

    PubMed

    Denmark, Scott E; Kobayashi, Tetsuya

    2003-06-27

    The palladium- and copper-catalyzed cross-coupling reactions of cyclic silyl ethers with aryl iodides are reported. Silyl ethers 3 were readily prepared by intramolecular silylformylation of homopropargyl silyl ethers 2 under a carbon monoxide atmosphere. The reaction of cyclic silyl ethers 3with various aryl iodides 7 in the presence of [(allyl)PdCl](2), CuI, a hydrosilane, and KF.2H(2)O in DMF at room temperature provided the alpha,beta-unsaturated aldehyde coupling products 8 in high yields. The need for copper in this process suggested that transmetalation from silicon to copper is an important step in the mechanism. Although siloxane 3 and the product 8 are not stable under basic conditions, KF.2H(2)O provided the appropriate balance of reactivity toward silicon and reduced basicity. The addition of a hydrosilane to [(allyl)PdCl](2) was needed to reduce the palladium(II) to the active palladium(0) form.

  6. A General, Efficient and Functional-Group-Tolerant Catalyst System for the Palladium-Catalyzed Thioetherification of Aryl Bromides and Iodides

    PubMed Central

    Fernández-Rodríguez, Manuel A.; Hartwig, John F.

    2010-01-01

    The cross-coupling reaction of aryl bromides and iodides with aliphatic and aromatic thiols catalyzed by palladium complexes of the bisphosphine ligand CyPF-tBu (1) is reported. Reactions occur in excellent yields, broad scope, high tolerance of functional groups and with turnover numbers that exceed those of previous catalysts by two or three orders of magnitude. These couplings of bromo- and iodoarenes are more efficient than the corresponding reactions of chloroarenes and could be conducted with less catalyst loading and/or milder reaction conditions. Consequently, limitations regarding scope and functional group tolerance previously reported in the coupling of aryl chlorides are now overcome. PMID:19154131

  7. A Colorimetric Chemodosimeter for Pd(II): A Method for Detecting Residual Palladium in Cross-Coupling Reactions

    PubMed Central

    Houk, Ronald J. T.; Wallace, Karl J.; Hewage, Himali S.; Anslyn, Eric V.

    2008-01-01

    A colorimetric chemodosimeter (SQ1) for the detection of trace palladium salts in cross-coupling reactions mediated by palladium is described. Decolorization of SQ1 is affected by nucleophilic attack of ethanethiol in basic DMSO solutions. Thiol addition is determined to have an equilibrium constant (Keq) of 2.9 × 106 M-1, with a large entropic and modest enthalpic driving force. This unusual result is attributed to solvent effects arising from a strong coordinative interaction between DMSO and the parent squaraine. Palladium detection is achieved through thiol scavenging from the SQ1-ethanethiol complex leading to a color “turn-on” of the parent squaraine. It was found that untreated samples obtained directly from Suzuki couplings showed no response to the assay. However, treatment of the samples with aqueous nitric acid generates a uniform Pd(NO3)2 species, which gives an appropriate response. “Naked-eye” detection of Pd(NO3)2 was estimated to be as low as 0.5 ppm in solution, and instrument-based detection was tested as low as 100 ppb. The average error over the working range of the assay was determined to be 7%. PMID:19122841

  8. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qinhua

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I 2, ICl, PhSeCl, PhSCl and p-O 2NC 6H 4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellentmore » yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that these

  9. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  10. Triazole-functionalized N-heterocyclic carbene complexes of palladium and platinum and efficient aqueous Suzuki-Miyaura coupling reaction.

    PubMed

    Gu, Shaojin; Xu, Hui; Zhang, Na; Chen, Wanzhi

    2010-07-05

    Imidazolium salts bearing triazole groups are synthesized via a copper catalyzed click reaction, and the silver, palladium, and platinum complexes of their N-heterocyclic carbenes are studied. [Ag(4)(L1)(4)](PF(6))(4), [Pd(L1)Cl](PF(6)), [Pt(L1)Cl](PF(6)) (L1=3-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1-(pyrimidin-2-yl)-1H-imidazolylidene), [Pd(2)(L2)(2)Cl(2)](PF(6))(2), and [Pd(L2)(2)](PF(6))(2) (L2=1-butyl-3-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methyl)imidazolylidene) have been synthesized and fully characterized by NMR, elemental analysis, and X-ray crystallography. The silver complex [Ag(4)(L1)(4)](PF(6))(4) consists of a Ag(4) zigzag chain. The complexes [Pd(L1)Cl](PF(6)) and [Pt(L1)Cl](PF(6)), containing a nonsymmetrical NCN' pincer ligand, are square planar with a chloride trans to the carbene donor. [Pd(2)(L2)(2)Cl(2)](PF(6))(2) consists of two palladium centers with CN(2)Cl coordination mode, whereas the palladium in [Pd(L2)(2)](PF(6))(2) is surrounded by two carbene and two triazole groups with two uncoordinated pyridines. The palladium compounds are highly active for Suzuki-Miyaura cross coupling reactions of aryl bromides and 1,1-dibromo-1-alkenes in neat water under an air atmosphere.

  11. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings.

    PubMed

    Gutierrez, Osvaldo; Tellis, John C; Primer, David N; Molander, Gary A; Kozlowski, Marisa C

    2015-04-22

    The cross-coupling of sp(3)-hybridized organoboron reagents via photoredox/nickel dual catalysis represents a new paradigm of reactivity for engaging alkylmetallic reagents in transition-metal-catalyzed processes. Reported here is an investigation into the mechanistic details of this important transformation using density functional theory. Calculations bring to light a new reaction pathway involving an alkylnickel(I) complex generated by addition of an alkyl radical to Ni(0) that is likely to operate simultaneously with the previously proposed mechanism. Analysis of the enantioselective variant of the transformation reveals an unexpected manifold for stereoinduction involving dynamic kinetic resolution (DKR) of a Ni(III) intermediate wherein the stereodetermining step is reductive elimination. Furthermore, calculations suggest that the DKR-based stereoinduction manifold may be responsible for stereoselectivity observed in numerous other stereoconvergent Ni-catalyzed cross-couplings and reductive couplings.

  12. Iron-Catalyzed Enantioselective Cross-Coupling Reactions of α-Chloroesters with Aryl Grignard Reagents.

    PubMed

    Jin, Masayoshi; Adak, Laksmikanta; Nakamura, Masaharu

    2015-06-10

    The first iron-catalyzed enantioselective cross-coupling reaction between an organometallic compound and an organic electrophile is reported. Synthetically versatile racemic α-chloro- and α-bromoalkanoates were coupled with aryl Grignard reagents in the presence of catalytic amounts of an iron salt and a chiral bisphosphine ligand, giving the products in high yields with acceptable and synthetically useful enantioselectivities (er up to 91:9). The produced α-arylalkanoates were readily converted to the corresponding α-arylalkanoic acids with high optical enrichment (er up to >99:1) via simple deprotections/recrystallizations. The results of radical probe experiments are consistent with a mechanism that involves the formation of an alkyl radical intermediate, which undergoes subsequent enantioconvergent arylation in an intermolecular manner. The developed asymmetric coupling offers not only facile and practical access to various chiral α-arylalkanoic acid derivatives, which are of significant pharmaceutical importance, but also a basis of controlling enantioselectivity in an iron-catalyzed organometallic transformation.

  13. Nonsymmetrical 3,4-dithienylmaleimides by cross-coupling reactions with indium organometallics: synthesis and photochemical studies.

    PubMed

    Mosquera, Angeles; Férnandez, M Isabel; Canle Lopez, Moisés; Pérez Sestelo, José; Sarandeses, Luis A

    2014-10-27

    The synthesis and photochemical study of novel nonsymmetrical 1,2-dithienylethenes (DTEs) with a maleimide bridge have been carried out. The synthetic approach to the DTEs was based on successive selective palladium-catalyzed cross-coupling reactions of 5-susbtituted-2-methyl-3-thiophenyl indium reagents with 3,4-dichloromaleimides. The required organoindium reagents were prepared from 2-methyl-3,5-dibromothiophene by a selective (C-5) coupling reaction with triorganoindium compounds (R3 In) and subsequent metal-halogen exchange. The coupling reactions usually gave good yields and have a high atom economy with substoichiometric amounts of R3 In. The results of photochemical studies show that these novel dithienylmaleimides undergo a photocyclization reaction upon irradiation in the UV region and a photocycloreversion after excitation in the visible region, thus they can be used as photochemical switches. ON-OFF operations can be repeated in successive cycles without appreciable loss of effectiveness in the process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Palladium-catalyzed, pyrrolidine-mediated arylmethylation of ketones and aldehydes with coumarinyl(methyl) acetates.

    PubMed

    Cattopadhyay, Kalicharan; Recio, Antonio; Tunge, Jon A

    2012-09-14

    We report the palladium-catalyzed, pyrrolidine-mediated α-benzylation of enamines generated from aldehydes and ketones. The method allows for direct coupling of medicinally relevant coumarin moieties with aldehydes and ketones in good yield under mild conditions. The reaction is believed to proceed via a Pd-π-benzyl complex generated from (coumarinyl)methyl acetates.

  15. Palladium-catalyzed, pyrrolidine-mediated arylmethylation of ketones and aldehydes with coumarinyl(methyl) acetates†

    PubMed Central

    Cattopadhyay, Kalicharan; Recio, Antonio; Tunge, Jon A.

    2012-01-01

    We report the palladium-catalyzed, pyrrolidine-mediated α-benzylation of enamines generated from aldehydes and ketones. The method allows for direct coupling of medicinally relevant coumarin moieties with aldehydes and ketones in good yield under mild conditions. The reaction is believed to proceed via a Pd-π-benzyl complex generated from (coumarinyl)methyl acetates. PMID:22832549

  16. Palladium-catalyzed three-component reaction of N-tosyl hydrazones, isonitriles and amines leading to amidines.

    PubMed

    Dai, Qiang; Jiang, Yan; Yu, Jin-Tao; Cheng, Jiang

    2015-12-04

    A palladium-catalyzed three-component reaction between N-tosyl hydrazones, aryl isonitriles and amines was developed, leading to amidines in moderate to good yields. This procedure features the rapid construction of amidine frameworks with high diversity and complexity. Ketenimines serve as intermediates, which encounter nucleophilic attack by amines to produce amidines.

  17. First application of an efficient and versatile ligand for copper-catalyzed cross-coupling reactions of vinyl halides with N-heterocycles and phenols.

    PubMed

    Kabir, M Shahjahan; Lorenz, Michael; Namjoshi, Ojas A; Cook, James M

    2010-02-05

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency, that is, mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance.

  18. First Application of An Efficient and Versatile Ligand for Copper-Catalyzed Cross-Coupling Reactions of Vinyl Halides with N-Heterocycles and Phenols

    PubMed Central

    Kabir, M. Shahjahan; Lorenz, Michael; Namjoshi, Ojas A.; Cook, James M.

    2010-01-01

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency i.e., mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance. PMID:20039699

  19. Palladium-Catalyzed α-Arylation of Zinc Enolates of Esters: Reaction Conditions and Substrate Scope

    PubMed Central

    Hama, Takuo; Ge, Shaozhong; Hartwig, John F.

    2013-01-01

    The intermolecular α-arylation of esters by palladium-catalyzed coupling of aryl bromides with zinc enolates of esters is reported. Reactions of three different types of zinc enolates have been developed. α-Arylation of esters occurs in high yields with isolated Reformatsky reagents, with Reformatsky reagents generated from α-bromo esters and activated zinc, and with zinc enolates generated by quenching lithium enolates of esters with zinc chloride. The use of zinc enolates, instead of alkali metal enolates, greatly expands the scope of the arylation of esters. The reactions occur at room temperature or at 70 °C with bromoarenes containing cyano, nitro, ester, keto, fluoro, enolizable hydrogen, hydroxyl or amino functionality and with bromopyridines. The scope of esters encompasses acyclic acetates, propionates, and isobutyrates, α-alkoxyesters, and lactones. The arylation of zinc enolates of esters was conducted with catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) or the highly reactive dimeric Pd(I) complex {[P(t-Bu)3]PdBr}2. PMID:23931445

  20. Iron-catalyzed cross-coupling of imidoyl chlorides with Grignard reagents.

    PubMed

    Ottesen, Lars K; Ek, Fredrik; Olsson, Roger

    2006-04-27

    [reaction: see text] A general, high yielding rapid iron-catalyzed cross-coupling reaction between Grignard reagents and imidoyl chlorides is described. These reactions are typically completed within 5 min, resulting in high yields of 71-96% using 5% iron catalyst in a THF-NMP solvent mixture. Functionalized imidoyl chlorides (e.g., R = CO(2)Me) gave excellent yields (89%).

  1. Recent advances in copper-catalyzed asymmetric coupling reactions

    PubMed Central

    2015-01-01

    Summary Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds. PMID:26734106

  2. Imparting Catalyst-Control upon Classical Palladium-Catalyzed Alkenyl C–H Bond Functionalization Reactions

    PubMed Central

    Sigman, Matthew S.; Werner, Erik W.

    2011-01-01

    Conspectus The functional group transformations carried out by the palladium-catalyzed Wacker and Heck reactions are radically different, but they are both alkenyl C-H bond functionalization reactions that have found extensive use in organic synthesis. The synthetic community depends heavily on these important reactions, but selectivity issues arising from control by the substrate, rather than control by the catalyst, have prevented the realization of their full potential. Because of important similarities in the respective selectivity-determining nucleopalladation and β-hydride elimination steps of these processes, we posit that the mechanistic insight garnered through the development of one of these catalytic reactions may be applied to the other. In this Account, we detail our efforts to develop catalyst-controlled variants of both the Wacker oxidation and the Heck reaction to address synthetic limitations and provide mechanistic insight into the underlying organometallic processes of these reactions. In contrast to previous reports, we discovered that electrophilic palladium catalysts with non-coordinating counterions allowed for the use of a Lewis basic ligand to efficiently promote TBHP-mediated Wacker oxidation reactions of styrenes. This discovery led to the mechanistically guided development of a Wacker reaction catalyzed by a palladium complex with a bidentate ligand. This ligation may prohibit coordination of allylic heteroatoms, thereby allowing for the application of the Wacker oxidation to substrates that were poorly behaved under classical conditions. Likewise, we unexpectedly discovered that electrophilic Pd-σ-alkyl intermediates are capable of distinguishing between electronically inequivalent C–H bonds during β-hydride elimination. As a result, we have developed E-styrenyl selective oxidative Heck reactions of previously unsuccessful electronically non-biased alkene substrates using arylboronic acid derivatives. The mechanistic insight gained

  3. Pd(OAc)(2)-catalyzed Domino reactions of 1-chloro-2-haloarenes and 2-haloaryl tosylates with hindered Grignard reagents via palladium-associated arynes.

    PubMed

    Dong, Cheng-Guo; Hu, Qiao-Sheng

    2006-10-26

    The palladium-associated aryne generation strategy and Pd(OAc)(2)-catalyzed annulative Domino reactions of 1-chloro-2-halobenzenes and 2-haloaryl tosylates with hindered Grignard reagents via palladium-associated arynes are described. The palladium-associated aryne generation strategy described here not only allows the high yield, one-step access to potentially useful substituted fluorenes from readily available 1-chloro-2-halobenzenes and 2-haloaryl tosylates, but may also lead to the development of other tandem reactions based on these readily available ortho leaving group bearing haloarenes. [reaction: see text

  4. Stereoselective Synthesis of Methylene Oxindoles via Palladium(II)-Catalyzed Intramolecular Cross-Coupling of Carbamoyl Chlorides.

    PubMed

    Le, Christine M; Sperger, Theresa; Fu, Rui; Hou, Xiao; Lim, Yong Hwan; Schoenebeck, Franziska; Lautens, Mark

    2016-11-02

    We report a highly robust, general and stereoselective method for the synthesis of 3-(chloromethylene)oxindoles from alkyne-tethered carbamoyl chlorides using PdCl 2 (PhCN) 2 as the catalyst. The transformation involves a stereo- and regioselective chloropalladation of an internal alkyne to generate a nucleophilic vinyl Pd II species, which then undergoes an intramolecular cross-coupling with a carbamoyl chloride. The reaction proceeds under mild conditions, is insensitive to the presence of moisture and air, and is readily scalable. The products obtained from this reaction are formed with >95:5 Z:E selectivity in nearly all cases and can be used to access biologically relevant oxindole cores. Through combined experimental and computational studies, we provide insight into stereo- and regioselectivity of the chloropalladation step, as well as the mechanism for the C-C bond forming process. Calculations provide support for a mechanism involving oxidative addition into the carbamoyl chloride bond to generate a high valent Pd IV species, which then undergoes facile C-C reductive elimination to form the final product. Overall, the transformation constitutes a formal Pd II -catalyzed intramolecular alkyne chlorocarbamoylation reaction.

  5. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Alkyl Grignard Reagents and Identification of Selective Anti-Breast Cancer Agents**

    PubMed Central

    Osborne, Charlotte A.; Moore, Curtis E.; Morrissette, Naomi S.; Jarvo, Elizabeth R.

    2014-01-01

    β-Hydrogen-containing alkyl Grignard reagents were used in a stereospecific nickel-catalyzed cross-coupling reaction to form sp3–sp3 carbon–carbon bonds. Aryl Grignard reagents were also utilized to synthesize 1,1-diarylalkanes. Several compounds synthesized by this method exhibited selective inhibition of proliferation of MCF-7 breast cancer cells. PMID:24478275

  6. Controlled iterative cross-coupling: on the way to the automation of organic synthesis.

    PubMed

    Wang, Congyang; Glorius, Frank

    2009-01-01

    Repetition does not hurt! New strategies for the modulation of the reactivity of difunctional building blocks are discussed, allowing the palladium-catalyzed controlled iterative cross-coupling and, thus, the efficient formation of complex molecules of defined size and structure (see scheme). As in peptide synthesis, this development will enable the automation of these reactions. M(PG)=protected metal, M(act)=metal.

  7. Palladium Nanoparticles Immobilized on Individual Calcium Carbonate Plates Derived from Mussel Shell Waste: An Ecofriendly Catalyst for the Copper-Free Sonogashira Coupling Reaction.

    PubMed

    Saetan, Trin; Lertvachirapaiboon, Chutiparn; Ekgasit, Sanong; Sukwattanasinitt, Mongkol; Wacharasindhu, Sumrit

    2017-09-05

    The conversion of waste into high-value materials is considered an important sustainability strategy in modern chemical industries. A large volume of shell waste is generated globally from mussel cultivation. In this work, mussel shell waste (Perna viridis) is transformed into individual calcium carbonate plates (ICCPs) and is applied as a support for a heterogeneous catalyst. Palladium nanoparticles (3-6 nm) are deposited with an even dispersion on the ICCP surface, as demonstrated by X-ray diffraction and scanning electron microscopy. Using this system, Sonogashira cross-coupling reactions between aryl iodides and terminal acetylenes were accomplished in high yields with the use of 1 % Pd/ICCP in the presence of potassium carbonate without the use of any copper metal or external ligand. The Pd/ICCP catalyst could also be reused up to three times and activity over 90 % was maintained with negligible Pd-metal leaching. This work demonstrates that mussel shell waste can be used as an inexpensive and effective support for metal catalysts in coupling reactions, as demonstrated by the successful performance of the Pd-catalyzed, copper-free Sonogashira cross-coupling process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Kinetic and spectroscopic studies of the [palladium(Ar-bian)]-catalyzed semi-hydrogenation of 4-octyne.

    PubMed

    Kluwer, Alexander M; Koblenz, Tehila S; Jonischkeit, Thorsten; Woelk, Klaus; Elsevier, Cornelis J

    2005-11-09

    The kinetics of the stereoselective semi-hydrogenation of 4-octyne in THF by the highly active catalyst [Pd{(m,m'-(CF(3))(2)C(6)H(3))-bian}(ma)] (2) (bian = bis(imino)acenaphthene; ma = maleic anhydride) has been investigated. The rate law under hydrogen-rich conditions is described by r = k[4-octyne](0.65)[Pd][H(2)], showing first order in palladium and dihydrogen and a broken order in substrate. Parahydrogen studies have shown that a pairwise transfer of hydrogen atoms occurs in the rate-limiting step. In agreement with recent theoretical results, the proposed mechanism consists of the consecutive steps: alkyne coordination, heterolytic dihydrogen activation (hydrogenolysis of one Pd-N bond), subsequent hydro-palladation of the alkyne, followed by addition of N-H to palladium, reductive coupling of vinyl and hydride and, finally, substitution of the product alkene by the alkyne substrate. Under hydrogen-limiting conditions, side reactions occur, that is, formation of catalytically inactive palladacycles by oxidative alkyne coupling. Furthermore, it has been shown that (Z)-oct-4-ene is the primary reaction product, from which the minor product (E)-oct-4-ene is formed by an H(2)-assisted, palladium-catalyzed isomerization reaction.

  9. Palladium-Copper Catalyzed Alkyne Activation as an Entry to Multicomponent Syntheses of Heterocycles

    NASA Astrophysics Data System (ADS)

    Müller, Thomas J. J.

    Alkynones and chalcones are of paramount importance in heterocyclic chemistry as three-carbon building blocks. In a very efficient manner, they can be easily generated by palladium-copper catalyzed reactions: ynones are formed from acid chlorides and terminal alkynes, and chalcones are synthesized in the sense of a coupling-isomerization (CI) sequence from (hetero)aryl halides and propargyl alcohols. Mild reaction conditions now open entries to sequential and consecutive transformations to heterocycles, such as furans, 3-halo furans, pyrroles, pyrazoles, substituted and annelated pyridines, annelated thiopyranones, pyridimines, meridianins, benzoheteroazepines and tetrahydro-β-carbolines, by consecutive coupling-cyclocondensation or CI-cyclocondensation sequences, as new diversity oriented routes to heterocycles. Domino reactions based upon the coupling-isomerization reaction (CIR) have been probed in the synthesis of antiparasital 2-substituted quinoline derivatives and highly luminescent spiro-benzofuranones and spiro-indolones.

  10. Palladium-Catalyzed Indole, Pyrrole, and Furan Arylation by Aryl Chlorides

    PubMed Central

    Nadres, Enrico T.; Lazareva, Anna; Daugulis, Olafs

    2011-01-01

    The palladium-catalyzed direct arylation of indoles, pyrroles, and furans by aryl chlorides has been demonstrated. The method employs a palladium acetate catalyst, 2-(dicyclohexylphosphino)-biphenyl ligand, and an inorganic base. Electron-rich and electron-poor aryl chlorides as well as chloropyridine coupling partners can be used and arylated heterocycles are obtained in moderate to good yields. Optimization of base, ligand, and solvent is required for achieving best results. PMID:21192652

  11. Pd(OAc)2-Catalyzed Domino Reactions of 1-Chloro-2-Haloarenes and 2-Haloaryl Tosylates with Hindered Grignard Reagents via Palladium Associated Arynes

    PubMed Central

    Dong, Cheng-Guo; Hu, Qiao-Sheng

    2008-01-01

    The palladium associated aryne generation strategy and Pd(OAc)2-catalyzed annulative Domino reactions of 1-chloro-2-halobenzenes and 2-haloaryl tosylates with hindered Grignard reagents via palladium associated arynes are described. The palladium associated aryne generation strategy described here not only allows the high yield, one-step access to potentially useful substituted fluorenes from readily available 1-chloro-2-halobenzenes and 2-haloaryl tosylates, but may also lead to the development of other tandem reactions based on these readily available o-leaving group bearing haloarenes PMID:17048842

  12. An Efficient Process for Pd-Catalyzed C–N Cross-Coupling Reactions of Aryl Iodides: Insight Into Controlling Factors

    PubMed Central

    Fors, Brett P.; Davis, Nicole R.; Buchwald, Stephen L.

    2009-01-01

    An investigation into Pd-catalyzed C–N cross-coupling reactions of aryl iodides is described. NaI is shown to have a significant inhibitory effect on these processes. By switching to a solvent system in which the iodide byproduct was insoluble, reactions of aryl iodides were accomplished with the same efficiencies as aryl chlorides and bromides. Using catalyst systems based on certain biarylphosphine ligands, aryl iodides were successfully reacted with an array of primary and secondary amines in high yields. Lastly, reactions of heteroarylamines and heteroaryliodides were also conducted in high yields. PMID:19348431

  13. A General Synthetic Route to Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed Annulation Reaction.

    PubMed

    Shoyama, Kazutaka; Mahl, Magnus; Seifert, Sabine; Würthner, Frank

    2018-03-20

    Here we report a general method for the synthesis of polycyclic aromatic dicarboximides (PADIs) by palladium-catalyzed annulation of naphthalene dicarboximide to different types of aromatic substrates. Reaction conditions were optimized by systematic variation of ligand, solvent, and additive. It was shown that solvent has a decisive effect on the yield of the reaction products, and thus 1-chloronaphthalene as solvent afforded the highest yield. By applying the optimized reaction conditions, a broad series of planar carbo- and heterocycle containing PADIs were synthesized in up to 97% yield. Moreover, this approach could be applied to curved aromatic scaffold to achieve the respective bowl-shaped PADI. Two-fold annulation was accomplished by employing arene diboronic esters, affording polycyclic aromatic bis(dicarboximides). The optical and electrochemical properties of this broad series of PADIs were explored as well.

  14. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl Grignard reagents and identification of selective anti-breast-cancer agents.

    PubMed

    Yonova, Ivelina M; Johnson, A George; Osborne, Charlotte A; Moore, Curtis E; Morrissette, Naomi S; Jarvo, Elizabeth R

    2014-02-24

    Alkyl Grignard reagents that contain β-hydrogen atoms were used in a stereospecific nickel-catalyzed cross-coupling reaction to form C(sp(3))-C(sp(3)) bonds. Aryl Grignard reagents were also utilized to synthesize 1,1-diarylalkanes. Several compounds synthesized by this method exhibited selective inhibition of proliferation of MCF-7 breast cancer cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ligand- and base-free copper(II)-catalyzed C-N bond formation: cross-coupling reactions of organoboron compounds with aliphatic amines and anilines.

    PubMed

    Quach, Tan D; Batey, Robert A

    2003-11-13

    [reaction: see text] A ligandless and base-free Cu-catalyzed protocol for the cross-coupling of arylboronic acids and potassium aryltrifluoroborate salts with primary and secondary aliphatic amines and anilines is described. The process utilizes catalytic copper(II) acetate monohydrate and 4 A molecular sieves in dichloromethane at slightly elevated temperatures under an atmosphere of oxygen. A broad range of functional groups are tolerated on both of the cross-coupling partners.

  16. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    PubMed

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  17. A new family of nucleophiles for photoinduced, copper-catalyzed cross-couplings via single-electron transfer: reactions of thiols with aryl halides under mild conditions (O °C).

    PubMed

    Uyeda, Christopher; Tan, Yichen; Fu, Gregory C; Peters, Jonas C

    2013-06-26

    Building on the known photophysical properties of well-defined copper-carbazolide complexes, we have recently described photoinduced, copper-catalyzed N-arylations and N-alkylations of carbazoles. Until now, there have been no examples of the use of other families of heteroatom nucleophiles in such photoinduced processes. Herein, we report a versatile photoinduced, copper-catalyzed method for coupling aryl thiols with aryl halides, wherein a single set of reaction conditions, using inexpensive CuI as a precatalyst without the need for an added ligand, is effective for a wide range of coupling partners. As far as we are aware, copper-catalyzed C-S cross-couplings at 0 °C have not previously been achieved, which renders our observation of efficient reaction of an unactivated aryl iodide at -40 °C especially striking. Mechanistic investigations are consistent with these photoinduced C-S cross-couplings following a SET/radical pathway for C-X bond cleavage (via a Cu(I)-thiolate), which contrasts with nonphotoinduced, copper-catalyzed processes wherein a concerted mechanism is believed to occur.

  18. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  19. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Richland, WA; Hu, Jianli [Kennewick, WA; Hart, Todd R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  20. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory.

    PubMed

    Hie, Liana; Chang, Jonah J; Garg, Neil K

    2015-03-10

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories.

  1. Camphyl-based α-diimine palladium complexes: highly efficient precatalysts for direct arylation of thiazoles in open-air.

    PubMed

    Chen, Fu-Min; Lu, Dong-Dong; Hu, Li-Qun; Huang, Ju; Liu, Feng-Shou

    2017-07-21

    Based on the strategy of the development of phosphine-free palladium-catalyzed direct C-H arylation, a series of camphyl-based α-diimine palladium complexes bearing sterically bulky substituents were synthesized and characterized. The palladium complexes were applied for the cross-coupling of thiazole derivatives with aryl bromides. The effect of the sterically bulky substituent on the N-aryl moiety as well as the reaction conditions was screened. Under the optimal protocols, a wide range of aryl bromides can be smoothly coupled with thiazoles in good to excellent yields in the presence of a low palladium loading of 0.2 mol% under open-air conditions.

  2. Triphenylphosphine as Ligand for Room Temperature Ni(0)-Catalyzed Cross-Coupling Reactions of Aryl Chlorides with Arylboronic Acids

    PubMed Central

    Tang, Zhen-Yu; Hu, Qiao-Sheng

    2008-01-01

    Room temperature Ni(0)-catalyzed cross-coupling reactions of deactivated aryl chlorides with arylboronic acids with inexpensive triphenylphosphine (PPh3) as a supporting ligand have been accomplished in good to excellent yields. Air-stable Ni(PPh3)2Cl2 has also been established as catalyst precursor and highly active nickel catalysts were obtained when the reduction of Ni(PPh3)2Cl2 with n-BuLi was carried out in presence of an aryl chloride. PMID:16497011

  3. Practical, economical, and eco-friendly starch-supported palladium catalyst for Suzuki coupling reactions.

    PubMed

    Baran, Talat

    2017-06-15

    In catalytic systems, the support materials need to be both eco friendly and low cost as well as having high thermal and chemical stability. In this paper, a novel starch supported palladium catalyst, which had these outstanding properties, was designed and its catalytic activity was evaluated in a Suzuki coupling reaction under microwave heating with solvent-free and mild reaction conditions. The starch supported catalyst gave remarkable reaction yields after only 5min as a result of the coupling reaction of the phenyl boronic acid with 23 different substrates, which are bearing aril bromide, iodide, and chloride. The longevity of the catalyst was also investigated, and the catalyst could be reused for 10 runs. The starch supported Pd(II) catalyst yielded remarkable TON (up to 25,000) and TOF (up to 312,500) values by using a simple, fast and eco-friendly method. In addition, the catalytic performance of the catalyst was tested against different commercial palladium catalysts, and the green starch supported catalyst had excellent selectivity. The catalytic tests showed that the novel starch based palladium catalyst proved to be an economical and practical catalyst for the synthesis of biaryl compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Stabilization of Two Radicals with One Metal: A Stepwise Coupling Model for Copper-Catalyzed Radical–Radical Cross-Coupling

    PubMed Central

    Qi, Xiaotian; Zhu, Lei; Bai, Ruopeng; Lan, Yu

    2017-01-01

    Transition metal-catalyzed radical–radical cross-coupling reactions provide innovative methods for C–C and C–heteroatom bond construction. A theoretical study was performed to reveal the mechanism and selectivity of the copper-catalyzed C–N radical–radical cross-coupling reaction. The concerted coupling pathway, in which a C–N bond is formed through the direct nucleophilic addition of a carbon radical to the nitrogen atom of the Cu(II)–N species, is demonstrated to be kinetically unfavorable. The stepwise coupling pathway, which involves the combination of a carbon radical with a Cu(II)–N species before C–N bond formation, is shown to be probable. Both the Mulliken atomic spin density distribution and frontier molecular orbital analysis on the Cu(II)–N intermediate show that the Cu site is more reactive than that of N; thus, the carbon radical preferentially react with the metal center. The chemoselectivity of the cross-coupling is also explained by the differences in electron compatibility of the carbon radical, the nitrogen radical and the Cu(II)–N intermediate. The higher activation free energy for N–N radical–radical homo-coupling is attributed to the mismatch of Cu(II)–N species with the nitrogen radical because the electrophilicity for both is strong. PMID:28272407

  5. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules.

    PubMed

    Guo, Lin; Rueping, Magnus

    2018-05-15

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  6. Palladium-catalyzed substitution of (coumarinyl)methyl acetates with C-, N-, and S-nucleophiles

    PubMed Central

    Chattopadhyay, Kalicharan; Fenster, Erik; Grenning, Alexander J

    2012-01-01

    Summary The palladium-catalyzed nucleophilic substitution of (coumarinyl)methyl acetates is described. The reaction proceeds though a palladium π-benzyl-like complex and allows for many different types of C-, N-, and S-nucleophiles to be regioselectively added to the biologically active coumarin motif. This new method was utilized to prepare a 128-membered library of aminated coumarins for biological screening. PMID:23019448

  7. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups

    PubMed Central

    Saadi, Jakub; Bentz, Christoph; Redies, Kai; Lentz, Dieter; Zimmer, Reinhold

    2016-01-01

    Summary Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II) back to palladium(0) which is apparently achieved by the present triethylamine. PMID:27559374

  8. Palladium-catalyzed cocyclotrimerization of arynes with a pyramidalized alkene.

    PubMed

    Alonso, José M; Quiroga, Sabela; Codony, Sandra; Turcu, Andreea L; Barniol-Xicota, Marta; Pérez, Dolores; Guitián, Enrique; Vázquez, Santiago; Peña, Diego

    2018-05-23

    The metal-catalyzed [2+2+2] cocycloaddition of arynes with pyramidalized alkenes is presented. The generation of a highly reactive pyramidalized alkene in the presence of a large excess of in situ-produced arynes led to the corresponding cocyclotrimerization (1 : 2)-adducts in good yields, establishing the first example of a palladium-based reaction of a pyramidalized alkene.

  9. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments.

    PubMed

    Blangetti, Marco; Rosso, Heléna; Prandi, Cristina; Deagostino, Annamaria; Venturello, Paolo

    2013-01-17

    Since the first report and due to its handiness and wide scope, the Suzuki-Miyaura (SM) cross coupling reaction has become a routine methodology in many laboratories worldwide. With respect to other common transition metal catalyzed cross couplings, the SM reaction has been so far less exploited as a tool to introduce an acyl function into a specific substrate. In this review, the various approaches found in the literature will be considered, starting from the direct SM acylative coupling to the recent developments of cross coupling between boronates and acyl chlorides or anhydrides. Special attention will be dedicated to the use of masked acyl boronates, alkoxy styryl and alkoxy dienyl boronates as coupling partners. A final section will be then focused on the acyl SM reaction as key synthetic step in the framework of natural products synthesis.

  10. Iron-catalyzed cross-coupling of N-heterocyclic chlorides and bromides with arylmagnesium reagents.

    PubMed

    Kuzmina, Olesya M; Steib, Andreas K; Flubacher, Dietmar; Knochel, Paul

    2012-09-21

    A simple, practical iron salt catalyzed procedure allows fast cross-couplings of N-heterocyclic chlorides and bromides with various electron-rich and -poor arylmagnesium reagents. A solvent mixture of THF and tBuOMe is found to be essential for achieving high yields mainly by avoiding homocoupling side reactions.

  11. Palladium-catalyzed cyclization reactions of 2-vinylthiiranes with heterocumulenes. Regioselective and enantioselective formation of thiazolidine, oxathiolane, and dithiolane derivatives.

    PubMed

    Larksarp, C; Sellier, O; Alper, H

    2001-05-18

    The first palladium-catalyzed ring-expansion reaction of 2-vinylthiiranes with heterocumulenes to form sulfur-containing five-membered-ring heterocycles is described. This regioselective reaction requires 5 mol % of Pd(2)(dba)(3).CHCl(3) and 10 mol % of bidendate phosphine ligand (dppp, BINAP), at 50-80 degrees C, in THF. The reaction of 2-vinylthiiranes with carbodiimides, isocyanates, and ketenimines affords 1,3-thiazolidine derivatives, whereas the reaction with diphenylketene or isothiocyanates results in the formation of 1,3-oxathiolane or 1,3-dithiolane compounds in good to excellent isolated yields and in up to 78% ee.

  12. Palladium-catalyzed reactions in the synthesis of 3- and 4-substituted indoles. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegedus, L.S.; Sestrick, M.R.; Michaelson, E.T.

    1989-08-18

    4-Bromo-1-tosylindole (1) was converted to tricyclic indole enone 11, a potential intermediate in the synthesis of tetracyclic ergot alkaloids, by a series of palladium-catalyzed processes. Attempts to construct the ergot D ring by the hetero-Diels-Alder reaction of enone 11 and 1-azabutadiene 12 produced not the expected (4 + 2) adduct 13 but the benz(cd)indoline derivative 14 resulting from attack of the aza diene at the indole 2-position. The thermodynamic stability of the naphthol nucleus makes enone 11 generally susceptible to attack at the indole 2-position, as evidenced by the attack of hydride and methyl cuprate nucleophiles at this portion formingmore » indolines 16 and 17, respectively.« less

  13. Single-step synthesis of styryl phosphonic acids via palladium-catalyzed Heck coupling of vinyl phosphonic acid with aryl halides

    DOE PAGES

    McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan

    2017-10-27

    Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).

  14. Single-step synthesis of styryl phosphonic acids via palladium-catalyzed Heck coupling of vinyl phosphonic acid with aryl halides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan

    Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).

  15. Copper-Catalyzed Cyclopropanol Ring Opening Csp(3)-Csp(3) Cross-Couplings with (Fluoro)Alkyl Halides.

    PubMed

    Ye, Zhishi; Gettys, Kristen E; Shen, Xingyu; Dai, Mingji

    2015-12-18

    Novel and general copper-catalyzed cyclopropanol ring opening cross-coupling reactions with difluoroalkyl bromides, perfluoroalkyl iodides, monofluoroalkyl bromides, and 2-bromo-2-alkylesters to synthesize various β-(fluoro)alkylated ketones are reported. The reactions feature mild conditions and excellent functional group compatibility and can be scaled up to gram scale. Preliminary mechanistic studies suggest the involvement of radical intermediates. The difluoroalkyl-alkyl cross-coupling products can also be readily converted to more valuable and diverse gem-difluoro-containing compounds by taking advantage of the carbonyl group resulting from cyclopropanol ring opening.

  16. Enantioselective Desymmetrization via Carbonyl-Directed Catalytic Asymmetric Hydroboration and Suzuki-Miyaura Cross-Coupling

    PubMed Central

    Hoang, Gia L.; Yang, Zhao-Di; Smith, Sean M.; Pal, Rhitankar; Miska, Judy L.; Pérez, Damaris E.; Pelter, Libbie S. W.; Zeng, Xiao Cheng; Takacs, James M.

    2015-01-01

    The rhodium-catalyzed enantioselective desymmetrization of symmetric γ,δ–unsaturated amides via carbonyl-directed catalytic asymmetric hydroboration (directed CAHB) affords chiral secondary organoboronates with up to 98% ee. The chiral γ–borylated products undergo palladium-catalyzed Suzuki-Miyaura cross-coupling via the trifluoroborate salt with stereoretention. PMID:25642639

  17. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines.

    PubMed

    Zhang, Guoying; Gao, Bao; Huang, Hanmin

    2015-06-22

    A novel and efficient palladium-catalyzed hydroaminocarbonylation of alkenes with aminals has been developed under mild reaction conditions, and allows the synthesis of a wide range of N-alkyl linear amides in good yields with high regioselectivity. On the basis of this method, a cooperative catalytic system operating by the synergistic combination of palladium, paraformaldehyde, and acid was established for promoting the hydroaminocarbonylation of alkenes with both aromatic and aliphatic amines, which do not react well under conventional palladium-catalyzed hydroaminocarbonylation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    PubMed Central

    Ebner, David C.; Bagdanoff, Jeffrey T.; Ferreira, Eric M.; McFadden, Ryan M.; Caspi, Daniel D.; Trend, Raissa M.

    2010-01-01

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (−)-sparteine as chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of base and hydrogen bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 °C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good to excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones. PMID:19904777

  19. Synthesis of nitriles via palladium-catalyzed water shuffling from amides to acetonitrile.

    PubMed

    Zhang, Wandi; Haskins, Christopher W; Yang, Yang; Dai, Mingji

    2014-12-07

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.

  20. Visible-Light-Induced Nickel-Catalyzed Negishi Cross-Couplings by Exogenous-Photosensitizer-Free Photocatalysis.

    PubMed

    Abdiaj, Irini; Fontana, Alberto; Gomez, M Victoria; de la Hoz, Antonio; Alcázar, Jesús

    2018-03-22

    The merging of photoredox and transition-metal catalysis has become one of the most attractive approaches for carbon-carbon bond formation. Such reactions require the use of two organo-transition-metal species, one of which acts as a photosensitizer and the other one as a cross-coupling catalyst. We report herein an exogenous-photosensitizer-free photocatalytic process for the formation of carbon-carbon bonds by direct acceleration of the well-known nickel-catalyzed Negishi cross-coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross-coupling chemistry that involve the direct visible-light absorption of organometallic catalytic complexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Zinc-Catalyzed Synthesis of Conjugated Dienoates through Unusual Cross-Couplings of Zinc Carbenes with Diazo Compounds.

    PubMed

    Mata, Sergio; González, María J; González, Jesús; López, Luis A; Vicente, Rubén

    2017-01-23

    Zinc-catalyzed selective cross-coupling of two carbene sources, such as vinyl diazo compounds and enynones, enabled the synthesis of conjugated dienoate derivatives. This reaction involved the unprecedented coupling of a zinc furyl carbene with vinyl diazo compounds through the γ-carbon. Alternatively, dienoates were also prepared by a commutative cross-coupling of zinc vinyl carbenes generated from cyclopropenes and simple diazo compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 1,1,1-tris(hydroxymethyl)ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols.

    PubMed

    Chen, Yao-Jung; Chen, Hsin-Hung

    2006-11-23

    1,1,1-tris(hydroxymethyl)ethane was presented as a new, efficient, and versatile tridentate O-donor ligand suitable for the copper-catalyzed formation of C-N, C-S, and C-O bonds. This inexpensive and commercially available tripod ligand has been demonstrated to facilitate the copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols to afford the corresponding desired products in good to excellent yields. [reaction: see text].

  3. Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitrile

    PubMed Central

    Zhang, Wandi; Haskins, Christopher W.; Yang, Yang; Dai, Mingji

    2014-01-01

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield. PMID:25316145

  4. Copper-free Sonogashira cross-coupling for functionalization of alkyne-encoded proteins in aqueous medium and in bacterial cells.

    PubMed

    Li, Nan; Lim, Reyna K V; Edwardraja, Selvakumar; Lin, Qing

    2011-10-05

    Bioorthogonal reactions suitable for functionalization of genetically or metabolically encoded alkynes, for example, copper-catalyzed azide-alkyne cycloaddition reaction ("click chemistry"), have provided chemical tools to study biomolecular dynamics and function in living systems. Despite its prominence in organic synthesis, copper-free Sonogashira cross-coupling reaction suitable for biological applications has not been reported. In this work, we report the discovery of a robust aminopyrimidine-palladium(II) complex for copper-free Sonogashira cross-coupling that enables selective functionalization of a homopropargylglycine (HPG)-encoded ubiquitin protein in aqueous medium. A wide range of aromatic groups including fluorophores and fluorinated aromatic compounds can be readily introduced into the HPG-containing ubiquitin under mild conditions with good to excellent yields. The suitability of this reaction for functionalization of HPG-encoded ubiquitin in Escherichia coli was also demonstrated. The high efficiency of this new catalytic system should greatly enhance the utility of Sonogashira cross-coupling in bioorthogonal chemistry.

  5. Mechanistic Study on Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between Arenes and Boronic Acids under Aerobic Conditions.

    PubMed

    Zhang, Qian; Liu, Yang; Wang, Ting; Zhang, Xinhao; Long, Chao; Wu, Yun-Dong; Wang, Mei-Xiang

    2018-04-25

    Substantial attention has been given to modern organocopper chemistry in recent years since copper salts are naturally abundant, cheap, and less toxic in comparison to precious metals. Copper salts also exhibit versatility in catalyzing and mediating carbon-carbon and carbon-heteroatom bond forming reactions. Despite the wide applications of copper salts in catalysis, reaction mechanisms have remained elusive. Using azacalix[1]arene[3]pyridine, an arene-embedded macrocycle, and its isolated and structurally well-defined ArCu(II) and ArCu(III) compounds as molecular tools, we now report an in-depth experimental and computational study on the mechanism of a Cu(II)-catalyzed oxidative cross-coupling reaction between arenes and boronic acids with air as the oxidant. Stoichiometric reaction of organocopper compounds with p-tolylboronic acid validated arylcopper(II) rather than arylcopper(III) as a reactive organometallic intermediate. XPS, EPR, 1 H NMR, HRMS, and UV-vis spectroscopic evidence along with the isolation and quantification of all products and copper speciation, combined with computational analysis of the electronic structure and energetics of the transient intermediates, suggested a reaction sequence involving electrophilic metalation of arene by Cu(II), transmetalation of arylboronate to ArCu(II), the redox reaction between the resulting ArCu(II)Ar' and ArCu(II) to form respectively ArCu(III)Ar' and ArCu(I), and finally reductive elimination of ArCu(III)Ar'. Under aerobic catalytic conditions, all Cu(I) ions released from reductive elimination of ArCu(III)Ar' and from protolysis of ArCu(I) were oxidized by oxygen to regenerate Cu(II) species that enters into the next catalytic cycle. The unraveled reactivity of arylcopper(II) compounds and the catalytic cycle would enrich our knowledge of modern organocopper chemistry and provide useful information in the design of copper-catalyzed reactions.

  6. Efficient palladium-catalyzed asymmetric allylic alkylation of ketones and aldehydes.

    PubMed

    Zhao, Xiaohu; Liu, Delong; Xie, Fang; Liu, Yangang; Zhang, Wanbin

    2011-03-21

    Palladium-catalyzed asymmetric allylic alkylation of ketones, via enamines generated in situ as nucleophiles, were carried out smoothly with chiral metallocene-based P,N-ligands. Under the same conditions, however, reactions of aldehydes could hardly be observed. Subsequently, this obstacle was resolved by using chiral metallocene-based P,P-ligands. Both ketones and aldehydes afforded excellent enantioselectivities with up to 98% ee and 94% ee, respectively.

  7. Dinuclear NHC-palladium complexes containing phosphine spacers: synthesis, X-ray structures and their catalytic activities towards the Hiyama coupling reaction.

    PubMed

    Yang, Jin; Li, Pinhua; Zhang, Yicheng; Wang, Lei

    2014-05-21

    Six dinuclear N-heterocyclic carbene (NHC) palladium complexes, [PdCl2(IMes)]2(μ-dppe) (1), [PdCl2(IPr)]2(μ-dppe) (2), [PdCl2(IMes)]2(μ-dppb) (3), [PdCl2(IPr)]2(μ-dppb) (4), [PdCl2(IMes)]2(μ-dpph) (5), and [PdCl2(IPr)]2(μ-dpph) (6) [IMes = N,N'-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene; IPr = N,N'-bis-(2,6-di(iso-propyl)phenyl)imidazol-2-ylidene; dppe = 1,2-bis(diphenylphosphino)ethane, dppb = 1,4-bis(diphenylphosphino)butane; and dpph = 1,6-bis(diphenylphosphino)hexane], have been synthesized through bridge-cleavage reactions of chloro-bridged dimeric compounds, [Pd(μ-Cl)(Cl)(NHC)]2, with the corresponding diphosphine ligands. The obtained compounds were fully characterized by (1)H NMR, (13)C NMR and (31)P NMR spectroscopy, FT-IR, elemental analysis and single-crystal X-ray crystallography. Moreover, further explorations of the catalytic potential of the dinuclear carbene palladium complexes as catalysts for the Pd-catalyzed transformations have been performed under microwave irradiation conditions, and the complexes exhibited moderate to good catalytic activity in the Hiyama coupling reaction of trimethoxyphenylsilane with aryl chlorides.

