Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.
Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young
2013-01-01
The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry.
Effect of Kevlar and carbon fibres on tensile properties of oil palm/epoxy composites
NASA Astrophysics Data System (ADS)
Amir, S. M. M.; Sultan, M. T. H.; Jawaid, M.; Cardona, F.; Ishak, M. R.; Yusof, M. R.
2017-12-01
Hybrid composites with natural and synthetic fibers have captured the interests of many researchers. In this work, Kevlar/oil palm Empty Fruit Bunch (EFB)/Kevlar and carbon/oil palm EFB hybrid/carbon composites were prepared using hand lay-up technique by keeping the oil palm EFB fiber as the core material. The tensile properties which include tensile strength, tensile modulus and elongation at break were investigated. It is observed that the tensile strength and modulus for carbon/oil palm EFB/carbon hybrid composites were much higher as compared with Kevlar/oil palm EFB/Kevlar hybrid composites. However, the elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites exhibited higher value as compared to carbon/oil palm EFB/carbon hybrid composites and oil palm EFB/epoxy composites. The tensile strength for carbon/oil palm EFB/carbon hybrid composites is 93.6 MPa and the tensile modulus for carbon/oil palm EFB/carbon hybrid composites is 6.5 GPa. The elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites is 3.6%.
Tan, Liping; Yu, Yongcheng; Li, Xuezhi; Zhao, Jian; Qu, Yinbo; Choo, Yuen May; Loh, Soh Kheang
2013-05-01
This study evaluates the effects of some pretreatment processes to improve the enzymatic hydrolysis of oil palm empty fruit bunch (EFB) for ethanol production. The experimental results show that the bisulfite pretreatment was practical for EFB pretreatment. Moreover, the optimum pretreatment conditions of the bisulfite pretreatment (180 °C, 30 min, 8% NaHSO3, 1% H2SO4) were identified. In the experiments, a biorefinery process of EFB was proposed to produce ethanol, xylose products, and lignosulfonates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yahya, Azmi; Sye, Chong Puay; Ishola, Tajudeen Abiodun; Suryanto, Hadi
2010-11-01
Formation of compost from oil palm empty fruit bunches (EFB) and decanter cake slurry by adding palm oil mill effluent (POME) with regular turning operation was investigated. The experiment was conducted in a commercial composting plant under the normal production process. The addition of decanter cake slurry has hastened the composting process of the EFB. The C/N ratio after 51 days for the mature compost with the decanter cake slurry was 18.65 while that of the matured compost without the decanter cake slurry remained high at 28.96. The compost formed from the addition of decanter cake to EFB and POME had 46.4% nitrogen, 17.9% phosphorus, 17.7% potassium and 23.1% calcium more than that without decanter cake. The use of compost produced from EFB, POME and decanter cake slurry could solve more environmental problems and enhance economic benefits in the oil palm industry.
Salleh, Norliyana Mohamad; Ismail, Sabariah; Ibrahim, Mohamad Nasir Mohamad
2017-01-01
Background: In order to develop oil palm empty fruit bunch (EFB) lignin as a nutraceutical and health supplement, the investigation of its potential in interacting with other drugs via inhibition of drug-metabolizing enzymes (DMEs) would ensure product safety. Objective: The study was aimed to investigate the in vitro effect of oil palm EFB lignin and its main oxidation compounds on phase II DME UDP-glucuronosyltransferases (UGTs) in rat liver and kidney microsomes. Materials and Methods: The p-nitrophenol (p-NP) and 4-methylumbelliferone (4-MU) were employed as probe substrates in glucuronidation assays. The effect of soda oil palm EFB lignin on Vmax, Km, CLint, Ki, and mode of inhibition of 4-MU glucuronidation in RLM was also determined. Results: The inhibitory potency of oil palm EFB lignin for both p-NP and 4-MU glucuronidation in rat liver microsome (RLM) and rat kidneys microsomes (RKM) was found to be in the rank order of soda > kraft > organosolv. However, the inhibitory potency of its main oxidation compounds were in the rank order of vanillin > syringaldehyde > p-hydroxybenzaldehyde. Soda oil palm EFB lignin exhibited mixed-type inhibition against 4-MU glucuronidation in RLM, showing the change in apparent Vmax and with only a minor effect on Km compared with control. Conclusions: The findings showed that effect of oil palm EFB lignin on both p-NP and 4-MU glucuronidation in RLM and RKM was enhanced by the presence of vanillin as well as flavonoids. Kinetic study showed that soda oil palm EFB lignin exhibited strong inhibition on UGT activity in RLM with mixed-type inhibition mode. SUMMARY The inhibitory potential of oil palm EFB lignin extracts for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: soda > kraft > organosolvThe inhibitory potential of oil palm EFB lignin main oxidation compounds for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: vanillin > syringaldehyde > p-hydroxybenzaldehydeResults suggested that the effect of oil palm EFB lignin on p-NP and 4-MU glucuronidation activity in both RLM and RKM was enhanced by the presence of vanillin as well as total flavonoid contentResults also suggested that oil palm EFB lignin may inhibit glucuronidation of substrate by UGT enzymes, especially UGT1A6, particularly in rat liver Abbreviations used: p-NP: p-Nitrophenol, 4-MU: 4-Methylumbelliferone, EFB: Empty fruit bunch, DME: Drug-metabolizing enzymes, UGT: UDPglucuronosyltransferase, Vmax: Maximal reaction velocity, Km: Michaelis-Menten constant, CLint: Intrinsic clearance, Ki: Dissociation constant of an inhibitor enzyme complex, 4-MUG: 4-Methylumbelliferone glucuronide, DMSO: Dimethyl sulfoxide, IC50: Half maximal inhibitory concentration, p-NPG: p-Nitrophenol glucuronide, RKM: Rat kidneys microsomes, RLM: Rat liver microsome, UDPGA: UDPglucuronic acid, TCA: trichloroacetic acid, MPA: mycophenolic acid PMID:28479734
Salleh, Norliyana Mohamad; Ismail, Sabariah; Ibrahim, Mohamad Nasir Mohamad
2017-01-01
In order to develop oil palm empty fruit bunch (EFB) lignin as a nutraceutical and health supplement, the investigation of its potential in interacting with other drugs via inhibition of drug-metabolizing enzymes (DMEs) would ensure product safety. The study was aimed to investigate the in vitro effect of oil palm EFB lignin and its main oxidation compounds on phase II DME UDP-glucuronosyltransferases (UGTs) in rat liver and kidney microsomes. The p -nitrophenol ( p -NP) and 4-methylumbelliferone (4-MU) were employed as probe substrates in glucuronidation assays. The effect of soda oil palm EFB lignin on V max , K m , CL int , K i , and mode of inhibition of 4-MU glucuronidation in RLM was also determined. The inhibitory potency of oil palm EFB lignin for both p -NP and 4-MU glucuronidation in rat liver microsome (RLM) and rat kidneys microsomes (RKM) was found to be in the rank order of soda > kraft > organosolv. However, the inhibitory potency of its main oxidation compounds were in the rank order of vanillin > syringaldehyde > p -hydroxybenzaldehyde. Soda oil palm EFB lignin exhibited mixed-type inhibition against 4-MU glucuronidation in RLM, showing the change in apparent V max and with only a minor effect on K m compared with control. The findings showed that effect of oil palm EFB lignin on both p -NP and 4-MU glucuronidation in RLM and RKM was enhanced by the presence of vanillin as well as flavonoids. Kinetic study showed that soda oil palm EFB lignin exhibited strong inhibition on UGT activity in RLM with mixed-type inhibition mode. The inhibitory potential of oil palm EFB lignin extracts for p -NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: soda > kraft > organosolvThe inhibitory potential of oil palm EFB lignin main oxidation compounds for p -NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: vanillin > syringaldehyde > p-hydroxybenzaldehydeResults suggested that the effect of oil palm EFB lignin on p -NP and 4-MU glucuronidation activity in both RLM and RKM was enhanced by the presence of vanillin as well as total flavonoid contentResults also suggested that oil palm EFB lignin may inhibit glucuronidation of substrate by UGT enzymes, especially UGT1A6, particularly in rat liver Abbreviations used: p -NP: p -Nitrophenol, 4-MU: 4-Methylumbelliferone, EFB: Empty fruit bunch, DME: Drug-metabolizing enzymes, UGT: UDPglucuronosyltransferase, V max : Maximal reaction velocity, K m : Michaelis-Menten constant, CLint: Intrinsic clearance, K i : Dissociation constant of an inhibitor enzyme complex, 4-MUG: 4-Methylumbelliferone glucuronide, DMSO: Dimethyl sulfoxide, IC50: Half maximal inhibitory concentration, p -NPG: p -Nitrophenol glucuronide, RKM: Rat kidneys microsomes, RLM: Rat liver microsome, UDPGA: UDPglucuronic acid, TCA: trichloroacetic acid, MPA: mycophenolic acid.
Characterization of Bio-Oil from Fast Pyrolysis of Palm Frond and Empty Fruit Bunch
NASA Astrophysics Data System (ADS)
Solikhah, M. D.; Pratiwi, F. T.; Heryana, Y.; Wimada, A. R.; Karuana, F.; Raksodewanto, AA; Kismanto, A.
2018-04-01
As the world’s biggest producer of palm oil, 109 million tons of palm frond and 46 million tons of empty fruit bunch (EFB) were produced annually in Indonesia. These two kinds of palm biomass were still in low-application and could be potentially used as future energy resources such as biofuel. One of the promising methods to convert palm frond and EFB into biofuel, as a dense and easy to transport material, is fast pyrolysis. Before pyrolysis, biomass feedstock was characterized their component and elemental compositions, moisture content and higher heating value (HHV). Fast pyrolysis processes were conducted at a temperature of 350˚C using thermal oil heater as a heat carrier. The gas phase from pyrolysis was condensed and produced a dark color and water soluble liquid called bio-oil. As GC-MS data shows, the bio-oil from both feed stocks was dominated by acetic acid, furans, phenols, aldehydes, and ketones. The HHV was reported 12.19 and 26.49 MJ/kg, while water content was 41.91 and 11.54 wt% for bio-oil from palm frond and EFB, respectively. The high content of lignin in EFB effects to the low content of water, high content of phenolic compound, and high calorific value in the bio-oil from EFB.
Medina, Jesus David Coral; Woiciechowski, Adenise; Filho, Arion Zandona; Nigam, Poonam Singh; Ramos, Luiz Pereira; Soccol, Carlos Ricardo
2016-01-01
The oil palm empty fruit bunches (EFB) are an attractive source of carbon for the production of biochemical products, therefore, the aim of this work is to analyze the effect of the steam explosion (SE) pretreatment under autocatalytic conditions on EFB using a full experimental design. Temperature and reaction time were the operational variables studied. The EFB treated at 195°C for 6 min showed an increase of 34.69% in glycan (mostly cellulose), and a reduction of 68.12% in hemicelluloses, with increased enzymatic digestibility to 33% producing 4.2 g L(-1) of glucose. Scanning electron micrographs of the steam treated EFB exhibited surface erosion and an increased fiber porosity. Fourier transform infrared spectroscopy showed the solubilization of hemicellulose and modification of cellulose in treated EFB. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber
NASA Astrophysics Data System (ADS)
Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti
In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.
Hydrothermal pretreatment of palm oil empty fruit bunch
NASA Astrophysics Data System (ADS)
Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin
2017-01-01
Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.
Effect of fast pyrolysis bio-oil from palm oil empty fruit bunch on bitumen properties
NASA Astrophysics Data System (ADS)
Poh, Chia Chin; Hassan, Norhidayah Abdul; Raman, Noor Azah Abdul; Shukry, Nurul Athma Mohd; Warid, Muhammad Naqiuddin Mohd; Satar, Mohd Khairul Idham Mohd; Ros Ismail, Che; Asmah Hassan, Sitti; Mashros, Nordiana
2018-04-01
Bitumen shortage has triggered the exploration of another alternative waste material that can be blended with conventional bitumen. This study presents the performance of pyrolysis bio-oil from palm oil empty fruit bunch (EFB) as an alternative binder in modified bitumen mixtures. The palm oil EFB was first pyrolyzed using auger pyrolyzer to extract the bio-oil. Conventional bitumen 80/100 penetration grade was used as a control sample and compared with samples that were modified with different percentages, i.e., 5% and 10%, of pyrolysis EFB bio-oil. The physical and rheological properties of the control and modified bitumen samples were investigated using penetration, softening point, viscosity and dynamic shear rheometer (DSR) tests. Results showed that the addition of EFB bio-oil softened the bitumen with high penetration and a reduction in softening point, penetration index, and viscosity. However, the DSR results showed a comparable rutting resistance between the bitumen samples containing EFB bio-oil and virgin bitumen with a failure temperature achieved greater than 64°C.
Gasification of oil palm empty fruit bunches: a characterization and kinetic study.
Mohammed, M A A; Salmiaton, A; Wan Azlina, W A K G; Mohamad Amran, M S
2012-04-01
Empty fruit bunches (EFBs), a waste material from the palm oil industry, were subjected to pyrolysis and gasification. A high content of volatiles (>82%) increased the reactivity of EFBs, and more than 90% decomposed at 700°C; however, a high content of moisture (>50%) and oxygen (>45%) resulted in a low calorific value. Thermogravimetric analysis demonstrated that the higher the heating rate and the smaller the particle size, the higher the peak and final reaction temperatures. The least squares estimation for a first-order reaction model was used to study the degradation kinetics. The values of activation energy increased from 61.14 to 73.76 and from 40.06 to 47.99kJ/mol when the EFB particle size increased from 0.3 to 1.0mm for holocellulose and lignin degradation stages, respectively. The fuel characteristics of EFB are comparable to those of other biomasses and EFB can be considered a good candidate for gasification. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dullah, Hayana; Abidin Akasah, Zainal; Zaini Nik Soh, Nik Mohd; Mangi, Sajjad Ali
2017-11-01
The utilization of oil palm empty fruit bunch (OPEFB) fibre on bio-composite product has been introduced to replace current material mainly wood fibre. OPEFB is widely available as palm oil is one of the major agricultural crops in Malaysia. EFB fibre are lignocellulosic materials that could replace other natural fibre product especially cement bonded board. However, the contains of residual oil and sugar in EFB fibre has been detected to be the reason for incompatibility issue between EFB fibre and cement mixtures. Regarding on the issue, a study has been conducted widely on finding the suitable pre-treatment method for EFB fibre to remove carbohydrate contained in the said fibre that are known to inhibit cement hydration. Aside from that, cement accelerator was introduced to enhance the hydration of cement when it was mixed with natural fibre. Hence, this paper will summaries the previous findings and in-depth study on the use of EFB fibre as a replacement material in cement bonded fibre boards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.
2010-03-11
High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 {mu}m size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely gamma-Methacryloxypropyltrimethoxysilanemore » (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.« less
Bio-phenolic resin from oil palm empty fruit bunches
NASA Astrophysics Data System (ADS)
Zakaria, Zuhaili; Zakaria, Sarani; Roslan, Rasidi; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Amran, Umar Adli
2018-04-01
Utilization of oil palm empty fruit bunches (EFB) in the production of bio-phenolic resin is an alternative way to reduce the dependency of petroleum-based phenol. In this study, resol type bio-phenolic resin (BPR) was synthesized from EFB fibers using sulfuric acid as the catalyst to produce liquefied empty fruit bunches (LEFB) followed by resinification reaction with formaldehyde in alkaline condition. The SEM image of LEFB residue showed separation of fiber bundles into individual fibers. This indicate that lignin was destroyed during the liquefaction process. The increased of formaldehyde/LEFB molar ratio has resulted an increase of viscosity, solid content and pH of the resin. The obtained FTIR spectra confirmed that functional groups of BPR resins was almost similar with commercial resin.
Lahijani, Pooya; Zainal, Zainal Alimuddin
2011-01-01
Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Motta, F L; Santana, M H A
2013-01-01
The novelty of this study was to produce humic acids by submerged fermentation of empty fruit bunch (EFB) with Trichoderma viride and to investigate the effects of the cellulosic substrates and the organic sources of nitrogen on the biotechnological production of these acids. The results obtained indicate the potential application of EFB, a waste of oil palm processing, for humic acids production. Because EFB contains cellulose, hemicellulose and lignin, fermentations were also performed using these polymers as carbon sources, separately or in combination. After 120 h of fermentation, significant production of humic acids was observed only in cultures containing either EFB or a mixture of the three polymers. Use of either potato peptone or yeast extract as a nitrogen source yielded nearly identical patterns of fungal growth and production of humic acids. The data obtained from microscopic imaging of T. viride growth and sporulation in EFB, coupled with the determined rates of production of humic acids indicated that the production of these acids is related to T. viride sporulation. © 2013 American Institute of Chemical Engineers.
Steam explosion of oil palm residues for the production of durable pellets
Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab; ...
2015-01-03
Here we investigated the effect of steam explosion pretreatment on the physical and mechanical properties of the pellets made from empty fruit bunch (EFB) and palm kernel shell (PKS) and we compared to that of softwood Douglas fir (DF). We found that the high heating value of the empty fruit bunch was increased by 21% after steam explosion pretreatment. The pellet density of EFB and Douglas fir pellets did not change while the pellet density of PKS increased from 1.13 to 1.21 g/cm 3 after steam explosion. That may be attributed to the rapid volatilization of high mass fraction extractivesmore » during high pressure steaming and lead to the shrinkage of micropores of the PKS fibers. The maximum brealdng strength of steam exploded EFB and PKS were increased by 63% and 45%, respectively. The required compaction energy for the steam exploded EFB pellet is 44.50 J/g while that of the untreated EFB pellet is 30.15 J/g. Similar to Douglas fir, the required extrusion energy for the steam exploded EFB pellet was about 6 times than that of the untreated EFB pellet. The increased extrusion energy is mainly contributed by the increase in mono-saccharides by auto-hydrolysis during steam explosion pretreatment.« less
Steam explosion of oil palm residues for the production of durable pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab
Here we investigated the effect of steam explosion pretreatment on the physical and mechanical properties of the pellets made from empty fruit bunch (EFB) and palm kernel shell (PKS) and we compared to that of softwood Douglas fir (DF). We found that the high heating value of the empty fruit bunch was increased by 21% after steam explosion pretreatment. The pellet density of EFB and Douglas fir pellets did not change while the pellet density of PKS increased from 1.13 to 1.21 g/cm 3 after steam explosion. That may be attributed to the rapid volatilization of high mass fraction extractivesmore » during high pressure steaming and lead to the shrinkage of micropores of the PKS fibers. The maximum brealdng strength of steam exploded EFB and PKS were increased by 63% and 45%, respectively. The required compaction energy for the steam exploded EFB pellet is 44.50 J/g while that of the untreated EFB pellet is 30.15 J/g. Similar to Douglas fir, the required extrusion energy for the steam exploded EFB pellet was about 6 times than that of the untreated EFB pellet. The increased extrusion energy is mainly contributed by the increase in mono-saccharides by auto-hydrolysis during steam explosion pretreatment.« less
Processing of palm oil mill wastes based on zero waste technology
NASA Astrophysics Data System (ADS)
Irvan
2018-02-01
Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.
NASA Astrophysics Data System (ADS)
Sarwono, Rakhman; Kurniawan, Hendris Hendarsyah
2017-11-01
Hydrothermal carbonization (HTC) of empty fruit bunch (EFB) of palm oil in different reaction times were investigated. Experiments were carried out in an autoclave at different reaction time of 3,6,9, 15, 20, 25 and 40 hours. With a fixed solid/liquid ratio of 5 gram of EFB in 50 ml water as a solvent, and temperature reaction of 250 °C. Increase the reaction time the soluble products are also increased. The liquid products were analyzed using GCMS to determine the chemical composition. The chemical composition were greatly affected by the reaction time. The main component was glycolic acid, by increasing the reaction time made the varieties of chemical compositions in liquid products, especially for the glycolic acid component, it was decreased slightly. The higher heating value (HHV) also increase slighly by increasing the reaction time both solid and liquid products.
Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.
Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul
2016-01-01
Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.
NASA Astrophysics Data System (ADS)
Ghazali, N. F.; Mahmood, N. A. B. N.; Ibrahim, K. A.; Muhammad, S. A. F. S.; Amalina, N. S.
2017-06-01
Microbial fuel cell (MFC) has been discovered and utilized in laboratory scale for electricity production based on microbial degradation of organic compound. However, various source of fuel has been tested and recently complex biomass such as lignocellulose biomass has been focused on. In the present research, oil palm tree empty fruit bunch (EFB) has been tested for power production using dual chamber MFC and power generation analysis has been conducted to address the performance of MFC. In addition, two microorganisms (electric harvesting microbe and cellulose degrading microbe) were used in the MFC operation. The analysis include voltage produced, calculated current and power. The first section in your paper
Material flow analysis for resource management towards resilient palm oil production
NASA Astrophysics Data System (ADS)
Kamahara, H.; Faisal, M.; Hasanudin, U.; Fujie, K.; Daimon, H.
2018-03-01
Biomass waste generated from palm oil mill can be considered not only as the feedstock of renewable energy but also as the nutrient-rich resources to produce organic fertilizer. This study explored the appropriate resource management towards resilient palm oil production by applying material flow analysis. This study was conducted based on two palm oil mills in Lampung, Indonesia. The results showed that the empty fruit bunch (EFB) has the largest potential in terms of amount and energy among the biomass waste. The results also showed that the palm oil mills themselves had already self-managed their energy consumption thatwas obtained from palm kernel shell and palm press fiber. Finally, this study recommended the several utilization options of EFB for improvement of soil sustainability to contribute towards resilient palm oil production.
Siyamak, Samira; Ibrahim, Nor Azowa; Abdolmohammadi, Sanaz; Yunus, Wan Md Zin Wan; Rahman, Mohamad Zaki AB
2012-01-01
A new class of biocomposites based on oil palm empty fruit bunch fiber and poly(butylene adipate-co-terephthalate) (PBAT), which is a biodegradable aliphatic aromatic co-polyester, were prepared using melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 wt% and characterized. Chemical treatment of oil palm empty fruit bunch (EFB) fiber was successfully done by grafting succinic anhydride (SAH) onto the EFB fiber surface, and the modified fibers were obtained in two levels of grafting (low and high weight percentage gain, WPG) after 5 and 6 h of grafting. The FTIR characterization showed evidence of successful fiber esterification. The results showed that 40 wt% of fiber loading improved the tensile properties of the biocomposite. The effects of EFB fiber chemical treatments and various organic initiators content on mechanical and thermal properties and water absorption of PBAT/EFB 60/40 wt% biocomposites were also examined. The SAH-g-EFB fiber at low WPG in presence of 1 wt% of dicumyl peroxide (DCP) initiator was found to significantly enhance the tensile and flexural properties as well as water resistance of biocomposite (up to 24%) compared with those of untreated fiber reinforced composites. The thermal behavior of the composites was evaluated from thermogravimetric analysis (TGA)/differential thermogravimetric (DTG) thermograms. It was observed that, the chemical treatment has marginally improved the biocomposites’ thermal stability in presence of 1 wt% of dicumyl peroxide at the low WPG level of grafting. The improved fiber-matrix surface enhancement in the chemically treated biocomposite was confirmed by SEM analysis of the tensile fractured specimens. PMID:22408394
NASA Astrophysics Data System (ADS)
Amran, Umar Adli; Zakaria, Sarani; Chia, Chin Hua
2013-11-01
A preliminary study on the reaction between aqueous resole type resinified liquefied palm oil empty fruit bunches fibres (RLEFB) with epoxidized natural rubber (ENR). Liquefaction of empty fruit bunches (EFB) is carried out at different ratio of phenol to EFB (P:EFB). Resole type phenolic resin is prepared using sodium hydroxide (NaOH) as the catalyst with the ratio of liquefied EFB (LEFB) to formaldehyde (LEFB:F) of 1:1.8. 50% epoxidation of epoxidized natural rubber (ENR-50) is used to react with resole resin by mixing with ENR with aqueous resole resin. The cured resin is characterized with FT-IR and SEM. Aqueous system have been found to be unsuitable medium in the reaction between resin and ENR. This system produced a highly porous product when RLEFB/ENR resin is cured.
Cui, Xingkai; Zhao, Xuebing; Zeng, Jing; Loh, Soh Kheang; Choo, Yuen May; Liu, Dehua
2014-08-01
Oil palm empty fruit bunch (EFB) was pretreated by Formiline process to overcome biomass recalcitrance and obtain hemicellulosic syrup and lignin. Higher formic acid concentration led to more lignin removal but also higher degree of cellulose formylation. Cellulose digestibility could be well recovered after deformylation with a small amount of lime. After digested by enzyme loading of 15 FPU+10 CBU/g solid for 48 h, the polysaccharide conversion could be over 90%. Simultaneous saccharification and fermentation (SSF) results demonstrated that ethanol concentration reached 83.6 g/L with approximate 85% of theoretic yield when performed at an initial dry solid consistency of 20%. A mass balance showed that via Formiline pretreatment 0.166 kg of ethanol could be produced from 1 kg of dry EFB with co-production of 0.14 kg of high-purity lignin and 5.26 kg hemicellulosic syrup containing 2.8% xylose. Formiline pretreatment thus can be employed as an entry for biorefining of EFB. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.
2018-05-01
Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Alina Rahayu; Hamzah, Zainab; Daud, Mohamed Zulkali Mohamed
2014-07-10
The production of crude palm oil from the processing of palm fresh fruit bunches in the palm oil mills in Malaysia hs resulted in a huge quantity of empty fruit bunch (EFB) accumulated. The EFB was used as a feedstock in the pyrolysis process using a fixed-bed reactor in the present study. The optimization of process parameters such as pyrolysis temperature (factor A), biomass particle size (factor B) and holding time (factor C) were investigated through Central Composite Design (CCD) using Stat-Ease Design Expert software version 7 with bio-oil yield considered as the response. Twenty experimental runs were conducted. Themore » results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. All factors studied were significant with p-values < 0.05. The pyrolysis temperature (factor A) was considered as the most significant parameter because its F-value of 116.29 was the highest. The value of R{sup 2} was 0.9564 which indicated that the selected factors and its levels showed high correlation to the production of bio-oil from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical bio-oil yield. The maximum bio-oil yield of 46.2 % was achieved at pyrolysis temperature of 442.15 °C using the EFB particle size of 866 μm which corresponded to the EFB particle size in the range of 710–1000 μm and holding time of 483 seconds.« less
NASA Astrophysics Data System (ADS)
Mohamed, Alina Rahayu; Hamzah, Zainab; Daud, Mohamed Zulkali Mohamed
2014-07-01
The production of crude palm oil from the processing of palm fresh fruit bunches in the palm oil mills in Malaysia hs resulted in a huge quantity of empty fruit bunch (EFB) accumulated. The EFB was used as a feedstock in the pyrolysis process using a fixed-bed reactor in the present study. The optimization of process parameters such as pyrolysis temperature (factor A), biomass particle size (factor B) and holding time (factor C) were investigated through Central Composite Design (CCD) using Stat-Ease Design Expert software version 7 with bio-oil yield considered as the response. Twenty experimental runs were conducted. The results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. All factors studied were significant with p-values < 0.05. The pyrolysis temperature (factor A) was considered as the most significant parameter because its F-value of 116.29 was the highest. The value of R2 was 0.9564 which indicated that the selected factors and its levels showed high correlation to the production of bio-oil from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical bio-oil yield. The maximum bio-oil yield of 46.2 % was achieved at pyrolysis temperature of 442.15 °C using the EFB particle size of 866 μm which corresponded to the EFB particle size in the range of 710-1000 μm and holding time of 483 seconds.
Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir
2012-11-01
The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of accelerated environmental aging on tensile properties of oil palm/jute hybrid composites
NASA Astrophysics Data System (ADS)
Jawaid, M.; Saba, N.; Alothman, O.; Paridah, M. T.
2016-11-01
Recently natural fibre based hybrid composites are receiving growing consideration due to environmental and biodegradability properties. In order to look behaviour of hybrid composites in outdoor applications, its environmental degradation properties such as UV accelerated weathering properties need to analyze. In this study oil palm empty fruit bunch (EFB) and jute fibres reinforced hybrid composites, pure EFB, pure jute and epoxy composites were fabricated through hand lay-up techniques. Hybrid composites with different layering pattern (EFB/jute/EFB and Jute/EFB/jute) while maintaining 40 wt. % total fibre loading were fabricates to compared with EFB and jute composites. Effect of UV accelerated environmental aging on tensile properties of epoxy, pure EFB, pure jute, and hybrid composites were assessed and evaluate under UV exposure. Tensile samples of all composites were subjected to accelerated weathering for 100h, at temperature (75°C), relative humidity (35%), Light (125 W/m2), and water spray off. Obtained results indicated that there is reduction in tensile strength, modulus and elongation at break values of hybrid and pure composites due to degradation of lignin and fibre-matrix interfacial bonding.
Naturally p-Hydroxybenzoylated Lignins in Palms
Fachuang Lu; Steven D. Karlen; Matt Regner; Hoon Kim; Sally A. Ralph; Run-Cang Sun; Ken-ichi Kuroda; Mary Ann Augustin; Raymond Mawson; Henry Sabarez; Tanoj Singh; Gerardo Jimenez-Monteon; Sarani Zakaria; Stefan Hill; Philip J. Harris; Wout Boerjan; Curtis G. Wilkerson; Shawn D. Mansfield; John Ralph
2015-01-01
The industrial production of palm oil concurrently generates a substantial amount of empty fruit bunch (EFB) fibers that could be used as a feedstock in a lignocellulose based biorefinery. Lignin byproducts generated by this process may offer opportunities for the isolation of value-added products, such as p-hydroxybenzoate (pBz),...
Bioplastic production from cellulose of oil palm empty fruit bunch
NASA Astrophysics Data System (ADS)
Isroi; Cifriadi, A.; Panji, T.; Wibowo, Nendyo A.; Syamsu, K.
2017-05-01
Empty fruit bunch is available abundantly in Indonesia as side product of CPO production. EFB production in Indonesia reached 28.65 million tons in 2015. EFB consist of 36.67% cellulose, 13.50% hemicellulose and 31.16% lignin. By calculation, potential cellulose from EFB is 11.50 million tons. Cellulose could be utilized as source for bioplastic production. This research aims to develop bioplastic production based on cellulose from EFB and to increase added value of EFB. Cellulose fiber has no plastic properties. Molecular modification of cellulose, composite with plasticizer and compatibilizer is a key success for utilization of cellulose for bioplastic. Main steps of bioplastic production from EFB are: 1) isolation and purification of cellulose, 2) cellulose modification and 3) synthesis of bioplastic. Cellulose was isolated by sodium hydroxide methods and bleached using sodium hypochlorite. Purity of obtained cellulose was 97%. Cellulose yield could reach 30% depend on cellulose content of EFB. Cellulose side chain was oxidized to reduce hydroxyl group and increase the carboxyl group. Bioplastic synthesis used glycerol as plasticizer and cassava starch as matrix. This research was successfully producing bioplastic sheet by casting method. In future prospects, bioplastic from EFB cellulose can be developed as plastic bag and food packaging.
Estimating the age of oil palm trees using remote sensing technique
NASA Astrophysics Data System (ADS)
Fitrianto, A. C.; Darmawan, A.; Tokimatsu, K.; Sufwandika, M.
2018-04-01
One of renewable energy that can be converted into electricity is biomass. Biomass energy or bio energy is the largest source of domestic renewable energy in Indonesia. Since palm oil development is rapidly increasing, Empty Fruit Bunch (EFB) and Mesocarp Fiber (MF) are becoming the highest contributor of oil palm waste. Understanding biomass waste potential is very important for further utilization. Remote sensing technique can be used to detect oil palm trees age based on the canopy density and to estimate the amount of EFB in further analysis. In this research, the percentage of canopy density of oil palm trees/stands depends on their ages and the age is divided into four classes; seeds (<3 years old; <10%), young (3-8 years old; 10-40 %), teenage (9-14 years old; 41-80 %), and mature (15-25 years old; >80 %).
Lee, Xin Jiat; Lee, Lai Yee; Gan, Suyin; Thangalazhy-Gopakumar, Suchithra; Ng, Hoon Kiat
2017-07-01
This research investigated the potential of palm kernel shell (PKS), empty fruit bunch (EFB) and palm oil sludge (POS), abundantly available agricultural wastes, as feedstock for biochar production by slow pyrolysis (50mLmin -1 N 2 at 500°C). Various characterization tests were performed to establish the thermochemical properties of the feedstocks and obtained biochars. PKS and EFB had higher lignin, volatiles, carbon and HHV, and lower ash than POS. The thermochemical conversion had enhanced the biofuel quality of PKS-char and EFB-char exhibiting increased HHV (26.18-27.50MJkg -1 ) and fixed carbon (53.78-59.92%), and decreased moisture (1.03-2.26%). The kinetics of pyrolysis were evaluated by thermogravimetry at different heating rates (10-40°C). The activation energies determined by Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models were similar, and comparable with literature data. The findings implied that PKS and EFB are very promising sources for biochars synthesis, and the obtained chars possessed significant biofuel potential. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yiin, Chung Loong; Yusup, Suzana; Quitain, Armando T; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya
2018-05-01
The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Phang, K. Y.; Lau, S. W.
2017-06-01
As one of the world’s largest palm oil producers and exporters, Malaysia is committed to sustainable management of this industry to address the emerging environmental challenges. This descriptive study aims to evaluate the oil palm planters’ opinions regarding the usage of biomass wastes from palm oil mills and its impact on sustainable development of oil palm plantations in Sarawak. 253 planters across Sarawak were approached for their opinions about the usage of empty fruit bunch (EFB), palm oil mill effluent (POME), mesocarp fibre (MF), and palm kernel shell (PKS). This study revealed that the planters had generally higher agreement on the beneficial application of EFB and POME in oil palm plantations. This could be seen from the higher means of agreement rating of 3.64 - 4.22 for EFB and POME, compared with the rating of 3.19 - 3.41 for MF and PKS in the 5-point Likert scale (with 5 being the strongest agreement). Besides, 94.7 percent of the planters’ companies were found to comply with the Environmental Impact Assessment (EIA) requirements where nearly 38 percent carried out the EIA practice twice a year. Therefore high means of agreement were correlated to the compliance of environmental regulations, recording a Likert rating of 3.89 to 4.31. Lastly, the usage of EFB and POME also gained higher Likert scale point of 3.76 to 4.17 against MF and PKS of 3.34 to 3.49 in the evaluation of the impact of sustainability in oil palm plantations. The planters agreed that the usage of EFB and POME has reduced the environmental impact and improved the sustainable development, and its application has been improved and increased by research and development. However the planters were uncertain of the impact of usage of biomass wastes with respect to the contribution to social responsibility and company image in terms of transparency in waste management.
NASA Astrophysics Data System (ADS)
Trisakti, B.; Mhardela, P.; Husaini, T.; Irvan; Daimon, H.
2018-02-01
This research was to determine the effect of pieces sizes of oil palm empty fruit bunch (EFB) on the composting of EFB mixed with activated liquid organic fertilizer (ALOF) in a basket composter in order to obtain high quality compost. The composting process was started by cutting the EFB into pieces with varies sizes, inserting the EFB pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding ALOF until moisture content (MC) in the range of 55-65%. During composting, the compost pile was turned every 3 days and the MC was maintained at 55-65% range by adding the ALOF. The sizes of the EFB pieces were varied into <1, 1-3, 4-7, 8-11, and 12-15 cm. The parameters analysed during the composting were temperature, pH, MC, compost weight, water holding capacity (WHC), CN ratio, and the quality of the final compost. Composting was carried out for 40 days and the best result obtained at EFB pieces size was 1-3 cm with compost characteristic were pH 9.0; MC 52.59%; WHC 76%; CN ratio 12.15; N 1.96%; P 0.58%; and K 0. 95%.
NASA Astrophysics Data System (ADS)
Kume, Tamikazu; Matsuhashi, Shinpei; Hashimoto, Shoji; Awang, Mat Rasol; Hamdini, Hassan; Saitoh, Hideharu
1993-10-01
The production of animal feeds and mushrooms from oil palm cellulosic wasres by radiation and fermentation has been investigated in order to utilize the agro-resources and to reduce the smoke pollution. The process is as follows: decontamination of microorganisms in fermentation media of empty fruit bunch of oil palm (EFB) by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 25 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus and P. sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased to 13 % and the crude fiber content decreased to 20% after 30 days of incubation with C. cinereus at 30°C in solid state fermentation. P. sajor-caju was suitable for the mushroom production on EFB with rice bran.
Production of oil palm empty fruit bunch compost for ornamental plant cultivation
NASA Astrophysics Data System (ADS)
Trisakti, B.; Mhardela, P.; Husaini, T.; Irvan; Daimon, H.
2018-02-01
The aim of this research was to produce the oil palm empty fruit bunch (EFB) compost for ornamental plant cultivation. EFB compost was produced by chopping fresh EFB into 1-3 cm pieces, inserting the pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding activated liquid organic fertilizer (ALOF) until moisture content (MC) in the range of 55-65%. During composting, the compost pile was turned every 3 days and the MC was maintained at 55-65% range by adding the ALOF. The compost processed was then mixed with sand and rice husk with a ratio of 1:1:1; 1:3:1; 1:0:1 and was used as a potting medium for planting some valuable ornamental plants i.e. cactus (cactaceae), sansevieria, and anthurium. Composting was carried out for 40 days and the compost characteristic were pH 9.0; MC 52.59%; WHC 76%; CN ratio 12.15; N 1.96%; P 0.58%; and K 0.95%. The compost-sand-husk rice mixture can be used as a growing medium where the best ratio for cactus, sansevieria, and anthurium was 1:3:1; 1:1:1; and 1:0:1, respectively.
NASA Astrophysics Data System (ADS)
Aditiawati, Pingkan; Dungani, Rudi; Amelia, Cindy
2018-03-01
Oil palm empty fruit bunch (EFB) biomass was used as a source for isolation of cellulose nanofibers (CNF) using enzymatic method. Non-cellulosic component were removed from biomass by delignification process using inoculum of Marasmius sp. Nanocellulose production began with cryocrushing pre-treatment, enzyme addition, and post-treatment with sonication. In enzyme addition, crushed EFB suspended in sodium-citrate buffer and various percentage of crude cellulase enzyme from Trichoderma sp. which is 50%, 100%, and 200% (v/w), followed by incubation in various period which is 2, 3, and 4 days. Particle size analyzer, Scanning electron microscopy and Fourier-transmmission infrared spectroscopy were used to determine the properties of CNF. Maximum CNF size distribution of 2, 3, and 4 days incubation period was 30.717 and 70 nm, respectively (50% (v/w)); 94.75 and 635 nm, respectively (100% (v/w)); 837.51 and 433 nm, respectively (200% (v/w)). Almost 100% yield achieved from variation of 50% (v/w) enzyme and 2 days incubation period. FTIR spectroscopy analysis showed that some impurities in nanocellulose. SEM analysis showed that fibril nanocellulose, with larger size than PSA, mainly because aggregation of nanocellulose.
Pyrolysis of Date palm waste in a fixed-bed reactor: Characterization of pyrolytic products.
Bensidhom, Gmar; Ben Hassen-Trabelsi, Aïda; Alper, Koray; Sghairoun, Maher; Zaafouri, Kaouther; Trabelsi, Ismail
2018-01-01
The pyrolysis of several Tunisian Date Palm Wastes (DPW): Date Palm Rachis (DPR), Date Palm Leaflets (DPL), Empty Fruit Bunches (EFB) and Date Palm Glaich (DPG) was run using a fixed-bed reactor, from room temperature to 500°C, with 15°C/min as heating rate and -5°C as condensation temperature, in order to produce bio-oil, biochar and syngas. In these conditions, the bio-oil yield ranges from 17.03wt% for DPL to 25.99wt% for EFB. For the biochar, the highest yield (36.66wt%) was obtained for DPL and the lowest one (31.66wt%) was obtained from DPG while the syngas production varies from 39.10wt% for DPR to 46.31wt% DPL. The raw material and pyrolysis products have been characterized using elemental analysis thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM). The syngas composition has been characterized using gas analyzer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Parshetti, Ganesh K; Kent Hoekman, S; Balasubramanian, Rajasekhar
2013-05-01
A carbon-rich solid product, denoted as hydrochar, was synthesized by hydrothermal carbonization (HTC) of palm oil empty fruit bunch (EFB), at different pre-treatment temperatures of 150, 250 and 350 °C. The conversion of the raw biomass to its hydrochar occurred via dehydration and decarboxylation processes. The hydrochar produced at 350 °C had the maximum energy-density (>27 MJ kg(-1)) with 68.52% of raw EFB energy retained in the char. To gain a detailed insight into the chemical and structural properties, carbonaceous hydrochar materials were characterized by FE-SEM, FT-IR, XRD and Brunauer-Emmett-Teller (BET) analyses. This work also investigated the influence of hydrothermally treated hydrochars on the co-combustion characteristics of low rank Indonesian coal. Conventional thermal gravimetric analysis (TGA) parameters, kinetics and activation energy of different hydrochar and coal blends were estimated. Our results show that solid hydrochars improve the combustion of low rank coals for energy generation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Physical and mechanical properties by utilizing empty fruit bunch into fired clay brick
NASA Astrophysics Data System (ADS)
Kadir, Aeslina Abdul; Sarani, Noor Amira; Mokhtar, Siti Zulaikha; Abdullah, Mohd Mustafa Al Bakri
2017-04-01
Palm oil plantation has become one of the country's success stories in agricultural development which also generates the highest number of waste among the agricultural waste. In this study, the investigation on the possibility to utilize the empty fruit bunch (EFB) waste into the fired clay brick was carried out. The main purpose of this study is to determine the physical and mechanical properties of bricks incorporated with different percentages of EFB. In this study, bricks with four different percentages of EFB (0 %, 1 %, 5 % and 10 %) were manufactured. Manufactured bricks were fired at 1050 °C with heating rate of 1 °C/min. Physical and mechanical properties including shrinkage, density, Initial Rate of Suction (IRS) and compressive strength were reported and discussed. Since shrinkage for each mixing is below than 8 %, then a good brick was manufactured. Bricks become more porous due to the organic content of EFB are burnt away and voids are formed in the specimen, giving it a lighter appearance and were produced lightweight brick which is suitable for non-loading purposes. As a conclusion, the incorporation of EFB into fired clay brick gives some advantages to the brick properties and also provides an alternative solution to disposed EFB waste.
NASA Astrophysics Data System (ADS)
Gusman, M. H.; Sastroredjo, P. N. E.; Prawisudha, P.; Hardianto, T.; Pasek, A. D.
2017-05-01
Less utilized empty fruit bunch (EFB) is seldom used as solid biofuel due to its high alkali content that potentially cause ash deposit called slagging and fouling. This phenomenon could harm biomass-fired power plant equipment. Some pre-treatment of EFB is needed to reduce EFB ash deposit potential. The effect of wet torrefaction pre-treatment in laboratory scale was successfully proven in decreasing slagging and fouling potential while increasing EFB calorific value that could fulfill clean solid fuel criteria. This research focuses on wet torrefaction process that conducted on a pilot scale with the capacity of 250 liters. It was found that wet torrefaction process can improve the product’s calorific value up to 9.41% while reduce its ash content down to 1.01% comparing to the raw EFB. The reduction of ash content also leads to the reduction of slagging and fouling tendency that presents in terms of alkali index. Alkali index is a quantitative method that can be calculated after obtaining metal oxides fraction on solid fuel. Metal oxides could be obtained by using energy dispersive x-ray spectroscopy.
Idris, Siti Shawalliah; Abd Rahman, Norazah; Ismail, Khudzir; Alias, Azil Bahari; Abd Rashid, Zulkifli; Aris, Mohd Jindra
2010-06-01
This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends. (c) 2010 Elsevier Ltd. All rights reserved.
Degradation of palm oil empty fruit bunch (EFB) into bio-oil in sub-and supercritical solvents
NASA Astrophysics Data System (ADS)
Sarwono, Rakhman; Pusfitasari, Eka Dian
2017-01-01
Hydrothemal Liquefaction (HTL) of empty fruit bunch (EFB) of palm oil in different solvents (water, ethanol and hexane) were comparatively investigated. Experiments were carried out in an autoclave in different EFB loading of 9%, 11%, and 13%. The temperature operation was 350 oC, without any catalysts and reaction time of 5 hours. The efficiency of above solvents in terms of conversion rate, soluble liquid and carbon products were found in this experiments. The water solvent gave higher conversion rate of 35 - 36.5 %, while hexane gave conversion of 17 - 25.25 %, and ethanol gave the lower conversion rate of 12.65 - 30.3%, respectively. Increasing the EFB load decreased the conversion rate for ethanol and hexane solvents, for water there are no significant change in the conversion rate. The bio-oil as soluble liquid produced were in order of water, ethanol, and hexane solvents, respectively. The chemical properties of bio-oil products were significantly affected by the type of liquefaction solvent. The compositional of bio-oil consists of mostly of a mixture of organic acids, ketones, and esters. The hexane and ethanol solvents resulted mostly organic acids. In water solvent resulted 2-pentanone, 4-hydroxy-4-methyl and others substances. According to the bio-oil results, organic solvents resulted higher HHV compared to water solvent. The higher heating value (HHV) of the carbon products were also comparatively, ethanol solvent resulted soluble liquid with higher HHV compared to the water solvent.
Li, Qingxin; Ng, Wei Ting; Puah, Sze Min; Bhaskar, Ravindran Vijay; Soh, Loon Siong; MacBeath, Calum; Parakattil, Pius; Green, Phil; Wu, Jin Chuan
2014-01-01
Empty fruit bunch (EFB) of oil palm trees was converted to fermentable sugars by the combined use of dilute acids and whole fungal cell culture-catalyzed hydrolyses. EFB (5%, w/v) was hydrolyzed in the presence of 0.5% H2 SO4 and 0.2% H3 PO4 at 160 °C for 10 Min. The solid fraction was separated from the acid hydrolysate by filtration and subjected to enzymatic hydrolysis at 50 °C using the whole cell culture of Trichoderma reesei RUT-C30 (2%, w/v), which was prepared by cultivation at 30 °C for 7 days to reach its maximal cellulase activity. The combined hydrolyses of EFB gave a total sugar yield of 82.0%. When used as carbon sources for cultivating Escherichia coli in M9 medium at 37 °C, the combined EFB hydrolysates were shown to be more favorable or at least as good as pure glucose for cell growth in terms of the higher (1.1 times) optical density of E. coli cells. The by-products generated during the acid-catalyzed hydrolysis did not seem to obviously affect cell growth. The combined use of acid and whole cell culture hydrolyses might be a commercially promising method for pretreatment of lignocellulose to get fermentable sugars. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Nik Him, N. R.; Huda, T.
2018-05-01
Study on the production of bioethanol using palm oil empty fruit bunch (EFB) has been performed using actinomycete Streptosporangium roseum. Positive result of bioethanol production was recorded using Iodoform test followed by confirmation with GC-FID using a polar capillary column (PEG-type, 10m x 0.53, with autosampler) and n-propanol as internal standard. The first and second round distillation has produced azeotrope (85-15% ethanol-water) and the third round has concentrated the ethanol to 96.1%. Therefore, the process was accomplished by using molecular sieves that selectively absorbed the final excess water. Direct fermentation using Streptosporangium roseum has shown to be a very potential way to catalyst for the synthesis of bioethanol from EFB.
Rigid polyurethane/oil palm fibre biocomposite foam
NASA Astrophysics Data System (ADS)
Alis, Adilah; Majid, Rohah A.; Nasir, Izzah Athirah Ahmad; Mustaffa, Nor Syatika; Hassan, Wan Hasamuddin Wan
2017-07-01
Rigid polyurethane (PU) biocomposite foam had been successfully prepared by reacting palm oil-derived polyol (PO-p) with polymeric 4, 4-diphenylmethane diisocynate (p-MDI). Two types of alkali-treated oil palm fibres namely, empty fruit bunch (EFB) and palm pressed fibre (PPF) were used as fillers to be incorporated into PU foam at 2.5 wt%, 5 wt% and 7.5 wt% fibre loadings. The effects of these fibres on surface morphology, compressive strength and thermal transition behaviours of biocomposite foams were investigated. Fourier transform infra-red (FTIR) analysis confirmed the formation of urethane linkages (-NHCOO) in all samples at 1530-1540 cm-1. Differential scanning calorimetry (DSC) analysis showed the average melting peak temperature (Tm) of biocomposite foams (132°C) were lower Tm than that of pure PU foam (161.67°C) and the increase amount of fibres did not give significant effect on the Tm of both biocomposite systems. Meanwhile, the microscopic images of PU-PPF foams exhibited smaller and uniform cell size morphologies compared with the PU-EFB foams that had coarse and irregular cell sizes, especially at 7.5wt% EFB. These findings were manifested with the gradually increase of compressive strength of PU-PPF at all PPF ratios while for PU-EFB system, the compressive strength increased up to 5 wt% before reduced at 7.5 wt% loading. It was thought due to the residual oil in PPF fibre had plasticized the PU matrix to a little extent, thus helping the dispersion of PPF fibre across the matrix.
Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K
2015-01-01
The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.
Composting of empty fruit bunches in the tower composter - effect of air intake holes
NASA Astrophysics Data System (ADS)
Irvan; Husaini, T.; Trisakti, B.; Batubara, F.; Daimon, H.
2018-02-01
The process of composting empty fruit bunches (EFB) by mixing with activated liquid organic fertilizer (ALOF) is an alternative utilization of solid waste generated from palm oil mill. This study aims to find composting techniques of EFB and to obtain degradation data of composting EFB by varying the air intake holes to produce good quality compost. Composting process was carried out by tearing the EFB into four shreds, then put into the tower composter while adding ALOF until it reached the optimum moisture content of 55 -65%. During the composting process, we maintained moisture content at optimum conditions by adding ALOF. Variations of air intake holes area to the outer surface area of the composter are 0/44.314; 72.39/44.314 and 144.78/44.314 (cm2/cm2). Composting is carried out for forty days, however, based on the result, compost began to mature on the 10th day. The results revealed that there was an influence of air intake holes to the composting process. The best degradation of EFB was obtained on the variation of air intake holes 72.39/44.314 (cm2/cm2), pH 8.1, moisture content 79.14%, water holding capacity 60%, electrical conductivity 4.725 dS/m and C/N ratio 20.97.
The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030
NASA Astrophysics Data System (ADS)
Hambali, E.; Rivai, M.
2017-05-01
During replanting activity in oil palm plantation, biomass including palm frond and trunk are produced. In palm oil mills, during the conversion process of fresh fruit bunches (FFB) into crude palm oil (CPO), several kinds of waste including empty fruit bunch (EFB), mesocarp fiber (MF), palm kernel shell (PKS), palm kernel meal (PKM), and palm oil mills effluent (POME) are produced. The production of these wastes is abundant as oil palm plantation area, FFB production, and palm oil mills spread all over 22 provinces in Indonesia. These wastes are still economical as they can be utilized as sources of alternative fuel, fertilizer, chemical compounds, and biomaterials. Therefore, breakthrough studies need to be done in order to improve the added value of oil palm, minimize the waste, and make oil palm industry more sustainable.
Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z
2013-01-01
In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.
Isolation of Thermophilic Lignin Degrading Bacteria from Oil-Palm Empty Fruit Bunch (EFB) Compost
NASA Astrophysics Data System (ADS)
Lai, C. M. T.; Chua, H. B.; Danquah, M. K.; Saptoro, A.
2017-06-01
Empty Fruit Bunch (EFB) is a potential and sustainable feedstock for bioethanol production due to its high cellulosic content and availability in Malaysia. Due to high lignin content of EFB and the lack of effective delignification process, commercial bioethanol production from EFB is presently not viable. Enzymatic delignification has been identified as one of the key steps in utilising EFB as a feedstock for bioethanol conversion. To date, limited work has been reported on the isolation of lignin degrading bacteria. Hence, there is a growing interest to search for new lignin degrading bacteria with greater tolerance to temperature and high level of ligninolytic enzymes for more effective lignin degradation. This study aimed to isolate and screen thermophilic ligninolytic microorganisms from EFB compost. Ten isolates were successfully isolated from EFB compost. Although they are not capable of decolorizing Methylene Blue (MB) dye under agar plate assay method, they are able to utilize lignin mimicked compound - guaiacol as a sole carbon on the agar plate assay. This infers that there is no correlation of ligninolytic enzymes with dye decolourization for all the isolates that have been isolated. However, they are able to produce ligninolytic enzymes (Lignin peroxidase, Manganese peroxidase, Laccase) in Minimal Salt Medium with Kraft Lignin (MSM-KL) with Lignin Peroxidase (LiP) as the predominant enzyme followed by Manganese Peroxidase (MnP) and Laccase (Lac). Among all the tested isolates, CLMT 29 has the highest LiP production up to 8.7673 U/mL following 24 h of growth.
A case study of pyrolysis of oil palm wastes in Malaysia
NASA Astrophysics Data System (ADS)
Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila
2013-05-01
Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.
Yavari, Saba; Malakahmad, Amirhossein; Sapari, Nasiman B; Yavari, Sara
2017-05-15
Imidazolinones are a family of herbicides that are used to control a broad range of weeds. Their high persistence and leaching potential make them probable risk to the ecosystems. In this study, biochar, the biomass-derived solid material, was produced from oil palm empty fruit bunches (EFB) and rice husk (RH) through pyrolysis process. Feedstock and pyrolysis variables can control biochar sorption capacity. Therefore, the present study attempts to evaluate effects of three pyrolysis variables (temperature, heating rate and retention time) on abilities of biochars for removal of imazapic and imazapyr herbicides from soil. Response surface methodology (RSM) was used for optimizing the variables to achieve maximum sorption performance of the biochars. Experimental data were interpreted accurately by quadratic models. Based on the results, sorption capacities of both biochars raised when temperature decreased to 300 °C, mainly because of increased biochars effective functionality in sorption of polar molecules. Heating rate of 3°C/min provided optimum conditions to maximize the sorption capacities of both biochars. Retention time of about 1 h and 3 h were found to be the best for EFB and RH biochars, respectively. EFB biochar was more efficient in removal of the herbicides, especially imazapyr due to its chemical composition and higher polarity index (0.42) rather than RH biochar (0.39). Besides, higher cation exchange capacity (CEC) values of EFB biochar (83.90 cmol c /kg) in comparison with RH biochar (70.73 cmol c /kg) represented its higher surface polarity effective in sorption of the polar herbicides. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Trisakti, B.; Lubis, J.; Husaini, T.; Irvan
2017-03-01
Composting of Empty Fruit Bunch (EFB) by mixing it with activated liquid organic fertilizer (ALOF) is an alternative way in the utilization of solid waste produced from the palm oil mill (POM). This research was to determine the effect of turning frequency on the rate of composting of EFB mixed with ALOF in a basket composter. The composting process was started with cutting the EFB into pieces with size 1-3 cm, inserting the EFB pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding ALOF until moisture content (MC) in the range of 55-65%. During composting, the MC was maintained at 55-65% range by adding the ALOF. The turning frequency on each composter was varied i.e. once in every 1, 2, 3, 4, and 5 days. The parameters analysed during composting were temperature, pH, MC, compost weight, water holding capacity (WHC), CN ratio, and the quality of the final compost. Composting was carried out for 40 days and the best result obtained at turning frequency was 3 days. The best compost characteristic was pH 9.0; MC 57.24%; WHC 76%; CN ratio 12.15%; P 0.58%; and K 0. 95%.
Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.
Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro
2017-11-01
Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physicochemical profile of microbial-assisted composting on empty fruit bunches of oil palm trees.
Lim, Li Yee; Bong, Cassendra Phun Chien; Chua, Lee Suan; Lee, Chew Tin
2015-12-01
This study was carried out to investigate the physicochemical properties of compost from oil palm empty fruit bunches (EFB) inoculated with effective microorganisms (EM∙1™). The duration of microbial-assisted composting was shorter (∼7 days) than control samples (2 months) in a laboratory scale (2 kg) experiment. The temperature profile of EFB compost fluctuated between 26 and 52 °C without the presence of consistent thermophilic phase. The pH of compost changed from weak acidic (pH ∼5) to mild alkaline (pH ∼8) because of the formation of nitrogenous ions such as ammonium (NH4 (+)), nitrite (NO2 (-)), and nitrate (NO3 (-)) from organic substances during mineralization. The pH of the microbial-treated compost was less than 8.5 which is important to prevent the loss of nitrogen as ammonia gas in a strong alkaline condition. Similarly, carbon mineralization could be determined by measuring CO2 emission. The microbial-treated compost could maintain longer period (∼13 days) of high CO2 emission resulted from high microbial activity and reached the threshold value (120 mg CO2-C kg(-1) day(-1)) for compost maturity earlier (7 days). Microbial-treated compost slightly improved the content of minerals such as Mg, K, Ca, and B, as well as key metabolite, 5-aminolevulinic acid for plant growth at the maturity stage of compost. Graphical Abstract Microbial-assisted composting on empty fruit bunches.
Ye, Lidan; Hudari, Mohammad Sufian Bin; Zhou, Xingding; Zhang, Dongxu; Li, Zhi; Wu, Jin Chuan
2013-06-01
Cost-effective conversion of lignocellulose hydrolysate to optically pure lactic acid is commercially attractive but very challenging. Bacillus coagulans JI12 was isolated from natural environment and used to produce L-lactic acid (optical purity > 99.5 %) from lignocellulose sugars and acid hydrolysate of oil palm empty fruit bunch (EFB) at 50 °C and pH 6.0 without sterilization of the medium. In fed-batch fermentation with 85 g/L initial xylose and 55 g/L xylose added after 7.5 h, 137.5 g/L lactic acid was produced with a yield of 98 % and a productivity of 4.4 g/L h. In batch fermentation of a sugar mixture containing 8.5 % xylose, 1 % glucose, and 1 % L-arabinose, the lactic acid yield and productivity reached 98 % and 4.8 g/L h, respectively. When EFB hydrolysate was used, 59.2 g/L of lactic acid was produced within 9.5 h at a yield of 97 % and a productivity of 6.2 g/L h, which are the highest among those ever reported from lignocellulose hydrolysates. These results indicate that B. coagulans JI12 is a promising strain for industrial production of L-lactic acid from lignocellulose hydrolysate.
Surface free energy analysis of oil palm empty fruit bunches fiber reinforced biocomposites
NASA Astrophysics Data System (ADS)
Suryadi, G. S.; Nikmatin, S.; Sudaryanto; Irmansyah; Sukaryo, S. G.
2017-05-01
Study of the size effect of natural fiber from oil palm empty fruit bunches (OPEFB) as filler, onto the contact angle and surface free energy of fiber reinforced biocomposites has been done. The OPEFB fibers were prepared by mechanical milling and sieving to obtain various sizes of fiber (long-fiber, medium-fiber, short-fiber, and microparticle). The biocomposites has been produced by extrusion using single-screw extruder with EFB fiber as filler, recycled Acrylonitrile Butadiene Styrene (ABS) polymer as matrix, and primary antioxidant, acid scavanger, and coupling agent as additives. The obtained biocomposites in form of granular, were made into test piece by injection molding method. Contact angles of water, methanol, and hexane on the surface of biocomposites at room temperature were measured using Phoenix 300 Contact Angle Analyzer. The surface free energy (SFE) and their components were calculated using three previous known methods (Girifalco-Good-Fowkes-Young (GGFY), Owens-Wendt, and van Oss-Chaudhury-Good (vOCG)). The results showed that total SFE of Recycled ABS as control was about 24.38 mJ/m2, and SFE of biocomposites was lower than control, decreased with decreasing of EFB fiber size as biocomposites filler. The statistical analysis proved that there are no statistically significant differences in the value of the SFE calculated with the three different methods.
Effect of temperature on porosity of iron ore sinter with biochar derived from EFB
NASA Astrophysics Data System (ADS)
Purwanto, H.; Rozhan, A. N.; Zakiyuddin, A.; Mohamad, A. S.
2018-01-01
In this research, the replacement of fossil fuel energy (coke) with oil palm empty fruit bunch as a potential energy in sintering of iron ore was investigated. Carbon derived biomass has been produced by using oil palm empty fruit bunch by heat treatment process. In the present investigation, sintering process was carried out by heating the mixed iron ore and biochar at various temperatures. The apparent density and porosity for iron sinter show a significant increase and gradual decrement as the temperature increase, respectively. The porosity of iron sinter shows a gradual decrement from 950 °C to 1050 °C but up to 1150 °C it shows a significant decrement about 44%. Inferring to the micrograph, the agglomeration and assimilation of sinter at high temperature is better compared with low sintering temperature.
Ooi, Chee-Heong; Cheah, Wee-Keat; Sim, Yoke-Leng; Pung, Swee-Yong; Yeoh, Fei-Yee
2017-07-15
Urea removal is an important process in household wastewater purification and hemodialysis treatment. The efficiency of the urea removal can be improved by utilizing activated carbon fiber (ACF) for effective urea adsorption. In this study, ACF was prepared from oil palm empty fruit bunch (EFB) fiber via physicochemical activation using sulfuric acid as an activating reagent. Based on the FESEM result, ACF obtained after the carbonization and activation processes demonstrated uniform macropores with thick channel wall. ACF was found better prepared in 1.5:1 acid-to-EFB fiber ratio; where the pore size of ACF was analyzed as 1.2 nm in diameter with a predominant micropore volume of 0.39 cm 3 g -1 and a BET surface area of 869 m 2 g -1 . The reaction kinetics of urea adsorption by the ACF was found to follow a pseudo-second order kinetic model. The equilibrium amount of urea adsorbed on ACF decreased from 877.907 to 134.098 mg g -1 as the acid-to-fiber ratio increased from 0.75 to 4. During the adsorption process, the hydroxyl (OH) groups on ACF surface were ionized and became electronegatively charged due to the weak alkalinity of urea solution, causing ionic repulsion towards partially anionic urea. The ionic repulsion force between the electronegatively charged ACF surface and urea molecules became stronger when more OH functional groups appeared on ACF prepared at higher acid impregnation ratio. The results implied that EFB fiber based ACF can be used as an efficient adsorbent for the urea removal process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of Binder on Combustion Quality on EFB Bio-briquettes
NASA Astrophysics Data System (ADS)
Handra, Nofriady; Hafni
2017-12-01
Energy demand in various sectors in Indonesia has increased in line with the rate of population growth and the national economy. Fulfillment of energy needs can be obtained from various energy sources such as fuel oil, solar, biomass, wind, water and others. So far, energy sources used in Indonesia are still using many non-renewable energy sources, such as fuel oil. The utilization of waste from empty palm oil bunches into bio-briquettes has helped the government in overcoming the problem of EFB waste. The availability of biomass has prompted researchers to utilize biomass waste that includes Agricultural and Forestry waste, to be processed into briquettes as an alternative energy substitute for fuel oil. This research aims to improve the utilization of waste of Palm Oil Bunches through the manufacture of bio-briquette as alternative fuel and determine the appropriate binder material for briquette making so as to produce optimal combustion value. The binders used for the manufacture of briquettes are pine sap and starch flour. The test result showed that the highest value of calorific was found in the mixture of 50% EFB composition with fibre size ± 1-5 mm with 50% pine resin which is 6331,7 cal/g. Meanwhile, lowest value on EFB ± with fibre size 5-10 mm composition EFB 60% and 40% starch flour binder that is 2295,7 cal/g. The results of a flame test study of several points that are known to turn on until it emits a flame for ± 30 seconds, it takes 22,2 minutes for the burnt-out briquette (to ashes). Based on visual observations that the fire colour of bio-briquette with finer fibre on the EFB composition 50% pine gum binder produces a bluish red fire colour. It is generally assumed that pine resin glues produce better fuel value compared to starch binder. Besides that, fibre particles size also affects the combustion quality produced.
Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana
2014-01-01
Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs), shells, fibers, trunks, and oil palm fronds (OPF). EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF) biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on downdraft gasification of OPF was experimentally investigated using a lab scale gasifier of capacity 50 kW. In addition, results obtained from equilibrium model of gasification that was developed for facilitating the prediction of syngas composition are compared with experimental data. Comparison of simulation results for predicting calorific value of syngas with the experimental results showed a satisfactory agreement with a mean error of 0.1 MJ/Nm3. For a biomass moisture content of 29%, the resulting calorific value for the syngas was found to be only 2.63 MJ/Nm3, as compared to nearly double (4.95 MJ/Nm3) for biomass moisture content of 22%. A calorific value as high as 5.57 MJ/Nm3 was recorded for higher oxidation zone temperature values. PMID:24578617
Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana
2014-01-01
Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs), shells, fibers, trunks, and oil palm fronds (OPF). EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF) biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on downdraft gasification of OPF was experimentally investigated using a lab scale gasifier of capacity 50 kW. In addition, results obtained from equilibrium model of gasification that was developed for facilitating the prediction of syngas composition are compared with experimental data. Comparison of simulation results for predicting calorific value of syngas with the experimental results showed a satisfactory agreement with a mean error of 0.1 MJ/Nm³. For a biomass moisture content of 29%, the resulting calorific value for the syngas was found to be only 2.63 MJ/Nm³, as compared to nearly double (4.95 MJ/Nm³) for biomass moisture content of 22%. A calorific value as high as 5.57 MJ/Nm³ was recorded for higher oxidation zone temperature values.
Bhatia, Shashi Kant; Lee, Bo-Rahm; Sathiyanarayanan, Ganesan; Song, Hun-Seok; Kim, Junyoung; Jeon, Jong-Min; Kim, Jung-Ho; Park, Sung-Hee; Yu, Ju-Hyun; Park, Kyungmoon; Yang, Yung-Hun
2016-10-01
In this study, a biosugar obtained from empty fruit bunch (EFB) of oil palm by hot water treatment and subsequent enzymatic saccharification was used for undecylprodigiosin production, using Streptomyces coelicolor. Furfural is a major inhibitor present in EFB hydrolysate (EFBH), having a minimum inhibitory concentration (MIC) of 1.9mM, and it reduces utilization of glucose (27%), xylose (59%), inhibits mycelium formation, and affects antibiotic production. Interestingly, furfural was found to be a good activator of undecylprodigiosin production in S. coelicolor, which enhanced undecylprodigiosin production by up to 52%. Optimization by mixture analysis resulted in a synthetic medium containing glucose:furfural:ACN:DMSO (1%, 2mM, 0.2% and 0.3%, respectively). Finally, S. coelicolor was cultured in a fermenter in minimal medium with EFBH as a carbon source and addition of the components described above. This yielded 4.2μg/mgdcw undecylprodigiosin, which was 3.2-fold higher compared to that in un-optimized medium. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Astar, Ismail; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Alimuddin, Andi Hairil
2017-03-01
Free fatty acids (FFA) contained in crude palm oil (CPO) and sludge oil has been used as the base material of biodiesel with the aid of a catalyst in the transesterification and esterification reactions. This study aims to synthesize and characterize bifunctional catalysts were synthesized from the ashes of palm empty fruit bunches (EFB) and alum based on the analysis of XRD, XRF and acidity test. Bifunctional catalyst obtained was used as a catalyst to production of biodiesel with different levels of FFA. The optimum ratio alum added was 0.2 mol at 3 hours of reaction time and 3% of catalyst by the FFA samples were used 67,40%. The catalyst with optimum alum mole variations subsequently used on samples with varying levels of FFA, namely 1.29%, 4.98%, 29.21%, 67.40% and 74.47%. Optimum conversion of methyl ester in the esterification reaction occurs in the sample with 67.40% FFA content, which reached 86.17%, while the conversion of methyl ester transesterification process optimum amounted to 45.70% in the samples with 4.98% FFA content. Methyl ester produced has a refractive index of 1.448 (29.8 ° C), density of 0.883 g / mL (25 °C) and a viscosity of 8.933 cSt (25 ° C). The results of GC-MS analysis showed that the main composition of methyl ester result of esterification of sludge oil methyl palmitate (36.84%), while the CPO transesterification shows the main composition of methyl ester is methyl oleic (38.87%). Based on the research results, the catalyst synthesized from alum and EFB ash can be used as a Bifunctional catalysts for biodiesel synthesis.
Evaluation of Some Finishing Properties of Oil Palm Particleboard for Furniture Application
NASA Astrophysics Data System (ADS)
Ratnasingam, J.; Nyugen, V.; Ioras, F.
The finishing properties of particleboard made from the Empty-Fruit Bunch (EFB) of oil palm (Elaeis guineensis Jacq.) were evaluated for its suitability for furniture applications, using different coating and overlay materials. The results found that the thick plastic-formica overlay provided the best surface finish, in terms of surface smoothness, adhesion strength and impact resistance. Although the polyurethane lacquer provided an acceptable finish, its quality and performance is not comparable to that of the thick plastic overlay. Despite the fact that the use of such overlay material may render the material not aesthetically appealing and limit it to concealed applications or where the thick overlay material is tolerated, its cost competitiveness and environmental friendliness may be able to position the oil palm particleboard as a substitute for the conventional wood-based particleboard in the furniture manufacturing industry.
NASA Astrophysics Data System (ADS)
Daud, D.; Abd. Rahman, A.; Shamsuddin, A. H.
2016-03-01
In this work, palm oil biomass consisting of empty fruit bunch (EFB), mesocarp fibre and palm kernel shell (PKS) were chosen as raw material for torrefaction process. Torrefaction process was conducted at various temperatures of 240 °C, 270 °C and 300 °C with a residence time of 60 minutes. The morphology of the raw and torrefied biomass was then observed through Scanning Electron Microscopy (SEM) images. Also, through this experiment the correlation between the torrefaction temperatures with the volatile gases released were studied. From the observation, the morphology structure of the biomass exhibited inter-particle gaps due to the release of volatile gases and it is obviously seen more at higher temperatures. Moreover, the change of the biomass structure is influenced by the alteration of the lignocellulose biomass.
Cellulose nanofiber isolation from palm oil Empty Fruit Bunches (EFB) through strong acid hydrolysis
NASA Astrophysics Data System (ADS)
Setyaningsih, Dwi; Uju; Muna, Neli; Isroi; Budi Suryawan, Nyoman; Azid Nurfauzi, Ami
2018-03-01
The palm oil industry produces about 25-26% of palm oil empty fruit bunches. The empty fruit bunch of palm oil contains cellulose up to 36.67%. This is a good opportunity for the synthesis of cellulose nanofiber (CNF). Cellulose nanofiber is a nano-sized cellulose material that has unique physical and mechanical properties. The synthesis was performed using a strong acid method with sulfuric acid. Sulfuric acid removes the amorphous region of cellulose so that the crystalline part can be isolated. CNF yield measurement showed that temperature, time, acid concentration, and interaction between each factor were affecting significantly to CNF yield. The result showed that yield of 14.98 grams, was obtained by hydrolysis at 35°C for 6 hours and 55% acid concentration. The crystallinity measurement showed that the temperature, time, acid concentration, and interaction between each factor during hydrolysis were not affected significantly to percent value of CNF crystallinity. The result showed that 31.1% of crystallinity, was obtained by hydrolysis at 45°C for 3 hours and 55% of acid concentration. The size measurement showed that the temperature, time, acid concentration and interaction between each factor were affected significantly. The result showed 894.25 nm as the best result, obtained by hydrolysis with 35°C and 60% acid concentration for 6 hours. CNF color was white with the best dispersion of hydrolysis at 35°C of 55% for 6 hours.
Chiesa, S; Gnansounou, E
2014-05-01
In the present work, two pretreatment techniques using either dilute acid (H2SO4) or dilute alkali (NaOH) have been compared for producing bioethanol from Empty Fruit Bunches (EFBs) from oil palm tree, a relevant feedstock for tropical countries. Treatments' performances under different conditions have been assessed and statistically optimized with respect to the response upon standardized enzymatic saccharification. The dilute acid treatment performed at optimal conditions (161.5°C, 9.44 min and 1.51% acid loading) gave 85.5% glucose yield, comparable to those of other commonly investigated feedstocks. Besides, the possibility of using fibers instead of finely ground biomass may be of economic interest. Oppositely, treatment with dilute alkali has shown lower performances under the conditions explored, most likely given the relatively significant lignin content, suggesting that the use of stronger alkali regime (with the associated drawbacks) is unavoidable to improve the performance of this treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Phase change of iron ore reduction process using EFB as reducing agent at 900-1200°C
NASA Astrophysics Data System (ADS)
Purwanto, H.; Salleh, H. M.; Rozhan, A. N.; Mohamad, A. S.; Zakiyuddin, A.
2018-04-01
Treatment of low grade iron ore involved reduction of oxygen in iron oxide by using reductant such as carbon monoxide or hydrogen gas. Presently, carboneous materials such as coke/coal are widely used as a source to provide reducing gas, but some problem arises from this material as the gas can harm the environments. Therefore, empty fruit bunch biomass from oil palm becomes an alternative to replace the usage of coke/coal as their major composition is carbon and hydrogen. The idea of replacing coke with biomass will reduce the amount of carbon dioxide release as biomass is a carbon neutral and renewable source, and at the same time abundance of waste from oil palm industries can be overcome. Therefore, the aim of this research is to upgrade the low grade iron with reducibility more than 50% being used in iron and steel making. In this research, low grade iron ore are mixed together with EFB then is making into composite pellet before being reduced at certain parameter chosen. The variables involved in this research is composition EFB (10%, 30% and 50%), temperature (1000°C, 1100°C and 1200°C) and reduction time is fixed with 30 minutes. From the experiment conducted, the highest reducibility achieved is 76.37% at temperature 1200°C. While XRD analysis shows the existence of metallic iron phase started to form at 1000°C with composition of 30% of EFB. Meanwhile, from magnetization test show that at 1200°C the highest magnetic susceptibility is achieved as the dominance phase at 1200°C is metallic phase. Therefore it is an interesting alternative to replace coke with biomass for reducing agent in upgrading low grade iron into workable ores.
Reduction of CO2 emission by INCAM model in Malaysia biomass power plants during the year 2016.
Amin, Nor Aishah Saidina; Talebian-Kiakalaieh, Amin
2018-03-01
As the world's second largest palm oil producer and exporter, Malaysia could capitalize on its oil palm biomass waste for power generation. The emission factors from this renewable energy source are far lower than that of fossil fuels. This study applies an integrated carbon accounting and mitigation (INCAM) model to calculate the amount of CO 2 emissions from two biomass thermal power plants. The CO 2 emissions released from biomass plants utilizing empty fruit bunch (EFB) and palm oil mill effluent (POME), as alternative fuels for powering steam and gas turbines, were determined using the INCAM model. Each section emitting CO 2 in the power plant, known as the carbon accounting center (CAC), was measured for its carbon profile (CP) and carbon index (CI). The carbon performance indicator (CPI) included electricity, fuel and water consumption, solid waste and waste-water generation. The carbon emission index (CEI) and carbon emission profile (CEP), based on the total monthly carbon production, were determined across the CPI. Various innovative strategies resulted in a 20%-90% reduction of CO 2 emissions. The implementation of reduction strategies significantly reduced the CO 2 emission levels. Based on the model, utilization of EFB and POME in the facilities could significantly reduce the CO 2 emissions and increase the potential for waste to energy initiatives. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahadi
2018-02-01
Helmets are protective head gears wear by bicycle riders for protection against injury in case of the accident. Helmet standards require helmets to be tested with a simple drop test onto an anvil. The purpose of research is to know toughness of bicycle helmet made from polymeric foam composite strengthened by oil palm empty fruit bunch fiber. This research contains report result manufacture and impacts analysis of bicycle helmet made from polymeric foam composite materials strengthened by oil palm empty fruit bunch fiber (EFB). The geometric helmet structure consists of shell and liner; both layers have sandwich structure. The shell uses matrix unsaturated Polyester BQTN-157EX material, chopped strand mat 300 glass fiber reinforce and methyl ethyl ketone peroxide (MEKPO) catalyst with the weight composition of 100 gr, 15 gr, and 5 gr. The liner uses matrix unsaturated Polyester BQTN-157 EX material, EFB fiber reinforces, Polyurethane blowing agent, and MEKPO catalyst with the composition of 275 gr (50%), 27.5 gr (5%), 247 gr (45%), and 27.5 gr (5%). Layers of the helmet made by using hand lay-up method and gravity casting method. Mechanical properties of polymeric foam were the tensile strength (ơt) 1.17 Mpa, compressive strength (ơc) 0.51 MPa, bending strength (ơb) 3.94 MPa, elasticity modulus (E) 37.97 Mpa, density (ρ) 193 (kg/m3). M4A model helmet is the most ergonomic with the thickness 10 mm and the amount of air channel 11. Free fall impact test was done in 9 samples with the thickness of 10 mm with the height of 1.5 m. The result of the impact test was impacted force (Fi) 241.55 N, Impulse (I) 6.28 Ns, impact Strength (ơi) 2.02 Mpa and impact Energy (Ei) 283.77 Joule. The properties of bicycle helmet model BMX-M4A type was 264 mm length, 184 mm width, 154 mm height, 10 mm thick, 580 mm head circle, 331 g mass and 11 wind channels.
NASA Astrophysics Data System (ADS)
Ahmad, Norhidayah; Yong, Sing Hung; Ibrahim, Naimah; Ali, Umi Fazara Md; Ridwan, Fahmi Muhammad; Ahmad, Razi
2018-03-01
Oil palm empty fruit bunch (EFB) was successfully modified with phosphoric acid hydration followed by impregnation with copper oxide (CuO) to synthesize CuO modified catalytic carbon (CuO/EFBC) for low-temperature removal of nitric oxide (NO) from gas streams. CuO impregnation was optimised through response surface methodology (RSM) using Box-Behnken Design (BBD) in terms of metal loading (5-20%), sintering temperature (200-800˚C) and sintering time (2-6 hours). The model response for the variables was NO adsorption capacity, which was obtained from an up-flow column adsorption experiment with 100 mL/min flow of 500 ppm NO/He at different operating conditions. The optimum operating variables suggested by the model were 20% metal loading, 200˚C sintering temperature and 6 hours sintering time. A good agreement (R2 = 0.9625) was achieved between the experimental data and model prediction. ANOVA analysis indicated that the model terms (metal loading and sintering temperature) are significant (Prob.>F less than 0.05).
NASA Astrophysics Data System (ADS)
Azamkamal, Fatihah; Zakaria, Sarani; Gan, Sinyee; Kaco, Hatika
2018-04-01
Oil palm empty fruit bunch fibre (EFB) was bleached using four stages bleaching sequences (DEED) where D was a bleaching process composed of 1.7 wt% NaClO2 and buffer solution while E was composed of NaOH solution. Raw cellulose and mercerized cellulose which treated with 3.5 N sodium hydroxide were used as a raw material for esterification with ethylenediaminetetraacetic acid (EDTA) and enhancement with acetic acid. The samples of raw cellulose and mercerized cellulose were observed using optical microscope. The thermal properties of raw cellulose and mercerized cellulose esterified with EDTA were studied. The effect of mercerized cellulose on esterification process of EDTA was investigated. The studies suggested that the mercerization process affect the thermal stability of the cellulose. The transmittance of FTIR band showed that raw cellulose gave better esterification product compared to mercerized cellulose. Hence, the mercerization process of cellulose does not improve the esterification of cellulose with EDTA.
Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh
2013-06-01
In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rihayat, T.; Salim, S.; Audina, N.; Khan, N. S. P.; Zaimahwati; Sami, M.; Yunus, M.; Salisah, Z.; Alam, P. N.; Saifuddin; Yusuf, I.
2018-03-01
Reviewed from the current technological required a new methods to capable offering a high profit value without overriding the quality. The development of composite technology is now beginning to shift from traditional composite materials based petroleum to natural fibers composite. In the present study, aim to made specimens using natural fibers in form of EFB as a composite reinforcedment with Polyethylene Terephtalate (PET) derived from Plastic bottles waste as matrix with mixed composition parameters and time-tolerance in the mixing process to build a biocomposite material. The characterization of mechanical properties includes tensile test (ASTM D638-01) and bending test (ASTM D790-02) followed by thermal analysis using Thermogravimetric Analysis (TGA), and morphological analysis using scanning electron microscope (SEM). The analysis effect of EFB, Ijuk and PET mixtures on the composite matrix is very influential with mechanical properties characterization, including tensile test and bending strength. The results demonstrated that from the sample named : 50 : 25: 25, hybrid composites showed improved properties such as tensile strength of 167 MPa while the 90:05:05 based composites exhibited tensile strength values of 30 MPa, respectively. In term the flexural test the best result of composition on the properties with 10 minutes duration time its load value 7,5 Mpa for 80:10:10.
Elgharbawy, Amal A; Alam, Md Zahangir; Moniruzzaman, Muhammad; Kabbashi, Nassereldeen Ahmad; Jamal, Parveen
2018-05-01
The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture ( PKC-Cel ) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process.
NASA Astrophysics Data System (ADS)
Awang, Mat Rasol; Mutaat, Hassan Hamdani; Mahmud, Mohd. Shukri; Wan Husain, Wan Badrin; Osman, Tajuddin; Bakar, Khomsaton Abu; Kassim, Asmahwati; Wan Mahmud, Zal U'yun; Manaf, Ishak; Kume, Tamikazu; Hashimoto, Shoji
1993-10-01
In solid state fermentation, Pleurotus sajor-caju has been found to be able to degrade at least 30% oil palm empty Fruit Bunch (EFB) fibre leaving 70 % useful materials. Conditions under which fermentation carried out were investigated. It was found that, in the temperature range between 25- 28 °C, relative ph between 6-8, moisture between 60-70 % and medium composition of CaCO 3: rice bran 2 %: 5 % were the optimum conditions. The results showed in fermented products that, there were substantial reduction in cellulosic component such as Crude Fiber (CF, 18 %); Acid Detergent Fibre (ADF, 45 %), Neutral Detergent Fibre (NDF, 61 %) and Acid Detergent Lignin (ADL, 14 %). However, Crude Protein (CP, 10%) increased resulted from single cell protein enrichment of mycelial microbial mass. The mass reductions of substrate in fermentation process corresponds to the CO 2 released during fermentation. Hence, attributable to the decreased in content of CF, ADF, NDF, and ADL. The digestibility study has also been carried out to determine the useful level of this product to ruminant. Aflatoxin content was detected low in both the initial substrates and products. Based on nutritional value and low content of aflatoxin, the product is useful as a source of roughage to ruminant.
NASA Astrophysics Data System (ADS)
Meri, N. H.; Alias, A. B.; Talib, N.; Rashid, Z. A.; Ghani, W. A. W. A. K.
2018-03-01
This study are covered the adsorption performance of two adsorbent Empty Fruit Bunch Hydrogel Biochar Composite (EFB-HBC) and Coal Fly Ash Hydrogel Composite (CFA-HC) on hydrogen sulphide. The EFB biochar were produce by pyrolysed and heated from room temperature to 550˚C at 10˚C/min under the Nitrogen flow. Meanwhile, coal fly ash collected from a power plant located in Selangor, Malaysia. Both of the materials is a waste from different industries and became the precursor to our adsorbents. EFB biochar and coal fly ash has been synthesized to become hydrogel by polymerization process with acrylamide (AAm) as monomer, N,N’-methylene bisacry lamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. In addition, because of the speciality of hydrogel itself, which is has high ability in storing water, the effect of H2O wetness on EFB-HBC and CFA-HC were investigate in adsorption of H2S. EFB-HBC gave a longest breakthrough time and highest adsorption capacity compared with CFA-HC in both condition (dry/wet). The result also indicated that, the increased the bed height, increased the adsorption capacity.
Nasir, Salisu; Hussein, Mohd Zobir; Yusof, Nor Azah; Zainal, Zulkarnain
2017-01-01
Herein, a new approach was proposed to produce reduced graphene oxide (rGO) from graphene oxide (GO) using various oil palm wastes: oil palm leaves (OPL), palm kernel shells (PKS) and empty fruit bunches (EFB). The effect of heating temperature on the formation of graphitic carbon and the yield was examined prior to the GO and rGO synthesis. Carbonization of the starting materials was conducted in a furnace under nitrogen gas for 3 h at temperatures ranging from 400 to 900 °C and a constant heating rate of 10 °C/min. The GO was further synthesized from the as-carbonized materials using the ‘improved synthesis of graphene oxide’ method. Subsequently, the GO was reduced by low-temperature annealing reduction at 300 °C in a furnace under nitrogen gas for 1 h. The IG/ID ratio calculated from the Raman study increases with the increasing of the degree of the graphitization in the order of rGO from oil palm leaves (rGOOPL) < rGO palm kernel shells (rGOPKS) < rGO commercial graphite (rGOCG) < rGO empty fruit bunches (rGOEFB) with the IG/ID values of 1.06, 1.14, 1.16 and 1.20, respectively. The surface area and pore volume analyses of the as-prepared materials were performed using the Brunauer Emmett Teller-Nitrogen (BET-N2) adsorption-desorption isotherms method. The lower BET surface area of 8 and 15 m2 g−1 observed for rGOCG and rGOOPL, respectively could be due to partial restacking of GO layers and locally-blocked pores. Relatively, this lower BET surface area is inconsequential when compared to rGOPKS and rGOEFB, which have a surface area of 114 and 117 m2 g−1, respectively. PMID:28703757
Claoston, N; Samsuri, A W; Ahmad Husni, M H; Mohd Amran, M S
2014-04-01
Biochar has received great attention recently due to its potential to improve soil fertility and immobilize contaminants as well as serving as a way of carbon sequestration and therefore a possible carbon sink. In this work, a series of biochars were produced from empty fruit bunch (EFB) and rice husk (RH) by slow pyrolysis at different temperatures (350, 500, and 650°C) and their physicochemical properties were analysed. The results indicate that porosity, ash content, electrical conductivity (EC), and pH value of both EFB and RH biochars were increased with temperature; however, yield, cation exchange capacity (CEC), and H, C, and N content were decreased with increasing pyrolysis temperature. The Fourier transform IR spectra were similar for both RH and EFB biochars but the functional groups were more distinct in the EFB biochar spectra. There were reductions in the amount of functional groups as pyrolysis temperature increased especially for the EFB biochar. However, total acidity of the functional groups increased with pyrolysis temperature for both biochars.
Oil palm and the emission of greenhouse gasses- from field measurements in Indonesia
NASA Astrophysics Data System (ADS)
Rahman, Niharika; Bruun, Thilde Bech; Giller, Ken E.; Magid, Jakob; van de Ven, Gerrie; de Neergaard, Andreas
2017-04-01
Palm oil from the oil palm (Elaeis guianensis) has in recent years become the world's most important vegetable oil. The increasing demand for palm oil has led to expansion of oil palm plantations, which has caused environmental controversies associated with carbon losses and the use of large amounts of mineral fertilizers. Efforts to increase sustainability of oil palm cultivation, include recycling of oil-mill residues and pruning's, but with this comes increased potential for methane emission from the plantations. Until now no field-based data on greenhouse gas emissions from oil palm plantations have been reported. Here for the first time we present data from a long term (360 days) field trial in Bah Lias Research Station, North Sumatra, Indonesia on greenhouse gas emissions from an oil palm plantation with various treatments of recycled oil palm waste products, fertilizers and simulated rainfall. The first experiment was conducted over a full year (dry + wet season) with mineral fertilizer treatments including urea and ammonium sulphate, and organic fertilizer treatments constituting: empty fruit bunches (EFB), enriched mulch (EFB + palm oil mill effluent (POME) ) and pruned oil palm fronds (OPF). Treatment doses represent the current management in Indonesian plantations and the higher doses that are expected in the imminent future. For the organic treatments several methods of application (applied in inter-rows, piles, patches or bands) were evaluated. The second experiment investigated effects of soil water saturation on GHG emissions through adding 25 mm simulated rainfall per day for 21 days. Each palm tree received 1 kg of N fertilizer as urea or ammonium sulphate and enriched mulch. The gas fluxes in the fields was measured by a large static-chamber (1.8 m x 1.2 m) method and CH4 and N2O concentrations were determined using gas chromatographs. We found that emissions were significantly affected by the type and dose of mineral fertilizers. Application of urea leads to significantly higher N2O emission than application of ammonium sulphate. Organic fertilizers resulted in significantly higher CH4 emissions than N2O. The combination of enriched mulch and urea produced the highest N2O emission. When applied in piles, organic fertilizers emitted significantly more N2O and CH4 than when spread out. 25 mm simulated rainfall daily resulted in 76% higher N2O emissions than in the control (no water addition) with highest rates day seven after fertilization. This study will contribute to the development of more accountable and sustainable oil palm production systems and help to guide nutrient management practices to slow down or counteract climate change.
NASA Astrophysics Data System (ADS)
Othman, Nurul Syazwani; Santiagoo, Ragunathan; Abdillahi, Khalid Mohamed; Ismail, Hanafi
2017-07-01
The fabrication of polypropylene (PP)/ recycled acrylonitrile butadiene rubber (NBRr)/ empty fruit bunch (EFB) composites were investigated. The effects of polypropylene maleic anhydride (PPMAH) as a compatibilizer on the mechanical and morphological properties of PP/NBRr/EFB composites were studied. Composites were prepared through melt mixing using heated two roll mill at 180 °C for 9 minutes and rotor speed of 15 rpm. NBRr loading were varied from 0 to 60 phr and PPMAH was fixed for 5 phr. The composites were moulded into a 1 mm thin sheet using hot press machine and then cut into dumbbell shape. The mechanical and morphological properties of composites were examined using universal tensile machine (UTM) and scanning electron microscope (SEM), respectively. Tensile strength and Young's modulus of PP/NBRr/EFB composites decreased with increasing NBRr loading, whilst increasing the elongation at break. However, PPMAH compatibilized composites have resulted 27% to 40% and 25% to 42% higher tensile strength and Young's modulus, respectively, higher compared to uncompatibilized composites. This was due to the better adhesion between PP/NBRr matrices and EFB filler with the presence of maleic anhydride moieties. From the morphological study, the micrograph of PPMAH compatibilized composites has proved the well bonded and good attachments of EFB filler with PP/NBRr matrices which results better tensile strength to the PP/NBRr/EFB composites.
Application of Nutrient Enriched Biochar to Grow Bananas at the Plantation Scale
NASA Astrophysics Data System (ADS)
Nzengung, Valentine
2017-04-01
The majority of soils in Cameroon consist of varying laterites derived from granites. The lateritic soils are generally depleted in nutrients. The most fertile soils in Cameroon are young soils that have formed from volcanic rocks of the Cameroon volcanic line (CVL). The richer volcanic soils which are found in the southwest region and the western regions are used to grow the major cash crops, including cocoa, coffee, rubber, banana, tea, and palm fruits. The government owned Cameroon Development Corporation (CDC) and private commercial farmers in the country have resorted to the heavy use of imported agrochemicals to mitigate the serious and persistent soil fertility challenges. Cameroon is the third largest biomass producer in Africa. This means that Cameroon has a high biomass production potential. Among the many types of biomass available for biochar production in Cameroon, empty fruit bunches (EFB) from the many palm oil plantations offer one of the largest concentration of biomass. CDC alone produces over 200,000 tons of EFB biomass each year. The corporation uses less than half of the EFB it produces in its palm oil processing mills for mulching. The remaining EFB are disposed by open burning leading to significant air pollution. In 2015, we entered into a collaborative understanding with CDC to dispose some of its EFB by pyrolysis to produce biochar. The produced biochar is enriched with natural plant nutrients obtained from animal waste (poultry chicken manure) and volcanic lava dust from the 2001 eruption of Mount Cameroon. The biochar, chicken litter and volcanic rock dust is aged for 14 - 21 days to produce a 100% natural soil enhancer commercialized under the name "QwikGro". The QwikGro is undergoing field evaluation on three hectares of banana plantation owned by CDC. The field trial began in June 2016. Of the three hectares, one hectare of the bananas was planted using 100% (only) QwikGro, the second hectare was planted with 50% QwikGro and received 50% of the dose of artificial fertilizer that CDC uses to grow its bananas. The control was planted and fertilized with artificial fertilizer only. The banana growth parameters collected so far (24 weeks after the bananas were planted) have showed no statistical difference among the three fertigation regimes. The bananas grown with 100% QwikGro showed signs of nitrogen deficiency after three months and were provided with 50% of the mass of QwikGro used at planting. Specifically, the 100% QwikGro mats each received 8 kg of QwikGro at planting and 4 kg after three months. Meanwhile, the 50% QwikGro mats received 4 kg of QwikGro at planting and 2 kg after three months. Flowering and fruiting was observed after 20 weeks. Our presentation will include details on our nutrient enrichment methods, the banana bunch weight and the fruit physical and nutritional parameters at maturity.
The effect of fiber treatment on abrasive wear properties of palm fiber reinforced epoxy composite
NASA Astrophysics Data System (ADS)
Razak, Muhammad Firdaus Abdul; Bakar, Mimi Azlina Abu; Kasolang, Salmiah; Ahmad, Mohamad Ali
2017-12-01
Oil palm industries generate at least 30 million tons of lignocellulosic biomass annually in the form of oil palm trunks (OPT), empty fruit bunches (EFB), oil palm fronds (OPF) and palm pressed fibres (PPF). The palm fiber is one of the natural fibers used as reinforcement in composite materials in order to decrease environmental issues and promotes utilization of renewable resources. This paper presents a study on the effect of alkaline treatment on wear properties of palm fiber reinforced epoxy resin composite. Abrasive wear testing was deployed to investigate the wear profile of the composite surfaces. Testing was carried out which focused on the effect of alkaline treatment to the palm fiber under different amounts of fiber loading i.e. 1 wt%, 3 wt%, 5 wt% and 7 wt%. The palm fibers were soaked into 6 % of alkaline solution or natrium hydroxide (NaOH) for 12 hours. The fiber was treated in order to remove amorphous materials such as hemicelluloses, lignins and pectins of the fiber. The wear test samples were fabricated using hand lay-up technique and cured at room temperature for 24 hours. Surface roughness of the composite material was also measured using the surface measuring instrument. Dry sliding wear test was performed at room temperature at a constant velocity of 1.4 m/s with a constant load of 10 N by using the Abrasion Test Machine. Result shows that 5 wt% and 7 wt% treated palm fiber loadings have better specific wear rate compared to lower fiber loadings. The finding of this study contributes towards material development and utilization in promoting `waste into wealth' which is in line with national aspiration.
Biogas production from oil palm empty fruit bunches of post mushroom cultivation media
NASA Astrophysics Data System (ADS)
Purnomo, Agus; Suprihatin; Romli, M.; Hasanudin, Udin
2018-03-01
The Empty fruit bunches are one of the palm oil industry wastes, which can be used for mushroom cultivation. Post-cultivation of mushroom from former EFB-mushroom media (EFBMM) has the potential to be processed into biogas. The purpose of this research was to examine optimum co-digestion conditions for biogas production of EFBMM.The research was carried out in an anaerobic digester with three different conditions - dry fermentation (Water content (WC)/Total Solid (TS) ratio 1.5 - 3.5), semi-wet fermentation (WC/TS ratio = 4.0 - 5.7) and wet fermentation (WC/TS ratio> 9.0) conditions. Digester of capacity 50L was used. Fermentation was done using 20% cow feces as inoculum which then added with circulation system for 70 days. The results showed that optimum biogas production were produced in semi-wet fermentation conditions (WC/TS ratio = 4). It was produced 37.462 liters (2.420 liters CH4/Kg Volatile Solid (VS)) of biogas with methane contain about 26.231%. Total volume of inoculum during process was 19.6 liters (1: 4 w/v) with absorbed TS inoculum ratio, TS/I = 0.4 (1:2.5 w/v). The result of research also showed that biogas which was produced from control about 2.865 liters (0.041 liters CH4/KgVS), with TS absorbed inoculum ratio, TS/I = 0.5 (1: 5w/v).
Adsorption of mercury from aqueous solutions using palm oil fuel ash as an adsorbent - batch studies
NASA Astrophysics Data System (ADS)
Imla Syafiqah, M. S.; Yussof, H. W.
2018-03-01
Palm oil fuel ash (POFA) is one of the most abundantly produced waste materials. POFA is widely used by the oil palm industry which was collected as ash from the burning of empty fruit bunches fiber (EFB) and palm oil kernel shells (POKS) in the boiler as fuel to generate electricity. Mercury adsorption was conducted in a batch process to study the effects of contact time, initial Hg(II) ion concentration, and temperature. In this study, POFA was prepared and used for the removal of mercury(II) ion from the aqueous phase. The effects of various parameters such as contact time (0- 360 min), temperature (15 – 45 °C) and initial Hg(II) ion concentration (1 – 5 mg/L) for the removal of Hg(II) ion were studied in a batch process. The surface characterization was examined by scanning electron microscopy (SEM) and particle size distribution analysis. From this study, it was found that the highest Hg(II) ion removal was 99.60 % at pH 7, contact time of 4 h, initial Hg(II) ion concentration of 1 mg/L, adsorbent dosage 0.25 g and agitation speed of 100 rpm. The results implied that POFA has the potential as a low-cost and environmental friendly adsorbent for the removal of mercury from aqueous solution.
A comparative study of green composites based on tapioca starch and celluloses
NASA Astrophysics Data System (ADS)
Owi, Wei Tieng; Lin, Ong Hui; Sam, Sung Ting; Mern, Chin Kwok; Villagracia, Al Rey; Santos, Gil Nonato C.; Akil, Hazizan Md
2017-07-01
The objective of this study was to compare the properties of green composites based on tapioca starch (TS) and celluloses isolated from empty fruit bunches (EFB) and commercial celluloses from cotton linter (supplied by Sigma). Empty fruit bunches (EFB) acted as the main source to obtain the cellulose by using a chemical approach whereas the commercial cellulose from Sigma was used as reference. The TS/cellulose composite films were prepared using cellulose in varying proportions as filler into TS matrix by a casting method. The amount of celluloses added into the tapioca starch were 5, 10, 15, 20 and 25 phr (as per dry mass of TS). The celluloses were characterized using Fourier transform infrared (FTTR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). While the green composite films were analyzed in terms of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), SEM and tensile properties. FTTR analysis confirmed the removal of non-cellulosic materials such as hemicelluloses and lignin from raw EFB after the chemical treatment. XRD diffractograms revealed that the crystallinity of celluloses EFB increased from 43.1 % of raw EFB to 52.1 %. SEM images showed the fibrillar structure of cellulose isolated from EFB. The TGA and derivative thermogravimetric (DTG) curves of green composite films showed no significant effect on the thermal stability. Melting temperature of TS/cellulose EFB higher than neat TS while TS/cellulose Sigma lower than neat TS. The green composite films with 15 phr cellulose from EFB filler loading provided the best tensile properties in term of its strength and modulus. However, in term of elongation at break, the percentage elongation decreased with the increased of the amount of filler loading. SEM images of the films demonstrated a good interaction between cellulose filler and TS matrix especially with the addition of 15 phr of cellulose from EFB.