  8. Surface-active ionic liquids for palladium-catalysed cross coupling in water: effect of ionic liquid concentration on the catalytically active species† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07757b

    PubMed Central

    Taskin, Meltem; Cognigni, Alice; Zirbs, Ronald; Reimhult, Erik

    2017-01-01

    We report the design and synthesis of surface-active ionic liquids for application in palladium-catalyzed cross coupling reactions. A series of dodecylimidazolium-based ionic liquids were applied as additives in the Heck reaction of ethyl acrylate and iodobenzene, and high yields of >90% could be obtained in water without the addition of further ligands. Our results indicate that the ionic liquid concentration in water is the key factor affecting the formation of the catalytically active species and hence the yield. Moreover, imidazolium-based ionic liquids that are able to form a carbene species differ significantly from conventional cationic surfactants, as a concentration dependent formation of the N-heterocyclic carbene complex was observed. PMID:29308189

  9. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki–Heck cross-coupling reaction

    PubMed Central

    Huras, Bogumiła

    2015-01-01

    Summary Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates) were synthesized in 30–100% yield using a Mizoroki–Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II) acetate coordinated with a tri(o-tolyl)phosphine ligand immobilized in a polyurea matrix. PMID:26199672

  10. Palladium-Catalyzed SN2'-Cyclization of Ambivalent (Bromoalkadienyl)malonates: Preparation of Medium- to Large-Membered Endocyclic Allenes.

    PubMed

    Ichio, Hiroaki; Murakami, Hidetoshi; Chen, Yen-Chou; Takahashi, Tamotsu; Ogasawara, Masamichi

    2017-07-21

    A palladium-catalyzed reaction for preparing various endocyclic allenes was developed. The substrates for the reaction were readily available ω-(pronucleophile-tethered)-3-bromo-1,3-alkadienes, and a palladium-catalyst facilitated their unimolecular S N 2'-cyclization in the presence of potassium tert-butoxide to give the corresponding 9- to 16-membered endocyclic allenes in fair yields of up to 67% together with the dimeric 16- to 32-membered endocyclic bis-allenes and other oligomeric/polymeric intermolecular reaction products. For higher yields of the monomeric endocyclic allenes, the reaction needed to be conducted under high-dilution conditions. Using a chiral palladium catalyst, axially chiral endocyclic allenes were obtained in up to 70% ee.

  11. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides.

    PubMed

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-06-16

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  12. Cross-coupling of alkenyl/aryl carboxylates with Grignard reagent via Fe-catalyzed C-O bond activation.

    PubMed

    Li, Bi-Jie; Xu, Li; Wu, Zhen-Hua; Guan, Bing-Tao; Sun, Chang-Liang; Wang, Bi-Qin; Shi, Zhang-Jie

    2009-10-21

    Iron-catalyzed cross-coupling of alkenyl/aryl carboxylates with primary alkyl Grignard reagent was described. This reaction brought a new family of electrophiles to iron catalysis. The combination of an inexpensive carboxylate electrophile and an iron catalyst would generate ample advantages.

  13. Regioselective palladium-catalyzed ring-opening reactions of C1-substituted oxabicyclo[2,2,1]hepta-2,5-diene-2,3-dicarboxylates

    PubMed Central

    Edmunds, Michael; Raheem, Mohammed Abdul; Boutin, Rebecca; Tait, Katrina

    2016-01-01

    Summary Palladium-catalyzed ring-opening reactions of C1 substituted 7-oxanorbornadiene derivatives with aryl iodides were investigated. The optimal conditions for this reaction were found to be PdCl2(PPh3)2, ZnCl2, Et3N and Zn in THF. Both steric and electronic factors played a role in the outcome of the reaction as increasing the steric bulk on the bridgehead carbon decreased the yield. These reactions were found to be highly regioselective, giving only one of the two possible regioisomers in all cases. A diverse collection of novel, highly substituted biphenyl derivatives were obtained. PMID:26977182

  14. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature.

    PubMed

    He, Nan; Li, Zhen Hua

    2016-04-21

    Formic acid decomposition (FAD) reaction has been an innovative way for hydrogen energy. Noble metal catalysts, especially palladium-containing nanoparticles, supported or unsupported, perform well in this reaction. Herein, we considered the simplest model, wherein one Pd atom is used as the FAD catalyst. With high-level theoretical calculations of CCSD(T)/CBS quality, we investigated all possible FAD pathways. The results show that FAD catalyzed by one Pd atom follows a different mechanism compared with that catalyzed by surfaces or larger clusters. At the initial stage of the reaction, FAD follows a dehydration route and is quickly poisoned by CO due to the formation of very stable PdCO. PdCO then becomes the actual catalyst for FAD at temperatures approximately below 1050 K. Beyond 1050 K, there is a switch of catalyst from PdCO to Pd atom. The results also show that dehydration is always favoured over dehydrogenation on either the Pd-atom or PdCO catalyst. On the Pd-atom catalyst, neither dehydrogenation nor dehydration follows the formate mechanism. In contrast, on the PdCO catalyst, dehydrogenation follows the formate mechanism, whereas dehydration does not. We also systematically investigated the performance of 24 density functional theory methods. We found that the performance of the double hybrid mPW2PLYP functional is the best, followed by the B3LYP, B3PW91, N12SX, M11, and B2PLYP functionals.

  15. Enantioselective synthesis of chiral isotopomers of 1-alkanols by a ZACA-Cu-catalyzed cross-coupling protocol.

    PubMed

    Xu, Shiqing; Oda, Akimichi; Negishi, Ei-ichi

    2014-12-01

    Chiral compounds arising from the replacement of hydrogen atoms by deuterium are very important in organic chemistry and biochemistry. Some of these chiral compounds have a non-measurable specific rotation, owing to very small differences between the isotopomeric groups, and exhibit cryptochirality. This particular class of compounds is difficult to synthesize and characterize. Herein, we present a catalytic and highly enantioselective conversion of terminal alkenes to various β and more remote chiral isotopomers of 1-alkanols, with ≥99 % enantiomeric excess (ee), by the Zr-catalyzed asymmetric carboalumination of alkenes (ZACA) and Cu-catalyzed cross-coupling reactions. ZACA-in situ iodinolysis of allyl alcohol and ZACA-in situ oxidation of TBS-protected ω-alkene-1-ols protocols were applied to the synthesis of both (R)- and (S)-difunctional intermediates with 80-90 % ee. These intermediates were readily purified to provide enantiomerically pure (≥99 % ee) compounds by lipase-catalyzed acetylation. These functionally rich intermediates serve as very useful synthons for the construction of various chiral isotopomers of 1-alkanols in excellent enantiomeric purity (≥99 % ee) by introducing deuterium-labeled groups by Cu-catalyzed cross-coupling reactions without epimerization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Highly selective biaryl cross-coupling reactions between aryl halides and aryl Grignard reagents: a new catalyst combination of N-heterocyclic carbenes and iron, cobalt, and nickel fluorides.

    PubMed

    Hatakeyama, Takuji; Hashimoto, Sigma; Ishizuka, Kentaro; Nakamura, Masaharu

    2009-08-26

    Combinations of N-heterocyclic carbenes (NHCs) and fluoride salts of the iron-group metals (Fe, Co, and Ni) have been shown to be excellent catalysts for the cross-coupling reactions of aryl Grignard reagents (Ar(1)MgBr) with aryl and heteroaryl halides (Ar(2)X) to give unsymmetrical biaryls (Ar(1)-Ar(2)). Iron fluorides in combination with SIPr, a saturated NHC ligand, catalyze the biaryl cross-coupling between various aryl chlorides and aryl Grignard reagents in high yield and high selectivity. On the other hand, cobalt and nickel fluorides in combination with IPr, an unsaturated NHC ligand, exhibit interesting complementary reactivity in the coupling of aryl bromides or iodides; in contrast, with these substrates the iron catalysts show a lower selectivity. The formation of homocoupling byproducts is suppressed markedly to less than 5% in most cases by choosing the appropriate metal fluoride/NHC combination. The present catalyst combinations offer several synthetic advantages over existing methods: practical synthesis of a broad range of unsymmetrical biaryls without the use of palladium catalysts and phosphine ligands. On the basis of stoichiometric control experiments and theoretical studies, the origin of the unique catalytic effect of the fluoride counterion can be ascribed to the formation of a higher-valent heteroleptic metalate [Ar(1)MF(2)]MgBr as the key intermediate in our proposed catalytic cycle. First, stoichiometric control experiments revealed the stark differences in chemical reactivity between the metal fluorides and metal chlorides. Second, DFT calculations indicate that the initial reduction of di- or trivalent metal fluoride in the wake of transmetalation with PhMgCl is energetically unfavorable and that formation of a divalent heteroleptic metalate complex, [PhMF(2)]MgCl (M = Fe, Co, Ni), is dominant in the metal fluoride system. The heteroleptic ate-complex serves as a key reactive intermediate, which undergoes oxidative addition with Ph

  17. Mild Aromatic Palladium-Catalyzed Protodecarboxylation: Kinetic Assessment of the Decarboxylative Palladation and the Protodepalladation Steps

    PubMed Central

    Dickstein, Joshua S.; Curto, John M.; Gutierrez, Osvaldo; Mulrooney, Carol A.; Kozlowski, Marisa C.

    2013-01-01

    Mechanism studies of a mild palladium catalyzed decarboxylation of aromatic carboxylic acids are described. In particular, reaction orders and activation parameters for the two stages of the transformation were determined. These studies guided development of a catalytic system capable of turnover. Further evidence reinforces that the second stage, protonation of the aryl palladium intermediate, is the rate-determining step of the reaction. The first step, decarboxylative palladation is proposed to occur through an intramolecular electrophilic palladation pathway, which is supported by computational and mechansim studies. In contrast to the reverse reaction (C-H insertion), the data support an electrophilic aromatic substitution mechanism involving a stepwise intramolecular protonation sequence for the protodepalladation portion of the reaction. PMID:23590518

  18. Silver and palladium alloy nanoparticle catalysts: reductive coupling of nitrobenzene through light irradiation.

    PubMed

    Peiris, Sunari; Sarina, Sarina; Han, Chenhui; Xiao, Qi; Zhu, Huai-Yong

    2017-08-15

    Silver-palladium (Ag-Pd) alloy nanoparticles strongly absorb visible light and exhibit significantly higher photocatalytic activity compared to both pure palladium (Pd) and silver (Ag) nanoparticles. Photocatalysts of Ag-Pd alloy nanoparticles on ZrO 2 and Al 2 O 3 supports are developed to catalyze the nitroaromatic coupling to the corresponding azo compounds under visible light irradiation. Ag-Pd alloy NP/ZrO 2 exhibited the highest photocatalytic activity for nitrobenzene coupling to azobenzene (yield of ∼80% in 3 hours). The photocatalytic efficiency could be optimized by altering the Ag : Pd ratio of the alloy nanoparticles, irradiation light intensity, temperature and wavelength. The rate of the reaction depends on the population and energy of the excited electrons, which can be improved by increasing the light intensity or by using a shorter wavelength. The knowledge developed in this study may inspire further studies on Ag alloy photocatalysts and organic syntheses using Ag-Pd nanoparticle catalysts driven under visible light Irradiation.

  19. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles.

    PubMed

    Ma, Dawei; Cai, Qian

    2008-11-18

    Copper-assisted Ullmann-type coupling reactions are valuable transformations for organic synthesis. Researchers have extensively applied these reactions in both academic and industrial settings. However, two important issues, the high reaction temperatures (normally above 150 degrees C) and the stoichiometric amounts of copper necessary, have greatly limited the reaction scope. To solve these problems, we and other groups have recently explored the use of special ligands to promote these coupling reactions. We first showed that the structure of alpha-amino acids can accelerate Cu-assisted Ullmann reactions, leading to the coupling reactions of aryl halides and alpha-amino acids at 80-90 degrees C. In response to these encouraging results, we also discovered that an l-proline ligand facilitated the following transformations: (1) coupling of aryl halides with primary amines, cyclic secondary amines, and N-containing heterocycles at 40-90 degrees C; (2) coupling of aryl halides with sulfinic acid salts at 80-95 degrees C; (3) azidation of aryl halides and vinyl halides with sodium azide at 40-95 degrees C; (4) coupling of aryl halides with activated methylene compounds at 25-50 degrees C. In addition, we found that N,N-dimethylglycine as a ligand facilitated Cu-catalyzed biaryl ether formation at 90 degrees C. Moreover, Sonogashira reactions worked in the absence of palladium and phosphine ligands, forming enamides from vinyl halides and amides at temperatures ranging from ambient temperature up to 80 degrees C. Furthermore, we discovered that an ortho-amide group can accelerate some Ullmann-type reactions. This functional group in combination with other ligand effects allowed for aryl amination or biaryl ether formation at ambient temperature. The coupling between aryl halides and activated methylene compounds even proceeded at -45 degrees C to enantioselectively form a quaternary carbon center. Taking advantage of these results, we developed several novel approaches

  20. Stereoselective Synthesis of Tetrasubstituted Furylalkenes via Gold-Catalyzed Cross-Coupling of Enynones with Diazo Compounds.

    PubMed

    Liu, Pei; Sun, Jiangtao

    2017-07-07

    A stereoselective, gold-catalyzed, cross-coupling reaction of enynones with diazo compounds has been developed, affording 2-alkenylfurans in moderate to good yields with excellent E-stereoselectivity. Upon using diazo compounds as nucleophiles to trap the in situ formed gold furyl carbene, this protocol provides a novel path toward the formation of unsymmetrical tetrasubstituted alkenes.

  1. Design, synthesis and antitubercular evaluation of novel 2-substituted-3H-benzofuro benzofurans via palladium-copper catalysed Sonagashira coupling reaction.

    PubMed

    Yempala, Thirumal; Sridevi, Jonnalagadda Padma; Yogeeswari, Perumal; Sriram, Darmarajan; Kantevari, Srinivas

    2013-10-01

    A series of novel natural product like 2-substiuted-3H-benzofurobenzofurans designed by molecular hybridization were synthesized in very good yields. The key reactions involved in the synthesis are iodination of 2-dibenzofuranol using iodine monochloride followed by palladium-copper catalyzed Sonagashira-coupling of 1-iododibenzofuran-2-ol with various alkyl and aryl acetylenes. Among the all 10 new compounds screened for in vitro anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv, 2-(4-methoxy-2-methyl phenyl)-3H-benzofuro[3,2-e]benzofuran (7c) was found to be most active with MIC 3.12 μg/mL and has shown lower cytotoxicity with good therapeutic index. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Wu, Yichen

    Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.

  3. Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage.

    PubMed

    Ackermann, Lutz; Vicente, Rubén; Kapdi, Anant R

    2009-01-01

    The area of transition-metal-catalyzed direct arylation through cleavage of C-H bonds has undergone rapid development in recent years, and is becoming an increasingly viable alternative to traditional cross-coupling reactions with organometallic reagents. In particular, palladium and ruthenium catalysts have been described that enable the direct arylation of (hetero)arenes with challenging coupling partners--including electrophilic aryl chlorides and tosylates as well as simple arenes in cross-dehydrogenative arylations. Furthermore, less expensive copper, iron, and nickel complexes were recently shown to be effective for economically attractive direct arylations.

  4. Synthesis of substituted isoquinolines utilizing palladium-catalyzed α-arylation of ketones

    PubMed Central

    Donohoe, Timothy J.; Pilgrim, Ben S.; Jones, Geraint R.; Bassuto, José A.

    2012-01-01

    The utilization of sequential palladium-catalyzed α-arylation and cyclization reactions provides a general approach to an array of isoquinolines and their corresponding N-oxides. This methodology allows the convergent combination of readily available precursors in a regioselective manner and in excellent overall yields. This powerful route to polysubstituted isoquinolines, which is not limited to electron rich moieties, also allows rapid access to analogues of biologically active compounds. PMID:22753504

  5. Palladium- and Copper-Catalyzed Arylation of Carbon-Hydrogen Bonds

    PubMed Central

    Daugulis, Olafs; Do, Hien-Quang; Shabashov, Dmitry

    2010-01-01

    The transition-metal-catalyzed functionalization of C-H bonds is a powerful method for generating carbon-carbon bonds. Although significant advances to this field have been reported during the last decade, many challenges remain. First, most of the methods are substrate-specific and thus cannot be generalized. Second, conversions of unactivated (i.e. not benzylic or alpha to heteroatom) sp3 C–H bonds to C–C bonds are rare, with most examples limited to t-butyl groups—a conversion that is inherently simple because there are no β-hydrogens that can be eliminated. Finally, the palladium, rhodium, and ruthenium catalysts routinely used for the conversion of C–H bonds to C–C bonds are expensive. Catalytically active metals that are cheaper and less exotic (e.g. copper, iron, and manganese) are rarely used. This Account describes our attempts to provide solutions to these three problems. We have developed a general method for directing-group-containing arene arylation by aryl iodides. Using palladium acetate as the catalyst, we arylated anilides, benzamides, benzoic acids, benzylamines, and 2-substituted pyridine derivatives under nearly identical conditions. We have also developed a method for the palladium-catalyzed auxiliary-assisted arylation of unactivated sp3 C–H bonds. This procedure allows for the β-arylation of carboxylic acid derivatives and the γ-arylation of amine derivatives. Furthermore, copper catalysis can be used to mediate the arylation of acidic arene C–H bonds (i.e. those with pKa values <35 in DMSO). Using a copper iodide catalyst in combination with a base and a phenanthroline ligand, we successfully arylated electron-rich and electron-deficient heterocycles and electron-poor arenes possessing at least two electron-withdrawing groups. The reaction exhibits unusual regioselectivity: arylation occurs at the most hindered position. This copper-catalyzed method supplements the well-known C–H activation/borylation methodology, in which

  6. Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds.

    PubMed

    Daugulis, Olafs; Do, Hien-Quang; Shabashov, Dmitry

    2009-08-18

    The transition-metal-catalyzed functionalization of C-H bonds is a powerful method for generating carbon-carbon bonds. Although significant advances to this field have been reported during the past decade, many challenges remain. First, most of the methods are substrate-specific and thus cannot be generalized. Second, conversions of unactivated (i.e., not benzylic or alpha to heteroatom) sp(3) C-H bonds to C-C bonds are rare, with most examples limited to t-butyl groups, a conversion that is inherently simple because there are no beta-hydrogens that can be eliminated. Finally, the palladium, rhodium, and ruthenium catalysts routinely used for the conversion of C-H bonds to C-C bonds are expensive. Catalytically active metals that are cheaper and less exotic (e.g., copper, iron, and manganese) are rarely used. This Account describes our attempts to provide solutions to these three problems. We have developed a general method for directing-group-containing arene arylation by aryl iodides. Using palladium acetate as the catalyst, we arylated anilides, benzamides, benzoic acids, benzylamines, and 2-substituted pyridine derivatives under nearly identical conditions. We have also developed a method for the palladium-catalyzed auxiliary-assisted arylation of unactivated sp(3) C-H bonds. This procedure allows for the beta-arylation of carboxylic acid derivatives and the gamma-arylation of amine derivatives. Furthermore, copper catalysis can be used to mediate the arylation of acidic arene C-H bonds (i.e., those with pK(a) values <35 in DMSO). Using a copper iodide catalyst in combination with a base and a phenanthroline ligand, we successfully arylated electron-rich and electron-deficient heterocycles and electron-poor arenes possessing at least two electron-withdrawing groups. The reaction exhibits unusual regioselectivity: arylation occurs at the most hindered position. This copper-catalyzed method supplements the well-known C-H activation/borylation methodology, in

  7. Mild Palladium Catalyzed ortho C-H Bond Functionalizations of Aniline Derivatives.

    PubMed

    Tischler, Ms Orsolya; Tóth, Mr Balázs; Novák, Zoltán

    2017-02-01

    This account collects the developments and transformations which avoid the utilization of harsh reaction conditions in the field of palladium catalyzed, ortho-directed C-H activation of aniline derivatives from the first attempts to up-to-date results, including the results of our research laboratory. The discussed functionalizations performed under mild conditions include acylation, olefination, arylation, alkylation, alkoxylation reactions. Beside the optimization studies and the synthetic applications mechanistic investigations are also presented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Copper-catalyzed domino reactions for the synthesis of cyclic compounds.

    PubMed

    Liao, Qian; Yang, Xianghua; Xi, Chanjuan

    2014-09-19

    Copper-catalyzed domino reactions are one of the most useful strategies for the construction of various cyclic compounds. In this Synopsis, we mainly focus on the latest advances in copper-catalyzed cross-coupling or addition-initiated domino reactions in the synthesis of cyclic compounds, including double alkenylation of N- or S-nucleophiles, alkenylation or alkynlation followed by cyclization of amides or amines, addition and cyclization of heteroallenes affording heterocycles, and coupling and cyclization of 1,3-dicarbonyl compounds toward heterocycles.

  9. Conversion of Arylboronic Acids to Tetrazoles Catalyzed by ONO Pincer-Type Palladium Complex.

    PubMed

    Vignesh, Arumugam; Bhuvanesh, Nattamai S P; Dharmaraj, Nallasamy

    2017-01-20

    A convenient synthesis of a library of tetrazoles through a novel and operationally simple protocol effecting the direct conversion of arylboronic acids catalyzed by a new ONO pincer-type Pd(II) complex under mild reaction conditions using the readily available reagents is reported. The palladium complex was reused up to four cycles in an open-flask condition.

  10. Palladium-Catalyzed Direct C-H Allylation of Electron-Deficient Polyfluoroarenes with Alkynes.

    PubMed

    Zheng, Jun; Breit, Bernhard

    2018-04-06

    A palladium-catalyzed intermolecular direct C-H allylation of polyfluoroarenes with alkynes is reported. Unlike classic hydroarylation reactions, alkynes are used as allylic electrophile surrogates in this direct aromatic C-H allylation. As an atom-economic and efficient method, various linear allylated fluoroarenes were synthesized from two simple and easy-to-access feedstocks in good to excellent yields, as well as regio- and stereoselectivity.

  11. Interactions of soil-derived dissolved organic matter with phenol in peroxidase-catalyzed oxidative coupling reactions.

    PubMed

    Huang, Qingguo; Weber, Walter J

    2004-01-01

    The influence of dissolved soil organic matter (DSOM) derived from three geosorbents of different chemical composition and diagenetic history on the horseradish peroxidase (HRP) catalyzed oxidative coupling reactions of phenol was investigated. Phenol conversion and precipitate-product formation were measured, respectively, by HPLC and radiolabeled species analysis. Fourier transform infrared (FTIR) spectroscopy and capillary electrophoresis (CE) were used to characterize the products of enzymatic coupling, and the acute toxicities of the soluble products were determined by Microtox assay. Phenol conversion and precipitate formation were both significantly influenced by cross-coupling of phenol with dissolved organic matter, particularly in the cases of the more reactive and soluble DSOMs derived from two diagenetically "young" humic-type geosorbents. FTIR and CE characterizations indicate that enzymatic cross-coupling in these two cases leads to incorporation of phenol in DSOM macromolecules, yielding nontoxic soluble products. Conversely, cross-coupling appears to proceed in parallel with self-coupling in the presence of the relatively inert and more hydrophobic DSOM derived from a diagenetically "old" kerogen-type shale material. The products formed in this system have lower solubility and precipitate more readily, although their soluble forms tend to be more toxic than those formed by dominant cross-coupling reactions in the humic-type DSOM solutions. Several of the findings reported may be critically important with respect to feasibility evaluations and the engineering design of associated remediation schemes.

  12. Mechanism and scope of the cyanide-catalyzed cross silyl benzoin reaction.

    PubMed

    Linghu, Xin; Bausch, Cory C; Johnson, Jeffrey S

    2005-02-16

    In this work, cross silyl benzoin addition reactions between acylsilanes (1) and aldehydes (2) catalyzed by metal cyanides are described. Unsymmetrical aryl-, heteroaryl-, and alkyl-substituted benzoin adducts can be generated in moderate to excellent yields with complete regiocontrol using potassium cyanide and a phase transfer catalyst. From a screen of transition metal cyanide complexes, lanthanum tricyanide was identified as an improved second-generation catalyst for the cross silyl benzoin reaction. A study of the influence of water on the KCN-catalyzed cross silyl benzoin addition revealed more practical reaction conditions using unpurified solvent under ambient conditions. A sequential silyl benzoin addition/cyanation/O-acylation reaction that resulted in two new C-C bonds was achieved in excellent yield. The mechanism of cross silyl benzoin addition is proposed in detail and is supported by crossover studies and a number of unambiguous experiments designed to ascertain the reversibility of key steps. No productive chemistry arises from cyanation of the more electrophilic aldehyde component. Formation of the carbon-carbon bond is shown to be the last irreversible step in the reaction.

  13. Highly enantioselective synthesis of γ-, δ-, and ε-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)–Cu- or Pd-catalyzed cross-coupling

    PubMed Central

    Xu, Shiqing; Oda, Akimichi; Kamada, Hirofumi; Negishi, Ei-ichi

    2014-01-01

    Despite recent advances of asymmetric synthesis, the preparation of enantiomerically pure (≥99% ee) compounds remains a challenge in modern organic chemistry. We report here a strategy for a highly enantioselective (≥99% ee) and catalytic synthesis of various γ- and more-remotely chiral alcohols from terminal alkenes via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction)–Cu- or Pd-catalyzed cross-coupling. ZACA–in situ oxidation of tert-butyldimethylsilyl (TBS)-protected ω-alkene-1-ols produced both (R)- and (S)-α,ω-dioxyfunctional intermediates (3) in 80–88% ee, which were readily purified to the ≥99% ee level by lipase-catalyzed acetylation through exploitation of their high selectivity factors. These α,ω-dioxyfunctional intermediates serve as versatile synthons for the construction of various chiral compounds. Their subsequent Cu-catalyzed cross-coupling with various alkyl (primary, secondary, tertiary, cyclic) Grignard reagents and Pd-catalyzed cross-coupling with aryl and alkenyl halides proceeded smoothly with essentially complete retention of stereochemical configuration to produce a wide variety of γ-, δ-, and ε-chiral 1-alkanols of ≥99% ee. The MαNP ester analysis has been applied to the determination of the enantiomeric purities of δ- and ε-chiral primary alkanols, which sheds light on the relatively undeveloped area of determination of enantiomeric purity and/or absolute configuration of remotely chiral primary alcohols. PMID:24912191

  14. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters.

    PubMed

    Thomas, Bryce N; Moon, Patrick J; Yin, Shengkang; Brown, Alex; Lundgren, Rylan J

    2018-01-07

    A well-defined Ir-allyl complex catalyzes the Z -selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E -products typically observed in metal-mediated coupling reactions to enable the synthesis of Z , E -dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir-carbene and Ir-allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E-H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt 3 .

  15. Development of a second generation palladium-catalyzed cycloalkenylation and its application to bioactive natural product synthesis.

    PubMed

    Toyota, Masahiro

    2013-07-01

    A novel palladium-catalyzed intramolecular oxidative alkylation of unactivated olefins is described. This protocol was devised to solve one of the drawbacks of the original palladium-catalyzed cycloalkenylation that we developed. We call this new procedure the 'second generation palladium-catalyzed cycloalkenylation'. This protocol has been applied to the total syntheses of cis-195A, trans-195A, boonein, scholareins A, C, D, and alpha-skytanthine.

  16. Palladium-catalyzed heteroannulation of 1,3-dienes to form alpha-alkylidene-gamma-butyrolactones.

    PubMed

    Gagnier, S V; Larock, R C

    2000-03-10

    alpha-Alkylidene-gamma-butyrolactones are readily prepared by the palladium-catalyzed heteroannulation of a variety of 1,3-dienes by alpha-iodo and alpha-bromo acrylic acids. The best results are obtained by employing a catalytic amount of the sterically hindered chelating alkyl phosphine D-t-BPF [(di-tert-butylphosphino)ferrocene]. In most cases, this process is highly regioselective. The reaction is believed to proceed via (1) oxidative addition of the vinylic halide to Pd(0), (2) organopalladium addition to the less hindered end of the 1,3-diene to form a pi-allylpalladium intermediate, and (3) nucleophilic displacement of the palladium by the carboxylate ion.

  17. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    PubMed Central

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  18. Probing the evolution of palladium species in Pd@MOF catalysts during the Heck coupling reaction: An operando X-ray absorption spectroscopy study.

    PubMed

    Yuan, Ning; Pascanu, Vlad; Huang, Zhehao; Valiente, Alejandro; Heidenreich, Niclas; Leubner, Sebastian; Inge, A Ken; Gaar, Jakob; Stock, Norbert; Persson, Ingmar; Martin-Matute, Belen; Zou, Xiaodong

    2018-06-11

    The mechanism of the Heck C-C coupling reaction catalyzed by Pd@MOFs has been investigated using operando X-ray absorption spectroscopy (XAS) and powder X-ray diffraction (PXRD) combined with transmission electron microscopy (TEM) analysis and nuclear magnetic resonance ( 1 H NMR) kinetic studies. A custom-made reaction cell was used allowing operando PXRD and XAS data collection using high-energy synchrotron radiation. By analyzing the XAS data in combination with ex situ studies, the evolution of the palladium species is followed from the as-synthesized to its deactivated form. An adaptive reaction mechanism is pro-posed. Mononuclear Pd(II) complexes are found to be the dominant active species at the beginning of the reaction, which then gradually transform into Pd nanoclusters with 13-20 Pd atoms on average in later catalytic turnovers. Consumption of available reagent and substrate leads to coordination of Cl - ions to their surfaces, which causes the poisoning of the active sites. By understanding the deactivation process, it was possible to tune the reaction conditions and prolong the lifetime of the catalyst.

  19. New cross-coupling reaction of arylbromide with arylboric acid catalyzed by nano metals

    NASA Astrophysics Data System (ADS)

    An, Zhong W.; Chen, Xin B.

    2002-06-01

    Synthetic method of compounds 4,4'-bis-(trans-4- alkylcyclohexyl) biphenyl by cross-coupling reaction of arylboric acid and arylbromide in the presence of cetrimonium bromide over nano Ni or Cu catalyst is presented. The reaction is carried out under reflux temperature in THF/H2O for 15 h with yield 60% to approximately 65% for nano nickel and 25% to approximately 30% for nano copper.

  20. Palladium-Catalyzed α-Arylation of 2-Chloroacetates and 2-Chloroacetamides

    PubMed Central

    Traister, Kaitlin M.; Barcellos, Thiago

    2013-01-01

    A method has been developed for the Pd-catalyzed synthesis of α-(hetero)aryl esters and amides through a Suzuki–Miyaura cross-coupling reaction. This method avoids the use of strong base, does not necessitate inert or low temperature formation of reagents, and does not require the use of a large excess of organometallic reagent. Utilization of organotrifluoroborate salts as nucleophilic partners allows a variety of functional groups and heterocyclic compounds to be tolerated. PMID:23570264

  1. Gold(I)-catalyzed diazo cross-coupling: a selective and ligand-controlled denitrogenation/cyclization cascade.

    PubMed

    Xu, Guangyang; Zhu, Chenghao; Gu, Weijin; Li, Jian; Sun, Jiangtao

    2015-01-12

    An unprecedented gold-catalyzed ligand-controlled cross-coupling of diazo compounds by sequential selective denitrogenation and cyclization affords N-substituted pyrazoles in a position-switchable mode. This novel transformation features selective decomposition of one diazo moiety and simultaneous preservation of the other one from two substrates. Notably, the choice of the ancillary ligand to the gold complex plays a pivotal role on the chemo- and regioselectivity of the reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Production cross sections of deuteron-induced reactions on natural palladium for Ag isotopes

    NASA Astrophysics Data System (ADS)

    Ukon, Naoyuki; Aikawa, Masayuki; Komori, Yukiko; Haba, Hiromitsu

    2018-07-01

    Activation cross sections for deuteron-induced reactions on natural palladium were measured up to 24 MeV using the stacked-foil method and the high resolution gamma-ray spectroscopy. The production cross sections of 103Ag, the parent of a medical radioactive isotope 103Pd, were obtained. We found that our result is in good agreement with the previous data up to 20.3 MeV, and obtained new data at higher energies. In addition, the production cross sections of 104g+mAg, 105Ag, 106mAg, 110mAg and 111Ag were presented.

  3. Efficient Synthesis of Novel Pyridine-Based Derivatives via Suzuki Cross-Coupling Reaction of Commercially Available 5-Bromo-2-methylpyridin-3-amine: Quantum Mechanical Investigations and Biological Activities.

    PubMed

    Ahmad, Gulraiz; Rasool, Nasir; Ikram, Hafiz Mansoor; Gul Khan, Samreen; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Al-Zahrani, Eman; Ali Rana, Usman; Akhtar, Muhammad Nadeem; Alitheen, Noorjahan Banu

    2017-01-27

    The present study describes palladium-catalyzed one pot Suzuki cross-coupling reaction to synthesize a series of novel pyridine derivatives 2a - 2i , 4a - 4i . In brief, Suzuki cross-coupling reaction of 5-bromo-2-methylpyridin-3-amine ( 1 ) directly or via N -[5-bromo-2-methylpyridine-3-yl]acetamide ( 3 ) with several arylboronic acids produced these novel pyridine derivatives in moderate to good yield. Density functional theory (DFT) studies were carried out for the pyridine derivatives 2a - 2i and 4a - 4i by using B3LYP/6-31G(d,p) basis with the help of GAUSSIAN 09 suite programme. The frontier molecular orbitals analysis, reactivity indices, molecular electrostatic potential and dipole measurements with the help of DFT methods, described the possible reaction pathways and potential candidates as chiral dopants for liquid crystals. The anti-thrombolytic, biofilm inhibition and haemolytic activities of pyridine derivatives were also investigated. In particular, the compound 4b exhibited the highest percentage lysis value (41.32%) against clot formation in human blood among all newly synthesized compounds. In addition, the compound 4f was found to be the most potent against Escherichia coli with an inhibition value of 91.95%. The rest of the pyridine derivatives displayed moderate biological activities.

  4. Palladium-catalyzed cyclocarbonylation of o-iodoanilines with heterocumulenes: regioselective preparation of 4(3H)-quinazolinone derivatives

    PubMed

    Larksarp; Alper

    2000-05-09

    A catalyst system comprising palladium acetate-bidentate phosphine is effective for the cyclocarbonylation of o-iodoanilines with heterocumulenes at 70-100 degrees C for 12-24 h to give the corresponding 4(3H)-quinazolinone derivatives in good yields. Utilizing o-iodoaniline with isocyanates, carbodiimides, and ketenimines for the reaction, 2,4-(1H,3H)-quinazolinediones, 2-amino-4(3H)-quinazolinones and 2-alkyl-4(3H)-quinazolinones were obtained, respectively. The nature of the substrates including the electrophilicity of the carbon center of the carbodiimide, and the stability of the ketenimine, influence the product yields of this reaction. Urea-type intermediates are believed to be generated first in situ from the reaction of o-iodoanilines with heterocumulenes, followed by palladium-catalyzed carbonylation and cyclization to yield the products.

  5. Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water.

    PubMed

    Li, Zhengkai; Ke, Fang; Deng, Hang; Xu, Hualong; Xiang, Haifeng; Zhou, Xiangge

    2013-05-14

    A simple and efficient protocol for copper-catalyzed coupling reactions between aryl halides and elemental sulfur or selenium has been developed. A variety of disulfides and diselenides can be obtained in moderate to excellent yields up to 96%.

  6. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines.

    PubMed

    Su, Weike; Yu, Jingbo; Li, Zhenhua; Jiang, Zhijiang

    2011-11-04

    Solvent-free reaction using a high-speed ball milling technique has been first applied to cross-dehydrogenative coupling (CDC) reactions between tetrahydroisoquinolines and three types of pronucleophiles such as nitroalkanes, alkynes, and indoles. All coupling products were obtained in good yields at short reaction times (no more than 40 min). When alkynes and indoles were used as pronucleophile, the reactions can be catalyzed efficiently by recoverable copper balls without any additional metal catalyst.

  7. N-Heterocyclic carbene-catalyzed direct cross-aza-benzoin reaction: Efficient synthesis of α-amino-β-keto esters.

    PubMed

    Uno, Takuya; Kobayashi, Yusuke; Takemoto, Yoshiji

    2012-01-01

    An efficient catalytic synthesis of α-amino-β-keto esters has been newly developed. Cross-coupling of various aldehydes with α-imino ester, catalyzed by N-heterocyclic carbene, leads chemoselectively to α-amino-β-keto esters in moderate to good yields with high atom efficiency. The reaction mechanism is discussed, and it is proposed that the α-amino-β-keto esters are formed under thermodynamic control.

  8. Remote C-H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling.

    PubMed

    Xu, Jun; Shen, Chao; Zhu, Xiaolei; Zhang, Pengfei; Ajitha, Manjaly J; Huang, Kuo-Wei; An, Zhongfu; Liu, Xiaogang

    2016-03-18

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper-catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single-electron-transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C-S cross-coupling. Importantly, our copper-catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C-O, C-Br, C-N, C-C, and C-I. These findings provide a fundamental insight into the activation of remote C-H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. CuO nanoparticles catalyzed C-N, C-O, and C-S cross-coupling reactions: scope and mechanism.

    PubMed

    Jammi, Suribabu; Sakthivel, Sekarpandi; Rout, Laxmidhar; Mukherjee, Tathagata; Mandal, Santu; Mitra, Raja; Saha, Prasenjit; Punniyamurthy, Tharmalingam

    2009-03-06

    CuO nanoparticles have been studied for C-N, C-O, and C-S bond formations via cross-coupling reactions of nitrogen, oxygen, and sulfur nucleophiles with aryl halides. Amides, amines, imidazoles, phenols, alcohols and thiols undergo reactions with aryl iodides in the presence of a base such as KOH, Cs(2)CO(3), and K(2)CO(3) at moderate temperature. The procedure is simple, general, ligand-free, and efficient to afford the cross-coupled products in high yield.

  10. Ligand-Free Suzuki-Miyaura Coupling Reactions Using an Inexpensive Aqueous Palladium Source: A Synthetic and Computational Exercise for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hill, Nicholas J.; Bowman, Matthew D.; Esselman, Brian J.; Byron, Stephen D.; Kreitinger, Jordan; Leadbeater, Nicholas E.

    2014-01-01

    An inexpensive procedure for introducing the Suzuki-Miyaura coupling reaction into a high-enrollment undergraduate organic chemistry laboratory course is described. The procedure employs an aqueous palladium solution as the catalyst and a range of para-substituted aryl bromides and arylboronic acids as substrates. The coupling reactions proceed…

  11. Synthesis of pyrrole-imidazole polyamide oligomers based on a copper-catalyzed cross-coupling strategy.

    PubMed

    Shiga, Naoki; Takayanagi, Shihori; Muramoto, Risa; Murakami, Tasuku; Qin, Rui; Suzuki, Yuta; Shinohara, Ken-Ichi; Kaneda, Atsushi; Nemoto, Tetsuhiro

    2017-05-15

    Pyrrole-imidazole (Py-Im) polyamides are useful tools for chemical biology and medicinal chemistry studies due to their unique binding properties to the minor groove of DNA. We developed a novel method of synthesizing Py-Im polyamide oligomers based on a Cu-catalyzed cross-coupling strategy. All four patterns of dimer fragments could be synthesized using a Cu-catalyzed Ullmann-type cross-coupling with easily prepared monomer units. Moreover, we demonstrated that pyrrole dimer, trimer, and tetramer building blocks for Py-Im polyamide synthesis were accessible by combining site selective iodination of the pyrrole/pyrrole coupling adduct. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Palladium-catalyzed cyclocoupling of 2-halobiaryls with isocyanides via the cleavage of carbon-hydrogen bonds.

    PubMed

    Tobisu, Mamoru; Imoto, Shinya; Ito, Sana; Chatani, Naoto

    2010-07-16

    To demonstrate the utility of isocyanides in catalytic C-H bond functionalization reactions, a palladium-catalyzed cyclocoupling reaction of 2-halobiaryls with isocyanides was developed. The reaction afforded an array of fluorenone imine derivatives via the cleavage of a C-H bond at the 2'-position of 2-halobiaryls. The use of 2,6-disubstituted phenyl isocyanide was crucial for this catalytic cyclocoupling reaction to proceed. The reaction was applicable to heterocyclic and vinylic substrates, allowing the construction of a wide range of ring system. The large kinetic isotope effect observed (k(H)/k(D) = 5.3) indicates that C-H bond activation was the turnover-limiting step in this catalysis.

  13. Two palladium-catalyzed domino reactions from one set of substrates/reagents: efficient synthesis of substituted indenes and cis-stilbenoid hydrocarbons from the same internal alkynes and hindered Grignard reagents.

    PubMed

    Dong, Cheng-Guo; Yeung, Pik; Hu, Qiao-Sheng

    2007-01-18

    Two types of domino reactions from the same internal alkynes and hindered Grignard reagents based on carbopalladation, Pd-catalyzed cross-coupling reaction, and a C-H activation strategy are described. The realization of these domino reactions relied on the control of the use of the ligand and the reaction temperature. Our study provides efficient access to useful polysubstituted indenes and cis-substituted stilbenes and may offer a new means of development of tandem/domino reactions in a more efficient way. [reaction: see text].

  14. Advances in copper-catalyzed C-C coupling reactions and related domino reactions based on active methylene compounds.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2012-06-01

    Active methylene compounds are a major class of reaction partners for C-C bond formation with sp(2) C-X (X = halide) fragments. As one of the most-classical versions of the Ullmann-type coupling reaction, activated-methylene-based C-C coupling reactions have been efficiently employed in a large number of syntheses. Although this type of reaction has long relied on noble-metal catalysis, the renaissance of copper catalysis at the end of last century has led to dramatic developments in Ullmann C-C coupling reactions. Owing to its low cost, abundance, as well as excellent catalytic activity, the exceptional atom economy of copper catalysis is gaining widespread attention in various organic synthesis. This review summarizes the advances in copper-catalyzed intermolecular and intramolecular C-C coupling reactions that use activated methylene species as well as in tandem reactions that are initiated by this transformation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Copper-Catalyzed γ-Selective and Stereospecific Allylic Cross-Coupling with Secondary Alkylboranes.

    PubMed

    Yasuda, Yuto; Nagao, Kazunori; Shido, Yoshinori; Mori, Seiji; Ohmiya, Hirohisa; Sawamura, Masaya

    2015-06-26

    The scope of the copper-catalyzed coupling reactions between organoboron compounds and allylic phosphates is expanded significantly by employing triphenylphosphine as a ligand for copper, allowing the use of secondary alkylboron compounds. The reaction proceeds with complete γ-E-selectivity and preferential 1,3-syn stereoselectivity. The reaction of γ-silicon-substituted allylic phosphates affords enantioenriched α-stereogenic allylsilanes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Two Palladium-Catalyzed Domino Reactions from One Set of Substrates/Reagents: Efficient Synthesis of Substituted Indenes and cis-Stilbenoid Hydrocarbons from the Same Internal Alkynes and Hindered Grignard Reagents

    PubMed Central

    Dong, Cheng-Guo; Yeung, Pik; Hu, Qiao-Sheng

    2008-01-01

    Two types of domino reactions from the same internal alkynes and hindered Grignard reagents based on carbopalladation, Pd-catalyzed cross-coupling reaction and C-H activation strategy are described. The realization of these domino reactions relied on the control of the use of the ligand and the reaction temperature. Our study provides an efficient access to useful polysubstituted indenes and cis-substituted stilbenes, and may offer new means to the development of tandem/domino reactions in a more efficient way. PMID:17217305

  17. Solution-phase parallel synthesis of hexahydro-1H-isoindolone libraries via tactical combination of Cu-catalyzed three-component coupling and Diels-Alder reactions.

    PubMed

    Zhang, Lei; Lushington, Gerald H; Neuenswander, Benjamin; Hershberger, John C; Malinakova, Helena C

    2008-01-01

    Parallel solution-phase synthesis of combinatorial libraries of hexahydro-1 H-isoindolones exploiting a novel "tactical combination" of Cu-catalyzed three-component coupling and Diels-Alder reactions was accomplished. Three distinct libraries consisting of 24 members (library I), 60 members (library II), and 32 members (library III) were constructed. Variation of three substituents on the isoindolone scaffold in library I was exclusively achieved by the choice of the building blocks. In the syntheses of libraries II and III, sublibraries of isoindolone scaffolds were prepared initially in a one-pot/two-step process and were further diversified via Pd-catalyzed Suzuki cross-coupling reaction with boronic acids at two different diversification points. The Lipinski profiles and calculated ADME properties of the compounds are also reported.

  18. Structure determination of a key intermediate of the enantioselective Pd complex catalyzed allylic substitution reaction

    PubMed

    Junker; Reif; Steinhagen; Junker; Felli; Reggelin; Griesinger

    2000-09-01

    The structure of a catalytic intermediate with important implications for the interpretation of the stereochemical outcome of the palladium complex catalyzed allylic substitution with phosphino-oxazoline (PHOX) ligands is determined by liquid state NMR. The complex displays a novel structure that is highly distorted compared with other palladium eta2-olefin complexes known so far. The structure has been determined from nuclear overhauser data (NOE), scalar coupling constants, and long range projection angle restraints derived from dipole dipole cross-correlated relaxation of multiple quantum coherence. The latter restraints have been implemented into a distance geometry protocol. The projection angle restraints yield a higher precision in the determination of the relative orientation of the two molecular moieties and are essential to provide an exact structural definition of the olefinic part of the catalytic intermediate with respect to the ligand.

  19. Palladium-catalyzed coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates: a general method for the preparation of primary arylamines.

    PubMed

    Vo, Giang D; Hartwig, John F

    2009-08-12

    We report that the complex generated from Pd[P(o-tol)(3)](2) and the alkylbisphosphine CyPF-t-Bu is a highly active and selective catalyst for the coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates. The couplings of ammonia with this catalyst conducted with a solution of ammonia in dioxane form primary arylamines from a variety of aryl electrophiles in high yields. Catalyst loadings as low as 0.1 mol % were sufficient for reactions of many aryl chlorides and bromides. In the presence of this catalyst, aryl sulfonates also coupled with ammonia for the first time in high yields. A comparison of reactions in the presence of this catalyst versus those in the presence of existing copper and palladium systems revealed a complementary, if not broader, substrate scope. The utility of this method to generate amides, imides, and carbamates is illustrated by a one-pot synthesis of a small library of these carbonyl compounds from aryl bromides and chlorides, ammonia, and acid chlorides or anhydrides. Mechanistic studies show that reactions conducted with the combination of Pd[P(o-tol)(3)](2) and CyPF-t-Bu as catalyst occur with faster rates and higher yields than those conducted with CyPF-t-Bu and palladiun(II) as catalyst precursors because of the low concentration of active catalyst that is generated from the combination of palladium(II), ammonia, and base.

  20. Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected β-Amino Aldehydes.