Suksong, Wantanasak; Kongjan, Prawit; Prasertsan, Poonsuk; Imai, Tsuyoshi; O-Thong, Sompong
2016-08-01
This study investigated the improvement of biogas production from solid-state anaerobic digestion (SS-AD) of oil palm biomass by optimizing of total solids (TS) contents, feedstock to inoculum (F:I) ratios and carbon to nitrogen (C:N) ratios. Highest methane yield from EFB, OPF and OPT of 358, 280 and 324m(3)CH4ton(-1)VS, respectively, was achieved at TS content of 16%, C:N ratio of 30:1 and F:I ratio of 2:1. The main contribution to methane from biomass was the degradation of cellulose and hemicellulose. The highest methane production of 72m(3)CH4ton(-1) biomass was achieved from EFB. Bacteria community structure in SS-AD process of oil palm biomass was dominated by Ruminococcus sp. and Clostridium sp., while archaea community was dominated by Methanoculleus sp. Oil palm biomass has great potential for methane production via SS-AD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of cooking temperature on the crystallinity of acid hydrolysed-oil palm cellulose
NASA Astrophysics Data System (ADS)
Kuthi, Fatin Afifah Binti Ahmad; Badri, Khairiah Haji
2014-09-01
In this research, we studied the effect of acid hydrolysis temperature on the crystallinity of cellulose produced from empty fruit bunch (EFB). The hydrolysis temperature was studied from 120 to 140 °C at a fixed time and sulfuric acid, H2SO4 concentration which were 1 h and 1% (v/v) respectively. X-ray diffractometry (XRD) was carried out to measure the crystallinity of cellulose produced at varying hydrolysis temperatures. During hydrolysis, the amorphous region of α-cellulose was removed and the crystalline region was obtained. Percentage of crystallinity (CrI) for acid hydrolysed cellulose at 120, 130 and 140 °C were 54.21, 50.59 and 50.55 % respectively. Morphological studies using scanning electron microscope (SEM) showed that acid hydrolysis defibrilised to microfibrils in α-cellulose. The extraction process to produce α-cellulose has also been successfully carried out as the impurities at the outer surface, lignin and hemicellulose were removed. These findings were supported by the disappearance of peaks at 1732, 1512 and 1243 cm-1 on Fourier Transform infrared (FTIR) spectrum of α-cellulose. Similar peaks were identified in both the commercial microcrystalline cellulose (C-MCC) and acid hydrolysed cellulose (H-EFB), indicating the effectiveness of heat-catalysed acid hydrolysis.
NASA Astrophysics Data System (ADS)
Bardant, Teuku Beuna; Dahnum, Deliana; Amaliyah, Nur
2017-11-01
Simultaneous Saccharification Fermentation (SSF) of palm oil (Elaeis guineensis) empty fruit bunch (EFB) pulp were investigated as a part of ethanol production process. SSF was investigated by observing the effect of substrate loading variation in range 10-20%w, cellulase loading 5-30 FPU/gr substrate and yeast addition 1-2%v to the ethanol yield. Mathematical model for describing the effects of these three variables to the ethanol yield were developed using Response Surface Methodology-Cheminformatics (RSM-CI). The model gave acceptable accuracy in predicting ethanol yield for Simultaneous Saccharification and Fermentation (SSF) with coefficient of determination (R2) 0.8899. Model validation based on data from previous study gave (R2) 0.7942 which was acceptable for using this model for trend prediction analysis. Trend prediction analysis based on model prediction yield showed that SSF gave trend for higher yield when the process was operated in high enzyme concentration and low substrate concentration. On the other hand, even SHF model showed better yield will be obtained if operated in lower substrate concentration, it still possible to operate in higher substrate concentration with slightly lower yield. Opportunity provided by SHF to operate in high loading substrate make it preferable option for application in commercial scale.
Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunarno; Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281; Rochmadi,
The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality ofmore » bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.« less
NASA Astrophysics Data System (ADS)
Hamdan, E.; Deraman, M.; Suleman, M.; Nor, N. S. M.; Basri, N. H.; Hanappi, M. F. Y. M.; Sazali, N. E. S.; Tajuddin, N. S. M.; Omar, R.; Othman, M. A. R.; Shamsudin, S. A.
2016-11-01
In this study, we produced pre-carbonized date pits (PDP) and self-adhesive carbon grains (SACGs) from oil palm empty fruit bunches (EFB) by a low temperature (200°C for DP and 280°C for SACGs, respectively) carbonization method followed by KOH treatment to obtain KOH treated PDP (T-PDP) and KOH treated SACGs (T-SACGs). Four sets of green monolith (GMs) denoted as GM-A, GM-B, GM-C and GM-D were prepared respectively from SACGs (100 wt. %), mixture of PDP and SACGs (50:50 wt. %), T-SACGs (100 wt. %), and mixture of T-SACGs and T-PDP (50:50 wt. %), respectively. From these GMs the respective activated carbon monolith (ACMs) electrodes namely ACM-A, ACM-B, ACM-C and ACM-D were prepared via carbonization (N2 carbonization) and activation (CO2 environment). These ACMs electrodes were used to fabricate the corresponding EDLC cells: Cell-A, Cell-B, Cell-C and Cell-D, respectively. The electrochemical impedance spectroscopy tests conducted on the cells found that the Cell-D showed the maximum value of specific capacitance, Csp (˜ 135 F g-1) whereas the Cell-A showed the minimum values of ESR and characteristic response time, respectively, ˜ 2.14 Ω and ˜ 46 s. Therefore, it can be concluded that the KOH treatment can improve the capacitance but caused the increase in the ESR and response time.
Life cycle inventory for palm based plywood: A gate-to-gate case study
NASA Astrophysics Data System (ADS)
Ahmad, Shamim; Sahid, Ismail; Subramaniam, Vijaya; Muhamad, Halimah; Mokhtar, Anis
2013-11-01
The oil palm industry heavily relies on the world market. It is essential to ensure that the oil palm industry is ready to meet the demands and expectation of these overseas customers on the environmental performance of the oil palm industry. Malaysia produces 13.9 million tons of oil palm biomass including oil palm trunk (OPT), frond and empty fruits bunches (EFB) annually. OPT felled in some oil palm plantations during replanting is transported to various industries and one such industry is the plywood factories. In order to gauge the environmental performance of the use of OPT as plywood a Life Cycle Assessment (LCA) study was conducted for palm based plywood. LCA is an important tool to assess the environmental performance of a product or process. Life cycle inventory (LCI) is the heart of a LCA study. This LCI study has a gate-to-gate system boundary and the functional unit is 1 m3 palm plywood produced and covers three types of plywood; Moisture Resistance Plywood (MR), Weather Boiling Proof Plywood Grade 1 (WBP Grade 1) at Factory D and Weather Boiling Proof Plywood Grade 2 (WBP Grade 2) at Factory E. Both factories use two different types of drying processes; conventional drying at Factory D and kiln drying at Factory E. This inventory data was collected from two factories (D and E) representing 40% of Malaysia palm plywood industry. The inputs are mainly the raw materials which are the oil palm trunks and tropical wood veneers and the energy from diesel and electricity from grid which is mainly used for the drying process. The other inputs include water, urea formaldehyde, phenol formaldehyde, flour and melamine powder. The outputs are the biomass waste which consists of oil palm trunk off-cut and emission from boiler. Generally, all types of plywood production use almost same materials and processing methods in different quantities. Due to the different process efficiency, Factory D uses less input of raw materials and energy compared to Factory E.
Physical Activation of Oil Palm Empty Fruit Bunch via CO2 Activation Gas for CO2 Adsorption
NASA Astrophysics Data System (ADS)
Joseph, C. G.; Quek, K. S.; Daud, W. M. A. W.; Moh, P. Y.
2017-06-01
In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 - 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 - 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.
Kim, Dong Young; Kim, Young Soo; Kim, Tae Hyun; Oh, Kyeong Keun
2016-01-01
Fractionation of EFB was conducted in two consecutive steps using a batch reaction system: hemicellulose hydrolysis using acetic acid (AA; 3.0-7.0 wt.%) at 170-190°C for 10-20 min in the first stage, and lignin solubilization using ammonium hydroxide (5-20 wt.%) at 140-220°C for 5-25 min in the second stage. The two-stage process effectively fractionated empty fruit bunches (EFB) in terms of hemicellulose hydrolysis (53.6%) and lignin removal (59.5%). After the two-stage treatment, the fractionated solid contained 65.3% glucan. Among three investigated process parameters, reaction temperature and ammonia concentration had greater impact on the delignification reaction in the second stage than reaction time. The two-stage fractionation processing improved the enzymatic digestibility to 72.9% with 15 FPU of cellulase/g of glucan supplemented with 70 pNPG of β-glycosidase (Novozyme 188)/g-glucan, which was significantly enhanced from the equivalent digestibility of 28.3% for untreated EFB and 45.7% for AAH-fractionated solid. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jaye, I. F. Md; Sadhukhan, J.; Murphy, R. J.
2018-05-01
Generating electricity from biomass are undeniably gives huge advantages to the energy security, environmental protection and the social development. Nevertheless, it always been negatively claimed as not economically competitive as compared to the conventional electricity generation system using fossil fuel. Due to the unfair subsidies given to renewable energy based fuel and the maturity of conventional electricity generation system, the commercialization of this system is rather discouraging. The uniqueness of the chemical and physical properties of the biomass and the functionality of the system are fully depending on the availability of the biomass resources, the capital expenditure of the system is relatively expensive. To remain competitive, biomass based system must be developed in their most economical form. Therefore the justification of the economies of scale of such system is become essential. This study will provide a comprehensive review of process to select an appropriate size for electricity generation plant from palm oil mill (POM) residues through the combustion of an empty fruit bunch (EFB) and biogas from the anaerobic digestion of palm oil mill effluent (POME) in Peninsular Malaysia using a mathematical model and simulation using ASPEN Plus software package. The system operated at 4 MW capacity is expected to provide a return on investment (ROI) of 20% with a payback period of 6.5 years. It is notably agreed that the correct selection of generation plant size will have a significant impact on overall economic and environmental feasibility of the system.
NASA Astrophysics Data System (ADS)
Ghazali, Mohd Rashdan; Mutalib, Sahilah Abd.; Abdullah, Aminah
2016-11-01
Study on the comparison of cow manure (CM) and empty fruit bunches (EFB) compost application as planting medium was conducted using four different treatments of fertilizer (without fertilizer, chemical fertilizer, organic fertilizer, and both fertilizer) on growth and yield of chili (Capsicum annum). The experiment started on August until December 2014 which consisted of eight treatments and were laid in a completely randomized block design (CRBD) with three replications. Variety chili that was used was Cilibangi 3. The seed was planted inside the tray for one week and transferred into the polybag containing growth media consisted of soil, compost (CM or EFB compost) and sand with ratio 3:2:1. Treatments without fertilizer were acted as a control. Throughout the study, plant growth performance and yield were recorded. The highest height of the plants for CM compost was 100.8 cm using chemical fertilizer and have significant different between the groups. For EFB compost was 92.7 cm using also chemical fertilizer but no significant different between the groups. The highest fruits weight per plant for CM compost was 485.67 g treated with both fertilizers and for EFB compost was 420.17 g treated with chemical fertilizer. Analysis of variance (ANOVA) table stated that fruits weight per plant has significant different for both planting medium with the fertilizer treatment. For the highest total fruits per plant, CM compost recorded about average 55 fruits per plant using both fertilizers and EFB compost recorded around 45 fruit per plant using chemical fertilizer. There was significantly different for total fruits per plant for both planting medium with the fertilizer treatment according to the ANOVA table. For CM, the ripening time was around 102-112 days and for EFB compost was around 96-110 days. Thus, application of CM compost treated with both chemical and organic fertilizers demonstrated better growth and fruit yield. While EFB compost was better growth and fruit yield when treated with chemical fertilizer.
Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch.
Choi, Won-Il; Park, Ji-Yeon; Lee, Joon-Pyo; Oh, You-Kwan; Park, Yong Chul; Kim, Jun Seok; Park, Jang Min; Kim, Chul Ho; Lee, Jin-Suk
2013-11-29
Empty fruit bunch (EFB) has many advantages, including its abundance, the fact that it does not require collection, and its year-round availability as a feedstock for bioethanol production. But before the significant costs incurred in ethanol production from lignocellulosic biomass can be reduced, an efficient sugar fractionation technology has to be developed. To that end, in the present study, an NaOH-catalyzed steam pretreatment process was applied in order to produce ethanol from EFB more efficiently. The EFB pretreatment conditions were optimized by application of certain pretreatment variables such as, the NaOH concentrations in the soaking step and, in the steam step, the temperature and time. The optimal conditions were determined by response surface methodology (RSM) to be 3% NaOH for soaking and 160°C, 11 min 20 sec for steam pretreatment. Under these conditions, the overall glucan recovery and enzymatic digestibility were both high: the glucan and xylan yields were 93% and 78%, respectively, and the enzymatic digestibility was 88.8% for 72 h using 40 FPU/g glucan. After simultaneous saccharification and fermentation (SSF), the maximum ethanol yield and concentration were 0.88 and 29.4 g/l respectively. Delignification (>85%) of EFB was an important factor in enzymatic hydrolysis using CTec2. NaOH-catalyzed steam pretreatment, which can remove lignin efficiently and requires only a short reaction time, was proven to be an effective pretreatment technology for EFB. The ethanol yield obtained by SSF, the key parameter determining the economics of ethanol, was 18% (w/w), equivalent to 88% of the theoretical maximum yield, which is a better result than have been reported in the relevant previous studies.
Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch
2013-01-01
Background Empty fruit bunch (EFB) has many advantages, including its abundance, the fact that it does not require collection, and its year-round availability as a feedstock for bioethanol production. But before the significant costs incurred in ethanol production from lignocellulosic biomass can be reduced, an efficient sugar fractionation technology has to be developed. To that end, in the present study, an NaOH-catalyzed steam pretreatment process was applied in order to produce ethanol from EFB more efficiently. Results The EFB pretreatment conditions were optimized by application of certain pretreatment variables such as, the NaOH concentrations in the soaking step and, in the steam step, the temperature and time. The optimal conditions were determined by response surface methodology (RSM) to be 3% NaOH for soaking and 160°C, 11 min 20 sec for steam pretreatment. Under these conditions, the overall glucan recovery and enzymatic digestibility were both high: the glucan and xylan yields were 93% and 78%, respectively, and the enzymatic digestibility was 88.8% for 72 h using 40 FPU/g glucan. After simultaneous saccharification and fermentation (SSF), the maximum ethanol yield and concentration were 0.88 and 29.4 g/l respectively. Conclusions Delignification (>85%) of EFB was an important factor in enzymatic hydrolysis using CTec2. NaOH-catalyzed steam pretreatment, which can remove lignin efficiently and requires only a short reaction time, was proven to be an effective pretreatment technology for EFB. The ethanol yield obtained by SSF, the key parameter determining the economics of ethanol, was 18% (w/w), equivalent to 88% of the theoretical maximum yield, which is a better result than have been reported in the relevant previous studies. PMID:24286374
Effect of support on catalytic cracking of bio-oil over Ni/silica-alumina
NASA Astrophysics Data System (ADS)
Sunarno, Herman, Syamsu; Rochmadi, Mulyono, Panut; Budiman, Arief
2017-03-01
Depletion of petroleum and environmental problem have led to look for an alternative fuel sources In many ways, biomass is a potential renewable source. Among the many forms of biomass, oil palm empty fruit bunch (EFB) is a very attractive feedstock due to its abudance, low price and non-competitiveness with the food chain. EFB can be converted bio-oil by pyrolysis process. but this product can not be used directly as a transportation fuel, so it needs upgrading bio-oil through a catalytic cracking process. The catalyst plays an important role in the catalytic cracking process. The objective of this research is to study the effect of Ni concentrations (1,3,5 and 7 wt.%) on the characteristics of the catalyst Ni / Silica-Alumina and the performance test for the catalytic cracking of bio-oil. Preparation of the catalyst Ni / Silica-Alumina was done by impregnation at 80°C for 3 hours, then done to calcination and reduction at 500°C for 2 hours. The performance test was conducted on catalytic cracking temperature of 500°C. Results show that increasing concentration of Ni from 1 to 7 %, the pore diameter of the catalyst decreased from 35.71 to 32.70 A and surface area decreased from 209.78 to 188.53 m2/gram. With the increase of Ni concentration, the yield of oil reduced from 22.5 to 11.25 %, while the heating value of oil increased from 34.4 to 36.41MJ/kg.
Jinlan Cheng; Shao-Yuan Leu; J.Y. Zhu; Thomas W. Jeffries
2014-01-01
Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to an empty fruit bunches (EFB) for ethanol production. SPORL facilitated delignification through lignin sulfonation and dissolution of xylan to result in a highly digestible substrate. The pretreated whole slurry was enzymatically saccharified at a solids loading of 18% using a...
Yiin, Chung Loong; Quitain, Armando T; Yusup, Suzana; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya
2017-11-01
This work aimed to develop an efficient microwave-hydrothermal (MH) extraction of malic acid from abundant natural cactus as hydrogen bond donor (HBD) whereby the concentration was optimized using response surface methodology. The ideal process conditions were found to be at a solvent-to-feed ratio of 0.008, 120°C and 20min with 1.0g of oxidant, H 2 O 2 . Next generation environment-friendly solvents, low transition temperature mixtures (LTTMs) were synthesized from cactus malic acid with choline chloride (ChCl) and monosodium glutamate (MSG) as hydrogen bond acceptors (HBAs). The hydrogen-bonding interactions between the starting materials were determined. The efficiency of the LTTMs in removing lignin from oil palm biomass residues, empty fruit bunch (EFB) was also evaluated. The removal of amorphous hemicellulose and lignin after the pretreatment process resulted in an enhanced digestibility and thermal degradability of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamzah, Mohamad Hazmi; Deraman, Rafikullah; Saman, Nor Sarwani Mat
2017-12-01
In Malaysia, 45% of the average household electricity was consumed by air conditioners to create an acceptable indoor environment. This high energy consumption was mostly related to poor thermal performance of the building envelope. Therefore, selecting a low thermal conductivity of brick wall was of considerable importance in creating energy efficient buildings. Previously, numerous researchers reported the potential used of agricultural waste as an additive in building materials to enhance their thermal properties. The aim of this study is to examine how agricultural wastes from empty fruit bunch (EFB), coconut fibre (CF) and sugarcane bagasse (SB) can act as additive agents in a fired clay brick manufacturing process to produce a low thermal conductivity clay brick. In this study, these agricultural wastes were individually mixed with clay soil in different proportions ranging from 0%, 2.5%, 5%, 7.5% and 10% by weight. Physical and mechanical properties including soil physical properties, as well as thermal conductivity were performed in accordance with BS 1377: Part 2: 1990, BS 3921: 1985 and ASTM C518. The results reveal that incorporating 5% of EFB as an additive component into the brick making process significantly enhances the production of a low thermal conductivity clay brick as compared to other waste alternatives tested. This finding suggests that EFB waste was a potential additive material to be used for the thermal property enhancement of the building envelope.
NASA Astrophysics Data System (ADS)
Meri, N. H.; Alias, A. B.; Talib, N.; Rashid, Z. A.; Wan, W. A.; Ghani, Ab Karim
2018-05-01
Hydrogel biochar composite (HBC) is a recent interest among researchers because of the hydrophilic characteristic which can adsorb chemical fluid and showed a versatile potential as adsorbent in removing hazardous material in wastewater and gas stream. In this study, the effect of chemical washing pre-treatment by using two different type of chemical agent Hydrochloric Acid (HCL) and Hydrogen Peroxide (H2O2) was analysed and investigated. The raw EFB biochar was prepared using microwave assisted pyrolysis under 1000W for 30 min under N2 flow with 150 mL/min. To improve the adsoprtion ability, the EFB biochar has been chemical washed pre-treatment with Hydrochloric Acid (HCl) and Hydrogen Peroxide (H2O2) before polymerization process with acrylamide (AAm) as monomer, N,N’-methylenebisacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator. The characterization has studied by using Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). FTIR result shows that, the formation of Raw EFB to Hydrogel Biochar Composite (Raw EFB > EFB Biochar > Treated Biochars (HCl & H2O2) > Hydrogel Biochar Composite) have changed in functional group. For DSC result it shows that the thermal behaviour of all samples is endothermic process and have high thermal resistance.
NASA Astrophysics Data System (ADS)
Anuar, N. I. S.; Zakaria, S.; Harun, J.; Wang, C.
2017-07-01
Kenaf and empty fruit bunch (EFB) fibre which are the important natural fibres in Malaysia were studied as nonwoven polymer composites. The effect of fibre loading on kenaf polypropylene and EFB polypropylene nonwoven composite was studied at different mixture ratio. Kenaf polypropylene nonwoven composite (KPNC) and EFB polypropylene nonwoven composite (EPNC) were prepared by carding and needle-punching techniques, followed by a compression moulding at 6 mm thickness. This study was conducted to identify the optimum fibre loading of nonwoven polypropylene composite and their effect on the mechanical strength. The study was designed at 40%, 50%, 60% and 70% of fibre content in nonwoven mat and composite. The tensile strength, flexural strength and compression strength were tested to evaluate the composite mechanical properties. It was found that the mechanical properties for both kenaf and EFB nonwoven composites were influenced by the fibre content. KPNC showed higher mechanical strength than EPNC. The highest flexural strength was obtained at 60% KPNC and the lowest value was showed by 40% EPNC. The tensile and flexural strength for both KPNC and EPNC decreased after the fibre loading of 60%.
Performance evaluation of integrated solid-liquid wastes treatment technology in palm oil industry
NASA Astrophysics Data System (ADS)
Amelia, J. R.; Suprihatin, S.; Indrasti, N. S.; Hasanudin, U.; Fujie, K.
2017-05-01
The oil palm industry significantly contributes to environmental degradation if without waste management properly. The newest alternative waste management that might be developed is by utilizing the effluent of POME anaerobic digestion with EFB through integrated anaerobic decomposition process. The aim of this research was to examine and evaluate the integrated solid-liquid waste treatment technology in the view point of greenhouse gasses emission, compost, and biogas production. POME was treated in anaerobic digester with loading rate about 1.65 gCOD/L/day. Treated POME with dosis of 15 and 20 L/day was sprayed to the anaerobic digester that was filled of 25 kg of EFB. The results of research showed that after 60 days, the C/N ratio of EFB decreased to 12.67 and 10.96 for dosis of treated POME 15 and 20 L/day, respectively. In case of 60 day decomposition, the integrated waste treatment technology could produce 51.01 and 34.34 m3/Ton FFB which was equivalent with 636,44 and 466,58 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively. The results of research also showed that integrated solid-liquid wastes treatment technology could reduce GHG emission about 421.20 and 251.34 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively.
NASA Astrophysics Data System (ADS)
Asfarizal; Kasim, Anwar; Gunawarman; Santosa
2017-12-01
Empty Palm bunches of fiber is local ingredient in Indonesia that easy to obtain. Empty Palm bunches of fiber can be obtained from the palm oil industry such as in West Pasaman. The character of the empty Palm bunches of fiber that is strong and pliable has high-potential for particle board. To transform the large quantities of fiber become particles in size 0-10 mm requires a specially designed cut machine. Therefore, the machine is designed in two-stage system that is mechanical system, structure and cutting knife. Components that have been made, assembled and then tested to reveal the ability of the machine to cut. The results showed that the straight back and forth motion cut machine is able to cut out the empty oil palm bunches of fiber with a length 0-1 cm, 2 cm, 8 cm and the surface of the cut is not stringy. The cutting capacity is at a length of 2 cm in the result 24.4 (kg/h) and 8 cm obtained results of up to 84 (kg/h)
Torrefaction study for energy upgrading on Indonesian biomass as low emission solid fuel
NASA Astrophysics Data System (ADS)
Alamsyah, R.; Siregar, N. C.; Hasanah, F.
2017-05-01
Torrefaction is a pyrolysis process with low heating rate and temperature lower than 300°C in an inert condition which transforms biomass into a low emission solid fuel with relatively high energy. Through the torrefaction process biomass can be altered so that the end product is easy to grind and simple in the supply chain. The research was aimed at designing torrefaction reactor and upgrading energy content of some Indonesian biomass. The biomass used consist of empty fruit bunches of oil palm (EFB), cassava peel solid waste, and cocopeat (waste of coconut fiber). These biomass were formed into briquette and pellet form and were torrified with 300°C temperature during 1.5 hours without air. The results of terrified biomass and non-torrefied biomass were compared after burning on the stove in term of energy content and air emission quality. The result shows that energy content of biomass have increased by 1.1 up to 1.36 times. Meanwhile emission air resulted from its combustion was met with Indonesian emission regulation.
NASA Astrophysics Data System (ADS)
Bardant, Teuku Beuna; Winarni, Ina; Sukmana, Hadid
2017-01-01
It was desired to obtain a general formula for producing bio-ethanol from any part of lignocelluloses wastes that came from palm oil industries due to its abundance. Optimum condition that obtained by using RSM for conducting high-loading-substrate enzymatic hydrolysis of palm oil empty fruit bunch was applied to palm oil trunks and then followed by unsterilized fermentation for producing bio-ethanol. From several optimized conditions investigated, the resulted ethanol concentration could reach 7.92 %v by using 36.5 %w of palm oil trunks but the results were averagely 2.46 %v lower than palm oil empty fruit bunch. The results was statistically compared and showed best correlative coefficient at 0.808 (in scale 0-1) which support the conclusion that the optimum condition for empty fruit bunch and trunks are similar. Utilization of mixed-culture yeast was investigated to produce ethanol from unsterilized hydrolysis product but the improvement wasn't significant compares to single culture yeast.
Extracellular Xylanopectinolytic Enzymes by Bacillus subtilis ADI1 from EFB's Compost
Nawawi, Muhammad Hariadi; Mohamad, Rosfarizan; Tahir, Paridah Md.
2017-01-01
Microbial xylanase and pectinase are two extremely valuable enzymes, which have captivated much attention. This can be seen from the increased demand for these enzymes by many industrial sectors. This study investigates the isolation and screening of extracellular xylanopectinolytic enzymes-producing bacteria in a submerged fermentation (SmF). Samples are collected from the compost of empty fruit bunch (EFB) at Biocompost Pilot Plant, located at Biorefinery Plant, Universiti Putra Malaysia. From the experiment, out of 20 isolates, 11 isolates show xylanase or/and pectinase activity, and only one isolate (EFB-11) shows the concurrent activities of xylanase and pectinase. These activities are selected for enzyme production under submerged fermentation (quantitative screening). At the 72nd hour of incubation, xylanase and pectinase show the highest production, which ranges about 42.33 U/mL and 62.17 U/mL (with low amount of cellulase present), supplemented with 2% (w/v) of rice bran as carbon source at incubation temperature level, which is 30°C. Meanwhile, the pH of media is shifted to 8.42, which indicates that EFB-11 isolate is alkalotolerant bacteria and identified as Bacillus subtilis ADI1. This strain proves to have potential in agroindustrial bioconversion and has a promising ability to scale up to an industrial scale. PMID:28523288
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arianie, Lucy, E-mail: lucy205@yahoo.com; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id; Nurrachman, Zeily, E-mail: deana@chem.itb.ac.id
The decrease of cellulose crystallinity index of palm empty fruit bunch is crucial for the next application of cellulose as raw material for various biofuel and its derivatives. The aim of this research is to decrease the cellulose crystallinity index of palm empty fruit bunch using 1-butyl-3-methylimidazoliumbromide or [BMIM] bromide which has been synthesized using Microwave-Assisted Organic Synthesis (MAOS) method. Conventional reaction method has also been carried out to synthesize [BMIM]bromide for comparison as well. The characterization of synthesized product using FTIR, {sup 1}H-NMR, {sup 13}C-NMR and LC-MS showed that these reactions have been carried out successfully. The results showedmore » that MAOS method is up to 90% faster in producing [BMIM]bromide compare to the conventional method. The application of [BMIM]bromide for dissolution of palm empty fruit bunch showed that cellulose and lignin could be extracted using stirring process for 20 hours. The decrease of cellulose crystallinity index and its morphology changes were identified using FTIR and Scanning Electron Microscope.« less
NASA Astrophysics Data System (ADS)
Arianie, Lucy; Wahyuningrum, Deana; Nurrachman, Zeily; Natalia, Dessy
2014-03-01
The decrease of cellulose crystallinity index of palm empty fruit bunch is crucial for the next application of cellulose as raw material for various biofuel and its derivatives. The aim of this research is to decrease the cellulose crystallinity index of palm empty fruit bunch using 1-butyl-3-methylimidazoliumbromide or [BMIM] bromide which has been synthesized using Microwave-Assisted Organic Synthesis (MAOS) method. Conventional reaction method has also been carried out to synthesize [BMIM]bromide for comparison as well. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. The results showed that MAOS method is up to 90% faster in producing [BMIM]bromide compare to the conventional method. The application of [BMIM]bromide for dissolution of palm empty fruit bunch showed that cellulose and lignin could be extracted using stirring process for 20 hours. The decrease of cellulose crystallinity index and its morphology changes were identified using FTIR and Scanning Electron Microscope.
NASA Astrophysics Data System (ADS)
Hanum, H.; Lisnawita; Tantawi, A. R.
2018-02-01
Using of Ganoderma endemic soil in oil palm main nursery is not recomended because produce bad quality seedling. The application of organic and anorganic fertilizer and endophytic microbes are the alternative for solving the problem. The objective of this research is to evaluate the effect of empty fruit bunches compost, anorganic fertilizer and endophytic microbes on growth of oil palm seedling in main nursery. This research used factorial randomized block design. The first factor was combination of empty fruit bunches compost and anorganic fertilizer, The second factor was endophytic microbes consisting of Trichoderma and Aspergillus. The results showed that interaction effect of the both treatment factor used increased growth of seedling in third and fourth month after application. The best growth of seedling was on the treatment of empty fruit bunches compost combined with anorganic fertilizer 150% recommended dosage and Trichoderma viride.
Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites
NASA Astrophysics Data System (ADS)
Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed
2017-03-01
Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.
NASA Astrophysics Data System (ADS)
Gea, S.; Zulfahmi, Z.; Yunus, D.; Andriayani, A.; Hutapea, Y. A.
2018-03-01
Cellulose nanofibrils were obtained from oil palm empty fruit bunch using steam explosion and hydrolized with 10% solution of HCl. Steam explosion coupled with acid hydrolysis pretreatment on the oil palm empty fruit bunch was very effective in the depolymerization and defibrillation process of the fibre to produce fibers in nanodimension. Structural analysis of steam exploded fibers was determined by Fourier Transform Infrared (FT-IR) spectroscopy. Thermal stability of cellulose measured using image analysis software image J. Characterization of the fibers by TEM and SEM displayed that fiber diameter decreases with mechanical-chemical treatment and final nanofibril size was 20-30 nm. FT-IR and TGA data confirmed the removal of hemicellulose and lignin during the chemical treatment process.
Zianor Azrina, Z A; Beg, M Dalour H; Rosli, M Y; Ramli, Ridzuan; Junadi, Norhafzan; Alam, A K M Moshiul
2017-04-15
Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biomass analysis at palm oil factory as an electric power plant
NASA Astrophysics Data System (ADS)
Yusniati; Parinduri, Luthfi; Krianto Sulaiman, Oris
2018-04-01
Biomassa found in palm oil mill industryis a by-product such as palm shell, fiber, empty fruit bunches and pome. The material can be used as an alternative fuel for fossil fuel. On PTPN IVpalm oil millDolokSinumbah with a capacity of 30 tons tbs/hour of palm fruit fiber and palm shells has been utilized as boiler fuel to produce steam to supplyboilers power plant. With this utilization, the use of generators that using fossil fuel can be reduced, this would provide added value for the company. From the analysis, the fiber and shell materials were sufficient to supply 18 tons/hoursteam for the boiler. Shell material even excess as much as 441,5 tons per month. By utilizing the 2 types of biomass that is available alone, the electricity needs of the factory of 734 Kwh can be met. While other materials such as empty bunches and pome can be utilized to increase the added value and profitability for the palm oil mill.
NASA Astrophysics Data System (ADS)
Rahmani, Nanik; Jannah, Alifah Mafatikhul; Lisdiyanti, Puspita; Prasetya, Bambang; Yopi
2017-11-01
The optimizations of enzymatic hydrolysis to produce of xylo-oligosaccharides (XOs) from three different lignocellulosic biomasses were investigated. Sugarcane bagasse, oil palm empty fruit bunch, and rice straw contain rich hemicelluloses especially hetero-xylan which can be hydrolyzes by endo-xylanase enzyme. Enzymatic hydrolysis of sugarcane bagasse by endo-xylanase from Kitasatospora sp. was optimum at temperature hydrolysis 30 °C using 16 U of enzyme concentrations and 4 % substrate concentrations, while oil palm empty fruit bunchwas optimum at temperature hydrolysis 30 °C using 16 U of enzyme concentrations and 5 % substrate concentrations, and rice straw was optimum at 40 °C temperature hydrolysis using 16 U of enzyme concentrations and 4 % substrate concentrations. The hydrolysis products were analyzed by TLC and HPLC. The main product hydrolysis for sugarcane bagasse, oil palm empty fruit bunch and rice straw are xylobiose.
Extraction of glutathione from EFB fermentation waste using methanol with sonication process
NASA Astrophysics Data System (ADS)
Muryanto, Muryanto; Alvin, Nurdin, Muhammad; Hanifah, Ummu; Sudiyani, Yanni
2017-11-01
Glutathione is important compound on the human body. Glutathione have a widely use at pharmacy and cosmetics as detoxification, skin whitening agent, antioxidant and many other. This study aims to obtain glutathione from Saccharomyces cerevisiae in fermentation waste of second generation bioethanol. The remaining yeast in the empty fruit bunch (EFB) fermentation was separated from the fermentation solution use centrifugation process and then extracted using a methanol-water solution. The extraction process was done by maceration which was assisted by sonication process. Solvent concentration and time of sonication were varied to see its effect on glutathione concentration. The concentration of glutathione from the extraction process was analyzed using alloxan method with UV-Vis spectrophotometer. The results show that the highest glutathione concentration was approximately 1.32 g/L obtained with methanol solvent at 90 minutes of maceration following with 15 minutes sonication.
Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis.
Zakaria, Mohd Rafein; Fujimoto, Shinji; Hirata, Satoshi; Hassan, Mohd Ali
2014-08-01
Oil palm biomass, namely empty fruit bunch and frond fiber, were pretreated using a planetary ball mill. Particle sizes and crystallinity index values of the oil palm biomass were significantly reduced with extended ball mill processing time. The treatment efficiency was evaluated by the generation of glucose, xylose, and total sugar conversion yields from the pretreatment process compared to the amount of sugars from raw materials. Glucose and xylose contents were determined using high-performance liquid chromatography. An increasing trend in glucose and xylose yield as well as total sugar conversion yield was observed with decreasing particle size and crystallinity index. Oil palm frond fiber exhibited the best material yields using ball milling pretreatment with generated glucose, xylose, and total sugar conversion yields of 87.0, 81.6, and 85.4%, respectively. In contrast, oil palm empty fruit bunch afforded glucose and xylose of 70.0 and 82.3%, respectively. The results obtained in this study showed that ball mill-treated oil palm biomass is a suitable pretreatment method for high conversion of glucose and xylose.
Zakaria, Mohd Rafein; Hirata, Satoshi; Fujimoto, Shinji; Hassan, Mohd Ali
2015-10-01
Combined pretreatment with hot compressed water and wet disk milling was performed with the aim to reduce the natural recalcitrance of oil palm biomass by opening its structure and provide maximal access to cellulase attack. Oil palm empty fruit bunch and oil palm frond fiber were first hydrothermally pretreated at 150-190° C and 10-240 min. Further treatment with wet disk milling resulted in nanofibrillation of fiber which caused the loosening of the tight biomass structure, thus increasing the subsequent enzymatic conversion of cellulose to glucose. The effectiveness of the combined pretreatments was evaluated by chemical composition changes, power consumption, morphological alterations by SEM and the enzymatic digestibility of treated samples. At optimal pretreatment process, approximately 88.5% and 100.0% of total sugar yields were obtained from oil palm empty fruit bunch and oil palm frond fiber samples, which only consumed about 15.1 and 23.5 MJ/kg of biomass, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini
2012-01-01
This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hani, M. R.; Mahidin, M.; Husin, H.; Hamdani, H.; Khairil, K.
2018-03-01
This article deals with the discussion on the recent status of oil palm biomass utilization as an energy source and its possibility use for polygeneration system. The discussion focused only on the energy viewpoint. At this point, many projects and research have been developed in order to utilize the oil palm biomass to meet the energy demand of industries and communities, especially in the largest producing countries: Indonesia and Malaysia; and a few in Thailand, Africa, Latin America and Europe. Through the simulation work in the case study, it is evident that the government of Langsa City can fulfill the fresh water to their community and electricity to Langsa Harbor only by using EFB and PKS from one POM with the generated power of 12 MW, while the desalination plant consumes about 7 MW of electricity. If all potency of biomass from all POMs in Aceh Timur and Aceh Tamiang, without the combination of other primary energy sources is used, Langsa City might earn surplus of energy. The use of the oil palm biomass for polygeneration scenarios is possible and feasible from the technical point of view.
Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.
Ya'aini, Nazlina; Amin, Nor Aishah Saidina; Asmadi, Mohd
2012-07-01
Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised of chromium chloride and HY zeolite increased the levulinic acid production from glucose compared to the parent catalysts. Optimization of the glucose conversion process using two level full factorial designs (2(3)) with two center points reported 55.2% of levulinic acid yield at 145.2 °C, 146.7 min and 12.0% of reaction temperature, reaction time and catalyst loading, respectively. Subsequently, the potential of efb and kenaf for producing levulinic acid at the optimum conditions was established after 53.2% and 66.1% of efficiencies were reported. The observation suggests that the hybrid catalyst has a potential to be used in biomass conversion to levulinic acid. Copyright © 2012 Elsevier Ltd. All rights reserved.
Production of furfural from palm oil empty fruit bunches: kinetic model comparation
NASA Astrophysics Data System (ADS)
Panjaitan, J. R. H.; Monica, S.; Gozan, M.
2017-05-01
Furfural is a chemical compound that can be applied to pharmaceuticals, cosmetics, resins and cleaning compound which can be produced by acid hydrolysis of biomass. Indonesia’s demand for furfural in 2010 reached 790 tons that still imported mostly 72% from China. In this study, reaction kinetic models of furfural production from oil palm empty fruit bunches with submitting acid catalyst at the beginning of the experiment will be determine. Kinetic data will be obtained from hydrolysis of empty oil palm bunches using sulfuric acid catalyst 3% at temperature 170°C, 180°C and 190°C for 20 minutes. From this study, the kinetic model to describe the production of furfural is the kinetic model where generally hydrolysis reaction with an acid catalyst in hemicellulose and furfural will produce the same decomposition product which is formic acid with different reaction pathways. The activation energy obtained for the formation of furfural, the formation of decomposition products from furfural and the formation of decomposition products from hemicellulose is 8.240 kJ/mol, 19.912 kJ/mol and -39.267 kJ / mol.
Rayung, Marwah; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Saad, Wan Zuhainis; Razak, Nur Inani Abdul; Chieng, Buong Woei
2014-08-22
In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant.
Rayung, Marwah; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Saad, Wan Zuhainis; Razak, Nur Inani Abdul; Chieng, Buong Woei
2014-01-01
In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant. PMID:25153628
NASA Astrophysics Data System (ADS)
Hermawan, B.; Nikmatin, S.; Alatas, H.; Sudaryanto; Sukaryo, S. G.
2017-05-01
Oil palm empty fruit bunches (OPEFB) was one of the solid waste produced by the palm oil factory and were totally plentiful in biomass. OPEFB fiber used as reinforcement of polymer matrix acrylonitrile butadiene styrene (ABS). The use of FTIR is to see that there is no changes in the molecules of the constituent biocomposite ABS and OPEFB. The reactivity of butadiene and styrene through the double bond- π conjugated system, contributed to the bond reaction with the maleic acid as compatibilizer witch is grafted to the system. It is concluded that the posible grafting reaction occurs by the addition of the MAH to the double bond of the butadiene and styrene. The hydroxyl group of cellulose can interact with this maleic acid to form a bond through the carboxyl group.
NASA Astrophysics Data System (ADS)
Destyorini, F.; Indayaningsih, N.
2017-04-01
Empty fruit bunches of oil palm is a by-product of the palm oil industry that contains a high element of carbon. This by-product can be processed into a conductive carbon paper that could be applied as fuel cell electrodes. Carbon paper for this application must be conductive, porous, and hydrophobic. Utilization of oil palm empty fruit bunches begins with the carbonization process at a temperature of 500°C that produced charcoal. It is followed by heating at temperature of 900°C and 1300°C. To obtain the carbon paper, powdered charcoal with polymer binder (PEG and EVA) were mixed in solvent and molded using tape casting method. This process successfully produced carbon paper with dimensions of ±(20x20) cm2 and a thickness of 0.1-0.3 mm. Properties of carbon paper were characterized and analyzed in terms of electrical conductivity, porosity, hydrophobic property, and microstructure. Polytetrafluoroethylene (PTFE), a hydrophobic agent, was treated on carbon paper to enhance the hydrophobicity of the carbon paper. PTFE coating on the surface of the carbon paper could change their physical properties. Carbon paper shows excellent properties in terms of porosity and hydrophobicity. Whereas, its electrical property needs to be improved further by increasing the pyrolysis temperature. But overall, this might show a potential GDL material for PEMFC.
NASA Astrophysics Data System (ADS)
Zulfahmi; Syam, B.; Wirjosentono, B.
2018-02-01
A golf course with obstacles in the forms of water obstacle and lateral water obstacle marked with the stakes which are called golf course obstacle stake in this study. This study focused on the design and fabrication of the golf course obstacle stake with a solid cylindrical geometry using EFB fiber-reinforced polimeric foam composite materials. To obtain the EFB fiber which is free from fat content and other elements, EFB is soaked in the water with 1% (of the watre total volume) NaOH. The model of the mould designed is permanent mould that can be used for the further refabrication process. The mould was designed based on resin-compound paste materials with talc powder plus E-glass fiber to make the mould strong. The composition of polimeric foam materials comprised unsaturated resin Bqtn-Ex 157 (70%), blowing agent (10%), fiber (10%), and catalyst (10%). The process of casting the polimeric foam composit materials into the mould cavity should be at vertical casting position, accurate interval time of material stirring, and periodical casting. To find out the strength value of the golf course obstacle stake product, a model was made and simulated by using the software of Ansys workbench 14.0, an impact loading was given at the height of 400 mm and 460 mm with the variation of golf ball speed (USGA standard) v = 18 m/s, v = 35 m/s, v = 66.2 m/s, v = 70 m/s, and v = 78.2 m/s. The clarification showed that the biggest dynamic explicit loading impact of Fmax = 142.5 N at the height of 460 mm with the maximum golf ball speed of 78.2 m/s did not experience the hysteresis effect and inertia effect. The largest deformation area occurred at the golf ball speed v = 66.2 mm/s, that is 18.029 mm (time: 2.5514e-004) was only concentrated around the sectional area of contact point of impact, meaning that the golf course obstacle stakes made of EFB fiber-reinforced polymeric foam materials have the geometric functional strength that are able to absorb the energy of golf ball impact.
Determination of sugars composition in abscission zone of oil palm fruit
NASA Astrophysics Data System (ADS)
Thang, Y. M.; Ariffin, A. A.; Appleton, D. R.; Asis, A. J.; Mokhtar, M. N.; Yunus, R.
2017-06-01
Fresh oil palm fruit bunches (FFB) arriving at a palm oil mill are graded manually and randomly for ripeness classification by counting the number of empty fruit sockets (EFS) found in each bunch before processing. FFBs with at least ten EFS are classified as ripe bunch, FFBs with less than ten EFS are classified as under-ripe, while bunches without any EFS are classified as unripe. The aim of the present study is to determine the composition of sugars in the abscission of these three groups of FFBs by monitoring their sugars composition. The bunches were grouped according to the number of empty fruit sockets: (i) nil; (ii) 1-9; (iii) ≥10 as unripe, under-ripe and ripe bunches, respectively. Non-structural, structural and water-soluble sugars extracted from the abscission zone were analyzed. The principal component analysis (PCA) based on various sugars compositions revealed some natural clustering among the samples. Bunches with more than one empty fruit sockets were distinguished from the others using glucose, sucrose and oligomers. In conclusion, analysis of sugars composition of the abscission zone could potentially be used as a chemical marker to differentiate those bunches at different stages of ripeness.
NASA Astrophysics Data System (ADS)
Chang, Jessie S. L.; Chan, Y. S.; Law, M. C.; Leo, C. P.
2017-07-01
The implementation of microwave technology in palm oil processing offers numerous advantages; besides elimination of polluted palm oil mill effluent, it also reduces energy consumption, processing time and space. However, microwave exposure could damage a material’s microstructure which affected the quality of fruit that can be related to its physical structure including the texture and appearance. In this work, empty fruit bunches, mesocarp and kernel was microwave dried and their respective microstructures were examined. The microwave pretreatments were conducted at 100W and 200W and the microstructure investigation of both treated and untreated samples were evaluated using scanning electron microscope. The micrographs demonstrated that microwave does not significantly influence kernel and mesocarp but noticeable change was found on the empty fruit bunches where the sizes of the granular starch were reduced and a small portion of the silica bodies were disrupted. From the experimental data, the microwave irradiation was shown to be efficiently applied on empty fruit bunches followed by mesocarp and kernel as significant weight loss and size reduction was observed after the microwave treatments. The current work showed that microwave treatment did not change the physical surfaces of samples but sample shrinkage is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2012-03-01
PNNL and Florida Solar Energy Center worked with Habitat for Humanity of Palm Beach County to upgrade an empty 1996 home with a 14.5 SEER AC, heat pump water heater, CFLs, more attic insulation, and air sealing to cut utility bills $872 annually.
Quintero, Julián A; Moncada, Jonathan; Cardona, Carlos A
2013-07-01
In this study a techno-economic analysis of the production of bioethanol from four lignocellusic (Sugarcane bagasse, Coffee cut-stems, Rice Husk, and Empty Fruit Bunches) residues is presented for the Colombian case. The ethanol production was evaluated using Aspen Plus and Aspen Process Economic Analyzer carrying out the simulation and the economic evaluation, respectively. Simulations included the composition of lignocellulosic residues, which was determined experimentally. It was found that empty fruit bunches presents the highest ethanol yield from a dry basis point of view (313.83 L/t), while rice husk produced less ethanol (250.56 L/t). The ethanol production cost was assessed for the standalone ethanol plant and the ethanol plant coupled with a cogeneration system. Moreover, ethanol production cost using EFB was the lowest with (0.49 US$/L) and without (0.58 US$/L) cogeneration scheme. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bacterial community associated with worker honeybees (Apis mellifera) affected by European foulbrood
Ledvinka, Ondrej; Kamler, Martin; Hortova, Bronislava; Nesvorna, Marta; Tyl, Jan; Titera, Dalibor; Markovic, Martin; Hubert, Jan
2017-01-01
Background Melissococcus plutonius is an entomopathogenic bacterium that causes European foulbrood (EFB), a honeybee (Apis mellifera L.) disease that necessitates quarantine in some countries. In Czechia, positive evidence of EFB was absent for almost 40 years, until an outbreak in the Krkonose Mountains National Park in 2015. This occurrence of EFB gave us the opportunity to study the epizootiology of EFB by focusing on the microbiome of honeybee workers, which act as vectors of honeybee diseases within and between colonies. Methods The study included worker bees collected from brood combs of colonies (i) with no signs of EFB (EFB0), (ii) without clinical symptoms but located at an apiary showing clinical signs of EFB (EFB1), and (iii) with clinical symptoms of EFB (EFB2). In total, 49 samples from 27 honeybee colonies were included in the dataset evaluated in this study. Each biological sample consisted of 10 surface-sterilized worker bees processed for DNA extraction. All subjects were analyzed using conventional PCR and by metabarcoding analysis based on the 16S rRNA gene V1–V3 region, as performed through Illumina MiSeq amplicon sequencing. Results The bees from EFB2 colonies with clinical symptoms exhibited a 75-fold-higher incidence of M. plutonius than those from EFB1 asymptomatic colonies. Melissococcus plutonius was identified in all EFB1 colonies as well as in some of the control colonies. The proportions of Fructobacillus fructosus, Lactobacillus kunkeei, Gilliamella apicola, Frischella perrara, and Bifidobacterium coryneforme were higher in EFB2 than in EFB1, whereas Lactobacillus mellis was significantly higher in EFB2 than in EFB0. Snodgrassella alvi and L. melliventris, L. helsingborgensis and, L. kullabergensis exhibited higher proportion in EFB1 than in EFB2 and EFB0. The occurrence of Bartonella apis and Commensalibacter intestini were higher in EFB0 than in EFB2 and EFB1. Enterococcus faecalis incidence was highest in EFB2. Conclusions High-throughput Illumina sequencing permitted a semi-quantitative analysis of the presence of M. plutonius within the honeybee worker microbiome. The results of this study indicate that worker bees from EFB-diseased colonies are capable of transmitting M. plutonius due to the greatly increased incidence of the pathogen. The presence of M. plutonius sequences in control colonies supports the hypothesis that this pathogen exists in an enzootic state. The bacterial groups synergic to both the colonies with clinical signs of EFB and the EFB-asymptomatic colonies could be candidates for probiotics. This study confirms that E. faecalis is a secondary invader to M. plutonius; however, other putative secondary invaders were not identified in this study. PMID:28966892
Processing of oil palm empty fruit bunch as filler material of polymer recycles
NASA Astrophysics Data System (ADS)
Saepulloh, D. R.; Nikmatin, S.; Hardhienata, H.