    PubMed

    Dong, Jia Jia; Harvey, Emma C; Fañanás-Mastral, Martín; Browne, Wesley R; Feringa, Ben L

    2014-12-10

    A general method for the preparation of N-protected β-amino aldehydes from allylic amines or linear allylic alcohols is described. Here the Pd(II)-catalyzed oxidation of N-protected allylic amines with benzoquinone is achieved in tBuOH under ambient conditions with excellent selectivity toward the anti-Markovnikov aldehyde products and full retention of configuration at the allylic carbon. The method shows a wide substrate scope and is tolerant of a range of protecting groups. Furthermore, β-amino aldehydes can be obtained directly from protected allylic alcohols via palladium-catalyzed autotandem reactions, and the application of this method to the synthesis of β-peptide aldehydes is described. From a mechanistic perspective, we demonstrate that tBuOH acts as a nucleophile in the reaction and that the initially formed tert-butyl ether undergoes spontaneous loss of isobutene to yield the aldehyde product. Furthermore, tBuOH can be used stoichiometrically, thereby broadening the solvent scope of the reaction. Primary and secondary alcohols do not undergo elimination, allowing the isolation of acetals, which subsequently can be hydrolyzed to their corresponding aldehyde products.

  1. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols.

    PubMed

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis of isoflavones by room-temperature nickel-catalyzed cross-couplings of 3-iodo(bromo)chromones with arylzincs.

    PubMed

    Zhang, Zunting; Qiao, Jinfeng; Wang, Ding; Han, Ling; Ding, Ru

    2014-05-01

    A new concise, facile method for synthesis of isoflavones was accomplished in moderate to good yields for 3-iodochromones or 3-bromochromones and arylzinc bromides via Negishi cross-coupling reaction catalyzed by NiCl(2)/PPh(3) or NiCl(2)(PPh(3))(2) at room temperature. The Isoflavone core was synthesized in four steps in good yield, starting from commercially available 2-hydroxyacetophenone and aromatic bromide. Three steps of the procedure were carried out at room temperature.

  3. A General Method for Copper-Catalyzed Arene Cross-Dimerization

    PubMed Central

    Do, Hien-Quang; Daugulis, Olafs

    2011-01-01

    A general method for a highly regioselective, copper-catalyzed cross-coupling of two aromatic compounds by using iodine oxidant has been developed. The reactions involve an initial iodination of one arene followed by arylation of the most acidic C-H bond of the other coupling component. Cross-coupling of electron-rich arenes, electron-poor arenes, five- and six-membered heterocycles is possible in many combinations. Typically, 1/1.5 to 1/3 ratio of coupling components is used in contrast to existing methodology that often employs a large excess of one of the arenes. Common functionalities such as ester, ketone, aldehyde, ether, nitrile, nitro, and amine are well-tolerated. PMID:21823581

  4. Palladium-Catalyzed Coupling of Ammonia with Aryl Chlorides, Bromides, Iodides and Sulfonates: A General Method for the Preparation of Primary Arylamines

    PubMed Central

    Vo, Giang D.

    2010-01-01

    We report that the complex generated from Pd[P(o-tol)3]2 and the alkylbisphosphine CyPF-t-Bu is a highly active and selective catalyst for the coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates. The couplings of ammonia with this catalyst conducted with a solution of ammonia in dioxane form primary arylamines from a variety of aryl electrophiles in high yields. Catalyst loadings as low as 0.1 mol % were sufficient for reactions of many aryl chlorides and bromides. In the presence of this catalyst, aryl sulfonates also coupled with ammonia for the first time in high yields. A comparison of reactions in the presence of this catalyst versus those in the presence of existing copper and palladium systems revealed a complementary, if not broader substrate scope. The utility of this method to generate amides, imides and carbamates is illustrated by a one-pot synthesis of a small library of these carbonyl compounds from aryl bromides and chlorides. Mechanistic studies show that Pd[P(o-tol)3]2 and CyPF-t-Bu generate a more active and general catalyst than that generated from CyPF-t-Bu and palladiun(II) precursors because of the low concentration of active catalyst that is generated from the combination of palladium(II), ammonia and base. PMID:19591470

  5. Catalyst activation, deactivation, and degradation in palladium-mediated Negishi cross-coupling reactions.

    PubMed

    Böck, Katharina; Feil, Julia E; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2015-03-27

    Pd-mediated Negishi cross-coupling reactions were studied by a combination of kinetic measurements, electrospray-ionization (ESI) mass spectrometry, (31)P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate-determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI-mass spectrometric observation of heterobimetallic Pd-Zn complexes [L2 PdZnR](+) (L=S-PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd-Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González-Pérez et al. (Organometallics- 2012, 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2 . In contrast, added LiBr apparently counteracts the formation of Pd-Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S-PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of phenanthridinones from N-methoxybenzamides and arenes by multiple palladium-catalyzed C-H activation steps at room temperature.

    PubMed

    Karthikeyan, Jaganathan; Cheng, Chien-Hong

    2011-10-10

    Many steps make light work: substituted phenanthridinones can be obtained with high regioselectivity and in very good yields by palladium-catalyzed cyclization reactions of N-methoxybenzamides with arenes. The reaction proceeds through multiple oxidative C-H activation and C-C/C-N formation steps in one pot at room temperature, and thus provides a simple method for generating bioactive phenanthridinones. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Rhodium-catalyzed redox-neutral coupling of phenidones with alkynes.

    PubMed

    Fan, Zhoulong; Lu, Heng; Li, Wei; Geng, Kaijun; Zhang, Ao

    2017-07-21

    A switchable synthesis of N-substituted indole derivatives from phenidones via rhodium-catalyzed redox-neutral C-H activation has been achieved. In this protocol, we firstly disclosed that the reactivity of Rh(iii) catalysis could be enhanced through employing palladium acetate as an additive. Some representative features include external oxidant-free, applicable to terminal alkynes, short reaction time and operational simplicity. The utility of this method is further showcased by the economical synthesis of potent anticancer PARP-1 inhibitors.

  8. A general method for copper-catalyzed arene cross-dimerization.

    PubMed

    Do, Hien-Quang; Daugulis, Olafs

    2011-08-31

    A general method for a highly regioselective copper-catalyzed cross-coupling of two aromatic compounds using iodine as an oxidant has been developed. The reactions involve an initial iodination of one arene followed by arylation of the most acidic C-H bond of the other coupling component. Cross-coupling of electron-rich arenes, electron-poor arenes, and five- and six-membered heterocycles is possible in many combinations. Typically, a 1/1.5 to 1/3 ratio of coupling components is used, in contrast to existing methodology that often employs a large excess of one of the arenes. Common functionalities such as ester, ketone, aldehyde, ether, nitrile, nitro, and amine are well-tolerated.

  9. Modular in situ-Functionalization Strategy: Multicomponent Polymerization via Palladium/Norbornene Cooperative Catalysis.

    PubMed

    Yoon, Ki-Young; Dong, Guangbin

    2018-05-23

    Herein, we report the palladium/norbornene cooperatively catalyzed polymerization, which simplifies synthesis of functional aromatic polymers, including conjugated polymers. Specifically, an A2B2C-type multicomponent polymerization is developed using ortho-amination/ipso-alkynylation reaction for preparing various amine-functionalized arylacetylene-containing polymers. Within a single catalytic cycle, the amine side-chains are site-selectively installed in situ via C-H activation during the polymerization process, which represents a major difference from conventional cross-coupling polymerizations. This in situ-functionalization strategy enables modular incorporation of functional side-chains from simple monomers, thereby conveniently affording a diverse range of functional polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gold(I)-catalyzed diazo coupling: strategy towards alkene formation and tandem benzannulation.

    PubMed

    Zhang, Daming; Xu, Guangyang; Ding, Dong; Zhu, Chenghao; Li, Jian; Sun, Jiangtao

    2014-10-06

    A gold(I)-catalyzed cross-coupling of diazo compounds to afford tetrasubstituted alkenes has been developed by taking advantage of a trivial electronic difference between two diazo substrates. A N-heterocyclic-carbene-derived gold complex is the most effective catalyst for this transformation. Based on this new strategy, a gold(I)-initiated benzannulation has been achieved through a tandem reaction involving a diazo cross-coupling, 6π electrocyclization, and oxidative aromatization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis.

    PubMed

    Qu, Jianping; Helmchen, Günter

    2017-10-17

    Metal catalyzed allylic substitution is a cornerstone of organometallic and synthetic chemistry. Enantioselective versions have been developed with catalysts derived from transition metals, most notably molybdenum, nickel, ruthenium, rhodium, iridium, palladium, and copper. The palladium- and the iridium-catalyzed versions have turned out to be particularly versatile in organic synthesis because of the very broad scope of the nucleophile and great functional group compatibility. Assets of the iridium-catalyzed reaction are the formation of branched, chiral products from simple monosubstituted allylic substrates, high degrees of regio- and enantioselectivity, and use of modular, readily available chiral ligands. The possibility to use carbon, nitrogen, oxygen, and sulfur compounds as well as fluoride as nucleophiles allows a wide range of chiral building blocks to be prepared. Our Account begins with the presentation of fundamental reaction schemes and chiral ligands. We will focus our discussion on reactions promoted by phosphoramidite ligands, though numerous chiral ligands have been employed. The subsequent section presents a brief overview of reaction mechanism and experimental conditions. Two versions of the iridium-catalyzed allylic substitution have emerged. In type 1 reactions (introduced in 1997), linear allylic esters are commonly used as substrates under basic reaction conditions. In type 2 reactions (introduced in 2007), environmentally friendly branched allylic alcohols can be reacted under acidic conditions; occasionally, derivatives of allylic alcohols have also been applied. A unique feature of the type 2 reactions is that highly electrophilic allylic intermediates can be brought to reaction with weakly activated alkenes. The subsequent text is ordered according to the strategies followed to transform allylic substitution products to desired targets, most of which are natural products or drugs. Syntheses starting with an intermolecular allylic

  12. Metallaphotoredox-Catalyzed sp3–sp3 Cross-Coupling of Carboxylic Acids with Alkyl Halides

    PubMed Central

    Johnston, Craig P.; Smith, Russell T.; Allmendinger, Simon; MacMillan, David W. C.

    2017-01-01

    Over the last half-century, transition metal-mediated cross-coupling reactions have changed the way in which complex organic molecules are synthesized. Indeed, the predictable and chemoselective nature of these transformations has led to their widespread adoption across a vast array of chemical research areas1. However, the construction of sp3–sp3 bonds, a fundamental unit of organic chemistry, remains an important yet elusive objective for cross-coupling reaction engineering2. In comparison to related procedures with sp2-hybridized species, the development of methods for sp3–sp3 bond formation via transition metal catalysis has been historically hampered by deleterious side-reactions, such as β-hydride elimination with Pd-catalysis, and the reluctance of alkyl halides to undergo oxidative addition3,4. To address this issue, a number of research groups have demonstrated the feasibility of nickel-catalyzed cross-coupling processes to form sp3–sp3 bonds that utilize organometallic nucleophiles and alkyl electrophiles5–7. In particular, the coupling of alkyl halides with pregenerated organozinc8–10, Grignard11,12, and organoborane13 species has been used to furnish diverse molecular structures. However, the poor step and atom economies along with the operational difficulties associated with making, carrying, and using these sensitive coupling partners has hindered their widespread adoption. The prospect of establishing a generically useful sp3–sp3 coupling technology that employs bench-stable, native organic functional groups, without the need for pre-functionalization or substrate derivatization, would therefore be a valuable addition to fields of research that rely on organic molecule construction. Here, we demonstrate that the synergistic merger of photoredox and nickel catalysis enables the direct formation of sp3–sp3 bonds using only simple carboxylic acids and alkyl halides as the nucleophilic and electrophilic coupling partners, respectively. The

  13. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3 )-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates.

    PubMed

    Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir

    2018-03-01

    A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. One-pot synthesis of keto thioethers by palladium/gold-catalyzed click and pinacol reactions.

    PubMed

    Cadu, Alban; Watile, Rahul A; Biswas, Srijit; Orthaber, Andreas; Sjöberg, Per J R; Samec, Joseph S M

    2014-11-07

    An atom-efficient synthesis of keto thioethers was devised via tandem gold/palladium catalysis. The reaction proceeds through a regioselective thiol attack at the β-position of the alcohol, followed by an alkyl, aryl, or benzyl 1,2-shift. Both acyclic and cyclic systems were studied, in the latter case leading to the ring expansion of cyclic substrates.

  15. Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks [Unveiling the Effects of Linker Substitution in Suzuki Coupling Reaction with Palladium Nanoparticles in Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinle; Zhang, Biying; Van Zeeland, Ryan

    The establishment of structure–property relationships in heterogeneous catalysis is of prime importance but remains a formidable challenge. Metal–organic frameworks (MOFs) featuring excellent chemical tunability are emerging as an auspicious platform for the atomic-level control of heterogeneous catalysis. Herein, we encapsulate palladium nanoparticles (Pd NPs) in a series of isoreticular mixed-linker MOFs, and the obtained MOF-Pd NPs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the Suzuki–Miyaura cross-coupling reactions. Significantly, m-6,6'-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4'-Me 2bpy-MOF-Pd. This study unambiguously demonstratesmore » that the stereoelectronic properties of linker units are crucial to the catalytic activity of nanoparticles encapsulated in MOFs. More interestingly, the trend of activity change is consistent with our previous work on catalytic sites generated in situ from Pd(II) coordinated in MOFs bearing the same functional groups, which suggests that both MOF-Pd NPs and MOF-Pd(II) catalysts generate similar active centers during Suzuki–Miyaura coupling reactions. Lastly, this work paves a new avenue to the fabrication of advanced and tunable MOF-based catalysts through rational linker engineering.« less

  16. Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks [Unveiling the Effects of Linker Substitution in Suzuki Coupling Reaction with Palladium Nanoparticles in Metal–Organic Frameworks

    DOE PAGES

    Li, Xinle; Zhang, Biying; Van Zeeland, Ryan; ...

    2018-01-18

    The establishment of structure–property relationships in heterogeneous catalysis is of prime importance but remains a formidable challenge. Metal–organic frameworks (MOFs) featuring excellent chemical tunability are emerging as an auspicious platform for the atomic-level control of heterogeneous catalysis. Herein, we encapsulate palladium nanoparticles (Pd NPs) in a series of isoreticular mixed-linker MOFs, and the obtained MOF-Pd NPs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the Suzuki–Miyaura cross-coupling reactions. Significantly, m-6,6'-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4'-Me 2bpy-MOF-Pd. This study unambiguously demonstratesmore » that the stereoelectronic properties of linker units are crucial to the catalytic activity of nanoparticles encapsulated in MOFs. More interestingly, the trend of activity change is consistent with our previous work on catalytic sites generated in situ from Pd(II) coordinated in MOFs bearing the same functional groups, which suggests that both MOF-Pd NPs and MOF-Pd(II) catalysts generate similar active centers during Suzuki–Miyaura coupling reactions. Lastly, this work paves a new avenue to the fabrication of advanced and tunable MOF-based catalysts through rational linker engineering.« less

  17. Reusable copper-catalyzed cross-coupling reactions of aryl halides with organotins in inexpensive ionic liquids.

    PubMed

    Li, Jin-Heng; Tang, Bo-Xiao; Tao, Li-Ming; Xie, Ye-Xiang; Liang, Yun; Zhang, Man-Bo

    2006-09-15

    A combination of Cu2O nanoparticles with P(o-tol)3 shows highly catalytic activity for the Stille cross-coupling reaction. A series of copper catalysts and ligands were evaluated, and Cu2O nanoparticles combined with P(o-tol)3 provided the best results. In the presence of Cu2O nanoparticles and P(o-tol)3, a variety of aryl halides including aryl chlorides underwent the Stille reaction with organotins smoothly in moderate to excellent yields using inexpensive TBAB (n-Bu4NBr) as the medium. It is noteworthy that the Cu2O/P(o-tol)3/TBAB system can be recovered and reused at least three times without any loss of catalytic activity among the reactions of aryl iodides and activated aryl bromides.

  18. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    PubMed

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  19. Ni-Catalyzed Dehydrogenative Cross-Coupling: Direct Transformation of Aldehydes to Esters and Amides

    PubMed Central

    Whittaker, Aaron M.; Dong, Vy M.

    2015-01-01

    By exploring a new mode of Ni-catalyzed cross-coupling, we have developed a protocol to transform both aromatic and aliphatic aldehydes into either esters or amides directly. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. We present mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C–H bond. PMID:25424967

  20. Copper-catalyzed cross-coupling reactions of epoxides with gem-diborylmethane: access to γ-hydroxyl boronic esters.

    PubMed

    Ebrahim-Alkhalil, Ahmed; Zhang, Zhen-Qi; Gong, Tian-Jun; Su, Wei; Lu, Xiao-Yu; Xiao, Bin; Fu, Yao

    2016-04-07

    Herein, we describe a novel copper-catalyzed epoxide opening reaction with gem-diborylmethane. Aliphatic, aromatic epoxides as well as aziridines are converted to the corresponding γ-pinacolboronate alcohols or amines in moderate to excellent yields. This new reaction provides beneficial applications for classic epoxide substrates as well as interesting gem-diborylalkane reagents.

  1. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens.

    PubMed

    Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R

    2013-05-15

    Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.

  2. Palladium-Catalyzed Conversion of Aryl and Vinyl Triflates to Bromides and Chlorides

    PubMed Central

    Shen, Xiaoqiang; Hyde, Alan M.; Buchwald, Stephen L.

    2010-01-01

    The palladium-catalyzed conversion of aryl and vinyl triflates to aryl and vinyl halides (bromides and chlorides) has been developed using dialkylbiaryl phosphine ligands. A variety of aryl, heteroaryl and vinyl halides can be prepared via this method in good to excellent yields. PMID:20857936

  3. Nickel-Catalyzed Coupling of Alkenes, Aldehydes, and Silyl Triflates

    PubMed Central

    Ng, Sze-sze; Ho, Chun-Yu; Jamison, Timothy F.

    2011-01-01

    A full account of two recently developed nickel-catalyzed coupling reactions of alkenes, aldehydes and silyl triflates is presented. These reactions provide either allylic alcohol or homoallylic alcohol derivatives selectively, depending on the ligand employed. These processes are believed to be mechanistically distinct from Lewis acid-catalyzed carbonyl-ene reactions, and several lines of evidence supporting this hypothesis are discussed. PMID:16939275

  4. Laccases as palladium oxidases.

    PubMed

    Mekmouche, Yasmina; Schneider, Ludovic; Rousselot-Pailley, Pierre; Faure, Bruno; Simaan, A Jalila; Bochot, Constance; Réglier, Marius; Tron, Thierry

    2015-02-01

    The first example of a coupled catalytic system involving an enzyme and a palladium(ii) catalyst competent for the aerobic oxidation of alcohol in mild conditions is described. In the absence of dioxygen, the fungal laccase LAC3 is reduced by a palladium(0) species as evidenced by the UV/VIS and ESR spectra of the enzyme. During the oxidation of veratryl alcohol performed in water, at room temperature and atmospheric pressure, LAC3 regenerates the palladium catalyst, is reduced and catalyzes the four-electron reduction of dioxygen into water with no loss of enzyme activity. The association of a laccase with a water-soluble palladium complex results in a 7-fold increase in the catalytic efficiency of the complex. This is the first step in the design of a family of renewable palladium catalysts for aerobic oxidation.

  5. Influence of hydroxylamine conformation on stereocontrol in Pd-catalyzed isoxazolidine-forming reactions.

    PubMed

    Lemen, Georgia S; Giampietro, Natalie C; Hay, Michael B; Wolfe, John P

    2009-03-20

    Palladium-catalyzed carboamination reactions between N-Boc-O-(but-3-enyl)hydroxylamine derivatives and aryl or alkenyl bromides afford cis-3,5- and trans-4,5-disubstituted isoxazolidines in good yield with up to >20:1 dr. The diastereoselectivity observed in the formation of cis-3,5-disubstituted isoxazolidines is superior to selectivities typically obtained in other transformations, such as 1,3-dipolar cycloaddition reactions, that provide these products. In addition, the stereocontrol in the C-N bond-forming Pd-catalyzed carboamination reactions of N-Boc-O-(but-3-enyl)hydroxylamines is significantly higher than that of related C-O bond-forming carboetherification reactions of N-benzyl-N-(but-3-enyl)hydroxylamine derivatives. This is likely due to a stereoelectronic preference for cyclization via transition states in which the Boc group is placed in a perpendicular orientation relative to the plane of the developing ring, which derives from the conformational equilibria of substituted hydroxylamines.

  6. Visible-Light-Mediated Nickel(II)-Catalyzed C-N Cross-Coupling in Water: Green and Regioselective Access for the Synthesis of Pyrazole-Containing Compounds.

    PubMed

    You, Guirong; Wang, Kai; Wang, Xiaodan; Wang, Guodong; Sun, Jian; Duan, Guiyun; Xia, Chengcai

    2018-06-26

    A regioselective green approach for the nickel(II)-catalyzed C-N cross-coupling between arylamines and pyrazoles through a photoredox process is reported. Moderate to good yield was observed for this reaction, performed in water under air at room temperature. This strategy provides a powerful tool for the green synthesis of pyrazole-containing bioactive molecules. In addition, a single-electron-transfer mechanism is proposed in this report.

  7. Synthesis of 3-iodoindoles by the Pd/Cu-catalyzed coupling of N,N-dialkyl-2-iodoanilines and terminal acetylenes, followed by electrophilic cyclization.

    PubMed

    Yue, Dawei; Yao, Tuanli; Larock, Richard C

    2006-01-06

    [reaction: see text] 3-Iodoindoles have been prepared in excellent yields by coupling terminal acetylenes with N,N-dialkyl-o-iodoanilines in the presence of a Pd/Cu catalyst, followed by an electrophilic cyclization of the resulting N,N-dialkyl-o-(1-alkynyl)anilines using I2 in CH2Cl2. Aryl-, vinylic-, alkyl-, and silyl-substituted terminal acetylenes undergo this process to produce excellent yields of 3-iodoindoles. The reactivity of the carbon-nitrogen bond cleavage during cyclization follows the following order: Me > n-Bu, Me > Ph, and cyclohexyl > Me. Subsequent palladium-catalyzed Sonogashira, Suzuki, and Heck reactions of the resulting 3-iodoindoles proceed smoothly in good yields.

  8. Nickel-Catalyzed Coupling Reactions of Alkyl Electrophiles, Including Unactivated Tertiary Halides, to Generate Carbon–Boron Bonds

    PubMed Central

    Dudnik, Alexander S.

    2012-01-01

    Through the use of a catalyst formed in situ from NiBr2•diglyme and a pybox ligand (both of which are commercially available), we have achieved our first examples of coupling reactions of unactivated tertiary alkyl electrophiles, as well as our first success with nickel-catalyzed couplings that generate bonds other than C–C bonds. Specifically, we have determined that this catalyst accomplishes Miyaura-type borylations of unactivated tertiary, secondary, and primary alkyl halides with diboron reagents to furnish alkylboronates, a family of compounds with substantial (and expanding) utility, under mild conditions; indeed, the umpolung borylation of a tertiary alkyl bromide can be achieved at a temperature as low as −10 °C. The method exhibits good functional-group compatibility and is regiospecific, both of which can be issues with traditional approaches to the synthesis of alkylboronates. In contrast to seemingly related nickel-catalyzed C–C bond-forming processes, tertiary halides are more reactive than secondary or primary halides in this nickel-catalyzed C–B bond-forming reaction; this divergence is particularly noteworthy in view of the likelihood that both transformations follow an inner-sphere electron-transfer pathway for oxidative addition. PMID:22668072

  9. Preparation of metallic Pd nanoparticles using supercritical CO2 deposition: An efficient catalyst for Suzuki cross-coupling reaction

    NASA Astrophysics Data System (ADS)

    Tezcan, Burcu; Ulusal, Fatma; Egitmen, Asım; Guzel, Bilgehan

    2018-05-01

    Ligand-free palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNT) were prepared by the supercritical carbon dioxide (scCO2) deposition method using a novel scCO2-soluble Pd organometallic complex as a precursor. The precursor with the perfluoroalkyl chain group was synthesized and identified by microanalytic methods. The deposition was carried out at the temperature of 363.15 K and pressure of 27.6 MPa CO2. The prepared metallic nanoparticles were obtained with an average size of 2 nm. Pd/MWCNT was utilized as a heterogeneous catalyst in Suzuki cross-coupling reaction. The nanocatalyst was found very effective in Suzuki reaction and it could also be recovered easily from the reaction media and reused over several cycles without significant loss of catalytic activity under mild conditions. [Figure not available: see fulltext.

  10. Enzymatic synthesis of chiral amino‐alcohols by coupling transketolase and transaminase‐catalyzed reactions in a cascading continuous‐flow microreactor system

    PubMed Central

    Gruber, Pia; Carvalho, Filipe; Marques, Marco P. C.; O'Sullivan, Brian; Subrizi, Fabiana; Dobrijevic, Dragana; Ward, John; Hailes, Helen C.; Fernandes, Pedro; Wohlgemuth, Roland; Baganz, Frank

    2017-01-01

    Abstract Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino‐alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)‐2‐amino‐1,3,4‐butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non‐chiral starting materials, by coupling a transketolase‐ and a transaminase‐catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor‐based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous‐flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase‐catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml−1. Following optimization of the transaminase‐catalyzed reaction, a volumetric activity of 10.8 U ml−1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous‐flow microreactors can be applied for the design and optimization of biocatalytic processes. PMID:28986983

  11. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols.

    PubMed

    Larionov, Evgeny; Lin, Luqing; Guénée, Laure; Mazet, Clément

    2014-12-03

    Herein we report the palladium-catalyzed isomerization of highly substituted allylic alcohols and alkenyl alcohols by means of a single catalytic system. The operationally simple reaction protocol is applicable to a broad range of substrates and displays a wide functional group tolerance, and the products are usually isolated in high chemical yield. Experimental and computational mechanistic investigations provide complementary and converging evidence for a chain-walking process consisting of repeated migratory insertion/β-H elimination sequences. Interestingly, the catalyst does not dissociate from the substrate in the isomerization of allylic alcohols, whereas it disengages during the isomerization of alkenyl alcohols when additional substituents are present on the alkyl chain.

  12. Plant leaves as natural green scaffolds for palladium catalyzed Suzuki-Miyaura coupling reactions.

    PubMed

    Sharma, Vipul; Kumar, Suneel; Bahuguna, Ashish; Gambhir, Diksha; Sagara, Prateep Singh; Krishnan, Venkata

    2016-12-21

    This work presents a novel approach of using natural plant leaf surfaces having intricate hierarchical structures as scaffolds for Pd nanoparticles and demonstrated it as a Green dip catalyst for Suzuki-Miyaura coupling reactions in water. The influence of the topographical texture of the plant leaves on the deposition and catalytic properties of Pd nanoparticles are presented and discussed. The catalytic activity can be correlated to the surface texture of the leaves, wherein it has been found that the micro/nanostructures present on the surface strongly influence the assembly and entrapment of the nanoparticles, and thereby control aggregation and leaching of the catalysts. This approach can provide insights for the future design and fabrication of bioinspired supports for catalysis, based on replication of leaf surfaces.

  13. Polymerization of tellurophene derivatives via microwave-assisted palladium-catalyzed ipso-arylative polymerization**

    PubMed Central

    Park, Young S.; Wu, Qin; Nam, Chang-Yong; Grubbs, Robert B.

    2014-01-01

    We report the synthesis of a tellurophene-containing low bandgap polymer, PDPPTe2T, via microwave-assisted palladium-catalyzed ipso-arylative polymerization of 2,5-bis[(α-hydroxy-α,α-diphenyl)methyl]tellurophene with a diketopyrrolopyrrole (DPP) monomer. Compared with the corresponding thiophene analog, PDPPTe2T absorbs light of longer wavelengths and has a smaller bandgap. Bulk heterojunction solar cells prepared from PDPPTe2T and PC71BM show PCE values of up to 4.4%. External quantum efficiency measurements show that PDPPTe2T produces photocurrent at wavelengths up to 1 μm. DFT calculations suggest that the atomic substitution from sulfur to tellurium increases electronic coupling to decrease the length of the carbon-carbon bonds between the tellurophene and thiophene rings, which results in the red-shift in absorption upon substitution of tellurium for sulfur. PMID:25145499

  14. Chemoselective N-heterocyclic carbene-catalyzed cross-benzoin reactions: importance of the fused ring in triazolium salts.

    PubMed

    Langdon, Steven M; Wilde, Myron M D; Thai, Karen; Gravel, Michel

    2014-05-28

    Morpholinone- and piperidinone-derived triazolium salts are shown to catalyze highly chemoselective cross-benzoin reactions between aliphatic and aromatic aldehydes. The reaction scope includes ortho-, meta-, and para-substituted benzaldehyde derivatives with a range of electron-donating and -withdrawing groups as well as branched and unbranched aliphatic aldehydes. Catalytic loadings as low as 5 mol % give excellent yields in these reactions (up to 99%).

  15. Regioselective and enantiospecific rhodium-catalyzed allylic alkylation reactions using copper(I) enolates: synthesis of (-)-sugiresinol dimethyl ether.

    PubMed

    Evans, P Andrew; Leahy, David K

    2003-07-30

    The transition metal-catalyzed allylic alkylation represents a fundamentally important cross-coupling reaction for the construction of ternary carbon stereogenic centers. We have developed a regioselective and enantiospecific rhodium-catalyzed allylic alkylation of acyclic unsymmetrical allylic alcohol derivatives using copper(I) enolates to prepare beta-substituted ketones. This protocol represents a convenient asymmetric Claisen rearrangement surrogate in which alpha-substituted enolates permit the introduction of an additional stereogenic center. The synthetic utility of this transformation was highlighted in the construction of a trans-1,2-disubstituted cyclohexene and the total synthesis of (-)-sugiresinol dimethyl ether. Finally, we anticipate that copper(I) enolates may prove useful nucleophiles in related metal-catalyzed reactions.

  16. Enzymatic synthesis of chiral amino-alcohols by coupling transketolase and transaminase-catalyzed reactions in a cascading continuous-flow microreactor system.

    PubMed

    Gruber, Pia; Carvalho, Filipe; Marques, Marco P C; O'Sullivan, Brian; Subrizi, Fabiana; Dobrijevic, Dragana; Ward, John; Hailes, Helen C; Fernandes, Pedro; Wohlgemuth, Roland; Baganz, Frank; Szita, Nicolas

    2018-03-01

    Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino-alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)-2-amino-1,3,4-butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non-chiral starting materials, by coupling a transketolase- and a transaminase-catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor-based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous-flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase-catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml -1 . Following optimization of the transaminase-catalyzed reaction, a volumetric activity of 10.8 U ml -1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous-flow microreactors can be applied for the design and optimization of biocatalytic processes. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  17. Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant Anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones.

    PubMed

    Jardim, Guilherme A M; Silva, Thaissa L; Goulart, Marilia O F; de Simone, Carlos A; Barbosa, Juliana M C; Salomão, Kelly; de Castro, Solange L; Bower, John F; da Silva Júnior, Eufrânio N

    2017-08-18

    Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC 50 /24 h values of less than 2 μM. Electrochemical studies on A-ring functionalized naphthoquinones were also performed aiming to correlate redox properties with trypanocidal activity. For instance, (E)-5-styryl-1,4-naphthoquinone 59 and 5,8-diiodo-1,4-naphthoquinone 3, which are around fifty fold more active than the standard drug benznidazole, are potential derivatives for further investigation. These compounds represent powerful new agents useful in Chagas disease therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Theoretical investigation on the chemoselective N-heterocyclic carbene-catalyzed cross-benzoin reactions.

    PubMed

    Liu, Tao; Han, Shu-Min; Han, Ling-Li; Wang, Lu; Cui, Xiang-Yang; Du, Chong-Yang; Bi, Siwei

    2015-03-28

    A density functional theory study was performed to understand the detailed mechanisms of the cross-benzoin reactions catalyzed by N-heterocyclic carbene (NHC) species. Our theoretical study predicted that the first H-transfer operates with water in solution as a mediator, and the second H-transfer undergoes a concerted mechanism rather than a stepwise one. In addition, the chemoselectivity of the reactions studied in this work has been explored. P1 was obtained as a major product mainly due to the more stable intermediate formed by reaction of NHC with reactant R1. Different steric effects resulting from the fused six-membered ring in transition state TS7 and the fused five-membered ring in transition state TS13 are the origin leading to the chemoselectivity.

  19. Indole synthesis by palladium-catalyzed tandem allylic isomerization - furan Diels-Alder reaction.

    PubMed

    Xu, Jie; Wipf, Peter

    2017-08-30

    A Pd(0)-catalyzed elimination of an allylic acetate generates a π-allyl complex that is postulated to initiate a novel intramolecular Diels-Alder cycloaddition to a tethered furan (IMDAF). Under the reaction conditions, this convergent, microwave-accelerated cascade process provides substituted indoles in moderate to good yields after Pd-hydride elimination, aromatization by dehydration, and in situ N-Boc cleavage.

  20. Recent advances in heterobimetallic palladium(II)/copper(II) catalyzed domino difunctionalization of carbon-carbon multiple bonds.

    PubMed

    Beccalli, Egle M; Broggini, Gianluigi; Gazzola, Silvia; Mazza, Alberto

    2014-09-21

    The double functionalization of carbon-carbon multiple bonds in one-pot processes has emerged in recent years as a fruitful tool for the rapid synthesis of complex molecular scaffolds. This review covers the advances in domino reactions promoted by the couple palladium(ii)/copper(ii), which was proven to be an excellent catalytic system for the functionalization of substrates.

  1. Palladium pincer complex catalyzed stannyl and silyl transfer to propargylic substrates: synthetic scope and mechanism.

    PubMed

    Kjellgren, Johan; Sundén, Henrik; Szabó, Kálmán J

    2005-02-16

    Pincer complex catalyzed substitution of various propargylic substrates could be achieved using tin- and silicon-based dimetallic reagents to obtain propargyl- and allenylstannanes and silanes. These reactions involving chloride, mesylate, and epoxide substrates could be carried out under mild conditions, and therefore many functionalities (such as COOEt, OR, OH, NR, and NAc) are tolerated. It was shown that pincer catalysts with electron-supplying ligands, such as NCN, SCS, and SeCSe complexes, display the highest catalytic activity. The catalytic substitution of secondary propargyl chlorides and primary propargyl chlorides with electron-withdrawing substituents proceeds with high regioselectivity providing the allenyl product. Opening of the propargyl epoxides takes place with an excellent stereo- and regioselectivity to give stereodefined allenylstannanes. Silylstannanes as dimetallic reagents undergo an exclusive silyl transfer to the propargylic substrate affording allenylsilanes with high regioselectivity. According to our mechanistic studies, the key intermediate of the reaction is an organostannane (or silane)-coordinated pincer complex, which is formed from the dimetallic reagent and the corresponding pincer complex catalyst. DFT modeling studies have shown that the trimethylstannyl functionality is transferred to the propargylic substrate in a single reaction step with high allenyl selectivity. Inspection of the TS structures reveals that the trimethylstannyl group transfer is initiated by the attack of the palladium-tin sigma-bond electrons on the propargylic substrate. This is a novel mechanism in palladium chemistry, which is based on the unique topology of the pincer complex catalysts.

  2. Iron-Catalyzed C-O Bond Activation: Opportunity for Sustainable Catalysis.

    PubMed

    Bisz, Elwira; Szostak, Michal

    2017-10-23

    Oxygen-based electrophiles have emerged as some of the most valuable cross-coupling partners in organic synthesis due to several major strategic and environmental benefits, such as abundance and potential to avoid toxic halide waste. In this context, iron-catalyzed C-O activation/cross-coupling holds particular promise to achieve sustainable catalytic protocols due to its natural abundance, inherent low toxicity, and excellent economic and ecological profile. Recently, tremendous progress has been achieved in the development of new methods for functional-group-tolerant iron-catalyzed cross-coupling reactions by selective C-O cleavage. These methods establish highly attractive alternatives to traditional cross-coupling reactions by using halides as electrophilic partners. In particular, new easily accessible oxygen-based electrophiles have emerged as substrates in iron-catalyzed cross-coupling reactions, which significantly broaden the scope of this catalysis platform. New mechanistic manifolds involving iron catalysis have been established; thus opening up vistas for the development of a wide range of unprecedented reactions. The synthetic potential of this sustainable mode of reactivity has been highlighted by the development of new strategies in the construction of complex motifs, including in target synthesis. The most recent advances in sustainable iron-catalyzed cross-coupling of C-O-based electrophiles are reviewed, with a focus on both mechanistic aspects and synthetic utility. It should be noted that this catalytic manifold provides access to motifs that are often not easily available by other methods, such as the assembly of stereodefined dienes or C(sp 2 )-C(sp 3 ) cross-couplings, thus emphasizing the synthetic importance of this mode of reactivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Heteroaryl ethers by oxidative palladium catalysis of pyridotriazol-1-yloxy pyrimidines with arylboronic acids.

    PubMed

    Bardhan, Sujata; Wacharasindhu, Sumrit; Wan, Zhao-Kui; Mansour, Tarek S

    2009-06-18

    The oxidative palladium-catalyzed cross-coupling of pyrimidines containing pyridotriazol-1-yloxy (OPt) as either a urea or an amide functional group with arylboronic acids in the presence of Cs(2)CO(3) in DME containing 0.6-1.0% H(2)O is described for the preparation of heteroaryl ethers. The bromo substitution in the case of 3-(5-bromo-pyrimidin-2-yloxy)-3H-[1,2,3]triazolo[4,5-b]pyridine 1 could serve as a handle for further elaborations such as Suzuki coupling for attaching varied aryl groups.

  4. Copper-facilitated Suzuki reactions: application to 2-heterocyclic boronates.

    PubMed

    Deng, James Z; Paone, Daniel V; Ginnetti, Anthony T; Kurihara, Hideki; Dreher, Spencer D; Weissman, Steven A; Stauffer, Shaun R; Burgey, Christopher S

    2009-01-15

    The palladium-catalyzed Suzuki-Miyaura reaction has been utilized as one of the most powerful methods for C-C bond formation. However, Suzuki reactions of electron-deficient 2-heterocyclic boronates generally give low conversions and remain challenging. The successful copper(I) facilitated Suzuki coupling of 2-heterocyclic boronates that is broad in scope is reported. Use of this methodology affords greatly enhanced yields of these notoriously difficult couplings. Furthermore, mechanistic investigations suggest a possible role of copper in the catalytic cycle.

  5. Synthesis of 2-Azulenyltetrathiafulvalenes by Palladium-Catalyzed Direct Arylation of 2-Chloroazulenes with Tetrathiafulvalene and Their Optical and Electrochemical Properties.

    PubMed

    Shoji, Taku; Araki, Takanori; Sugiyama, Shuhei; Ohta, Akira; Sekiguchi, Ryuta; Ito, Shunji; Okujima, Tetsuo; Toyota, Kozo

    2017-02-03

    Tetrathiafulvalene (TTF) derivatives with 2-azulenyl substituents 5-11 were prepared by the palladium-catalyzed direct arylation reaction of 2-chloroazulenes with TTF in good yield. Photophysical properties of these compounds were investigated by UV-vis spectroscopy and theoretical calculations. Redox behavior of the novel azulene-substituted TTFs was examined by using cyclic voltammetry and differential pulse voltammetry, which revealed their multistep electrochemical oxidation and/or reduction properties. Moreover, these TTF derivatives showed significant spectral change in the visible region under the redox conditions.

  6. Homogeneous Palladium-Catalyzed Transfer Hydrogenolysis of Benzylic Alcohols Using Formic Acid as Reductant.

    PubMed

    Ciszek, Benjamin; Fleischer, Ivana

    2018-04-12

    Herein we report the first homogeneous palladium-based transfer hydrogenolysis of benzylic alcohols using an in situ formed palladium-phosphine complex and formic acid as reducing agent. The reaction requires a catalyst loading as low as only 1 mol% of palladium and just a slight excess of reductant to obtain the deoxygenated alkylarenes in good to excellent yields. Besides demonstrating the broad applicability for primary, secondary and tertiary benzylic alcohols, a reaction intermediate could be identified. Additionally, it could be shown that partial oxidation of the applied phosphine ligand was beneficial for the course of the reaction, presumably by stabilizing the active catalyst. Reaction profiles and catalyst poisoning experiments were used to characterize the catalyst, the results indicate a homogeneous metal complex as active species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C-C coupling and reduction reactions

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Tantayanon, Supawan; Bag, Braja Gopal

    2017-10-01

    A simple green chemical method for the one-step synthesis of palladium nanoparticles (PdNPs) has been described by reducing palladium (II) chloride with the leaf extract of Chrysophyllum cainito in aqueous medium. The synthesis of the palladium nanoparticles completed within 2-3 h at room temperature, whereas on heat treatment (70-80 °C), the synthesis of colloidal PdNPs completed almost instantly. The stabilized PdNPs have been characterized in detail by spectroscopic, electron microscopic and light scattering measurements. The synthesized PdNPs have been utilized as a green catalyst for C-C coupling reactions under aerobic and phosphine-free conditions in aqueous medium. In addition, the synthesized PdNPs have also been utilized as a catalyst for a very efficient sodium borohydride reduction of 3- and 4-nitrophenols. The synthesized PdNPs can retain their catalytic activity for several months.

  8. Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts.

    PubMed

    Jadhav, Dipak A; Deshpande, Parag A; Ghangrekar, Makarand M

    2017-08-01

    Application of ZrO 2 , MnO 2 , palladium, palladium-substituted-zirconium oxide (Zr 0.98 Pd 0.02 O 2 ) and palladium-substituted-manganese oxide (Mn 0.98 Pd 0.02 O 2 ) cathode catalysts in a single-chambered microbial fuel cell (MFC) was explored. The highest power generation (1.28W/m 3 ) was achieved in MFC with Mn 0.98 Pd 0.02 O 2 catalyst, which was higher than that with MnO 2 (0.58W/m 3 ) alone; whereas, MFC having Zr 0.98 Pd 0.02 O 2 catalyzed cathode and non-catalyzed cathode produced powers of 1.02 and 0.23W/m 3 , respectively. Also, low-cost zirconium-palladium-composite showed better catalytic activity and capacitance over ZrO 2 with 20A/m 3 current production and demonstrated its suitability for MFC applications. Cyclic voltammetry analyses showed higher well-defined redox peaks in composite catalysts (Mn/Zr-Pd-C) over other catalyzed MFCs containing MnO 2 or ZrO 2 . Electrochemical behaviour of composite catalysts on cathode showed higher availability of adsorption sites for oxygen reduction and, hence, enhanced the rate of cathodic reactions. Thus, Mn/Zr-Pd-C-based composite catalysts exhibited superior cathodic performance and could be proposed as alternatives to costly Pd-catalyst for field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Synergistic N-Heterocyclic Carbene/Palladium-Catalyzed Reactions of Aldehyde Acyl Anions with either Diarylmethyl or Allylic Carbonates.

    PubMed

    Yasuda, Shigeo; Ishii, Takuya; Takemoto, Shunsuke; Haruki, Hiroki; Ohmiya, Hirohisa

    2018-03-05

    Benzylation and allylation of aldehyde acyl anions were enabled by the merger of a thiazolium N-heterocyclic carbene (NHC) catalyst and a palladium/bisphosphine catalyst in a synergistic manner. Owing to the mildness of the reaction conditions, various functional groups were tolerated in the substrates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions.

    PubMed

    Nguyen, Le Truc; Yang, Kun-Lin

    2017-05-01

    Cascade reactions involved unstable intermediates are often encountered in biological systems. In this study, we developed combined cross-linked enzyme aggregates (combi-CLEA) to catalyze a cascade reaction which involves unstable hydrogen peroxide as an intermediate. The combi-CLEA contains two enzymes̶ glucose oxidase (GOx) and horseradish peroxidase (HRP) which are cross-linked together as solid aggregates. The first enzyme GOx catalyzes the oxidation of glucose and produces hydrogen peroxide, which is used by the second enzyme HRP to oxidize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The apparent reaction rate of the cascade reaction reaches 10.5±0.5μM/min when the enzyme ratio is 150:1 (GOx:HRP). Interestingly, even in the presence of catalase, an enzyme that quickly decomposes hydrogen peroxide, the reaction rate only decreases by 18.7% to 8.3±0.3μM/min. This result suggests that the intermediate hydrogen peroxide is not decomposed by catalase due to a short diffusion distance between GOx and HRP in the combi-CLEA. Scanning electron microscopy images suggest that combi-CLEA particles are hollow spheres and have an average diameter around 250nm. Because of their size, combi-CLEA particles can be entrapped inside a nylon membrane for detecting glucose by using the cascade reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. C–C Cross-Coupling Reactions of O6-Alkyl-2-Haloinosine Derivatives and a One-Pot Cross-Coupling/O6-Deprotection Procedure

    PubMed Central

    Gurram, Venkateshwarlu; Pottabathini, Narender; Garlapati, Ramesh; Chaudhary, Avinash B.; Patro, Balaram; Lakshman, Mahesh K.

    2012-01-01

    Reaction conditions for the C–C cross-coupling of O6-alkyl-2-bromo- and 2-chloroinosine derivatives with aryl-, hetaryl-, and alkylboronic acids were studied. Optimization experiments with silyl-protected 2-bromo-O6-methylinosine led to the identification of [PdCl2(dcpf)]/K3PO4 in 1,4-dioxane as the best condition for these reactions (dcpf = 1,1’-bis(dicyclohexylphosphino)ferrocene). Attempted O6-demethylation, as well as the replacement of the C-6 methoxy group by amines, was unsuccessful, which led to the consideration of Pd-cleavable groups such that C–C cross-coupling and O6-deprotection could be accomplished in a single step. Thus, inosine 2-chloro-O6-allylinosine was chosen as the substrate and, after re-evaluation of the cross-coupling conditions with 2-chloro-O6-methylinosine as a model substrate, one-step C–C cross-coupling/deprotection reactions were performed with the O6-allyl analogue. These reactions are the first such examples of a one-pot procedure for the modification and deprotection of purine nucleosides under C–C cross-coupling conditions. PMID:22570232

  12. C-C cross-coupling reactions of O6-alkyl-2-haloinosine derivatives and a one-pot cross-coupling/O6-deprotection procedure.

    PubMed

    Gurram, Venkateshwarlu; Pottabathini, Narender; Garlapati, Ramesh; Chaudhary, Avinash B; Patro, Balaram; Lakshman, Mahesh K

    2012-08-01

    Reaction conditions for the CC cross-coupling of O(6)-alkyl-2-bromo- and 2-chloroinosine derivatives with aryl-, hetaryl-, and alkylboronic acids were studied. Optimization experiments with silyl-protected 2-bromo-O(6)-methylinosine led to the identification of [PdCl(2)(dcpf)]/K(3)PO(4) in 1,4-dioxane as the best conditions for these reactions (dcpf=1,1'-bis(dicyclohexylphosphino)ferrocene). Attempted O(6)-demethylation, as well as the replacement of the C-6 methoxy group by amines, was unsuccessful, which led to the consideration of Pd-cleavable groups such that C-C cross-coupling and O(6)-deprotection could be accomplished in a single step. Thus, inosine 2-chloro-O(6)-allylinosine was chosen as the substrate and, after re-evaluation of the cross-coupling conditions with 2-chloro-O(6)-methylinosine as a model substrate, one-step C-C cross-coupling/deprotection reactions were performed with the O(6)-allyl analogue. These reactions are the first such examples of a one-pot procedure for the modification and deprotection of purine nucleosides under C-C cross-coupling conditions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multimetallic Catalysis Enabled Cross-Coupling of Aryl Bromides with Aryl Triflates

    PubMed Central

    Ackerman, Laura K.G.; Lovell, Matthew M.