2017-05-01
Oil palm empty fruit bunches (OPEFB) is waste from crude palm oil (CPO) processing plants. This research aims to process OPEFB to be a reinforcement polymer recycle with the mechanical milling method and identify each establishment molecular with the orbital hybridization theory. OPEFB fibers were synthesized using a mechanical milling until the size shortfiber and microfiber. Then do the biocomposite granular synthesis with single screw extruder. TAPPI chemical test shows levels of α-cellulose fibers amounted 41.68%. Based on density, the most optimum composition contained in the filler amounted 15% with the size is the microfiber. The test results of morphology with SEM showed deployment of filler OPEFB fiber is fairly equitable distributed. Regarding the molecular interaction between matrix with OPEFB fiber, described by the theory of orbital hybridization. But the explanation establishment of the bond for more complex molecules likes this from the side of the molecular orbital theory is necessary complete information of the hybrid levels.
Ferrer, Ana; Filpponen, Ilari; Rodríguez, Alejandro; Laine, Janne; Rojas, Orlando J
2012-12-01
Different cellulose pulps were produced from sulfur-free chemical treatments of Empty Palm Fruit Bunch Fibers (EPFBF), a by-product from palm oil processing. The pulps were microfluidized for deconstruction into nanofibrillated cellulose (NFC) and nanopaper was manufactured by using an overpressure device. The morphological and structural features of the obtained NFCs were characterized via atomic force and scanning electron microscopies. The physical properties as well as the interactions with water of sheets from three different pulps were compared with those of nanopaper obtained from the corresponding NFC. Distinctive chemical and morphological characteristics and ensuing nanopaper properties were generated by the EPFBF fibers. The NFC grades obtained compared favorably with associated materials typically produced from bleached wood fibers. Lower water absorption, higher tensile strengths (107-137 MPa) and elastic modulus (12-18 GPa) were measured, which opens the possibility for valorization of such widely available bioresource. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dasan, Y. K.; Bhat, A. H.; Faiz, A.
2015-07-01
This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC's were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC's are strongly dependent on the hydrolysis time and acid concentration.
Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Shirai, Yoshihito; Tashiro, Kosuke; Sakai, Kenji; Tashiro, Yukihiro
2017-06-01
A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.
Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.
Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali
2016-02-01
An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my; Bhat, A. H., E-mail: aamir.bhat@petronas.com.my; Faiz, A., E-mail: faizahmad@petronas.com.my
2015-07-22
This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s aremore » strongly dependent on the hydrolysis time and acid concentration.« less
Carcass characteristics and meat quality of lambs that are fed diets with palm kernel cake.
da Conceição Dos Santos, Rozilda; Gomes, Daiany Iris; Alves, Kaliandra Souza; Mezzomo, Rafael; Oliveira, Luis Rennan Sampaio; Cutrim, Darley Oliveira; Sacramento, Samara Bianca Moraes; de Moura Lima, Elizanne; de Carvalho, Francisco Fernando Ramos
2017-06-01
The aim was to evaluate carcass characteristics, cut yield, and meat quality in lambs that were fed different inclusion levels of palm kernel cake. Forty-five woolless castrated male Santa Inês crossbred sheep with an initial average body weight of 23.16±0.35 kg were used. The experimental design was a completely randomized design with five treatments, with palm kernel cake in the proportions of 0.0%, 7.5%, 15.0%, 22.5%, and 30.0% with nine replications per treatment. After slaughter, the gastrointestinal tract was weighed when it was full, after which it was then emptied. The heart, liver, kidney, pancreas perirenal fat were also collected and weighed. The carcass was split into two identical longitudinal halves and weighed to determine the quantitative and qualitative characteristics. The empty body weight, carcass weight and yield, and fat thickness decreased linearly (p<0.05) as a function of palm kernel inclusion in the diet. There was no difference (p>0.05) for the rib eye area of animals that were fed palm kernel cake. There was a reduction in the commercial cut weight (p<0.05), except for the neck weight. The weights of the heart, liver, kidney fat, small, and large intestine, and gastrointestinal tract decreased. Nevertheless, the gastrointestinal content was greater for animals that were fed increasing levels of cake. For the other organs and viscera, differences were not verified (p>0.05). The sarcomere length decreased linearly (p<0.05), although an effect of the inclusion of palm kernel cake was not observed in other meat quality variables. It is worth noting that the red staining intensity, indicated as A, had a tendency to decrease (p = 0.050). The inclusion of palm kernel cake up to 30% in the diet does not lead to changes in meat quality characteristics, except for sarcomere length. Nevertheless, carcass quantitative characteristics decrease with the use of palm kernel cake.
Carcass characteristics and meat quality of lambs that are fed diets with palm kernel cake
da Conceição dos Santos, Rozilda; Gomes, Daiany Iris; Alves, Kaliandra Souza; Mezzomo, Rafael; Oliveira, Luis Rennan Sampaio; Cutrim, Darley Oliveira; Sacramento, Samara Bianca Moraes; de Moura Lima, Elizanne; de Carvalho, Francisco Fernando Ramos
2017-01-01
Objective The aim was to evaluate carcass characteristics, cut yield, and meat quality in lambs that were fed different inclusion levels of palm kernel cake. Methods Forty-five woolless castrated male Santa Inês crossbred sheep with an initial average body weight of 23.16±0.35 kg were used. The experimental design was a completely randomized design with five treatments, with palm kernel cake in the proportions of 0.0%, 7.5%, 15.0%, 22.5%, and 30.0% with nine replications per treatment. After slaughter, the gastrointestinal tract was weighed when it was full, after which it was then emptied. The heart, liver, kidney, pancreas perirenal fat were also collected and weighed. The carcass was split into two identical longitudinal halves and weighed to determine the quantitative and qualitative characteristics. Results The empty body weight, carcass weight and yield, and fat thickness decreased linearly (p<0.05) as a function of palm kernel inclusion in the diet. There was no difference (p>0.05) for the rib eye area of animals that were fed palm kernel cake. There was a reduction in the commercial cut weight (p<0.05), except for the neck weight. The weights of the heart, liver, kidney fat, small, and large intestine, and gastrointestinal tract decreased. Nevertheless, the gastrointestinal content was greater for animals that were fed increasing levels of cake. For the other organs and viscera, differences were not verified (p>0.05). The sarcomere length decreased linearly (p<0.05), although an effect of the inclusion of palm kernel cake was not observed in other meat quality variables. It is worth noting that the red staining intensity, indicated as A, had a tendency to decrease (p = 0.050). Conclusion The inclusion of palm kernel cake up to 30% in the diet does not lead to changes in meat quality characteristics, except for sarcomere length. Nevertheless, carcass quantitative characteristics decrease with the use of palm kernel cake. PMID:27857029
Farma, R; Deraman, M; Awitdrus, A; Talib, I A; Taer, E; Basri, N H; Manjunatha, J G; Ishak, M M; Dollah, B N M; Hashmi, S A
2013-03-01
Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.
Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis
2008-04-01
Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.
Electronic Flight Bag (EFB) 2015 Industry Survey.
DOT National Transportation Integrated Search
2015-10-01
This document provides an overview of Electronic Flight Bag (EFB) hardware and software capabilities, including portable electronic devices (PEDs) used as EFBs, as of July 2015. This document updates and replaces the Volpe Centers previous EFB ind...
NASA Astrophysics Data System (ADS)
Burhani, Dian; Putri, Ary Mauliva Hada; Waluyo, Joko; Nofiana, Yulia; Sudiyani, Yanni
2017-11-01
This study investigated the effect of two-stage pretreatment using dilute H2SO4 followed by dilute NaOH on the physical characteristic of oil palm empty fruit bunch including crystallinity index, chemical bonding and morphology. Its effect on chemical characteristic, especially the sugar recovery have also been observed. The results showed a low crystallinity degree measured from acid-alkaline OPEFB which was confirmed by the FTIR spectra with the decrease intensity of CH2 bending vibration at 1433 cm-1 and crystallinity index in the amount of 57.53 %. Silica-bodies which was noticed from the raw OPEFB was successfully removed after the sequential pretreatment. High cellulose and lignin removal around 90 % and 73.1 %, respectively with a trace of acetic acid and no furfural content were achieved at the end of the pretreatment.
NASA Astrophysics Data System (ADS)
Rame
2018-02-01
In a future carbon-constrained global economy, the use of fossil fuels will be restricted. Biomass resources will be increased demand for renewable products. Oil Palm Empty Fruit Bunches (OPEFB) can be used as lignocellulose feedstock. The production of biofuels from lignocellulose feedstock can be achieved through biochemical or thermo-chemical routes. OPEFB contain chemical blocks of cellulose, hemicellulose and lignocellulose. Due to these substances, OPEFB can be converted into bio-products and chemical. Special attention to biorefinery approach that is present at relatively high potential in bio-products such as polymers, nutraceuticals, chemical building blocks, biofuels, and bioenergy. Different utilization types were considered and reviewed, and the most common and efficient process were discussed. In general, there is no single product which could be considered a solution to the utilization of managing OPEFB - in this review a number of product are more economic, effective and environmentally friendly.
NASA Astrophysics Data System (ADS)
Kadir, A. A.; Sarani, N. A.; Abdullah, M. M. A. B.; Perju, M. C.; Sandu, A. V.
2017-06-01
Palm oil is one of the major agricultural industries in Malaysia. Due to the poor management system, the discarded palm oil waste has always been linked to the environment issues. During processing of palm oil, a considerable amount of solid waste by-products in the form of fibres, shells, empty fruit bunches and fly ashes are produce rapidly. Therefore, this study was conducted to incorporate 1%, 5% and 10% of palm oil waste into fired clay brick. Samples of brick were fired at 1050°C temperature with heating rates of 1°C/min. Manufactured bricks were tested with physical and mechanical properties including firing shrinkage, dry density, water absorption and compressive strength. The results demonstrated that the replacement of 1% up to 5% of palm oil waste had improved several properties, although, a decrease of performance in certain aspects has also been observed. As a result, palm oil waste can be utilized in an environmentally safe way into fired clay brick thus providing adequate properties of fired clay brick.
Gutiérrez, Luis F; Sánchez, Oscar J; Cardona, Carlos A
2009-02-01
In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol.
Brown, Eric L; Nishiyama, Yasuhiro; Dunkle, Jesse W; Aggarwal, Shreya; Planque, Stephanie; Watanabe, Kenji; Csencsits-Smith, Keri; Bowden, M Gabriela; Kaplan, Sheldon L; Paul, Sudhir
2012-03-23
Antibodies that recognize microbial B lymphocyte superantigenic epitopes are produced constitutively with no requirement for adaptive immune maturation. We report cleavage of the Staphylococcus aureus virulence factor extracellular fibrinogen-binding protein (Efb) by catalytic antibodies produced with no exposure to the bacterium and reduction of the catalytic antibody activity following infection. IgG catalytic antibodies that specifically hydrolyzed Efb via a nucleophilic catalytic mechanism were found in the blood of healthy humans and aseptic mice free of S. aureus infection. IgG hydrolyzed peptide bonds on the C-terminal side of basic amino acids, including a bond located within the C3b-binding domain of Efb. Efb digested with the IgG lost its ability to bind C3b and inhibit complement-dependent antibody-mediated red blood cell lysis. In addition to catalysis, the IgG expressed saturable Efb binding activity. IgG from S. aureus-infected mice displayed reduced Efb cleaving activity and increased Efb binding activity compared with uninfected controls, suggesting differing effects of the infection on the antibody subsets responsible for the two activities. IgG from children hospitalized for S. aureus infection also displayed reduced Efb cleavage compared with healthy children. These data suggest a potential defense function for constitutively produced catalytic antibodies to a putative superantigenic site of Efb, but an adaptive catalytic response appears to be proscribed.
Medina, Eva; van Rooijen, Willemien J.; Spaan, András N.; van Kessel, Kok P. M.; Höök, Magnus; Rooijakkers, Suzan H. M.
2013-01-01
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein. PMID:24348255
Haspel, Nurit; Ricklin, Daniel; Geisbrecht, Brian V; Kavraki, Lydia E; Lambris, John D
2008-11-01
The C3-inhibitory domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb-C) defines a novel three-helix bundle motif that regulates complement activation. Previous crystallographic studies of Efb-C bound to its cognate subdomain of human C3 (C3d) identified Arg-131 and Asn-138 of Efb-C as key residues for its activity. In order to characterize more completely the physical and chemical driving forces behind this important interaction, we employed in this study a combination of structural, biophysical, and computational methods to analyze the interaction of C3d with Efb-C and the single-point mutants R131A and N138A. Our results show that while these mutations do not drastically affect the structure of the Efb-C/C3d recognition complex, they have significant adverse effects on both the thermodynamic and kinetic profiles of the resulting complexes. We also characterized other key interactions along the Efb-C/C3d binding interface and found an intricate network of salt bridges and hydrogen bonds that anchor Efb-C to C3d, resulting in its potent complement inhibitory properties.
NASA Astrophysics Data System (ADS)
Santoso, Pugoh; Yopi
2017-12-01
Explorations of local microorganisms from Indonesia that can produce of catalase are still limited. Neurospora crassa is a fungus which resulting of two kinds of catalase, namely catalase-1 and catalase-3. We studied the production of catalase by Neurospora crassa (no. F226) from Indonesia Culture Collection (InaCC) in Solid State Fermentation (SSF). Among four screened agro wastes (corn cob, rice straw, oil palm empty fruit bunches, and bagasse), rice straw and oil palm empty fruit bunches (OPEFB) were remarked as the most promising substrate suited for the excellent growth and adequate production of catalase. Based on the result, the method of solid state fermentation was suitable to production of catalase. It is caused that the medium served to maintain microbial growth and metabolism. The filamentous filament is more suitable for living on solid media because it has a high tolerance to low water activity, and it has a high potential to excrete hydrolytic enzymes that caused of its morphology. The filamentous filament morphology allows the fungus to form colonies and penetrate the solid substrates in order to obtain nutrients. The results showed that the highest catalase activity was obtained on rice straw and oil palm empty fruit bunches medium with catalase activity of 39.1 U/mL and 37,7 U/mL in 50% moisture content medium, respectively. Optimization of humidity and pH medium in the rice straw were investigated which is the highest activity obtained in 30% moisture content and pH medium of 6. The catalase activity was reached in the value of 53.761 U/mL and 56.903 U/mL by incubated 48 hours and 96 hours, respectively.
NASA Astrophysics Data System (ADS)
Hidayat, A.; Sutrisno, B.
2016-11-01
It is well-known that activated carbon is considered to be the general adsorbent due to the large range of applications. Numerous works are being continuously published concerning its use as adsorbent for: treatment of potable water; purification of air; retention of toxins by respirators; removal of organic and inorganic pollutants from flue gases and industrial waste gases and water; recuperation of solvents and hydrocarbons volatilized from petroleum derivatives; catalysis; separation of gas mixtures (molecularsieve activated carbons); storage of natural gas and hydrogen; energy storage in supercapacitors; recovery of gold, silver and othernoble metals; etc. This work presents producing activated carbons from palm empty fruit bunch using both physical activation with CO2 and chemical activation with KOH. The resultant activated carbons were characterized by measuring their porosities and pore size distributions. A comparison of the textural characteristics and surface chemistry of the activated carbon from palm empty fruit bunch by the CO2 and the KOH activation leads to the following findings: An activated carbon by the CO2 activation under the optimum conditions has a BET surface area of 717 m2/g, while that by the KOH activation has a BET surface area of 613 m2/g. The CO2 activation generated a highly microporous carbon (92%) with a Type-I isotherm, while the KOH activation generated a mesoporous one (70%) with a type-IV isotherm, the pore volumes are 0.2135 and 0.7426 cm3.g-1 respectively. The average pore size of the activated carbons is 2.72 and 2.56 nm for KOH activation and CO2 activation, respectively. The FT-IR spectra indicated significant variation in the surface functional groups are quite different for the KOH activated and CO2 activated carbons.
Lim, Hyun; Jung, Hwoon-Yong; Park, Young Soo; Na, Hee Kyong; Ahn, Ji Yong; Choi, Ji Young; Lee, Jeong Hoon; Kim, Mi-Young; Choi, Kwi-Sook; Kim, Do Hoon; Choi, Kee Don; Song, Ho June; Lee, Gin Hyug; Kim, Jin-Ho
2014-04-01
Endoscopic forceps biopsy (EFB) is a major diagnostic procedure for gastric epithelial neoplasia (GEN). However, discrepancy between the result of EFB and endoscopic resection (ER) is not uncommon. Thus, there is controversy over whether specimens obtained by EFB are optimal for diagnosis of GEN. We investigated the discrepancy between EFB and ER in the diagnosis of GEN. A total of 1,850 GEN cases were histologically diagnosed with EFB, including 954 low-grade dysplasias (LGDs), 315 high-grade dysplasias (HGDs), and 581 carcinomas. Following diagnosis with EFB, all patients were treated with ER. We retrospectively reviewed the pathologic findings and patient characteristics and analyzed predictors for the discrepancy between the two procedures (largest diameter, number of biopsy fragments, number of biopsy fragments/largest diameter, location, macroscopic type, color, surface unevenness, and erosion). The overall discrepancy rate between EFB and ER was 31.7 % (587/1,850). Among the discordant group, 440 (23.9 %) cases showed a higher grade of disease after ER; 229 of the 954 LGDs (24.0 %) were diagnosed as HGD or carcinoma, 166 of the 315 HGDs (52.7 %) as carcinoma, and 45 of the 581 differentiated carcinomas (7.7 %) as undifferentiated carcinoma. In the LGD group with EFB, the largest diameter (≥1.8 cm; P < 0.001), surface unevenness (P = 0.014), and depressed macroscopic type (P < 0.001) were factors associated with discrepancy. In the carcinoma group with EFB, flat macroscopic type (P = 0.043) was the only significant factor. In the HGD group with EFB, there were no significant factors for discrepancy. EFB can be insufficient for diagnosing GENs, and ER can be considered not only as treatment but also as a diagnostic modality in GEN. It is especially pertinent to all cases of HGD regardless of their endoscopic features and to cases of LGDs with the largest lesion diameter ≥1.8 cm, surface unevenness, or a depressed macroscopic type.
Bedside sonography for the diagnosis of esophageal food impaction.
Singleton, Jennifer; Schafer, Jesse M; Hinson, Jeremiah S; Kane, Erin M; Wright, Sherieka; Hoffmann, Beatrice
2017-05-01
Esophageal foreign body (EFB) and impaction are common gastrointestinal emergencies. Detection with standard imaging can be challenging. Computed tomography is a commonly used non-invasive imaging modality, but is not 100% sensitive and not always feasible. Sensitivity of plain film x-ray varies widely and the addition of a barium swallow can obscure evaluation by subsequent esophagogastroduodenoscopy (EGD). Use of emergency ultrasound (EUS) for detection of EFB in adults has not been previously studied. To evaluate the role of EUS in detection of EFB and to characterize sonographic findings. A case control series of five patients with clinical suspicion of EFB underwent EUS, and findings were compared to five healthy controls. Patients were evaluated for persistent air-fluid levels after swallowing, esophageal dilatation, and visualization of EFB. All patients with suspected EFB had esophageal dilatation (17.5mm vs 9.3mm in healthy controls; p=0.0011) and persistent air-fluid levels after swallowing. EFB was visualized on EUS in 60% of patients. All patients had EFB confirmed on EGD except one, who vomited a significant food bolus during EUS and prior to EGD. In patients with suspected EFB, point-of-care ultrasound may identify those with impaction. Suggestive findings include cervical esophageal dilatation and persistent intraluminal air-fluid levels after swallowing. EUS is a rapid, convenient test with the potential to expedite definitive management while decreasing cost and radiation exposure in this patient population. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Masli, M. Z.; Zakaria, S.; Chia, C. H.; Roslan, R.
2016-11-01
Resinification of liquefied empty fruit bunch with furfural (LEFB-Fu) was performed. During the resinification process, the samples were taken every hour up to 4 hours. FTIR analysis of the samples was conducted to understand the progress of the reaction. It showed that the bands of 1512 cm-1 and 1692 cm-1 evolving and diminishing respectively, indicating the consumption of furfural. The postulation of polymerization was also proven as the increasing extent of substitution of aromatic ring observed.
The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading
NASA Astrophysics Data System (ADS)
Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila
2017-08-01
Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farma, R.; Awitdrus,; Taer, E.
Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N{sub 2} environment at 800°C to produce carbon monoliths (CM) and the CM was CO{sub 2} activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H{sub 2}SO{sub 4} electrolyte at 0.5, 1.0 and 1.5 M were investigated usingmore » electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes.« less
NASA Astrophysics Data System (ADS)
Risanto, L.; Fitria; Fajriutami, T.; Hermiati, E.
2018-03-01
Oil palm empty fruit bunch (OPEFB) and sugarcane bagasse (SB) are potential feedstocks for the production of bioethanol. In this study OPEFB and SB were pretreated by liquid hot water and dilute sulfuric acid (3% H2SO4), and continued with enzymatic saccharification. Heating treatment for both methods was conducted in an autoclave at 121 °C for 1 hr. The saccharification was performed up to 72 hours with cellulase enzyme loading of 10, 20, and 30 FPU per g biomass. Results showed that OPEFB and SB pretreated with H2SO4 produced higher reducing sugars than those pretreated by liquid hot water. Higher enzyme loading also resulted in higher reducing sugars. Reducing sugars obtained from enzymatic saccharification of OPEFB were higher than those obtained from SB. The highest total reducing sugars (50.48 g/100 g biomass) was obtained from OPEFB pretreated with 3% H2SO4 at enzyme loading of 30 FPU per g biomass.
NASA Astrophysics Data System (ADS)
Alias, R.; Hamid, N. H.; Jaapar, J.; Musa, M.; Alwi, H.; Halim, K. H. Ku
2018-03-01
Thermal behavior and decomposition kinetics of shredded oil palm empty fruit bunches (SOPEFB) were investigated in this study by using thermogravimetric analysis (TGA). The SOPEFB were analyzed under conditions of temperature 30 °C to 900 °C with nitrogen gas flow at 50 ml/min. The SOPEFB were embedded with cobalt (II) nitrate solution with concentration 5%, 10%, 15% and 20%. The TG/DTG curves shows the degradation behavior of SOPEFB following with char production for each heating rate and each concentration of cobalt catalyst. Thermal degradation occurred in three phases, water drying phase, decomposition of hemicellulose and cellulose phase, and lignin decomposition phase. The kinetic equation with relevant parameters described the activation energy required for thermal degradation at the temperature regions of 200 °C to 350 °C. Activation energy (E) for different heating rate with SOPEFB embedded with different concentration of cobalt catalyst showing that the lowest E required was at SOPEFB with 20% concentration of cobalt catalyst..
Sudheer, Surya; Alzorqi, Ibrahim; Ali, Asgar; Cheng, Poh Guat; Siddiqui, Yasmeen; Manickam, Sivakumar
2018-01-01
This study investigates the cultivation of Ganoderma lucidum using different agricultural biomasses from Malaysia. Five different combinations of rubber wood sawdust, empty fruit bunch fiber, and mesocarp fiber from oil palm, alone and in combination, were used to cultivate G. lucidum. Although all the substrate combinations worked well to grow the mushroom, the highest biological efficiency was obtained from the combination of empty fruit bunch fiber with sawdust. A total yield of 27% was obtained from empty fruit bunch fiber with sawdust, followed by sawdust (26%), empty fruit bunch fiber (19%), mesocarp fiber with sawdust (19%), and mesocarp fiber (16%). The quality of mushrooms was proved by proximate analysis and detection of phenolic compounds and flavonoids. The antioxidant activity verified by DPPH, ferric-reducing ability of plasma, and ABTS analyses revealed that the empty fruit bunch fiber with sawdust had higher activity than the other substrates.
Pilot Perception of Electronic Flight Bags at Part 121 Air Carriers
NASA Astrophysics Data System (ADS)
Lytle, Donley
Electronic Flight Bags (EFBs) have been approved for use by pilots in flight operations at many Part 121 air carriers in the United States since 2010. As an automated device replacing paper in the cockpit, there are many human factor issues that relate to operation of the EFB. EFBs have been cited in accidents and incidents worldwide in large, transport category aircraft. While the EFB was not cited as the main cause of the accident/incident, it has been listed as a contributing factor. This study looks at pilot perception related to the safety aspect of the EFB in flight operations at Part 121 carriers in the United States. It surveys pilots that utilize the device in daily, routine flight operations to determine their perception of the EFB. The study is followed with a survey of a small group of pilots to help explain the results and any correlation between the variables.
NASA Astrophysics Data System (ADS)
Anuar, M. A. M.; Anting, N.; Shahidan, S.; Lee, Y. Y.; Din, M. F. Md; Khalid, F. S.; Nazri, W. M. H. W.
2017-11-01
Malaysia is one of the biggest producer of palm oil product and currently as main source of economy for the country. During the production of crude palm oil, a large amount of waste material is generated, such as palm oil fibres, palm oil shells and empty fruit bunches. Palm oil shell aggregate (POSA) is identified as a material that shows good potential to be used as a fine aggregate replacement in asphaltic concrete. On other hand, the chemical compound that exist in the Palm Oil Shell (POS) have shown a good potential as reflective component in cool-material. The purpose of this study is to obtain the physical and chemical properties of palm oil shell. The result shows the apparent particle density of Palm Oil Shell is 1.6 mg/m3. The specific gravity of palm oil shell was obtained with the value 1.6 and the water absorption amount of palm oil shell recorded from this study was 25.1%. The X-Ray Fluorescence study shows that palm oil shell contains the highest amount of SiO2 (46.412 wt%) and the second highest amount of Fe2O3 (34.016 wt%), both is the main output of relectivity compound. As a conclusion, waste palm oil shell has a potential to be used as alternative material for fine aggregate replacement. Besides that, the amount of chemical element that consist in palm oil shell which high in SiO2 and Fe2O3, promising the benefit to mitigate urban heat island as a cooling material agent.
Electronic flight bag (EFB) : 2010 industry survey
DOT National Transportation Integrated Search
2010-09-01
This document provides an overview of Electronic Flight Bag (EFB) systems and capabilities, as of June 2010. This document updates and replaces the April 2007 EFB Industry Review (Yeh and Chandra, 2007). As with the previous industry survey, the focu...
Electronic flight bag (EFB) : 2007 industry review
DOT National Transportation Integrated Search
2007-04-01
This document, which is based on information from March 2007, proivdes an overview of Electronic Flight Bag (EFB) systems and capabilities, with particular focus on the systems' human interface. It updates the April 2005 EFB Industry Review (Yeh and ...
Electronic Flight Bag (EFB) : 2005 industry review
DOT National Transportation Integrated Search
2005-04-01
The Electronic Flight Bag (EFB) market has accelerated rapidly in the past few years. The purpose of this industry review is to provide a primer on who is involved in the industry and what their efforts are. This informal summary of EFB technology pr...
Maneu, V; Roig, P; Gozalbo, D
2000-11-01
We have demonstrated that the expression of Candida albicans genes involved in translation and protein folding (EFB1 and SSB1) complements the phenotype of Saccharomyces cerevisiae mutants. The elongation factor 1beta (EF-1beta) is essential for growth and efb1 S. cerevisiae null mutant cells are not viable; however, viable haploid cells, carrying the disrupted chromosomal allele of the S. cerevisiae EFB1 gene and pEFB1, were isolated upon sporulation of a diploid strain which was heterozygous at the EFB1 locus and transformed with pEFB1 (a pEMBLYe23 derivative plasmid containing an 8-kb DNA fragment from the C. albicans genome which contains the EFB1 gene). This indicates that the C. albicans EFB1 gene encodes a functional EF-1beta. Expression of the SSB1 gene from C. albicans, which codes for a member of the 70-kDa heat shock protein family, in S. cerevisiae ssb1 ssb2 double mutant complements the mutant phenotype (poor growth particularly at low temperature, and sensitivity to certain protein synthesis inhibitors, such as paromomycin). This complementation indicates that C. albicans Ssbl may function as a molecular chaperone on the translating ribosomes, as described in S. cerevisiae. Northern blot analysis showed that SSB mRNA levels increased after mild cold shift (28 degrees C to 23 degrees C) and rapidly decreased after mild heat shift (from 28 degrees C to 37 degrees C, and particularly to 42 degrees C), indicating that SSB1 expression is regulated by temperature. Therefore, Ssb1 may be considered as a molecular chaperone whose pattern of expression is similar to that found in ribosomal proteins, according to its common role in translation.
NASA Astrophysics Data System (ADS)
Eliza, M. Y.; Shahruddin, M.; Noormaziah, J.; Rosli, W. D. Wan
2015-06-01
The surplus of Oil Palm is the most galore wastes in Malaysia because it produced about half of the world palm oil production, which contributes a major disposal problem Synthesis from an empty fruit bunch produced products such as Carboxymethyl Cellulose (CMC), could apply in diverse application such as for paper coating, food packaging and most recently, the potential as biomaterials has been revealed. In this study, CMC was prepared by firstly dissolved the bleached pulp from OPEFB in mixture solution of dimethyl sulfoxide(DMSO)/tetrabutylammonium fluoride (TBAF) without any prior chemical modification. It took only 30 minutes to fully dissolve at temperature 60°C before sodium hydroxide (NaOH) were added for activation and monochloroacetateas terrifying agent. The final product is appeared in white powder, which is then will be analyzedby FTIR analysis. FTIR results show peaks appeared at wavenumber between 1609 cm-1 to 1614 cm-1 proved the existence of carboxymethyl groups which substitute OH groups at anhydroglucose(AGU) unit. As a conclusion, mixture solution of DMSO/TBAF is the suitable solvent used for dissolved cellulose before modifying it into CMC with higher Degree of Substitution (DS). Furthermore, the dissolution of the OPEFB bleached pulp was easy, simple and at a faster rate without prior chemical modification at temperature as low as 60°C.
Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali
2015-01-01
The present works investigate hydrothermal pretreatment of oil palm empty fruit bunch and oil palm frond fiber in a batch tube reactor system with temperature and time range from 170 to 250°C and 10 to 20min, respectively. The behavior of soluble sugars, acids, furans, and phenols dramatically changed over treatment severities as determined by HPLC. The cellulose-rich treated solids were analyzed by SEM, WAXD, and BET surface area. Enzymatic hydrolysis was performed from both pretreated slurries and washed solid, and data obtained suggested that tannic acid derived from lignin degradation was a potential cellulase inhibitor. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused structural changes on the cellulose-hemicellulose-lignin matrix, resulting in the opening and expansion of specific surface area and pore volume. The current results provided important factors that maximize conversion of cellulose to glucose from oil palm biomass by hydrothermal process. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2003-09-01
Electronic Flight Bags (EFBs) are coming into the flight deck, bringing along with them a wide range of human factors considerations. In order to understand and assess the full impact of an EFB, designers and evaluators require an understanding of ho...
DOT National Transportation Integrated Search
2003-09-01
Electronic Flight Bags (EFBs) are coming into the flight deck, bringing along with them a wide range of human factors considerations. In order to understand and assess the full impact of an EFB, designers and evaluators require an understanding of ho...
Green bio-oil extraction for oil crops
NASA Astrophysics Data System (ADS)
Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.
2016-06-01
The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.
Medina, Jesus David Coral; Woiciechowski, Adenise; Zandona Filho, Arion; Noseda, Miguel D; Kaur, Brar Satinder; Soccol, Carlos Ricardo
2015-10-01
Lignin is an important raw material for the sustainable biorefineries and also the forerunner of high-value added products, such as biocomposite for chemical, pharmaceutical and cement industries. Oil palm empty fruit bunches (OPEFB) were used for lignin preparation by successive treatment with 1% (w/w) H2SO4 at 121°C for 60 min and 2.5% NaOH at 121°C for 80 min resulting in the high lignin yield of 28.89%, corresponding to 68.82% of the original lignin. The lignin obtained was characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The results indicated a lignin with molecular masses ramping from 4500 kDa to 12,580 kDa. FTIR and NMR of these lignins showed more syringyl and p-hydroxyphenyl than guaiacyl units. Moderate acid/alkaline treatment provided lignin with high industrial potential and acid hydrolyzates rich in fermentable sugars and highly porous cellulosic fibers. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Abdul Fattah, S. S.; Mohamed, R.; Jahim, J. M.; Illias, R. M.; Abu Bakar, F. D.; Murad, A. M. A.
2016-11-01
In this work, commercial cellulases and hemicellulases were evaluated for their hydrolytic activity towards pretreated oil palm empty fruit bunches (OPEFB). A total of three commercial cellulase preparations, Novozyme Celluclast®, Novozyme Cellic®Ctec, Dupont Accellerase®1500, and a commercial hemicellulase preparation, Novozyme Cellic®Htec, were evaluated. The assays were performed either using the cellulase alone or cellulase in combination with the hemicellulase, formulated at different enzyme activity ratios. Among the three cellulases, the Novozyme Cellic®Ctec yielded the highest reducing sugars, whereby 32.9% hydrolysis yield of OPEFB was achieved. The addition of the commercial hemicellulase to Celluclast® and Accellerase®1500 enhanced OPEFB hydrolysis. However, the addition of the hemicellulase to Cellic®Ctec, failed to enhance the production of the reducing sugars. Nevertheless, the amount of reducing sugars produced using Cellic®Ctec alone was the highest when compared to other enzyme combinations. It can be concluded that among the three commercial cellulases evaluated, the Novozyme Cellic®Ctec is the best enzyme for OPEFB hydrolysis.
NASA Astrophysics Data System (ADS)
Salleh, Noor Shafryna; Murad, Abdul Munir Abdul
2016-11-01
In this work, the ability of commercial Trichoderma reesei cellulases preparation, Celluclast® or in combination with Accellerase®BG β-glucosidase to hydrolyse pretreated oil palm empty fruit bunch (OPEFB) was evaluated. Celluclast® alone hydrolyzed OPEFB to produce 2.41±0.44 mg glucose per gram OPEFB. However, the production of glucose was significantly improved with supplementation of Accellerase®BG (8.12±0.93 mg/g). This result suggested that the endoglucanases and exoglucanases in Celluclast® and β-glucosidase in Accellerase®BG able to work synergistically to increase the production of glucose from OPEFB. In addition, the production of xylose was also improved by 30% when the enzyme mixture was used. The result suggested that the mixture of Celluclast® with Accellerase®BG work synergistically to improve the production of sugars by removing the inhibition by cellobiose for complete cellulose hydrolysis. The production of glucose and xylose from OPEFB wastes showed the potential of this biomass as the source of renewable energy and fine chemicals production in Malaysia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishak, M. M.; Deraman, M., E-mail: madra@ukm.my; Talib, I. A.
Self-adhesive carbon grains (SACG) was prepared from fibers of oil palm empty fruit bunches. The SACG green monoliths were carbonized in N{sub 2} environment at 400, 500, 600 and 700°C to produce carbon monoliths labeled as CM1, CM2, CM3 and CM4 respectively. The CMs were activated in CO{sub 2} surrounding at 800°C for 1 hour to produce activated carbon monolith electrodes (ACM1, ACM2, ACM3 and ACM4). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy (FESEM) and N{sub 2} adsorption-desorption isotherm techniques. ACMs were used as electrode to fabricate symmetry supercapacitormore » cells and the cells’ performances were investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) standard techniques. In this paper we report the physical and electrochemical properties of the ACM electrodes by analyzing the influence of the carbonization temperature on these properties.« less
NASA Astrophysics Data System (ADS)
Jenie, S. N. Aisyiyah; Kristiani, Anis; Kustomo, Simanungkalit, Sabar; Mansur, Dieni
2017-11-01
Nanomaterials based on carbon exhibits unique properties, both physical and chemical, that can be utilized in various application, including catalyst. These nanomaterials were prepared through pyrolysis-carbonization process of biomass, oil palm empty fruit bunches. The effect of carbonization temperature in range of 500°C-600°C were also studied. The magnetic nanobiochar samples, MBC, were sulfonated by using sulfuric acid to increase their properties as solid acid catalyst. Their chemical and physical properties were characterized by Surface Area Analyzer and Porositymeter, X-Ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infra-Red. The magnetic biochar samples obtained from carbonization at 873 K, MBC02-SO3H, was proven to have higher surface area, crystallinity properties and surface chemical composition after sulfonation process, which were confirmed by the BET, XRD and FT-IR analysis. Moreover, sample MBC02-SO3H exhibit promising catalytic acitivity in a catalysed esterification reaction, producing an ester yield of 64%. The result from this work opens new opportunities for the development of magnetic heterogenous acid catalyst from biomass waste.
NASA Astrophysics Data System (ADS)
Limoes, S.; Rahman, S. F.; Setyahadi, S.; Gozan, M.
2018-03-01
Oil Palm Empty Fruit Bunch (OPEFB) is an abundant biomass resource in Indonesia, which contains 46,77% (w/w) of cellulose. The high cellulose content of OPEFB can be used as a substrate for bacteria cultivation to produce cellulase. By using OPEFB as an alternative substrate, the production cost of cellulase in industrial scale can be suppressed. However, currently there are no available research that simulate a cellulase production plant design. Prior to simulating the cellulase plant design, kinetic studies of bacteria used in cultivation are needed to create an accurate simulation. In this research, kinetic studies of E. coli BPPTCC-EgRK2 growth were examined with the Monod approach to get the Monod constant (Ks) and maximum specific growth rate (μmax). This study found that E. coli BPPTCC-EgRK2 have μmax and Ks of 1.581 and 0.0709 respectively. BPPTCC-EgRK2 produced intracellular cellulase, thus gave linear correlation between cell concentration and cellulase production.
Duangwang, Sairudee; Ruengpeerakul, Taweesak; Cheirsilp, Benjamas; Yamsaengsung, Ram; Sangwichien, Chayanoot
2016-03-01
Pilot-scale steam explosion equipments were designed and constructed, to experimentally solubilize xylose from oil palm empty fruit bunches (OPEFB) and also to enhance an enzyme accessibility of the residual cellulose pulp. The OPEFB was chemically pretreated prior to steam explosion at saturated steam (SS) and superheated steam (SHS) conditions. The acid pretreated OPEFB gave the highest xylose recovery of 87.58 ± 0.21 g/kg dried OPEFB in the liquid fraction after explosion at SHS condition. These conditions also gave the residual cellulose pulp with high enzymatic accessibility of 73.54 ± 0.41%, which is approximately threefold that of untreated OPEFB. This study has shown that the acid pretreatment prior to SHS explosion is an effective method to enhance both xylose extraction and enzyme accessibility of the exploded OPEFB. Moreover, the xylose solution obtained in this manner could directly be fermented by Candida shehatae TISTR 5843 giving high ethanol yield of 0.30 ± 0.08 g/g xylose. Copyright © 2015 Elsevier Ltd. All rights reserved.
Walter, Andreas; Franke-Whittle, Ingrid H; Wagner, Andreas O; Insam, Heribert
2015-01-01
The biomethane potential and structural changes of the methanogenic community in a solid-state anaerobic digestion process co-digesting cattle slurry and empty fruit bunches were investigated under mesophilic (37°C) and thermophilic (55°C) conditions. Phylogenetic microarrays revealed the presence of two hydrogenotrophic genera (Methanoculleus and Methanobrevibacter) and one acetoclastic genus (Methanosarcina). Methanosarcina numbers were found to increase in both mesophilic and thermophilic treatments of empty fruit bunches. Methanobrevibacter, which dominated in the cattle slurry, remained constant during anaerobic digestion (AD) at 37°C and decreased in numbers during digestion at 55°C. Numbers of Methanoculleus remained constant at 37°C and increased during the thermophilic digestion. Physicochemical data revealed non-critical concentrations for important monitoring parameters such as total ammonia nitrogen, free ammonia nitrogen and volatile fatty acids in all treatments after AD. The biomethane potential of empty fruit bunches was higher under thermophilic conditions than under mesophilic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.
2018-04-01
Palm oil fuel ash (POFA) is a by-product resulting from the combustion of palm oil waste such as palm oil shell and empty fruit bunches to generate electricity in the palm oil mills. Considerable quantities of POFA thus generated, accumulate in the open fields and landfills, which causes atmospheric pollution in the form of generating toxic gases. Firstly, to protect the environment; and secondly, having excellent properties for this purpose; POFA can be and has been used as partial cement replacement in concrete preparation. Therefore, this paper compiles the results obtained from previous studies that address the properties of concrete containing POFA as cement replacement in fresh and hardened states. The results indicate that there is a great potential to using POFA as cement replacement because of its ability to improve compressive strength, reduce hydration heat of cement mortar and positively affect other fresh and hardened concrete properties. The paper recommends that conducting further studies to exploit high volume of POFA along with other additives as cement replacement while maintaining high quality of concrete can help minimize CO2 emissions due to concrete.
Zhang, Xin; Liu, Yu; Gao, Yaping; Dong, Jie; Mu, Chunhua; Lu, Qiang; Shao, Ningsheng; Yang, Guang
2011-01-01
Several fibrinogen binding proteins (Fibs) play important roles in the pathogenesis of Staphylococcus aureus (S. aureus). Most Fibs can promote the aggregation of platelets during infection, but the extracellular fibrinogen-binding protein (Efb) is an exception. It is reported that Efb can specifically bind fibrinogen and inhibit the aggregation of platelet with its N terminal. However, the biological significance of platelet aggregation inhibition in the infection caused by S. aureus is unclear until now. Here, we demonstrated that the persistence and aggregation of platelets were important for killing S. aureus in whole blood. It was found that the N terminal of Efb (EfbN) and platelets inhibitors could increase the survival of S. aureus in whole blood. The study in vivo also showed that EfbN and platelets inhibitors could reduce the killing of S. aureus and increase the lethality rate of S. aureus in the acute infection mouse model.
Deploying a Route Optimization EFB Application for Commercial Airline Operational Trials
NASA Technical Reports Server (NTRS)
Roscoe, David A.; Vivona, Robert A.; Woods, Sharon E.; Karr, David A.; Wing, David J.
2016-01-01
The Traffic Aware Planner (TAP), developed for NASA Langley Research Center to support the Traffic Aware Strategic Aircrew Requests (TASAR) project, is a flight-efficiency software application developed for an Electronic Flight Bag (EFB). Tested in two flight trials and planned for operational testing by two commercial airlines, TAP is a real-time trajectory optimization application that leverages connectivity with onboard avionics and broadband Internet sources to compute and recommend route modifications to flight crews to improve fuel and time performance. The application utilizes a wide range of data, including Automatic Dependent Surveillance Broadcast (ADS-B) traffic, Flight Management System (FMS) guidance and intent, on-board sensors, published winds and weather, and Special Use Airspace (SUA) schedules. This paper discusses the challenges of developing and deploying TAP to various EFB platforms, our solutions to some of these challenges, and lessons learned, to assist commercial software developers and hardware manufacturers in their efforts to implement and extend TAP functionality in their environments. EFB applications (such as TAP) typically access avionics data via an ARINC 834 Simple Text Avionics Protocol (STAP) server hosted by an Aircraft Interface Device (AID) or other installed hardware. While the protocol is standardized, the data sources, content, and transmission rates can vary from aircraft to aircraft. Additionally, the method of communicating with the AID may vary depending on EFB hardware and/or the availability of onboard networking services, such as Ethernet, WIFI, Bluetooth, or other mechanisms. EFBs with portable and installed components can be implemented using a variety of operating systems, and cockpits are increasingly incorporating tablet-based technologies, further expanding the number of platforms the application may need to support. Supporting multiple EFB platforms, AIDs, avionics datasets, and user interfaces presents a challenge for software developers and the management of their code baselines. Maintaining multiple baselines to support all deployment targets can be extremely cumbersome and expensive. Certification also needs to be considered when developing the application. Regardless of whether the software is itself destined to be certified, data requirements in support of the application and user interface elements may introduce certification requirements for EFB manufacturers and the airlines. The example of TAP, the challenges faced, solutions implemented, and lessons learned will give EFB application and hardware developers insight into future potential requirements in deploying TAP or similar flight-deck EFB applications.
Georgoutsou-Spyridonos, Maria; Ricklin, Daniel; Pratsinis, Haris; Perivolioti, Eustathia; Pirmettis, Ioannis; Garcia, Brandon L.; Geisbrecht, Brian V.; Foukas, Periklis G.; Lambris, John D.; Mastellos, Dimitrios C.; Sfyroera, Georgia
2015-01-01
Staphylococcus aureus (S. aureus) can cause a broad range of potentially fatal inflammatory complications (e.g. sepsis, endocarditis). Its emerging antibiotic resistance and formidable immune evasion arsenal have emphasized the need for more effective antimicrobial approaches. Complement is an innate immune sensor that rapidly responds to bacterial infection eliciting C3-mediated opsonophagocytic and immunomodulatory responses. Extracellular Fibrinogen-binding Protein (Efb) is a key immune evasion protein of S. aureus that intercepts complement at the level of C3. To date, Efb has not been explored as a target for monoclonal antibody (mAb)-based antimicrobial therapeutics. Herein we have isolated donor-derived anti-Efb IgGs that attenuate S. aureus survival through enhanced neutrophil killing. A phage library screen yielded mAbs (miniAbs) that selectively inhibit the interaction of Efb with C3 partly by disrupting contacts essential for complex formation. Surface Plasmon Resonance-based kinetic analysis enabled the selection of miniAbs with favorable Efb-binding profiles as therapeutic leads. MiniAb-mediated blockade of Efb attenuated S aureus survival in a whole blood model of bacteremia. This neutralizing effect was associated with enhanced neutrophil-mediated killing of S. aureus, increased C5a release and modulation of IL-6 secretion. Finally, these miniAbs afforded protection from S. aureus-induced bacteremia in a murine renal abscess model, attenuating bacterial inflammation in kidneys. Overall, these findings are anticipated to pave the way towards novel antibody-based therapeutics for S. aureus-related diseases. PMID:26342032
NASA Astrophysics Data System (ADS)
Elias, Aishah; Mutalib, Sahilah Abd.; Mustapha, Wan Aida Wan
2016-11-01
A glasshouse experiment was conducted to study the effect of different type of compost and fertilizers on the growth of tomato (Lycopersicon esculentum). The experiment consisted of sixteen treatments. Compost of Empty fruit bunch (EFB) and cow dung is mixed in the ratio of 3:2:1 (soil: compost: sand) and put into 25.4 mm2 polyethylene bag. Organic fertilizer of 10 ml were added twice a week, while inorganic fertilizer was applied at the rate of 3 g per polyethylene bag of soil three weeks after sowing. Treatment without fertilizer application was established as a control. The treatments were laid in a split-split plot design with three replications. Plant growth was assessed using accumulating plant height, fresh weight and dry weight. The application of organic plus inorganic fertilizer had significant effects on plant height. The application of organic fertilizer combination with cow dung gave significant difference to plant mass (fresh and dry). The data obtained from these treatments were significantly higher than the data obtained from the control (without fertilizer). In conclusion, the type of compost did not gave significant difference towards plant height while it only gave significant difference towards plant mass.
NASA Astrophysics Data System (ADS)
Trujillo, Eddie J.; Ellersick, Steven D.
2006-05-01
The Boeing Electronic Flight Bag (EFB) is a key element in the evolutionary process of an "e-enabled" flight deck. The EFB is designed to improve the overall safety, efficiency, and operation of the flight deck and corresponding airline operations by providing the flight crew with better information and enhanced functionality in a user-friendly digital format. The EFB is intended to increase the pilots' situational awareness of the airplane and systems, as well as improve the efficiency of information management. The system will replace documents and forms that are currently stored or carried onto the flight deck and put them, in digital format, at the crew's fingertips. This paper describes what the Boeing EFB is and the significant human factors and interface design issues, trade-offs, and decisions made during development of the display system. In addition, EFB formats, graphics, input control methods, challenges using COTS (commercial-off-the-shelf)-leveraged glass and formatting technology are discussed. The optical design requirements, display technology utilized, brightness control system, reflection challenge, and the resulting optical performance are presented.
Removal of Methylene Blue and Orange-G from Waste Water Using Magnetic Biochar
NASA Astrophysics Data System (ADS)
Mubarak, N. M.; Fo, Y. T.; Al-Salim, Hikmat Said; Sahu, J. N.; Abdullah, E. C.; Nizamuddin, S.; Jayakumar, N. S.; Ganesan, P.
2015-04-01
The study on the removal of methylene blue (MB) and orange-G dyes using magnetic biochar derived from the empty fruit bunch (EFB) was carried out. Process parameters such as pH, adsorbent dosage, agitation speed and contact time were optimized using Design-Expert Software v.6.0.8. The statistical analysis reveals that the optimum conditions for the maximum adsorption of MB are at pH 2 and pH 10, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. While for orange-G, at pH 2, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. The maximum adsorption capacity of 31.25 mg/g and 32.36 mg/g for MB and orange-G respectively. The adsorption kinetic for both dyes obeyed pseudo-second order.