    2015-01-01

    Transition metal-catalyzed strategies for the formation of new C-C bonds have revolutionized the field of organic chemistry, enabling the efficient synthesis of ligands, materials, and biologically active molecules.1–3 In cases where a single metal fails to promote a selective or efficient transformation, the synergistic cooperation4 of two distinct catalysts – multimetallic catalysis – can be employed instead. Many important reactions rely on multimetallic catalysis,5 including the Wacker oxidation of olefins6–8 and the Sonogashira coupling of alkynes with aryl halides.9–10 However, the application of this strategy, even in recently developed methods11, has largely been limited to the use of metals with distinct reactivities, with only one metal catalyst undergoing an oxidative addition.12 In this manuscript, we demonstrate that cooperativity between two d10 metal catalysts, (bipyridine)nickel and (1,3-bis(diphenylphosphino)propane)palladium, enables a general cross-Ullman reaction.13–15 Our method couples aryl bromides with aryl triflates directly, eliminating the use of arylmetal reagents and avoiding the challenge of differentiating between multiple C–H bonds that is required for many C–H activation methods.16–17 The selectivity does not require an excess of either substrate and originates from the orthogonal activity of the two catalysts and the relative stability of the two arylmetal intermediates. While (dppp)Pd reacts preferentially with aryl triflates to afford a persistent intermediate, (bpy)Ni reacts preferentially with aryl bromides to form a transient, reactive intermediate. Although each catalyst forms less than 5% cross product in isolation, together they are able to achieve up to 94% yield. Our results reveal a new, general method for the synthesis of biaryls, heteroaryls, and dienes, as well as a new mechanism for selective transmetalation between two catalysts. We anticipate that this reaction will simplify the synthesis of

  14. Ruthenium-Catalyzed Cycloaddition of 1-Haloalkynes with Nitrile Oxides and Organic Azides; Synthesis of 4-Halo Isoxazoles and 5-Halo Triazoles

    PubMed Central

    Oakdale, James S.; Sit, Rakesh K.

    2015-01-01

    (Cyclopentadienyl)(cyclooctadiene) ruthenium(II) chloride [CpRuCl(cod)] catalyzes the reaction between nitrile oxides and electronically deficient 1-choro-, 1-bromo- and 1-iodoalkynes leading to 4-haloisoxazoles. Organic azides are also suitable 1,3-dipoles, resulting in 5-halo-1,2,3-triazoles. These air tolerant reactions can be performed at room temperature with 1.25 equiv of the respective 1,3-dipole relative to the alkyne component. Reactive 1-haloalkynes include propiolic amides, esters, ketones and phosphonates. Post-functionalization of the halogenated azole products can be accomplished using palladium-catalyzed cross-coupling reactions as well as via manipulation of reactive amide groups. The lack of catalysis observed with Cp*RuCl(cod) is attributed to steric demands of the Cp* (η5-C5Me5) ligand in comparison to the parent Cp (η5-C5H5). This hypothesis is supported by the poor reactivity of (η5-C5Me4CF3)RuCl(cod), which serves as a an isosteric mimic of Cp* and as an isoelectronic analog of Cp. PMID:25059647

  15. Merging C-H activation and alkene difunctionalization at room temperature: a palladium-catalyzed divergent synthesis of indoles and indolines.

    PubMed

    Manna, Manash Kumar; Hossian, Asik; Jana, Ranjan

    2015-02-06

    A palladium-catalyzed 1,2-carboamination through C-H activation at room temperature is reported for the synthesis of 2-arylindoles, and indolines from readily available, inexpensive aryl ureas and vinyl arenes. The reaction initiates with a urea-directed electrophilic ortho palladation, alkene insertion, and β-hydride elimination sequences to provide the Fujiwara-Moritani arylation product. Subsequently, aza-Wacker cyclization, and β-hydride elimination provide the 2-arylindoles in high yields. Intercepting the common σ-alkyl-Pd intermediate, corresponding indolines are also achieved. The indoline formation is attributed to the generation of stabilized, cationic π-benzyl-Pd species to suppress β-hydride elimination.

  16. Palladium-Catalyzed Transannular C–H Functionalization of Alicyclic Amines

    PubMed Central

    Saper, Noam I.; Sanford, Melanie S.

    2016-01-01

    The discovery of pharmaceutical candidates is a resource-intensive enterprise that frequently requires the parallel synthesis of hundreds or even thousands of molecules. Carbon-hydrogen bonds are present in almost all pharmaceutical agents. As such, the development of selective, rapid, and efficient methods for converting carbon-hydrogen bonds into new chemical entities has the potential to dramatically streamline pharmaceutical development1,2,3,4. Saturated nitrogen-containing heterocycles (alicyclic amines) feature prominently in pharmaceuticals, including treatments for depression (paroxetine, amitifadine), diabetes (gliclazide), leukemia (alvocidib), schizophrenia (risperidone, belaperidone), and nicotine addiction (cytisine and varenicline)5. However, existing methods for the C–H functionalization of saturated nitrogen heterocycles, particularly at sites remote to nitrogen, remain extremely limited 6,7. Here we report a new approach to selectively manipulate the carbon–hydrogen bonds of alicyclic amines at sites remote to nitrogen. Our reaction leverages the boat conformation of the substrates to achieve the palladium-catalyzed amine-directed conversion of C–H bonds to C–C bonds on various alicyclic amine scaffolds. This approach is applied to the synthesis of novel derivatives of several bioactive molecules, including the top-selling smoking cessation drug varenicline (Chantix®). We anticipate that this method should prove broadly useful in medicinal chemistry. PMID:26886789

  17. Synthesis of Secondary Aromatic Amides via Pd-Catalyzed Aminocarbonylation of Aryl Halides Using Carbamoylsilane as an Amide Source.

    PubMed

    Tong, Wenting; Cao, Pei; Liu, Yanhong; Chen, Jianxin

    2017-11-03

    Using N-methoxymethyl-N-organylcarbamoyl(trimethyl)silanes as secondary amides source, the direct transformation of aryl halides into the corresponding secondary aromatic amides via palladium-catalyzed aminocarbonylation is described. The reactions tolerated a broad range of functional groups on the aryl ring except big steric hindrance of substituent. The types and the relative position of substituents on the aryl ring impact the coupling efficiency.

  18. A novel and general synthetic pathway to strychnos indole alkaloids: total syntheses of (-)-tubifoline, (-)-dehydrotubifoline, and (-)-strychnine using palladium-catalyzed asymmetric allylic substitution.

    PubMed

    Mori, Miwako; Nakanishi, Masato; Kajishima, Daisuke; Sato, Yoshihiro

    2003-08-13

    A method of palladium-catalyzed asymmetric allylic substitution for synthesizing 2-substituted cyclohexenylamine derivatives was established. Treatment of a 2-silyloxymethylcyclohexenol derivative with ortho-bromo-N-tosylaniline in the presence of Pd(2)dba(3).CHCl(3) and (S)-BINAPO in THF afforded a cyclohexenylamine derivative with 84% ee in 80% yield. The Heck reaction was carried out to produce an indolenine derivative in good yield. Using this method, we synthesized indolenine derivative 7, which was recrystallized from EtOH to give an optically pure compound. From this compound, tetracyclic ketone 13, which should be a useful intermediate for the synthesis of indole alkaloids, could be synthesized. The total syntheses of (-)-dehydrotubifoline, (-)-tubifoline, and (-)-strychnine were achieved from 13. All ring constructions for the syntheses of these natural products were achieved using a palladium catalyst.

  19. Novel guanosine-cytidine dinucleoside that self-assembles into a trimeric supramolecule.

    PubMed

    Sessler, Jonathan L; Jayawickramarajah, Janarthanan; Sathiosatham, Muhunthan; Sherman, Courtney L; Brodbelt, Jennifer S

    2003-07-24

    [reaction: see text] Synthesis and assembly studies of a guanosine-cytidine dinucleoside 1 that self-assembles into a trimeric supramolecule (I) are presented. Dinucleoside 1 was obtained by utilizing two consecutive palladium-catalyzed cross-coupling reactions. Ensemble I was analyzed by ESI-MS, NMR spectroscopies, size exclusion chromatography (SEC), and vapor pressure osmometry (VPO).

  20. (E)-5-(Tributylstannylmethylidene)-5H-furan-2-ones: versatile synthons for the stereospecific elaboration of gamma-alkylidenebutenolide skeletons.

    PubMed

    Rousset, S; Abarbri, M; Thibonnet, J; Duchêne, A; Parrain, J L

    1999-09-09

    [reaction: see text] Stereoselective construction of (E)-gamma-tributylstannylmethylidene butenolides 1 was achieved through the palladium-catalyzed tandem cross-coupling/cyclization reactions of tributylstannyl 3-iodopropenoate derivatives with tributyltinacetylene. Iododestannylation of 1 occurs with inversion of the configuration of the exocyclic double bond while the observed selectivity in the Stille reaction was found to be dependent on the nature of the aryl halide.

  1. Origin of chemoselectivity in N-heterocyclic carbene catalyzed cross-benzoin reactions: DFT and experimental insights.

    PubMed

    Langdon, Steven M; Legault, Claude Y; Gravel, Michel

    2015-04-03

    An exploration into the origin of chemoselectivity in the NHC-catalyzed cross-benzoin reaction reveals several key factors governing the preferred pathway. In the first computational study to explore the cross-benzoin reaction, a piperidinone-derived triazolium catalyst produces kinetically controlled chemoselectivity. This is supported by (1)H NMR studies as well as a series of crossover experiments. Major contributors include the rapid and preferential formation of an NHC adduct with alkyl aldehydes, a rate-limiting carbon-carbon bond formation step benefiting from a stabilizing π-stacking/π-cation interaction, and steric penalties paid by competing pathways. The energy profile for the analogous pyrrolidinone-derived catalyst was found to be remarkably similar, despite experimental data showing that it is less chemoselective. The chemoselectivity could not be improved through kinetic control; however, equilibrating conditions show substantial preference for the same cross-benzoin product kinetically favored by the piperidinone-derived catalyst.

  2. Palladium(ii)-catalyzed synthesis of dibenzothiophene derivatives via the cleavage of carbon–sulfur and carbon–hydrogen bonds† †Electronic supplementary information (ESI) available: Experimental procedures and characterization data for all new compounds. See DOI: 10.1039/c5sc04890g Click here for additional data file.

    PubMed Central

    Masuya, Yoshihiro; Baba, Katsuaki

    2016-01-01

    A new process has been developed for the palladium(ii)-catalyzed synthesis of dibenzothiophene derivatives via the cleavage of C–H and C–S bonds. In contrast to the existing methods for the synthesis of this scaffold by C–H functionalization, this new catalytic C–H/C–S coupling method does not require the presence of an external stoichiometric oxidant or reactive functionalities such as C–X or S–H, allowing its application to the synthesis of elaborate π-systems. Notably, the product-forming step of this reaction lies in an oxidative addition step rather than a reductive elimination step, making this reaction mechanistically uncommon. PMID:28660030

  3. Construction of substituted benzene rings by palladium-catalyzed direct cross-coupling of olefins: a rapid synthetic route to 1,4-naphthoquinone and its derivatives.

    PubMed

    Hu, Peng; Huang, Shijun; Xu, Jing; Shi, Zhang-Jie; Su, Weiping

    2011-10-10

    Ring the changes: the direct cross-coupling of electron-deficient 1,4-benzoquinone or its derivatives with electron-rich alkyl vinyl ethers proceeds in a tandem manner to produce substituted benzene rings with good selectivity and in good to excellent yields. The reaction has the potential for the rapid synthesis of diverse substituted benzene rings as it is not limited by substituent effects. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Palladium-catalyzed stereoretentive olefination of unactivated C(sp3)-H bonds with vinyl iodides at room temperature: synthesis of β-vinyl α-amino acids.

    PubMed

    Wang, Bo; Lu, Chengxi; Zhang, Shu-Yu; He, Gang; Nack, William A; Chen, Gong

    2014-12-05

    A method is reported for palladium-catalyzed N-quinolyl carboxamide-directed olefination of the unactivated C(sp(3))-H bonds of phthaloyl alanine with a broad range of vinyl iodides at room temperature. This reaction represents the first example of the stereoretentive installation of multisubstituted terminal and internal olefins onto unactivated C(sp(3))-H bonds. These methods enable access to a wide range of challenging β-vinyl α-amino acid products in a streamlined and controllable fashion, beginning from simple precursors.

  5. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  6. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  7. Allene formation by gold catalyzed cross-coupling of masked carbenes and vinylidenes

    PubMed Central

    Lavallo, Vincent; Frey, Guido D.; Kousar, Shazia; Donnadieu, Bruno; Bertrand, Guy

    2007-01-01

    Addition of a sterically demanding cyclic (alkyl)(amino)carbene (CAAC) to AuCl(SMe2) followed by treatment with [Et3Si(Tol)]+[B(C6F5)4]− in toluene affords the isolable [(CAAC)Au(η2-toluene)]+[B(C6F5)4]− complex. This cationic Au(I) complex efficiently mediates the catalytic coupling of enamines and terminal alkynes to yield allenes and not propargyl amines as observed with other catalysts. Mono-, di-, and tri-substituted enamines can be used, as well as aryl-, alkyl-, and trimethylsilyl-substituted terminal alkynes. The reaction tolerates sterically hindered substrates and is diastereoselective. This general catalytic protocol directly couples two unsaturated carbon centers to form the three-carbon allenic core. The reaction most probably proceeds through an unprecedented “carbene/vinylidene cross-coupling.” PMID:17698808

  8. Synthesis of 5-iodo-1,2,3-triazole-containing macrocycles using copper flow reactor technology.

    PubMed

    Bogdan, Andrew R; James, Keith

    2011-08-05

    A new macrocyclization strategy to synthesize 12- to 31-membered 5-iodo-1,2,3-triazole-containing macrocycles is described. The macrocycles have been generated using a simple and efficient copper-catalyzed cycloaddition in flow under environmentally friendly conditions. This methodology also permits the facile, regioselective synthesis of 1,4,5-trisubstituted-1,2,3-triazole-containing macrocyles using palladium-catalyzed cross-coupling reactions. © 2011 American Chemical Society

  9. Nickel-catalyzed coupling reaction of alkyl halides with aryl Grignard reagents in the presence of 1,3-butadiene: mechanistic studies of four-component coupling and competing cross-coupling reactions† †Electronic supplementary information (ESI) available: Detailed experimental and computational results, procedures, characterization data, copies of NMR charts, and crystallographic data. CCDC 1572238. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04675h

    PubMed Central

    Fukuoka, Asuka; Yokoyama, Wataru; Min, Xin; Hisaki, Ichiro; Kuniyasu, Hitoshi

    2018-01-01

    We describe the mechanism, substituent effects, and origins of the selectivity of the nickel-catalyzed four-component coupling reactions of alkyl fluorides, aryl Grignard reagents, and two molecules of 1,3-butadiene that affords a 1,6-octadiene carbon framework bearing alkyl and aryl groups at the 3- and 8-positions, respectively, and the competing cross-coupling reaction. Both the four-component coupling reaction and the cross-coupling reaction are triggered by the formation of anionic nickel complexes, which are generated by the oxidative dimerization of two molecules of 1,3-butadiene on Ni(0) and the subsequent complexation with the aryl Grignard reagents. The C–C bond formation of the alkyl fluorides with the γ-carbon of the anionic nickel complexes leads to the four-component coupling product, whereas the cross-coupling product is yielded via nucleophilic attack of the Ni center toward the alkyl fluorides. These steps are found to be the rate-determining and selectivity-determining steps of the whole catalytic cycle, in which the C–F bond of the alkyl fluorides is activated by the Mg cation rather than a Li or Zn cation. ortho-Substituents of the aryl Grignard reagents suppressed the cross-coupling reaction leading to the selective formation of the four-component products. Such steric effects of the ortho-substituents were clearly demonstrated by crystal structure characterizations of ate complexes and DFT calculations. The electronic effects of the para-substituent of the aryl Grignard reagents on both the selectivity and reaction rates are thoroughly discussed. The present mechanistic study offers new insight into anionic complexes, which are proposed as the key intermediates in catalytic transformations even though detailed mechanisms are not established in many cases, and demonstrates their synthetic utility as promising intermediates for C–C bond forming reactions, providing useful information for developing efficient and straightforward

  10. Bioorthogonal Diversification of Peptides through Selective Ruthenium(II)-Catalyzed C-H Activation.

    PubMed

    Schischko, Alexandra; Ren, Hongjun; Kaplaneris, Nikolaos; Ackermann, Lutz

    2017-02-01

    Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium-catalyzed cross-coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step-economical late-stage diversification of α- and β-amino acids, as well as peptides, through chemo-selective C-H arylation under racemization-free reaction conditions. The ligand-accelerated C-H activation strategy proved water-tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C-H arylations for the complexity-increasing assembly of artificial peptides within a multicatalytic C-H activation manifold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis of Conjugated Small Molecules and Polymers by a Palladium Catalyzed Cyclopentannulation Strategy: Towards New Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Bheemireddy, Sambasiva Reddy

    The utility of conjugated small molecules and polymers as organic semiconductors have seen a tremendous growth in research and development in academia as well as industry because of their processability and flexibility advantages in comparison to inorganic semiconductors. The extensive research over the years has produced a large number of p-type (hole conducting) and n-type (electron conducting) semiconductors that can be used to construct organic electronic devices. Of these materials, p-type semiconductors are more established and extensively studied because of the ease of preparation as well as their better general stability in comparison to n-type materials. Despite recent research into the development of n-type materials, fullerene (C60 and C 70) and its derivatives are still the predominant materials used as electron acceptors for OPV applications. By taking advantage of the electron accepting behavior of cyclopenta[hi]aceanthrylene fragment of C70, we have designed and synthesized new materials based on cyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs). By using a newly developed palladium catalyzed cyclopentannulation methodology, 1,2,6,7- tetraarylcyclopenta[hi]aceanthrylenes were prepared by treating diarylethynylenes with 9,10-dibromoanthracene. Scholl cyclodehydrogenation was used to close the externally fused aryl groups to provide access to contorted 2,7,13,18- tetraalkoxytetrabenzo[f,h,r,t]rubicenes. The contortion provides access to more soluble materials than their planar counterparts but still ii allows significant pi-pi stacking between molecules. Using a modified palladium catalyzed cyclopentannulation polymerization followed by a cyclodehydrogenation reaction, a nonconventional synthesis of CP-PAH embedded ladder polymers was also achieved. These ladder polymers possess broad UV-Vis absorptions and narrow optical gaps of 1.17-1.29 eV. The synthesis of new donor-acceptor copolymers incorporating electron accepting 1,2,6,7- tetra(4

  12. Anionic Palladium(0) and Palladium(II) Ate Complexes.

    PubMed

    Kolter, Marlene; Böck, Katharina; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2017-10-16

    Palladium ate complexes are frequently invoked as important intermediates in Heck and cross-coupling reactions, but so far have largely eluded characterization at the molecular level. Here, we use electrospray-ionization mass spectrometry, electrical conductivity measurements, and NMR spectroscopy to show that the electron-poor catalyst [L 3 Pd] (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) readily reacts with Br - ions to afford the anionic, zero-valent ate complex [L 3 PdBr] - . In contrast, more-electron-rich Pd catalysts display lower tendencies toward the formation of ate complexes. Combining [L 3 Pd] with LiI and an aryl iodide substrate (ArI) results in the observation of the Pd II ate complex [L 2 Pd(Ar)I 2 ] - . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cross-dehydrogenative coupling and oxidative-amination reactions of ethers and alcohols with aromatics and heteroaromatics

    PubMed Central

    Vuram, Prasanna K.

    2017-01-01

    Cross-dehydrogenative coupling (CDC) is a process in which, typically, a C–C bond is formed at the expense of two C–H bonds, either catalyzed by metals or other organic compounds, or via uncatalyzed processes. In this perspective, we present various modes of C–H bond-activation at sp3 centers adjacent to ether oxygen atoms, followed by C–C bond formation with aromatic systems as well as with heteroaromatic systems. C–N bond-formation with NH-containing heteroaromatics, leading to hemiaminal ethers, is also an event that can occur analogously to C–C bond formation, but at the expense of C–H and N–H bonds. A large variety of hemiaminal ether-forming reactions have recently appeared in the literature and this perspective also includes this complementary chemistry. In addition, the participation of C–H bonds in alcohols in such processes is also described. Facile access to a wide range of compounds can be attained through these processes, rendering such reactions useful for synthetic applications via Csp3 bond activations. PMID:28970941

  14. Controlled deposition of palladium nanodendrites on the tips of gold nanorods and their enhanced catalytic activity.

    PubMed

    Su, Gaoxing; Jiang, Huaqiao; Zhu, Hongyan; Lv, Jing-Jing; Yang, Guohai; Yan, Bing; Zhu, Jun-Jie

    2017-08-31

    Plasmonic Au-Pd nanostructures have drawn significant attention for use in heterogeneous catalysis. In this study, palladium nanodendrite-tipped gold nanorods (PdND-T-AuNRs) were subjected to a facile fabrication under mild reaction conditions. The palladium amounts on the two tips were tunable. In the preparation of PdND-T-AuNRs, dense capped AuNRs, a low reaction temperature, and suitable stabilizing agents were identified as critical reaction parameters for controlling palladium nanodendrites deposited on both ends of AuNRs. After overgrowth with palladium nanodendrites, the longitudinal surface plasmonic resonance peaks of PdND-T-AuNRs were red-shifted from 810 nm to 980 nm. The electrocatalytic activity of PdND-T-AuNRs for ethanol oxidation was examined, which was a bit weaker than that of cuboid core-shell Au-Pd nanodendrites; however, PdND-T-AuNRs were more stable in ethanol electrooxidation. Moreover, the photocatalytic activity of PdND-T-AuNRs for Suzuki cross-coupling reactions was investigated. At room temperature, nearly 100% yield was obtained under laser irradiation. The results can further enhance our capability of fine-tuning the optical, electronic, and catalytic properties of the bimetallic Au-Pd nanostructures.

  15. Ara h 2 cross-linking catalyzed by MTGase decreases its allergenicity.

    PubMed

    Wu, Zhihua; Lian, Jun; Zhao, Ruifang; Li, Kun; Li, Xin; Yang, Anshu; Tong, Ping; Chen, Hongbing

    2017-03-22

    Peanuts, whose major allergen is Ara h 2, are included among the eight major food allergens. After reduction using dithiothreitol (DTT), cross-linking of Ara h 2 could be catalyzed by microbial transglutaminase (MTGase), a widely used enzyme in the food industry. In this study, Ara h 2 cross-linking was catalyzed by MTGase after it was reduced by DTT. Using mass spectrometry and PLINK software, five cross-linkers were identified, and five linear allergen epitopes were found to be involved in the reactions. The IgE binding capacity of cross-linked Ara h 2 was found to be significantly lower compared to that of native and reduced Ara h 2. After simulated gastric fluid (SGF) digestion, the digested products of the cross-linked Ara h 2, again, had a significantly lower IgE binding capacity compared to untreated and reduced Ara h 2. Furthermore, reduced and cross-linked Ara h 2 (RC-Ara h 2) induced lower sensitization in mice, indicating its lower allergenicity. Reduction and MTGase-catalyzed cross-linking are effective methods to decrease the allergenicity of Ara h 2. The reactions involved linear allergen epitopes destroying the material basis of the allergenicity, and this might develop a new direction for protein desensitization processes.

  16. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    PubMed Central

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  17. Total synthesis of (+/-)-strychnine via a [4 + 2]-cycloaddition/rearrangement cascade.

    PubMed

    Zhang, Hongjun; Boonsombat, Jutatip; Padwa, Albert

    2007-01-18

    A new strategy for the synthesis of the Strychnos alkaloid (+/-)-strychnine has been developed and is based on an intramolecular [4 + 2]-cycloaddition/rearrangement cascade of an indolyl-substituted amidofuran. The critical D-ring was assembled by an intramolecular palladium-catalyzed enolate-driven cross-coupling of an N-tethered vinyl iodide. [reaction: see text].

  18. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    PubMed

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    PubMed

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  20. Copper-catalyzed C(sp3)-OH cleavage with concomitant C-C coupling: synthesis of 3-substituted isoindolinones.

    PubMed

    Rao, H Surya Prakash; Rao, A Veera Bhadra

    2015-02-06

    Copper(II) trifluoromethanesulfonate (Cu(OTf)2) efficiently catalyzes the C-C coupling of 3-hydoxyisoindolinones with a variety of aryl-, heteroaryl-, and alkenylboronic acids to furnish C(3) aryl-, heteroaryl-, and alkenyl-substituted isoindolinones. The coupling reactions work smoothly in 1,2-dicholoroethane (DCE) reflux, to effect both inter- and intramolecular versions. This is the first report on C(sp(3))-OH cleavage with concomitant C-C coupling. The photolabile 2-nitrobenzyl protecting group is most appropriate for promotion of the coupling reaction and for deprotection. The tetracyclic ring motif of the alkaloid neuvamine was prepared by applying the newly developed copper-catalyzed C-C coupling.

  1. Pd-Catalyzed regioselective intramolecular dehydrogenative C-5 cross coupling in an N-substituted pyrrole-azole system.

    PubMed

    Tripathi, Krishna N; Ray, Devalina; Singh, Ravi P

    2017-12-06

    Functionalized polycyclic pyrrole-azole structures possessing fused six membered and seven membered rings were directly synthesized via ligand-enabled, Pd-catalyzed, site selective, intramolecular cross couplings of N-substituted pyrrole-azoles. C5-H activation in the presence of a reactive C2-H remains a challenge that needs to be addressed and this was targeted to be resolved through the present approach by specifically generating the cyclized products with 83-100% selectivity. The featured methodology provides a novel disconnection for the synthesis of pyrrole containing alkaloids and medicinal compounds.

  2. Et3B-mediated and palladium-catalyzed direct allylation of β-dicarbonyl compounds with Morita–Baylis–Hillman alcohols

    PubMed Central

    Abidi, Ahlem; Oueslati, Yosra

    2016-01-01

    A practical and efficient palladium-catalyzed direct allylation of β-dicarbonyl compounds with both cyclic and acyclic Morita–Baylis–Hillman (MBH) alcohols, using Et3B as a Lewis acid promoter, is described herein. A wide range of the corresponding functionalized allylated derivatives have been obtained in good yields and with high selectivity. PMID:28144308

  3. Heterobimetallic Catalysis: Platinum-Gold-Catalyzed Tandem Cyclization/C-X Coupling Reaction of (Hetero)Arylallenes with Nucleophiles.

    PubMed

    Alonso, José Miguel; Muñoz, María Paz

    2018-04-16

    Heterobimetallic catalysis offers new opportunities for reactivity and selectivity but still presents challenges, and only a few metal combinations have been explored so far. Reported here is a Pt-Au heterobimetallic catalyst system for the synthesis of a family of multi-heteroaromatic structures through tandem cyclization/C-X coupling reaction. Au-catalyzed 6-endo-cyclization takes place as the first fast step. Pt-Au clusters are proposed to be responsible for the increased reactivity in the second step, that is, the intermolecular nucleophilic addition which occurs through an outer-sphere mechanism by hybrid homogeneous-heterogeneous catalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and characterization of Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 nanocomposite as a polymer-inorganic hybrid catalyst for the Suzuki-Miyaura cross-coupling reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalbasi, Roozbeh Javad, E-mail: rkalbasi@iaush.ac.ir; Mosaddegh, Neda

    2011-11-15

    Composite poly(N-vinyl-2-pyrrolidone)/KIT-5 (PVP/KIT-5) was prepared by in situ polymerization method and used as a support for palladium nanoparticles obtained through the reduction of Pd(OAc){sub 2} by hydrazine hydrate. The physical and chemical properties of the catalyst were investigated by XRD, FT-IR, UV-vis, TG, BET, SEM, and TEM techniques. The catalytic performance of this novel heterogeneous catalyst was determined for the Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acid in the presence of water at room temperature. The stability of the nanocomposite catalyst was excellent and could be reused 8 times without much loss of activity in the Suzuki-Miyaura cross-couplingmore » reaction. - Graphical Abstract: Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 was prepared as an organic-inorganic hybrid catalyst for the Suzuki-Miyaura reaction. The stability of the catalyst was excellent and could be reused 8 times in the Suzuki-Miyaura reaction. Highlights: > Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 was prepared as a novel nanocomposite. > Nanocomposite was prepared based on a cage-type mesoporous system. > Catalyst showed excellent activity for Suzuki-Miyaura reaction in water. > Stability of the catalyst was excellent and could be reused 8 times.« less

  5. The Heck Reaction: A Microscale Synthesis Using a Palladium Catalyst

    NASA Astrophysics Data System (ADS)

    Martin, William B.; Kateley, Laura J.

    2000-06-01

    Palladium catalysts are central to a large variety of modern organic syntheses. Heck reactions use palladium acetate as the preferred precatalyst to effect vinylic substitutions involving haloarenes and haloalkenes. The microscale synthesis described uses a reaction between a bromoiodobenzene and acrylic acid to produce a bromocinnamic acid. Structure verification for the product uses IR and 1H NMR spectroscopy. This experiment is appropriate for a second-semester introductory organic chemistry laboratory or an intermediate-level organic synthesis laboratory. It could be adapted as a project for two or three students, with each member of the group preparing a different isomer or using a different catalyst source.

  6. Palladium-catalyzed double carbonylation using near stoichiometric carbon monoxide: expedient access to substituted 13C2-labeled phenethylamines.

    PubMed

    Nielsen, Dennis U; Neumann, Karoline; Taaning, Rolf H; Lindhardt, Anders T; Modvig, Amalie; Skrydstrup, Troels

    2012-07-20

    A novel and general approach for (13)C(2)- and (2)H-labeled phenethylamine derivatives has been developed, based on a highly convergent single-step assembly of the carbon skeleton. The efficient incorporation of two carbon-13 isotopes into phenethylamines was accomplished using a palladium-catalyzed double carbonylation of aryl iodides with near stoichiometric carbon monoxide.

  7. Copper-catalyzed trifluoromethylthiolation of aryl halides with diverse directing groups.

    PubMed

    Xu, Jiabin; Mu, Xin; Chen, Pinhong; Ye, Jinxing; Liu, Guosheng

    2014-08-01

    The expansion of cross-coupling components in Cu-catalyzed C-X bond forming reactions have received much attention recently. A novel Cu-catalyzed trifluoromethylthiolation of aryl bromides and iodides with the assistance of versatile directing groups such as pyridyl, methyl ester, amide, imine and oxime was reported. CuBr was used as the catalyst, and 1,10-phenanthroline as the ligand. By changing the solvent from acetonitrile to DMF, the coupling process could even take place at room temperature.

  8. Enhanced removal of aqueous acetaminophen by a laccase-catalyzed oxidative coupling reaction under a dual-pH optimization strategy.

    PubMed

    Wang, Kaidong; Huang, Ke; Jiang, Guoqiang

    2018-03-01

    Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes.

    PubMed

    Pascanu, Vlad; Hansen, Peter R; Bermejo Gómez, Antonio; Ayats, Carles; Platero-Prats, Ana E; Johansson, Magnus J; Pericàs, Miquel À; Martín-Matute, Belén

    2015-01-01

    A diverse set of more than 40 highly functionalized biaryls was synthesized successfully through the Suzuki-Miyaura cross-coupling reaction catalyzed by Pd nanoparticles supported in a functionalized mesoporous MOF (8 wt % Pd@MIL-101(Cr)-NH2 ). This could be achieved under some of the mildest conditions reported to date and a strong control over the leaching of metallic species could be maintained, despite the presence of diverse functional groups and/or several heteroatoms. Some of the targeted molecules are important intermediates in the synthesis of pharmaceuticals and we clearly exemplify the versatility of this catalytic system, which affords better yields than currently existing commercial procedures. Most importantly, Pd@MIL-101-NH2 was packed in a micro-flow reactor, which represents the first report of metallic nanoparticles supported on MOFs employed in flow chemistry for catalytic applications. A small library of 11 isolated compounds was created in a continuous experiment without replacing the catalyst, demonstrating the potential of the catalyst for large-scale applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A new route to methyl (R,E)-(-)-tetradeca-2,4,5-trienoate (pheromone of Acanthoscelides obtectus) utilizing a palladium-catalyzed asymmetric allene formation reaction.

    PubMed

    Ogasawara, Masamichi; Nagano, Takashi; Hayashi, Tamio

    2005-07-08

    [reaction: see text] A formal total synthesis of the sex attractant of male dried bean beetle, methyl (R,E)-(-)-tetradeca-2,4,5-trienoate, was achieved by a new efficient route utilizing the Pd-catalyzed asymmetric allene synthesis reaction. It was found that the atropisomeric biaryl bisphosphine (R)-segphos showed better enantioselectivity than (R)-binap in the Pd-catalyzed reaction for preparing alkyl-substituted axially chiral allenes.

  11. The Stille Reaction (Vittorio Farina, Venkat Krishnamurthy, and William J. Scott)

    NASA Astrophysics Data System (ADS)

    Cochran, John C.

    1999-10-01

    In 1997, Volume 50 of Organic Reactions was published in a handsome and appropriate gold hard-cover edition. This was only the third volume in this prestigious series that consisted of a single chapter. The treatise, The Stille Reaction, describes a palladium-catalyzed cross-coupling between a carbon ligand on tin and a carbon with electrophilic character. This reaction has been around only since 1977, and the literature is covered here through 1994 with a few references in 1995. It is truly astounding that, in the space of about 17 years, a new reaction could generate enough literature for not only a chapter in Organic Reactions, but a complete volume of 652 pages, 864 literature citations, and more than 4300 specific reaction examples. The editorial board of Organic Reactions has graciously decided to make this extensive review available to a broader audience by authorizing a paperback edition of The Stille Reaction. While the mechanistic details of the Stille reaction are generally understood, there are many fine points that must be tuned to each case. For instance, about 15 different solvents have been used, ranging in polarity from benzene to water; at least ten different ligands for the palladium atom are available and they range from hard to soft; CuI, Ag2CO3, and LiCl are sometimes useful cocatalysts but sometimes have no effect, and in some cases LiCl is inhibitory; vinyl triflates couple with alkenyl-, alkynyl- and allylstannanes but not with arylstannanes; reaction temperatures vary from room temperature to refluxing DMF. An important consideration is that most stannanes are reasonably air and moisture stable and do not react with most common functional groups. Thus, it is not necessary to build protection-deprotection sequences into the synthetic scheme. The extensive reaction examples are arranged in 33 tables that show, for each reaction, the structures of the electrophile, the stannane, and the product and specify the catalyst, cocatalyst, solvent

  12. A DFT study on NHC-catalyzed intramolecular aldehyde-ketone crossed-benzoin reaction: mechanism, regioselectivity, stereoselectivity, and role of NHC.

    PubMed

    Zhang, Wei; Wang, Yang; Wei, Donghui; Tang, Mingsheng; Zhu, Xinju

    2016-07-06

    A systematic theoretical study has been carried out to understand the mechanism and stereoselectivity of N-heterocyclic carbene (NHC)-catalyzed intramolecular crossed-benzoin reaction of enolizable keto-aldehyde using density functional theory (DFT) calculations. The calculated results reveal that the most favorable pathway contains four steps, i.e., the nucleophilic attack of NHC on the carbonyl carbon atom of a formyl group, the formation of a Breslow intermediate, a ring-closure process coupled with proton transfer, and regeneration of the catalyst. For the formation of the Breslow intermediate via the [1,2]-proton transfer process, apart from the direct proton transfer mechanism, the base Et3N and the in situ generated Brønsted acid Et3N·H(+) mediated proton transfer mechanisms have also been investigated; the free energy barriers for the crucial proton transfer steps are found to be significantly lowered by explicit inclusion of the Brønsted acid Et3N·H(+). The computational results show that the ring-closure process is the stereoselectivity-determining step, in which two chirality centers assigned on the coupling carbon atoms are formed, and the S-configured diastereomer is the predominant product, which is in good agreement with the experimental observations. NCI and NBO analyses are employed to disclose the origin of stereoselectivity and regioselectivity. Moreover, a global reaction index (GRI) analysis has been performed to confirm that NHC mainly plays the role of a Lewis base. The mechanistic insights obtained in the present study should be valuable for the rational design of an effective organocatalyst for this kind of reaction with high stereoselectivity and regioselectivity.

  13. Copper(II)-catalyzed oxidative [3+2] cycloaddition reactions of secondary amines with α-diazo compounds: a facile and efficient synthesis of 1,2,3-triazoles.

    PubMed

    Li, Yi-Jin; Li, Xue; Zhang, Shao-Xiao; Zhao, Yu-Long; Liu, Qun

    2015-07-25

    A novel copper-catalyzed [3+2] cycloaddition reaction of secondary amines with α-diazo compounds has been developed via a cross-dehydrogenative coupling process. The reaction involves a sequential aerobic oxidation/[3+2] cycloaddition/oxidative aromatization procedure and provides an efficient method for the construction of 1,2,3-triazoles in a single step in an atom-economic manner from readily available starting materials under very mild conditions.

  14. Palladium-Catalyzed Asymmetric Allylic Alkylation of 4-Substituted Isoxazolidin-5-ones: Straightforward Access to β2,2 -Amino Acids.

    PubMed

    Nascimento de Oliveira, Marllon; Arseniyadis, Stellios; Cossy, Janine

    2018-04-03

    We report here an unprecedented and highly enantioselective palladium-catalyzed allylic alkylation applied to 4-substituted isoxazolidin-5-ones. Ultimately, the process provides a straightforward access to β 2,2 -amino acids bearing an all-carbon quaternary stereogenic center in great yields and a high degree of enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  16. Palladium Catalyzed Reduction of Nitrobenzene.

    ERIC Educational Resources Information Center

    Mangravite, John A.

    1983-01-01

    Compares two palladium (Pd/C) reducing systems to iron/tin-hydrochloric acid (Fe/HCl and Sn/HCl) reductions and suggests an efficient, clean, and inexpensive procedures for the conversion of nitrobenzene to aniline. Includes laboratory procedures used and discussion of typical results obtained. (JN)

  17. Microwave-Assisted Synthesis of 5-Phenyl-2-Hydroxyacetophenone Derivatives by a Green Suzuki Coupling Reaction

    ERIC Educational Resources Information Center

    Soares, Pedro; Fernandes, Carlos; Chavarria, Daniel; Borges, Fernanda

    2015-01-01

    In recent years, the use of boron-containing reagents in palladium-assisted C-C coupling reactions (the Suzuki reaction) has gained prominence due to the vast array of reagents commercially available. Consequently, the generation of carbon-carbon bonds, namely of functionalized biphenyl systems, is at present considered the backbone of organic…

  18. Structural Analogues of Selfotel.

    PubMed

    Dziuganowska, Zofia A; Ślepokura, Katarzyna; Volle, Jean-Noël; Virieux, David; Pirat, Jean-Luc; Kafarski, Paweł

    2016-06-17

    A small library of phosphonopiperidylcarboxylic acids, analogues of NMDA antagonist selfotel (CGS 19755), was synthesized. First, the series of aromatic esters was obtained via a palladium-catalyzed cross-coupling reaction (Hirao coupling) of dialkyl phosphites with bromopyridinecarboxylates, followed by their hydrolysis. Then, hydrogenation of the resulting phosphonopyridylcarboxylic acids over PtO2 yielded the desired phosphonopiperidylcarboxylic acids. NMR studies indicated that the hydrogenation reaction proceeds predominantly by cis addition. Several compounds were obtained as monocrystal structures. Preliminary biological studies performed on cultures of neurons suggest that the obtained compounds possess promising activity toward NMDA receptors.

  19. The synthesis of 5-substituted ring E analogs of methyllycaconitine via the Suzuki-Miyaura cross-coupling reaction.

    PubMed

    Huang, Junfeng; Orac, Crina M; McKay, Susan; McKay, Dennis B; Bergmeier, Stephen C

    2008-04-01

    Novel 3,5-disubstituted ring E analogs of methyllycaconitine were prepared and evaluated in nicotinic acetylcholine receptor binding assays. The desired analogs were prepared through the Suzuki-Miyaura cross-coupling reaction of methyl 5-bromo-nicotinate. The Suzuki-Miyaura cross-coupling reactions of pyridines with electron withdrawing substituents have not been extensively described previously.

  20. Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions.

    PubMed

    Mousseau, James J; Charette, André B

    2013-02-19

    The possibility of finding novel disconnections for the efficient synthesis of organic molecules has driven the interest in developing technologies to directly functionalize C-H bonds. The ubiquity of these bonds makes such transformations attractive, while also posing several challenges. The first, and perhaps most important, is the selective functionalization of one C-H bond over another. Another key problem is inducing reactivity at sites that have been historically unreactive and difficult to access without prior inefficient prefunctionalization. Although remarkable advances have been made over the past decade toward solving these and other problems, several difficult tasks remain as researchers attempt to bring C-H functionalization reactions into common use. The functionalization of sp(3) centers continues to be challenging relative to their sp and sp(2) counterparts. Directing groups are often needed to increase the effective concentration of the catalyst at the targeted reaction site, forming thermodynamically stable coordination complexes. As such, the development of removable or convertible directing groups is desirable. Finally, the replacement of expensive rare earth reagents with less expensive and more sustainable catalysts or abandoning the use of catalysts entirely is essential for future practicality. This Account describes our efforts toward solving some of these quandaries. We began our work in this area with the direct arylation of N-iminopyridinium ylides as a universal means to derivatize the germane six-membered heterocycle. We found that the Lewis basic benzoyl group of the pyridinium ylide could direct a palladium catalyst toward insertion at the 2-position of the pyridinium ring, forming a thermodynamically stable six-membered metallocycle. Subsequently we discovered the arylation of the benzylic site of 2-picolonium ylides. The same N-benzoyl group could direct a number of inexpensive copper salts to the 2-position of the pyridinium ylide

  1. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions.

    PubMed

    Park, Yongho; Harper, Kaid C; Kuhl, Nadine; Kwan, Eugene E; Liu, Richard Y; Jacobsen, Eric N

    2017-01-13

    Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction. Copyright © 2017, American Association for the Advancement of Science.

  2. Insights into the Competing Mechanisms and Origin of Enantioselectivity for N-Heterocyclic Carbene-Catalyzed Reaction of Aldehyde with Enamide

    NASA Astrophysics Data System (ADS)

    Qiao, Yan; Chen, Xinhuan; Wei, Donghui; Chang, Junbiao

    2016-12-01

    Hydroacylation reactions and aza-benzoin reactions have attracted considerable attention from experimental chemists. Recently, Wang et al. reported an interesting reaction of N-heterocyclic carbene (NHC)-catalyzed addition of aldehyde to enamide, in which both hydroacylation and aza-benzoin reactions may be involved. Thus, understanding the competing relationship between them is of great interest. Now, density functional theory (DFT) investigation was performed to elucidate this issue. Our results reveal that enamide can tautomerize to its imine isomer with the assistance of HCO3-. The addition of NHC to aldehydes formed Breslow intermediate, which can go through cross-coupling with enamide via hydroacylation reaction or its imine isomer via aza-benzoin reaction. The aza-benzoin reaction requires relatively lower free energy barrier than the hydroacylation reaction. The more polar characteristic of C=N group in the imine isomers, and the more advantageous stereoelectronic effect in the carbon-carbon bond forming transition states in aza-benzoin pathway were identified to determine that the imine isomer can react with the Breslow intermediate more easily. Furthermore, the origin of enantioselectivities for the reaction was explored and reasonably explained by structural analyses on key transition states. The work should provide valuable insights for rational design of switchable NHC-catalyzed hydroacylation and aza-benzoin reactions with high stereoselectivity.

  3. Insights into the Competing Mechanisms and Origin of Enantioselectivity for N-Heterocyclic Carbene-Catalyzed Reaction of Aldehyde with Enamide

    PubMed Central

    Qiao, Yan; Chen, Xinhuan; Wei, Donghui; Chang, Junbiao

    2016-01-01

    Hydroacylation reactions and aza-benzoin reactions have attracted considerable attention from experimental chemists. Recently, Wang et al. reported an interesting reaction of N-heterocyclic carbene (NHC)-catalyzed addition of aldehyde to enamide, in which both hydroacylation and aza-benzoin reactions may be involved. Thus, understanding the competing relationship between them is of great interest. Now, density functional theory (DFT) investigation was performed to elucidate this issue. Our results reveal that enamide can tautomerize to its imine isomer with the assistance of HCO3−. The addition of NHC to aldehydes formed Breslow intermediate, which can go through cross-coupling with enamide via hydroacylation reaction or its imine isomer via aza-benzoin reaction. The aza-benzoin reaction requires relatively lower free energy barrier than the hydroacylation reaction. The more polar characteristic of C=N group in the imine isomers, and the more advantageous stereoelectronic effect in the carbon-carbon bond forming transition states in aza-benzoin pathway were identified to determine that the imine isomer can react with the Breslow intermediate more easily. Furthermore, the origin of enantioselectivities for the reaction was explored and reasonably explained by structural analyses on key transition states. The work should provide valuable insights for rational design of switchable NHC-catalyzed hydroacylation and aza-benzoin reactions with high stereoselectivity. PMID:27905524

  4. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols

    PubMed Central

    Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Wang, Yan-Jing; Lan, Xing-Wang; Xing, Yalan; Li, Yi-He; Wen, Jia-Long

    2015-01-01

    Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed. PMID:26470633

  5. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters† †Electronic supplementary information (ESI) available: Full procedures, computational details and characterization data. See DOI: 10.1039/c7sc04283c

    PubMed Central

    Thomas, Bryce N.; Moon, Patrick J.; Yin, Shengkang; Brown, Alex

    2017-01-01

    A well-defined Ir–allyl complex catalyzes the Z-selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E-products typically observed in metal-mediated coupling reactions to enable the synthesis of Z,E-dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir–carbene and Ir–allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E–H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt3. PMID:29629093

  6. A beta-keto ester as a novel, efficient, and versatile ligand for copper(I)-catalyzed C-N, C-O, and C-S coupling reactions.

    PubMed

    Lv, Xin; Bao, Weiliang

    2007-05-11

    Employing ethyl 2-oxocyclohexanecarboxylate as a novel, efficient, and versatile ligand, the copper-catalyzed coupling reactions of various N/O/S nucleophilic reagents with aryl halides could be successfully carried out under mild conditions. A variety of products including N-arylamides, N-arylimidazoles, aryl ethers, and aryl thioethers were synthesized in good to excellent yields.

  7. Copper-Catalyzed Tandem Reactions for Synthesis of Pyrazolo[5,1-a]isoquinolines with Heterocyclic Ketene Aminals as Ligands.

    PubMed

    Wen, Li-Rong; Jin, Xian-Jun; Niu, Xiao-Dong; Li, Ming

    2015-01-02

    A CuI-catalyzed tandem reaction of 5-(2-bromoaryl)-N-aryl-1H-pyrazol-3-amines with active acetonitrile derivatives to prepare pyrazolo[5,1-a]isoquinolines in good to excellent yields has been successfully developed under mild conditions with heterocyclic ketene aminals (HKAs) as new ligands. This is the first time HKAs have been used as ligands for copper-catalyzed coupling reactions.

  8. Iron- and cobalt-catalyzed arylation of azetidines, pyrrolidines, and piperidines with Grignard reagents.

    PubMed

    Barré, Baptiste; Gonnard, Laurine; Campagne, Rémy; Reymond, Sébastien; Marin, Julien; Ciapetti, Paola; Brellier, Marie; Guérinot, Amandine; Cossy, Janine

    2014-12-05

    Iron- and cobalt-catalyzed cross-couplings between iodo-azetidines, -pyrrolidines, -piperidines, and Grignard reagents are disclosed. The reaction is efficient, cheap, chemoselective and tolerates a large variety of (hetero)aryl Grignard reagents.

  9. Photoredox Catalysis Unlocks Single-Electron Elementary Steps in Transition Metal Catalyzed Cross-Coupling

    PubMed Central

    2016-01-01

    Since initial reports, cross-coupling technologies employing photoredox catalysts to access novel reactivity have developed with increasing pace. In this Outlook, prominent examples from the recent literature are organized on the basis of the elementary transformation enabled by photoredox catalysis and are discussed in the context of relevant historical precedent in stoichiometric organometallic chemistry. This treatment allows mechanistic similarities inherent to odd-electron transition metal reactivity to be generalized to a set of lessons for future reaction development. PMID:27280163

  10. Metallaphotoredox-catalysed sp3-sp3 cross-coupling of carboxylic acids with alkyl halides

    NASA Astrophysics Data System (ADS)

    Johnston, Craig P.; Smith, Russell T.; Allmendinger, Simon; MacMillan, David W. C.

    2016-08-01

    In the past 50 years, cross-coupling reactions mediated by transition metals have changed the way in which complex organic molecules are synthesized. The predictable and chemoselective nature of these transformations has led to their widespread adoption across many areas of chemical research. However, the construction of a bond between two sp3-hybridized carbon atoms, a fundamental unit of organic chemistry, remains an important yet elusive objective for engineering cross-coupling reactions. In comparison to related procedures with sp2-hybridized species, the development of methods for sp3-sp3 bond formation via transition metal catalysis has been hampered historically by deleterious side-reactions, such as β-hydride elimination with palladium catalysis or the reluctance of alkyl halides to undergo oxidative addition. To address this issue, nickel-catalysed cross-coupling processes can be used to form sp3-sp3 bonds that utilize organometallic nucleophiles and alkyl electrophiles. In particular, the coupling of alkyl halides with pre-generated organozinc, Grignard and organoborane species has been used to furnish diverse molecular structures. However, the manipulations required to produce these activated structures is inefficient, leading to poor step- and atom-economies. Moreover, the operational difficulties associated with making and using these reactive coupling partners, and preserving them through a synthetic sequence, has hindered their widespread adoption. A generically useful sp3-sp3 coupling technology that uses bench-stable, native organic functional groups, without the need for pre-functionalization or substrate derivatization, would therefore be valuable. Here we demonstrate that the synergistic merger of photoredox and nickel catalysis enables the direct formation of sp3-sp3 bonds using only simple carboxylic acids and alkyl halides as the nucleophilic and electrophilic coupling partners, respectively. This metallaphotoredox protocol is suitable for

  11. Synthesis of isocoumarins through three-component couplings of arynes, terminal alkynes, and carbon dioxide catalyzed by an NHC-copper complex.

    PubMed

    Yoo, Woo-Jin; Nguyen, Thanh V Q; Kobayashi, Shū

    2014-09-15

    A copper-catalyzed multicomponent coupling reaction between in situ generated ortho-arynes, terminal alkynes, and carbon dioxide was developed to access isocoumarins in moderate to good yields. The key to this CO2-incorporating reaction was the use of a versatile N-heterocyclic carbene/copper complex that was able to catalyze multiple transformations within the three-component reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Palladium-Catalyzed Borylation of Primary Alkyl Bromides

    PubMed Central

    Joshi-Pangu, Amruta; Ma, Xinghua; Diane, Mohamed; Iqbal, Sidra; Kribs, Robert J.; Huang, Richard; Wang, Chao-Yuan

    2012-01-01

    A mild Pd-catalyzed process for the borylation of alkyl bromides has been developed using bis(pinacolato)diboron as a boron source. This process accommodates the use of a wide range of functional groups on the alkyl bromide substrate. Primary bromides react with complete selectivity in the presence of a secondary bromide. The generality of this approach is demonstrated by its extension to the use of alkyl iodides and alkyl tosylates, as well as borylation reactions employing bis(neopentyl glycolato)diboron as the boron source. PMID:22774861

  13. Sequential rhodium/palladium catalysis: enantioselective formation of dihydroquinolinones in the presence of achiral and chiral ligands.

    PubMed

    Zhang, Lei; Qureshi, Zafar; Sonaglia, Lorenzo; Lautens, Mark

    2014-12-08

    Compatible combinations of achiral and chiral ligands can be used in rhodium/palladium catalysis to achieve highly enantioselective domino reactions. The difference in rates of catalysis and minimal effects of ligand interference confer control in the domino sequence. The "all-in-one" 1,4-conjugate arylation and C-N cross-coupling through sequential Rh/Pd catalysis provides access to enantioenriched dihydroquinolinone building blocks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Metal-catalyzed Decarboxylative Fluoroalkylation Reactions.

    PubMed

    Ambler, Brett R; Yang, Ming-Hsiu; Altman, Ryan A

    2016-12-01

    Metal-catalyzed decarboxylative fluoroalkylation reactions enable the conversion of simple O-based substrates into biologically relevant fluorinated analogs. Herein, we present decarboxylative methods that facilitate the synthesis of trifluoromethyl- and difluoroketone-containing products. We highlight key mechanistic aspects that are critical for efficient catalysis, and that inspired our thinking while developing the reactions.

  15. The Mechanochemical Reaction of Palladium(II) Chloride with a Bidentate Phosphine

    ERIC Educational Resources Information Center

    Berry, David E.; Carrie, Philippa; Fawkes, Kelli L.; Rebner, Bruce; Xing, Yao

    2010-01-01

    This experiment describes the reaction of palladium(II) chloride with 1,5-bis(diphenylphosphino)pentane by grinding the two powders together in the solid state. The product is the precursor for the metalation reaction at one of the methylene carbon atoms of the ligand's backbone. The final product is known to be a catalyst for Suzuki-Miyaura…

  16. Palladium-Catalyzed Nitromethylation of Aryl Halides: An Orthogonal Formylation Equivalent

    PubMed Central

    Walvoord, Ryan R.; Berritt, Simon; Kozlowski, Marisa C.

    2012-01-01

    An efficient cross-coupling reaction of aryl halides and nitromethane was developed with the use of parallel microscale experimentation. The arylnitromethane products are precursors for numerous useful synthetic products. An efficient method for their direct conversion to the corresponding oximes and aldehydes in a one-pot operation has been discovered. The process exploits inexpensive nitromethane as a carbonyl equivalent, providing a mild and convenient formylation method that is compatible with many functional groups. PMID:22839593

  17. Synthesis of aza-fused polycyclic quinolines through copper-catalyzed cascade reactions.

    PubMed

    Cai, Qian; Li, Zhengqiu; Wei, Jiajia; Fu, Liangbin; Ha, Chengyong; Pei, Duanqing; Ding, Ke

    2010-04-02

    A new and efficient method for the synthesis of aza-fused polycyclic quinolines (e.g., benzimidazo[1,2-a]quinolines) is described. This protocol includes an intermolecular condensation followed by a copper-catalyzed intramolecular C-N coupling reaction. The method is applied to a wide range of 2-iodo, 2-bromo, and 2-chloro aryl aldehyde substrates to yield the aza-fused polycyclic quinolines in good yields.

  18. Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.

    PubMed

    Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J

    2008-10-01

    Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.

  19. Pd-catalyzed allylic alkylation of dienyl carbonates with nitromethane with high C-5 regioselectivity.

    PubMed

    Yang, Xiao-Fei; Li, Xiao-Hui; Ding, Chang-Hua; Xu, Chao-Fan; Dai, Li-Xin; Hou, Xue-Long

    2014-01-14

    A highly regioselective palladium-catalyzed allylic alkylation of dienyl esters with nitromethane has been developed, providing selective access to the C-5 attacked products. The structures of the ligands as well as the steric effect of the substrates are important factors in determining the regiochemical outcome of the reaction.

  20. Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine

    PubMed Central

    Wu, Kun; Huang, Zhiliang; Qi, Xiaotian; Li, Yingzi; Zhang, Guanghui; Liu, Chao; Yi, Hong; Meng, Lingkui; Bunel, Emilio E.; Miller, Jeffrey T.; Pao, Chih-Wen; Lee, Jyh-Fu; Lan, Yu; Lei, Aiwen

    2015-01-01

    Copper-catalyzed aerobic oxidative C–H/N–H coupling between simple ketones and diamines was developed toward the synthesis of a variety of pyrazines. Various substituted ketones were compatible for this transformation. Preliminary mechanistic investigations indicated that radical species were involved. X-ray absorption fine structure experiments elucidated that the Cu(II) species 5 coordinated by two N atoms at a distance of 2.04 Å and two O atoms at a shorter distance of 1.98 Å was a reactive one for this aerobic oxidative coupling reaction. Density functional theory calculations suggested that the intramolecular coupling of cationic radicals was favorable in this transformation. PMID:26601302

  1. A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling.

    PubMed

    Chalker, Justin M; Wood, Charlotte S C; Davis, Benjamin G

    2009-11-18

    A phosphine-free palladium catalyst for aqueous Suzuki-Miyaura cross-coupling is presented. The catalyst is active enough to mediate hindered, ortho-substituted biaryl couplings but mild enough for use on peptides and proteins. The Suzuki-Miyaura couplings on protein substrates are the first to proceed in useful conversions. Notably, hydrophobic aryl and vinyl groups can be transferred to the protein surface without the aid of organic solvent since the aryl- and vinylboronic acids used in the coupling are water-soluble as borate salts. The convenience and activity of this catalyst prompts use in both general synthesis and bioconjugation.

  2. "Greening up" the Suzuki Reaction

    ERIC Educational Resources Information Center

    Aktoudianakis, Evangelos; Chan, Elton; Edward, Amanda R.; Jarosz, Isabel; Lee, Vicki; Mui, Leo; Thatipamala, Sonya S.; Dicks, Andrew P.

    2008-01-01

    This article describes the rapid, green synthesis of a biaryl compound (4-phenylphenol) via a Pd(0)-catalyzed Suzuki cross-coupling reaction in water. Mild reaction conditions and operational simplicity makes this experiment especially amenable to both mid- and upper-level undergraduates. The methodology exposes students to purely aqueous…

  3. Interaction of palladium ions with the skin.

    PubMed

    Santucci, B; Cristaudo, A; Cannistraci, C; Picardo, M

    1995-08-01

    87 subjects sensitive to both nickel sulfate and palladium-chloride pet., were contemporaneously patch retested to nickel sulfate 5% pet., metallic palladium chloride 1% pet. and to palladium chloride 1% aq. Whilst all subjects reacted to nickel sulfate and palladium chloride pet., only 3 reacted to palladium chloride aq. No positive reactions were found to metallic palladium. The negative results to palladium chloride aq. are probably due to the formation of a new palladium ion (PdCl4)2-, achieved on adding an amount of hydrocloric acid to the aqueous solution of PdCl2. The findings seem to demonstrate that the allergic reaction to palladium depends on the arrangement of the metal electrons. The sensitization to palladium does not seem to be dependent on the element itself but on the complexes formed by the different compounds. The concomitant reactions to nickel and palladium ions could be dependent on the generation of similar complexes between the ions and the skin proteins.

  4. Cross-Coupling of α-Carbonyl Sulfoxonium Ylides with C-H Bonds.

    PubMed

    Barday, Manuel; Janot, Christopher; Halcovitch, Nathan R; Muir, James; Aïssa, Christophe

    2017-10-09

    The functionalization of carbon-hydrogen bonds in non-nucleophilic substrates using α-carbonyl sulfoxonium ylides has not been so far investigated, despite the potential safety advantages that such reagents would provide over either diazo compounds or their in situ precursors. Described herein are the cross-coupling reactions of sulfoxonium ylides with C(sp 2 )-H bonds of arenes and heteroarenes in the presence of a rhodium catalyst. The reaction proceeds by a succession of C-H activation, migratory insertion of the ylide into the carbon-metal bond, and protodemetalation, the last step being turnover-limiting. The method is applied to the synthesis of benz[c]acridines when allied to an iridium-catalyzed dehydrative cyclization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Palladium-catalyzed hydrodehalogenation of 1,2,4,5-tetrachlorobenzene in water-ethanol mixtures.

    PubMed

    Wee, Hun-Young; Cunningham, Jeffrey A

    2008-06-30

    Palladium-catalyzed hydrodehalogenation (HDH) was applied for destroying 1,2,4,5-tetrachlorobenzene (TeCB) in mixtures of water and ethanol. This investigation was performed as a critical step in the development of a new technology for clean-up of soil contaminated by halogenated hydrophobic organic contaminants. The main goals of the investigation were to demonstrate the feasibility of the technology, to determine the effect of the solvent composition (water:ethanol ratio), and to develop a model for the kinetics of the dehalogenation process. All experiments were conducted in a batch reactor at ambient temperature under mild hydrogen pressure. The experimental results are all consistent with a Langmuir-Hinshelwood model for heterogeneous catalysis. Major findings that can be interpreted within the Langmuir-Hinshelwood framework include: (1) the rate of hydrodehalogenation depends strongly on the solvent composition, increasing as the water fraction of the solvent increases; (2) the HDH rate increases as the catalyst concentration in the reactor increases; (3) when enough catalyst is present, the HDH reaction appears to follow first-order kinetics, but the kinetics appear to be zero-order at low catalyst concentrations. TeCB is converted rapidly and quantitatively to benzene, with only trace concentrations of 1,2,4-trichlorobenzene appearing as a reactive intermediate. The results obtained here have important implications for the further development of the proposed soil remediation technology, and may also be important for the treatment of other hazardous waste streams.

  6. Ester versus polyketone formation in the palladium-diphosphine catalyzed carbonylation of ethene.

    PubMed

    Zuidema, Erik; Bo, Carles; van Leeuwen, Piet W N M

    2007-04-04

    The origin of the chemoselectivity of palladium catalysts containing bidentate phosphine ligands toward either methoxycarbonylation of ethene or the copolymerization of ethene and carbon monoxide was investigated using density functional theory based calculations. For a palladium catalyst containing the electron-donating bis(dimethylphosphino)ethane (dmpe) ligand, the rate determining step for chain propagation is shown to be the insertion of ethene into the metal-acyl bond. The high barrier for chain propagation is attributed to the low stability of the ethene intermediate, (dmpe)Pd(ethene)(C(O)CH3). For the competing methanolysis process, the most likely pathway involves the formation of (dmpe)Pd(CH3OH)(C(O)CH3) via dissociative ligand exchange, followed by a solvent mediated proton-transfer/reductive- elimination process. The overall barrier for this process is higher than the barrier for ethene insertion into the palladium-acetyl bond, in line with the experimentally observed preference of this type of catalyst toward the formation of polyketone. Electronic bite angle effects on the rates of ethene insertion and ethanoyl methanolysis were evaluated using four electronically and sterically related ligands (Me)2P(CH2)nP(Me)2 (n = 1-4). Steric effects were studied for larger tert-butyl substituted ligands using a QM/MM methodology. The results show that ethene coordination to the metal center and subsequent insertion into the palladium-ethanoyl bond are disfavored by the addition of steric bulk around the metal center. Key intermediates in the methanolysis mechanism, on the other hand, are stabilized because of electronic effects caused by increasing the bite angle of the diphosphine ligand. The combined effects explain successfully which ligands give polymer and which ones give methyl propionate as the major products of the reaction.

  7. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    PubMed Central

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism—nucleophilic attack of enolate oxygen on Palladium followed by C–C bond-forming [3,3']-reductive elimination. PMID:27283477

  8. Click ionic liquids: a family of promising tunable solvents and application in Suzuki-Miyaura cross-coupling.

    PubMed

    Li, Liuyi; Wang, Jinyun; Wu, Tao; Wang, Ruihu

    2012-06-18

    A series of click ionic salts 4 a-4 n was prepared through click reaction of organic azides with alkyne-functionalized imidazolium or 2-methylimidazolium salts, followed by metathesis with lithium bis(trifluoromethanesulfonyl)amide or potassium hexafluorophosphate. All salts were characterized by IR, NMR, TGA, and DSC, and most of them can be classified as ionic liquids. Their steric and electronic properties can be easily tuned and modified through variation of the aromatic or aliphatic substituents at the imidazolium and/or triazolyl rings. The effect of anions and substituents at the two rings on the physicochemical properties was investigated. The charge and orbital distributions based on the optimized structures of cations in the salts were calculated. Reaction of 4 a with PdCl(2) produced mononuclear click complex 4 a-Pd, the structure of which was confirmed by single-crystal X-ray diffraction analysis. Suzuki-Miyaura cross-coupling shows good catalytic stability and high recyclability in the presence of PdCl(2) in 4 a. TEM and XPS analyses show formation of palladium nanoparticles after the reaction. The palladium NPs in 4 a are immobilized by the synergetic effect of coordination and electrostatic interactions with 1,2,3-triazolyl and imidazolium, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Direct catalytic cross-coupling of organolithium compounds

    NASA Astrophysics Data System (ADS)

    Giannerini, Massimo; Fañanás-Mastral, Martín; Feringa, Ben L.

    2013-08-01

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern synthetic chemistry. However, the high reactivity and poor selectivity of common organolithium reagents have largely prohibited their use as a viable partner in direct catalytic cross-coupling. Here we report that in the presence of a Pd-phosphine catalyst, a wide range of alkyl-, aryl- and heteroaryl-lithium reagents undergo selective cross-coupling with aryl- and alkenyl-bromides. The process proceeds quickly under mild conditions (room temperature) and avoids the notorious lithium halogen exchange and homocoupling. The preparation of key alkyl-, aryl- and heterobiaryl intermediates reported here highlights the potential of these cross-coupling reactions for medicinal chemistry and material science.

  10. Silver-catalyzed double-decarboxylative cross-coupling of α-keto acids with cinnamic acids in water: a strategy for the preparation of chalcones.

    PubMed

    Zhang, Ning; Yang, Daoshan; Wei, Wei; Yuan, Li; Nie, Fafa; Tian, Laijin; Wang, Hua

    2015-03-20

    A silver-catalyzed double-decarboxylative protocol has been proposed for the construction of chalcone derivatives via cascade coupling of substituted α-keto acids with cinnamic acids under the mild aqueous conditions. The developed method for constructing C-C bonds via double-decarboxylative reactions is efficient, practical, and environmentally benign by using the readily available starting materials. It should provide a promising synthesis candidate for the formation of diverse and useful chalcone derivatives in the fields of synthetic and pharmaceutical chemistry.

  11. Reactivity of bromoselenophenes in palladium-catalyzed direct arylations.

    PubMed

    Skhiri, Aymen; Ben Salem, Ridha; Soulé, Jean-François; Doucet, Henri

    2017-01-01

    The reactivity of 2-bromo- and 2,5-dibromoselenophenes in Pd-catalyzed direct heteroarylation was investigated. From 2-bromoselenophene, only the most reactive heteroarenes could be employed to prepare 2-heteroarylated selenophenes; whereas, 2,5-dibromoselenophene generally gave 2,5-di(heteroarylated) selenophenes in high yields using both thiazole and thiophene derivatives. Moreover, sequential catalytic C2 heteroarylation, bromination, catalytic C5 arylation reactions allowed the synthesis of unsymmetrical 2,5-di(hetero)arylated selenophene derivatives in three steps from selenophene.

  12. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  13. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE PAGES

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying; ...

    2016-06-10

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  14. Desaturation reactions catalyzed by soluble methane monooxygenase.

    PubMed

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  15. Lewis Acid-Assisted Photoinduced Intermolecular Coupling between Acylsilanes and Aldehydes: A Formal Cross Benzoin-Type Condensation.

    PubMed

    Ishida, Kento; Tobita, Fumiya; Kusama, Hiroyuki

    2018-01-12

    Intermolecular carbon-carbon bond-forming reaction between readily available acylsilanes and aldehydes was achieved under photoirradiation conditions with assistance of a catalytic amount of Lewis acid. Nucleophilic addition of photochemically generated siloxycarbenes to aldehydes followed by 1,4-silyl migration afforded synthetically useful α-siloxyketones. Electrophilic activation of aldehydes by Lewis acid is highly important to realize this reaction efficiently, otherwise the yield of the desired coupling products were significantly decreased. Noteworthy is that a formal cross benzoin-type reaction using acylsilanes was achieved under Lewis acidic conditions. This is the first example of Lewis acid-catalyzed reaction of photochemically generated siloxycarbenes with electrophiles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde

    PubMed Central

    Metaxas, Ioannis; Vasilikogiannaki, Eleni

    2017-01-01

    A simple method for the synthesis of formate esters and formamides is presented based on the Au/TiO2-catalyzed aerobic oxidative coupling between alcohols or amines and formaldehyde. The suitable form of formaldehyde is paraformaldehyde, as cyclic trimeric 1,3,5-trioxane is inactive. The reaction proceeds via the formation of an intermediate hemiacetal or hemiaminal, respectively, followed by the Au nanoparticle-catalyzed aerobic oxidation of the intermediate. Typically, the oxidative coupling between formaldehyde (2 equiv) and amines occurs quantitatively at room temperature within 4 h, and there is no need to add a base as in analogous coupling reactions. The oxidative coupling between formaldehyde (typically 3 equiv) and alcohols is unprecedented and occurs more slowly, yet in good to excellent yields and selectivity. Minor side-products (2–12%) from the acetalization of formaldehyde by the alcohol are also formed. The catalyst is recyclable and can be reused after a simple filtration in five consecutive runs with a small loss of activity. PMID:29231853

  17. Kinetic Study of the Heck Reaction: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Gozzi, Christel; Bouzidi, Naoual

    2008-01-01

    The aim of this experiment is to study and calculate the kinetic constant of a Heck reaction: the arylation of but-3-en-2-ol by iodobenzene catalyzed by palladium acetate in presence of triethylamine in DMF. The reaction leads to a mixture of two ketones. Students use GC analysis to quantify reagents and products of reaction. They control the…

  18. From Cycling Between Coupled Reactions to the Cross-Bridge Cycle: Mechanical Power Output as an Integral Part of Energy Metabolism

    PubMed Central

    Diederichs, Frank

    2012-01-01

    ATP delivery and its usage are achieved by cycling of respective intermediates through interconnected coupled reactions. At steady state, cycling between coupled reactions always occurs at zero resistance of the whole cycle without dissipation of free energy. The cross-bridge cycle can also be described by a system of coupled reactions: one energising reaction, which energises myosin heads by coupled ATP splitting, and one de-energising reaction, which transduces free energy from myosin heads to coupled actin movement. The whole cycle of myosin heads via cross-bridge formation and dissociation proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs whenever the input potential overcomes the counteracting output potential. In addition, dissipation is produced by uncoupling. This is brought about by a load dependent shortening of the cross-bridge stroke to zero, which allows isometric force generation without mechanical power output. The occurrence of maximal efficiency is caused by uncoupling. Under coupled conditions, Hill’s equation (velocity as a function of load) is fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the substrate of the cycle, [MgATP2−], is reduced. This leads to a switch off of cycling and ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially harmful, persistent low energy state of the cell can be avoided. PMID:24957757

  19. Argentate(i) and (iii) complexes as intermediates in silver-mediated cross-coupling reactions.

    PubMed

    Weske, Sebastian; Hardin, Richard A; Auth, Thomas; O'Hair, Richard A J; Koszinowski, Konrad; Ogle, Craig A

    2018-04-30

    Despite the potential of silver to mediate synthetically valuable cross-coupling reactions, the operating mechanisms have remained unknown. Here, we use a combination of rapid-injection NMR spectroscopy, electrospray-ionization mass spectrometry, and quantum chemical calculations to demonstrate that these transformations involve argentate(i) and (iii) complexes as key intermediates.

  20. Characterization of hydrogen responsive nanoporous palladium films synthesized via a spontaneous galvanic displacement reaction.

    PubMed

    Patton, J F; Lavrik, N V; Joy, D C; Hunter, S R; Datskos, P G; Smith, D B; Sepaniak, M J

    2012-11-23

    A model is presented regarding the mechanistic properties associated with the interaction of hydrogen with nanoporous palladium (np-Pd) films prepared using a spontaneous galvanic displacement reaction (SGDR), which involves PdCl(2) reduction by atomic Ag. Characterization of these films shows both chemical and morphological factors, which influence the performance characteristics of np-Pd microcantilever (MC) nanomechanical sensing devices. Raman spectroscopy, uniquely complemented with MC response profiles, is used to explore the chemical influence of palladium oxide (PdO). These combined techniques support a reaction mechanism that provides for rapid response to H(2) and recovery in the presence of O(2). Post-SGDR processing via reduction of PdCl(2)(s) in a H(2) environment results in a segregated nanoparticle three-dimensional matrix dispersed in a silver layer. The porous nature of the reduced material is shown by high resolution scanning electron microscopy. Extended grain boundaries, typical of these materials, result in a greater surface area conducive to fast sorption/desorption of hydrogen, encouraged by the presence of PdO. X-ray diffraction and inductively coupled plasma-optical emission spectroscopy are employed to study changes in morphology and chemistry occurring in these nanoporous films under different processing conditions. The unique nature of chemical/morphological effects, as demonstrated by the above characterization methods, provides evidence in support of observed nanomechanical response/recovery profiles offering insight for catalysis, H(2) storage and improved sensing applications.

  1. Iron-catalyzed oxidative biaryl cross-couplings via mixed diaryl titanates: significant influence of the order of combining aryl Grignard reagents with titanate.

    PubMed

    Liu, Kun Ming; Wei, Juan; Duan, Xin Fang

    2015-03-18

    The mixed diaryl titanates were used for the first time to modify the reactivity of two aryl Grignard reagents. Two titanate intermediates, Ar[Ar'Ti(OR)3]MgX and Ar'[ArTi(OR)3]MgX, formed via alternating the sequence of combining Grignard reagents with ClTi(OR)3 showed a significant reactivity difference. Taking advantage of such different reactivity, two highly structurally similar aryl groups could be facilely assembled through iron-catalyzed oxidative cross-couplings using oxygen as the oxidant.

  2. Inductively coupled plasma-mass spectroscopy measurements of elemental release from 2 high-palladium dental casting alloys into a corrosion testing medium.

    PubMed

    Tufekci, Eser; Mitchell, John C; Olesik, John W; Brantley, William A; Papazoglou, Efstratios; Monaghan, Peter

    2002-01-01

    The biocompatibility of high-palladium alloy restorations has been of some concern due to the release of palladium into the oral environment and sensitivity reactions in patients. This study measured the in vitro elemental release from a Pd-Cu-Ga alloy and a Pd-Ga alloy into a corrosion testing medium. Both alloys were cast into 12-mm-diameter x 1-mm-thick disks, subjected to heat treatment that simulated porcelain firing cycles, polished to a 0.05-mm surface finish, and ultrasonically cleaned in ethanol. Two specimens of each alloy were immersed 3 times (at 7, 70, and 700 hours) in an aqueous lactic acid/NaCl solution used for in vitro corrosion testing and maintained at 37 degrees C. The specimens were removed after each immersion time, and the elemental compositions of the solutions were analyzed with inductively coupled plasma-mass spectroscopy (ICP-MS). Elemental concentrations for the 2 alloys at each immersion time were compared with Student t test (alpha=.05). No significant differences in palladium release were found for the 7- and 70-hour solutions, but significant differences were found for the 700-hour solutions. Mean concentrations of palladium and gallium in the 700-hour solutions, expressed as mass per unit area of alloy surface, were 97 (Pd) and 46 (Ga) microg/cm(2) for the Pd-Cu-Ga alloy and 5 (Pd) and 18 (Ga) microg/cm(2) for the Pd-Ga alloy. Relative proportions of the elements in the solutions were consistent with the release of palladium and breakdown of microstructural phases found in the alloys. The results suggest that there may be a lower risk of adverse biological reactions with the Pd-Ga alloy than with the Pd-Cu-Ga alloy tested.

  3. NHC-Catalyzed Asymmetric Benzoin Reaction in Water.

    PubMed

    Yan, Jun; Sun, Rong; Shi, Kuangxi; Li, Kai; Yang, Limin; Zhong, Guofu

    2018-06-11

    A chiral NHC-catalyzed benzoin condensation reaction in water was developed, thereby affording α-hydroxy ketones in good to high yields and high enantioselectivities. Water was proposed as a proton shuttle in the aqueous asymmetric condensation reaction.

  4. Structural studies on bioactive compounds. Part 29: palladium catalysed arylations and alkynylations of sterically hindered immunomodulatory 2-amino-5-halo-4,6-(disubstituted)pyrimidines.

    PubMed

    Hannah, D R; Sherer, E C; Davies, R V; Titman, R B; Laughton, C A; Stevens, M F

    2000-04-01

    The immunological agent bropirimine 5 is a tetra-substituted pyrimidine with anticancer and interferon-inducing properties. Synthetic routes to novel 5-aryl analogues of bropirimine have been developed and their potential molecular recognition properties analysed by molecular modelling methods. Sterically challenged 2-amino-5-halo-6-phenylpyrimidin-4-ones (halo = Br or I) are poor substrates for palladium catalysed Suzuki cross-coupling reactions with benzeneboronic acid because the basic conditions of the reaction converts the amphoteric pyrimidinones to their unreactive enolic forms. Palladium-mediated reductive dehalogenation of the pyrimidinone substrates effectively competes with cross-coupling. 2-Amino-5-halo-4-methoxy-6-phenylpyrimidines can be converted to a range of 5-aryl derivatives with the 5-iodopyrimidines being the most efficient substrates. Hydrolysis of the 2-amino-5-aryl-4-methoxy-6-phenylpyrimidines affords the required pyrimidin-4-ones in high yields. Semi-empirical quantum mechanical calculations show how the nature of the 5-substituent influences the equilibrium between the 1H- and 3H-tautomeric forms, and the rotational freedom about the bond connecting the 6-phenyl group and the pyrimidine ring. Both of these factors may influence the biological properties of these compounds.

  5. Ligand-Promoted Rh(III)-Catalyzed Coupling of Aryl C-H Bonds with Arylboron Reagents.

    PubMed

    Wang, Huai-Wei; Cui, Pei-Pei; Lu, Yi; Sun, Wei-Yin; Yu, Jin-Quan

    2016-04-15

    Rhodium(III)-catalyzed C-H arylation of arenes with phenylboronic acid pinacol esters has been achieved using a readily removable N-pentafluorophenylbenzamide directing group for the first time. The use of a bidentate phosphine ligand (Binap) significantly increased the yield of the cross-coupling of C-H bonds with organoboron reagents.

  6. Synthesis of new β-amidodehydroaminobutyric acid derivatives and of new tyrosine derivatives using copper catalyzed C-N and C-O coupling reactions.

    PubMed

    Pereira, G; Vilaça, H; Ferreira, P M T

    2013-02-01

    Several β-amidodehydroaminobutyric acid derivatives were prepared from N,C-diprotected β-bromodehydroaminobutyric acids and amides by a copper catalyzed C-N coupling reaction. The best reaction conditions include the use of a catalytic amount of CuI, N,N'-dimethylethylenediamine as ligand and K(2)CO(3) as base in toluene at 110 °C. The stereochemistry of the products was determined using NOE difference experiments and the results obtained are in agreement with an E-stereochemistry. Thus, the stereochemistry is maintained in the case of the E-isomers of β-bromodehydroaminobutyric acid derivatives, but when the Z-isomers were used as substrates the reaction proceeds with inversion of configuration. The use of β-bromodehydrodipeptides as substrates was also tested. It was found that the reaction outcome depend on the stereochemistry of the β-bromodehydrodipeptide and on the nature of the first amino acid residue. The products isolated were the β-amidodehydrodipeptide derivatives and/or the corresponding dihydropyrazines. The same catalytic system (CuI/N,N'-dimethylethylene diamine) was used in the C-O coupling reactions between a tyrosine derivative and aryl bromides. The new O-aryltyrosine derivatives were isolated in moderate to good yields. The photophysical properties of two of these compounds were studied in four solvents of different polarity. The results show that these compounds after deprotection can be used as fluorescence markers.

  7. An Operationally Simple Sonogashira Reaction for an Undergraduate Organic Chemistry Laboratory Class

    ERIC Educational Resources Information Center

    Cranwell, Philippa B.; Peterson, Alexander M.; Littlefield, Benjamin T. R.; Russell, Andrew T.

    2015-01-01

    An operationally simple, reliable, and cheap Sonogashira reaction suitable for an undergraduate laboratory class that can be completed within a day-long (8 h) laboratory session has been developed. Cross-coupling is carried out between 2-methyl-3-butyn-2-ol and various aryl iodides using catalytic amounts of bis(triphenylphosphine)palladium(II)…

  8. The Suzuki-Miyaura Cross-Coupling Reaction of Halogenated Aminopyrazoles: Method Development, Scope, and Mechanism of Dehalogenation Side Reaction.

    PubMed

    Jedinák, Lukáš; Zátopková, Renáta; Zemánková, Hana; Šustková, Alena; Cankař, Petr

    2017-01-06

    The efficient Suzuki-Miyaura cross-coupling reaction of halogenated aminopyrazoles and their amides or ureas with a range of aryl, heteroaryl, and styryl boronic acids or esters has been developed. The method allowed incorporation of problematic substrates: aminopyrazoles bearing protected or unprotected pyrazole NH, as well as the free amino or N-amide group. Direct comparison of the chloro, bromo, and iodopyrazoles in the Suzuki-Miyaura reaction revealed that Br and Cl derivatives were superior to iodopyrazoles, as a result of reduced propensity to dehalogenation. Moreover, the mechanism and factors affecting the undesired dehalogenation side reaction were revealed.

  9. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    PubMed

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  10. Rapid syntheses of dehydrodiferulates via biomimetic radical coupling reactions of ethyl ferulate.

    PubMed

    Lu, Fachuang; Wei, Liping; Azarpira, Ali; Ralph, John

    2012-08-29

    Dehydrodimerization of ferulates in grass cell walls provides a pathway toward cross-linking polysaccharide chains limiting the digestibility of carbohydrates by ruminant bacteria and in general affecting the utilization of grass as a renewable bioresource. Analysis of dehydrodiferulates (henceforth termed diferulates) in plant cell walls is useful in the evaluation of the quality of dairy forages as animal feeds. Therefore, there has been considerable demand for quantities of diferulates as standards for such analyses. Described here are syntheses of diferulates from ethyl ferulate via biomimetic radical coupling reactions using the copper(II)-tetramethylethylenediamine [CuCl(OH)-TMEDA] complex as oxidant or catalyst. Although CuCl(OH)-TMEDA oxidation of ethyl ferulate in acetonitrile produced mixtures composed of 8-O-4-, 8-5-, 8-8- (cyclic and noncyclic), and 5-5-coupled diferulates, a catalyzed oxidation using CuCl(OH)-TMEDA as catalyst and oxygen as an oxidant resulted in better overall yields of such diferulates. Flash chromatographic fractionation allowed isolation of 8-8- and 5-5-coupled diferulates. 8-5-Diferulate coeluted with 8-O-4-diferulate but was separated from it via crystallization; the 8-O-4 diferulate left in the mother solution was isolated by rechromatography following a simple tetrabutylammonium fluoride treatment that converted 8-5-diferulate to another useful diferulate, 8-5-(noncyclic) diferulate. Therefore, six of the nine (5-5, 8-O-4, 8-5-c, 8-5-nc, 8-5-dc, 8-8-c, 8-8-nc, 8-8-THF, 4-O-5) diferulic acids that have to date been found in the alkaline hydrolysates of plant cell walls can be readily synthesized by the CuCl(OH)-TMEDA catalyzed aerobic oxidative coupling reaction and subsequent saponification described here.

  11. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction.

    PubMed

    Sato, Shinichi; Nakamura, Kosuke; Nakamura, Hiroyuki

    2017-03-02

    The efficiency of protein chemical modification on tyrosine residues with N-methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H 2 O 2 , oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N-methylluminol derivatives with a minimum amount of H 2 O 2 prevented the occurrence of oxidative side reactions under HRP-catalyzed conditions. As probes for HRP-catalyzed protein modification, N-methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β-nicotinamide adenine dinucleotide (NADH, H 2 O 2 -free conditions). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gold-Catalyzed Enantio- and Diastereoselective Syntheses of Left Fragments of Azadirachtin/Meliacarpin-Type Limonoids.

    PubMed

    Shi, Hang; Tan, Ceheng; Zhang, Weibin; Zhang, Zichun; Long, Rong; Gong, Jianxian; Luo, Tuoping; Yang, Zhen

    2016-02-05

    Meliacarpin-type limonoids are an important class of organic insecticides. Their syntheses are challenging due to their chemical complexity. Here, we report the highly enantio- and diastereoselective synthesis of the left fragments of azadirachtin I and 1-cinnamoylmelianolone, being two important family members of meliacarpin-type limonoids, via pairwise palladium- and gold-catalyzed cascade reactions. Gold-catalyzed reactions of 1,7-diynes were performed as model studies, and the efficient construction of tetracyclic late-stage intermediates was achieved on the basis of this key transformation. Our unique route gave both of the left fragments in 23 steps from the commercially available chiral starting material (-)-carvone. This study significantly advances research on the synthesis of the meliacarpin-type limonoids.

  13. Systematic Structure–Property Relationship Studies in Palladium-Catalyzed Methane Complete Combustion

    DOE PAGES

    Willis, Joshua J.; Gallo, Alessandro; Sokaras, Dimosthenis; ...

    2017-10-09

    To limit further rising levels in methane emissions from stationary and mobile sources and to enable promising technologies based on methane, the development of efficient combustion catalysts that completely oxidize CH 4 to CO 2 and H 2O at low temperatures in the presence of high steam concentrations is required. Palladium is widely considered as one of the most promising materials for this reaction, and a better understanding of the factors affecting its activity and stability is crucial to design even more improved catalysts that efficiently utilize this precious metal. Here we report a study of the effect of threemore » important variables (particle size, support, and reaction conditions including water) on the activity of supported Pd catalysts. We use uniform palladium nanocrystals as catalyst precursors to prepare a library of well-defined catalysts to systematically describe structure–property relationships with help from theory and in situ X-ray absorption spectroscopy. With this approach, we confirm that PdO is the most active phase and that small differences in reaction rates as a function of size are likely due to variations in the surface crystal structure. We further demonstrate that the support exerts a limited influence on the PdO activity, with inert (SiO 2), acidic (Al 2O 3), and redox-active (Ce 0.8Zr 0.2O 2) supports providing similar rates, while basic (MgO) supports show remarkably lower activity. Finally, we show that the introduction of steam leads to a considerable decrease in rates that is due to coverage effects, rather than structural and/or phase changes. Altogether, the data suggest that to further increase the activity and stability of Pd-based catalysts for methane combustion, increasing the surface area of supported PdO phases while avoiding strong adsorption of water on the catalytic surfaces is required. Furthermore, this study clarifies contrasting reports in the literature about the active phase and stability of Pd

  14. Systematic Structure–Property Relationship Studies in Palladium-Catalyzed Methane Complete Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Joshua J.; Gallo, Alessandro; Sokaras, Dimosthenis

    To limit further rising levels in methane emissions from stationary and mobile sources and to enable promising technologies based on methane, the development of efficient combustion catalysts that completely oxidize CH 4 to CO 2 and H 2O at low temperatures in the presence of high steam concentrations is required. Palladium is widely considered as one of the most promising materials for this reaction, and a better understanding of the factors affecting its activity and stability is crucial to design even more improved catalysts that efficiently utilize this precious metal. Here we report a study of the effect of threemore » important variables (particle size, support, and reaction conditions including water) on the activity of supported Pd catalysts. We use uniform palladium nanocrystals as catalyst precursors to prepare a library of well-defined catalysts to systematically describe structure–property relationships with help from theory and in situ X-ray absorption spectroscopy. With this approach, we confirm that PdO is the most active phase and that small differences in reaction rates as a function of size are likely due to variations in the surface crystal structure. We further demonstrate that the support exerts a limited influence on the PdO activity, with inert (SiO 2), acidic (Al 2O 3), and redox-active (Ce 0.8Zr 0.2O 2) supports providing similar rates, while basic (MgO) supports show remarkably lower activity. Finally, we show that the introduction of steam leads to a considerable decrease in rates that is due to coverage effects, rather than structural and/or phase changes. Altogether, the data suggest that to further increase the activity and stability of Pd-based catalysts for methane combustion, increasing the surface area of supported PdO phases while avoiding strong adsorption of water on the catalytic surfaces is required. Furthermore, this study clarifies contrasting reports in the literature about the active phase and stability of Pd

  15. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl ethers: enantioselective synthesis of diarylethanes.

    PubMed

    Taylor, Buck L H; Swift, Elizabeth C; Waetzig, Joshua D; Jarvo, Elizabeth R

    2011-01-26

    Secondary benzylic ethers undergo stereospecific substitution reactions with Grignard reagents in the presence of nickel catalysts. Reactions proceed with inversion of configuration and high stereochemical fidelity. This reaction allows for facile enantioselective synthesis of biologically active diarylethanes from readily available optically enriched carbinols.

  16. Bis(amino)cyclopropenylidene (BAC) catalyzed aza-benzoin reaction.

    PubMed

    Wilde, Myron M D; Gravel, Michel

    2014-10-17

    A bis(amino)cyclopropenylidene (BAC) catalyzed aza-benzoin reaction between aldehydes and phosphinoyl imines has been developed. The reaction is general with a wide range of aromatic aldehydes and aromatic imines. The reaction displays excellent chemoselectivity favoring aza-benzoin products over homobenzoin products.

  17. Aerobic Asymmetric Dehydrogenative Cross-Coupling between Two C(sp3)-H Groups Catalyzed by a Chiral-at-Metal Rhodium Complex.

    PubMed

    Tan, Yuqi; Yuan, Wei; Gong, Lei; Meggers, Eric

    2015-10-26

    A sustainable C-C bond formation is merged with the catalytic asymmetric generation of one or two stereocenters. The introduced catalytic asymmetric cross-coupling of two C(sp3)-H groups with molecular oxygen as the oxidant profits from the oxidative robustness of a chiral-at-metal rhodium(III) catalyst and exploits an autoxidation mechanism or visible-light photosensitized oxidation. In the latter case, the catalyst serves a dual function, namely as a chiral Lewis acid for catalyzing enantioselective enolate chemistry and at the same time as a visible-light-driven photoredox catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mild copper-catalyzed vinylation reactions of azoles and phenols with vinyl bromides.

    PubMed

    Taillefer, Marc; Ouali, Armelle; Renard, Brice; Spindler, Jean-Francis

    2006-07-05

    An efficient and straightforward copper-catalyzed method allowing vinylation of N- or O-nucleophiles with di- or trisubstituted vinyl bromides is reported. The procedure is applicable to a broad range of substrates since N-vinylation of mono-, di-, and triazoles as well as O-vinylation of phenol derivatives can be performed with catalytic amounts of copper iodide and inexpensive nitrogen ligands 3 or 8. In the case of more hindered vinyl bromides, the use of the original bidentate chelator 8 was shown to be more efficient to promote the coupling reactions than our key tetradentate ligand 3. The corresponding N-(1-alkenyl)azoles and alkenyl aryl ethers are obtained in high yields and selectivities under very mild temperature conditions (35-110 degrees C for N-vinylation reactions and 50-80 degrees C for O-vinylation reactions). Moreover, to our knowledge, this method is the first example of a copper-catalyzed vinylation of various azoles. Finally, this protocol, practical on a laboratory scale and easily adaptable to an industrial scale, is very competitive compared to the existing methods that allow the synthesis of such compounds.

  19. Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum(II) and palladium(II) porphyrins—A convenient way to eliminate dye migration and leaching

    PubMed Central

    Koren, Klaus; Borisov, Sergey M.; Klimant, Ingo

    2012-01-01

    Nucleophilic substitution of the labile para-fluorine atoms of 2,3,4,5,6-pentafluorophenyl groups enables a click-based covalent linkage of an oxygen indicator (platinum(II) or palladium(II) 5,10,15,20-meso-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin) to the sensor matrix. Copolymers of styrene and pentafluorostyrene are chosen as polymeric materials. Depending on the reaction conditions either soluble sensor materials or cross-linked microparticles are obtained. Additionally, we prepared Ormosil-based sensors with linked indicator, which showed very high sensitivity toward oxygen. The effect of covalent coupling on sensor characteristics, stability and photophysical properties is studied. It is demonstrated that leaching and migration of the dye are eliminated in the new materials but excellent photophysical properties of the indicators are preserved. PMID:23576845

  20. Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalysed by palladium

    NASA Astrophysics Data System (ADS)

    Feng, Zhang; Min, Qiao-Qiao; Fu, Xia-Ping; An, Lun; Zhang, Xingang

    2017-09-01

    Difluoromethylated aromatic compounds are of increasing importance in pharmaceuticals, agrochemicals and materials. Chlorodifluoromethane (ClCF2H), an inexpensive, abundant and widely used industrial raw material, represents the ideal and most straightforward difluoromethylating reagent, but introduction of the difluoromethyl group (CF2H) from ClCF2H into aromatics has not been reported. Here, we describe a direct palladium-catalysed difluoromethylation method for coupling ClCF2H with arylboronic acids and esters to generate difluoromethylated arenes with high efficiency. The reaction exhibits a remarkably broad substrate scope, including heteroarylboronic acids, and was used for difluoromethylation of a range of pharmaceuticals and biologically active compounds. Preliminary mechanistic studies revealed that a palladium difluorocarbene intermediate is involved in the reaction. Although numerous metal-difluorocarbene complexes have been prepared, the catalytic synthesis of difluoromethylated or difluoromethylenated compounds involving metal-difluorocarbene complexes has not received much attention. This new reaction therefore also opens the door to understand metal-difluorocarbene complex catalysed reactions.

  1. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells

    PubMed Central

    Bagley, Mark C.; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E.; Kipling, David; Davis, Terence

    2015-01-01

    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells. PMID:26046488

  2. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells.

    PubMed

    Bagley, Mark C; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E; Kipling, David; Davis, Terence

    2015-06-03

    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells.

  3. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes.

    PubMed

    Li, X; Yang, J; Kozlowski, M C

    2001-04-19

    [reaction: see text]. Chiral 1,5-diaza-cis-decalins have been examined as ligands in the enantioselective oxidative biaryl coupling of substituted 2-naphthol derivatives. Under the optimal conditions employing a 1,5-diaza-cis-decalin copper(I) iodide complex with oxygen as the oxidant, rapid and highly selective couplings could be achieved (90-93% ee, 85% yield).

  4. Alkanes from Bioderived Furans by using Metal Triflates and Palladium-Catalyzed Hydrodeoxygenation of Cyclic Ethers.

    PubMed

    Song, Hai-Jie; Deng, Jin; Cui, Min-Shu; Li, Xing-Long; Liu, Xin-Xin; Zhu, Rui; Wu, Wei-Peng; Fu, Yao

    2015-12-21

    Using a metal triflate and Pd/C as catalysts, alkanes were prepared from bioderived furans in a one-pot hydrodeoxygenation (HDO) process. During the reaction, the metal triflate plays a crucial role in the ring-opening HDO of furan compounds. The entire reaction process has goes through two major phases: at low temperatures, saturation of the exocyclic double bond and furan ring are catalyzed by Pd/C; at high temperatures, the HDO of saturated furan compounds is catalyzed by the metal triflate. The reaction mechanism was verified by analyzing the changes of the intermediates during the reaction. In addition, different metal triflates, solvents, and catalyst recycling were also investigated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Palladium-Catalyzed Dynamic Kinetic Asymmetric Transformations of Vinyl Aziridines with Nitrogen Heterocycles: Rapid Access to Biologically Active Pyrroles and Indoles

    PubMed Central

    Trost, Barry M.; Osipov, Maksim; Dong, Guangbin

    2010-01-01

    We report that nitrogen heterocycles can serve as competent nucleophiles in the palladium-catalyzed dynamic kinetic asymmetric alkylation of vinyl aziridines. The resulting alkylated products were obtained with high regio-, chemo-, and enantioselectivity. Both substituted 1H-pyrroles and 1H-indoles were successfully employed to give exclusively the branched N-alkylated products. The synthetic utility of this process was demonstrated by applying this method to the preparation of several medicinal chemistry lead compounds and bromopyrrole alkaloids including longamide B, longamide B methyl ester, hanishin, agesamides A and B, and cyclooroidin. PMID:20949972

  6. Divergent pathways in the reaction of Fischer carbenes and palladium.

    PubMed

    López-Alberca, María P; Mancheño, María J; Fernandez, Israel; Gómez-Gallego, Mar; Sierra, Miguel A; Torres, Rosario

    2007-04-26

    [reaction: see text] The Pd-catalyzed reaction of beta-arylaminochromium(0) carbene complexes produces by transmetalation the first isolated and X-ray structurally characterized bis-Pd(II) carbene complex, as well as other alternative reaction pathways, such as the oxidative addition-transmetalation sequence, not seen before in this chemistry.