Xu, Guifang; Zhang, Weijie; Lv, Ying; Zhang, Bin; Sun, Qi; Ling, Tingsheng; Zhang, Xiaoqi; Zhou, Zhihua; Wang, Lei; Huang, Qin; Zou, Xiaoping
2016-07-01
Differences in pathologic diagnosis between endoscopic forceps biopsy (EFB) and endoscopic submucosal dissection (ESD) for gastric intraepithelial neoplasia (GIN) and early gastric carcinoma (EGC) in Chinese patients remain unknown. The aim of the study was to investigate risk factors for under-diagnosed pathology in initial EFB, compared to final ESD. We reviewed endoscopic and histopathologic findings for tumor location, size, macroscopic pattern, nodularity, erythema, erosion, GIN (low and high grade), and EGC diagnosed with the WHO criteria. Differences in those features between EFB and ESD were compared and risk factors for under-diagnosis by EFB were analyzed. Although concordant in most (74.9 %) cases between EFBs and ESDs, pathological diagnoses in 57 (25.1 %) cases were upgraded in ESDs. Compared to the concordant group, the lesion size ≥2 cm, and depressed and excavated patterns were significantly more frequent in the upgraded group. Further multivariate regression analysis demonstrated the depressed pattern and lesion size ≥2 cm as independent risk factors for upgraded pathology with the odds ratio of 5.778 (95 % confidence interval 2.893-11.542) and 2.535 (95 % confidence interval 1.257-5.111), respectively. Lesion size ≥2.0 cm and the depressed pattern at initial EFB were independent risk factors for pathologic upgrade to advanced diseases in ESD. Therefore, these endoscopic characteristics should be considered together with the initial EFB diagnosis to guide the optimal clinical management of patients with GIN and EGC.
Georgoutsou-Spyridonos, Maria; Ricklin, Daniel; Pratsinis, Haris; Perivolioti, Eustathia; Pirmettis, Ioannis; Garcia, Brandon L; Geisbrecht, Brian V; Foukas, Periklis G; Lambris, John D; Mastellos, Dimitrios C; Sfyroera, Georgia
2015-10-15
Staphylococcus aureus can cause a broad range of potentially fatal inflammatory complications (e.g., sepsis and endocarditis). Its emerging antibiotic resistance and formidable immune evasion arsenal have emphasized the need for more effective antimicrobial approaches. Complement is an innate immune sensor that rapidly responds to bacterial infection eliciting C3-mediated opsonophagocytic and immunomodulatory responses. Extracellular fibrinogen-binding protein (Efb) is a key immune evasion protein of S. aureus that intercepts complement at the level of C3. To date, Efb has not been explored as a target for mAb-based antimicrobial therapeutics. In this study, we have isolated donor-derived anti-Efb IgGs that attenuate S. aureus survival through enhanced neutrophil killing. A phage library screen yielded mini-Abs that selectively inhibit the interaction of Efb with C3 partly by disrupting contacts essential for complex formation. Surface plasmon resonance-based kinetic analysis enabled the selection of mini-Abs with favorable Efb-binding profiles as therapeutic leads. Mini-Ab-mediated blockade of Efb attenuated S. aureus survival in a whole blood model of bacteremia. This neutralizing effect was associated with enhanced neutrophil-mediated killing of S. aureus, increased C5a release, and modulation of IL-6 secretion. Finally, these mini-Abs afforded protection from S. aureus-induced bacteremia in a murine renal abscess model, attenuating bacterial inflammation in kidneys. Overall, these findings are anticipated to pave the way toward novel Ab-based therapeutics for S. aureus-related diseases. Copyright © 2015 by The American Association of Immunologists, Inc.
Kunjirama, Magendran; Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Lye, Jimmy Wei Ping; Mat, Hanapi
2017-06-01
This study was conducted to investigate the potential application of oil palm empty fruit branches (OPEFB) as adsorbents to remove organic methylmercurry, MeHg(II), and inorganic Hg(II) from aqueous solution. The OPEFB was functionalized with amine containing ligand namely 3-ureidopropyltriethoxysilane (UPTES) aiming for better adsorption performance towards both mercury ions. The adsorption was found to be dependent on initial pH, initial concentraton, temperatures, and contact time. The maximum adsorption capacities (Q m.exp ) of Hg(II) adsorption onto OPEFB and UPTES-OPEFB were 0.226 and 0.773 mmol/g, respectively. The Q m.exp of MeHg(II) onto OPEFB, however, was higher than UPTES-OPEFB. The adsorption kinetic data obeyed the Elovich model and the adsorption was controlled by the film-diffusion step. The calculated thermodynamic parameters indicate an endothermic adsorption process. Adsorption data analysis indicates that the adsorption mechanism may include ion-exchange, complexation, and physisorption interactions. The potential applications of adsorbents were demonstrated using oilfield produced water and natural gas condensate. The UPTES-OPEFB offered higher selectivity towards both mercury ions than OPEFB. The regenerability studies indicated that the adsorbent could be reused for multiple cycles.
NASA Astrophysics Data System (ADS)
Pasma, Satriani Aga; Daik, Rusli; Maskat, Mohamad Yusof
2013-11-01
Succinic acid is a common metabolite in plants, animals and microorganisms. It has been used widely in agricultural, food and pharmaceutical industries. Enzymatic hydrolysate glucose from oil palm empty fruit bunch (OPEFB) cellulose was used as a substrate for succinic acid production using Actinobacillus succinogenes. Using cellulose extraction from OPEFB can enhance the production of glucose as a main substrate for succinic acid production. The highest concentration of glucose produced from enzymatic hydrolysis is 167 mg/mL and the sugar recovery is 0.73 g/g of OPEFB. By optimizing the culture medium for succinic acid fermentation with enzymatic hydrolysate of OPEFB cellulose, the nitrogen sources could be reduced to just only 2.5 g yeast extract and 2.5 g corn step liquor. Batch fermentation was carried out using enzymatic hydrolysate of OPEFB cellulose with yeast extract, corn steep liquor and the salts mixture, 23.5 g/L succinic acid was obtained with consumption of 72 g/L glucose in enzymatic hydrolysate of OPEFB cellulose at 38 hours and 37°C. This study suggests that enzymatic hydrolysate of OPEFB cellulose maybe an alternative substrate for the efficient production of succinic acid by Actinobacillus succinogenes.
Salleh, M. A. Mohd; Asady, Bahareh
2017-01-01
This study aims to produce optimized biochar from oil palm empty fruit bunches (OPEFB), as a green, low cost adsorbent for uptake of zinc from aqueous solution. The impact of pyrolysis conditions, namely, highest treatment temperature (HTT), heating rate (HR), and residence time (RT) on biochar yield and adsorption capacity towards zinc, was investigated. Mathematical modeling and optimization of independent variables were performed employing response surface methodology (RSM). HTT was found to be the most influential variable, followed by residence time and heating rate. Based on the central composite design (CCD), two quadratic models were developed to correlate three independent variables to responses. The optimum production condition for OPEFB biochar was found as follows: HTT of 615°C, HR of 8°C/min, and RT of 128 minutes. The optimum biochar showed 15.18 mg/g adsorption capacity for zinc and 25.49% of yield which was in agreement with the predicted values, satisfactory. Results of the characterization of optimum product illustrated well-developed BET surface area and porous structure in optimum product which favored its sorptive ability. PMID:28420949
Juturu, Veeresh; Wu, Jin Chuan
2018-03-01
Thermophilic Bacillus coagulans JI12 was used to ferment hemicellulose hydrolysate obtained by acid hydrolysis of oil palm empty fruit bunch at 50 °C and pH 6, producing 105.4 g/L of l-lactic acid with a productivity of 9.3 g/L/H by fed-batch fermentation under unsterilized conditions. Simultaneous saccharification and fermentation (SSF) was performed at pH 5.5 and 50 °C to convert both hemicellulose hydrolysate and cellulose-lignin complex in the presence of Cellic Ctec2 cellulases using yeast extract (20 g/L) as the nitrogen source, giving 114.0 g/L of l-lactic acid with a productivity of 5.7 g/L/H. The SSF was also conducted by replacing yeast extract with equal amount of dry Bakers' yeast, achieving 120.0 g/L of l-lactic acid with a productivity of 4.3 g/L/H. To the best of our knowledge, these lactic acid titers and productivities are the highest ever reported from lignocellulose hydrolysates. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Nasution, H.; Yurnaliza; Veronicha; Irmadani; Sitompul, S.
2017-03-01
Alpha cellulose which was isolated from cellulose of fiber empty fruit bunch palm oil was hidrolized with hydrochloric acid (2,5N) at 80°C to produce microcrystalline cellulose (MCC). Microcrystalline cellulose is an important additional ingredient in the pharmaceutical, food, cosmetics, and structural composites. In this study, MCC, alpha cellulose, and cellulose were characterized and thereafter were compared. Characterizations were made using some equipment such as x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and thermogravimetry analyzer (TGA). X-ray diffraction and infrared spectroscopy were studied to determine crystallinity and molecular structure of MCC, where scanning electron microscopy images were conducted for information about morfology of MCC. Meanwhile, thermal resistance of MCC was determined using thermogravimetry analyzer (TGA). From XRD and FTIR, the obtained results showed that the crystalline part was traced on MCC, where the -OH and C-O groups tended to reduced as alpha cellulose has changed to MCC. From SEM the image showed the reduction of particle size of MCC, while the thermal resistance of MCC was found lower as compared with cellulose and alpha cellulose as well, which was attributed to the lower molecular weight of MCC.
NASA Astrophysics Data System (ADS)
Wen, Soh Jing; Rabat, Nurul Ekmi; Osman, Noridah
2017-12-01
Oil palm empty fruit bunch (OPEFB) fiber is a natural polymer which is potentially used as efficient adsorbents for heavy metal cations. The main objective of this research is to synthesize OPEFB grafted polyvinyl alcohol (PVA) hydrogel by using ammonium persulfate (APS) as initiator and gelatin as crosslinking agent. The grafting temperature, amounts of cross linking agent, initiator and concentration of OPEFB were manipulated in order to optimize the swelling capability of the hydrogel. Comparison of heavy metal adsorption performance between pure PVA hydrogel and optimized OPEFB-g-PVA hydrogel was evaluated by using copper ions solution. The characteristics and structure of the optimized OPEFB-g-PVA hydrogel was studied by using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) while Thermogravimetric Analysis (TGA) was used to study its thermal stability. The presence of band at 1088 and 1047cm-1 corresponds to C-O was observed as strong evidence of grafting. Water uptake capacity was evaluated and the maximum water absorption capacity was obtained at 180.67 g/g. PVA hydrogel with OPEFB proved to have better copper ion absorbency and thermal properties compared to pure PVA hydrogel.
NASA Astrophysics Data System (ADS)
Surya, E. A.; Rahman, S. F.; Zulamraini, S.; Gozan, M.
2018-03-01
An economic analysis of recombinant cellulase production from E. coli BPPTCC Eg-RK2 was conducted to support the fulfilling of Indonesia’s energy roadmap for ethanol production. The plant use oil palm empty fruit bunch (OPEFB) as primary substrate in cellulase production, with the expected lifetime of 12 years. The plant is assumed to be built in Indonesia and will fulfill 1% of total market demand. The effect of different pretreatment process (alkaline, steam explosion, and sequential acid-alkaline) on the economic value was also studied. A simulation using SuperPro Designer was used to calculate the mass and energy balance based on the kinetic parameter of E. coli BPPTCC-EgRK2. Technology evaluation show that alkaline pretreatment gave the highest yield with no known inhibitors formed. The steam explosion show the lowest lignin and hemicellulose removal and known to form known fermentation inhibitors. The net present value of alkaline, steam explosion, and sequential acid-alkaline pretreatment were USD 7,118,000; - USD 73,411,000 and USD -114,013,000 respectively, which mean alkaline pretreatment is the only economically feasible pretreatment method for recombinant cellulase production.
Productivity improvement with green approach to palm oil factory productivity
NASA Astrophysics Data System (ADS)
Matondang, N.
2018-02-01
The palm oil factory (POF) processes fresh fruit bunches into crude palm oil (CPO) and palm kernel oil (PKO) by products in the form of liquid and solid waste. One of the solid wastes produced in POF Tanjung Kasau is empty fruit bunches of palm oil (FBPO) which have been burned completely on incinerator tubes so that potentially produces pollutants that pollute the environment. If FBPO waste is managed properly, it will improve the productivity of the company. Therefore, it is necessary to conduct a study to find out how far the increased productivity of the company can reduce their impact on the environment, if FBPO is used as raw material of liquid smoke. The productivity improvement approach is done by Green Productivity concept, by looking at three aspects: environmental, social and economical. Green Productivity aims to protect the environment simultaneously by increasing the productivity of the company. One way is to turn FBPO waste into liquid smoke product is by pyrolysis process. The results showed that turning FBPO solid waste into liquid smoke will increase productivity by 18.18%. Implementation of Green Productivity can improve productivity through the improvement of FBPO waste treatment process which has been done by perfect combustion by pyrolysis process so that waste can be minimized to create environment industry POF clean and friendly environment.
Oil palm biomass-based adsorbents for the removal of water pollutants--a review.
Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah
2011-07-01
This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed.
Emission studies from combustion of empty fruit bunch pellets in a fluidized bed combustor
NASA Astrophysics Data System (ADS)
Fazli Othaman, Muhamad; Sabudin, Sulastri; Faizal Mohideen Batcha, Mohd
2017-08-01
Malaysia is producing a very large amount of biomass annually from milling activities of oil palm. This biomass is currently being used efficiently in many ways including as fuel for boilers together with fossil fuels. This paper reports the emission characteristics from biomass combustion in a swirling fluidized bed combustor (SFBC). Pelletized empty fruit bunch (PEFB), one of largest biomass produced from oil palm industries were used as fuel in the present study. Combustion experiments were conducted with several quantitiesof excess air: 20%, 40%, 60% and 80% for a constant fuel feedrate of 30kg/hr. The effect of excess air was investigated for three major emissions gaseous namely CO, CO2 and NOx. Fly ash produced from the combustion was also analysed to find the contents of unburnt carbon and other impurities. From the results, it was found that the emission of CO decreased from 64 ppm to 40 ppm while the amount of CO2 increased slightly with the increasing of excess air from 20% to 80%. The NOx emission also increased from 290 ppm to 350 ppm because of N2 in the EA reacts with O2 due to high combustion temperature. The combustion efficiencies of about 99% obtained in the present study, showing the prospects of using SFBC in commercial scale.
Acetylation of oil palm empty fruit bunch fiber as an adsorbent for removal of crude oil.
Asadpour, Robabeh; Sapari, Nasiman B; Isa, Mohamed Hasnain; Kakooei, Saeid
2016-06-01
Removal of oil spillage from the environment is a global concern. Various methods, including the use of fibers as sorbents, have been developed for oil spill control. Oil palm empty fruit bunch (OPEFB) fiber is a plant biomass that may be acetylated by acetic anhydride using N-bromosuccinimide (NBS) as a catalyst; here, the extent of acetylation may be calculated in terms of weight percent gain (WPG). The modified fiber was used to remove Tapis and Arabian crude oils. The optimum time, temperature, and catalyst concentration were 4 h, 120 °C, and 3 %, respectively, and these parameters could achieve an 11.49 % increase in WPG. The optimized parameters improved the adsorption capacity of OPEFB fibers for crude oil removal. The acetylated OPEFB fibers were characterized by using Fourier transform infrared spectroscopy and field emission scanning electron microscopy to observe the functional groups available and morphology. Kinetic and isotherm studies were conducted using different contact times and oil/water ratios. The rate of oil sorption onto the OPEFB fibers can be adequately described by the pseudo-second-order equation. Adsorption studies revealed that adsorption of crude oil on treated OPEFB fiber could be best described by the Langmuir isotherm model.
NASA Astrophysics Data System (ADS)
Indarti, E.; Marwan; Wanrosli, W. D.
2015-06-01
Nanocrystallinecellulose (NCC) from biomass is a promising material with huge potentials in various applications. A big challenge in its utilization is the agglomeration of the NCC's during processing due to hydrogen bonding among the cellulose chains when in close proximity to each other. Obtaining NCC's in a non-agglomerated and non-aqueous condition is challenging. In the present work NCC's was isolated from oil palm empty fruit bunch (OPEFB) using TEMPO-oxidation reaction method. To obtain non-agglomerated and non-aqueous products, the NCC's underwent post-treatment using oven drying (OD) and solvent exchanged (SE) techniques. The thermal stability of all samples was determined from TGA and DTG profiles whilst FTIR was used to analyzethe chemical modifications that occurred under these conditions. NCC-SE has better thermal stability than the NCC-OD and its on-set degradation temperature and residue are also higher. FTIR analysis shows that NCC-SE has a slightly different chemical composition whereby the absorption band at 1300 cm-1 (due to C-O symmetric stretching) is absent as compared to NCC-OD indicating that in NCC-SE the carboxylate group is in acid form which contribute to its thermal stability
Hydrothermal pre-treatment of oil palm empty fruit bunch into fermentable sugars
NASA Astrophysics Data System (ADS)
Muhd Ali, M. D.; Tamunaidu, P.; Nor Aslan, A. K. H.; Morad, N. A.; Sugiura, N.; Goto, M.; Zhang, Z.
2016-06-01
Presently oil palm empty fruit bunch (OPEFB) is one of the solid waste which is produced daily whereby it is usually left at plantation site to act as organic fertilizer for the plants to ensure the sustainability of fresh fruit bunch. The major drawback in biomass conversion technology is the difficulty of degrading the material in a short period of time. A pre-treatment step is required to break the lignocellulosic biomass to easily accessible carbon sources for further use in the production of fuels and fine chemicals. Therefore, this study investigated the effect of hydrothermal pre-treatment under different reaction temperatures (100 - 250°C), reaction time (10 - 40 min), solid to solvent ratio of (1:10 - 1:20 w/v) and particle size (0.15 - 1.00 mm) on the solubilization of OPEFB to produce soluble fermentable sugars. The maximum soluble sugars of 68.18 mg glucose per gram of OPEFB were achieved at 175°C of reaction temperature, 20 min of reaction time, 1:15 w/v of solid to solvent ratio for 30 mm of particle size. Results suggest that reaction temperature, reaction time, the amount of solid to solvent ratio and size of the particle are crucial parameters for hydrothermal pretreatment, in achieving a high yield of soluble fermentable sugars.
Designing a tool to assess the usability of electronic flight bags (EFBs)
DOT National Transportation Integrated Search
2004-09-01
The Federal Aviation Administration (FAA), system designers, and customers all recognize that Electronic Flight Bags (EFBs) are sophisticated devices whose use could affect pilot performance. As a result, human factors issues have received considerab...
Evaluating Electronic Flight Bags in the Real World
DOT National Transportation Integrated Search
2006-09-20
Over the past few years, the Volpe National Transportation Systems Center (Volpe Center) has developed several tools that can be used to evaluate Electronic Flight Bags (EFBs) from a human factors perspective. The tools are needed because EFBs are so...
Review of safety reports involving electronic flight bags
DOT National Transportation Integrated Search
2009-04-27
Electronic Flight Bags (EFBs) are a relatively new device used by pilots. Even so, 37 safety-related events involving EFBs were identified from the public online Aviation Safety Reporting System (ASRS) database as of June 2008. In addition, two accid...
Usability of EFBs for Viewing NOTAMs and AIS/MET Data Link Messages
NASA Technical Reports Server (NTRS)
Evans, Emory T.; Young, Steven D.; Daniels, Tammi S.; Myer, Robert R.
2014-01-01
Electronic Flight Bags (EFB) are increasingly integral to flight deck information management. A piloted simulation study was conducted at NASA Langley Research Center, one aspect of which was to evaluate the usability and acceptability of EFBs for viewing and managing Notices to Airmen (NOTAMs) and data linked aeronautical information services (AIS) and meteorological information (MET). The study simulated approaches and landings at Memphis International Airport (KMEM) using various flight scenarios and weather conditions. Ten two-pilot commercial airline crews participated, utilizing the Cockpit Motion Facility's Research Flight Deck (CMF/RFD) simulator. Each crew completed approximately two dozen flights over a two day period. Two EFBs were installed, one for each pilot. Study data were collected in the form of questionnaire/interview responses, audio/video recordings, oculometer recordings, and aircraft/system state data. Preliminary usability results are reported primarily based on pilot interviews and responses to questions focused on ease of learning, ease of use, usefulness, satisfaction, and acceptability. Analysis of the data from the other objective measures (e.g., oculometer) is ongoing and will be reported in a future publication. This paper covers how the EFB functionality was set up for the study; the NOTAM, AIS/MET data link, and weather messages that were presented; questionnaire results; selected pilot observations; and conclusions.
Kuipers, Annemarie; Stapels, Daphne A. C.; Weerwind, Lleroy T.; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C.; van Kessel, Kok P. M.
2016-01-01
Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance. PMID:27112346
Kuipers, Annemarie; Stapels, Daphne A C; Weerwind, Lleroy T; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C; van Kessel, Kok P M; Rooijakkers, Suzan H M
2016-07-01
Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.
DOT National Transportation Integrated Search
2013-05-30
This report documents the human factors activities conducted as part of the Capstone 3 Electronic Flight Bag (EFB) Airport Moving Map operational evaluation. The purpose of that operational evaluation was to understand the safety implications of ...
Sudheer, Surya; Ali, Asgar; Manickam, Sivakumar
2016-01-01
Rigorous research has been carried out regarding the cultivation of Ganoderma lucidum using different agricultural residues. Nevertheless, large-scale cultivation and the separation of active compounds of G. lucidum are still challenges for local farmers. The objective of this study was to evaluate the use of oil palm waste fibers such as empty fruit bunch fibers and mesocarp fibers as effective substrates for the growth of G. lucidum mycelia to study the possibility of solid-state cultivation and to determine the optimum conditions necessary for the growth of mycelia of this mushroom on these waste fibers. Various parameters such as temperature, pH, humidity, and carbon and nitrogen compositions required for the optimum growth of mycelia have been determined. Oil palm fibers are a vivid source of lignocellulose, and their availability in Malaysia is high compared to that of sawdust. G. lucidum is a wood-rotting fungi that can easily decay and utilize this lignocellulose biomass, a major agricultural waste in Malaysia.
A tool kit for evaluating electronic flight bags
DOT National Transportation Integrated Search
2006-09-01
Over the past few years, the Volpe Center has developed a set of five tools that can be used to evaluate Electronic Flight Bags (EFBs) from a human factors perspective. The goal of these tools is to help streamline and standardize EFB human factors a...
Oil Palm Empty Fruit Bunch (OPEFB) Fiber as Lost Circulation Material (LCM) in Water Based Mud (WBM)
NASA Astrophysics Data System (ADS)
Ghazali, N. A.; Sauki, A.; Abu Bakar, N. F.; Mohamed, S.
2018-05-01
Lost Circulation Material (LCM) is an additive used to prevent lost of mud to the formation as a results from natural or induced fractured during drilling operation. Losses of mud could give great impact to the oil industry as it increases mud cost and rig time. The objective of this research was to investigate the effect of size and concentration of Oil Palm Empty Fruit Bunch (OPEFB) as LCM in water based mud (WBM). Several important properties of WBM rheology after adding the OPEFB namely plastic viscosity, apparent viscosity, yield point and gel strength were characterized. The sizes of OPEFB added into the WBM were 150μm, 250μm, 500μm and 1000μm while the concentration of OPEFB used were 5g, 10g, 15g and 20g in 350 mL of WBM. Results indicated that the plastic viscosity and apparent viscosity increased with increasing of the OPEFB concentrations. On the other hand, the plastic viscosity and apparent viscosity decreased with increasing sizes of OPEFB. Yield point increased as the concentration and size of OPEFB increases. This study indicated that OPEFB was effective to be used as LCM for size of 150μm and concentration of 15g whereby it produced least amount of filtrate volume as well as good control in mud rheology.
Bio-composite Nonwoven Media Based on Chitosan and Empty Fruit Bunches for Wastewater Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadikin, Aziatul Niza; Nawawi, Mohd Ghazali Mohd; Othman, Norasikin
2011-01-17
Fibrous filter media in the form of non-woven filters have been used extensively in water treatment as pre-filters or to support the medium that does the separation. Lignocellulosic such as empty fruit bunches have potential to be used as a low cost filter media as they represent unused resources, widely available and are environmentally friendly. Laboratory filtration tests were performed to investigate the potential application of empty fruit bunches that enriched with chitosan as a fiber filter media to remove suspended solids, oil and grease, and organics in terms of chemical oxygen demand from palm oil mill effluent. The presentmore » paper studies the effect of chitosan concentration on the filter media performance. Bench-scaled experiment results indicated that pre-treatment using the fiber filtration system removed up to 67.3% of total suspended solid, 65.1% of oil and grease and 46.1% of chemical oxygen demand. The results show that the lignocellulosic fiber filter could be a potential technology for primary wastewater treatment.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...
Characteristics of iron ore sinter with EFB addition
NASA Astrophysics Data System (ADS)
Purwanto, H.; Rozhan, A. N.; Mohamad, A. S.; Zakiyuddin, A.
2018-04-01
Utilization of EFB-derived biochar in sintering of iron ore has been conducted in this work with regards to the porosity of iron sinter. EFB has been heated up in argon atmosphere to 450°C in order to produce biochar. In the present work, the sintering process was conducted at 1150°C with variations of biochar content from 5% to 10%. In this case, the apparent density for iron sinter shows significant decrease as the biochar addition increase. The porosity of iron sinter showed a gradual increment from 5% to 7.5% and escalated at 10% biochar content. The results of porosity and apparent density were in line with the micrograph of iron sinter.
Mohkam, Kayvan; Malik, Yaseen; Derosas, Carlos; Isaac, John; Marudanayagam, Ravi; Mehrzad, Homoyoon; Mirza, Darius F; Muiesan, Paolo; Roberts, Keith J; Sutcliffe, Robert P
2017-06-01
Endoscopic ultrasound fine needle aspiration (EUS-FNA) and percutaneous transhepatic cholangiographic endobiliary forceps biopsy (PTC-EFB) are valid procedures for histological assessment of proximal biliary strictures (PBS), but their performances have never been compared. This study aimed to compare the diagnostic performance of these two techniques. The diagnostic performances of EUS-FNA and PTC-EFB were compared in a retrospective cohort of patients assessed for PBS from 2011 to 2015 at a single tertiary centre. An inverse probability of treatment weighting (IPTW) was performed to adjust for covariate imbalance. A total of 102 EUS-FNAs and 75 PTC-EFBs (performed in 137 patients) were compared. Patients in the PTC-EFB group had higher preoperative bilirubin (243 versus 169 μmol/l, p = 0.005) and a higher incidence of malignancy (87% versus 67%, p = 0.008). Both techniques showed specificity and positive predictive value of 100%, and similar sensitivity (69% versus 75%, p = 0.45), negative predictive value (58% versus 38%, p = 0.15) and accuracy (78% versus 79%, p = 1.00). After IPTW, the diagnostic performance of the two techniques remained similar. Compared to EUS-FNA, PTC-EFB provides similar sensitivity, negative predictive value and accuracy. It should therefore be considered as the preferred tissue-sampling procedure, if biliary drainage is indicated. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Susanto, A; Sudharto, P S; Purba, R Y
2005-01-01
Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.
NASA Astrophysics Data System (ADS)
Rahmat, N. F. H.; Rasid, R. A.
2017-06-01
The main objectives of this work are to study the gasification of EFB in an atmospheric entrained flow gasifier, using carbon dioxide (CO2) as its gasifying agent and to determine the optimum gasification operating conditions, which includes temperature and the oxidant to fuel (OTF) ratio. These were evaluated in terms of important gasification parameters such as the concentration of hydrogen (H2) and carbon monoxide (CO) produced the syngas ratio H2/CO and carbon conversion. The gasification reactions take place in the presence of CO2 at very high reaction rate because of the high operating temperature (700°C - 900°C). The use of CO2 as the oxidant for gasification process can improve the composition of syngas produced as in the Boudouard reaction. Rise of reaction temperature which is 900°C will increase the concentration of both H2 & CO by up to 81 and 30 respectively, though their production were decreased after the OTF ratio of 0.6 for temperature 700°C & 800°C and OTF ratio 0.8 for temperature 750°C. The operating temperature must be higher than 850°C to ensure the Boudouard reaction become the more prominent reaction for the biomass gasification. The syngas ratio obtained was in the range of ≈ 0.6 - 2.4 which is sufficient for liquid fuel synthesis. For the carbon conversion, the highest fuel conversion recorded at temperature 850°C for all OTF ratios. As the OTF ratio increases, it was found that there was an increase in the formation of CO and H2. This suggests that to achieve higher carbon conversion, high operating temperature and OTF ratio are preferable. This study provides information on the optimum operating conditions for the gasification of biomass, especially the EFB, hence may upsurge the utilization of biomass waste as an energy source.
Pretreatment of aqueous ammonia on oil palm empty fruit fiber (OPEFB) in production of sugar
NASA Astrophysics Data System (ADS)
Zulkiple, Nursyafiqah; Maskat, Mohamad Yusof; Hassan, Osman
2015-09-01
Oil Palm Empty Fruit Bunch (OPEFB) is an agricultural residue that has the potential to become a good source for renewable feedstock for production of sugar. This work evaluated the effectiveness of aqueous ammonia as pretreatment at low (soaking, SAA) and elevated temperature (pressurized chamber) to deconstruct the lignocellulosic feedstock, prior to enzymatic hydrolysis. The ammonia pretreatments were compared against the standard NaOH method. The best tested pressurized chamber method conditions were at 100°C with 3 hour retention time, 12.5% ammonium hydroxide and 1:30 solid loading. The digestibility of the feedstock is determined with enzymatic hydrolysis using Cellic Ctech2 and Cellic Htech2. The sugars produced by pressurized chamber method within 24 hour of enzyme hydrolysis are similar to that produced by NaOH method which is 439.90 mg/ml and 351.61 mg/ml, respectively. Compared with optimum SAA method (24 hour, 6.25% of ammonium hydroxide at room temperature), pressurized chamber method was capable of producing enhanced delignification and higher production of sugar upon hydrolysis. These findings were supported by the disappearance peak at 1732, 1512 and 1243 on Fourier Transform Infrared (FTIR spectrum) of treated OPEFB by pressurized chamber method. XRD determination showed reduced crystallinity of OPEFB (37.23%) after treatment by pressurized chamber, suggesting higher accessibility toward enzyme hydrolysis. The data obtained suggest that the pressurized chamber pre-treatment method are suitable for OPEFB deconstruction to produce high yield of sugar.
NASA Astrophysics Data System (ADS)
Basri, N. H.; Deraman, M.; Suleman, Md.; Khiew, P. S.; Yatim, B.; Nor, N. S. M.; Sazali, N. E. S.; Hamdan, E.; Hanappi, M. F. Y. M.; Bakri, W. F. W.; Tajuddin, N. S. M.
2016-11-01
Hybrid supercapacitor or asymmetric cell made of composite electrode consists of nanoparticles NiO (75, 80, 85 wt.%), activated carbon powder (ACP) and PTFE binder (5 wt.%) as cathode paired with porous KOH treated activated carbon monolith (ACM) electrode from oil palm empty fruit bunches as anode have been fabricated. The physical characteristics of composite electrodes have been investigated by field emission scanning electron microscopy (FE-SEM). The density and resistivity of the composite electrodes have been measured and found to be increased with percentage of NiO composition. The supercapacitor performance of both symmetric and asymmetric configuration have been investigated in 6 M KOH electrolyte medium using cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) techniques. The CV results at 1 mV s-1 for the asymmetric cell demonstrate that the presence of ACM as an anode can improve the supercapacitor cell performance, as shown by the cell composed of composite electrode that consist 75 wt.% of NiO, which optimally exhibits 164 % increase in the value of Csp. The same trend is observed by the GCD results. The GCD results show that the presence of porous ACM electrodes has increase the specific energy value from 0.14 Wh kg-1 (without ACM) to 0.24, 0.51 and 0.66 W h kg-1, and the specific power from 94.9 to 122.0 W kg-1 corresponding to asymmetric cell consist of 75, 80, 85 wt.% of NiO, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nor, N. S. M., E-mail: madra@ukm.my; Deraman, M., E-mail: madra@ukm.my; Omar, R., E-mail: madra@ukm.my
Activated porous carbon electrode prepared from fibres of oil palm empty fruit bunches was used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated using carbon electrodes, stainless steel current collector, H{sub 2}SO{sub 4} electrolyte, and three types of nanoporous separators. Cells A, B and C were fabricated using polypropylene, eggshell membrane, and filter paper, respectively. Electrochemical characterizations data from Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanic Charge Discharge techniques showed that specific capacitance, specific power and specific energy for cell A were 122 F g{sup −1}, 177 W kg{sup −1}, 3.42 Wh kg{sup −1}, cellmore » B; 125 F g{sup −1}, 179 W kg{sup −1}, and 3.64 Wh kg{sup −1}, and cell C; 180 F g{sup −1}, 178 W kg{sup −1}, 4.27 Wh kg{sup −1}. All the micrographs from Field Emission Scanning Electron Microscope showed that the different in nanoporous structure of the separators lead to a significant different in influencing the values of specific capacitance, power and energy of supercapacitors, which is associated with the mobility of ion into the pore network. These results indicated that the filter paper was superior than the eggshell membrane and polypropylene nanoporous separators. However, we found that in terms of acidic resistance, polypropylene was the best nanoporous separator for acidic medium.« less
Ibrahim, M F; Razak, M N A; Phang, L Y; Hassan, M A; Abd-Aziz, S
2013-07-01
Cellulase is an enzyme that converts the polymer structure of polysaccharides into fermentable sugars. The high market demand for this enzyme together with the variety of applications in the industry has brought the research on cellulase into focus. In this study, crude cellulase was produced from oil palm empty fruit bunch (OPEFB) pretreated with 2% NaOH with autoclave, which was composed of 59.7% cellulose, 21.6% hemicellulose, and 12.3% lignin using Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Approximately 0.8 U/ml of FPase, 24.7 U/ml of CMCase and 5.0 U/ml of β-glucosidase were produced by T. asperellum UPM1 at a temperature of 35 °C and at an initial pH of 7.0. A 1.7 U/ml of FPase, 24.2 U/ml of CMCase, and 1.1 U/ml of β-glucosidase were produced by A. fumigatus UPM2 at a temperature of 45 °C and at initial pH of 6.0. The crude cellulase was best produced at 1% of substrate concentration for both T. asperellum UPM1 and A. fumigatus UPM2. The hydrolysis percentage of pretreated OPEFB using 5% of crude cellulase concentration from T. asperellum UPM1 and A. fumigatus UPM2 were 3.33% and 19.11%, with the reducing sugars concentration of 1.47 and 8.63 g/l, respectively.
Jorquera, Milko A; Crowley, David E; Marschner, Petra; Greiner, Ralf; Fernández, María Teresa; Romero, Daniela; Menezes-Blackburn, Daniel; De La Luz Mora, María
2011-01-01
Phytate is one of the most abundant sources of organic phosphorus (P) in soils, but must be mineralized by phytase-producing bacteria to release P for plant uptake. Microbial inoculants based on Bacillus spp. have been developed commercially, but few studies have evaluated the ecology of these bacteria in the rhizosphere or the types of enzymes that they produce. Here, we studied the diversity of aerobic endospore-forming bacteria (EFB) with the ability to mineralize phytate in the rhizosphere of pasture plants grown in volcanic soils of southern Chile. PCR methods were used to detect candidate phytase-encoding genes and to identify EFB bacteria that carry these genes. This study revealed that the phytate-degrading EFB populations of pasture plants included species of Paenibacillus and Bacillus, which carried genes encoding β-propeller phytase (BPP). Assays of enzymatic activity confirmed the ability of these rhizosphere isolates to degrade phytate. The phytase-encoding genes described here may prove valuable as molecular markers to evaluate the role of EFB in organic P mobilization in the rhizosphere. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Kristianto, Ivan; Limarta, Susan Olivia; Lee, Hyunjoo; Ha, Jeong-Myeong; Suh, Dong Jin; Jae, Jungho
2017-06-01
Lignin isolated by two-step concentrated acid hydrolysis of empty fruit bunch (EFB) was effectively depolymerized into a high-quality bio-oil using formic acid (FA) as an in-situ hydrogen source and Ru/C as a catalyst in supercritical ethanol. A bio-oil yield of 66.3wt% with an average molecular weight of 822g/mol and an aromatic monomer content of 6.1wt% was achieved at 350°C and a FA-to-lignin mass ratio of 3 after a reaction time of 60min. The combination of Ru/C and FA also resulted in a significant reduction in the oxygen content of the bio-oil by ∼60% and a corresponding increase in the higher heating value (HHV) to 32.7MJ/kg due to the enhanced hydrodeoxygenation activity. An examination of the FA decomposition characteristics revealed that Ru/C provides a greater increase in the rate of hydrogen production from FA, explaining the efficient depolymerization of lignin in a combined system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yeoh, Keat-Hor; Shafie, S A; Al-Attab, K A; Zainal, Z A
2018-06-15
In this study, three different methods for high quality solid fuel production were tested and compared experimentally. Oil palm empty fruit bunches, mesocarp fibers, palm kernel shells and rubber seeds shells were treated using thermal (TC), hydrothermal (HTC) and vapothermal (VTC) carbonization. All thermochemical methods were accomplished by using a custom made batch-type reactor. Utilization of novel single reactor equipped with suspended internal container provided efficient operation since both steam generator and raw materials were placed inside the same reactor. Highest energy densification was achieved by VTC process followed by TC and HTC processes. The heating value enhancement in VTC and TC was achieved by the increase in fixed carbon content and reduction in volatile matter. The formation of the spherical components in HTC hydrochar which gave a sharp peak at 340 °C in the DTG curves was suggested as the reason that led to the increment in energy content. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of temperature on pyrolysis product of empty fruit bunches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati
2015-04-24
Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The charmore » obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.« less
Naudin, Clément; Schumski, Ariane; Salo-Ahen, Outi M H; Herwald, Heiko; Smeds, Emanuel
2017-05-01
Species tropism constitutes a serious problem for developing relevant animal models of infection. Human pathogens can express virulence factors that show specific selectivity to human proteins, while their affinity for orthologs from other species can vary significantly. Suitable animal species must be used to analyse whether virulence factors are potential targets for drug development. We developed an assay that rapidly predicts applicable animal species for studying virulence factors binding plasma proteins. We used two well-characterized Staphylococcus aureus proteins, SSL7 and Efb, to develop an ELISA-based inhibition assay using plasma from different animal species. The interaction between SSL7 and human C5 and the binding of Efb to human fibrinogen and human C3 was studied. Affinity experiments and Western blot analyses were used to validate the assay. Human, monkey and cat plasma interfered with binding of SSL7 to human C5. Binding of Efb to human fibrinogen was blocked in human, monkey, gerbil and pig plasma, while human, monkey, gerbil, rabbit, cat and guinea pig plasma inhibited the binding of Efb to human C3. These results emphasize the importance of choosing correct animal models, and thus, our approach is a rapid and cost-effective method that can be used to prevent unnecessary animal experiments. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Arai, Rie; Tominaga, Kiyoshi; Wu, Meihua; Okura, Masatoshi; Ito, Kazutomo; Okamura, Naomi; Onishi, Hidetaka; Osaki, Makoto; Sugimura, Yuya; Yoshiyama, Mikio; Takamatsu, Daisuke
2012-01-01
European foulbrood (EFB) is an important infectious disease of honeybee larvae, but its pathogenic mechanisms are still poorly understood. The causative agent, Melissococcus plutonius, is a fastidious organism, and microaerophilic to anaerobic conditions and the addition of potassium phosphate to culture media are required for growth. Although M. plutonius is believed to be remarkably homologous, in addition to M. plutonius isolates with typical cultural characteristics, M. plutonius-like organisms, with characteristics seemingly different from those of typical M. plutonius, have often been isolated from diseased larvae with clinical signs of EFB in Japan. Cultural and biochemical characterization of 14 M. plutonius and 19 M. plutonius-like strain/isolates revealed that, unlike typical M. plutonius strain/isolates, M. plutonius-like isolates were not fastidious, and the addition of potassium phosphate was not required for normal growth. Moreover, only M. plutonius-like isolates, but not typical M. plutonius strain/isolates, grew anaerobically on sodium phosphate-supplemented medium and aerobically on some potassium salt-supplemented media, were positive for β-glucosidase activity, hydrolyzed esculin, and produced acid from L-arabinose, D-cellobiose, and salicin. Despite the phenotypic differences, 16S rRNA gene sequence analysis and DNA-DNA hybridization demonstrated that M. plutonius-like organisms were taxonomically identical to M. plutonius. However, by pulsed-field gel electrophoresis analysis, these typical and atypical (M. plutonius-like) isolates were separately grouped into two genetically distinct clusters. Although M. plutonius is known to lose virulence quickly when cultured artificially, experimental infection of representative isolates showed that atypical M. plutonius maintained the ability to cause EFB in honeybee larvae even after cultured in vitro in laboratory media. Because the rapid decrease of virulence in cultured M. plutonius was a major impediment to elucidation of the pathogenesis of EFB, atypical M. plutonius discovered in this study will be a breakthrough in EFB research. PMID:22442715
Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah
2015-01-01
In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.
NASA Astrophysics Data System (ADS)
Mardawati, Efri; Parlan; Rialita, Tita; Nurhadi, Bambang
2018-03-01
Xylanase is an enzyme used in the industrial world, including food industry. Xylanase can be utilized as a 1,4-β-xylosidic endo-hydrolysis catalyst of xylanase, a hemicellulose component for obtaining a xylose monomer. This study aims to determine the optimum concentration of the fermentation medium using Response Surface Method (RSM) in the production of xylanase enzyme from oil palm empty fruit bunches (OPEFB) through solid state fermentation process. The variables varied in this study used factor A (ammonium sulphate concentration 1.0-2.0 g/L), B (concentration of potassium dihydrogen phosphate 1.5-2.5 g/L) and C (urea concentration 0.2 – 0.5 g/L). The data was analysed by using Design Expert version 10.0.1.0 especially CCD with total 17 running including 3 times replicated of canter point. Trichoderma viride was used for the process production of xylanase enzyme. The ratio between substrate and moistening solution used was 0.63 g / mL with temperature of 32.80C, 60 h incubation time. The analysis of enzyme activity was done by DNS method with 1% xylan as substrate. Analysis of protein content in enzyme was done by Bradford method. The optimum of moistening solution concentration in this fermentation was obtained. They are, the ammonium sulphate concentration of 1.5 g/L, potassium dihydrogen phosphate 2.0 g/L and urea 0.35 g/L with activity of 684.70 U/mL, specific activity enzyme xylanase 6261.58 U/mg, protein content 0.1093 U/mg, the model was validated using experiment design with perfect reliability value 0.96.
Military applications of a cockpit integrated electronic flight bag
NASA Astrophysics Data System (ADS)
Herman, Robert P.; Seinfeld, Robert D.
2004-09-01
Converting the pilot's flight bag information from paper to electronic media is being performed routinely by commercial airlines for use with an on-board PC. This concept is now being further advanced with a new class of electronic flight bags (EFB) recently put into commercial operation which interface directly with major on-board avionics systems and has its own dedicated panel mounted display. This display combines flight bag information with real time aircraft performance and maintenance data. This concept of an integrated EFB which is now being used by the commercial airlines as a level 1 certified system, needs to be explored for military applications. This paper describes a system which contains all the attributes of an Electronic Flight Bag with the addition of interfaces which are linked to military aircraft missions such as those for tankers, cargo haulers, search and rescue and maritime aircraft as well as GATM requirements. The adaptation of the integrated EFB to meet these military requirements is then discussed.
Jeon, Hyo Keun; Ryu, Ho Yoel; Cho, Mee Yon; Kim, Hyun-Soo; Kim, Jae Woo; Park, Hong Jun; Kim, Moon Young; Baik, Soon Koo; Kwon, Sang Ok; Park, Su Yeon; Won, Sung Ho
2014-10-01
Larger biopsy specimens or increasing the number of biopsies may improve the diagnostic accuracy of gastric epithelial neoplasia (GEN). The aims of this study was to compare the diagnostic accuracies between conventional and jumbo forceps biopsy of GEN before endoscopic submucosal dissection (ESD) and to confirm that increasing the number of biopsies is useful for the diagnosis of GEN. The concordance rate between EFB and ESD specimens was not significantly different between the two groups [83.1 % (54/65) in JG vs. 79.1 % (53/67) in CG]. On multivariate analyses, two or four EFBs significantly increased the cumulating concordance rate [coefficients; twice: 5.1 (P = 0.01), four times: 5.9 (P = 0.02)]. But, the concordance rate was decreased in high grade dysplasia (coefficient -40.32, P = 0.006). One hundred and sixty GENs from 148 patients were randomized into two groups and finally 67 GENs in 61 patients and 65 GENs in 63 patients were allocated to the conventional group (CG) or jumbo group (JG), respectively. Four endoscopic forceps biopsy (EFB) specimens were obtained from each lesion with conventional (6.8 mm) forceps or jumbo (8 mm) forceps. The histological concordance rate between 4 EFB specimens and ESD specimens was investigated in the two groups. Before ESD, the diagnostic accuracy of GENs was significantly increased not by the use of jumbo forceps biopsy but by increasing the number of biopsies.
Is endoscopic forceps biopsy enough for a definitive diagnosis of gastric epithelial neoplasia?
Lee, Chang Kyun; Chung, Il-Kwun; Lee, Suck-Ho; Kim, Sang Pil; Lee, Sae Hwan; Lee, Tae Hoon; Kim, Hong-Soo; Park, Sang-Heum; Kim, Sun-Joo; Lee, Ji-Hye; Cho, Hyun Deuk; Oh, Mee-Hye
2010-09-01
Endoscopic forceps biopsy (EFB) as the primary histological diagnosis of gastric epithelial neoplasia (GEN) is debated in the era of endoscopic resection (ER). Our aim was to investigate the diagnostic reliability of EFB in patients with GEN compared with ER specimens as the reference standard for the final diagnosis in a large consecutive series. This was a cross-sectional retrospective study at a tertiary-referral center. A total of 354 consecutive patients with 397 GENs underwent ER (endoscopic mucosal resection or endoscopic submucosal dissection). Discrepancy rates between the histological results from EFB and ER specimens were assessed. Discrepancies that could affect patient outcome or clinical care were considered major. The overall histological discrepancy rate between EFB and ER specimens was 44.5% (95% confidence interval [CI], 39.7-49.5%) among the enrolled patients. The overall discrepancy rate was significantly higher in the intraepithelial neoplasia (IEN) group than in the carcinoma group (49.8% vs 25.6%, P < 0.001). The major discrepancy rate was also significantly higher in the IEN group than in the carcinoma group (36.6% vs 7.0%, P < 0.001). In subgroup analysis of the IEN group, a major histological discrepancy rate of 33.6% (70/208) for low-grade and 42.7% (44/103) for high-grade IEN was found, respectively. Endoscopic forceps biopsy was insufficient for a definitive diagnosis and therapeutic planning in patients with GEN. ER should be considered as not only definitive treatment but also a procedure for a precise histological diagnosis for lesions initially assessed as GEN by forceps biopsy specimens.
TAKAMATSU, Daisuke; SATO, Masumi; YOSHIYAMA, Mikio
2015-01-01
Melissococcus plutonius is an important pathogen that causes European foulbrood (EFB) in honeybee larvae. Recently, we discovered a group of M. plutonius strains that are phenotypically and genetically distinct from other strains. These strains belong to clonal complex (CC) 12, as determined by multilocus sequence typing analysis, and show atypical cultural and biochemical characteristics in vitro compared with strains of other CCs tested. Although EFB is considered to be a purely intestinal infection according to early studies, it is unknown whether the recently found CC12 strains cause EFB by the same pathomechanism. In this study, to obtain a better understanding of EFB, we infected European honeybee (Apis mellifera) larvae per os with a well-characterized CC12 strain, DAT561, and analyzed the larvae histopathologically. Ingested DAT561 was mainly localized in the midgut lumen surrounded by the peritrophic matrix (PM) in the larvae. In badly affected larvae, the PM and midgut epithelial cells degenerated, and some bacterial cells were detected outside of the midgut. However, they did not proliferate in the deep tissues actively. By immunohistochemical analysis, the PM was stained with anti-M. plutonius serum in most of the DAT561-infected larvae. In some larvae, luminal surfaces of the PM were more strongly stained than the inside. These results suggest that infection of CC12 strain in honeybee larvae is essentially confined to the intestine. Moreover, our results imply the presence of M. plutonius-derived substances diffusing into the larval tissues in the course of infection. PMID:26256232
Design, simulation and analysis a microstrip antenna using PU-EFB substrate
NASA Astrophysics Data System (ADS)
Mahmud, S. N. S.; Jusoh, M. A.; Jasim, S. E.; Zamani, A. H.; Abdullah, M. H.
2018-04-01
A low cost, light weight and easy to fabricate are the most important factor for future antennas. Microstrip patch antennas offer these advantages and suitable for communication and sensor application. This paper presents a design of simple microstrip patch antenna working on operating frequency of 2.4 GHz. The designed process has been carried out using MATLAB and HFSS software by entering 2.3 for the dielectric constant of PU-EFB. The results showed that high return loss, low bandwidth and good antenna radiation efficiency of which are -21.98 dB, 0.28 dB and 97.33%, respectively.