  7. Highly efficient preparation of selectively isotope cluster-labeled long chain fatty acids via two consecutive C(sp3)-C(sp3) cross-coupling reactions.

    PubMed

    Lethu, Sébastien; Matsuoka, Shigeru; Murata, Michio

    2014-02-07

    An efficient synthesis involving two copper-catalyzed alkyl-alkyl coupling reactions has been designed to easily access doubly isotope-labeled fatty acids. Such NMR- and IR-active compounds were obtained in excellent overall yields and will be further used for determining the conformation of an alkyl chain of lipidic biomolecules upon interaction with proteins.

  8. Palladium-catalyzed asymmetric quaternary stereocenter formation.

    PubMed

    Gottumukkala, Aditya L; Matcha, Kiran; Lutz, Martin; de Vries, Johannes G; Minnaard, Adriaan J

    2012-05-29

    An efficient palladium catalyst is presented for the formation of benzylic quaternary stereocenters by conjugate addition of arylboronic acids to a variety of β,β-disubstituted carbocyclic, heterocyclic, and acyclic enones. The catalyst is readily prepared from PdCl(2), PhBOX, and AgSbF(6), and provides products in up to 99% enantiomeric excess, with good yields. Based on this strategy, (-)-α-cuparenone has been prepared in only two steps. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models.

    PubMed

    Zeng, Huiying; Cao, Dawei; Qiu, Zihang; Li, Chao-Jun

    2018-03-26

    Lignin is the second most abundant organic matter on Earth, and is an underutilized renewable source for valuable aromatic chemicals. For future sustainable production of aromatic compounds, it is highly desirable to convert lignin into value-added platform chemicals instead of using fossil-based resources. Lignins are aromatic polymers linked by three types of ether bonds (α-O-4, β-O-4, and 4-O-5 linkages) and other C-C bonds. Among the ether bonds, the bond dissociation energy of the 4-O-5 linkage is the highest and the most challenging to cleave. To date, 4-O-5 ether linkage model compounds have been cleaved to obtain phenol, cyclohexane, cyclohexanone, and cyclohexanol. The first example of direct formal cross-coupling of diaryl ether 4-O-5 linkage models with amines is reported, in which dual C(Ar)-O bond cleavages form valuable nitrogen-containing derivatives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of “hunger hormone” ghrelin

    NASA Astrophysics Data System (ADS)

    Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2016-02-01

    Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.

  11. Post-transcriptional labeling by using Suzuki-Miyaura cross-coupling generates functional RNA probes.

    PubMed

    Walunj, Manisha B; Tanpure, Arun A; Srivatsan, Seergazhi G

    2018-06-20

    Pd-catalyzed C-C bond formation, an important vertebra in the spine of synthetic chemistry, is emerging as a valuable chemoselective transformation for post-synthetic functionalization of biomacromolecules. While methods are available for labeling protein and DNA, development of an analogous procedure to label RNA by cross-coupling reactions remains a major challenge. Herein, we describe a new Pd-mediated RNA oligonucleotide (ON) labeling method that involves post-transcriptional functionalization of iodouridine-labeled RNA transcripts by using Suzuki-Miyaura cross-coupling reaction. 5-Iodouridine triphosphate (IUTP) is efficiently incorporated into RNA ONs at one or more sites by T7 RNA polymerase. Further, using a catalytic system made of Pd(OAc)2 and 2-aminopyrimidine-4,6-diol (ADHP) or dimethylamino-substituted ADHP (DMADHP), we established a modular method to functionalize iodouridine-labeled RNA ONs in the presence of various boronic acid and ester substrates under very mild conditions (37°C and pH 8.5). This method is highly chemoselective, and offers direct access to RNA ONs labeled with commonly used fluorescent and affinity tags and new fluorogenic environment-sensitive nucleoside probes in a ligand-controlled stereoselective fashion. Taken together, this simple approach of generating functional RNA ON probes by Suzuki-Miyaura coupling will be a very important addition to the resources and tools available for analyzing RNA motifs.

  12. Gold-nanoparticle-catalyzed synthesis of propargylamines: the traditional A3-multicomponent reaction performed as a two-step flow process.

    PubMed

    Abahmane, Lahbib; Köhler, J Michael; Gross, G Alexander

    2011-03-01

    The alkyne, aldehyde, amine A(3)-coupling reaction, a traditional multicomponent reaction (MCR), has been investigated as a two-step flow process. The implicated aminoalkylation reaction of phenylacetylene with appropriate aldimine intermediates was catalyzed by gold nanoparticles impregnated on alumina. The aldimine formation was catalyzed by Montmorillonite K10 beforehand. The performance of the process has been investigated with respect to different reaction regimes. Usually, the A(3)-multicomponent reaction is performed as a "one-pot" process. Diversity-oriented syntheses using MCRs often have the shortcoming that only low selectivity and low yields are achieved. We have used a flow-chemistry approach to perform the A(3)-MCR in a sequential manner. In this way, the reaction performance was significantly enhanced in terms of shortened reaction time, and the desired propargylamines were obtained in high yields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion.

    PubMed

    Voskanyan, Albert A; Li, Chi-Ying Vanessa; Chan, Kwong-Yu

    2017-09-27

    This article describes a novel method for depositing a dense, high quality palladium thin film via a one-step aqueous combustion process which can be easily scaled up. Film deposition of Pd from aqueous solutions by conventional chemical or electrochemical methods is inhibited by hydrogen embrittlement, thus resulting in a brittle palladium film. The method outlined in this work allows a direct aqueous solution deposition of a mirror-bright, durable Pd film on substrates including glass and glassy carbon. This simple procedure has many advantages including a very high deposition rate (>10 cm 2 min -1 ) and a relatively low deposition temperature (250 °C), which makes it suitable for large-scale industrial applications. Although preparation of various high-quality oxide films has been successfully accomplished via solution combustion synthesis (SCS) before, this article presents the first report on direct SCS production of a metallic film. The mechanism of Pd film formation is discussed with the identification of a complex formed between palladium nitrate and glycine at low temperature. The catalytic properties and stability of films are successfully tested in alcohol electrooxidation and electrochemical oxygen reduction reaction. It was observed that combustion deposited Pd film on a glassy carbon electrode showed excellent catalytic activity in ethanol oxidation without using any binder or additive. We also report for the first time the concept of a reusable "catalytic flask" as illustrated by the Suzuki-Miyaura cross-coupling reaction. The Pd film uniformly covers the inner walls of the flask and eliminates the catalyst separation step. We believe the innovative concept of a reusable catalytic flask is very promising and has the required features to become a commercial product in the future.

  14. Coupling of 3,8-Dibromo-1,10-Phenanthroline With 3,5-Diethynylheptyloxybenzene: A Suzuki/Miyaura Versus a Sonogashira Perspective

    NASA Technical Reports Server (NTRS)

    Yang, Jinhua; Oh, Woon Su; Elder, Ian A.; Leventis, Nicholas; Sotiriou-Leventis, Chariklia

    2003-01-01

    We report a new application of the Suzuki-Miyaura reaction whereas two bifunctional reactants, 3,8-dibromo-1,10-phenanthroline and 3,5-diethynylheptyloxylbenzene (9), yield 3,8-bis (3-ethynyl-5-heptyloxyphenylethynyl)-1,10-phenanthroline (2) efficiently (74% yield) without polymerization. This was achieved by reacting a stoichiometric amount of 9 and (Me3Si)2NLi to obtain quantitatively the monoacetylide anion of 9 (10). The latter was activated with B-methoxy-9-BBN and reacted in analogy to the alkynyl copper complex of a Sonogashira route. However, in the Sonogashira reaction, the alkynyl copper complex is present in small equilibrium concentrations and polymerization takes place even when reagents are mixed slowly. Actually the Sonogashira route gave no desired product 2, as the latter polymerizes easily via homo-coupling in the presence of air and Cu(I). Sonogashira coupling involves the palladium(0) catalyzed reaction of terminal alkynes.

  15. A Review on Recent Advances in the Application of Nanocatalysts in A3 Coupling Reactions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajjadi, Mohaddeseh; Ghorbannezhad, Fatemeh; Sajadi, S Mohammad

    2018-03-14

    A 3 coupling is one of the few transition-metal catalyzed carbon-carbon bond forming reactions that have been established as a most direct, efficient and atom-economical synthetic approach to afford propargylamine derivatives using various catalysts. A large number of nanosized heterogeneous catalysts for three-component coupling reactions between an aldehyde, an amine, and a terminal alkyne have been popularly introduced as an A 3 coupling in the last decade. The coupling product has found a broad application as a key intermediate for a variety of heterocyclic useful compounds and numerous biologically active molecules such as β-lactams, conformationally restricted peptides, isosteres, herbicides, fungicides, indolizines, pyrroles, quinolines and therapeutic drug molecules. This review aims to give an overview of the current progress made towards the preparation and application of various nanocatalysts-catalyzed A 3 coupling transformations for the synthesis of propargylamines from 2007 to 2017. Several nanocatalysts based on metal and metal oxide nanoparticles (NPs) such as copper, gold, silver, iron, nickel, cobalt and zinc have successfully been employed in A 3 coupling reactions. Besides, core-shells NPs, polymers, complexes, graphenes, metal-organic frameworks and ionic liquids have also been used in these reactions. Abundant examples have been given in this area. Different aspects of the reactions, disparate methods of preparation of nanocatalysts, characterization and their reusability have been perused. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Highly chemo- and enantioselective cross-benzoin reaction of aliphatic aldehydes and α-ketoesters.

    PubMed

    Thai, Karen; Langdon, Steven M; Bilodeau, François; Gravel, Michel

    2013-05-03

    An electron-deficient, valine-derived triazolium salt is shown to catalyze a highly chemo- and enantioselective cross-benzoin reaction between aliphatic aldehydes and α-ketoesters. This methodology represents the first high yielding and highly enantioselective intermolecular cross-benzoin reaction using an organocatalyst (up to 94% ee). Further diastereoselective reduction of the products gives access to densely oxygenated compounds with high chemo- and diastereoselectivity.

  17. A One-Pot Self-Assembly Reaction to Prepare a Supramolecular Palladium(II) Cyclometalated Complex: An Undergraduate Organometallic Laboratory Experiment

    ERIC Educational Resources Information Center

    Fernandez, Alberto; Lopez-Torres, Margarita; Fernandez, Jesus J.; Vazquez-Garcia, Digna; Vila, Jose M.

    2012-01-01

    A laboratory experiment for students in advanced inorganic chemistry is described. Students prepare palladium(II) cyclometalated complexes. A terdentate [C,N,O] Schiff base ligand is doubly deprotonated upon reaction with palladium(II) acetate in a self-assembly process to give a palladacycle with a characteristic tetranuclear structure. This…

  18. Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.

    PubMed

    Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo

    2018-02-02

    The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.

  19. Mesoporous poly(ionic liquid) supported palladium(II) catalyst for oxidative coupling of benzene under atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Liu, Yangqing; Wang, Kai; Hou, Wei; Shan, Wanjian; Li, Jing; Zhou, Yu; Wang, Jun

    2018-01-01

    Multi-functional mesoporous poly(ionic liquid) (MPIL) containing pyridine-based ionic liquid (IL) moieties and adjacent double sbnd COOH groups was synthesized through the free radical copolymerization of IL monomer N-propane sulfonate-4-vinylpyridine, maleic anhydride and divinylbenzene. Palladium(II) species were anchored on this MPIL support, affording the first efficient heterogeneous catalyst for the oxidative coupling of benzene to biphenyl under atmospheric oxygen at low temperature. The biphenyl yield of 15.0% (selectivity: 98.5%, turnover number: 62) was even higher than the one over the homogeneous counterpart palladium acetate. The catalyst can be facilely separated and reused. The IL moiety in the polymeric framework endowed the formation of immobilized palladium(II) species with high electrophilicity, which responds to the high performance.

  20. Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped with Small Organic Ligands

    PubMed Central

    Gavia, Diego J.

    2015-01-01

    This Minireview summarizes a variety of intriguing catalytic studies accomplished by employing unsupported, either solubilized or freely mobilized, and small organic ligand-capped palladium nanoparticles as catalysts. Small organic ligands are gaining more attention as nanoparticle stabilizers and alternates to larger organic supports, such as polymers and dendrimers, owing to their tremendous potential for a well-defined system with spatial control in surrounding environments of reactive surfaces. The nanoparticle catalysts are grouped depending on the type of surface stabilizers with reactive head groups, which include thiolate, phosphine, amine, and alkyl azide. Applications for the reactions such as hydrogenation, alkene isomerization, oxidation, and carbon-carbon cross coupling reactions are extensively discussed. The systems defined as “ligandless” Pd nanoparticle catalysts and solvent (e.g. ionic liquid)-stabilized Pd nanoparticle catalysts are not discussed in this review. PMID:25937846

  1. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    PubMed

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-09

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Theoretical investigation for the reaction of NO 2 with CO catalyzed by Sc +

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Cheng; Zhang, Jian-Hui; Geng, Zhi-Yuan; Chen, Dong-Ping; Liu, Ze-Yu; Yang, Xiao-Yan

    2007-09-01

    The mechanism of the reaction NO(2A)+CO(1∑+)→NO(2∏)+CO(1∑g+) catalyzed by Sc + has been investigated by means of UB3LYP/6-311+G(2d) level. Our calculated results strongly indicate that both the reactions NO 2( 2A 1) + Sc +(X 3D) → NO( 2∏) + ScO +(X 1∑ +) and ScO(X1∑+)+CO(1∑+)→Sc(XD)+CO(1∑g+) are spin-forbidden reactions. The crossing points (CPs) that are involved and the possible spin inversion processes are discussed using the intrinsic reaction coordinate (IRC) approach. On the basis of Hammond postulate, they are typical 'two-state reactivity' (TSR) reactions. And the O-atom affinities (OA) testified that the argumentation is thermodynamically allowed.

  3. Palladium-Catalyzed Carbon-Fluorine and Carbon-Hydrogen Bond Alumination of Fluoroarenes and Heteroarenes.

    PubMed

    Chen, Wenyi; Hooper, Thomas N; Ng, Jamues; White, Andrew J P; Crimmin, Mark R

    2017-10-02

    Through serendipitous discovery, a palladium bis(phosphine) complex was identified as a catalyst for the selective transformation of sp 2 C-F and sp 2 C-H bonds of fluoroarenes and heteroarenes to sp 2 C-Al bonds (19 examples, 1 mol % Pd loading). The carbon-fluorine bond functionalization reaction is highly selective for the formation of organoaluminium products in preference to hydrodefluorination products (selectivity=4.4:1 to 27:1). Evidence is presented for a tandem catalytic process in which hydrodefluorination is followed by sp 2 C-H alumination. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Understanding Anionic "Ligandless" Palladium Species in the Mizoroki-Heck Reaction.

    PubMed

    Schroeter, Felix; Strassner, Thomas

    2018-05-07

    The anionic complex [NBu 4 ][Pd(DMSO)Cl 3 ], as a "ligandless" system, was shown to be an active catalyst in the Mizoroki-Heck coupling of aryl chlorides in the absence of strongly σ-donating ligands. To investigate the experimentally observed influence of halides and the amount of water on the catalytic activity, we employed a combination of experiments and theoretical calculations. The presence of water was shown to be critical for the formation of the active palladium(0) species by oxidation of in situ generated tributylamine. Oxidative addition to an anionic palladium(0) species was found to be the rate-determining step of the catalytic cycle. For the ensuing steps, both neutral and anionic pathways were considered. It was shown that, in the absence of strongly σ-donating neutral ligands, chloride ions stabilize the catalytic intermediates. Therefore, an anionic pathway is preferred, which explains the need for tetrabutylammonium chloride as an additive. The study of the influence of bromide ions on the catalytic activity revealed that the strongly exergonic displacement of the neutral substrates by bromide ions lowers the catalytic activity.

  5. A dataset for preparing pristine graphene-palladium nanocomposites using swollen liquid crystal templates

    NASA Astrophysics Data System (ADS)

    Vats, Tripti; Siril, Prem Felix

    2017-12-01

    Pristine graphene (G) has not received much attention as a catalyst support, presumably due to its relative inertness as compared to reduced graphene oxide (RGO). In the present work, we used swollen liquid crystals (SLCs) as nano-reactors for graphene-palladium nanocomposites synthesis. The 'soft' confinement of SLCs directs the growth of palladium (Pd) nanoparticles over the G sheets. In this dataset we include all the parameters and details of different techniques used for the characterization of G, SLCs and synthesized G-Pd nanocomposites. The synthesized G-palladium nanocomposites (Pd-G) exhibited improved catalytic activity compared with Pd-RGO and Pd nanoparticles, in the hydrogenation of nitrophenols and C-C coupling reactions.

  6. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: Effects of particle surface disorder

    DOE PAGES

    Briggs, Beverly D.; Bedford, Nicholas M.; Seifert, Soenke; ...

    2015-07-23

    C–C coupling reactions are of great importance in the synthesis of numerous organic compounds, where Pd nanoparticle catalyzed systems represent new materials to efficiently drive these reactions. Despite their pervasive utility, the catalytic mechanism of these particle-based reactions remains highly contested. Herein we present evidence of an atom leaching mechanism for Stille coupling under aqueous conditions using peptide-capped Pd nanoparticles. EXAFS analysis revealed Pd coordination changes in the nanoparticle consistent with Pd atom abstraction, where sizing analysis by SAXS confirmed particle size changes associated with a leaching process. It is likely that recently discovered highly disordered surface Pd atoms aremore » the favored catalytic active sites and are leached during oxidative addition, resulting in smaller particles. Thus, probing the mechanism of nanoparticle-driven C–C coupling reactions through structural analyses provides fundamental information concerning these active sites and their reactivity at the atomic-scale, which can be used to improve catalytic performance to meet important sustainability goals.« less

  7. Microwave-assisted intramolecular dehydrogenative Diels-Alder reactions for the synthesis of functionalized naphthalenes/solvatochromic dyes.

    PubMed

    Kocsis, Laura S; Benedetti, Erica; Brummond, Kay M

    2013-04-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields.

  8. Microwave-assisted Intramolecular Dehydrogenative Diels-Alder Reactions for the Synthesis of Functionalized Naphthalenes/Solvatochromic Dyes

    PubMed Central

    Kocsis, Laura S.; Benedetti, Erica; Brummond, Kay M.

    2013-01-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields. PMID:23609566

  9. Ambient Temperature Synthesis of High Enantiopurity N-Protected Peptidyl Ketones by Peptidyl Thiol Ester–Boronic Acid Cross-Coupling

    PubMed Central

    Yang, Hao; Li, Hao; Wittenberg, Rüdiger; Egi, Masahiro; Huang, Wenwei; Liebeskind, Lanny S.

    2009-01-01

    α-Amino acid thiol esters derived from N-protected mono-, di-, and tripeptides couple with aryl, π-electron-rich heteroaryl, or alkenyl boronic acids in the presence of stoichiometric Cu(I) thiophene-2-carboxylate (CuTC) and catalytic Pd2(dba)3/triethylphosphite to generate the corresponding N-protected peptidyl ketones in good to excellent yields and in high enantiopurity. Triethylphosphite plays a key role as a supporting ligand by mitigating an undesired palladium-catalyzed decarbonylation-β-elimination of the α-amino thiol esters. The peptidyl ketone synthesis proceeds at room temperature under non-basic conditions and demonstrates a high tolerance to functionality. PMID:17263394

  10. Evolution of a strategy for preparing bioactive small molecules by sequential multicomponent assembly processes, cyclizations, and diversification.

    PubMed

    Sahn, James J; Granger, Brett A; Martin, Stephen F

    2014-10-21

    A strategy for generating diverse collections of small molecules has been developed that features a multicomponent assembly process (MCAP) to efficiently construct a variety of intermediates possessing an aryl aminomethyl subunit. These key compounds are then transformed via selective ring-forming reactions into heterocyclic scaffolds, each of which possesses suitable functional handles for further derivatizations and palladium-catalyzed cross coupling reactions. The modular nature of this approach enables the facile construction of libraries of polycyclic compounds bearing a broad range of substituents and substitution patterns for biological evaluation. Screening of several compound libraries thus produced has revealed a large subset of compounds that exhibit a broad spectrum of medicinally-relevant activities.

  11. Synthesis and characterization of para-pyridine linked NHC palladium complexes and their studies for the Heck-Mizoroki coupling reaction.

    PubMed

    Liu, Ya-Ming; Lin, Yi-Chun; Chen, Wen-Ching; Cheng, Jen-Hao; Chen, Yi-Lin; Yap, Glenn P A; Sun, Shih-Sheng; Ong, Tiow-Gan

    2012-06-28

    This paper describes the synthesis of 1-(pyridine-4-ylmethyl) NHC and their Pd(II) and Ag(I) complexes, which are fully characterized. Interestingly, we have also synthesized a Pd complex 3a-CO(3) using a more direct treatment of K(2)CO(3) with PdCl(2). 3a-CO(3) represents the first reported solid structure of a Pd η(2)-carbonato complex stabilized by an NHC framework. 3a-CO(3) can be easily converted to a PdCl(2) derivative by treating it with chloroform. We have found these palladium complexes mediate the Heck-Mizoroki coupling with a low catalyst loading. Furthermore, we also expand such catalytic manifold toward constructing fused polyaromatic substrates, a highly useful class of compounds in optoelectronic chemistry.

  12. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    PubMed

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  13. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  14. Copper-Catalyzed C(sp2)-S Coupling Reactions for the Synthesis of Aryl Dithiocarbamates with Thiuram Disulfide Reagents.

    PubMed

    Dong, Zhi-Bing; Liu, Xing; Bolm, Carsten

    2017-11-03

    An efficient protocol for the copper-catalyzed preparation of aryl dithiocarbamates from aryl iodides and inexpensive, environmentally benign tetraalkylthiuram disulfides was developed. The features of mild reaction conditions, high yields, and broad substrate scope render this new approach synthetically attractive for the preparation of potentially biologically active compounds.

  15. Modular, Metal-Catalyzed Cycloisomerization Approach to Angularly Fused Polycyclic Aromatic Hydrocarbons and Their Oxidized Derivatives

    PubMed Central

    Thomson, Paul F.; Parrish, Damon; Pradhan, Padmanava; Lakshman, Mahesh K.

    2015-01-01

    Palladium-catalyzed cross-coupling reactions of 2-bromobenzaldehyde and 6-bromo-2,3-dimethoxybenzaldehyde with 4-methyl-1-naphthaleneboronic acid and acenaphthene-5-boronic acid gave corresponding o-naphthyl benzaldehydes. Corey–Fuchs olefination followed by reaction with n-BuLi led to various 1-(2-ethynylphenyl)naphthalenes. Cycloisomerization of individual 1-(2-ethynylphenyl)naphthalenes to various benzo[c]phenanthrene (BcPh) analogues was accomplished smoothly with catalytic PtCl2 in PhMe. In the case of 4,5-dihydrobenzo[l]acephenanthrylene, oxidation with DDQ gave benzo[l]acephenanthrylene. The dimethoxy-substituted benzo[c]phenanthrenes were demethylated with BBr3 and oxidized to the ortho-quinones with PDC. Reduction of these quinones with NaBH4 in THF/EtOH in an oxygen atmosphere gave the respective dihydrodiols. Exposure of the dihydrodiols to N-bromoacetamide in THF-H2O led to bromohydrins that were cyclized with Amberlite IRA 400 HO− to yield the series 1 diol epoxides. Epoxidation of the dihydrodiols with mCPBA gave the isomeric series 2 diol epoxides. All of the hydrocarbons as well as the methoxy-substituted ones were crystallized and analyzed by X-ray crystallography, and these data are compared to other previously studied BcPh derivatives. The methodology described is highly modular and can be utilized for the synthesis of a wide variety of angularly fused polycyclic aromatic hydrocarbons and their putative metabolites and/or other derivatives. PMID:26196673

  16. Cycloaddition Reactions of Cobalt-Complexed Macrocyclic Alkynes: The Transannular Pauson-Khand Reaction.

    PubMed

    Karabiyikoglu, Sedef; Boon, Byron A; Merlic, Craig A

    2017-08-04

    The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.

  17. GREENER SYNTHESIS OF ALIGNED PALLADIUM NANOBELTS AND NANOPLATES IN AQUEOUS MEDIUM USING VITAMIN B1

    EPA Science Inventory

    Palladium (Pd) plays an important role in many industrial and technological applications such as reduction of automobile pollutants, and Suzuki, Heck, and Stille coupling reactions. Consequently, a great deal of effort has been devoted to the synthesis of Pd nanostructures. Her...

  18. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  19. Development of second generation gold-supported palladium material with low-leaching and recyclable characteristics in aromatic amination.

    PubMed

    Al-Amin, Mohammad; Arai, Satoshi; Hoshiya, Naoyoki; Honma, Tetsuo; Tamenori, Yusuke; Sato, Takatoshi; Yokoyama, Mami; Ishii, Akira; Takeuchi, Masashi; Maruko, Tomohiro; Shuto, Satoshi; Arisawa, Mitsuhiro

    2013-08-02

    An improved process for the preparation of sulfur-modified gold-supported palladium material [SAPd, second generation] is presented. The developed preparation method is safer and generates less heat (aqueous Na2S2O8 and H2SO4) for sulfur fixation on a gold surface, and it is superior to the previous method of preparing SAPd (first generation), which requires the use of the more heat-generating and dangerous piranha solution (concentrated H2SO4 and 35% H2O2) in the sulfur fixation step. This safer and improved preparation method is particularly important for the mass production of SAPd (second generation) for which the catalytic activity was examined in ligand-free Buchwald-Hartwig cross-coupling reactions. The catalytic activities were the same between the first and second generation SAPds in aromatic aminations, but the lower palladium leaching properties and safer preparative method of second generation SAPd are a significant improvement over the first generation SAPd.

  20. CuI/Pd0 cooperative dual catalysis: tunable stereoselective construction of tetra-substituted alkenes.

    PubMed

    Vercruysse, Sébastien; Cornelissen, Loïc; Nahra, Fady; Collard, Laurent; Riant, Olivier

    2014-02-10

    This paper describes a tunable and stereoselective dual catalytic system that uses copper and palladium reagents. This cooperative silylcupration and palladium-catalyzed allylation readily affords trisubstituted alkenylsilanes. Fine-tuning the reaction conditions allows selective access to one stereoisomer over the other. This new methodology tolerates different substituents on both coupling partners with high levels of stereoselectivity. The one-pot reaction involving a Cu(I)/Pd(0) cooperative dual catalyst directly addresses the need to develop more time-efficient and less-wasteful synthetic pathways. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Proton-coupled electron-transfer reduction of dioxygen catalyzed by a saddle-distorted cobalt phthalocyanine.

    PubMed

    Honda, Tatsuhiko; Kojima, Takahiko; Fukuzumi, Shunichi

    2012-03-07

    Proton-coupled electron-transfer reduction of dioxygen (O(2)) to afford hydrogen peroxide (H(2)O(2)) was investigated by using ferrocene derivatives as reductants and saddle-distorted (α-octaphenylphthalocyaninato)cobalt(II) (Co(II)(Ph(8)Pc)) as a catalyst under acidic conditions. The selective two-electron reduction of O(2) by dimethylferrocene (Me(2)Fc) and decamethylferrocene (Me(10)Fc) occurs to yield H(2)O(2) and the corresponding ferrocenium ions (Me(2)Fc(+) and Me(10)Fc(+), respectively). Mechanisms of the catalytic reduction of O(2) are discussed on the basis of detailed kinetics studies on the overall catalytic reactions as well as on each redox reaction in the catalytic cycle. The active species to react with O(2) in the catalytic reaction is switched from Co(II)(Ph(8)Pc) to protonated Co(I)(Ph(8)PcH), depending on the reducing ability of ferrocene derivatives employed. The protonation of Co(II)(Ph(8)Pc) inhibits the direct reduction of O(2); however, the proton-coupled electron transfer from Me(10)Fc to Co(II)(Ph(8)Pc) and the protonated [Co(II)(Ph(8)PcH)](+) occurs to produce Co(I)(Ph(8)PcH) and [Co(I)(Ph(8)PcH(2))](+), respectively, which react immediately with O(2). The rate-determining step is a proton-coupled electron-transfer reduction of O(2) by Co(II)(Ph(8)Pc) in the Co(II)(Ph(8)Pc)-catalyzed cycle with Me(2)Fc, whereas it is changed to the electron-transfer reduction of [Co(II)(Ph(8)PcH)](+) by Me(10)Fc in the Co(I)(Ph(8)PcH)-catalyzed cycle with Me(10)Fc. A single crystal of monoprotonated [Co(III)(Ph(8)Pc)](+), [Co(III)Cl(2)(Ph(8)PcH)], produced by the proton-coupled electron-transfer reduction of O(2) by Co(II)(Ph(8)Pc) with HCl, was obtained, and the crystal structure was determined in comparison with that of Co(II)(Ph(8)Pc). © 2012 American Chemical Society

  2. Investigations Of Surface-Catalyzed Reactions In A Mars Mixture

    NASA Astrophysics Data System (ADS)

    Dougherty, Max; Owens, W.; Meyers, J.; Fletcher, D. G.

    2011-05-01

    In the design of a thermal protection system (TPS) for a planetary entry vehicle, accurate modeling of the trajectory aero-heating poses a significant challenge owing to large uncertainties in chemical processes taking place at the surface. Even for surface-catalyzed reactions, which have been investigated extensively, there is no consensus on how they should be modeled; or, in some cases, on which reactions are likely to occur. Current TPS designs for Mars missions rely on a super-catalytic boundary condition, which assumes that all dissociated species recombine to the free stream composition.While this is recognized to be the the most conservative approach, discrepancies in aero-heating measurements in ground test facilities preclude less conservative design options, resulting in an increased TPS mass at the expense of scientific pay- load.Using two-photon absorption laser induced fluorescence in a 30 kW inductively coupled plasma torch facility, preliminary studies have been performed to obtain spatially-resolved measurements of the dominant species in a plasma boundary layer for a Martian atmosphere mixture over catalytic and non-catalytic surfaces.

  3. Copper-catalyzed tandem reactions of 1-(2-iodoary)-2-yn-1-ones with isocyanides for the synthesis of 4-oxo-indeno[1,2-b]pyrroles.

    PubMed

    Cai, Qian; Zhou, Fengtao; Xu, Tianfeng; Fu, Liangbing; Ding, Ke

    2011-01-21

    A novel copper-catalyzed tandem reaction of 1-(2-iodoaryl)-2-yn-1-ones with isocyanides is described. The reaction is through a formal [3 + 2] cycloaddition/coupling tandem process and leads to efficient formation of 4-oxo-indeno[1,2-b]pyrroles.

  4. Fission product palladium-silicon carbide interaction in htgr fuel particles

    NASA Astrophysics Data System (ADS)

    Minato, Kazuo; Ogawa, Toru; Kashimura, Satoru; Fukuda, Kousaku; Shimizu, Michio; Tayama, Yoshinobu; Takahashi, Ishio

    1990-07-01

    Interaction of fission product palladium (Pd) with the silicon carbide (SiC) layer was observed in irradiated Triso-coated uranium dioxide particles for high temperature gas-cooled reactors (HTGR) with an optical microscope and electron probe microanalyzers. The SiC layers were attacked locally or the reaction product formed nodules at the attack site. Although the main element concerned with the reaction was palladium, rhodium and ruthenium were also detected at the corroded areas in some particles. Palladium was detected on both the hot and cold sides of the particles, but the corroded areas and the palladium accumulations were distributed particularly on the cold side of the particles. The observed Pd-SiC reaction depths were analyzed on the assumption that the release of palladium from the fuel kernel controls the whole Pd-SiC reaction.

  5. Reaction pathways and free energy profiles for cholinesterase-catalyzed hydrolysis of 6-monoacetylmorphine

    PubMed Central

    Qiao, Yan; Han, Keli; Zhan, Chang-Guo

    2014-01-01

    As the most active metabolite of heroin, 6-monoacetylmorphine (6-MAM) can penetrate into the brain for the rapid onset of heroin effects. The primary enzymes responsible for the metabolism of 6-MAM to the less potent morphine in humans are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The detailed reaction pathways for AChE- and BChE-catalyzed hydrolysis of 6-MAM to morphine have been explored, for the first time, in the present study by performing first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the two enzymatic reaction processes follow the similar catalytic reaction mechanism, and the whole catalytic reaction pathway for each enzyme consists of four reaction steps. According to the calculated results, the second reaction step associated with the transition state TS2a/TS2b should be rate-determining for the AChE/BChE-catalyzed hydrolysis, and the free energy barrier calculated for the AChE-catalyzed hydrolysis (18.3 kcal/mol) is 2.5 kcal/mol lower than that for the BChE-catalyzed hydrolysis (20.8 kcal/mol). The free energy barriers calculated for the AChE- and BChE-catalyzed reactions are in good agreement with the experimentally derived activation free energies (17.5 and 20.7 kcal/mol for the AChE- and BChE-catalyzed reactions, respectively). Further structural analysis reveals that the aromatic residues Phe295 and Phe297 in the acyl pocket of AChE (corresponding to Leu286 and Val288 in BChE) contribute to the lower energy of TS2a relative to TS2b. The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:24595354

  6. Vinyldisiloxanes: their synthesis, cross coupling and applications.

    PubMed

    Sore, Hannah F; Boehner, Christine M; Laraia, Luca; Logoteta, Patrizia; Prestinari, Cora; Scott, Matthew; Williams, Katharine; Galloway, Warren R J D; Spring, David R

    2011-01-21

    During the studies towards the development of pentafluorophenyldimethylsilanes as a novel organosilicon cross coupling reagent it was revealed that the active silanolate and the corresponding disiloxane formed rapidly under basic conditions. The discovery that disiloxanes are in equilibrium with the silanolate led to the use of disiloxanes as cross coupling partners under fluoride free conditions. Our previous report focused on the synthesis and base induced cross coupling of aryl substituted vinyldisiloxanes with aryl halides; good yields and selectivities were achieved. As a continuation of our research, studies into the factors which influence the successful outcome of the cross coupling reaction with both alkyl and aryl substituted vinyldisiloxanes were examined and a proposed mechanism discussed. Further investigation into expanding the breadth and diversity of substituted vinyldisiloxanes in cross coupling was explored and applied to the synthesis of unsymmetrical trans-stilbenes and cyclic structures containing the trans-alkene architecture.

  7. Fe-Catalyzed C–C Bond Construction from Olefins via Radicals

    PubMed Central

    2017-01-01

    This Article details the development of the iron-catalyzed conversion of olefins to radicals and their subsequent use in the construction of C–C bonds. Optimization of a reductive diene cyclization led to the development of an intermolecular cross-coupling of electronically-differentiated donor and acceptor olefins. Although the substitution on the donor olefins was initially limited to alkyl and aryl groups, additional efforts culminated in the expansion of the scope of the substitution to various heteroatom-based functionalities, providing a unified olefin reactivity. A vinyl sulfone acceptor olefin was developed, which allowed for the efficient synthesis of sulfone adducts that could be used as branch points for further diversification. Moreover, this reactivity was extended into an olefin-based Minisci reaction to functionalize heterocyclic scaffolds. Finally, mechanistic studies resulted in a more thorough understanding of the reaction, giving rise to the development of a more efficient second-generation set of olefin cross-coupling conditions. PMID:28094980

  8. Catalytic bismetallative multicomponent coupling reactions: scope, applications, and mechanisms

    PubMed Central

    Cho, Hee Yeon

    2014-01-01

    Catalytic reactions have played an indispensable role in organic chemistry for the last several decades. In particular, catalytic multicomponent reactions have attracted a lot of attention due to their efficiency and expediency towards complex molecule synthesis. The presence of bismetallic reagents (e.g. B–B, Si–Si, B–Si, Si–Sn, etc.) in this process renders the products enriched with various functional groups and multiple stereocenters. For this reason, catalytic bismetallative coupling is considered an effective method to generate the functional and stereochemical complexity of simple hydrocarbon substrates. This review highlights key developments of transition-metal catalyzed bismetallative reactions involving multiple π components. Specifically, it will highlight the scope, synthetic applications, and proposed mechanistic pathways of this process. PMID:24736839

  9. Palladium-Mediated Catalysis Leads to Intramolecular Narcissistic Self-Sorting on a Cavitand Platform.

    PubMed

    Nagymihály, Zoltán; Caturello, Naidel A M S; Takátsy, Anikó; Aragay, Gemma; Kollár, László; Albuquerque, Rodrigo Q; Csók, Zsolt

    2017-01-06

    Palladium-catalyzed aminocarbonylation reactions have been used to directly convert a tetraiodocavitand intermediate into the corresponding carboxamides and 2-ketocarboxamides. When complex mixtures of the amine reactants are employed in competition experiments using polar solvents, such as DMF, no "mixed" products possessing structurally different amide fragments are detected either by 1 H or 13 C NMR. Only highly symmetrical cavitands are sorted out of a large number of potentially feasible products, which represents a rare example of intramolecular, narcissistic self-sorting. Our experimental results along with thermodynamic energy analysis suggest that the observed self-sorting is a symmetry-driven, kinetically controlled process.

  10. Chemistry in Confinement: Copper and Palladium Catalyzed Ecofriendly Organic Transformations within Porous Frameworks.

    PubMed

    Kumar, Basuvaraj Suresh; Pitchumani, Kasi

    2018-05-01

    A concise account on the use of transition metals copper (Cu) and palladium (Pd), as their cations as well as nanoparticles exchanged/immobilized onto porous frameworks such as zeolites, metal organic frameworks (MOFs), covalent organic polymers (COPs) and hollow nanostructures, functioning as catalysts in organic synthesis is presented. This biomimetic account, "focusing on catalytic systems in confinement" within zero-dimensional microenvironments and second sphere coordination covers primarily results from our group on N-sulfonylketenimine mediated cycloaddition, hydrogenation and C-C bond forming reactions, thus providing an interesting insight into the versatility and utility of these Cu and Pd catalysts. Other significant advantages and green credentials of confinement such as stability, selectivity, reusability, promotion of multicomponent reactions, use of green solvents, atom economy, and use of ambient conditions are highlighted at appropriate places. In the final section, our views on the current achievements and the future prospects in this area are summarized. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cross-Dehydrogenative Coupling Reactions Between P(O)-H and X-H (X = S, N, O, P) Bonds.

    PubMed

    Hosseinian, Akram; Farshbaf, Sepideh; Fekri, Leila Zare; Nikpassand, Mohammad; Vessally, Esmail

    2018-05-26

    P(O)-X (X = S, N, O, P) bond-containing compounds have extensive application in medicinal chemistry, agrochemistry, and material chemistry. These useful organophosphorus compounds also have many applications in organic synthesis. In light of the importance of titled compounds, there is continuing interest in the development of synthetic methods for P(O)-X bonds construction. In the last 4 years, the direct coupling reaction of P(O)-H compounds with thiols, alcohols, and amines/amides has received much attention because of the atom-economic character. This review aims to give an overview of new developments in cross-dehydrogenative coupling reactions between P(O)-H and X-H (X = S, N, O, P) bonds, with special emphasis on the mechanistic aspects of the reactions.

  12. Assembly of N,N-disubstituted hydrazines and 1-aryl-1H-indazoles via copper-catalyzed coupling reactions.

    PubMed

    Xiong, Xiaodong; Jiang, Yongwen; Ma, Dawei

    2012-05-18

    CuI-catalyzed coupling of N-acyl-N'-substituted hydrazines with aryl iodides takes place at 60-90 °C to afford N-acyl-N',N'-disubstituted hydrazines regioselectively and thereby gives a facile method for assembling N,N-diaryl hydrazines. N-Acyl-N'-substituted hydrazines can also react with 2-bromoarylcarbonylic compounds at 60-125 °C under the catalysis of CuI/4-hydroxy-l-proline to provide 1-aryl-1H-indazoles.

  13. Studies towards asymmetric synthesis of 4(S)-11-dihydroxydocosahexaenoic acid (diHDHA) featuring cross-coupling of chiral stannane under mild conditions.

    PubMed

    Wang, Rui; He, Anyu; Ramu, Errabelli; Falck, John R

    2015-02-14

    An efficient and asymmetric synthetic approach towards one of the biologically interesting 4(S)-11-diHDHA derivatives was developed. This process mainly relied on two reactions, one is the copper-catalyzed mild cross-coupling that allows for the efficient construction of a chiral α-alkynyl α-hydroxy motif and another is the synthesis of chiral α-hydroxy α-stannanes that has previously been developed by our group featuring the asymmetric stannylation using the well-established tributyltin hydride/diethyl zinc system from an aldehyde.

  14. Synthesis, characterization, and reactivity of arylpalladium cyanoalkyl complexes: selection of catalysts for the alpha-arylation of nitriles.

    PubMed

    Culkin, Darcy A; Hartwig, John F

    2002-08-14

    A new coupling process, the palladium-catalyzed alpha-arylation of nitriles, was developed by exploring the structure and reactivity of arylpalladium cyanoalkyl complexes. Complexes of 1,2-bis(diphenylphosphino)benzene (DPPBz), 1,1'-bis(di-i-propylphosphino)ferrocene (D(i)()PrPF), racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), and diphenylethylphosphine (PPh(2)Et) were prepared. Coordination to palladium through the alpha-carbon was observed for DPPBz-ligated complexes and for complexes of primary and benzylic nitrile anions. However, the anion of isobutyronitrile was coordinated to palladium through the cyano-nitrogen when the complex was ligated by D(i)()PrPF. The isobutyronitrile anion displaced a phosphine ligand to form a C,N-bridged dimer when generated from PPh(2)Et-ligated palladium. These results suggest that the nitrile anion preferentially coordinates to palladium through the carbon atom in the absence of steric effects. Thermolysis of the arylpalladium cyanoalkyl complexes led to reductive elimination that formed alpha-aryl nitriles. The high yields and short reaction times observed for BINAP-ligated complexes suggested that BINAP-ligated palladium catalysts might be appropriate for the arylation of nitriles. Initial results on a palladium-catalyzed process for the direct coupling of aryl bromides and primary, benzylic, and secondary nitrile anions to form alpha-aryl nitriles in good yields are reported.

  15. Characterization of a Cross-Linked Protein–Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    PubMed Central

    2015-01-01

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process. PMID:24806349

  16. Characterization of a Cross-Linked Protein-Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silakov, Alexey; Grove, Tyler L.; Radle, Matthew I.

    2014-08-14

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate tomore » detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl- 13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process« less

  17. Palladium-bacterial cellulose membranes for fuel cells.

    PubMed

    Evans, Barbara R; O'Neill, Hugh M; Malyvanh, Valerie P; Lee, Ida; Woodward, Jonathan

    2003-07-01

    Bacterial cellulose is a versatile renewable biomaterial that can be used as a hydrophilic matrix for the incorporation of metals into thin, flexible, thermally stable membranes. In contrast to plant cellulose, we found it catalyzed the deposition of metals within its structure to generate a finely divided homogeneous catalyst layer. Experimental data suggested that bacterial cellulose possessed reducing groups capable of initiating the precipitation of palladium, gold, and silver from aqueous solution. Since the bacterial cellulose contained water equivalent to at least 200 times the dry weight of the cellulose, it was dried to a thin membranous structure suitable for the construction of membrane electrode assemblies (MEAs). Results of our study with palladium-cellulose showed that it was capable of catalyzing the generation of hydrogen when incubated with sodium dithionite and generated an electrical current from hydrogen in an MEA containing native cellulose as the polyelectrolyte membrane (PEM). Advantages of using native and metallized bacterial cellulose membranes in an MEA over other PEMs such as Nafion 117 include its higher thermal stability to 130 degrees C and lower gas crossover.

  18. Pd-Catalyzed Heterocycle Synthesis in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Li, Jianxiao; Jiang, Huanfeng

    Heterocyclic and fused heterocyclic compounds are ubiquitously found in natural products and biologically interesting molecules, and many currently marketed drugs hold heterocycles as their core structure. In this chapter, recent advances on Pd-catalyzed synthesis of heterocycles in ionic liquids (ILs) are reviewed. In palladium catalysis, ILs with different cations and anions are investigated as an alternative recyclable and environmentally benign reaction medium, and a variety of heterocyclic compounds including cyclic ketals, quinolones, quinolinones, isoindolinones, and lactones are conveniently constructed. Compared to the traditional methods, these new approaches have many advantages, such as environmentally friendly synthetic procedure, easy product and catalyst separation, recyclable medium, which make them have the potential applications in industry.

  19. Kinetic Resolution of α-Hydroxy-Substituted Oxime Ethers by Enantioselective Cu-H-Catalyzed Si-O Coupling.

    PubMed

    Dong, Xichang; Kita, Yuji; Oestreich, Martin

    2018-04-12

    A catalyst-controlled enantioselective alcohol silylation by Cu-H-catalyzed dehydrogenative Si-O coupling of hydroxy groups α to an oxime ether and simple hydrosilanes is reported. The selectivity factors reached in this kinetic resolution are generally high (s≈50), and these reactions thereby provide reliable access to highly enantioenriched α-hydroxy-substituted oxime ethers. The synthetic usefulness of these compounds is also demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides.

    PubMed

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-03-01

    The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Toward Green Acylation of (Hetero)arenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones

    PubMed Central

    2017-01-01

    Green Friedel–Crafts acylation reactions belong to the most desired transformations in organic chemistry. The resulting ketones constitute important intermediates, building blocks, and functional molecules in organic synthesis as well as for the chemical industry. Over the past 60 years, advances in this topic have focused on how to make this reaction more economically and environmentally friendly by using green acylating conditions, such as stoichiometric acylations and catalytic homogeneous and heterogeneous acylations. However, currently well-established methodologies for their synthesis either produce significant amounts of waste or proceed under harsh conditions, limiting applications. Here, we present a new protocol for the straightforward and selective introduction of acyl groups into (hetero)arenes without directing groups by using available olefins with inexpensive CO. In the presence of commercial palladium catalysts, inter- and intramolecular carbonylative C–H functionalizations take place with good regio- and chemoselectivity. Compared to classical Friedel–Crafts chemistry, this novel methodology proceeds under mild reaction conditions. The general applicability of this methodology is demonstrated by the direct carbonylation of industrial feedstocks (ethylene and diisobutene) as well as of natural products (eugenol and safrole). Furthermore, synthetic applications to drug molecules are showcased. PMID:29392174

  2. Recent advances in transition metal-catalyzed N -atom transfer reactions of azides

    PubMed Central

    Driver, Tom G.

    2011-01-01

    Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243

  3. Kinetics of the Reaction Between Alcohols and Isocyanates Catalyzed by Ferric Acetylacetonate

    NASA Technical Reports Server (NTRS)

    Schieler, Leroy

    1961-01-01

    The rate and temperature dependence of reaction for the ferric acetylacetonate catalyzed reaction between a-naphthyl, ortho-tolyl, and para-tolyl isocyanates and n-butyl alcohol are investigated. The effect of substituents on the reactivity of isocyanate and hydroxyl group are reported and for substituted isocyanates are correlated by means of the Hammett equation. Several metal chelates were studied and their catalytic activity was compared to that of ferric acetylacetonate. All rate data are interpreted in terms of a mechanism involving simultaneous second-order uncatalyzed and catalyzed reactions between alcohol and isocyanate.

  4. Suzuki-Miyaura Cross-Coupling Reactions of Primary Alkyltrifluoroborates with Aryl Chlorides

    PubMed Central

    Dreher, Spencer D.; Lim, Siang-Ee; Sandrock, Deidre L.; Molander, Gary A.

    2009-01-01

    Parallel microscale experimentation was used to develop general conditions for the Suzuki-Miyaura cross-coupling of diversely functionalized primary alkyltrifluoroborates with a variety of aryl chlorides. These conditions were found to be amenable to coupling with aryl bromides, iodides, and triflates as well. The conditions that were previously identified through similar techniques to promote the cross-coupling of secondary alkyltrifluoroborates with aryl chlorides were not optimal for the primary alkyltrifluoroborates, thus demonstrating the value of parallel experimentation to develop novel, substrate specific results. PMID:19271726

  5. A Practical Method for the Vinylation of Aromatic Halides using Inexpensive Organosilicon Reagents

    PubMed Central

    Denmark, Scott E.; Butler, Christopher R.

    2009-01-01

    The preparation of styrenes by palladium-catalyzed cross-coupling of aromatic iodides and bromides with divinyltetramethyldisiloxane (DVDS) in the presence of inexpensive silanolate activators has been developed. To facilitate the discovery of optimal reaction conditions, Design of Experiment protocols were used. By the guided selection of reagents, stoichiometries, temperatures, and solvents the vinylation reaction was rapidly optimized with three stages consisting of ca. 175 experiments (of a possible 1440 combinations). A variety of aromatic iodides undergo cross-coupling at room temperature in the presence of potassium trimethylsilanoate using Pd(dba)2 in DMF in good yields. Triphenylphosphine oxide is needed to extend catalyst lifetime. Application of these conditions to aryl bromides was accomplished by the development of two complementary protocols. First, the direct implementation of the successful reaction conditions using aryl iodides at elevated temperature in THF provided the corresponding styrenes in good to excellent yields. Alternatively, the use of potassium triethylsilanolate and a bulky “Buchwald-type” ligand allows for the vinylation reactions to occur at or just above room temperature. A wide range of bromides underwent coupling in good yields for each of the protocols described. PMID:18303892

  6. Nature's Strategy for Catalyzing Diels-Alder Reaction.

    PubMed

    Oikawa, Hideaki

    2016-04-21

    The enzymes catalyzing a Diels-Alder-type reaction have been attractive targets for organic chemists for years. Recently, Zheng et al. (2016) reported the structure of a formal monofunctional Diels-Alderase PyrI4 complexed with the product and unveiled a detailed catalytic mechanism of a highly important enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Copper-Catalyzed Carbonylative Coupling of Cycloalkanes and Amides.

    PubMed

    Li, Yahui; Dong, Kaiwu; Zhu, Fengxiang; Wang, Zechao; Wu, Xiao-Feng

    2016-06-13

    Carbonylation reactions are a most powerful method for the synthesis of carbonyl-containing compounds. However, most known carbonylation procedures still require noble-metal catalysts and the use of activated compounds and good nucleophiles as substrates. Herein, we developed a copper-catalyzed carbonylative transformation of cycloalkanes and amides. Imides were prepared in good yields by carbonylation of a C(sp(3) )-H bond of the cycloalkane with the amides acting as weak nucleophiles. Notably, this is the first report of copper-catalyzed carbonylative C-H activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Copper-catalyzed oxidative Heck reactions between alkyltrifluoroborates and vinyl arenes.

    PubMed

    Liwosz, Timothy W; Chemler, Sherry R

    2013-06-21

    We report herein that potassium alkyltrifluoroborates can be utilized in oxidative Heck-type reactions with vinyl arenes. The reaction is catalyzed by a Cu(OTf)2/1,10-phenanthroline with MnO2 as the stoichiometric oxidant. In addition to the alkyl Heck, amination, esterification, and dimerization reactions of alkyltrifluoroborates are demonstrated under analogous reaction conditions. Evidence for an alkyl radical intermediate is presented.

  9. Organometallic Palladium Reagents for Cysteine Bioconjugation

    PubMed Central

    Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.

    2015-01-01

    Transition-metal based reactions have found wide use in organic synthesis and are used frequently to functionalize small molecules.1,2 However, there are very few reports of using transition-metal based reactions to modify complex biomolecules3,4, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature, and mild pH) and the existence of multiple, reactive functional groups found in biopolymers. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation reactions. The bioconjugation reaction is rapid and robust under a range of biocompatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants, and external thiol nucleophiles. The broad utility of the new bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as a new set of benchtop reagents for diverse bioconjugation applications. PMID:26511579

  10. Iridium-Catalyzed Hydrogen Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Saidi, Ourida; Williams, Jonathan M. J.

    This chapter describes the application of iridium complexes to catalytic hydrogen transfer reactions. Transfer hydrogenation reactions provide an alternative to direct hydrogenation for the reduction of a range of substrates. A hydrogen donor, typically an alcohol or formic acid, can be used as the source of hydrogen for the reduction of carbonyl compounds, imines, and alkenes. Heteroaromatic compounds and even carbon dioxide have also been reduced by transfer hydrogenation reactions. In the reverse process, the oxidation of alcohols to carbonyl compounds can be achieved by iridium-catalyzed hydrogen transfer reactions, where a ketone or alkene is used as a suitable hydrogen acceptor. The reversible nature of many hydrogen transfer processes has been exploited for the racemization of alcohols, where temporary removal of hydrogen generates an achiral ketone intermediate. In addition, there is a growing body of work where temporary removal of hydrogen provides an opportunity for using alcohols as alkylating agents. In this chemistry, an iridium catalyst "borrows" hydrogen from an alcohol to give an aldehyde or ketone intermediate, which can be transformed into either an imine or alkene under the reaction conditions. Return of the hydrogen from the catalyst provides methodology for the formation of amines or C-C bonds where the only by-product is typically water.

  11. Nickel-Catalyzed Reductive Allylation of Tertiary Alkyl Halides with Allylic Carbonates.

    PubMed

    Chen, Haifeng; Jia, Xiao; Yu, Yingying; Qian, Qun; Gong, Hegui

    2017-10-09

    The construction of all C(sp 3 ) quaternary centers has been successfully achieved under Ni-catalyzed cross-electrophile coupling of allylic carbonates with unactivated tertiary alkyl halides. For allylic carbonates bearing C1 or C3 substituents, the reaction affords excellent regioselectivity through the addition of alkyl groups to the unsubstituted allylic carbon terminus. The allylic alkylation method also exhibits excellent functional-group compatibility, and delivers the products with high E selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nickel-catalyzed asymmetric α-arylation and heteroarylation of ketones with chloroarenes: effect of halide on selectivity, oxidation state, and room-temperature reactions.

    PubMed

    Ge, Shaozhong; Hartwig, John F

    2011-10-19

    We report the α-arylation of ketones with a range of aryl chlorides with enantioselectivities from 90 to 99% ee catalyzed by the combination of Ni(COD)(2) and (R)-BINAP and the coupling of ketones with a range of heteroaryl chlorides with enantioselectivities up to 99% ee catalyzed by Ni(COD)(2) and (R)-DIFLUORPHOS. The analogous reactions of bromoarenes occur with much lower enantioselectivities. Mechanistic studies showed that the difference in the rates of decomposition of the arylnickel(II) halide intermediates to {[(R)-BINAP]NiX}(2) likely accounts for the difference in the enantioselectivities of the reactions of bromoarenes and chloroarenes. This catalyst decomposition can be overcome by conducting the reactions with [(R)-BINAP]Ni(η(2)-NC-Ph) (4), which undergoes oxidative addition to haloarenes at room temperature.

  13. Efficient Three-Component Strecker Reaction of Aldehydes/Ketones via NHC-Amidate Palladium(II) Complex Catalysis

    PubMed Central

    Jarusiewicz, Jamie; Choe, Yvonne; Yoo, Kyung Soo; Park, Chan Pil

    2009-01-01

    A simple and efficient one-pot three-component method has been developed for the synthesis of α-aminonitriles. This Strecker reaction is applicable for aldehydes and ketones with aliphatic or aromatic amines and trimethyl siliyl cyanide in the presence of a palladium Lewis aid catalyst in dichloromethane solvent at room temperature. PMID:19265413

  14. Mechanism and enantioselectivity in palladium-catalyzed conjugate addition of arylboronic acids to β-substituted cyclic enones: insights from computation and experiment.

    PubMed

    Holder, Jeffrey C; Zou, Lufeng; Marziale, Alexander N; Liu, Peng; Lan, Yu; Gatti, Michele; Kikushima, Kotaro; Houk, K N; Stoltz, Brian M

    2013-10-09

    Enantioselective conjugate additions of arylboronic acids to β-substituted cyclic enones have been previously reported from our laboratories. Air- and moisture-tolerant conditions were achieved with a catalyst derived in situ from palladium(II) trifluoroacetate and the chiral ligand (S)-t-BuPyOx. We now report a combined experimental and computational investigation on the mechanism, the nature of the active catalyst, the origins of the enantioselectivity, and the stereoelectronic effects of the ligand and the substrates of this transformation. Enantioselectivity is controlled primarily by steric repulsions between the t-Bu group of the chiral ligand and the α-methylene hydrogens of the enone substrate in the enantiodetermining carbopalladation step. Computations indicate that the reaction occurs via formation of a cationic arylpalladium(II) species, and subsequent carbopalladation of the enone olefin forms the key carbon-carbon bond. Studies of nonlinear effects and stoichiometric and catalytic reactions of isolated (PyOx)Pd(Ph)I complexes show that a monomeric arylpalladium-ligand complex is the active species in the selectivity-determining step. The addition of water and ammonium hexafluorophosphate synergistically increases the rate of the reaction, corroborating the hypothesis that a cationic palladium species is involved in the reaction pathway. These additives also allow the reaction to be performed at 40 °C and facilitate an expanded substrate scope.

  15. Mechanism and Enantioselectivity in Palladium-Catalyzed Conjugate Addition of Arylboronic Acids to β-Substituted Cyclic Enones: Insights from Computation and Experiment

    PubMed Central

    Holder, Jeffrey C.; Zou, Lufeng; Marziale, Alexander N.; Liu, Peng; Lan, Yu; Gatti, Michele; Kikushima, Kotaro; Houk, K. N.; Stoltz, Brian M.

    2013-01-01

    Enantioselective conjugate additions of arylboronic acids to β-substituted cyclic enones have been reported previously from our laboratories. Air and moisture tolerant conditions were achieved with a catalyst derived in situ from palladium(II) trifluoroacetate and the chiral ligand (S)-t-BuPyOx. We now report a combined experimental and computational investigation on the mechanism, the nature of the active catalyst, the origins of the enantioselectivity, and the stereoelectronic effects of the ligand and the substrates of this transformation. Enantioselectivity is controlled primarily by steric repulsions between the t-Bu group of the chiral ligand and the α-methylene hydrogens of the enone substrate in the enantiodetermining carbopalladation step. Computations indicate that the reaction occurs via formation of a cationic arylpalladium(II) species, and subsequent carbopalladation of the enone olefin forms the key carbon-carbon bond. Studies of non-linear effects and stoichiometric and catalytic reactions of isolated (PyOx)Pd(Ph)I complexes show that a monomeric arylpalladium-ligand complex is the active species in the selectivity-determining step. The addition of water and ammonium hexafluorophosphate synergistically increases the rate of the reaction, corroborating the hypothesis that a cationic palladium species is involved in the reaction pathway. These additives also allow the reaction to be performed at 40 °C and facilitate an expanded substrate scope. PMID:24028424

  16. On the mechanism of the palladium catalyzed intramolecular Pauson-Khand-type reaction.

    PubMed

    Lan, Yu; Deng, Lujiang; Liu, Jing; Wang, Can; Wiest, Olaf; Yang, Zhen; Wu, Yun-Dong

    2009-07-17

    Density functional theory calculations and experimental studies have been carried out on the intramolecular Pauson-Khand-Type reaction mediated by a PdCl(2)-thiourea catalyst, which proceeds under mild reaction conditions and provides a useful alternative to traditional Pauson-Khand reactions. The classical mechanism of the Pauson-Khand reaction involving the alkyne/alkene C-C bond formation as the key step has been found to be energetically unfavorable and is not in line with the experimental observations. A novel reaction mechanism has been proposed for the reaction. The first step involves the cis-halometalation of the alkyne, followed by sequential alkene and carbonyl insertion. The rate-determining fourth step is an intramolecular C-Cl oxidative addition, leading to a Pd(IV) intermediate. A C-C bond formation by reductive elimination completes the reaction. The mechanism is in agreement with the key experimental observations including (1) the need of a chloride for catalytic activity and the absence of catalysis with Pd(OAc)(2) alone; (2) the rate acceleration by the addition of LiCl; both with PdCl(2) and Pd(OAc)(2) catalysts; and (3) the preferred formation of the trans diastereomer in substituted cases. The cis halometalation and the formation and stability of the Pd(IV) intermediate is studied in detail and provides general insights into these novel steps.

  17. Dual palladium- and proline-catalyzed allylic alkylation of enolizable ketones and aldehydes with allylic alcohols.

    PubMed

    Usui, Ippei; Schmidt, Stefan; Breit, Bernhard

    2009-03-19

    The dual Pd/proline-catalyzed alpha-allylation reaction of a variety of enolizable ketones and aldehydes with allylic alcohols is described. In this reaction, the choice of a large-bite angle ligand Xantphos and proline as the organocatalyst was essential for generation of the crucial pi-allyl Pd intermediate from allylic alcohol, followed by nucleophilic attack of the enamine formed in situ from the corresponding enolizable carbonyl substrate and proline.

  18. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential.

    PubMed

    Wang, Jun; Yu, Liang; Hu, Lin; Chen, Gang; Xin, Hongliang; Feng, Xiaofeng

    2018-05-15

    Electrochemical reduction of N 2 to NH 3 provides an alternative to the Haber-Bosch process for sustainable, distributed production of NH 3 when powered by renewable electricity. However, the development of such process has been impeded by the lack of efficient electrocatalysts for N 2 reduction. Here we report efficient electroreduction of N 2 to NH 3 on palladium nanoparticles in phosphate buffer solution under ambient conditions, which exhibits high activity and selectivity with an NH 3 yield rate of ~4.5 μg mg -1 Pd h -1 and a Faradaic efficiency of 8.2% at 0.1 V vs. the reversible hydrogen electrode (corresponding to a low overpotential of 56 mV), outperforming other catalysts including gold and platinum. Density functional theory calculations suggest that the unique activity of palladium originates from its balanced hydrogen evolution activity and the Grotthuss-like hydride transfer mechanism on α-palladium hydride that lowers the free energy barrier of N 2 hydrogenation to *N 2 H, the rate-limiting step for NH 3 electrosynthesis.

  19. Mechanistic Study of the Oxidative Coupling of Styrene with 2-Phenylpyridine Derivatives Catalyzed by Cationic Rhodium( III) via C–H Activation

    PubMed Central

    Brasse, Mikaël; Cámpora, Juan; Ellman, Jonathan A.; Bergman, Robert G.

    2013-01-01

    The Rh(III) catalyzed oxidative coupling of alkenes with arenes provides a greener alternative to the classical Heck reaction for the synthesis of arene-functionalized alkenes. The present mechanistic study gives insights for the rational development of this key transformation. The catalyst resting states and the rate law of the reaction have been identified. The reaction rate is solely dependent on catalyst and alkene concentrations and the rate determining step is the migratory insertion of alkene into a Rh–C(aryl) bond. PMID:23590843

  20. RDH13L, an enzyme responsible for the aldehyde-alcohol redox coupling reaction (AL-OL coupling reaction) to supply 11-cis retinal in the carp cone retinoid cycle.

    PubMed

    Sato, Shinya; Miyazono, Sadaharu; Tachibanaki, Shuji; Kawamura, Satoru

    2015-01-30

    Cone photoreceptors require effective pigment regeneration mechanisms to maintain their sensitivity in the light. Our previous studies in carp cones suggested the presence of an unconventional and very effective mechanism to produce 11-cis retinal, the necessary component in pigment regeneration. In this reaction (aldehyde-alcohol redox coupling reaction, AL-OL coupling reaction), formation of 11-cis retinal, i.e. oxidation of 11-cis retinol is coupled to reduction of an aldehyde at a 1:1 molar ratio without exogenous NADP(H) which is usually required in this kind of reaction. Here, we identified carp retinol dehydrogenase 13-like (RDH13L) as an enzyme catalyzing the AL-OL coupling reaction. RDH13L was partially purified from purified carp cones, identified as a candidate protein, and its AL-OL coupling activity was confirmed using recombinant RDH13L. We further examined the substrate specificity, subcellular localization, and expression level of RDH13L. Based on these results, we concluded that RDH13L contributes to a significant part, but not all, of the AL-OL coupling activity in carp cones. RDH13L contained tightly bound NADP(+) which presumably functions as a cofactor in the reaction. Mouse RDH14, a mouse homolog of carp RDH13L, also showed the AL-OL coupling activity. Interestingly, although carp cone membranes, carp RDH13L and mouse RDH14 all showed the coupling activity at 15-37 °C, they also showed a conventional NADP(+)-dependent 11-cis retinol oxidation activity above 25 °C without addition of aldehydes. This dual mechanism of 11-cis retinal synthesis attained by carp RDH13L and mouse RDH14 probably contribute to effective pigment regeneration in cones that function in the light. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Rh(III)-Catalyzed Decarboxylative Coupling of Acrylic Acids with Unsaturated Oxime Esters: Carboxylic Acids Serve as Traceless Activators

    PubMed Central

    2015-01-01

    α,β-Unsaturated carboxylic acids undergo Rh(III)-catalyzed decarboxylative coupling with α,β-unsaturated O-pivaloyl oximes to provide substituted pyridines in good yield. The carboxylic acid, which is removed by decarboxylation, serves as a traceless activating group, giving 5-substituted pyridines with very high levels of regioselectivity. Mechanistic studies rule out a picolinic acid intermediate, and an isolable rhodium complex sheds further light on the reaction mechanism. PMID:24512241

  2. Synthesis of benzimidazoles via iridium-catalyzed acceptorless dehydrogenative coupling.

    PubMed

    Sun, Xiang; Lv, Xiao-Hui; Ye, Lin-Miao; Hu, Yu; Chen, Yan-Yan; Zhang, Xue-Jing; Yan, Ming

    2015-07-21

    Iridium-catalyzed acceptorless dehydrogenative coupling of tertiary amines and arylamines has been developed. A number of benzimidazoles were prepared in good yields. An iridium-mediated C-H activation mechanism is suggested. This finding represents a novel strategy for the synthesis of benzimidazoles.

  3. Development of a Lewis Base Catalyzed Selenocyclization Reaction

    ERIC Educational Resources Information Center

    Collins, William

    2009-01-01

    The concept of Lewis base activation of selenium Lewis acids has been effectively reduced to practice in the Lewis base catalyzed selenofunctionalization of unactivated olefins. In this reaction, the weakly acidic species, "N"-phenylselenyl succinimide, is cooperatively activated by the addition of a "soft" Lewis base donor (phosphine sulfides,…

  4. Effect of silver on the shape of palladium nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Dikshita, E-mail: dgmonugupta@gmail.com; Barman, P. B.; Hazra, S. K.

    We report a facile route to prepare palladium-silver nanoparticles at considerably low temperature. First the controlled synthesis of palladium nanoparticles was performed via reduction of sodium tetrachloropalladate (II) in ethylene glycol in the presence of PVP(polyvinylpyrrolidone) as capping agent. The reaction was carried out at three different temperatures-80°C, 100°C and 120°C for one hour. Short reaction time and low synthesis temperature adds advantage to this method over others. Formed palladium nanoparticles were nearly spherical with the average particle size of 7.5±0.5 nm, 9.5±0.5 nm and 10.5±0.5 nm at 80°C, 100°C and 120°C respectively. Secondly, the palladium-silver nanoparticles were prepared bymore » the simultaneous reduction of palladium and silver from their respective precursors in ethylene glycol at 100°C (optimized temperature). The shape and size distribution was studied by TEM (Transmission Electron Microscopy). The role of silver in transforming the shape of palladium nanoparticles from spherical to triangular has been discussed. Spherical symmetry of palladium nanoparticles is disturbed by the interaction of silver ions on the crystal facets of palladium nanoparticles. From UV-vis spectra, the absorption maxima of palladium nanoparticles at 205 nm and absorption maxima of palladium-silver nanoparticles at 272 nm revealed the partial evidence of their formation.« less

  5. Laccases as palladium oxidases† †Electronic supplementary information (ESI) available: Experimental procedures, synthesis of catalysts molecules, enzyme activity assay, bleaching experiments, oxygraph traces, oxidation of veratryl alcohol assay, inhibition experiments, electrophoresis. See DOI: 10.1039/c4sc02564d Click here for additional data file.

    PubMed Central

    Schneider, Ludovic; Rousselot-Pailley, Pierre; Faure, Bruno; Simaan, A. Jalila; Bochot, Constance; Réglier, Marius

    2015-01-01

    The first example of a coupled catalytic system involving an enzyme and a palladium(ii) catalyst competent for the aerobic oxidation of alcohol in mild conditions is described. In the absence of dioxygen, the fungal laccase LAC3 is reduced by a palladium(0) species as evidenced by the UV/VIS and ESR spectra of the enzyme. During the oxidation of veratryl alcohol performed in water, at room temperature and atmospheric pressure, LAC3 regenerates the palladium catalyst, is reduced and catalyzes the four-electron reduction of dioxygen into water with no loss of enzyme activity. The association of a laccase with a water-soluble palladium complex results in a 7-fold increase in the catalytic efficiency of the complex. This is the first step in the design of a family of renewable palladium catalysts for aerobic oxidation. PMID:29560210

  6. A recyclable palladium-catalyzed synthesis of 2-methylene-2,3-dihydrobenzofuran-3-ols by cycloisomerization of 2-(1-hydroxyprop-2-ynyl)phenols in ionic liquids.

    PubMed

    Mancuso, Raffaella; Gabriele, Bartolo

    2013-09-04

    A recyclable palladium-catalyzed synthesis of 2-methylene-2,3-dihydrobenzofuran-3-ols 2 by heterocyclization of 2-(1-hydroxyprop-2-ynyl)phenols 1 in an ionic liquid medium (BmimBF4) is presented. The process takes place under relatively mild conditions (100 °C, 5 h) in the presence of catalytic amounts (2 mol %) of PdI2 in conjunction with KI (5 equiv with respect to PdI2) and an organic base, such as morpholine (1 equiv with respect to 1), to give 2 in high yields (70%-86%). The PdI2-KI catalytic system could be recycled up to six times without appreciable loss of activity. Moreover, products 2 could be easily converted in a one-pot fashion into 2-hydroxymethylbenzofurans 3 (52%-71%, based on 1) and 2-methoxymethylbenzofurans 4 (52%-80%, based on 1) by acid-catalyzed allylic isomerization or allylic nucleophilic substitution.

  7. Palladium-Catalyzed Asymmetric Allylic Alkylation of 3-Substituted 1 H-Indoles and Tryptophan Derivatives with Vinylcyclopropanes.

    PubMed

    Trost, Barry M; Bai, Wen-Ju; Hohn, Christoph; Bai, Yu; Cregg, James J

    2018-05-30

    Vinylcyclopropanes (VCPs) are known to generate 1,3-dipoles with a palladium catalyst that initially serve as nucleophiles to undergo [3 + 2] cycloadditions with electron-deficient olefins. In this report, we reverse this reactivity and drive the 1,3-dipoles to serve as electrophiles by employing 3-alkylated indoles as nucleophiles. This represents the first use of VCPs for the completely atom-economic functionalization of 3-substituted 1 H-indoles and tryptophan derivatives via a Pd-catalyzed asymmetric allylic alkylation (Pd-AAA). Excellent yields and high chemo-, regio-, and enantioselectivities have been realized, providing various indolenine and indoline products. The method is amenable to gram scale and works efficiently with tryptophan derivatives that contain a diketopiperazine or diketomorpholine ring, allowing us to synthesize mollenine A in a rapid and ligand-controlled fashion. The obtained indolenine products bear an imine, an internal olefin, and a malonate motif, giving multiple sites with diverse reactivities for product diversification. Complicated polycyclic skeletons can be conveniently constructed by leveraging this unique juxtaposition of functional groups.

  8. Construction of Pyrrolo[1,2-a]indoles via Cobalt(III)-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Base-Promoted Cyclization.

    PubMed

    Zhou, Xiaorong; Fan, Zili; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2016-09-16

    A cobalt(III)-catalyzed cross-coupling reaction of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. The prepared 2-enaminylated indoles could be conveniently converted into pyrrolo[1,2-a]indoles, which are an important class of compounds in medicinal chemistry.

  9. Copper-Catalyzed SN2'-Selective Allylic Substitution Reaction of gem-Diborylalkanes.

    PubMed

    Zhang, Zhen-Qi; Zhang, Ben; Lu, Xi; Liu, Jing-Hui; Lu, Xiao-Yu; Xiao, Bin; Fu, Yao

    2016-03-04

    A Cu/(NHC)-catalyzed SN2'-selective substitution reaction of allylic electrophiles with gem-diborylalkanes is reported. Different substituted gem-diborylalkanes and allylic electrophiles can be employed in this reaction, and various synthetic valuable functional groups can be tolerated. The asymmetric version of this reaction was initially researched with chiral N-heterocyclic carbene (NHC) ligands.

  10. Resin-Immobilized Palladium Nanoparticle Catalysts for Organic Reactions in Aqueous Media: Morphological Aspects.

    PubMed

    Mastrorilli, Piero; Dell'Anna, Maria M; Rizzuti, Antonino; Mali, Matilda; Zapparoli, Mauro; Leonelli, Cristina

    2015-10-14

    An insight into the nano- and micro-structural morphology of a polymer supported Pd catalyst employed in different catalytic reactions under green conditions is reported. The pre-catalyst was obtained by copolymerization of the metal-containing monomer Pd(AAEMA)₂ [AAEMA-=deprotonated form of 2-(acetoacetoxy) ethyl methacrylate] with ethyl methacrylate as co-monomer, and ethylene glycol dimethacrylate as cross-linker. This material was used in water for the Suzuki-Miyaura cross-coupling of aryl bromides, and for the reduction of nitroarenes and quinolines using NaBH₄ or H₂, as reductants. TEM analyses showed that in all cases the pristine Pd(II) species were reduced in situ to Pd(0), which formed metal nanoparticles (NPs, the real active species). The dependence of their average size (2-10 nm) and morphology on different parameters (temperature, reducing agent, presence of a phase transfer agent) is discussed. TEM and micro-IR analyses showed that the polymeric support retained its porosity and stability for several catalytic cycles in all reactions and Pd NPs did not aggregate after reuse. The metal nanoparticle distribution throughout the polymer matrix after several recycles provided precious information about the catalytic mechanism, which was truly heterogeneous in the hydrogenation reactions and of the so-called "release and catch" type in the Suzuki coupling.

  11. Thioureas as ligands in the pd-catalyzed intramolecular Pauson-Khand reaction.

    PubMed

    Tang, Yefeng; Deng, Lujiang; Zhang, Yangdong; Dong, Guangbin; Chen, Jiahua; Yang, Zhen

    2005-04-14

    [reaction: see text] The thiourea-Pd complex was established as a novel type of catalyst in the PKR of allylpropargylamine, and the demonstrated chemistry may prove to be valuable for developing thiuorea as a ligand for the Pd-catalyzed Pauson-Khand reaction.

  12. New Complexity-Building Reactions of Alpha-Keto Esters

    NASA Astrophysics Data System (ADS)

    Bartlett, Samuel L.

    I. Introduction: Importance of Asymmetric Catalysis and the Reactivity Patterns of alpha-Keto Esters. II. Synthesis of Complex Tertiary Glycolates by Enantioconvergent Arylation of Stereochemically Labile alpha-Keto Esters. Enantioconvergent arylation reactions of boronic acids and racemic ?-stereogenic alpha-keto esters have been developed. The reactions are catalyzed by a chiral (diene)Rh(I) complex and provide a wide array of beta-stereogenic tertiary aryl glycolate derivatives with high levels of diastereo- and enantioselectivity. Racemization studies employing a series of sterically differentiated tertiary amines suggest that the steric nature of the amine base additive exerts a significant influence on the rate of substrate racemization. III. Palladium-Catalyzed beta-Arylation of alpha-Keto Esters . A catalyst system derived from commercially available Pd2(dba) 3 and PtBu3 has been applied to the coupling of alpha-keto ester enolates and aryl bromides. The reaction provides access to an array of beta-stereogenic alpha-keto ester derivatives. When the air stable ligand precursor PtBu 3˙HBF4 is employed, the reaction can be carried out without use of a glovebox. The derived products are of broad interest given the prevalence of the alpha-keto acid substructure in biologically important molecules. IV. Catalytic Enantioselective [3+2] Cycloaddition of alpha-Keto Ester Enolates and Nitrile Oxides. An enantioselective [3+2] cycloaddition reaction between nitrile oxides and transiently generated enolates of alpha-keto esters has been developed. The catalyst system was found to be compatible with in situ nitrile oxide generation conditions. A versatile array of nitrile oxides and alpha-keto esters could participate in the cycloaddition, providing novel 5-hydroxy-2-isoxazolines in high chemical yield with high levels of diastereo- and enantioselectivity. Notably, the optimal reaction conditions circumvented concurrent reaction via O-imidoylation and hetero-[3

  13. Enantio-Relay Catalysis Constructs Chiral Biaryl Alcohols over Cascade Suzuki Cross-Coupling-Asymmetric Transfer Hydrogenation

    NASA Astrophysics Data System (ADS)

    Zhang, Dacheng; Gao, Xiaoshuang; Cheng, Tanyu; Liu, Guohua

    2014-05-01

    The construction of chiral biaryl alcohols using enantio-relay catalysis is a particularly attractive synthetic method in organic synthesis. However, overcoming the intrinsic incompatibility of distinct organometallic complexes and the reaction conditions used are significant challenges in asymmetric catalysis. To overcome these barriers, we have taken advantage of an enantio-relay catalysis strategy and a combined dual-immobilization approach. We report the use of an imidazolium-based organopalladium-functionalized organic-inorganic hybrid silica and ethylene-coated chiral organoruthenium-functionalized magnetic nanoparticles to catalyze a cascade Suzuki cross-coupling-asymmetric transfer hydrogenation reaction to prepare chiral biaryl alcohols in a two-step, one-pot process. As expected, the site-isolated active species, salient imidazolium phase-transfer character and high ethylene-coated hydrophobicity can synergistically boost the catalytic performance. Furthermore, enantio-relay catalysis has the potential to efficiently prepare a variety of chiral biaryl alcohols. Our synthetic strategy is a general method that shows the potential of developing enantio-relay catalysis towards environmentally benign and sustainable organic synthesis.

  14. Alkyl group substitution by oxime-bound palladium(II) (the Shaw reaction): Alkly group selectivity and deuterium isotope effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, A.P.; Kitching, W.

    1992-08-01

    This report provides information regarding the selectivity of alkyl groups and the nature of the transition state for C-H palladation by oxime-bound palladium(II) (the Shaw reaction). The kinetic deuterium isotope effects are also presented. 21 refs.

  15. Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System.

    PubMed

    Zheng, Guangchao; Kaefer, Katharina; Mourdikoudis, Stefanos; Polavarapu, Lakshminarayana; Vaz, Belén; Cartmell, Samantha E; Bouleghlimat, Azzedine; Buurma, Niklaas J; Yate, Luis; de Lera, Ángel R; Liz-Marzán, Luis M; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2015-01-15

    We present a novel strategy based on the immobilization of palladium nanoparticles (Pd NPs) on filter paper for development of a catalytic system with high efficiency and recyclability. Oleylamine-capped Pd nanoparticles, dispersed in an organic solvent, strongly adsorb on cellulose filter paper, which shows a great ability to wick fluids due to its microfiber structure. Strong van der Waals forces and hydrophobic interactions between the particles and the substrate lead to nanoparticle immobilization, with no desorption upon further immersion in any solvent. The prepared Pd NP-loaded paper substrates were tested for several model reactions such as the oxidative homocoupling of arylboronic acids, the Suzuki cross-coupling reaction, and nitro-to-amine reduction, and they display efficient catalytic activity and excellent recyclability and reusability. This approach of using NP-loaded paper substrates as reusable catalysts is expected to open doors for new types of catalytic support for practical applications.

  16. Synthesis and reactions of nickel and palladium carbon-bound enolate complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhardt, E.R.; Bergman, R.G.; Heathcock, C.H.

    1990-01-01

    Nickel and palladium carbon-bound enolates of the general formula {eta}{sup 5}-C{sub 5}R{sub 5}(Ph{sub 3}P)MCHR{prime}COR{double prime} (R = H, CH{sub 3}; R{prime} = H, CH{sub 3}; R{double prime} = t-Bu, Ph, O-t-Bu) were prepared. Cp{sup *}(Ph{sub 3}P)NiCH{sub 2}CO{sub 2}-t-Bu (1e) was characterized by X-ray diffraction. Compound 1e crystallizes in the monoclinic space group P2{sub 1}/n with unit-cell dimensions a = 13.6110 (20) {angstrom}, b = 12.7454 (13) {angstrom}, c = 17.8571 (23) {angstrom}, {beta} = 105.544 (11){degree}, Z = 4, observed data 4,091, R = 4.53%, and R{sub w} = 4.19%. Reactions of these nickel and palladium enolates with aldehydes andmore » other electrophilic reagents were examined. The nickel ketone enolates were shown to react with 2 equiv of benzaldehyde to deliver products resulting from a Tischtschenko-type oxidation/reduction process. Cp(Ph{sub 3}P)NiCH{sub 2}CO-t-Bu reacts with phosphines (L) to yield paramagnetic nickel(I) complexes of general formula Cp(L){sub 2}Ni.« less

  17. Remote C-H Functionalization by a Palladium-Catalyzed Transannular Approach.

    PubMed

    De Sarkar, Suman

    2016-08-26

    Now within reach: In the remote C-H arylation of alicyclic amines the key step is the transannular coordination of the palladium catalyst (see picture, DG=directing group). This strategy is convenient for the late-stage functionalization of complex bioactive molecules in order to probe structure-activity relationships. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pd-bound functionalized mesoporous silica as active catalyst for Suzuki coupling reaction: Effect of OAcˉ, PPh3 and Clˉ ligands on catalytic activity

    NASA Astrophysics Data System (ADS)

    Das, Trisha; Uyama, Hiroshi; Nandi, Mahasweta

    2018-04-01

    Three new palladium catalysts, PdCat-I, PdCat-II and PdCat-III, immobilized over heterogeneous silica support have been synthesized using different ligands attached to the palladium precursor. The ligands that have been used in this study are acetate, triphenylphosphine and chloride in PdCat-I, PdCat-II and PdCat-III, respectively. The ligands have different effect on stability of the compounds and impart different oxidation states to the metal center. The materials have been characterized by powder X-ray diffraction, nitrogen adsorption-desorption studies, transmission electron microscopy, thermal analysis, and different spectroscopic techniques. The Pd-content of the samples have been determined by ICP-AES analysis. The materials have been used as catalysts for Suzuki coupling reaction of aryl halides with phenylboronic acid under mild conditions. A comparative study has been carried out to ascertain the effect of the nature of different ligands on the outcome of the catalytic reactions. Products have been identified and estimated by 1H NMR and gas chromatography. The results show that the best yields are obtained with the catalyst containing triphenylphosphine as the ligand in methanol. Such type of work to study the effect of ligand on Suzuki coupling reaction over functionalized mesoporous silica heterogeneous catalysts have not been carried out so far.

  19. Palladium-catalyzed Br/D exchange of arenes: Selective deuterium incorporation with versatile functional group tolerance and high efficiency

    DOE PAGES

    Zhang, Honghai -Hai; Bonnesen, Peter V.; Hong, Kunlun

    2015-07-13

    There is a facile method for introducing one or more deuterium atoms onto an aromatic nucleus via Br/D exchange with high functional group tolerance and high incorporation efficiency is disclosed. Deuterium-labeled aryl chlorides and aryl borates which could be used as substrates in cross-coupling reactions to construct more complicated deuterium-labeled compounds can also be synthesized by this method.

  20. Intramolecular Benzoin Reaction Catalyzed by Benzaldehyde Lyase from Pseudomonas Fluorescens Biovar I.

    PubMed

    Hernández, Karel; Parella, Teodor; Petrillo, Giovanna; Usón, Isabel; Wandtke, Claudia M; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2017-05-02

    Intramolecular benzoin reactions catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I (BAL) are reported. The structure of the substrates envisaged for this reaction consists of two benzaldehyde derivatives linked by an alkyl chain. The structural requirements needed to achieve the intramolecular carbon-carbon bond reaction catalyzed by BAL were established. Thus, a linker consisting of a linear alkyl chain of three carbon atoms connected through ether-type bonds to the 2 and 2' positions of two benzaldehyde moieties, which could be substituted with either Cl, Br, or OCH 3 at either the 3 and 3' or 5 and 5' positions, were suitable substrates for BAL. Reactions with 61-84 % yields of the intramolecular product and ee values between 64 and 98 %, were achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klobukowski, Erik

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallicmore » complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system

  2. Total Synthesis of (±)-Strychnine via a [4+2]-Cycloaddition/Rearrangement Cascade

    PubMed Central

    Zhang, Hongjun; Boonsombat, Jutatip

    2008-01-01

    A new strategy for the synthesis of the Strychnos alkaloid (±)-strychnine has been developed and is based on an intramolecular [4+2]-cycloaddition/rearrangement cascade of an indolyl substituted amidofuran. The critical D-ring was assembled by an intramolecular palladium catalyzed enolate-driven cross-coupling of an N-tethered vinyl iodide. PMID:17217284

  3. Syntheses of the hexahydroindene cores of indanomycin and stawamycin by combinations of iridium-catalyzed asymmetric allylic alkylations and intramolecular Diels-Alder reactions.

    PubMed

    Gärtner, Martin; Satyanarayana, Gedu; Förster, Sebastian; Helmchen, Günter

    2013-01-02

    Short and concise syntheses of the hexahydroindene cores of the antibiotics indanomycin (X-14547 A) and stawamycin are presented. Key methods used are an asymmetric iridium-catalyzed allylic alkylation, a modified Julia olefination, a Suzuki-Miyaura coupling, and an intramolecular Diels-Alder reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID

    EPA Science Inventory


    An aldol-type and a Mannich-type reaction via the cross-coupling of aldehydes and imines with allylic alcohols catalyzed by RuCl2(PPh3)3 was developed with ionic liquid as the solvent. The solvent/catalyst system could be reused for at least five times with no loss of reactiv...

  5. Mechanistic Insights into Photocatalyzed Hydrogen Desorption from Palladium Surfaces Assisted by Localized Surface Plasmon Resonances.

    PubMed

    Spata, Vincent A; Carter, Emily A

    2018-04-24

    Nanoparticles synthesized from plasmonic metals can absorb low-energy light, producing an oscillation/excitation of their valence electron density that can be utilized in chemical conversions. For example, heterogeneous photocatalysis can be achieved within heterometallic antenna-reactor complexes (HMARCs), by coupling a reactive center at which a chemical reaction occurs to a plasmonic nanoparticle that acts as a light-absorbing antenna. For example, HMARCs composed of aluminum antennae and palladium (Pd) reactive centers have been demonstrated recently to catalyze selective hydrogenation of acetylene to ethylene. Here, we explore within a theoretical framework the rate-limiting step of hydrogen photodesorption from a Pd surface-crucial to achieving partial rather than full hydrogenation of acetylene-to understand the mechanism behind the photodesorption process within the HMARC assembly. To properly describe electronic excited states of the metal-molecule system, we employ embedded complete active space self-consistent field and n-electron valence state perturbation theory to second order within density functional embedding theory. The results of these calculations reveal that the photodesorption mechanism does not create a frequently invoked transient negative ion species but instead enhances population of available excited-state, low-barrier pathways that exhibit negligible charge-transfer character.

  6. Synthesis of aryl azides and vinyl azides via proline-promoted CuI-catalyzed coupling reactions.

    PubMed

    Zhu, Wei; Ma, Dawei

    2004-04-07

    The coupling reaction of aryl halides or vinyl iodide with sodium azide under catalysis of CuI/L-proline works at relatively low temperature to provide aryl azides or vinyl azides in good to excellent yields.

  7. An intramolecular [2 + 2] cycloaddition of ketenimines via palladium-catalyzed rearrangements of N-allyl-ynamides.

    PubMed

    DeKorver, Kyle A; Hsung, Richard P; Song, Wang-Ze; Wang, Xiao-Na; Walton, Mary C

    2012-06-15

    A cascade of Pd-catalyzed N-to-C allyl transfer-intramolecular ketenimine-[2 + 2] cycloadditions of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2] cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions, leading to bridged and fused bicycloimines.

  8. Sequential aldol condensation-transition metal-catalyzed addition reactions of aldehydes, methyl ketones, and arylboronic acids.

    PubMed

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-04-15

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1'-spirobiindane-7,7'-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. © 2011 American Chemical Society

  9. Chemo- and Diastereoselective N-Heterocyclic Carbene-Catalyzed Cross-Benzoin Reactions Using N-Boc-α-amino Aldehydes.

    PubMed

    Haghshenas, Pouyan; Gravel, Michel

    2016-09-16

    N-Boc-α-amino aldehydes are shown to be excellent partners in cross-benzoin reactions with aliphatic or heteroaromatic aldehydes. The chemoselectivity of the reaction and the facial selectivity on the amino aldehyde allow cross-benzoin products to be obtained in good yields and good diastereomeric ratios. The developed method is utilized as the key step in a concise total synthesis of d-arabino-phytosphingosine.

  10. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  11. Rh(I)-Catalyzed Intermolecular Hydroacylation: Enantioselective Cross-Coupling of Aldehydes and Ketoamides

    PubMed Central

    2015-01-01

    Under Rh(I) catalysis, α-ketoamides undergo intermolecular hydroacylation with aliphatic aldehydes. A newly designed Josiphos ligand enables access to α-acyloxyamides with high atom-economy and enantioselectivity. On the basis of mechanistic and kinetic studies, we propose a pathway in which rhodium plays a dual role in activating the aldehyde for cross-coupling. A stereochemical model is provided to rationalize the sense of enantioinduction observed. PMID:24937681

  12. Synthesis of Bridged Oligophenylene Laser Dyes

    DTIC Science & Technology

    1991-05-10

    the Grignard formation. Pure 22 as the free base could then be coulpled with the Grignard reagent from bromonaphthalene 20 using nickel acetoacetate as...preparation of 22 free of any positional isomer. We were able to prepare quite pure 22 by the Grignard coupling reaction of an excess p-chlorophenylmagnesium...fluorene 14 into the methoxyterphenyl 23 by the palladium-catalyzed Grignard coupling. Bromination of 23 was not clean as both the activated 7-position on

  13. Cross-dehydrogenative coupling for the intermolecular C–O bond formation

    PubMed Central

    Krylov, Igor B; Vil’, Vera A

    2015-01-01

    Summary The present review summarizes primary publications on the cross-dehydrogenative C–O coupling, with special emphasis on the studies published after 2000. The starting compound, which donates a carbon atom for the formation of a new C–O bond, is called the CH-reagent or the C-reagent, and the compound, an oxygen atom of which is involved in the new bond, is called the OH-reagent or the O-reagent. Alcohols and carboxylic acids are most commonly used as O-reagents; hydroxylamine derivatives, hydroperoxides, and sulfonic acids are employed less often. The cross-dehydrogenative C–O coupling reactions are carried out using different C-reagents, such as compounds containing directing functional groups (amide, heteroaromatic, oxime, and so on) and compounds with activated C–H bonds (aldehydes, alcohols, ketones, ethers, amines, amides, compounds containing the benzyl, allyl, or propargyl moiety). An analysis of the published data showed that the principles at the basis of a particular cross-dehydrogenative C–O coupling reaction are dictated mainly by the nature of the C-reagent. Hence, in the present review the data are classified according to the structures of C-reagents, and, in the second place, according to the type of oxidative systems. Besides the typical cross-dehydrogenative coupling reactions of CH- and OH-reagents, closely related C–H activation processes involving intermolecular C–O bond formation are discussed: acyloxylation reactions with ArI(O2CR)2 reagents and generation of O-reagents in situ from C-reagents (methylarenes, aldehydes, etc.). PMID:25670997

  14. Laccase-catalyzed synthesis of 2,3-ethylenedithio-1,4-quinones

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2015-06-05

    Laccases (benzenediol:oxygen oxidoreductase EC 1.10.3.2) are part of a family of multicopper oxidases. These environmentally friendly enzymes require O 2 as their only co-substrate and produce H 2O as their sole by-product. As a result, they have acquired increasing use in biotechnological applications, particularly in the field of organic synthesis. In the current study, laccases have been employed to successfully couple 1,2-ethanedithiol to various substituted hydroquinones to produce novel 2,3-ethylenedithio-1,4-quinones in good yields via an oxidation–addition–oxidation–addition–oxidation mechanism. The reactions proceeded in one-pot under mild conditions (room temperature, pH 5.0). This study further supports the use of laccases as green toolsmore » in organic chemistry. Furthermore, it provides evidence that laccase-catalyzed cross-coupling reactions involving small thiols are possible, in spite of research that suggests small thiols are potent inhibitors of laccases.« less

  15. An Intramolecular [2 + 2] Cycloaddition of Ketenimines via Palladium-Catalyzed Rearrangements of N-Allyl-Ynamides

    PubMed Central

    DeKorver, Kyle A.; Song, Wang-Ze; Wang, Xiao-Na; Walton, Mary C.

    2012-01-01

    A cascade of Pd-catalyzed N-to-C allyl transfer–intramolecular ketenimine–[2 + 2] cycloadditions of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2] cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions, leading to bridged and fused bicycloimines. PMID:22667819

  16. Rh-Catalyzed Annulations of N-Methoxybenzamides and Ketenimines: Sterically and Electronically Controlled Synthesis of Isoquinolinones and Isoindolinones.

    PubMed

    Zhou, Xiaorong; Zhang, Zhiyin; Zhao, Hongyang; Lu, Ping; Wang, Yanguang

    2017-04-07

    Rhodium-catalyzed C-H activation/annulation reactions of ketenimines with N-methoxybenzamides are reported. The outcome of reactions is dependent on the structure of ketenimines. The β-alkyl-substituted ketenimines furnish 3-iminoisoquinolin-1(2H)-ones in a formal [4 + 2] annulation manner, while the β-ester substituted ketenimines afford 3-aminoisoindolin-1-ones in a formal [4 + 1] annulation manner. The synthesized [4 + 2] products undergo an intramolecular Cu-catalyzed C-N coupling to be converted to benzo[4,5]imidazo[1,2-b]isoquinolin-11-ones, which can be directly prepared from ketenimines and N-methoxybenzamides by a one-pot Rh-catalyzed annulation/Cu-catalyzed C-N coupling sequence.

  17. Investigating the nature of palladium chain-walking in the enantioselective redox-relay Heck reaction of alkenyl alcohols.