NASA Astrophysics Data System (ADS)
Helwani, Z.; Fatra, W.; Arifin, L.; Othman, M. R.; Syapsan
2018-04-01
In this study, the manual hydraulic press was designed to prepare the briquettes from selected biomass waste. Each biomass was sun-dried and milled into small particle sizes before mixing with crude glycerol that used as a biomass binder. The effects of applied pressure levels of 100, 110, 120 bars, the particle size of 60, 80 and 100 mesh and the binder composition on the density, compressive strength and calorific heating value of the prepared briquettes were investigated using response surface methodology (RSM). Results showed that the briquettes have an average inside diameter, average outside diameter, and height of 12, 38, and 25-30 mm, respectively. The density of the briquettes increased with increasing the applied pressure, was in the range of 623-923 kg/m3. The densest briquettes were obtained at 80 mesh of particle size, 53:47 binder composition ratio and 110 bars of pressurizing. The heating value of the briquette reached up to 28.99 MJ/kg obtained on the particle size of 80 mesh, 53:47 binder composition, and 110 bars and the best compressive strength of 6.991 kg/cm2 obtained at a particle size of 100 mesh, 60:40 binder composition, and 120 bars. Process conditions influence the calorific value significantly.
Synthesis of sodium lignosulphonate from oil palm empty fruit bunches's lignin
NASA Astrophysics Data System (ADS)
Prakoso, Nurcahyo Iman; Purwono, Suryo; Rochmadi
2017-03-01
Synthesis of sodium lignosulphonate have been done by using batch method. Optimation of synthesis method was achieved through this study. The study was conducted on the optimation of mass ratio of lignin to the NaHSO3 solution, the concentration of NaHSO3 solution, reaction temperature, and reaction time. Of all the treatments, it was found that the optimum mass ratio of lignin to the NaHSO3 solution, concentration of NaHSO3 solution, reaction temperature, and reaction time respectively, 0.3 M, 0.1 M 97 °C, and the reaction was carried out for 4 hours. Excellent yields and selective products were obtained (90-92%)
Experimental study on temperature profile of fixed - bed gasification of oil-palm fronds
NASA Astrophysics Data System (ADS)
Atnaw, Samson M.; Sulaiman, Shaharin A.; Moni, M. Nazmi Z.
2012-06-01
Currently the world's second largest palm oil producer Malaysia produces large amount of oil palm biomass each year. The abundance of the biomass introduces a challenge to utilize them as main feedstock for heat and energy generation. Although some oil palm parts and derivatives like empty fruit bunch and fibre have been commercialized as fuel, less attention has been given to oil palm fronds (OPF). Initial feasibility and characterization studies of OPF showed that it is highly feasible as fuel for gasification to produce high value gaseous fuel or syngas. This paper discusses the experimental gasification attempt carried out on OPF using a 50 kW lab scale downdraft gasifier and its results. The conducted study focused on the temperature distributions within the reactor and the characteristics of the dynamic temperature profile for each temperature zones during operation. OPF feedstock of one cubic inch in individual size with 15% average moisture content was utilized. An average pyrolysis zone temperature of 324°Cand an average oxidation zone temperature of 796°Cwere obtained over a total gasification period of 74 minutes. A maximum oxidation zone temperature of 952°Cwas obtained at 486 lpm inlet air flow rate and 10 kg/hr feedstock consumption rate. Stable bluish flare was produced for more than 70% of the total gasification time. The recorded temperature profiles produced closely similar patterns with the temperature profiles recorded from the gasification of woody materials. Similar temperature profile was obtained comparing the results from OPF gasification with that of woody biomass. Furthermore, the successful ignition of the syngas produced from OPF gasification ascertained that OPF indeed has a higher potential as gasification feedstock. Hence, more detailed studies need to be done for better understanding in exploiting the biomass as a high prospect alternative energy solution. In addition, a study of the effect of initial moisture content of OPF feedstock on the temperature distribution profile along the gasifier bed showed that initial moisture content of feedstock in the range of 15% gives satisfactory result, while experiment with feedstock having higher moisture content resulted in lower zone temperature values.
Design and process integration of organic Rankine cycle utilizing biomass for power generation
NASA Astrophysics Data System (ADS)
Ependi, S.; Nur, T. B.
2018-02-01
Indonesia has high potential biomass energy sources from palm oil mill industry activities. The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used for generating electricity from rejected waste heat to the environment in industrial processes. In this study, the potential of the palm oil empty fruit bunch, and wood chip have been used as fuel for biomass to generate electricity based ORC with combustion processes. The heat from combustion burner was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC unit. Appropriate designs integration from biomass combustion unit to ORC unit have been analyzed and proposed to generate expander shaft-work. Moreover, the effect of recuperator on the total system efficiency has also been investigated. It was observed that the fuel consumption was increased when the ORC unit equipped recuperator operated until certain pressure and decreased when operated at high pressure.
Perfetto, Ralph; Woodside, Arch G
2009-09-01
The present study informs understanding of customer segmentation strategies by extending Twedt's heavy-half propositions to include a segment of users that represent less than 2% of all households-consumers demonstrating extremely frequent behavior (EFB). Extremely frequent behavior (EFB) theory provides testable propositions relating to the observation that few (2%) consumers in many product and service categories constitute more than 25% of the frequency of product or service use. Using casino gambling as an example for testing EFB theory, an analysis of national survey data shows that extremely frequent casino gamblers do exist and that less than 2% of all casino gamblers are responsible for nearly 25% of all casino gambling usage. Approximately 14% of extremely frequent casino users have very low-household income, suggesting somewhat paradoxical consumption patterns (where do very low-income users find the money to gamble so frequently?). Understanding the differences light, heavy, and extreme users and non-users can help marketers and policymakers identify and exploit "blue ocean" opportunities (Kim and Mauborgne, Blue ocean strategy, Harvard Business School Press, Boston, 2005), for example, creating effective strategies to convert extreme users into non-users or non-users into new users.
Management of foreign bodies obstructing the airway in children.
Shah, Rahul K; Patel, Anju; Lander, Lina; Choi, Sukgi S
2010-04-01
To review national trends in the management of pediatric airway foreign bodies (A-FBs) and esophageal foreign bodies (E-FBs) that obstruct the airway. Retrospective review using a national pediatric data set (Kids' Inpatient Database). Pediatric patients admitted across the United States during 2003. The Kids' Inpatient Database 2003 samples 2 984 129 pediatric discharges from 3438 hospitals in 36 states. The Kids' Inpatient Database 2003 was analyzed for A-FBs and E-FBs (International Classification of Diseases, Ninth Revision, Clinical Modification codes E911 and E912) in patients 20 years or younger, and weighted data are presented to facilitate national estimates. A total of 2771 patients (59% male) were admitted for an A-FB or an E-FB that was obstructing the airway. The mean (SE) age of the patients was 3.5 (0.17) years; 55% were younger than 2 years. The foreign bodies were classified as food (42%; mean age, 2.5 years) or other (58%; mean age, 4.3 years). The average length of stay was 6.4 days (median [SE], 1.5 [0.6] days), and the average number of procedures was 2.4 (median [SE], 1.3 [0.1] procedures). Seventy-one percent of the patients were treated at teaching hospitals. The mean (SD) total charges were $34 652 ($3543), with regional variation (P < .001). Children's hospitals (28%) had higher mean total charges than nonchildren's hospitals (P = .03); 3.4% of admissions died in the hospital (mean [SE] age, 4.6 [0.9] years), with an average length of stay of 11.7 (SE, 2.7) days and an average of 6.2 (SE, 0.7) procedures. Bronchoscopy (52%), esophagoscopy (28%), and tracheotomy (1.7%) were the primary procedures performed. The rates of positive FB findings for bronchoscopy and esophagoscopy were 37% and 46%, respectively. Pediatric A-FBs and E-FBs that obstruct the airway occur infrequently. Most of the patients are referred to teaching institutions. Among patients who were admitted with a diagnosis of airway obstruction from an A-FB or an E-FB, the rates of positive findings at surgery were 37% and 46%, respectively. A surprisingly high mortality rate was noted. Alternative education measures should be considered to train physicians in the management of this infrequent, potentially lethal condition.
Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah
2015-01-01
In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g−1 lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced. PMID:26798644
NASA Astrophysics Data System (ADS)
Nor Amalini, A.; Melina Cheah, M. Y.; Wan Rosli, W. D.; Hayati, S.; Mohamad Haafiz, M. K.
2017-12-01
Development of regenerated cellulose (RC) derived from underutilized cellulosic biomass has recently gained attention as potential petroleum-based polymer replacers. The objective of this current work is to evaluate the properties of RC films obtained from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC) through environmental process. The RC films were fabricated by using different amounts of OPEFB-MCC (4, 6 and 8 %) and 1-butyl-3-methylimidazolium chloride (BMIMCl) was used as green OPEFB-MCC dissolving medium. The resultant RC films were then characterized by means of Fourier transform infrared (FTIR) spectroscopy, mechanical, thermal and morphological properties by using tensile test, differential scanning colorimetry (DSC), and scanning electron microscopy (SEM) respectively. Increase in OPEFB-MCC amounts from 4 to 8 % enhanced the tensile strength and elongation at break of RC by 101 and 78 %, respectively, indicating stronger and more flexible films were formed. It is interesting to note that the Tg (101-154 °C) and Tm(130-187 °C) were found shifted to higher temperature with higher proportions of OPEFB-MCC in RC films. Meanwhile, FTIR analysis showed no new peak presented in RC films, suggesting that BMIMCl is a non-derivatizing solvent to OPEFB-MCC. Conspicuous changes in the spectra of RC films compared to OPEFB-MCC at 3200-3600 cm-1, 1430 cm-1, 1162 cm-1, 1111 cm-1, 1020-1040 cm-1 and 896 cm-1 were associated with transformation of cellulose I to cellulose II structure or/and decrease in crystallinity occurred after regeneration process. SEM micrographs of the RC films revealed that higher OPEFB-MCC contents exhibited smoother and more homogeneous surfaces morphology. Overall, OPEFB-MCC exhibited good film forming ability for RC production and may offer potential application in various industries including food packaging, medical goods and electronic devices.
Novel multifunctional plant growth-promoting bacteria in co-compost of palm oil industry waste.
Chin, Clament Fui Seung; Furuya, Yoshihide; Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Tashiro, Yukihiro; Sakai, Kenji
2017-11-01
Previously, a unique co-compost produced by composting empty fruit bunch with anaerobic sludge from palm oil mill effluent, which contributed to establishing a zero-emission industry in Malaysia. Little was known about the bacterial functions during the composting process and fertilization capacity of this co-compost. We isolated 100 strains from the co-compost on 7 types of enumeration media and screened 25 strains using in vitro tests for 12 traits, grouping them according to three functions: plant growth promoting (fixation of nitrogen; solubilization of phosphorus, potassium, and silicate; production of 3-indoleacetic acid, ammonia, and siderophore), biocontrolling (production of chitinase and anti-Ganoderma activity), and composting (degradation of lignin, xylan, and cellulose). Using 16S rRNA gene sequence analysis, 25 strains with strong or multi-functional traits were found belong to the genera Bacillus, Paenibacillus, Citrobacter, Enterobacter, and Kosakonia. Furthermore, several strains of Citrobacter sedlakii exhibited a plant growth-stimulation in vivo komatsuna plant cultivation test. In addition, we isolated several multifunctional strains; Bacillus tequilensis CE4 (biocontrolling and composting), Enterobacter cloacae subsp. dissolvens B3 (plant growth promoting and biocontrolling), and C. sedlakii CESi7 (plant growth promoting and composting). Some bacteria in the co-compost play significant roles during the composting process and plant cultivation after fertilization, and some multifunctional strains have potential for use in accelerating the biodegradation of lignocellulosic biomass, protecting against Ganoderma boninense infection, and increasing the yield of palm oil. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Magnusson, Maria K; Arvola, Anne; Hursti, Ulla Kaisa Koivisto; Aberg, Lars; Sjödén, Per-Olow
2003-04-01
We designed a questionnaire concerned with attitudes and behaviour towards organic foods, environmentally friendly behaviour (EFB), and perceived consequences of organic food choice in terms of human health, the environment and animal welfare. It was mailed in 1998 to a random nation-wide sample of 2000 Swedish citizens, ages 18-65 years, and 1154 (58%) responded. Self-reported purchase of organic foods was most strongly related to perceived benefit for human health. Performance of EFBs such as refraining from car driving was also a good predictor of purchase frequency. The results indicate that egoistic motives are better predictors of the purchase of organic foods than are altruistic motives.
An electronic flight bag for NextGen avionics
NASA Astrophysics Data System (ADS)
Zelazo, D. Eyton
2012-06-01
The introduction of the Next Generation Air Transportation System (NextGen) initiative by the Federal Aviation Administration (FAA) will impose new requirements for cockpit avionics. A similar program is also taking place in Europe by the European Organisation for the Safety of Air Navigation (Eurocontrol) called the Single European Sky Air Traffic Management Research (SESAR) initiative. NextGen will require aircraft to utilize Automatic Dependent Surveillance-Broadcast (ADS-B) in/out technology, requiring substantial changes to existing cockpit display systems. There are two ways that aircraft operators can upgrade their aircraft in order to utilize ADS-B technology. The first is to replace existing primary flight displays with new displays that are ADS-B compatible. The second, less costly approach is to install an advanced Class 3 Electronic Flight Bag (EFB) system. The installation of Class 3 EFBs in the cockpit will allow aircraft operators to utilize ADS-B technology in a lesser amount of time with a decreased cost of implementation and will provide additional benefits to the operator. This paper describes a Class 3 EFB, the NexisTM Flight-Intelligence System, which has been designed to allow users a direct interface with NextGen avionics sensors while additionally providing the pilot with all the necessary information to meet NextGen requirements.
NASA Technical Reports Server (NTRS)
Latorella, Kara A.
2015-01-01
Flightdeck Interval Management is one of the NextGen operational concepts that FAA is sponsoring to realize requisite National Airspace System (NAS) efficiencies. Interval Management will reduce variability in temporal deviations at a position, and thereby reduce buffers typically applied by controllers - resulting in higher arrival rates, and more efficient operations. Ground software generates a strategic schedule of aircraft pairs. Air Traffic Control (ATC) provides an IM clearance with the IM spacing objective (i.e., the TTF, and at which point to achieve the appropriate spacing from this aircraft) to the IM aircraft. Pilots must dial FIM speeds into the speed window on the Mode Control Panel in a timely manner, and attend to deviations between actual speed and the instantaneous FIM profile speed. Here, the crew is assumed to be operating the aircraft with autothrottles on, with autopilot engaged, and the autoflight system in Vertical Navigation (VNAV) and Lateral Navigation (LNAV); and is responsible for safely flying the aircraft while maintaining situation awareness of their ability to follow FIM speed commands and to achieve the FIM spacing goal. The objective of this study is to examine whether three Notification Methods and four Avionics Conditions affect pilots' performance, ratings on constructs associated with performance (workload, situation awareness), or opinions on acceptability. Three Notification Methods (alternate visual and aural alerts that notified pilots to the onset of a speed target, conformance deviation from the required speed profile, and reminded them if they failed to enter the speed within 10 seconds) were examined. These Notification Methods were: VVV (visuals for all three events), VAV (visuals for all three events, plus an aural for speed conformance deviations), and AAA (visual indications and the same aural to indicate all three of these events). Avionics Conditions were defined by the instrumentation (and location) used to present IM information to crews: (1) Integrated (IM information is embedded in extant PFD (Primary Flight Display), ND (Navigation Display), EICAS (Engine Indicating and Crew Alerting System) displays); (2) EFB_Aft (IM information is only supplied in an EFB and mounted in location similar to that for MITRE's UPS work); (3) EFB_Fore (IM information is only supplied in an EFB which is mounted more forward, under the side window), and (4) EFB_Aft plus use of an AGD (the same IM information is supplied in an EFB and on an AGD, both mounted in locations similar to that in MITRE's UPS work ). Twelve commercial pilot crews flew descent scenarios (VNAV Speed with the mode control panel (MCP) speed window open until flaps extended, then VNAV Path) in a commercial transport flight simulator with realistic visual scene and communications. The results of this study serve three practical aims: (1) contribute to the down-select of avionics configuration for future assessment of the ASTAR spacing algorithm at NASA; (2) provide information useful to the FAA Human Factors Division (ANG-C1)'s mission to identify issues pertinent to flight certification of, and flight standards; (3) identify methodological considerations in support of future FIM human-in-the-loop (HITL) investigations.
Detection of bisphenol A using palm-size NanoAptamer analyzer.
Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong
2017-08-15
We have demonstrated a palm-size NanoAptamer analyzer capable of detecting bisphenol A (BPA) at environmentally relevant concentrations (<1ng/mL or ppb). It is designed for performing reaction and fluorescence measurement on single cuvette sample. Modified NanoGene assay was used as the sensing mechanism where signaling DNA and QD 655 was tethered to QD 565 and magnetic bead via the aptamer. Aptamer affinity with BPA resulted in the release of the signaling DNA and QD 655 from the complex and hence corresponding decrease in QD 655 fluorescence measurement signal. Baseline characterization was first performed with empty cuvettes, quantum dots and magnetic beads under near-ideal conditions to establish essential functionality of the NanoAptamer analyzer. Duration of incubation time, number of rinse cycles, and necessity of cuvette vibration were also investigated. In order to demonstrate the capability of the NanoAptamer analyzer to detect BPA, samples with BPA concentrations ranging from 0.0005 to 1.0ng/mL (ppb) were used. The performance of the NanoAptamer analyzer was further examined by using laboratory protocol and commercial spectrofluorometer as reference. Correlation between NanoAptamer analyzer and laboratory protocol as well as commercial spectrofluorometer was evaluated via correlation plots and correlation coefficients. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.
2016-11-01
The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.
Integrated biomass pyrolysis with organic Rankine cycle for power generation
NASA Astrophysics Data System (ADS)
Nur, T. B.; Syahputra, A. W.
2018-02-01
The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used to generate power from waste heat available in industrial processes. Biomass pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. In the application, biomass pyrolysis can be divided into three main categories; slow, fast and flash pyrolysis mainly aiming at maximizing the products of bio-oil or biochar. The temperature of synthesis gas generated during processes can be used for Organic Rankine Cycle to generate power. The heat from synthesis gas during pyrolysis processes was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. In this study, the potential of the palm oil empty fruit bunch, palm oil shell, and tree bark have been used as fuel from biomass to generate electricity by integrated with ORC. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC system. Through Aspen Plus, this study analyses the influences on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum performance for different working conditions that are characteristics of different design parameters.
Effect of oil palm empty fruit bunches fibers reinforced polymer recycled
NASA Astrophysics Data System (ADS)
Hermawan, B.; Nikmatin, S.; Sudaryanto; Alatas, H.; Sukaryo, S. G.
2017-07-01
The aim of this research is to process the OPEFB to become fiber with various sizes which will be used as a filler of polymer matrix recycled acrylonitrile butadiene styrene (ABS). Molecular analysis and mechanical test have been done to understand the influence of fiber size toward material capability to receive outer deformation. Single screw extruder formed a biocomposites granular continued with injection moulding to shaped test pieces. Maleic anhydride was added as coupling agent between filler and matrix. Filler concentration were 10 and 20% in fiber size respectively with constant additif. Two kind of fiber glass (10%) were used as comparator. In order to analyze the results of the mechanical test Fisher least significant difference (LSD) in ANOVA method was performed (-with α=0,05-).
Natu, Gayatri; Hasin, Panitat; Huang, Zhongjie; Ji, Zhiqiang; He, Mingfu; Wu, Yiying
2012-11-01
We have systematically studied the effects of substitutional doping of p-type nanoparticulate NiO with cobalt ions. Thin films of pure and Co-doped NiO nanoparticles with nominal compositions Co(x)Ni(1-x)O(y) (0 ≤ x ≤ 0.1) were fabricated using sol-gel method. X-ray photoelectron spectroscopy revealed a surface enrichment of divalent cobalt ions in the Co(x)Ni(1-x)O(y) nanoparticles. Mott-Schottky analysis in aqueous solutions was used to determine the space charge capacitance values of the films against aqueous electrolytes, which yielded acceptor state densities (N(A)) and apparent flat-band potentials (E(fb)). Both N(A) and E(fb) values of the doped NiO were found to gradually increase with increasing amount of doping; thus the Fermi energy level of the charge carriers decreased with Co-doping. The photovoltage of p-DSCs constructed using the Co(x)Ni(1-x)O(y) films increased with increasing amount of cobalt, as expected from the trend in the E(fb). Co-doping increased both carrier lifetimes within the p-DSCs and the carrier transport times within the nanoparticulate semiconductor network. The nominal composition of Co₀.₀₆Ni₀.₉₄O(y) was found to be optimal for use in p-DSCs.
NASA Astrophysics Data System (ADS)
Nor, Nur Atikah Md; Mustapha, Wan Aida Wan; Hassan, Osman
2015-09-01
Oil Palm Empty Fruit Bunch (OPEFB) was pretreated using Deep Eutectic Solvent (DES) at different parameters to enable a highest yield of sugar. DES is a combination of two or more cheap and safe components to form a eutectic mixture through hydrogen bond interaction, which has a melting point lower than that of each component. DES can be used to replace ionic liquids (ILs), which are more expensive and toxic. In this study, OPEFB was pretreated with DES mixture of choline chloride: urea in 1:2 molar ratio. The pretreatment was performed at temperature 110°C and 80°C for 4 hours and 1 hour. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour). Enzymatic hydrolysis was done by using the combination of two enzymes, namely, Cellic Ctec2 and Cellic Htec2. The treated fiber is tested for crystallinity using XRD and functional group analysis using FTIR, to check the effect of the pretreatment on the fiber and compared it with the untreated fiber. From XRD analysis, DES successfully gave an effect towards degree of crystallinity of cellulose. Pretreatment A (110°C, 4 hours) and B (110°C, 1 hour) successfully reduce the percentage of crystallinity while pretreatment C (80°C, 4 hours) and D (80°C, 1 hour) increased the percentage of crystallinity. From FTIR analysis, DES cannot remove the functional group of lignin and hemicellulose but it is believed that DES can expose the structure of cellulose. Upon enzymatic hydrolysis, DES-treated fiber successfully produced sugar but not significantly when compared with raw. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour) produced glucose at the amount of 60.47 mg/ml, 66.33 mg/ml, 61.96 mg/ml and 59.12 mg/ml respectively. However, pretreatment C gave the highest xylose (70.01 mg/ml) production compared to other DES pretreatments.
Kazeem, Muinat Olanike; Shah, Umi Kalsom Md; Baharuddin, Azhari Samsu; AbdulRahman, Nor' Aini
2017-08-01
Bacteria isolated from thermophilic environment that can produce cellulase as well as utilise agro-waste biomass have a high potential for developing thermostable cellulase required in the biofuel industry. The cost for cellulase represents a significant challenge in converting lignocellulose to fermentable sugars for biofuel production. Among three potential bacteria examined, Bacillus licheniformis 2D55 (accession no. KT799651) was found to produce the highest cellulolytic activity (CMCase 0.33 U/mL and FPase 0.09 U/mL) at 18-24 h fermentation when grown on microcrystalline cellulose (MCC) as a carbon source in shake flask at 50 °C. Cellulase production process was further conducted on the untreated and NaOH pretreated rice straw (RS), rice husk (RH), sugarcane bagasse (BAG) and empty fruit bunch (EFB). Untreated BAG produced the highest FPase (0.160 U/mL), while the highest CMCase (0.150 U/mL) was supported on the pretreated RH. The mixture of untreated BAG and pretreated RH as agro-waste cocktail has remarkably improved CMCase (3.7- and 1.4-fold) and FPase (2.5- and 11.5-fold) compared to the untreated BAG and pretreated RH, respectively. The mechanism of cellulase production explored through SEM analysis and the location of cellulase enzymes of the isolate was also presented. Agro-waste cocktail supplementation provides an alternative method for an efficient production of cellulase.
Review of Safety Reports Involving Electronic Flight Bags.
DOT National Transportation Integrated Search
2010-04-01
Safety events in which Electronic Flight Bags (EFBs) were a factor are reviewed. Relevant reports were obtained from the public Aviation Safety Reporting System (ASRS) database and the National Transportation Safety Board (NTSB) accident report datab...
Designing and testing a tool for evaluating electronic flight bags
DOT National Transportation Integrated Search
2004-09-29
The Federal Aviation Administration (FAA), system designers, and customers all recognize that Electronic Flight Bags (EFBs) are sophisticated devices whose use could affect pilot performance. As a result, human factors issues have received considerab...
Dasan, Y K; Bhat, A H; Ahmad, Faiz
2017-02-10
The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend. Copyright © 2016 Elsevier Ltd. All rights reserved.
On the use of sodium lignosulphonate for enhanced oil recovery
NASA Astrophysics Data System (ADS)
Azis, M. M.; Rachmadi, H.; Wintoko, J.; Yuliansyah, A. T.; Hasokowati, W.; Purwono, S.; Rochmadi, W.; Murachman, B.
2017-05-01
There has been large interest to utilize oil reservoirs in Indonesia by using Enhanced Oil Recovery (EOR) processes. Injection of surfactant as a part of chemical injection technique in EOR is known to aid the mobility and reduction in surface tension. One potential surfactant for EOR application is Sodium Lignosulphonate (SLS) which can be made from various sources particularly empty fruit bunch of oil palm and black liquor from kraft pulp production. Here, we will discuss a number of methods for SLS production which includes lignin isolation techniques and sulphonation reaction. The use of SLS alone as EOR surfactant, however, is often not feasible as the Interfacial Tension (IFT) value of SLS is typically above the order of 10-3 dyne/cm which is mandated for EOR application. Hence, brief discussion on SLS formulation screening is provided which illustrates an extensive labwork experience during the SLS development in our lab.
Decolorization of black liquor from bioethanol G2 production using iron oxide coating sands
NASA Astrophysics Data System (ADS)
Barlianti, Vera; Triwahyuni, Eka; Waluyo, Joko; Sari, Ajeng Arum
2017-01-01
Bioethanol G2 production using oil palm empty fruit bunch as raw material consists of four steps, namely pretreatment, hydrolysis, fermentation, and purification process. Pretreatment process generates black liquor that causes serious environmental pollution if it is released to the environment. The objective of this research is studying the ability of iron oxide coating sands to adsorb the color of black liquor. The iron oxide coating sands were synthesized from FeCl3.6H2O with quartz sands as support material. This research was conducted on batch mode using black liquor in various pH values. Result obtained that kind of iron oxide on quartz sands's surface was goethite. The result also indicated decreasing of color intensity of black liquor after adsorption process. This research supports local material utilization in environmental technology development to solve some environmental problems.
Adsorption of Cu(II) Ions in Aqueous Solutions by HCl Activated Carbon of Oil Palm
NASA Astrophysics Data System (ADS)
Muslim, A.; Syamsuddin, Y.; Salamun, A.; Abubakar; Ramadhan, D.; Peiono, D.
2017-06-01
Activated carbon was prepared from oil palm empty fruit bunch (OPEFB) by pyrolysis at 873.15 K in a furnace and chemical activation using 0.01 M HCl. Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy and BET (Brunauer, Emmett and Teller) surface area analyses were taken into account to investigate the chemical functional group, to characterise the surface morphology and to determine total surface area the OPEFB AC, respectively. Experiments in batch mode were conducted to investigate Cu(II) adsorption capacity by the OPEFB AC whereas the system consisted of 1 g the OPEFB AC in 100 mL Cu(II) aqueous solution with initial concentration in the range of 10-70 mg/L, magnetic stirring at 75 rpm, room temperature of 300.15 K (± 2 K), at 1 atm and neutral pH over contact time in the range of 0-150 min. As the result, Cu(II) adsorption capacity increased exponentially over contact time and initial concentration. The Cu(II) adsorption kinetics followed the pseudo second order kinetics with the correlation coefficients (R 2), kinetics rate constant and equilibrium adsorption capacity being 0.98, 4.81 mg/g and 0.15/min, respectively for initial Cu(II) concentration being 58.71 mg/L. In addition, Cu(II) adsorption isotherm followed the Langmuir equation with the R2 value, the mono-layer and over-all adsorption capacity being 0.99, 5.92 mg/g and 0.17 L/mg, respectively.
An examination of safety reports involving electronic flight bags and portable electronic devices
DOT National Transportation Integrated Search
2014-06-01
The purpose of this research was to develop a better understanding of safety considerations with the use of Electronic Flight Bags (EFBs) and Portable Electronic Devices (PEDs) by examining safety reports from Aviation Safety Reporting System (ASRS),...
Omar, Nur Faezah; Hassan, Siti Aishah; Yusoff, Umi Kalsom; Abdullah, Nur Ashikin Psyquay; Wahab, Puteri Edaroyati Megat; Sinniah, Umarani
2012-02-27
A field study was conducted to determine the effect of organic and mineral-based fertilizers on phytochemical contents in the tubers of two cassava varieties. Treatments were arranged in a split plot design with three replicates. The main plot was fertilizer source (vermicompost, empty fruit bunch compost and inorganic fertilizer) and sub-plot was cassava variety (Medan and Sri Pontian). The amount of fertilizer applied was based on 180 kg K(2)O ha-1. The tubers were harvested and analyzed for total flavonoids, total phenolics, antioxidant activity and cyanogenic glucoside content. Total phenolic and flavonoid compounds were determined using the Folin-Ciocalteu assay and aluminium chloride colorimetric method, respectively. Different sources of fertilizer, varieties and their interactions were found to have a significant effect on phytochemical content. The phenolic and flavonoid content were significantly higher (p < 0.01) in the vermicompost treatment compared to mineral fertilizer and EFB compost. The total flavonoids and phenolics content of vermicompost treated plants were 39% and 38% higher, respectively, than those chemically fertilized. The antioxidant activity determined using the DPPH and FRAP assays were high with application of organic fertilizer. Cyanogenic glycoside levels were decreased with the application of organic fertilizer. Among the two types of compost, vermicompost resulted in higher nutritional value of cassava tubers. Medan variety with application of vermicompost showed the most promising nutritional quality. Since the nutritional quality of cassava can be improved by organic fertilization, organic fertilizer should be used in place of chemical fertilizer for environmentally sustainable production of better quality cassava.
Cyber threats within civil aviation
NASA Astrophysics Data System (ADS)
Heitner, Kerri A.
Existing security policies in civil aviation do not adequately protect against evolving cyber threats. Cybersecurity has been recognized as a top priority among some aviation industry leaders. Heightened concerns regarding cyber threats and vulnerabilities surround components utilized in compliance with the Federal Aviation Administration's (FAA) Next Generation Air Transportation (NextGen) implementation. Automated Dependent Surveillance-B (ADS-B) and Electronic Flight Bags (EFB) have both been exploited through the research of experienced computer security professionals. Civil aviation is essential to international infrastructure and if its critical assets were compromised, it could pose a great risk to public safety and financial infrastructure. The purpose of this research was to raise awareness of aircraft system vulnerabilities in order to provoke change among current national and international cybersecurity policies, procedures and standards. Although the education of cyber threats is increasing in the aviation industry, there is not enough urgency when creating cybersecurity policies. This project intended to answer the following questions: What are the cyber threats to ADS-B of an aircraft in-flight? What are the cyber threats to EFB? What is the aviation industry's response to the issue of cybersecurity and in-flight safety? ADS-B remains unencrypted while the FAA's mandate to implement this system is rapidly approaching. The cyber threat of both portable and non-portable EFB's have received increased publicity, however, airlines are not responding quick enough (if at all) to create policies for the use of these devices. Collectively, the aviation industry is not being proactive enough to protect its aircraft or airport network systems. That is not to say there are not leaders in cybersecurity advancement. These proactive organizations must set the standard for the future to better protect society and it's most reliable form of transportation.
Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad
2013-01-01
Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353
Abral, Hairul; Anugrah, Arya Satya; Hafizulhaq, Fadli; Handayani, Dian; Sugiarti, Eni; Muslimin, Ahmad Nove
2018-05-14
This paper reported the results of the characterization of jicama (Pachyrhizus erosus) starch based biocomposite reinforced with varied nanofiber fractions, i.e. 35.4, 70.8 and 106.2 μg per 10 g of starch. The nanofiber was isolated from oil palm empty fruit bunches. During preparation, the biocomposite in form of gel was sonicated using an ultrasonic probe at various powers, i.e. 0, 480, 600, 720 watt at 20 kHz for 5 min. The results show that ultrasonication results in a significant improvement in biocomposite properties for each of the nanofiber fractions. The tensile strength, moisture resistance of the 35.4 μg nanofibers biocomposite increase significantly 278, 11% respectively after 600 watt ultrasonication. Field emission scanning electron microscopy of the fracture surface of the film showed ultrasonication resulted in it becoming smoother and more compact. These results indicate that ultrasonication improves the performance of the film. Copyright © 2018 Elsevier B.V. All rights reserved.
Nanocellulose based polymer composite for acoustical materials
NASA Astrophysics Data System (ADS)
Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.
2018-04-01
Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.
Shawn A. Mehlenbacher
2012-01-01
The Oregon State University (OSU) hazelnut breeding program, initiated in 1969, continues to develop new cultivars for the hazelnut industry that combine suitability to the blanched kernel market with resistance to eastern filbert blight (EFB) caused by Anisogramma anomala. Oregon's hazelnut growers support the program through the Oregon...
Editorial: Biotechnology Journal highlights from 2012 - AFOB and more.
Peng, Judy
2013-01-01
Biotechnology Journal welcomed the Asian Federation of Biotechnology (AFOB) in 2012. Together with our existing affiliates, the European Biosafety Association (EBSA) and the EFB Section on Biochmical Engineering (ESBES), the Journal will provide unique bridge between Asian and Europen biotechnologists and bioengineers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-resolution genetic and physical mapping of eastern filbert blight resistance in hazelnut
Vidyasagar Sathuvall; Shawn A. Mehlenbacher
2012-01-01
Eastern filbert blight (EFB), caused by the pyrenomycete Anisogramma anomala, is a serious threat to the hazelnut (Corylus avellana L.) industry in the Pacific Northwest. A dominant allele at a single locus from the obsolete pollenizer 'Gasaway' confers a very high level of resistance, and has been extensively used in...
A real-time PCR assay for early detection of eastern filbert blight
USDA-ARS?s Scientific Manuscript database
Eastern filbert blight (EFB) is a devastating disease of European hazelnut, Corylus avellana, which causes economic losses in Oregon where 99% of the U.S. crop is produced. The causal fungus, Anisogramma anomala, is native to eastern North America, where it is found associated with the American haz...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... Series Airplanes; Rechargeable Lithium-Ion Battery Installations AGENCY: Federal Aviation Administration... rechargeable lithium-ion batteries. The applicable airworthiness regulations do not contain adequate or... Specialists, Inc., proposes to use rechargeable lithium-ion batteries in a dual Class 3 EFB system on Boeing...
Juno Magnetometer Observations in the Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Connerney, J. E.; Oliversen, R. J.; Espley, J. R.; MacDowall, R. J.; Schnurr, R.; Sheppard, D.; Odom, J.; Lawton, P.; Murphy, S.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M.; Denver, T.; Bloxham, J.; Smith, E. J.; Murphy, N.
2013-12-01
The Juno spacecraft enjoyed a close encounter with Earth on October 9, 2013, en route to Jupiter Orbit Insertion (JOI) on July 5, 2016. The Earth Flyby (EFB) provided a unique opportunity for the Juno particles and fields instruments to sample mission relevant environments and exercise operations anticipated for orbital operations at Jupiter, particularly the period of intense activity around perijove. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. This very capable magnetic observatory sampled the Earth's magnetic field at 64 vector samples/second throughout passage through the Earth's magnetosphere. We present observations of the Earth's magnetic field and magnetosphere obtained throughout the encounter and compare these observations with those of other Earth-orbiting assets, as available, and with particles and fields observations acquired by other Juno instruments operated during EFB.
TASAR Certification and Operational Approval Requirements - Analyses and Results
NASA Technical Reports Server (NTRS)
Koczo, Stefan, Jr.
2015-01-01
This report documents the results of research and development work performed by Rockwell Collins in addressing the Task 1 objectives under NASA Contract NNL12AA11C. Under this contract Rockwell Collins provided analytical support to the NASA Langley Research Center (LaRC) in NASA's development of a Traffic Aware Strategic Aircrew Requests (TASAR) flight deck Electronic Flight Bag (EFB) application for technology transition into operational use. The two primary objectives of this contract were for Rockwell Collins and the University of Iowa OPL to 1) perform an implementation assessment of TASAR toward early certification and operational approval of TASAR as an EFB application (Task 1 of this contract), and 2) design, develop and conduct two Human-in-the-Loop (HITL) simulation experiments that evaluate TASAR and the associated Traffic Aware Planner (TAP) software application to determine the situational awareness and workload impacts of TASAR in the flight deck, while also assessing the level of comprehension, usefulness, and usability of the features of TAP (Task 2 of this contract). This report represents the Task 1 summary report. The Task 2 summary report is provided in [0].
Isoni, V; Kumbang, D; Sharratt, P N; Khoo, H H
2018-05-15
Aligned with Singapore's commitment to sustainable development and investment in renewable resources, cleaner energy and technology (Sustainable Singapore Blueprint), we report a techno-economic analysis of the biorefinery process in Southeast Asia. The considerations in this study provide an overview of the current and future challenges in the biomass-to-chemical processes with life-cycle thinking, linking the land used for agriculture and biomass to the levulinic acid production. 7-8 kg of lignocellulosic feedstock (glucan content 30-35 wt%) from agriculture residues empty fruit bunches (EFB) or rice straw (RS) can be processed to yield 1 kg of levulinic acid. Comparisons of both traditional and "green" alternative solvents and separation techniques for the chemical process were modelled and their relative energy profiles evaluated. Using 2-methyltetrahydrofuran (2-MeTHF) as the process solvent showed to approx. 20 fold less energy demand compared to methyl isobutyl ketone (MIBK) or approx. 180 fold less energy demand compared to direct distillation from aqueous stream. Greenhouse gases emissions of the major operations throughout the supply chain (energy and solvent use, transport, field emissions) were estimated and compared against the impact of deforestation to make space for agriculture purposes. A biorefinery process for the production of 20 ktonne/year of levulinic acid from two different types of lignocellulosic feedstock was hypothesized for different scenarios. In one scenario the chemical plant producing levulinic acid was located in Singapore whereas in other scenarios, its location was placed in a neighboring country, closer to the biomass source. Results from this study show the importance of feedstock choices, as well as the associated plant locations, in the quest for sustainability objectives. Copyright © 2018 Elsevier Ltd. All rights reserved.
On palms, bugs, and Chagas disease in the Americas.
Abad-Franch, Fernando; Lima, Marli M; Sarquis, Otília; Gurgel-Gonçalves, Rodrigo; Sánchez-Martín, María; Calzada, José; Saldaña, Azael; Monteiro, Fernando A; Palomeque, Francisco S; Santos, Walter S; Angulo, Victor M; Esteban, Lyda; Dias, Fernando B S; Diotaiuti, Liléia; Bar, María Esther; Gottdenker, Nicole L
2015-11-01
Palms are ubiquitous across Neotropical landscapes, from pristine forests or savannahs to large cities. Although palms provide useful ecosystem services, they also offer suitable habitat for triatomines and for Trypanosoma cruzi mammalian hosts. Wild triatomines often invade houses by flying from nearby palms, potentially leading to new cases of human Chagas disease. Understanding and predicting triatomine-palm associations and palm infestation probabilities is important for enhancing Chagas disease prevention in areas where palm-associated vectors transmit T. cruzi. We present a comprehensive overview of palm infestation by triatomines in the Americas, combining a thorough reanalysis of our published and unpublished records with an in-depth review of the literature. We use site-occupancy modeling (SOM) to examine infestation in 3590 palms sampled with non-destructive methods, and standard statistics to describe and compare infestation in 2940 palms sampled by felling-and-dissection. Thirty-eight palm species (18 genera) have been reported to be infested by ∼39 triatomine species (10 genera) from the USA to Argentina. Overall infestation varied from 49.1-55.3% (SOM) to 62.6-66.1% (dissection), with important heterogeneities among sub-regions and particularly among palm species. Large palms with complex crowns (e.g., Attalea butyracea, Acrocomia aculeata) and some medium-crowned palms (e.g., Copernicia, Butia) are often infested; in slender, small-crowned palms (e.g., Euterpe) triatomines associate with vertebrate nests. Palm infestation tends to be higher in rural settings, but urban palms can also be infested. Most Rhodnius species are probably true palm specialists, whereas Psammolestes, Eratyrus, Cavernicola, Panstrongylus, Triatoma, Alberprosenia, and some Bolboderini seem to use palms opportunistically. Palms provide extensive habitat for enzootic T. cruzi cycles and a critical link between wild cycles and transmission to humans. Unless effective means to reduce contact between people and palm-living triatomines are devised, palms will contribute to maintaining long-term and widespread, albeit possibly low-intensity, transmission of human Chagas disease. Copyright © 2015 Elsevier B.V. All rights reserved.
Synthesis of knowledge of extreme fire behavior: volume I for fire managers
Paul A. Werth; Brian E. Potter; Craig B. Clements; Mark A. Finney; Scott L. Goodrick; Martin E. Alexander; Miguel G. Cruz; Jason A. Forthofer; Sara S. McAllister
2011-01-01
The National Wildfire Coordinating Group definition of extreme fire behavior (EFB) indicates a level of fire behavior characteristics that ordinarily precludes methods of direct control action. One or more of the following is usually involved: high rate of spread, prolific crowning/spotting, presence of fire whirls, and strong convection column. Predictability is...
Improved analysis of palm creases
Park, Jin Seo; Shin, Dong Sun; Jung, Wonsug
2010-01-01
Palm creases are helpful in revealing anthropologic characteristics and diagnosing chromosomal aberrations, and have been analyzed qualitatively and quantitatively. However, previous methods of analyzing palm creases were not objective so that reproducibility could not be guaranteed. In this study, a more objective morphologic analysis of palm creases was developed. The features of the improved methods include the strict definition of major and minor palm creases and the systematic classification of major palm creases based on their relationships, branches, and variants. Furthermore, based on the analysis of 3,216 Koreans, palm creases were anthropologically interpreted. There was a tendency for palm creases to be evenly distributed on the palm, which was acknowledged by the relationship between major and minor creases as well as by the incidences of major creases types. This tendency was consistent with the role of palm creases to facilitate folding of palm skin. The union of major palm creases was frequent in males and right palms to have powerful hand grip. The new method of analyzing palm creases is expected to be widely used for anthropologic investigation and chromosomal diagnosis. PMID:21189999
NASA Astrophysics Data System (ADS)
Tristantini, Dewi; Dewanti, Dian Purwitasari; Sandra, Cindy
2017-11-01
Alpha cellulose is a pure form of cellulose. Cellulose is a natural polymer in the form of carbohydrates (polysaccharides) that has fiber which is white, insoluble in water, renewable, easily decomposes, and non-toxic. Cellulosic sources are abundant in nature even in untapped biomass wastes. In this study, cellulose was isolated from Empty Palm Oil Bunches (EPOB) of 45% and Dry Jackfruit Leaves (DJL) of 21.45%. This study aims to obtain optimum yield of cellulose at NaOH concentration and cellulose characterization with water content, FTIR, and SEM analysis. The optimum α-cellulose yield was determined by alkali process with 8, 10, 12 and 14% (w/v) NaOH variations at 90-100 °C for 3 hours to remove hemicellulose and lignin followed by bleaching process with H2O2 10% (w/v) at 80-90 °C for 1.5 h to obtain pure α-cellulose. The optimum yield of EPOB cellulose was 38,562% in 12% NaOH and DJL was 7.27% in 10% NaOH. The water content in OPB cellulose was 4.38% and DJL was 6.37%. A typical cellulose-forming functional group seen in FTIR (Fourier Transform Infra-Red) and morphological results appears in SEM (Scanning Electron Microscopy) analysis. From FTIR analysis result shows cellulose from EPOB and DJL contains O-H, C-H, and C-O. SEM analysis shows fibers from EPOB and DJL are uniform and have pores. However, DJL fibers have white patches, which suspected to be impurities.
Amosa, Mutiu Kolade; Jami, Mohammed Saedi; Alkhatib, Ma'an Fahmi R; Majozi, Thokozani
2016-11-01
This study has applied the concept of the hybrid PAC-UF process in the treatment of the final effluent of the palm oil industry for reuse as feedwater for low-pressure boilers. In a bench-scale set-up, a low-cost empty fruit bunch-based powdered activated carbon (PAC) was employed for upstream adsorption of biotreated palm oil mill effluent (BPOME) with the process conditions: 60 g/L dose of PAC, 68 min of mixing time and 200 rpm of mixing speed, to reduce the feedwater strength, alleviate probable fouling of the membranes and thus improve the process flux (productivity). Three polyethersulfone ultrafiltration membranes of molecular weight cut-off (MWCO) of 1, 5 and 10 kDa were investigated in a cross-flow filtration mode, and under constant transmembrane pressures of 40, 80, and 120 kPa. The permeate qualities of the hybrid processes were evaluated, and it was found that the integrated process with the 1 kDa MWCO UF membrane yielded the best water quality that falls within the US EPA reuse standard for boiler-feed and cooling water. It was also observed that the permeate quality is fit for extended reuse as process water in the cement, petroleum and coal industries. In addition, the hybrid system's operation consumed 37.13 Wh m -3 of energy at the highest applied pressure of 120 kPa, which is far lesser than the typical energy requirement range (0.8-1.0 kWh m -3 ) for such wastewater reclamation.
NASA Astrophysics Data System (ADS)
Benami, E.; Curran, L. M.
2017-12-01
Brazil has the world's largest suitable land area for oil palm (Elaeis guineensis) establishment, with estimates as high as 238 million ha. To promote oil palm development, Brazil launched the Sustainable Palm Oil Production Program (SPOPP) in 2010 and delineated 30 million ha for its growth that excluded forested areas and indigenous reserves. Here we examine oil palm expansion (2006-2014) as well as the SPOPP's effectiveness in Pará, the major oil palm producing state in Brazil. By combining analyses of satellite imagery, land registration data, and site based interviews, we found that oil palm area expanded 205%. Although >50% of oil palm parcels were located within 0.5 km of intact forests, <5% of intact forests were converted by direct deforestation. In contrast, 15-90% of oil palm expansion in Asia and other Latin American countries came from directly converting forested lands. Direct intact forest conversion pre- and post-SPOPP declined from 4% to <1%; however, <1% of the 30 million ha promoted for oil palm was developed by 2014. To explore the major factors that may have constrained oil palm expansion under the SPOPP, we conducted microeconomic simulations of oil palm production, combined with interviews with actors/individuals from oil palm companies, civil society, researchers at universities and NGOs, and governmental agencies. Brazil's oil palm-deforestation dynamics, policies, and economic conditions will be discussed.
Thomas J. Molnar; John Capik; Clayton W. Leadbetter; Ning Zhang; Guohong Cai; Bradley I. Hillman
2012-01-01
Eastern filbert blight (EFB) is a devastating fungal disease of European hazelnut, Corylus avellana L., and is considered to be the primary reason hazelnuts have not been developed as a commercial crop in the eastern United States. The pathogen, Anisogramma anomala, is native to a wide area east of the Rocky Mountains, where it...
NASA Technical Reports Server (NTRS)
Dill, Evan T.; Young, Steven D.
2015-01-01
In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems, and the procedures for interacting with these systems, appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it can place a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. Evidence supporting this observation is becoming widespread, yet has been largely anecdotal or the result of subjective analysis. One way to gain more insight into this issue is through experimentation using more objective measures or indicators. This study utilizes and analyzes eye-tracking data obtained during a high-fidelity flight simulation study wherein many of the complexities of current flight decks, as well as those planned for the next generation air transportation system (NextGen), were emulated. The following paper presents the findings of this study with a focus on electronic flight bag (EFB) usage, system state awareness (SSA) and events involving suspected inattentional blindness (IB).
78 FR 4306 - Amendment of Class D and Class E Airspace; Twentynine Palms, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... the safety and management of aircraft operations at Twentynine Palms SELF Airport, Twentynine Palms.... SUMMARY: This action amends Class D and Class E airspace at Twentynine Palms SELF Airport, Twentynine... name and geographic coordinates of Twentynine Palms SELF Airport, Twentynine Palms, CA. The Class D...
A study of palm biomass processing strategy in Sarawak
NASA Astrophysics Data System (ADS)
Lee, S. J. Y.; Ng, W. P. Q.; Law, K. H.
2017-06-01
In the past decades, palm industry is booming due to its profitable nature. An environmental concern regarding on the palm industry is the enormous amount of waste produced from palm industry. The waste produced or palm biomass is one significant renewable energy source and raw material for value-added products like fiber mats, activated carbon, dried fiber, bio-fertilizer and et cetera in Malaysia. There is a need to establish the palm biomass industry for the recovery of palm biomass for efficient utilization and waste reduction. The development of the industry is strongly depending on the two reasons, the availability and supply consistency of palm biomass as well as the availability of palm biomass processing facilities. In Malaysia, the development of palm biomass industry is lagging due to the lack of mature commercial technology and difficult logistic planning as a result of scattered locality of palm oil mill, where palm biomass is generated. Two main studies have been carried out in this research work: i) industrial study of the feasibility of decentralized and centralized palm biomass processing in Sarawak and ii) development of a systematic and optimized palm biomass processing planning for the development of palm biomass industry in Sarawak, Malaysia. Mathematical optimization technique is used in this work to model the above case scenario for biomass processing to achieve maximum economic potential and resource feasibility. An industrial study of palm biomass processing strategy in Sarawak has been carried out to evaluate the optimality of centralized processing and decentralize processing of the local biomass industry. An optimal biomass processing strategy is achieved.
Palm is expressed in both developing and adult mouse lens and retina
Castellini, Meryl; Wolf, Louise V; Chauhan, Bharesh K; Galileo, Deni S; Kilimann, Manfred W; Cvekl, Ales; Duncan, Melinda K
2005-01-01
Background Paralemmin (Palm) is a prenyl-palmitoyl anchored membrane protein that can drive membrane and process formation in neurons. Earlier studies have shown brain preferred Palm expression, although this protein is a major water insoluble protein in chicken lens fiber cells and the Palm gene may be regulated by Pax6. Methods The expression profile of Palm protein in the embryonic, newborn and adult mouse eye as well as dissociated retinal neurons was determined by confocal immunofluorescence. The relative mRNA levels of Palm, Palmdelphin (PalmD) and paralemmin2 (Palm2) in the lens and retina were determined by real time rt-PCR. Results In the lens, Palm is already expressed at 9.5 dpc in the lens placode, and this expression is maintained in the lens vesicle throughout the formation of the adult lens. Palm is largely absent from the optic vesicle but is detectable at 10.5 dpc in the optic cup. In the developing retina, Palm expression transiently upregulates during the formation of optic nerve as well as in the formation of both the inner and outer plexiform layers. In short term dissociated chick retinal cultures, Palm protein is easily detectable, but the levels appear to reduce sharply as the cultures age. Palm mRNA was found at much higher levels relative to Palm2 or PalmD in both the retina and lens. Conclusion Palm is the major paralemmin family member expressed in the retina and lens and its expression in the retina transiently upregulates during active neurite outgrowth. The expression pattern of Palm in the eye is consistent with it being a Pax6 responsive gene. Since Palm is known to be able to drive membrane formation in brain neurons, it is possible that this molecule is crucial for the increase in membrane formation during lens fiber cell differentiation. PMID:15969763
Analysis Monthly Import of Palm Oil Products Using Box-Jenkins Model
NASA Astrophysics Data System (ADS)
Ahmad, Nurul F. Y.; Khalid, Kamil; Saifullah Rusiman, Mohd; Ghazali Kamardan, M.; Roslan, Rozaini; Che-Him, Norziha
2018-04-01
The palm oil industry has been an important component of the national economy especially the agriculture sector. The aim of this study is to identify the pattern of import of palm oil products, to model the time series using Box-Jenkins model and to forecast the monthly import of palm oil products. The method approach is included in the statistical test for verifying the equivalence model and statistical measurement of three models, namely Autoregressive (AR) model, Moving Average (MA) model and Autoregressive Moving Average (ARMA) model. The model identification of all product import palm oil is different in which the AR(1) was found to be the best model for product import palm oil while MA(3) was found to be the best model for products import palm kernel oil. For the palm kernel, MA(4) was found to be the best model. The results forecast for the next four months for products import palm oil, palm kernel oil and palm kernel showed the most significant decrease compared to the actual data.
Life Cycle Assessment for the Production of Oil Palm Seeds
Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen
2014-01-01
The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598
Life Cycle Assessment for the Production of Oil Palm Seeds.
Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen
2014-12-01
The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.
Abral, Hairul; Putra, Genda J; Asrofi, Mohammad; Park, Ji-Won; Kim, Hyun-Joong
2018-01-01
This article reports effect of vibration duration of high ultrasound applied to bio-composite while gelatinized on its properties. The bio-composite consists of mixing of both the tapioca starch based bioplastic and oil palm empty fruit bunch (OPEFB) fibers with high volume fraction. Gelatinization of the bio-composite sample was poured into a rectangular glass mold placed then in an ultrasonic bath with 40kHz, and 250watt in different duration for 0, 15, 30, 60min respectively. The results show that vibration during gelatinization has changed the characterisation of the bio-composite. SEM photograph displayed different fracture surface of tensile sample. For vibration duration of 60min, tensile strength (TM), and tensile modulus (TM) was improved to 64.4, 277.4%, respectively, meanwhile strain was decreased to 35.1% in comparison without vibration. Fourier Transform Infrared Spectroscopy (FTIR), and XRD diffraction of the bio-composite has changed due to various vibration duration. Moisture absorption of the vibrated bio-composite was lower than that of the untreated one. Copyright © 2017 Elsevier B.V. All rights reserved.
Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just
2015-01-01
Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47–0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2–2.7 g/L/h and a total sugar conversion of 90–99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion. PMID:26295944
Characterization of cellulases of fungal endophytes isolated from Espeletia spp.
Cabezas, Luisa; Calderon, Carolina; Medina, Luis Miguel; Bahamon, Isabela; Cardenas, Martha; Bernal, Adriana Jimena; Gonzalez, Andrés; Restrepo, Silvia
2012-12-01
Endophytes are microorganisms that asymptomatically invade plant tissues. They can stimulate plant growth and/or provide defense against pathogen attacks through the production of secondary metabolites. Most endophyte species are still unknown, and because they may have several applications, the study of their metabolic capabilities is essential. We characterized 100 endophytes isolated from Espeletia spp., a genus unique to the paramo ecosystem, an extreme environment in the Andean mountain range. We evaluated the cellulolytic potential of these endophytes on the saccharification of the oil palm empty fruit bunch (OPEFB). The total cellulolytic activity was measured for each endophyte on filter paper (FPA). In addition, the specific carboxymethyl cellulase (CMCase), exoglucanase, and β-glucosidase activities were determined. We found four fungi positive for cellulases. Of these fungi, Penicillium glabrum had the highest cellulolytic activity after partial purification, with maximal CMCase, exoglucanase and β-glucosidase enzyme activities of 44.5, 48.3, and 0.45 U/ml, respectively. Our data showed that the bioprospection of fungi and the characterization of their enzymes may facilitate the process of biofuel production.
Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.
Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun
2017-06-01
The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Indonesia palm oil production without deforestation and peat conversion by 2050.
Afriyanti, Dian; Kroeze, Carolien; Saad, Asmadi
2016-07-01
Palm oil is a promising source of cooking oil and biodiesel. The demand for palm oil has been increasing worldwide. However, concerns exist surrounding the environmental and socio-economic sustainability of palm oil production. Indonesia is a major palm oil producing country. We explored scenarios for palm oil production in Indonesia until 2050, focusing on Sumatra, Kalimantan and Papua. Our scenarios describe possible trends in crude palm oil production in Indonesia, while considering the demand for cooking oil and biodiesel, the available land for plantations, production capacity (for crude palm oil and fresh fruit bunches) and environmentally restricting conditions. We first assessed past developments in palm oil production. Next, we analysed scenarios for the future. In the past 20years, 95% of the Indonesian oil palm production area was in Sumatra and Kalimantan and was increasingly cultivated in peatlands. Our scenarios for the future indicate that Indonesia can meet a considerable part of the global and Asian demand for palm oil, while avoiding further cultivation of peatlands and forest. By 2050, 264-447Mt crude palm oil may be needed for cooking oil and biodiesel worldwide. In Indonesia, the area that is potentially suitable for oil palm is 17 to 26Mha with a potential production rate of 27-38t fresh fruit bunches/ha, yielding 130-176Mt crude palm oil. Thus Indonesia can meet 39-60% of the international demand. In our scenarios this would be produced in Sumatra (21-26%), Kalimantan (12-16%), and Papua (2%). The potential areas include the current oil palm plantation in mineral lands, but exclude the current oil palm plantations in peatlands. Copyright © 2016 Elsevier B.V. All rights reserved.
Olafisoye, O B; Oguntibeju, O O; Osibote, O A
2017-05-03
Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.
NASA Astrophysics Data System (ADS)
Priambodo, R.; Witarto, A. B.; Salamah, A.; Setiorini, Triyono, D.; Bowolaksono, A.
2017-07-01
Oil palm is a plant that widely cultivated in Indonesia, with an area of about 11 million hectares in 2014. There are three main variants that most cultivated; Dura, Pisifera, and Tenera. Oil palm pollen was spread through the wind. The very wide area of oil palm plantation and those characteristics of oil palm pollen dispersion makes oil palm pollen may give negative effect to the people around plantation, such as an allergy. The research on the morphology and protein characters of the oil palm pollen from three variants has not done yet. This research aims to observe the morphology and protein character from three variants of oil palm pollen. The study begins with the pollen collection from three variants of oil palm. Oil palm pollen was observed using the light and scanning electron microscope. Oil palm pollen protein was extracted and the molecular weight of these proteins was analyzed. The result of this research was the morphology character from three variants of oil palm pollen have successfully been observed. Those three variant of oil palm have no differences structures; triangular shaped with round edge, tricolpate with connected colpus aperture, psilate exine ornamentation at the front side and peripheral side, while at the back side has microreticulate exine ornamentation. Three variants of oil palm pollen protein show the same characteristics. The molecular weight of the protein was ranged from 10-00 KDa. The information can be useful for the next research to figure out component of proteins inside the oil palm pollen.
Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah
2015-12-01
Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber.
Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah
2015-01-01
Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber. PMID:26868709
Bourgis, Fabienne; Kilaru, Aruna; Cao, Xia; Ngando-Ebongue, Georges-Frank; Drira, Noureddine; Ohlrogge, John B; Arondel, Vincent
2011-07-26
Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript levels for all fatty acid synthesis enzymes, specific plastid transporters, and key enzymes of plastidial carbon metabolism, including phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. Transcripts representing an ortholog of the WRI1 transcription factor were 57-fold higher in oil palm relative to date palm and displayed a temporal pattern similar to its target genes. Unexpectedly, despite more than a 100-fold difference in flux to lipids, most enzymes of triacylglycerol assembly were expressed at similar levels in oil palm and date palm. Similarly, transcript levels for all but one cytosolic enzyme of glycolysis were comparable in both species. Together, these data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm. In addition to greatly increasing molecular resources devoted to oil palm and date palm, the combination of temporal and comparative studies illustrates how deep sequencing can provide insights into gene expression patterns of two species that lack genome sequence information.
Bourgis, Fabienne; Kilaru, Aruna; Cao, Xia; Ngando-Ebongue, Georges-Frank; Drira, Noureddine; Ohlrogge, John B.; Arondel, Vincent
2011-01-01
Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript levels for all fatty acid synthesis enzymes, specific plastid transporters, and key enzymes of plastidial carbon metabolism, including phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. Transcripts representing an ortholog of the WRI1 transcription factor were 57-fold higher in oil palm relative to date palm and displayed a temporal pattern similar to its target genes. Unexpectedly, despite more than a 100-fold difference in flux to lipids, most enzymes of triacylglycerol assembly were expressed at similar levels in oil palm and date palm. Similarly, transcript levels for all but one cytosolic enzyme of glycolysis were comparable in both species. Together, these data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm. In addition to greatly increasing molecular resources devoted to oil palm and date palm, the combination of temporal and comparative studies illustrates how deep sequencing can provide insights into gene expression patterns of two species that lack genome sequence information. PMID:21709233
USDA-ARS?s Scientific Manuscript database
Much of the damage caused by red palm weevil larvae to date palms, ornamental palms, and palm offshoots could be mitigated by early detection and treatment of infestations. Acoustic technology has potential to enable early detection, but the short, high-frequency sound impulses produced by red palm ...
Ritual uses of palms in traditional medicine in sub-Saharan Africa: a review
2014-01-01
Palms (Arecaceae) are prominent elements in African traditional medicines. It is, however, a challenge to find detailed information on the ritual use of palms, which are an inextricable part of African medicinal and spiritual systems. This work reviews ritual uses of palms within African ethnomedicine. We studied over 200 publications on uses of African palms and found information about ritual uses in 26 of them. At least 12 palm species in sub-Saharan Africa are involved in various ritual practices: Borassus aethiopum, Cocos nucifera, Dypsis canaliculata, D. fibrosa, D. pinnatifrons, Elaeis guineensis, Hyphaene coriacea, H. petersiana, Phoenix reclinata, Raphia farinifera, R. hookeri, and R. vinifera. In some rituals, palms play a central role as sacred objects, for example the seeds accompany oracles and palm leaves are used in offerings. In other cases, palms are added as a support to other powerful ingredients, for example palm oil used as a medium to blend and make coherent the healing mixture. A better understanding of the cultural context of medicinal use of palms is needed in order to obtain a more accurate and complete insight into palm-based traditional medicines. PMID:25056559
Health promoting effects of phytonutrients found in palm oil.
Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K
2010-08-01
The oil palm tree, Elaeis guineesis, is the source of palm oil, otherwise known as the "tropical golden oil". To date, Malaysia and Indonesia are the leading producers of palm oil. Palm oil is widely used for domestic cooking in Malaysia. Palm oil is a rich source of phytonutrients such as tocotrienols, tocopherol, carotene, phytosterols, squalene, coenzyme Q10, polyphenols, and phospholipids. Although the phytonutrients constitute only about 1% of its weight in crude palm oil, these are the main constituents through which palm oil exhibits its nutritional properties. Among the major health promoting properties shown to be associated with the various types of phytonutrients present in palm oil are anti-cancer, cardio-protection and anti-angiogenesis, cholesterol inhibition, brain development and neuro protective properties, antioxidative defence mechanisms, provitamin A activity and anti-diabetes.
Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman
2015-04-01
Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. © The Author(s) 2015.
Research advancements in palm oil nutrition.
May, Choo Yuen; Nesaretnam, Kalanithi
2014-10-01
Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers ( sn) -2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil.
Research advancements in palm oil nutrition*
May, Choo Yuen; Nesaretnam, Kalanithi
2014-01-01
Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil. PMID:25821404
Funding Site Cleanup at Closing Army Installations: A Stochastic Optimization Approach
2001-12-19
Devens Devens Massachusetts C 29 FORSCOM Hingham Annex Hingham Massachusetts C 30 FORSCOM Sudbury Training Annex Sudbury Massachusetts C 31 FORSCOM Fort ...RI 900 RD 200 RAC 1200 RAO...MINF efb COST y MAXF efa ∈ ∈ − ≤ ≤ +∑ ∑ ∀i,t (1) m i s mt mt ost os mt mt i FORT s SITE o OPTION
Long-term response of Caribbean palm forests to hurricanes
Ariel Lugo; J.L. Frangi
2016-01-01
We studied the response of Prestoea montana (Sierra Palm, hereafter Palm) brakes and a Palm floodplain forest to hurricanes in the Luquillo Experimental Forest in Puerto Rico. Over a span of 78 years, 3 hurricanes passed over the study sites for which we have 64 years of measurements for Palm brakes and 20 years for the Palm floodplain forest. For each stand, species...
USDA-ARS?s Scientific Manuscript database
Much of the damage caused by red palm weevil larvae to date palms, ornamental palms, and palm offshoots could be mitigated by early detection and treatment of infestations. Acoustic technology has potential to enable early detection, but the short, high-frequency sound impulses produced by red palm ...
NASA Astrophysics Data System (ADS)
Benami, E.; Curran, L. M.; Cochrane, M.; Venturieri, A.; Franco, R.; Kneipp, J.; Swartos, A.
2018-03-01
Global models of biophysical suitability for oil palm consistently rank Brazil as having the greatest potential for expansion, with estimates as high as 238 Mha of suitable lands. In 2010, Brazil launched the Sustainable Palm Oil Production Program (SPOPP) to incentivize oil palm development without deforestation on as much as 30 Mha. Here we examine oil palm expansion before and after the SPOPP’s launch. In Pará, the major oil palm producing state in Brazil, we analyze the extent and change in oil palm cultivation from 2006-2014 using satellite imagery, ground-truthed verification, site-based interviews, and rural environmental (land) registration data. Between 2006-2014, oil palm area (≥9 ha) expanded >200% to ~219 000 ha. Of the ~148 000 ha of oil palm developed, ~91% converted pasturelands while ~8% replaced natural vegetation, including intact and secondary forests. Although >80% of all oil palm parcels rest <0.5 km from intact forests, direct conversion of intact forests declined from ~4% pre-SPOPP (2006-2010) to <1% post-SPOPP (2010-2014). Despite low and declining deforestation rates associated with oil palm expansion in Pará, our results also show a low area of oil palm development overall compared with reported land suitability. To explore potential contributing factors, we conducted semi-structured interviews with researchers, company representatives, and government officials involved in the sector to characterize the perceived factors influencing oil palm development and the role of agro-ecological suitability mapping among them. Interviews indicated that: (1) individual effects of suitability mapping efforts to encourage oil palm expansion on cleared areas, i.e. without deforestation, cannot be disentangled from pre-existing public and private deforestation reduction initiatives; and, (2) socio-economic constraints, e.g. high relative production costs and limited familiarity with this crop, appear to partially explain the major discrepancy between estimated potential suitable areas with realized oil palm development.
Transpiration in an oil palm landscape: effects of palm age
NASA Astrophysics Data System (ADS)
Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.
2015-06-01
Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25 year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12 year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of two years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2 year old to 2.5 mm day-1 in a 12 year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Confronting sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2 year old stand and 53 % in the 12 year old stand, indicating variable and substantial additional sources of evaporation, e.g. from the soil, the ground vegetation and from trunk epiphytes. Diurnally, oil palm transpiration rates were characterized by an early peak between 10 and 11 a.m.; there was a pronounced hysteresis in the leaf water use response to changes in vapor pressure deficit for all palms of advanced age. On the day-to-day basis this resulted in a relatively low variability of oil palm water use regardless of fluctuations in vapor pressure deficit and radiation. We conclude, that oil palm dominated landscapes show some spatial variations in (evapo)transpiration rates, e.g. due to varying age-structures, but that the temporal variability of oil palm transpiration is rather low. Stand transpiration rates of some studied oil palm stands compared to or even exceed values reported for different tropical forests, indicating a high water use of oil palms under certain site or management conditions. Our study provides first insights into the eco-hydrological characteristics of oil palms as well as a first estimate of oil palm water use across a gradient of plantation age. It sheds first light on some of the hydrological consequences of the continuing expansion of oil palm plantations.
Transpiration in an oil palm landscape: effects of palm age
NASA Astrophysics Data System (ADS)
Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.
2015-10-01
Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25-year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12-year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of 2 years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2-year old to 2.5 mm day-1 in a 12-year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Comparing sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2-year old stand and 53 % in the 12-year old stand, indicating variable and substantial additional sources of evaporation, e.g., from the soil, the ground vegetation and from trunk epiphytes. Diurnally, oil palm transpiration rates were characterized by an early peak between 10 and 11 a.m.; there was a pronounced hysteresis in the leaf water use response to changes in vapor pressure deficit for all palms of advanced age. On the day-to-day basis this resulted in a relatively low variability of oil palm water use regardless of fluctuations in vapor pressure deficit and radiation. We conclude that oil palm dominated landscapes show some spatial variations in (evapo)transpiration rates, e.g., due to varying age-structures, but that the temporal variability of oil palm transpiration is rather low. The stand transpiration of some of the studied oil palm stands was as high or even higher than values reported for different tropical forests, indicating a high water use of oil palms under yet to be explained site or management conditions. Our study provides first insights into the eco-hydrological characteristics of oil palms as well as a first estimate of oil palm water use across a gradient of plantation age. It sheds first light on some of the hydrological consequences of the continuing expansion of oil palm plantations.
Interpreting the Acoustic Characteristics of Rpw Towards Its Detection- A Review
NASA Astrophysics Data System (ADS)
Leena Nangai, V.; Martin, Betty, Dr.
2017-08-01
Red palm weevil (Rhynchophorus ferrugineus) is also known as Asian palm weevil or Sago weevil. This is a lethal pest of palms which can attack about 17 varieties of palm trees. The growth rate of the weevil depends upon the type of palm tree it feeds on. It attacks the palm trees which is less than 20 years. The presence of the weevil in the palm tree is not evident when seen by the naked eye. Hence palm tree cultivation is affected very badly by the red palm weevil larvae. The larva bores the trunk of the palm trees by feeding on the soft tissues which is present at the centre. The chewing activity produces a kind of sound. Other movements like crawling, emission also produces very feeble sound. The sound produced by the larvae lies between specific ranges of frequency and has its own spectral features. The spectral features extracted from the acoustic movement of the RPW larvae helps the early detection and protect the palm tree from further infestation. Here a survey on acoustic detection and development of instrument or sensors based on acoustic characteristic of RPW larvae is conducted.
Transgenic oil palm: production and projection.
Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C
2000-12-01
Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.
Oil palm mapping for Malaysia using PALSAR-2 dataset
NASA Astrophysics Data System (ADS)
Gong, P.; Qi, C. Y.; Yu, L.; Cracknell, A.
2016-12-01
Oil palm is one of the most productive vegetable oil crops in the world. The main oil palm producing areas are distributed in humid tropical areas such as Malaysia, Indonesia, Thailand, western and central Africa, northern South America, and central America. Increasing market demands, high yields and low production costs of palm oil are the primary factors driving large-scale commercial cultivation of oil palm, especially in Malaysia and Indonesia. Global demand for palm oil has grown exponentially during the last 50 years, and the expansion of oil palm plantations is linked directly to the deforestation of natural forests. Satellite remote sensing plays an important role in monitoring expansion of oil palm. However, optical remote sensing images are difficult to acquire in the Tropics because of the frequent occurrence of thick cloud cover. This problem has led to the use of data obtained by synthetic aperture radar (SAR), which is a sensor capable of all-day/all-weather observation for studies in the Tropics. In this study, the ALOS-2 (Advanced Land Observing Satellite) PALSAR-2 (Phased Array type L-band SAR) datasets for year 2015 were used as an input to a support vector machine (SVM) based machine learning algorithm. Oil palm/non-oil palm samples were collected using a hexagonal equal-area sampling design. High-resolution images in Google Earth and PALSAR-2 imagery were used in human photo-interpretation to separate oil palm from others (i.e. cropland, forest, grassland, shrubland, water, hard surface and bareland). The characteristics of oil palms from various aspects, including PALSAR-2 backscattering coefficients (HH, HV), terrain and climate by using this sample set were further explored to post-process the SVM output. The average accuracy of oil palm type is better than 80% in the final oil palm map for Malaysia.
Palm-Based Standard Reference Materials for Iodine Value and Slip Melting Point
Tarmizi, Azmil Haizam Ahmad; Lin, Siew Wai; Kuntom, Ainie
2008-01-01
This work described study protocols on the production of Palm-Based Standard Reference Materials for iodine value and slip melting point. Thirty-three laboratories collaborated in the inter-laboratory proficiency tests for characterization of iodine value, while thirty-two laboratories for characterization of slip melting point. The iodine value and slip melting point of palm oil, palm olein and palm stearin were determined in accordance to MPOB Test Methods p3.2:2004 and p4.2:2004, respectively. The consensus values and their uncertainties were based on the acceptability of statistical agreement of results obtained from collaborating laboratories. The consensus values and uncertainties for iodine values were 52.63 ± 0.14 Wijs in palm oil, 56.77 ± 0.12 Wijs in palm olein and 33.76 ± 0.18 Wijs in palm stearin. For the slip melting points, the consensus values and uncertainties were 35.6 ± 0.3 °C in palm oil, 22.7 ± 0.4 °C in palm olein and 53.4 ± 0.2 °C in palm stearin. Repeatability and reproducibility relative standard deviations were found to be good and acceptable, with values much lower than that of 10%. Stability of Palm-Based Standard Reference Materials remained stable at temperatures of −20 °C, 0 °C, 6 °C and 24 °C upon storage for one year. PMID:19609396
NASA Astrophysics Data System (ADS)
Haryanto, B.; Bukit, R. Br; Situmeang, E. M.; Christina, E. P.; Pandiangan, F.
2018-02-01
The purpose of this study was to determine the performance, productivity and feasibility of the operation of palm kernel processing plant based on Energy Productivity Ratio (EPR). EPR is expressed as the ratio of output to input energy and by-product. Palm Kernel plan is process in palm kernel to become palm kernel oil. The procedure started from collecting data needed as energy input such as: palm kernel prices, energy demand and depreciation of the factory. The energy output and its by-product comprise the whole production price such as: palm kernel oil price and the remaining products such as shells and pulp price. Calculation the equality of energy of palm kernel oil is to analyze the value of Energy Productivity Ratio (EPR) bases on processing capacity per year. The investigation has been done in Kernel Oil Processing Plant PT-X at Sumatera Utara plantation. The value of EPR was 1.54 (EPR > 1), which indicated that the processing of palm kernel into palm kernel oil is feasible to be operated based on the energy productivity.
An experiment of used palm oil refinery using the value engineering method
NASA Astrophysics Data System (ADS)
Sumiati; Waluyo, M.
2018-01-01
Palm Oil is one of prime materials which very necessary for Indonesia. In the development of palm oil industry the constraint which faced is raw material availability and the economic crisis that attack Indonesia which cause increasing of cost industry so that the salaes price become very expensive . With using alternative raw material namely used palm oil them be made palm oil design to solve this problems. In the designing which comply the consideration of good pal oil planning aspect be use value engineer study. While the criteria parameter of hygienic palm oil which obtained from the questioner area free fatty acid, water content, Iodine number, peroxide number, odor, taste and the color. The research which use value engineer study is throught any phase that is information phase, analyzes phase, creative phase, development phase and presentation phase. This research began with doing the identification of palm oil demand, continued by methodology development in order to measure oil design. By using creative process could be obtained flow rate position, the amount of adsorbent and the best settling time for palm oil alternative that is in the flow rate 70 ml/sec, 4% of adsorbent and the 70 minute for the settling time with free fatty acid value: 0.299. While the best palm oil alternative are palm oil with free fatty acid value = 0.299, water content = 0.31, Iodine number = 40.08, Peroxide number = 3.72, odor and taste = Normal, the color = Normal. The Evalution which done by value engineer study generate the value from alternative palm oil is 1.330 and market palm oil 1.392. Thus, can be conclude thet the value engineer study can be good implemented in the alternative palm oil planning so that alternative palm oil can be produced largely because they have better value that market palm oil and appropriate for little industries.
Mathew, Lisa S; Spannagl, Manuel; Al-Malki, Ameena; George, Binu; Torres, Maria F; Al-Dous, Eman K; Al-Azwani, Eman K; Hussein, Emad; Mathew, Sweety; Mayer, Klaus F X; Mohamoud, Yasmin Ali; Suhre, Karsten; Malek, Joel A
2014-04-15
The date palm is one of the oldest cultivated fruit trees. It is critical in many ways to cultures in arid lands by providing highly nutritious fruit while surviving extreme heat and environmental conditions. Despite its importance from antiquity, few genetic resources are available for improving the productivity and development of the dioecious date palm. To date there has been no genetic map and no sex chromosome has been identified. Here we present the first genetic map for date palm and identify the putative date palm sex chromosome. We placed ~4000 markers on the map using nearly 1200 framework markers spanning a total of 1293 cM. We have integrated the genetic map, derived from the Khalas cultivar, with the draft genome and placed up to 19% of the draft genome sequence scaffolds onto linkage groups for the first time. This analysis revealed approximately ~1.9 cM/Mb on the map. Comparison of the date palm linkage groups revealed significant long-range synteny to oil palm. Analysis of the date palm sex-determination region suggests it is telomeric on linkage group 12 and recombination is not suppressed in the full chromosome. Based on a modified genotyping-by-sequencing approach we have overcome challenges due to lack of genetic resources and provide the first genetic map for date palm. Combined with the recent draft genome sequence of the same cultivar, this resource offers a critical new tool for date palm biotechnology, palm comparative genomics and a better understanding of sex chromosome development in the palms.
In Vitro antibacterial and in Vivo cytotoxic activities of Grewia paniculata.
Nasrin, Mahmuda; Dash, Pritesh Ranjan; Ali, Mohammad Shawkat
2015-01-01
Grewia paniculata (Family: Malvaceae) has been used to treat inflammation, respiratory disorders and fever. It is additionally employed for other health conditions including colds, diarrhea and as an insecticide in Bangladesh. The aim of the present study was to investigate the antibacterial and cytotoxic activities of different extracts of Grewia paniculata. The antibacterial activity was evaluated against both gram negative and gram positive bacteria using disc diffusion method by determination of the diameter of zone of inhibition. Cytotoxic activity was performed by brine shrimp (Artemia salina) lethality bioassay. In disc diffusion method, all the natural products (400 μg/disc) showed moderate to potent activity against all the tested bacteria. The ethanol extract of bark (EEB) and ethanol fraction of bark (EFB) (400 μg/disc) exhibited highest activity against Shigella dysenteriae with a zone of inhibition of 23±1.63 mm and 23±1.77 mm respectively. In the brine shrimp lethality bioassay all the extracts showed moderate cytotoxic activity when compared with the standard drug vincristin sulphate. For example, LC50 value of the ethanol fraction of bark (EFB) was 3.01 μg/ml while the LC50 of vincristine sulphate was 0.52 μg/ml. The results suggest that all the natural products possess potent antibacterial and moderate cytotoxic.
An Operational Safety and Certification Assessment of a TASAR EFB Application
NASA Technical Reports Server (NTRS)
Koczo, Stefan; Wing, David
2013-01-01
This paper presents an overview of a Traffic Aware Strategic Aircrew Requests (TASAR) Electronic Flight Bag application intended to inform the pilot of trajectory improvement opportunities while en route that result in operational benefits. The results of safety analyses and a detailed review of Federal Aviation Administration (FAA) regulatory documents that establish certification and operational approval requirements are presented for TASAR. The safety analyses indicate that TASAR has a likely Failure Effects Classification of “No Effect,” and at most, is no worse than “Minor Effect.” Based on this safety assessment and the detailed review of FAA regulatory documents that determine certification and operational approval requirements, this study concludes that TASAR can be implemented in the flight deck as a Type B software application hosted on a Class 2 Portable Electronic Device (PED) Electronic Flight Bag (EFB). This implementation approach would provide a relatively low-cost path to certification and operational approval for both retrofit and forward fit implementation, while at the same time facilitating the business case for early ADS-B IN equipage. A preliminary review by FAA certification and operational approvers of the analyses presented here confirmed that the conclusions are appropriate and that TASAR will be considered a Type B application.
Repizo, Guillermo D; Blancato, Víctor S; Mortera, Pablo; Lolkema, Juke S; Magni, Christian
2013-05-01
Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation.
NASA Astrophysics Data System (ADS)
Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.
2014-10-01
The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (<10 years old), as young oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.
Sugar palm (Arenga pinnata): Its fibres, polymers and composites.
Ishak, M R; Sapuan, S M; Leman, Z; Rahman, M Z A; Anwar, U M K; Siregar, J P
2013-01-16
Sugar palm (Arenga pinnata) is a multipurpose palm species from which a variety of foods and beverages, timber commodities, biofibres, biopolymers and biocomposites can be produced. Recently, it is being used as a source of renewable energy in the form of bio-ethanol via fermentation process of the sugar palm sap. Although numerous products can be produced from sugar palm, three products that are most prominent are palm sugar, fruits and fibres. This paper focuses mainly on the significance of fibres as they are highly durable, resistant to sea water and because they are available naturally in the form of woven fibre they are easy to process. Besides the recent advances in the research of sugar palm fibres and their composites, this paper also addresses the development of new biodegradable polymer derived from sugar palm starch, and presents reviews on fibre surface treatment, product development, and challenges and efforts on properties enhancement of sugar palm fibre composites. Copyright © 2012 Elsevier Ltd. All rights reserved.
Edem, D O
2002-01-01
The link between dietary fats and cardiovascular diseases has necessitated a growing research interest in palm oil, the second largest consumed vegetable oil in the world. Palm oil, obtained from a tropical plant, Elaeis guineensis contains 50% saturated fatty acids, yet it does not promote atherosclerosis and arterial thrombosis. The saturated fatty acid to unsaturated fatty acid ratio of palm oil is close to unity and it contains a high amount of the antioxidants, beta-carotene, and vitamin E. Although palm oil-based diets induce a higher blood cholesterol level than do corn, soybean, safflower seed, and sunflower oils, the consumption of palm oil causes the endogenous cholesterol level to drop. This phenomenon seems to arise from the presence of the tocotrienols and the peculiar isomeric position of its fatty acids. The benefits of palm oil to health include reduction in risk of arterial thrombosis and atherosclerosis, inhibition of endogenous cholesterol biosynthesis, platelet aggregation, and reduction in blood pressure. Palm oil has been used in the fresh state and/or at various levels of oxidation. Oxidation is a result of processing the oil for various culinary purposes. However, a considerable amount of the commonly used palm oil is in the oxidized state, which poses potential dangers to the biochemical and physiological functions of the body. Unlike fresh palm oil, oxidized palm oil induces an adverse lipid profile, reproductive toxicity and toxicity of the kidney, lung, liver, and heart. This may be as a result of the generation of toxicants brought on by oxidation. In contrast to oxidized palm oil, red or refined palm oil at moderate levels in the diet of experimental animals promotes efficient utilization of nutrients, favorable body weight gains, induction of hepatic drug metabolizing enzymes, adequate hemoglobinization of red cells and improvement of immune function. Howerer, high palm oil levels in the diet induce toxicity to the liver as shown by loss of cellular radial architecture and cell size reductions which are corroborated by alanine transaminase to asparate transaminase ratios which are higher than unity. The consumtion of moderate amounts of palm oil and reduction in the level of oxidation may reduce the health risk believed to be associated with the consumption of palm oil. Red palm oil, by virtue of its beta-carotene content, may protect against vitamin A deficiency and certain forms of cancer.
NASA Astrophysics Data System (ADS)
Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen
2013-11-01
The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.
Lasekan, John B.; Hustead, Deborah S.; Masor, Marc; Murray, Robert
2017-01-01
ABSTRACT Background: Meta-analysis studies have documented that palm olein (PALM) predominant formulas reduce calcium and fat absorption, and bone mineralization in infants, but none have been documented for stool consistency and frequency. Objective: The study objective was to conduct a meta-analysis of published randomized clinical trials (RCTs) on the effect of PALM-based formulas on stool consistency and frequency in infants. Design: A literature search was conducted in BIOSIS Previews®, Embase®, Embase® Alert, MEDLINE® and Cochrane databases. PALM-based RCTs with available stool outcomes were selected and meta-analyzed. Mean rank stool consistency (MRSC, primary outcome) and stool frequency (secondary outcome) were compared between infants fed PALM-based and PALM-free formulas (NoPALM), using random effects model. Results: Nine out of identified16 studies were meta-analyzed. The mean MRSC (scale of 1 = watery to 5 = hard) in the NoPALM-fed infants was lower (softer stools) compared to the PALM-fed infants (mean difference ‒0.355, 95% Confidence Interval [CI] of ‒0.472 to ‒0.239, p < 0.001). Difference for stool frequency was not significant (p = 0.613). Conclusion: Meta-analysis of RCTs indicated that NoPALM-fed infants have significantly softer stools but similar stool frequencies versus PALM-fed infants, despite differences in study types and design. Future meta-analysis could benefit from including comparison with human milk-fed infants. PMID:28659741
Norlida, H M; Md Ali, A R; Muhadhir, I
1996-01-01
Palm oil (PO ; iodin value = 52), palm stearin (POs1; i.v. = 32 and POs2; i.v. = 40) and palm kernel oil (PKO; i.v. = 17) were blended in ternary systems. The blends were then studied for their physical properties such as melting point (m.p.), solid fat content (SFC), and cooling curve. Results showed that palm stearin increased the blends melting point while palm kernel oil reduced it. To produce table margarine with melting point (m.p.) below 40 degrees C, the POs1 should be added at level of < or = 16%, while POs2 at level of < or = 20%. At 10 degrees C, eutectic interaction occur between PO and PKO which reach their maximum at about 60:40 blending ratio. Within the eutectic region, to maintain the SFC at 10 degrees C to be < or = 50%, POs1 may be added at level of < or = 7%, while POs2 at level of < or = 12%. The addition of palm stearin increased the blends solidification Tmin and Tmax values, while PKO reduced them. Blends which contained high amount of palm stearin showed melting point and cooling curves quite similar to that of pastry margarine.
Life cycle inventory of oil palm lumber production: A gate-to-gate case study
NASA Astrophysics Data System (ADS)
Shamsudin, Noor Ainna; Sahid, Ismail; Mokhtar, Anis; Muhamad, Halimah; Ahmad, Shamim
2018-04-01
Life Cycle Assessment (LCA) has been applied in the Malaysian oil palm industry since 2010. It is important to ensure that this main industry is ready to meet the demands and expectations of European market on the environmental performance of the oil palm industry. In addition, oil palm biomass, especially oil palm trunk (OPT) are abundantly available after replanting every year. In order to maximize the usage of OPT as a green product, it can be converted to palm lumber as a value-added product. Palm lumber act as a basis product from OPT before it is converted to panel product such as plywood, sandwich board and so on. However, the LCA study on palm lumber production is still scarce in Malaysia. Hence, this paper aims to perform and collect the inventory data for palm lumber production, which is known as Life Cycle Inventory (LCI). A gate-to-gate system boundary and the functional unit of 1 m3 of palm lumber produced have been used in this study. This inventory data was collected from three batches of the production cycle. The inputs are mainly the raw materials which are the OPT and the energy from diesel and electricity from the grid. Generally, each consumption of input such as energy and fossil fuel were different at each stage of palm lumber production. Kiln-drying represents a prominent stage in terms of energy consumption, which electrical use in the dryer represents 94% of total electrical grid consumption as compared to another stage of palm lumber production. By adding the inventory information especially in the downstream sector of biomass industry, hopefully it can improve the sustainability of oil palm industry in Malaysia.
2014-01-01
Background The date palm is one of the oldest cultivated fruit trees. It is critical in many ways to cultures in arid lands by providing highly nutritious fruit while surviving extreme heat and environmental conditions. Despite its importance from antiquity, few genetic resources are available for improving the productivity and development of the dioecious date palm. To date there has been no genetic map and no sex chromosome has been identified. Results Here we present the first genetic map for date palm and identify the putative date palm sex chromosome. We placed ~4000 markers on the map using nearly 1200 framework markers spanning a total of 1293 cM. We have integrated the genetic map, derived from the Khalas cultivar, with the draft genome and placed up to 19% of the draft genome sequence scaffolds onto linkage groups for the first time. This analysis revealed approximately ~1.9 cM/Mb on the map. Comparison of the date palm linkage groups revealed significant long-range synteny to oil palm. Analysis of the date palm sex-determination region suggests it is telomeric on linkage group 12 and recombination is not suppressed in the full chromosome. Conclusions Based on a modified gentoyping-by-sequencing approach we have overcome challenges due to lack of genetic resources and provide the first genetic map for date palm. Combined with the recent draft genome sequence of the same cultivar, this resource offers a critical new tool for date palm biotechnology, palm comparative genomics and a better understanding of sex chromosome development in the palms. PMID:24735434
The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss
Pimm, Stuart L.; Jenkins, Clinton N.; Smith, Sharon J.
2016-01-01
Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems. PMID:27462984
The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss.
Vijay, Varsha; Pimm, Stuart L; Jenkins, Clinton N; Smith, Sharon J
2016-01-01
Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems.
Ooi, Leslie C.-L.; Low, Eng-Ti L.; Abdullah, Meilina O.; Nookiah, Rajanaidu; Ting, Ngoot C.; Nagappan, Jayanthi; Manaf, Mohamad A. A.; Chan, Kuang-Lim; Halim, Mohd A.; Azizi, Norazah; Omar, Wahid; Murad, Abdul J.; Lakey, Nathan; Ordway, Jared M.; Favello, Anthony; Budiman, Muhammad A.; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T.; Jiang, Nan; Smith, Steven W.; Brown, Clyde R.; Kuek, Alex C. S.; Bahrain, Shabani; Hoynes-O’Connor, Allison; Nguyen, Amelia Y.; Chaudhari, Hemangi G.; Shah, Shivam A.; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder
2016-01-01
Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts. PMID:27446094
Performance and Architecture Lab Modeling Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-06-19
Analytical application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult. Furthermore, models are frequently expressed in forms that are hard to distribute and validate. The Performance and Architecture Lab Modeling tool, or Palm, is a modeling tool designed to make application modeling easier. Palm provides a source code modeling annotation language. Not only does the modeling language divide the modeling task into sub problems, it formally links an application's source code with its model. This link is important because a model's purpose is to capture application behavior. Furthermore, this linkmore » makes it possible to define rules for generating models according to source code organization. Palm generates hierarchical models according to well-defined rules. Given an application, a set of annotations, and a representative execution environment, Palm will generate the same model. A generated model is a an executable program whose constituent parts directly correspond to the modeled application. Palm generates models by combining top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. A model's hierarchy is defined by static and dynamic source code structure. Because Palm coordinates models and source code, Palm's models are 'first-class' and reproducible. Palm automates common modeling tasks. For instance, Palm incorporates measurements to focus attention, represent constant behavior, and validate models. Palm's workflow is as follows. The workflow's input is source code annotated with Palm modeling annotations. The most important annotation models an instance of a block of code. Given annotated source code, the Palm Compiler produces executables and the Palm Monitor collects a representative performance profile. The Palm Generator synthesizes a model based on the static and dynamic mapping of annotations to program behavior. The model -- an executable program -- is a hierarchical composition of annotation functions, synthesized functions, statistics for runtime values, and performance measurements.« less
Stability evaluation of quality parameters for palm oil products at low temperature storage.
Ramli, Nur Aainaa Syahirah; Mohd Noor, Mohd Azmil; Musa, Hajar; Ghazali, Razmah
2018-07-01
Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated. In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P < 0.05), whereas the moisture content for CPO, IV for RBDPO and RBDPOo, stearic acid composition for CPO and linolenic acid composition for CPO, RBDPO, RBDPOo and RBDPS did not (P > 0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature. The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Ooi, Leslie C-L; Low, Eng-Ti L; Abdullah, Meilina O; Nookiah, Rajanaidu; Ting, Ngoot C; Nagappan, Jayanthi; Manaf, Mohamad A A; Chan, Kuang-Lim; Halim, Mohd A; Azizi, Norazah; Omar, Wahid; Murad, Abdul J; Lakey, Nathan; Ordway, Jared M; Favello, Anthony; Budiman, Muhammad A; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T; Jiang, Nan; Smith, Steven W; Brown, Clyde R; Kuek, Alex C S; Bahrain, Shabani; Hoynes-O'Connor, Allison; Nguyen, Amelia Y; Chaudhari, Hemangi G; Shah, Shivam A; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder
2016-01-01
Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts.
Suitability of online 3D visualization technique in oil palm plantation management
NASA Astrophysics Data System (ADS)
Mat, Ruzinoor Che; Nordin, Norani; Zulkifli, Abdul Nasir; Yusof, Shahrul Azmi Mohd
2016-08-01
Oil palm industry has been the backbone for the growth of Malaysia economy. The exports of this commodity increasing almost every year. Therefore, there are many studies focusing on how to help this industry increased its productivity. In order to increase the productivity, the management of oil palm plantation need to be improved and strengthen. One of the solution in helping the oil palm manager is by implementing online 3D visualization technique for oil palm plantation using game engine technology. The potential of this application is that it can helps in fertilizer and irrigation management. For this reason, the aim of this paper is to investigate the issues in managing oil palm plantation from the view of oil palm manager by interview. The results from this interview will helps in identifying the suitable issues could be highlight in implementing online 3D visualization technique for oil palm plantation management.
Study of oil palm root architecture with variation of crop stage and soil type vulnerable to drought
NASA Astrophysics Data System (ADS)
Safitri, Lisma; Suryanti, Sri; Kautsar, Valensi; Kurniawan, Agung; Santiabudi, Fajar
2018-03-01
Root arhitecture is affected by watertable level, characteristic of soil, organic matter and also the crop stages. Root architecture spread horizontally and vertically which each consist of primary, secondary, tertiary and quaternary downward root. The oil palm root observation with variation of crop stage and soil type showed that the root of oil palm plant year 2008 on spodosols soil spread along 650 cm horizontally from the trunk and penetrate downward in range of 9-28 cm vertically. Planted in the same type of soil, the root of oil palm plant year 2004 spread along 650 cm horizontally and reached to downward in a larger range from 3 to 57 cm vertically. As a comparison, the root architecture of oil palm on inceptisols soil established the range much greater vertically than the previous. The root of oil palm plant year 2008 spread along 640 cm horizontally and penetrate downward in range of 52-90 cm vertically. With the variation of crop age, the root of oil palm plant year 2003 spread along 650 cm horizontally and reached to downward in a larger range from 150 to 200 cm vertically. Based on this study, root architecture of oil palm was varied and need to be detailed. The precise root architecture of oil palm allows a better understanding on hydrological properties of oil palm root particularly which is cultivated on soil type vulnerable to drought. Referring to this root architecture, it was enable to develop the study on early drought detection of oil palm to optimise production and towards oil palm sustainability.
Yahya, Muhammad S; Syafiq, Muhamad; Ashton-Butt, Adham; Ghazali, Amal; Asmah, Siti; Azhar, Badrul
2017-08-01
Monoculture farming is pervasive in industrial oil palm agriculture, including those RSPO plantations certified as sustainably managed. This farming practice does not promote the maintenance of farmland biodiversity. However, little scientific attention has been given to polyculture farming in oil palm production landscapes. Polyculture farming is likely to increase the floristic diversity and stand structural complexity that underpins biodiversity. Mist nets were used to sample birds at 120 smallholdings in Peninsular Malaysia. At each site, 12 vegetation structure characteristics were measured. We compared bird species richness, abundance, and composition between monoculture and polyculture smallholdings and used predictive models to examine the effects of habitat quality on avian biodiversity. Bird species richness was significantly greater in polyculture than that of monoculture smallholdings. The number of fallen and standing, dead oil palms were also important positive predictors of species richness. Bird abundance was also strongly increased by standing and dead oil palms and decreased with oil palm stand height. Our results indicate that polyculture farming can improve bird species richness in oil palm production landscapes. In addition, key habitat variables that are closely associated with farming practices, such as the removal of dead trees, should and can be managed by oil palm growers in order to promote biodiversity. To increase the sustainability of oil palm agriculture, it is imperative that stakeholders modify the way oil palms are currently planted and managed. Our findings can guide policy makers and certification bodies to promote oil palm production landscapes that will function more sustainably and increase existing biodiversity of oil palm landscapes.
Coconut, date and oil palm genomics
USDA-ARS?s Scientific Manuscript database
A review of genomics research is presented for the three most economically important palm crops, coconut (Cocos nucifera), date palm (Phoenix dactylifera) and oil palm (Elaeis guineensis), encompassing molecular markers studies of genetic diversity, genetic mapping, quantitative trait loci discovery...
Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.
Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar
2012-02-10
Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.
Analyzing AQP Data to Improve Electronic Flight Bag (EFB) Operations and Training
NASA Technical Reports Server (NTRS)
Seamster, Thomas L.; Kanki, Barbara
2010-01-01
Key points include: Initiate data collection and analysis early in the implementation process. Use data to identify procedural and training refinements. Use a de-identified system to analyze longitudinal data. Use longitudinal I/E data to improve their standardization. Identify above average pilots and crews and use their performance to specify best practices. Analyze below average crew performance data to isolate problems with the training, evaluator standardization and pilot proficiency.
Pugliese, Massimo; Rettori, Andrea Alberto; Martinis, Roberto; Al-Rohily, Khalid; Velate, Suresh; Moideen, Mohamed Ashraf; Al-Maashi, Ali
2017-08-01
The date palm (Phoenix dactylifera L.), an important economic resource for many nations worldwide, has recently been threatened by the presence of different insect pests, like the red palm weevil (RPW) Rhynchophorus ferrugineus. Two products, a glue (polyvinyl acetate) and an oil (raw linseed oil) were used as coatings and applied together with a repellent and two insecticides (teflutrin and chlorpyrifos) at different dosages on two species of palm (P. dactylifera and P. canariensis). Phytotoxic effects of the treatments were evaluated in a greenhouse on 260 potted palms (130 P. dactylifera and 130 P. canariensis) and no negative effects were observed. Afterwards, a trial lasting 400 days was carried out in a nursery located in Sicily (south Italy), treating 572 potted palm trees (286 P. dactylifera and 286 P. canariensis) with an average diameter at the base of 18-20 cm. After 400 days, 48% of the untreated palms were infested, while only 3% of date palms and 7% of Canary palms treated with insecticide at lower dosages were infested. The application of an insecticide-based coating is a good strategy to control and prevent the red palm weevil infestation, in particular on date palms. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Will oil palm's homecoming spell doom for Africa's great apes?
Wich, Serge A; Garcia-Ulloa, John; Kühl, Hjalmar S; Humle, Tatanya; Lee, Janice S H; Koh, Lian Pin
2014-07-21
Expansion of oil palm plantations has led to extensive wildlife habitat conversion in Southeast Asia [1]. This expansion is driven by a global demand for palm oil for products ranging from foods to detergents [2], and more recently for biofuels [3]. The negative impacts of oil palm development on biodiversity [1, 4, 5], and on orangutans (Pongo spp.) in particular, have been well documented [6, 7] and publicized [8, 9]. Although the oil palm is of African origin, Africa's production historically lags behind that of Southeast Asia. Recently, significant investments have been made that will likely drive the expansion of Africa's oil palm industry [10]. There is concern that this will lead to biodiversity losses similar to those in Southeast Asia. Here, we analyze the potential impact of oil palm development on Africa's great apes. Current great ape distribution in Africa substantially overlaps with current oil palm concessions (by 58.7%) and areas suitable for oil palm production (by 42.3%). More importantly, 39.9% of the distribution of great ape species on unprotected lands overlaps with suitable oil palm areas. There is an urgent need to develop guidelines for the expansion of oil palm in Africa to minimize the negative effects on apes and other wildlife. There is also a need for research to support land use decisions to reconcile economic development, great ape conservation, and avoiding carbon emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Synthesis of Transesterified Palm Olein-Based Polyol and Rigid Polyurethanes from this Polyol.