    PubMed

    Hilton, Margaret J; Xu, Li-Ping; Norrby, Per-Ola; Wu, Yun-Dong; Wiest, Olaf; Sigman, Matthew S

    2014-12-19

    The mechanism of the redox-relay Heck reaction was investigated using deuterium-labeled substrates. Results support a pathway through a low energy palladium-alkyl intermediate that immediately precedes product formation, ruling out a tautomerization mechanism. DFT calculations of the relevant transition structures at the M06/LAN2DZ+f/6-31+G* level of theory show that the former pathway is favored by 5.8 kcal/mol. Palladium chain-walking toward the alcohol, following successive β-hydride eliminations and migratory insertions, is also supported in this study. The stereochemistry of deuterium labels is determined, lending support that the catalyst remains bound to the substrate during the relay process and that both cis- and trans-alkenes form from β-hydride elimination.

  18. Pressure effects on enzyme-catalyzed quantum tunneling events arise from protein-specific structural and dynamic changes.

    PubMed

    Hay, Sam; Johannissen, Linus O; Hothi, Parvinder; Sutcliffe, Michael J; Scrutton, Nigel S

    2012-06-13

    The rate and kinetic isotope effect (KIE) on proton transfer during the aromatic amine dehydrogenase-catalyzed reaction with phenylethylamine shows complex pressure and temperature dependences. We are able to rationalize these effects within an environmentally coupled tunneling model based on constant pressure molecular dynamics (MD) simulations. As pressure appears to act anisotropically on the enzyme, perturbation of the reaction coordinate (donor-acceptor compression) is, in this case, marginal. Therefore, while we have previously demonstrated that pressure and temperature dependences can be used to infer H-tunneling and the involvement of promoting vibrations, these effects should not be used in the absence of atomistic insight, as they can vary greatly for different enzymes. We show that a pressure-dependent KIE is not a definitive hallmark of quantum mechanical H-tunneling during an enzyme-catalyzed reaction and that pressure-independent KIEs cannot be used to exclude tunneling contributions or a role for promoting vibrations in the enzyme-catalyzed reaction. We conclude that coupling of MD calculations with experimental rate and KIE studies is required to provide atomistic understanding of pressure effects in enzyme-catalyzed reactions.

  19. Oxidative trifluoromethylation and trifluoromethylthiolation reactions using (trifluoromethyl)trimethylsilane as a nucleophilic CF3 source.

    PubMed

    Chu, Lingling; Qing, Feng-Ling

    2014-05-20

    The trifluoromethyl group is widely prevalent in many pharmaceuticals and agrochemicals because its incorporation into drug candidates could enhance chemical and metabolic stability, improve lipophilicity and bioavailability, and increase the protein bind affinity. Consequently, extensive attention has been devoted toward the development of efficient and versatile methods for introducing the CF3 group into various organic molecules. Direct trifluoromethylation reaction has become one of the most efficient and important approaches for constructing carbon-CF3 bonds. Traditionally, the nucleophilic trifluoromethylation reaction involves an electrophile and the CF3 anion, while the electrophilic trifluoromethylation reaction involves a nucleophile and the CF3 cation. In 2010, we proposed the concept of oxidative trifluoromethylation: the reaction of nucleophilic substrates and nucleophilic trifluoromethylation reagents in the presence of oxidants. In this Account, we describe our recent studies of oxidative trifluoromethylation reactions of various nucleophiles with CF3SiMe3 in the presence of oxidants. We have focused most of our efforts on constructing carbon-CF3 bonds via direct trifluoromethylation of various C-H bonds. We have demonstrated copper-mediated or -catalyzed or metal-free oxidative C-H trifluoromethylation of terminal alkynes, tertiary amines, arenes and heteroarenes, and terminal alkenes. Besides various C-H bonds, aryl boronic acids proved to be viable nucleophilic coupling partners for copper-mediated or -catalyzed cross-coupling reactions with CF3SiMe3. To further expand the reaction scope, we also applied H-phosphonates to the oxidative trifluoromethylation system to construct P-CF3 bonds. Most recently, we developed silver-catalyzed hydrotrifluoromethylation of unactivated olefins. These studies explore boronic acids, C-H bonds, and P-H bonds as novel nucleophiles in transition-metal-mediated or -catalyzed cross-coupling reactions with CF3SiMe3

  20. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.jp

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  1. Redox-Controlled Olefin (Co)Polymerization Catalyzed by Ferrocene-Bridged Phosphine-Sulfonate Palladium Complexes.

    PubMed

    Chen, Min; Yang, Bangpei; Chen, Changle

    2015-12-14

    The facile and reversible interconversion between neutral and oxidized forms of palladium complexes containing ferrocene-bridged phosphine sulfonate ligands was demonstrated. The activity of these palladium complexes could be controlled using redox reagents during ethylene homopolymerization, ethylene/methyl acrylate copolymerization, and norbornene oligomerization. Specifically in norbornene oligomerization, the neutral complexes were not active at all whereas the oxidized counterparts showed appreciable activity. In situ switching between the neutral and oxidized forms resulted in an interesting "off" and "on" behavior in norbornene oligomerization. This work provides a new strategy to control the olefin polymerization process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A highly efficient synthesis of the FGH ring of micrandilactone A. Application of thioureas as ligands in the Co-catalyzed Pauson-Khand reaction and Pd-catalyzed carbonylative annulation.

    PubMed

    Tang, Yefeng; Zhang, Yandong; Dai, Mingji; Luo, Tuoping; Deng, Lujiang; Chen, Jiahua; Yang, Zhen

    2005-03-03

    The functionalized FGH ring system of micrandilactone A was successfully constructed in high selectivity and good yields. The key reactions in our strategy are the Co-thiourea-catalyzed stereoselective, intramolecular Pauson-Khand reaction and Pd-thiourea-catalyzed stereoselective, intramolecular annulation. [structure: see text

  3. Highly Selective Coupling of Alkenes and Aldehydes Catalyzed by NHC–Ni–P(OPh)3: Synergy Between a Strong σ-Donor and a Strong π-Acceptor**

    PubMed Central

    Ho, Chun-Yu; Jamison, Timothy F.

    2011-01-01

    Both a strong electron donor (IPr) and a strong electron acceptor (P(OPh)3) are necessary for a highly selective, nickel-catalyzed coupling reaction between alkenes, aldehydes, and silyltriflates. Without the phosphite, catalysis is not observed and several side reactions are observed. The phosphite appears to suppress the formation of these byproducts and rescue the catalytic cycle by accelerating reductive elimination from an (IPr–Ni–H)(OTf) complex. PMID:17154217

  4. Can Chlorine Anion Catalyze the Reaction fo HOCl with HCl?

    NASA Technical Reports Server (NTRS)

    Richardson, S. L.; Francisco, J. S.; Mebel, A. M.; Morokuma, K.

    1997-01-01

    The reaction of HOCl + HCl -> Cl2 + H20 in the presence of Cl has been studied using ab initio methods. This reaction has been shown to have a high activation barrier of 46.5 kcal/mol. The chlorine anion, Cl- is found to catalyze the reaction, viz. two mechanisms. The first involves Cl- interacting through the concerted four-center transition state of the neutral reaction. The other mechanism involves the formation of a HCl-HOCl-Cl- intermediate which dissociates into Cl2 + Cl- + H20. The steps are found to have no barriers. The overall exothermicity is 15.5 kcal/mol.

  5. Transition metal catalyzed borylation of functional π-systems

    PubMed Central

    SHINOKUBO, Hiroshi

    2014-01-01

    Borylated functional π-systems are useful building blocks to enable efficient synthesis of novel molecular architectures with beautiful structures, intriguing properties and unique functions. Introduction of boronic ester substituents to a variety of extended π-systems can be achieved through either iridium-catalyzed direct C–H borylation or the two-step procedure via electrophilic halogenation followed by palladium-catalyzed borylation. This review article focuses on our recent progress on borylation of large π-conjugated systems such as porphyrins, perylene bisimides, hexabenzocoronenes and dipyrrins. PMID:24492644

  6. CH functionalization of heteroaromatic compounds by transition metal catalysis

    NASA Astrophysics Data System (ADS)

    Tanba, Shunsuke; Fujiwara, Taiki; Monguchi, Daiki; Mori, Atsunori

    2010-06-01

    Transition metal-catalyzed CH functioanlization of thiazoles and thiophenes are carried out. The reaction of thiophene with aryl halide in the presence of a palladium catalyst underwent the CC bond forming reaction at the CH bond of thiophene. By employing the reaction head-to-tail-type oligothiophene is synthesized in a stepwise manner. When several azoles are treated with secondary amines and amides in the presence of a copper catalyst, oxidative CH-NH coupling took place to form the carbon-nitrogen bond.

  7. Heterobimetallic complexes containing an N-heterocyclic carbene based multidentate ligand and catalyzed tandem click/Sonogashira reactions.

    PubMed

    Gu, Shaojin; Xu, Daichao; Chen, Wanzhi

    2011-02-21

    Mono- and polynuclear complexes containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L), [NiL(2)](PF(6))(2) (2), [CoL(2)](PF(6))(3) (3), [PtLCl](PF(6)) (4), [PdAgL(2)](PF(6))(3) (5), [PdCuL(2)](PF(6))(3) (6), [Pd(2)L(2)Cl(2)](PF(6))(2) (7), and [Pd(3)L(2)Cl(4)](PF(6))(2) (8) have been prepared and fully characterized by NMR, ESI-MS spectroscopy, and X-ray crystallography. In complexes 2-4, the ligand binds to metals in a pincer NNC fashion with the pyridine group uncoordinated. Complexes 5 and 6 are isostructural to each other in which the palladium ions are surrounded by two pyridines and two imidazolylidenes and Ag(I) or Cu(I) is coordinated by two 1,10-phenanthroline moieties. In the trinuclear palladium complex 8, one palladium ion has an identical coordination mode as in 5 and 6, and the other two palladium ions are bonded to the 1,10-phenanthroline. Complex 6 exhibits excellent catalytic activity for the tandem click/Sonogashira reaction of 1-(bromomethyl)-4-iodobenzene, NaN(3), and ethynylbenzene in which three C-N bonds and one C-C bond are formed in a single flask.

  8. Scandium(III) catalysis of transimination reactions. Independent and constitutionally coupled reversible processes.

    PubMed

    Giuseppone, Nicolas; Schmitt, Jean-Louis; Schwartz, Evan; Lehn, Jean-Marie

    2005-04-20

    Sc(OTf)(3) efficiently catalyzes the self-sufficient transimination reaction between various types of C=N bonds in organic solvents, with turnover frequencies up to 3600 h(-)(1) and rate accelerations up to 6 x 10(5). The mechanism of the crossover reaction in mixtures of amines and imines is studied, comparing parallel individual reactions with coupled equilibria. The intrinsic kinetic parameters for isolated reactions cannot simply be added up when several components are mixed, and the behavior of the system agrees with the presence of a unique mediator that constitutes the core of a network of competing reactions. In mixed systems, every single amine or imine competes for the same central hub, in accordance with their binding affinity for the catalyst metal ion center. More generally, the study extends the basic principles of constitutional dynamic chemistry to interconnected chemical transformations and provides a step toward dynamic systems of increasing complexity.

  9. Ballistic Motion of Enzymes that Catalyze Highly Exothermic Reactions

    NASA Astrophysics Data System (ADS)

    Tsekouras, Konstantinos; Pressé, Steve

    Recently we proposed that the experimentally observed enhanced diffusion of enzymes catalyzing highly exothermic reactions is a consequence of their mechanism for dissipating reaction energy. More specifically, we proposed that reaction energy spreads out from the reaction site in the form of an acoustic wave which causes the enzyme to asymmetrically deform into the solvent. The solvent reaction propels the enzyme. However, it has been noted that in water, high viscosity should reduce enzyme momentum to zero within a few ps, so any diffusion increase should not be observable. Here we provide a model explaining how small volumetric expansions of biomolecules inside water may cause fluid compression that in turn creates regions of low fluid density around the biomolecule. We then investigate the dynamics of the biomolecule in the presence of these perturbations.

  10. Developing Ligands for Palladium(II)-Catalyzed C–H Functionalization: Intimate Dialogue between Ligand and Substrate

    PubMed Central

    Engle, Keary M.; Yu, Jin-Quan

    2013-01-01

    Homogeneous transition metal–catalyzed reactions are indispensable to all facets of modern chemical synthesis. It is thus difficult to imagine that for much of the early 20th century, the reactivity and selectivity of all known homogeneous metal catalysts paled in comparison to their heterogeneous and biological counterparts. In the intervening decades, advances in ligand design bridged this divide, such that today some of the most demanding bond-forming events are mediated by ligand-supported homogeneous metal species. While ligand design has propelled many areas of homogeneous catalysis, in the field of Pd(II)-catalyzed C–H functionalization, suitable ligand scaffolds are lacking, which has hampered the development of broadly practical transformations based on C–H functionalization logic. In this review, we offer an account of our research employing three ligand scaffolds, mono-N-protected amino acids, 2,6-disubstituted pyridines, and 2,2′-bipyridines, to address challenges posed by several synthetically versatile substrate classes. Drawing on this work, we discuss principles of ligand design, such as the need to match a ligand to a particular substrate class, and how ligand traits such as tunability and modularity can be advantageous in reaction discovery. PMID:23565982

  11. Bimetallic catalysis for C–C and C–X coupling reactions

    PubMed Central

    Pye, Dominic R.

    2017-01-01

    Bimetallic catalysis represents an alternative paradigm for coupling chemistry that complements the more traditional single-site catalysis approach. In this perspective, recent advances in bimetallic systems for catalytic C–C and C–X coupling reactions are reviewed. Behavior which complements that of established single-site catalysts is highlighted. Two major reaction classes are covered. First, generation of catalytic amounts of organometallic species of e.g. Cu, Au, or Ni capable of transmetallation to a Pd co-catalyst (or other traditional cross-coupling catalyst) has allowed important new C–C coupling technologies to emerge. Second, catalytic transformations involving binuclear bond-breaking and/or bond-forming steps, in some cases involving metal–metal bonds, represent a frontier area for C–C and C–X coupling processes.

  12. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.

    PubMed

    Su, Ji; Yang, Lisha; Lu, Mi; Lin, Hongfei

    2015-03-01

    A highly efficient, reversible hydrogen storage-evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rhodium-catalyzed asymmetric aqueous Pauson-Khand-type reaction.

    PubMed

    Kwong, Fuk Yee; Li, Yue Ming; Lam, Wai Har; Qiu, Liqin; Lee, Hang Wai; Yeung, Chi Hung; Chan, Kin Shing; Chan, Albert S C

    2005-06-20

    An interesting rhodium-catalyzed asymmetric aqueous Pauson-Khand-type reaction was developed. A chiral atropisomeric dipyridyldiphosphane ligand was found to be highly effective in this system. This operationally simple protocol allows both catalyst and reactants to be handled under air without precautions. Various enynes were transformed to the corresponding bicyclic cyclopentenones in good yield and enantiomeric excess (up to 95 % ee). A study of the electronic effects of the enyne substrates revealed a correlation between the electronic properties of the substrates and the ee value obtained in the product of the Pauson-Khand-type reaction. A linear free-energy relationship was observed from a Hammett study.

  14. Practical Stannylation of Allyl Acetates Catalyzed by Nickel with Bu3 SnOMe.

    PubMed

    Komeyama, Kimihiro; Itai, Yuuhei; Takaki, Ken

    2016-06-27

    A practical and scalable nickel-catalyzed allylic stannylation of allyl acetates with Bu3 SnOMe is described. A variety of acyclic and cyclic allyl acetates, even with base-sensitive moieties, undergoes the stannylation by using NiBr2 /4,4'-di-tert-butylbipyridine (dtbpy)/Mn catalyst system to afford highly functionalized allyl stannanes with excellent regioselectivity and yields. Furthermore, the scope of protocol is also extended by the reaction of propargyl acetates, giving rise to propargyl or allenyl stannanes. Additionally, a unique diastereoselectivity using the nickel catalyst different from the palladium was demonstrated for the stannylation of cyclic allyl acetates. In the reaction, inexpensive and stable nickel complexes, abundant reductant (Mn), and atom-economical stannyl source were used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Organic reactions catalyzed by methylrhenium trioxide: Reactions of ethyl diazoacetate and organic azides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z.; Espenson, J.H.

    1996-10-16

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) catalyzes several classes of reactions of ethyl diazoacetate, EDA. It is the first high valent oxo complex for carbene transfer. Under mild conditions and in the absence of other substrates, EDA was converted to a 9:1 mixture of diethyl maleate and diethyl fumarate. In the presence of alcohols, {alpha}-alkoxy ethyl acetates were obtained in good yield. The yields dropped for the larger and more branched alcohols, the balance of material being diethyl maleate and fumarate. An electron-donating group in the para position of phenols favors the formation of {alpha}-phenoxy ethyl acetates. The usemore » of EDA to form {alpha}-thio ethyl acetates and N-substituted glycine ethyl esters, on the other hand, is hardly affected by the size or structure of the parent thiol or amine, with all of these reactions proceeding in high yield. MTO-catalyzed cycloaddition reactions occur between EDA and aromatic imines, olefins, and carbonyl compounds. Three-membered ring products are formed: aziridines, cyclopropanes, and epoxides, respectively. The reactions favor the formation of trans products, and provide a convenient route for the preparation of aziridines. Intermediate carbenoid and nitrenoid species have been proposed. In the presence of an oxygen source such as an epoxide, ethyl diazoacetate and azibenzil are converted to an oxalic acid monoethyl ester and to benzil; at the same time the epoxide was converted to an olefin. 75 refs., 1 fig., 7 tabs.« less

  16. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    NASA Astrophysics Data System (ADS)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  17. Base-Free Photoredox/Nickel Dual-Catalytic Cross-Coupling of Ammonium Alkylsilicates.

    PubMed

    Jouffroy, Matthieu; Primer, David N; Molander, Gary A

    2016-01-20

    Single-electron transmetalation is recognized as an enabling technology for the mild transfer of alkyl groups to transition metal catalysts in cross-coupling reactions. Hypercoordinate silicates represent a new and improved class of radical precursors because of their low oxidation potentials and the innocuous byproducts generated upon oxidation. Herein, we report the cross-coupling of secondary and primary ammonium alkylsilicates with (hetero)aryl bromides in good to excellent yields. The base-free conditions have exceptional protic group tolerance on both partners, permitting the cross-coupling of unprotected primary and secondary amines.

  18. Palladium(II)-Catalyzed Annulation between ortho-Alkenylphenols and Allenes. Key Role of the Metal Geometry in Determining the Reaction Outcome.

    PubMed

    Casanova, Noelia; Del Rio, Karina P; García-Fandiño, Rebeca; Mascareñas, José L; Gulías, Moisés

    2016-05-06

    2-Alkenylphenols react with allenes, upon treatment with catalytic amounts of Pd(II) and Cu(II), to give benzoxepine products in high yields and with very good regio- and diastereoselectivities. This contrasts with the results obtained with Rh catalysts, which provided chromene-like products through a pathway involving a β-hydrogen elimination step. Computational studies suggest that the square planar geometry of the palladium is critical to favor the reductive elimination process required for the formation of the oxepine products.

  19. Sequential Aldol Condensation – Transition Metal-Catalyzed Addition Reactions of Aldehydes, Methyl Ketones and Arylboronic Acids

    PubMed Central

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-01-01

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1′-spirobiindane-7,7′-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. PMID:21417359

  20. Ruthenium(II)-Catalyzed C-H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrate-Controlled Synthesis of Indoles and 3H-Indoles.

    PubMed

    Li, Yunyun; Qi, Zisong; Wang, He; Yang, Xifa; Li, Xingwei

    2016-09-19

    Indoles are an important structural motif that is commonly found in biologically active molecules. In this work, conditions for divergent couplings between imidamides and acceptor-acceptor diazo compounds were developed that afforded NH indoles and 3H-indoles under ruthenium catalysis. The coupling of α-diazoketoesters afforded NH indoles by cleavage of the C(N2 )-C(acyl) bond whereas α-diazomalonates gave 3H-indoles by C-N bond cleavage. This reaction constitutes the first intermolecular coupling of diazo substrates with arenes by ruthenium-catalyzed C-H activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. One-pot palladium-catalyzed synthesis of sulfonyl fluorides from aryl bromides† †Electronic supplementary information (ESI) available: Experimental details and supporting characterisation data. See DOI: 10.1039/c6sc03924c Click here for additional data file.

    PubMed Central

    Davies, Alyn T.; Curto, John M.

    2017-01-01

    A mild, efficient synthesis of sulfonyl fluorides from aryl and heteroaryl bromides utilizing palladium catalysis is described. The process involves the initial palladium-catalyzed sulfonylation of aryl bromides using DABSO as an SO2 source, followed by in situ treatment of the resultant sulfinate with the electrophilic fluorine source NFSI. This sequence represents the first general method for the sulfonylation of aryl bromides, and offers a practical, one-pot alternative to previously described syntheses of sulfonyl fluorides, allowing rapid access to these biologically important molecules. Excellent functional group tolerance is demonstrated, with the transformation successfully achieved on a number of active pharmaceutical ingredients, and their precursors. The preparation of peptide-derived sulfonyl fluorides is also demonstrated. PMID:28451264

  2. Rh(II)-catalyzed Reactions of Diazoesters with Organozinc Reagents

    PubMed Central

    Panish, Robert; Selvaraj, Ramajeyam; Fox, Joseph M.

    2015-01-01

    Rh(II)-catalyzed reactions of diazoesters with organozinc reagents are described. Diorganozinc reagents participate in reactions with diazo compounds by two distinct, catalyst-dependent mechanisms. With bulky diisopropylethylacetate ligands, the reaction mechanism is proposed to involve initial formation of a Rh-carbene and subsequent carbozincation to give a zinc enolate. With Rh2(OAc)4, it is proposed that initial formation of an azine precedes 1,2-addition by an organozinc reagent. This straightforward route to the hydrazone products provides a useful method for preparing chiral quaternary α-aminoesters or pyrazoles via the Paul-Knorr condensation with 1,3-diketones. Crossover and deuterium labeling experiments provide evidence for the mechanisms proposed. PMID:26241081

  3. Rh(II)-Catalyzed Reactions of Diazoesters with Organozinc Reagents.

    PubMed

    Panish, Robert; Selvaraj, Ramajeyam; Fox, Joseph M

    2015-08-21

    Rh(II)-catalyzed reactions of diazoesters with organozinc reagents are described. Diorganozinc reagents participate in reactions with diazo compounds by two distinct, catalyst-dependent mechanisms. With bulky diisopropylethyl acetate ligands, the reaction mechanism is proposed to involve initial formation of a Rh-carbene and subsequent carbozincation to give a zinc enolate. With Rh2(OAc)4, it is proposed that initial formation of an azine precedes 1,2-addition by an organozinc reagent. This straightforward route to the hydrazone products provides a useful method for preparing chiral quaternary α-aminoesters or pyrazoles via the Paul-Knorr condensation with 1,3-diketones. Crossover and deuterium labeling experiments provide evidence for the mechanisms proposed.

  4. Highly Reactive, General and Long-Lived Catalysts for Palladium-Catalyzed Amination of Heteroaryl and Aryl Chlorides, Bromides and Iodides: Scope and Structure-Activity Relationships

    PubMed Central

    Shen, Qilong; Ogata, Tokutaro; Hartwig, John F.

    2010-01-01

    We describe a systematic study of the scope and relationship between ligand structure and activity for a highly efficient and selective class of catalysts for the amination of heteroaryl and aryl chlorides, bromides and iodides containing sterically hindered chelating alkylphosphines. In the presence of this catalyst, aryl and heteroaryl chlorides, bromides and iodides react with many primary amines in high yields with part-per-million quantities of palladium precursor and ligand. Many reactions of primary amines with both heteroaryl and aryl chlorides, bromides and iodides occur to completion with 0.0005-0.05 mol % catalysts. A comparison of the reactivity of this catalyst for coupling of primary amines at these loadings is made with catalysts generated from hindered monophosphines and carbenes, and these data illustrate the benefits of chelation. Thus, these complexes constitute a fourth-generation catalyst for the amination of aryl halides, whose activity complements catalysts based on monophosphines and carbenes. PMID:18444639

  5. Multistep divergent synthesis of benzimidazole linked benzoxazole/benzothiazole via copper catalyzed domino annulation.

    PubMed

    Liao, Jen-Yu; Selvaraju, Manikandan; Chen, Chih-Hau; Sun, Chung-Ming

    2013-04-21

    An efficient, facile synthesis of structurally diverse benzimidazole integrated benzoxazole and benzothiazoles has been developed. In a multi-step synthetic sequence, 4-fluoro-3-nitrobenzoic acid was converted into benzimidazole bis-heterocycles, via the intermediacy of benzimidazole linked ortho-chloro amines. The amphiphilic reactivity of this intermediate was designed to achieve the title compounds by the reaction of various acid chlorides and isothiocyanates in a single step through the in situ formation of ortho-chloro anilides and thioureas under microwave irradiation. A versatile one pot domino annulation reaction was developed to involve the reaction of benzimidazole linked ortho-chloro amines with acid chlorides and isothiocyanates. The initial acylation and urea formation followed by copper catalyzed intramolecular C-O and C-S cross coupling reactions furnished the angularly oriented bis-heterocycles which bear a close resemblance to the streptomyces antibiotic UK-1.

  6. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    EPA Science Inventory

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  7. Density functional study on the mechanism for the highly active palladium monolayer supported on titanium carbide for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jianjun; Zhang, Yanxing; Chu, Xingli

    2016-05-28

    The adsorption, diffusion, and dissociation of O{sub 2} on the palladium monolayer supported on TiC(001) surface, MLPd/TiC(001), are investigated using ab initio density functional theory calculations. Strong adhesion of palladium monolayer to the TiC(001) support, accompanied by a modification of electronic structure of the supported palladium, is evidenced. Compared with Pt(111) surface, the MLPd/TiC(001) can enhance the adsorption of O{sub 2}, leading to comparable dissociation barrier and a smaller diffusion barrier of O{sub 2}. Whilst the adsorption strength of atomic O (the dissociation product of O{sub 2}) on MLPd/TiC(001) is similar to that on the Pt(111) surface, possessing high mobility,more » our theoretical results indicate that MLPd/TiC(001) may serve as a good catalyst for the oxygen reduction reaction.« less

  8. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    PubMed

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nitroethylation of Vinyl Triflates and Bromides

    PubMed Central

    Padilla–Salinas, Rosaura; Walvoord, Ryan R.; Tcyrulnikov, Sergei

    2013-01-01

    A two-carbon homologation of vinyl triflates and bromides for the synthesis of homoallylic nitro products is described. This palladium-catalyzed double coupling of nitromethane exploits the anion stabilizing and leaving group properties of nitromethane, generating the homo allyl nitro products via a tandem cross-coupling/π-allylation sequence. The resultant process provides a mild and convenient entry of nitroethylated products, which are versatile precursors to β,γ-unsaturated carbonyls, homoallylic amines, and nitrile oxides. PMID:23885976

  10. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. CYP96T1 of Narcissus sp. aff. pseudonarcissus Catalyzes Formation of the Para-Para' C-C Phenol Couple in the Amaryllidaceae Alkaloids

    PubMed Central

    Kilgore, Matthew B.; Augustin, Megan M.; May, Gregory D.; Crow, John A.; Kutchan, Toni M.

    2016-01-01

    The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para', para-ortho', or ortho-para' regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para' C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS)-noroxomaritidine and (10bS,4aR)-noroxomaritidine from 4′-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho' phenol coupled product, N-demethylnarwedine, as less than 1% of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4′-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot. PMID:26941773

  12. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity.

    PubMed

    Giri, Ramesh; Shi, Bing-Feng; Engle, Keary M; Maugel, Nathan; Yu, Jin-Quan

    2009-11-01

    This critical review discusses historical and contemporary research in the field of transition metal-catalyzed carbon-hydrogen (C-H) bond activation through the lens of stereoselectivity. Research concerning both diastereoselectivity and enantioselectivity in C-H activation processes is examined, and the application of concepts in this area for the development of novel carbon-carbon and carbon-heteroatom bond-forming reactions is described. Throughout this review, an emphasis is placed on reactions that are (or may soon become) relevant in the realm of organic synthesis (221 references).

  13. Pd(OAc)2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles.

    PubMed

    Kellner, Dominik; Weger, Maximilian; Gini, Andrea; Mancheño, Olga García

    2017-01-01

    The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc) 2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero)-Diels-Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.

  14. Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles

    DOEpatents

    Wang, Jia X [East Setauket, NY; Adzic, Radoslav R [East Setauket, NY

    2009-03-24

    The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.

  15. Preparation, structural characterization, and catalytic performance of Pd(II) and Pt(II) complexes derived from cellulose Schiff base

    NASA Astrophysics Data System (ADS)

    Baran, Talat; Yılmaz Baran, Nuray; Menteş, Ayfer

    2018-05-01

    In this study, we reported production, characterization, and catalytic behavior of two novel heterogeneous palladium(II) and platinum(II) catalysts derived from cellulose biopolymer. In order to eliminate the use of toxic organic or inorganic solvents and to reduce the use of excess energy in the coupling reactions, we have developed a very simple, rapid, and eco-friendly microwave irradiation protocol. The developed microwave-assisted method of Suzuki cross coupling reactions produced excellent reaction yields in the presence of cellulose supported palladium and platinum (II) catalysts. Moreover, the catalysts easily regenerated after simple filtration, and they gave good reusability. This study revealed that the designed catalysts and method provide clean, simple, rapid, and impressive catalytic performance for Suzuki coupling reactions.

  16. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Meng; Gutiérrez, Oliver Y.; Camaioni, Donald M.

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  17. Reaction of carbon dioxide with a palladium-alkyl complex supported by a bis-NHC framework.

    PubMed

    Ariyananda, Piyal W G; Yap, Glenn P A; Rosenthal, Joel

    2012-07-14

    The reactivity of a dimethyl palladium complex supported by a dicarbene chelate (MDC(Mes))PdMe(2) towards CO(2) has been investigated. In the presence of trace H(2)O, this reaction yields the corresponding methyl bicarbonate complex (MDC(Mes))PdMe(O(2)COH), which goes on to give the corresponding κ(2)-carbonato complex upon crystallization (MDC(Mes))Pd(CO(3)). This chemistry, as well as related protonolysis by acetic acid was monitored by a combination of techniques including React-IR spectroscopy.

  18. Gold-Catalyzed Formal C-C Bond Insertion Reaction of 2-Aryl-2-diazoesters with 1,3-Diketones.

    PubMed

    Ren, Yuan-Yuan; Chen, Mo; Li, Ke; Zhu, Shou-Fei

    2018-06-29

    The transition-metal-catalyzed formal C-C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3-diketones instead gives C-H bond insertion products. Herein, we report a protocol for a gold-catalyzed formal C-C bond insertion reaction of 2-aryl-2-diazoesters with 1,3-diketones, which provides efficient access to polycarbonyl compounds with an all-carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C-C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring-opening of the resulting donor-acceptor-type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis-acid-catalyzed C-C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Construction of new biopolymer (chitosan)-based pincer-type Pd(II) complex and its catalytic application in Suzuki cross coupling reactions

    NASA Astrophysics Data System (ADS)

    Baran, Talat; Menteş, Ayfer

    2017-04-01

    In this paper we described the fabrication, characterization and application of a new biopolymer (chitosan)-based pincer-type Pd(II) catalyst in Suzuki cross coupling reactions using a non-toxic, cheap, eco-friendly and practical method. The catalytic activity tests showed remarkable product yields as well as TON (19800) and TOF (330000) values with a small catalyst loading. In addition, the catalyst indicated good recyclability in the Suzuki C-C reaction. This biopolymer supported catalyst can be used with various catalyst systems due to its unique properties, such as being inert, green in nature, low cost and chemically durable.

  20. The rhodium catalyzed three-component reaction of diazoacetates, titanium(IV) alkoxides and aldehydes.

    PubMed

    Lu, Chong-Dao; Liu, Hui; Chen, Zhi-Yong; Hu, Wen-Hao; Mi, Ai-Qiao

    2005-05-28

    The rhodium(II)-catalyzed three-component reaction of diazoacetates, titanium alkoxides and aldehydes is shown to give alpha-alkoxyl-beta-hydroxyl acid derivatives; the novel C-C bond formation reaction is proposed to occur through oxonium ylides derived from diazo compounds and titanium alkoxides, and followed by intermolecular trapping by aldehydes.

  1. A palladium iodide-catalyzed carbonylative approach to functionalized pyrrole derivatives.

    PubMed

    Gabriele, Bartolo; Veltri, Lucia; Mancuso, Raffaella; Salerno, Giuseppe; Maggi, Sabino; Aresta, Brunella Maria

    2012-04-20

    A novel and convenient approach to functionalized pyrroles is presented, based on Pd-catalyzed oxidative heterocyclization-alkoxycarbonylation of readily available N-Boc-1-amino-3-yn-2-ols. Reactions were carried out in alcoholic solvents at 80-100 °C and under 20 atm (at 25 °C) of a 4:1 mixture of CO-air, in the presence of the PdI(2)-KI catalytic system (2-5 mol % of PdI(2), KI/PdI(2) molar ratio = 10). In the case of N-Boc-1-amino-3-yn-2-ols 3, bearing alkyl or aryl substituents, the carbonylation reaction led to a mixture of Boc-protected and N-unsubstituted pyrrole-3-carboxylic esters 4 and 5, respectively. This mixture could be conveniently and quantitatively converted into deprotected pyrrole-3-carboxylic esters 5 by a simple basic treatment. In the case of diastereomeric (3RS,4RS)- and (3RS,4SR)-N-Boc-3-amino-2-methyldec-5-yn-4-ol (syn-3f and anti-3f, respectively, whose relative configuration was determined by X-ray crystallographic analysis), no particular difference was observed in the reactivity of the two diastereomers between them and with respect to the diastereomeric mixture (3S,4S) + (3S,4R). Interestingly, N-Boc-2-alkynyl-1-amino-3-yn-2-ols 6, bearing an additional alkynyl substituent α to the hydroxyl group, spontaneously underwent N-deprotection under the reaction conditions and regioselective water addition to the alkynyl group at C-3 of the corresponding pyrrole-3-carboxylic ester derivative, thus directly affording highly functionalized pyrrole derivatives 7 in one step. In a similar manner, a novel functionalized dihydropyrrolizine derivative 9 was directly synthesized starting from (S)-7-(pyrrolidin-2-yl)trideca-5,8-diyn-7-ol 8. © 2012 American Chemical Society

  2. Enantioselective syntheses of cryptocarya triacetate, cryptocaryolone, and cryptocaryolone diacetate.

    PubMed

    Smith, Catherine M; O'Doherty, George A

    2003-05-29

    [reaction: see text] The enantioselective syntheses of three natural products from Cryptocarya latifolia have been achieved in 13-15 steps from ethyl sorbate. The route relies upon an enantio- and regioselective Sharpless dihydroxylation and a palladium-catalyzed reduction to establish the absolute stereochemistry. The route also relies upon a highly (E)-selective olefin cross-metathesis reaction to form trans-delta-hydroxy-1-enoates. The resulting delta-hydroxy-1-enoates were subsequently converted into cryptocarya triacetate, cryptocaryolone, and cryptocaryolone diacetate.

  3. Cobalt co-catalysis for cross-electrophile coupling: diarylmethanes from benzyl mesylates and aryl halides† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03106g Click here for additional data file.

    PubMed Central

    Ackerman, Laura K. G.; Anka-Lufford, Lukiana L.; Naodovic, Marina

    2015-01-01

    The nickel-catalyzed cross-coupling of aryl halides with alkyl radicals derived from alkyl halides has recently been extended to couplings with carbon radicals generated by a co-catalyst. In this study, a new co-catalyst, cobalt phthalocyanine (Co(Pc)), is introduced and demonstrated to be effective for coupling substrates not prone to homolysis. This is because Co(Pc) reacts with electrophiles by an SN2 mechanism instead of by the electron-transfer or halogen abstraction mechanisms previously explored. Studies demonstrating the orthogonal reactivity of (bpy)Ni and Co(Pc), applying this selectivity to the coupling of benzyl mesylates with aryl halides, and the adaptation of these conditions to the less reactive benzyl phosphate ester and an enantioconvergent reaction are presented. PMID:25685312

  4. Advances in chemoselective intermolecular cross-benzoin-type condensation reactions.

    PubMed

    Gaggero, Nicoletta; Pandini, Stefano

    2017-08-23

    The intermolecular cross-benzoin and acyloin condensation reactions are powerful approaches to α-hydroxy carbonyls in a single step. However, their potentiality suffers from the occurrence of side reactions including self-condensation and the formation of the undesired cross-acyloin. The broad range of azolium salt precatalysts available confers high tunability to NHC mediated benzoin condensation, assuring a good level of selectivity to the direct coupling between two non-equivalent aldehydes. Many efforts have also been devoted to the design of strategies that expand the range of suitable reaction partners beyond the traditional aldehydes and to the discovery of novel umpolung catalytic systems. The synthesis of both racemic and enantiomerically enriched acyloins is reviewed.

  5. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction.

    PubMed

    Kuttiyiel, Kurian A; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here we report on a structurally ordered Au10Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that, at elevated temperatures, palladium cobalt nanoparticles undergo an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets via addition of gold atoms. The superior stability of this catalyst compared with platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matter.

  6. New Stable Cu(I) Catalyst Supported on Weakly Acidic Polyacrylate Resin for Green C-N Coupling: Synthesis of N-(Pyridin-4-yl)benzene Amines and N,N-Bis(pyridine-4-yl)benzene Amines.

    PubMed

    Kore, Nitin; Pazdera, Pavel

    2016-12-22

    A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.

  7. Substrate-Controlled Diastereoselectivity Reversal in NHC-Catalyzed Cross-Benzoin Reactions Using N-Boc-N-Bn-Protected α-Amino Aldehydes.

    PubMed

    Haghshenas, Pouyan; Quail, J Wilson; Gravel, Michel

    2016-12-16

    The effectiveness of utilizing N-Bn-N-Boc-α-amino aldehydes in cross-benzoin reactions with heteroaromatic aldehydes is demonstrated. The reaction is both chemoselective and syn-selective, making it complementary to the anti-selective cross-benzoin reaction of NHBoc-α-amino aldehydes. Good diastereoselectivity is obtained for a variety of amino aldehydes, including nonhindered ones. A Felkin-Anh model can be used to rationalize the observed diastereoselectivity.

  8. Caffeine-catalyzed gels.

    PubMed

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esaki, N.; Nakayama, T.; Sawada, S.

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. Formore » L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically.« less

  10. Oxidative C-H/C-H Cross-Coupling Reactions between N-Acylanilines and Benzamides Enabled by a Cp*-Free RhCl3/TFA Catalytic System.

    PubMed

    You, Jingsong; Shi, Yang; Zhang, Luoqiang; Lan, Jingbo; Zhang, Min; Zhou, Fulin; Wei, Wenlong

    2018-06-03

    Using the dual chelation-assisted strategy, a completely regiocontrolled oxidative C-H/C-H cross-coupling reaction between an N-acylaniline and a benzamide has been accomplished for the first time, which enables a step-economical and highly efficient pathway to 2-amino-2'-carboxybiaryl scaffolds from readily available substrates. A Cp*-free RhCl3/TFA catalytic system has been developed to replace the generally used [Cp*RhCl2]2/AgSbF6 (Cp* = pentamethyl cyclopentadienyl) in oxidative C-H/C-H cross-coupling reactions between two (hetero)arenes. The RhCl3/TFA system avoids the use of expensive Cp* ligand and AgSbF6. As an illustrative example, the protocol developed herein greatly streamlines access to naturally occurring benzo[c]phenanthridine alkaloid oxynitidine in an excellent overall yield. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp(3)-sp(2) Cross-Coupling.

    PubMed

    Tellis, John C; Kelly, Christopher B; Primer, David N; Jouffroy, Matthieu; Patel, Niki R; Molander, Gary A

    2016-07-19

    The important role of transition metal-catalyzed cross-coupling in expanding the frontiers of accessible chemical territory is unquestionable. Despite empowering chemists with Herculean capabilities in complex molecule construction, contemporary protocols are not without their Achilles' heel: Csp(3)-Csp(2)/sp(3) coupling. The underlying challenge in sp(3) cross-couplings is 2-fold: (i) methods employing conventional, bench-stable precursors are universally reliant on extreme reaction conditions because of the high activation barrier of transmetalation; (ii) circumvention of this barrier invariably relies on use of more reactive precursors, thereby sacrificing functional group tolerance, operational simplicity, and broad applicability. Despite the ubiquity of this problem, the nature of the transmetalation step has remained unchanged from the seminal reports of Negishi, Suzuki, Kumada, and Stille, thus suggesting that the challenges in Csp(3)-Csp(2)/sp(3) coupling result from inherent mechanistic constraints in the traditional cross-coupling paradigm. Rather than submitting to the limitations of this conventional approach, we envisioned that a process rooted in single-electron reactivity could furnish the same key metalated intermediate posited in two-electron transmetalation, while demonstrating entirely complementary reactivity patterns. Inspired by literature reports on the susceptibility of organoboron reagents toward photochemical, single-electron oxidative fragmentation, realization of a conceptually novel open shell transmetalation framework was achieved in the facile coupling of benzylic trifluoroborates with aryl halides via cooperative visible-light activated photoredox and Ni cross-coupling catalysis. Following this seminal study, we disclosed a suite of protocols for the cross-coupling of secondary alkyl, α-alkoxy, α-amino, and α-trifluoromethylbenzyltrifluoroborates. Furthermore, the selective cross-coupling of Csp(3) organoboron moieties in the

  12. Engineering entropy-driven reactions and networks catalyzed by DNA.

    PubMed

    Zhang, David Yu; Turberfield, Andrew J; Yurke, Bernard; Winfree, Erik

    2007-11-16

    Artificial biochemical circuits are likely to play as large a role in biological engineering as electrical circuits have played in the engineering of electromechanical devices. Toward that end, nucleic acids provide a designable substrate for the regulation of biochemical reactions. However, it has been difficult to incorporate signal amplification components. We introduce a design strategy that allows a specified input oligonucleotide to catalyze the release of a specified output oligonucleotide, which in turn can serve as a catalyst for other reactions. This reaction, which is driven forward by the configurational entropy of the released molecule, provides an amplifying circuit element that is simple, fast, modular, composable, and robust. We have constructed and characterized several circuits that amplify nucleic acid signals, including a feedforward cascade with quadratic kinetics and a positive feedback circuit with exponential growth kinetics.

  13. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri.

    PubMed

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K

    2008-02-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0' = -410 mV) with NADH (E0' = -320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0' = -10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.

  14. Formation of polycyclic lactones through a ruthenium-catalyzed ring-closing metathesis/hetero-Pauson-Khand reaction sequence.

    PubMed

    Finnegan, David F; Snapper, Marc L

    2011-05-20

    Processes that form multiple carbon-carbon bonds in one operation can generate molecular complexity quickly and therefore be used to shorten syntheses of desirable molecules. We selected the hetero-Pauson-Khand (HPK) cycloaddition and ring-closing metathesis (RCM) as two unique carbon-carbon bond-forming reactions that could be united in a tandem ruthenium-catalyzed process. In doing so, complex polycyclic products can be obtained in one reaction vessel from acyclic precursors using a single ruthenium additive that can catalyze sequentially two mechanistically distinct transformations.

  15. A Divergent Mechanistic Course of Pd(0)-Catalyzed Aza-Claisen Rearrangement and Aza-Rautenstrauch-Type Cyclization of N-Allyl-Ynamides

    PubMed Central

    DeKorver, Kyle A.; Hsung, Richard P.; Lohse, Andrew G.; Zhang, Yu

    2010-01-01

    A fascinating mechanistic study of ynamido-palladium-π-allyl complexes is described that features isolation of a unique silyl-ketenimine via aza-Claisen rearrangement, which can be accompanied by an unusual thermal N-to-C 1,3-Ts shift in the formation of tertiary nitriles, and a novel cyclopentenimine formation via a palladium catalyzed aza-Rautenstrauch-type cyclization pathway. PMID:20337418

  16. Divergent palladium iodide catalyzed multicomponent carbonylative approaches to functionalized isoindolinone and isobenzofuranimine derivatives.

    PubMed

    Mancuso, Raffaella; Ziccarelli, Ida; Armentano, Donatella; Marino, Nadia; Giofrè, Salvatore V; Gabriele, Bartolo

    2014-04-18

    2-Alkynylbenzamides underwent different reaction pathways when allowed to react under PdI2-catalyzed oxidative carbonylation conditions, depending on the nature of the external nucleophile and reaction conditions. Thus, oxidative carbonylation of 2-ethynylbenzamides, bearing a terminal triple bond, carried out in the presence of a secondary amine as external nucleophile, selectively led to the formation of 3-[(dialkylcarbamoyl)methylene]isoindolin-1-ones through the intermediate formation of the corresponding 2-ynamide derivatives followed by intramolecular nucleophilic attack by the nitrogen of the benzamide moiety on the conjugated triple bond. On the other hand, 3-[(alkoxycarbonyl)methylene]isobenzofuran-1(3H)imines were selectively obtained when the oxidative carbonylation of 2-alkynylbenzamides, bearing a terminal or an internal triple bond, was carried out in the presence of an alcohol R'OH (such as methanol or ethanol) as the external nucleophile and HC(OR')3 as a dehydrating agent, necessary to avoid substrate hydrolysis. In this latter case, the reaction pathway leading to the isobenzofuranimine corresponded to the 5-exo-dig intramolecular nucleophilic attack of the oxygen of the benzamide moiety on the triple bond coordinated to the metal center followed by alkoxycarbonylation. The structures of representative products have been confirmed by X-ray crystallographic analysis.

  17. Nickel-catalyzed synthesis of diarylamines via oxidatively induced C-N bond formation at room temperature.

    PubMed

    Ilies, Laurean; Matsubara, Tatsuaki; Nakamura, Eiichi

    2012-11-02

    A nickel-catalyzed oxidative coupling of zinc amides with organomagnesium compounds selectively produces diarylamines under mild reaction conditions, with tolerance for chloride, bromide, hydroxyl, ester, and ketone groups. A diamine is bis-monoarylated. A bromoaniline undergoes N-arylation followed by Kumada-Tamao-Corriu coupling in one pot. The reaction may proceed via oxidatively induced reductive elimination of a nickel species.

  18. Minimizing the Amount of Nitromethane in Palladium Catalyzed Cross Coupling with Aryl Halides

    PubMed Central

    Walvoord, Ryan R.; Kozlowski, Marisa C.

    2013-01-01

    A method for the formation of arylnitromethanes is described that employs readily available aryl halides or triflates and small amounts of nitromethane in a dioxane solvent, thereby reducing the hazards associated with this reagent. Specifically, 2–10 equivalents (1–5% v/v) of nitromethane can be employed in comparison to prior work that used nitromethane as solvent (185 equivalents). The present transformation provides high yields at relatively low temperatures and tolerates an array of functionality, including heterocycles and substantial steric encumbrance. PMID:23895411

  19. Minimizing the amount of nitromethane in palladium-catalyzed cross-coupling with aryl halides.

    PubMed

    Walvoord, Ryan R; Kozlowski, Marisa C

    2013-09-06

    A method for the formation of arylnitromethanes is described that employs readily available aryl halides or triflates and small amounts of nitromethane in a dioxane solvent, thereby reducing the hazards associated with this reagent. Specifically, 2-10 equiv (1-5% v/v) of nitromethane can be employed in comparison to prior work that used nitromethane as solvent (185 equiv). The present transformation provides high yields at relatively low temperatures and tolerates an array of functionality, including heterocycles and substantial steric encumbrance.

  20. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    PubMed

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.