Arniza, Mohd Zan; Hoong, Seng Soi; Idris, Zainab; Yeong, Shoot Kian; Hassan, Hazimah Abu; Din, Ahmad Kushairi; Choo, Yuen May
Transesterification of palm olein with glycerol can increase the functionality by introducing additional hydroxyl groups to the triglyceride structure, an advantage compared to using palm olein directly as feedstock for producing palm-based polyol. The objective of this study was to synthesize transesterified palm olein-based polyol via a three-step reaction: (1) transesterification of palm olein, (2) epoxidation and (3) epoxide ring opening. Transesterification of palm olein yielded approximately 78 % monoglyceride and has an hydroxyl value of approximately 164 mg KOH g -1 . The effect of formic acid and hydrogen peroxide concentrations on the epoxidation reaction was studied. The relationships between epoxide ring-opening reaction time and residual oxirane oxygen content and hydroxyl value were monitored. The synthesized transesterified palm olein-based polyol has hydroxyl value between 300 and 330 mg KOH g -1 and average molecular weight between 1,000 and 1,100 Da. On the basis of the hydroxyl value and average molecular weight of the polyol, the transesterified palm olein-based polyol is suitable for producing rigid polyurethane foam, which can be designed to exhibit desirable properties. Rigid polyurethane foams were synthesized by substituting a portion of petroleum-based polyol with the transesterified palm olein-based polyol. It was observed that by increasing the amount of transesterified palm olein-based polyol, the core density and compressive strength were reduced but at the same time the insulation properties of the rigid polyurethane foam were improved.
Minimizing the biodiversity impact of Neotropical oil palm development.
Gilroy, James J; Prescott, Graham W; Cardenas, Johann S; Castañeda, Pamela González del Pliego; Sánchez, Andrés; Rojas-Murcia, Luis E; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P
2015-04-01
Oil palm agriculture is rapidly expanding in the Neotropics, at the expense of a range of natural and seminatural habitats. A key question is how this expansion should be managed to reduce negative impacts on biodiversity. Focusing on the Llanos of Colombia, a mixed grassland-forest system identified as a priority zone for future oil palm development, we survey communities of ants, dung beetles, birds and herpetofauna occurring in oil palm plantations and the other principal form of agriculture in the region--improved cattle pasture--together with those of surrounding natural forests. We show that oil palm plantations have similar or higher species richness across all four taxonomic groups than improved pasture. For dung beetles, species richness in oil palm was equal to that of forest, whereas the other three taxa had highest species richness in forests. Hierarchical modelling of species occupancy probabilities indicated that oil palm plantations supported a higher proportion of species characteristic of forests than did cattle pastures. Across the bird community, occupancy probabilities within oil palm were positively influenced by increasing forest cover in a surrounding 250 m radius, whereas surrounding forest cover did not strongly influence the occurrence of other taxonomic groups in oil palm. Overall, our results suggest that the conversion of existing improved pastures to oil palm has limited negative impacts on biodiversity. As such, existing cattle pastures of the Colombian Llanos could offer a key opportunity to meet governmental targets for oil palm development without incurring significant biodiversity costs. Our results also highlight the value of preserving remnant forests within these agricultural landscapes, protecting high biodiversity and exporting avian 'spill-over' effects into oil palm plantations. © 2014 John Wiley & Sons Ltd.
Mann, Aniv; Smoum, Reem; Trembovler, Victoria; Alexandrovich, Alexander; Breuer, Aviva; Mechoulam, Raphael; Shohami, Esther
2015-06-01
The endocannabinoid (eCB) system helps recovery following traumatic brain injury (TBI). Treatment with 2-arachidonoylglycerol (2-AG), a cerebral eCB ligand, was found to ameliorate the secondary damage. Interestingly, the fatty acid amino acid amide (FAAA) N-arachidonoyl-L-serine (AraS) exerts similar eCB dependent neuroprotective. The present study aimed to investigate the effects of the FAAA palmitoyl-serine (PalmS) following TBI. We utilized the TBI model in mice to examine the therapeutic potential of PalmS, injected 1 h following closed head injury (CHI). We followed the functional recovery of the injured mice for 28 days post-CHI, and evaluated cognitive and motor function, lesion volume, cytokines levels, molecular signaling, and infarct volume at different time points after CHI. PalmS treatment led to a significant improvement of the neurobehavioral outcome of the treated mice, compared with vehicle. This effect was attenuated in the presence of eCBR antagonists and in CB2-/- mice, compared to controls. Unexpectedly, treatment with PalmS did not affect edema and lesion volume, TNFα and IL1β levels, anti-apoptotic mechanisms, nor did it exert improvement in cognitive and motor function. Finally, co-administration of PalmS, AraS and 2-AG, did not enhance the effect of the individual drugs. We suggest that the neuroprotective action of PalmS is mediated by indirect activation of the eCB receptors following TBI. One such mechanism may involve receptor palmitoylation which has been reported to result in structural stabilization of the receptors and to an increase in their activity. Further research is required in order to establish this assumption.
Dual resonant frequencies effects on an induction-based oil palm fruit sensor.
Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa
2014-11-19
As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.
Palm oil and the heart: A review
Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie
2015-01-01
Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono or polyunsaturated fatty acids. PMID:25810814
Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor
Harun, Noor Hasmiza; Misron, Norhisam; Sidek, Roslina Mohd; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa
2014-01-01
As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept. PMID:25414970
Questioning the sustainable palm oil demand: case study from French-Indonesia supply chain
NASA Astrophysics Data System (ADS)
Chalil, D.; Barus, R.
2018-02-01
Sustainable palm oil has been widely debated. Consuming countries insist certified sustainable produces palm oil, but in fact the absorption of the certified palm oil is still less than 60%. This raise questions about the sustainable palm oil demand. In this study, such a condition will be analysed in French-Indonesia supply chain case. Using monthly and quarterly data from 2010 to 2016 with Autoregressive Distributed Lag (ARDL) approach and Error Correction Model, demand influencing factors and price integration in each market of the supply chain is estimated. Two scenarios namely re-export and direct export models are considered in the Error Correction Model. The results show that France Gross Domestic Product, prices of France palm oil import from Indonesia, Malaysia, and Germany, and price of France groundnut import significantly influence the France palm oil import volume from Indonesia. Prices in each market along palm oil re-export France-Indonesia supply chain are co-integrated and converge towards long-run equilibrium, but not in the direct export supply chain. This leads to a conclusion that France market preferences in specific and EU market preferences in general need to be considered by Indonesian palm oil decision makers.
Stem rots of oil palm caused by Ganoderma boninense: pathogen biology and epidemiology.
Pilotti, C A
2005-01-01
Oil palm (Elaeis guineensis Jacq.) has been grown in Papua New Guinea since the early 1960s. The most important disease of oil palm in PNG is a stem rot of the palm base. This is the same disease that constitutes a major threat to sustainable oil palm production in SE Asia. Investigations into the causal pathogen have revealed that the stem rots in PNG are caused predominantly by the basidiomycete Ganoderma boninense, with a minor pathogen identified as G. tornatum G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms. The population structure of G. boninense was investigated using inter-fertility studies between isolates collected from basal stem rots on oil palm. Although the G. boninense field populations are predominantly comprised of distinct individuals, a number of isolates were found that share single mating alleles. This indicates that out-crossing had occurred over several generations in the resident or wild population of G. boninense prior to colonization of oil palm. No direct hereditary relationship between isolates on neighbouring diseased palms was found, although an indirect link between isolates causing upper stem rot and basal stem rot was detected.
Production of palm frond based wood plastic composite by using twin screw extruder
NASA Astrophysics Data System (ADS)
Russita, M.; Bahruddin
2018-04-01
Wood plastic composite (WPC) is the blending product from wood as filler and polymer thermoplastic as matric. Palm frond waste is a material with selulose about 68%, so it has potential to be developed as raw material for WPC. The purpose of this research was to learn how to produce WPC based on palm frond use twin screw extruder. It used popropilen as matric. As for aditif, it used Maleated Polypropilene (MAPP) as compatibilizer and paraffin as plasticizer. The size of palm frond is 40 – 80 mesh. WPC is made from blending polipropylene, palm frond, MAPP and paraffin with dry mixing method in room temperature. Then, PP, Palm frond and additive from dry mixing is fed into twin screw extruder at 190°C and 60 rpm. It use palm frond/polypropylene 60/40, MAPP 5% w/w and paraffin 2% w/w. From the result, it shown that WPC based on palm frond met the standards forcommercial WPC. It has tensile strength up to 19.2 MPa, bending strength 43.6 MPa and water adsorption 0,32% w/w. So, WPC based on palm frond has prospective to be developed for commercial WPC.
NASA Astrophysics Data System (ADS)
Shahputra, M. A.; Zen, Z.
2018-02-01
The aim of the study is to deepen understanding the role of palm oil on Indonesian economy, poverty elevation and to investigate the positive and negative impacts of oil palm expansion, due to the burden of GHG emissions; and prospect to be more sustainable palm oil industry. The statistics show that average rural poverty tends to be lower and Gross Regional Product tends to be higher in provinces which have greater levels of oil palm cultivation. Indonesian oil palm will grow from 10.6 in 2013 to 13.7 million ha by 2020. This will release 135.59 million tons of CO2 if nothing is done to mitigate BAU emissions. Unless there are sustained efforts to redirect development and expansion of oil palm, plantation growth will continue to encroach on intact forest and peat land.. In fact Indonesia has large areas of degraded land, an estimated total 19,144,000 ha is available for planting oil palm and other crops. A large-scale expansion program driven by estate companies needs to be accompanied by effective smallholder development program in order to achieve the best outcome for local farmers and avoid the conflicts.
Loo, Ching-Yee; Lee, Wing-Hin; Tsuge, Takeharu; Doi, Yoshiharu; Sudesh, Kumar
2005-09-01
Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (M(n)) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6-3.9.
NASA Astrophysics Data System (ADS)
Fan, Y.; Roupsard, O.; Bernoux, M.; Le Maire, G.; Panferov, O.; Kotowska, M. M.; Knohl, A.
2015-11-01
In order to quantify the effects of forests to oil palm conversion occurring in the tropics on land-atmosphere carbon, water and energy fluxes, we develop a new perennial crop sub-model CLM-Palm for simulating a palm plant functional type (PFT) within the framework of the Community Land Model (CLM4.5). CLM-Palm is tested here on oil palm only but is meant of generic interest for other palm crops (e.g., coconut). The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced so that each phytomer has its own prognostic leaf growth and fruit yield capacity but with shared stem and root components. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, separated by a thermal period. An important phenological phase is identified for the oil palm - the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization and leaf pruning are represented. Parameters introduced for the oil palm were calibrated and validated with field measurements of leaf area index (LAI), yield and net primary production (NPP) from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched notably well between simulation and observation (mean percentage error = 3 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites and sufficiently represent the significant nitrogen- and age-related site-to-site variability in NPP and yield. Results also indicate that seasonal dynamics of yield and remaining small-scale site-to-site variability of NPP are driven by processes not yet implemented in the model or reflected in the input data. The new sub-canopy structure and phenology and allocation functions in CLM-Palm allow exploring the effects of tropical land-use change, from natural ecosystems to oil palm plantations, on carbon, water and energy cycles and regional climate.
Date palm production and pest management challenges
USDA-ARS?s Scientific Manuscript database
Abstract: Date palm, Phoenix dactylifera, is a monocotyledonous species belong- ing to the palm family (Arecaceae or Palmae) which is perennial and dioecious and cultivated mostly in the arid regions of the world. Date palm is important to the agrarian economy of several countries, with the ability ...
Age of oil palm plantations causes a strong change in surface biophysical variables
NASA Astrophysics Data System (ADS)
Sabajo, Clifton; le Maire, Guerric; Knohl, Alexander
2016-04-01
Over the last decades, Indonesia has experienced dramatic land transformations with an expansion of oil palm plantations at the expense of tropical forests. As vegetation is a modifier of the climate near the ground these large-scale land transformations are expected to have major impacts on the surface biophysical variables i.e. surface temperature, albedo, and vegetation indices, e.g. the NDVI. Remote sensing data are needed to assess such changes at regional scale. We used 2 Landsat images from Jambi Province in Sumatra/Indonesia covering a chronosequence of oil palm plantations to study the 20 - 25 years life cycle of oil palm plantations and its relation with biophysical variables. Our results show large differences between the surface temperature of young oil palm plantations and forest (up to 9.5 ± 1.5 °C) indicating that the surface temperature is raised substantially after the establishment of oil palm plantations following the removal of forests. During the oil palm plantation lifecycle the surface temperature differences gradually decreases and approaches zero around an oil palm plantation age of 10 years. Similarly, NDVI increases and the albedo decreases approaching typical values of forests. Our results show that in order to assess the full climate effects of oil palm expansion biophysical processes play an important role and the full life cycle of oil palm plantations need to be considered.
Chakravarthy, A K; Chandrashekharaiah, M; Kandakoor, Subhash B; Nagaraj, D N
2014-05-01
Red palm weevil and Rhinoceros beetle are the major pests inflicting severe damage to coconut palms. Due to ineffectiveness of the current management practices to control the two important pests on coconut, a study was conducted to know the attractiveness of red palm weevil and rhinoceros beetle to aggregation pheromone. Olfactometer studies indicated that the aggregation pheromone of red palm weevil and rhinoceros beetle attracted significantly more number of weevils (13.4 females and 7.6 male weevils) and beetles (6.5 male and 12.3 female beetles), respectively than control. Similarly, field studies found that both 750 and 1000 mg pheromone dosage lures of red palm weevil and rhinoceros beetle trapped significantly higher numbers of weevils (695.80 and 789 weevils, respectively) and beetles (98 and 108 beetles, respectively) in traps (P < 0.05), respectively. On an average (n = 6 field trials) 80-85% red palm weevil and 72-78% rhinoceros beetle population got trapped. Observations indicated activity of red palm weevil throughout the year and of rhinoceros beetle from September to March around Bangalore, South India. Pheromone traps for red palm weevil can be placed in fields from June to August and October to December and September to February for rhinoceros beetle. Population reductions of the two coleopteran pests by pheromone traps are compatible with mechanical and cultural management tools with cumulative effects.
Poor Prospects for Avian Biodiversity in Amazonian Oil Palm
Lees, Alexander C.; Vieira, Ima C. G.
2015-01-01
Expansion of oil palm plantations across the humid tropics has precipitated massive loss of tropical forest habitats and their associated speciose biotas. Oil palm plantation monocultures have been identified as an emerging threat to Amazonian biodiversity, but there are no quantitative studies exploring the impact of these plantations on the biome’s biota. Understanding these impacts is extremely important given the rapid projected expansion of oil palm cultivation in the basin. Here we investigate the biodiversity value of oil palm plantations in comparison with other dominant regional land-uses in Eastern Amazonia. We carried out bird surveys in oil palm plantations of varying ages, primary and secondary forests, and cattle pastures. We found that oil palm plantations retained impoverished avian communities with a similar species composition to pastures and agrarian land-uses and did not offer habitat for most forest-associated species, including restricted range species and species of conservation concern. On the other hand, the forests that the oil palm companies are legally obliged to protect hosted a relatively species-rich community including several globally-threatened bird species. We consider oil palm to be no less detrimental to regional biodiversity than other agricultural land-uses and that political pressure exerted by large landowners to allow oil palm to count as a substitute for native forest vegetation in private landholdings with forest restoration deficits would have dire consequences for regional biodiversity. PMID:25955243
Bahrin, E K; Ibrahim, M F; Abd Razak, M N; Abd-Aziz, S; Shah, U K Md; Alitheen, N; Salleh, M Md
2012-01-01
The response surface method was applied in this study to improve cellulase production from oil palm empty fruit bunch (OPEFB) by Botryosphaeria rhodina. An experimental design based on a two-level factorial was employed to screen the significant environmental factors for cellulase production. The locally isolated fungus Botryosphaeria rhodina was cultivated on OPEFB under solid-state fermentation (SSF). From the analysis of variance (ANOVA), the initial moisture content, amount of substrate, and initial pH of nutrient supplied in the SSF system significantly influenced cellulase production. Then the optimization of the variables was done using the response surface method according to central composite design (CCD). Botryosphaeria rhodina exhibited its best performance with a high predicted value of FPase enzyme production (17.95 U/g) when the initial moisture content was at 24.32%, initial pH of nutrient was 5.96, and 3.98 g of substrate was present. The statistical optimization from actual experiment resulted in a significant increment of FPase production from 3.26 to 17.91 U/g (5.49-fold). High cellulase production at low moisture content is a very rare condition for fungi cultured in solid-state fermentation.
Treatment of crude oil-contaminated water with chemically modified natural fiber
NASA Astrophysics Data System (ADS)
Onwuka, Jude Chinedu; Agbaji, Edith Bolanle; Ajibola, Victor Olatunji; Okibe, Friday Godwin
2018-06-01
The dependence of Nigerian Government on foreign technology for oil spill cleanup in its water bodies does not add local content value in the development of the Nation's economy. Acetylation of natural cellulose gives a material with high sorption capacity for oil in water. This research investigates crude oil sorption from water using acetylated and unacetylated lignocellulose. Oil palm empty fruit bunch (OPEFB) and cocoa pod (CP) were acetylated under mild conditions. The acetylated (modified) and unacetylated (unmodified) sorbents were used to sorb oil from water, and their sorption capacities and mechanisms were compared. Paired t test showed there was significant difference in the sorption capacities of modified and unmodified sorbents. Sorption of oil from water was found to be time and concentration dependent. Equilibrium studies showed that CP has higher sorption capacity than OPEFB and acetylation enhanced the crude sorption capacities of the sorbents. Crude oil sorption from water is a monolayer process that might have progressed from multilayer processes. Kinetic studies showed that sorption of crude oil by the sorbents was diffusion-controlled with the aid of physisorption and chemisorption mechanisms. Fourier transform infrared and scanning electron microscope analyses showed clear evidence of successful acetylation and oil sorption.
Analysis of Power Generating Speed Bumps Made of Concrete Foam Composite
NASA Astrophysics Data System (ADS)
Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.
2017-03-01
This paper discusses the analysis of speed bump made of concrete foam composite which is used to generate electrical power. Speed bumps are designed to decelerate the speed of vehicles before passing through toll gates, public areas, or any other safety purposes. In Indonesia a speed bump should be designed in the accordance with KM Menhub 3 year 1994. In this research, the speed bump was manufactured with dimensions and geometry comply to the regulation mentioned above. Concrete foam composite speed bumps were used due to its light weight and relatively strong to receive vertical forces from the tyres of vehicles passing over the bumps. The reinforcement materials are processed from empty fruit bunch of oil palm. The materials were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were analyzed using a FEM-based numerical softwares. It was obtained that the speed bumps coupled with polymeric composite bar (3 inches in diameter) are significantly reduce the radial stresses. In addition, the speed bumps equipped with polymeric composite casing or steel casing are also suitable for use as part of system components in producing electrical energy.
Gruca, Marta; Blach-Overgaard, Anne; Balslev, Henrik
2015-05-13
This study is the first to demonstrate the breadth and patterns of the medicinal applications of African palms. It sheds light on species with the potential to provide new therapeutic agents for use in biomedicine; and links the gap between traditional use of palms and pharmacological evaluation for the beneficial effects of palm products on human health. Last but not least, the study provides recommendations for the areas that should be targeted in future ethno-botanical surveys. The primary objective of this survey was to assemble all available ethno-medicinal data on African palms, and investigate patterns of palm uses in traditional medicine; and highlight possible under-investigated areas. References were found through bibliographic searches using several sources including PubMed, Embase, and Google Scholar and search engines of the State and University Libraries of Aarhus, National Library of Denmark and Copenhagen University Libraries, Harvard University Libraries, and the Mertz Library. Information about ethno-medicinal uses of palms was extracted and digitized in a database. Additionally, we used an African palm distribution database to compute the proportion of palm species that have been used for medicinal purposes in each country. We found 782 medicinal uses mentioned in 156 references. At least 23 different palm species (some remained unidentified) were used medicinally in 35 out of Africa's 48 countries. The most commonly used species were Elaeis guineensis, Phoenix dactylifera, Cocos nucifera, and Borassus aethiopum. Medicinal uses were in 25 different use categories of which the most common ones were Infections/Infestations and Digestive System Disorders. Twenty-four different parts of the palms were used in traditional medicine, with most of the uses related to fruit (and palm oil), root, seed and leaf. Palms were used in traditional medicine mostly without being mixed with other plants, and less commonly in mixtures, sometimes in mixture with products of animal origin. Future ethno-botanical surveys should be directed at the central African region, because palm species richness (and plant species richness in general) is particularly high in this area, and only few ethno-botanical studies available have focused on this region. The wide time span covered by our database (3500 years) shows that African palms have been used medicinally by many societies across the continent from time immemorial until today. Most medicinal use records for African palms were found in two categories that relate to most prevailing diseases and disorders in the region. By analyzing ethno-medicinal studies in one database we were able to demonstrate the value of palms in traditional medicine, and provide recommendations for the areas that should be targeted in future ethno-botanical surveys. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Trischan, John
Rapid deforestation has been occurring in Southeast Asia for majority of the last quarter century. This is due in large by the expansion of oil palm plantations. These plantations fill the need globally for the palm oil they provide. On the other hand, they are removing some of the last remaining primary rainforests on the planet. The issue concerning the ongoing demise of rainforests in the region involves the availability of data in order to monitor the expansion of palm, at the cost of rainforest. Providing a simplified approach to mapping oil palm plantations in hopes of spreading palm analysis regionally in an effort to obtain a better grasp on the land use dynamics. Using spatial filtering techniques, the complexity of radar data are simplified in order to use for palm detection.
NASA Astrophysics Data System (ADS)
Herlina, Netti; Siska Dewi Harahap, Ici
2018-03-01
Bioethanol (C2H5OH) is a biochemical liquid produced by microorganisms through fermentation process on sugar molecules from carbohydrates. Bioethanol is a fuel of vegetable oil that has similar properties to premium. With its main product of palm juice, Sugar palm (Arenga pinnata) is a potential source of sugar and carbohydrate for bioethanol production. Production of palm juice can reach up to 12-14 liters/tree/day with total sugar content in palm juice ranges from 12-15%. The purpose of this research was to produce highly-concentrated bioethanol from palm juice through fermentation proccess to subtitude fossil fuel. This study was conducted with three stages of treatment, namely: the fermentation of palm juice, distillation of bioethanol, and purification of bioethanol with the addition of adsorbent zeolite and calcium oxide.
Modeling nitrous oxide emission from rivers: a global assessment.
Hu, Minpeng; Chen, Dingjiang; Dahlgren, Randy A
2016-11-01
Estimates of global riverine nitrous oxide (N 2 O) emissions contain great uncertainty. We conducted a meta-analysis incorporating 169 observations from published literature to estimate global riverine N 2 O emission rates and emission factors. Riverine N 2 O flux was significantly correlated with NH 4 , NO 3 and DIN (NH 4 + NO 3 ) concentrations, loads and yields. The emission factors EF(a) (i.e., the ratio of N 2 O emission rate and DIN load) and EF(b) (i.e., the ratio of N 2 O and DIN concentrations) values were comparable and showed negative correlations with nitrogen concentration, load and yield and water discharge, but positive correlations with the dissolved organic carbon : DIN ratio. After individually evaluating 82 potential regression models based on EF(a) or EF(b) for global, temperate zone and subtropical zone datasets, a power function of DIN yield multiplied by watershed area was determined to provide the best fit between modeled and observed riverine N 2 O emission rates (EF(a): R 2 = 0.92 for both global and climatic zone models, n = 70; EF(b): R 2 = 0.91 for global model and R 2 = 0.90 for climatic zone models, n = 70). Using recent estimates of DIN loads for 6400 rivers, models estimated global riverine N 2 O emission rates of 29.6-35.3 (mean = 32.2) Gg N 2 O-N yr -1 and emission factors of 0.16-0.19% (mean = 0.17%). Global riverine N 2 O emission rates are forecasted to increase by 35%, 25%, 18% and 3% in 2050 compared to the 2000s under the Millennium Ecosystem Assessment's Global Orchestration, Order from Strength, Technogarden, and Adapting Mosaic scenarios, respectively. Previous studies may overestimate global riverine N 2 O emission rates (300-2100 Gg N 2 O-N yr -1 ) because they ignore declining emission factor values with increasing nitrogen levels and channel size, as well as neglect differences in emission factors corresponding to different nitrogen forms. Riverine N 2 O emission estimates will be further enhanced through refining emission factor estimates, extending measurements longitudinally along entire river networks and improving estimates of global riverine nitrogen loads. © 2016 John Wiley & Sons Ltd.
Camilleri, Michael; Breen, Mary; Ryks, Michael; Burton, Duane
2011-01-01
Background Interventions such as gastric surgery and erythromycin result in displacement of solids to the distal stomach and acceleration of overall and proximal gastric emptying. The effect of non-surgical impairment of gastric accommodation on gastric emptying is unclear. Non-surgical impairment of gastric accommodation is associated with accelerated gastric emptying. Aim To compare measurements of proximal and overall gastric emptying in patients with reduced postprandial gastric volume accommodation with the emptying rates in age- and gender-matched controls with normal postprandial gastric volume accommodation. Methods We evaluated overall and proximal gastric emptying in 9 patients with impaired gastric accommodation and age-equivalent and gender-matched controls. Gastric volumes and emptying were measured using validated SPECT and dual gamma camera scintigraphy respectively. We compared group differences in overall and proximal gastric emptying t1/2 by t test. Results Patients with impaired postprandial gastric volume accommodation had greater fasting gastric volume. The proportion of food emptied from the proximal stomach immediately after meal ingestion was lower and t1/2of proximal gastric emptying correspondingly longer in the group with reduced postprandial gastric accommodation. In contrast, differences were not detected in overall gastric emptying in the two groups, and the ratio of overall to proximal gastric emptying t1/2was greater in the group with impaired volume accommodation. Conclusions Proximal stomach emptying is reduced in patients with impaired postprandial volume accommodation; this difference occurs predominantly during the time of meal ingestion. Compensatory mechanisms that result in normal overall gastric emptying require further elucidation. PMID:21327917
FIM Avionics Operations Manual
NASA Technical Reports Server (NTRS)
Alves, Erin E.
2017-01-01
This document describes the operation and use of the Flight Interval Management (FIM) Application installed on an electronic flight bag (EFB). Specifically, this document includes: 1) screen layouts for each page of the interface; 2) step-by-step instructions for data entry, data verification, and input error correction; 3) algorithm state messages and error condition alerting messages; 4) aircraft speed guidance and deviation indications; and 5) graphical display of the spatial relationships between the Ownship aircraft and the Target aircraft.
In vitro digestibility of oil palm frond treated by local microorganism (MOL)
NASA Astrophysics Data System (ADS)
Tafsin, M.; Khairani, Y.; Hanafi, N. D.; Yunilas
2018-02-01
Oil palm frond is by product from oil palm plantation and were found in large quantity in Indonesia. This research aims to examine the ability of local microorganisms and buffalo rumen isolates in improving the digestibility of dry matter and organic matter in vitro of oil palm frond. The research used experimental method with four treatments and three replications. The treatments were given: Oil palms without treatment (P0); Starbio (P2); Aspergillus niger + Saccharomyces cerevisiae (P3); Aspergillus niger + Saccharomyces cerevisiae + Isolate of buffalo rumen bacteria (P4). The results showed that the fermented Oil Palm Frond had higher (P<0.05) DMD and OMD than control. The addition of Aspergillus niger and Saccharomyces cerevisiae plus buffalo rumen bacterial isolates had higher (P<0.05) DMD and OMD than other treatments. It can be concluded that the utilisation of MOL can improve the digestibility of oil palm frond in vitro.
Endemic insular and coastal Tunisian date palm genetic diversity.
Zehdi-Azouzi, Salwa; Cherif, Emira; Guenni, Karim; Abdelkrim, Ahmed Ben; Bermil, Aymen; Rhouma, Soumaya; Salah, Mohamed Ben; Santoni, Sylvain; Pintaud, Jean Christophe; Aberlenc-Bertossi, Frédérique; Hannachi, Amel Salhi
2016-04-01
The breeding of crop species relies on the valorisation of ancestral or wild varieties to enrich the cultivated germplasm. The Tunisian date palm genetic patrimony is being threatened by diversity loss and global climate change. We have conducted a genetic study to evaluate the potential of spontaneous coastal resources to improve the currently exploited Tunisian date palm genetic pool. Eighteen microsatellite loci of Phoenix dactylifera L. were used to compare the genetic diversity of coastal accessions from Kerkennah, Djerba, Gabès and continental date palm accessions from Tozeur. A collection of 105 date palms from the four regions was analysed. This study has provided us with an extensive understanding of the local genetic diversity and its distribution. The coastal date palm genotypes exhibit a high and specific genetic diversity. These genotypes are certainly an untapped reservoir of agronomically important genes to improve cultivated germplasm in continental date palm.
Effect of colectomy on gastric emptying in idiopathic slow-transit constipation.
Hemingway, D M; Finlay, I G
2000-09-01
Gastric emptying is delayed in patients with idiopathic slow-transit constipation (ISTC). Gastric emptying was measured before and after colectomy and ileorectal anastomosis in patients with ISTC to determine whether the abnormality persists after operation. Twelve patients undergoing colectomy for severe ISTC had solid-phase gastric emptying measured after an overnight fast. All 12 had an uncomplicated subtotal colectomy and ileorectal anastomosis; 11 had an excellent functional outcome. In ten of these patients gastric emptying was repeated within 3 months of operation. Seven patients (including the remaining two) had the study performed at 1 year. All 12 patients had severely delayed gastric emptying before operation. Gastric emptying remained delayed in the ten patients who underwent an early postoperative gastric emptying study. Six of seven patients assessed at 1 year had improved gastric emptying, of whom four had returned to normal. Functional outcome did not relate to gastric emptying. Patients with ISTC have delayed gastric emptying. In some patients this returns to normal after colectomy, but is persistent in others. This may have implications for our understanding of ISTC.
78 FR 25383 - Amendment of Class E Airspace; West Palm Beach, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
...-0922; Airspace Docket No. 12-ASO-38] Amendment of Class E Airspace; West Palm Beach, FL AGENCY: Federal... West Palm Beach, FL area, as new Standard Instrument Approach Procedures (SIAPs) have been developed at Palm Beach County Park Airport. Airspace reconfiguration is necessary for the continued safety and...
Red Palm Mite Situation in the Caribbean and Florida
USDA-ARS?s Scientific Manuscript database
The red palm mite (Raoiella indica Hirst Tenuipalpidae), a pest of coconuts and ornamental palms in Asia and Africa, was reported in the Caribbean in 2004. By 2008, it had spread to at least twelve islands, two counties in Florida and to Venezuela. Red palm mite causes yellowing and leaf necrosis wi...
77 FR 63722 - Special Local Regulations; Palm Beach World Championship, Atlantic Ocean; Jupiter, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
...-AA08 Special Local Regulations; Palm Beach World Championship, Atlantic Ocean; Jupiter, FL AGENCY... offshore of Jupiter, Florida during the Palm Beach World Championship, a high speed power boat race. The Palm Beach World Championship is scheduled to take place on Friday, October 19, and Sunday, October 21...
Nutrition quality of extraction mannan residue from palm kernel cake on brolier chicken
NASA Astrophysics Data System (ADS)
Tafsin, M.; Hanafi, N. D.; Kejora, E.; Yusraini, E.
2018-02-01
This study aims to find out the nutrient residue of palm kernel cake from mannan extraction on broiler chicken by evaluating physical quality (specific gravity, bulk density and compacted bulk density), chemical quality (proximate analysis and Van Soest Test) and biological test (metabolizable energy). Treatment composed of T0 : palm kernel cake extracted aquadest (control), T1 : palm kernel cake extracted acetic acid (CH3COOH) 1%, T2 : palm kernel cake extracted aquadest + mannanase enzyme 100 u/l and T3 : palm kernel cake extracted acetic acid (CH3COOH) 1% + enzyme mannanase 100 u/l. The results showed that mannan extraction had significant effect (P<0.05) in improving the quality of physical and numerically increase the value of crude protein and decrease the value of NDF (Neutral Detergent Fiber). Treatments had highly significant influence (P<0.01) on the metabolizable energy value of palm kernel cake residue in broiler chickens. It can be concluded that extraction with aquadest + enzyme mannanase 100 u/l yields the best nutrient quality of palm kernel cake residue for broiler chicken.
Bioactive compounds from palm fatty acid distillate and crude palm oil
NASA Astrophysics Data System (ADS)
Estiasih, T.; Ahmadi, K.
2018-03-01
Crude palm oil (CPO) and palm fatty acid distillate (PFAD) are rich sources of bioactive compounds. PFAD is a by-product of palm oil refinery that produce palm frying oil. Physical refining of palm oil by deodorization produces palm fatty acid distillate. CPO and PFAD contain some bioactive compounds such as vitamin E (tocopherol and tocotrienols), phytosterol, and squalene. Bioactive compounds of CPO and PFAD are vitamin E, phytosterols, and squalene. Vitamin E of CPO and PFAD mainly comprised of tocotrienols and the remaining is tocopherol. Phytosterols of CPO and PFAD contained beta sitosterol, stigmasterol, and campesterol. Tocotrienols and phytosterols of CPO and PFAD, each can be separated to produce tocotrienol rich fraction and phytosterol rich fraction. Tocotrienol rich fraction from PFAD has both antioxidant and cholesterol lowering properties. Bioactive compounds of PFAD silmultaneously have been proven to improve lipid profile, and have hepatoprotector effect, imunomodulator, antioxidant properties, and lactogenic effect in animal test experiment. It is possible to develop separation of bioactive compounds of CPO and PFAD integratively with the other process that utilizes fatty acid.
Durgin, Frank H; Hajnal, Alen; Li, Zhi; Tonge, Natasha; Stigliani, Anthony
2010-06-01
Whereas most reports of the perception of outdoor hills demonstrate dramatic overestimation, estimates made by adjusting a palm board are much closer to the true hill orientation. We test the dominant hypothesis that palm board accuracy is related to the need for motor action to be accurately guided and conclude instead that the perceptual experience of palm-board orientation is biased and variable due to poorly calibrated proprioception of wrist flexion. Experiments 1 and 3 show that wrist-flexion palm boards grossly underestimate the orientations of near, reachable surfaces whereas gesturing with a free hand is fairly accurate. Experiment 2 shows that palm board estimates are much lower than free hand estimates for an outdoor hill as well. Experiments 4 shows that wrist flexion is biased and noisy compared to elbow flexion, while Experiment 5 shows that small changes in palm board height produce large changes in palm board estimates. Together, these studies suggest that palm boards are biased and insensitive measures. The existing literature arguing that there are two systems in the perception of geographical slant is re-evaluated, and a new theoretical framework is proposed in which a single exaggerated representation of ground-surface orientation guides both action and perception. Copyright 2010 Elsevier B.V. All rights reserved.
Identification of molecular performance from oil palm clones based on SSR markers
NASA Astrophysics Data System (ADS)
Putri, Lollie Agustina P.; Basyuni, M.; Bayu, Eva S.; Arvita, D.; Arifiyanto, D.; Syahputra, I.
2018-03-01
In Indonesia, the oil palms are an important economic crop, producing food and raw materials for the food, confectionary, cosmetics and oleo-chemical industrial demands of oil palm products. Clonal oil palm offers the potential for greater productivity because it is possible to establish uniform tree stands comprising identical copies (clones) of a limited number of highly productive oil palms. Unfortunately, tissue culture sometimes accentuates the expression of detects in oil palm, particularly when embryogenesis is induced in particullar callus for prolonged periods. This research is conducted by taking individual tree sample of clone germplasm two years old. The purpose of this research is to molecular performance analysis of some oil palm clones based on SSR markers. A total of 30 trees oil palm clones were used for analysis. In this experiment, the DNA profile diversity was assessed using five loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 SSR markers (FR-0779, FR-3663 and FR-0782) showed monomorphic of PCR product and 2 SSR markers (FR-0783 and FR- 3745) showed polymorphic of PCR product. There are 10 total number of PCR product. These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of oil palm clones.
Effect of unground oil palm ash as mixing ingredient towards properties of concrete
NASA Astrophysics Data System (ADS)
Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.
2018-04-01
Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.
Liu, Yanguo; Li, Hao; Zheng, Xia; Li, Xiao; Li, Jianfeng; Jiang, Guanchao
2015-01-01
Purpose: To investigate the association between intraoperative palm temperature change and the curative effect of sympathicotomy. Methods: 49 patients with palmar hyperhidrosis were treated with bilateral endoscopic sympathicotomy. Ipsilateral palm temperature was monitored before and at 3–5 min increments after the sympathetic trunk was transected. The maximum temperature elevation (Tmax) was calculated and used to evaluate the effect on postoperative cure rates. Results: Forty-nine patients underwent 98 sympathicotomies. There were 77 T4 sympathicotomies, 15 T4 + T5 sympathicotomies, and six T3 sympathicotomies due to pleural adhesions or neurovascular proximity. The Tmax was ≤1°C in 49 (50.0%), 1–1.5°C in 17 (17.3%), and >1.5°C in 32 (32.7%) palms. Ninety-two palms of 46 patients were followed with complete efficacy, and three patients were lost to follow up. Cure was achieved in 86 palms (93.4%). Of the 71 palms which underwent T4 sympathicotomy, cure was achieved in 67 palms (94.3%). In those palms which did not achieve cure, the Tmax was less than 1°C in each case, while in palms with a Tmax ≤1°C, 32 of 36 (88.9%) were cured. Conclusion: There is an association between intraoperative palmar temperature change and curative effect. However, palmar temperature change cannot be used to predict cure or guide surgical approach. PMID:26041256
Azhar, Badrul; Saadun, Norzanalia; Prideaux, Margi; Lindenmayer, David B
2017-12-01
Most palm oil currently available in global markets is sourced from certified large-scale plantations. Comparatively little is sourced from (typically uncertified) smallholders. We argue that sourcing sustainable palm oil should not be determined by commercial certification alone and that the certification process should be revisited. There are so-far unrecognized benefits of sourcing palm oil from smallholders that should be considered if genuine biodiversity conservation is to be a foundation of 'environmentally sustainable' palm oil production. Despite a lack of certification, smallholder production is often more biodiversity-friendly than certified production from large-scale plantations. Sourcing palm oil from smallholders also alleviates poverty among rural farmers, promoting better conservation outcomes. Yet, certification schemes - the current measure of 'sustainability' - are financially accessible only for large-scale plantations that operate as profit-driven monocultures. Industrial palm oil is expanding rapidly in regions with weak environmental laws and enforcement. This warrants the development of an alternative certification scheme for smallholders. Greater attention should be directed to deforestation-free palm oil production in smallholdings, where production is less likely to cause large scale biodiversity loss. These small-scale farmlands in which palm oil is mixed with other crops should be considered by retailers and consumers who are interested in promoting sustainable palm oil production. Simultaneously, plantation companies should be required to make their existing production landscapes more compatible with enhanced biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, Ren-Yi; Zhang, Jiao-Lin; Cavaleri, Molly A; Sterck, Frank; Strijk, Joeri S; Cao, Kun-Fang
2015-01-01
Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems.
de Paiva, Carina Kaory Sasahara; de Faria, Ana Paula Justino; Calvão, Lenize Batista; Juen, Leandro
2017-08-01
The production of oil palm is expected to increase in the Amazon region. However, expansion of oil palm plantation leads to significant changes in the physical structure of aquatic ecosystems, mainly through the reduction of riparian vegetation that is essential for aquatic biodiversity. Here, we evaluated the effects of oil palm on the physical habitat structure of Amazonian stream environments and assemblages of Plecoptera and Trichoptera (PT), both found in these streams. We compared streams sampled in oil palm plantations (n = 13) with natural forest areas ("reference" streams, n = 8), located in the eastern Amazon, Brazil. Our results showed that oil palm streams were more likely to be in close proximity to roads, had higher pH values, and higher amounts of fine substrate deposited in the channel than reference streams. Further, these environmental changes had important effects on the aquatic invertebrate assemblages, reducing the abundance and richness of PT. Nevertheless, the genera composition of the assemblages did not differ between reference and oil palm (PERMANOVA, pseudo-F (1,19) = 1.891; p = 0.111). We conclude that oil palm production has clear negative impacts on aquatic environments and PT assemblages in Amazonian streams. We recommend that oil palm producers invest more in planning of road networks to avoid the construction of roads near to the riparian vegetation. This planning can minimize impacts of oil palm production on aquatic systems in the Amazon.
Decision Support Model for Selection Technologies in Processing of Palm Oil Industrial Liquid Waste
NASA Astrophysics Data System (ADS)
Ishak, Aulia; Ali, Amir Yazid bin
2017-12-01
The palm oil industry continues to grow from year to year. Processing of the palm oil industry into crude palm oil (CPO) and palm kernel oil (PKO). The ratio of the amount of oil produced by both products is 30% of the raw material. This means that 70% is palm oil waste. The amount of palm oil waste will increase in line with the development of the palm oil industry. The amount of waste generated by the palm oil industry if it is not handled properly and effectively will contribute significantly to environmental damage. Industrial activities ranging from raw materials to produce products will disrupt the lives of people around the factory. There are many alternative technologies available to process other industries, but problems that often occur are difficult to implement the most appropriate technology. The purpose of this research is to develop a database of waste processing technology, looking for qualitative and quantitative criteria to select technology and develop Decision Support System (DSS) that can help make decisions. The method used to achieve the objective of this research is to develop a questionnaire to identify waste processing technology and develop the questionnaire to find appropriate database technology. Methods of data analysis performed on the system by using Analytic Hierarchy Process (AHP) and to build the model by using the MySQL Software that can be used as a tool in the evaluation and selection of palm oil mill processing technology.
Application of lidar and optical data for oil palm plantation management in Malaysia
NASA Astrophysics Data System (ADS)
Shafri, Helmi Z. M.; Ismail, Mohd Hasmadi; Razi, Mohd Khairil M.; Anuar, Mohd Izzuddin; Ahmad, Abdul Rahman
2012-11-01
Proper oil palm plantation management is crucial for Malaysia as the country depends heavily on palm oil as a major source of national income. Precision agriculture is considered as one of the approaches that can be adopted to improve plantation practices for plantation managers such as the government-owned FELDA. However, currently the implementation of precision agriculture based on remote sensing and GIS is still lacking. This study explores the potential of the use of LiDAR and optical remote sensing data for plantation road and terrain planning for planting purposes. Traditional approaches use land surveying techniques that are time consuming and costly for vast plantation areas. The first ever airborne LiDAR and multispectral survey for oil palm plantation was carried out in early 2012 to test its feasibility. Preliminary results show the efficiency of such technology in demanding engineering and agricultural requirements of oil palm plantation. The most significant advantage of the approach is that it allows plantation managers to accurately plan the plantation road and determine the planting positions of new oil palm seedlings. Furthermore, this creates for the first time, digital database of oil palm estate and the airborne imagery can also be used for related activities such as oil palm tree inventory and detection of palm diseases. This work serves as the pioneer towards a more frequent application of LiDAR and multispectral data for oil palm plantation in Malaysia.
Soil C dynamics under intensive oil palm plantations in poor tropical soils
NASA Astrophysics Data System (ADS)
Guillaume, Thomas; Ruegg, Johanna; Quezada, Juan Carlos; Buttler, Alexandre
2017-04-01
Oil palm cultivation mainly takes place on heavily-weathered tropical soils where nutrients are limiting factors for plant growth and microbial activity. Intensive fertilization and changes of C input by oil palms strongly affects soil C and nutrient dynamics, challenging long-term soil fertility. Oil palm plantations management offers unique opportunities to study soil C and nutrients interactions in field conditions because 1) they can be considered as long-term litter manipulation experiments since all aboveground C inputs are concentrated in frond pile areas and 2) mineral fertilizers are only applied in specific areas, i.e. weeded circle around the tree and interrows, but not in harvest paths. Here, we determined impacts of mineral fertilizer and organic matter input on soil organic carbon dynamics and microbial activity in mature oil palm plantation established on savanna grasslands. Rates of savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC net stabilization were determined using changes in isotopic signature of in C input following a shift from C4 (savanna) to C3 (oil palm) vegetation. Application of mineral fertilizer alone did not affect savanna-derived SOC decomposition or oil palm-derived SOC stabilization rates, but fertilization associated with higher C input lead to an increase of oil palm-derived SOC stabilization rates, with about 50% of topsoil SOC derived from oil palm after 9 years. High carbon and nutrients inputs did not increase microbial biomass but microorganisms were more active per unit of biomass and SOC. In conclusion, soil organic matter decomposition was limited by C rather than nutrients in the studied heavily-weathered soils. Fresh C and nutrient inputs did not lead to priming of old savanna-derived SOC but increased turnover and stabilization of new oil palm-derived SOC.
NASA Astrophysics Data System (ADS)
Rahayu Prastyaningsih, Sri; Azwin
2017-12-01
The development of agar wood plants in oil palm plantation requires the forestry techniques in order to obtain maximum production. In an oil palm stands, the age of plant will affect the height, diameter, population and stands density. The older age of an oil palm stands will affect the canopy cover on the forest floor. Agar wood plants are semi-tolerant growth and oil palm can be used as shade. Unilak has an oil palm plantation area of 10 hectares around the campus with 10 years old and 20 years old. The soil condition at the study is Podsolik Merah Kuning (PMK) which poor nutrient and needs fertilization to increase soil fertility. This study aims to find out the effect of age of oil palm stands and fertilization for optimal growth. The split plot design with 2 main plots of the age of palm tree ( 10 years old and 20 years old) and five kinds of fertilizing sub plot (without fertilizer, 40 gram/plant of NPK, 80 gram/plat of NPK, 120 gram/plant of NPK and 180 gram/plant of NPK were used. The results of this research showed that the age of palm tree (canopy cover) treatment gave non-significant influence on the growing of agar wood until it reaches 4 months of growth. The canopyy cover by 10 years old of oil palm tree produce the best response on height (15 cm) and diameter (0,4 cm) growth of agar woods..Fertilizing treatment di not give any significant influence on the heigh and diameter growth of agarwood plants until reach 3 months. The interaction by 10 years old of palm with fertilizing gave non significant results.
Huertas, A J; López-Sáez, M P; Carnés, J
2011-01-01
Date palm pollen allergy is frequently associated with polysensitisation. Observational studies have suggested that date-palm-sensitised individuals could be included in a distinct group of polysensitised patients. The objectives of the study were to analyse the clinical characteristics of a group of patients diagnosed of date-palm pollen allergy and to compare them with pollen allergic patients without date-palm sensitisation. Forty-eight palm-pollen sensitised individuals were classified as Group A. A control group of 48 patients sensitised to pollens but without palm-pollen allergy were included as Group B. All individuals were skin prick tested with a common battery of aeroallergens. Information about age, sex, family history of atopy, respiratory symptoms, food allergy and sensitisation to other pollens were considered variables of the study. Specific IgE and the allergogram to date-palm pollen were determined in a subgroup of Group A. Significant differences in the family history of atopy and number of sensitisations were observed. Both parameters were significantly higher in Group A. Group A showed high prevalence of asthma and higher level of sensitisation to foods (p < 0.05). Significant differences were obtained for sensitisation to epithelia and pollens. Pho d 2 was the most commonly recognised allergen (83.3%) in the palm-pollen allergic group. Date-palm pollen allergic patients constitute a homogeneous group characterised for showing bronchial asthma, sensitisation to food allergens and polysensitisation. These results suggest that the reasons for sensitisation to date-palm pollen remain to be elucidated, but could relate to the existence of as yet non-identified pan-allergens. Copyright © 2010 SEICAP. Published by Elsevier Espana. All rights reserved.
Couvreur, Thomas L. P.; Kissling, W. Daniel; Condamine, Fabien L.; Svenning, Jens-Christian; Rowe, Nick P.; Baker, William J.
2015-01-01
Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae). We quantify to what extent macroecological diversity patterns are related to contemporary climate, forest canopy height, and paleoclimatic changes. We test whether diversification rates are higher for climbing than non-climbing palms and estimate the origin of the climbing habit. Climbers account for 22% of global palm species diversity, mostly concentrated in Southeast Asia. Global variation in climbing palm species richness can be partly explained by past and present-day climate and rain forest canopy height, but regional differences in residual species richness after accounting for current and past differences in environment suggest a strong role of historical contingencies in climbing palm diversification. Climbing palms show a higher net diversification rate than non-climbers. Diversification analyses of palms detected a diversification rate increase along the branches leading to the most species-rich clade of climbers. Ancestral character reconstructions revealed that the climbing habit originated between early Eocene and Miocene. These results imply that changes from non-climbing to climbing habits may have played an important role in palm diversification, resulting in the origin of one fifth of all palm species. We suggest that, in addition to current climate and paleoclimatic changes after the late Neogene, present-day diversity of climbing palms can be explained by morpho-anatomical innovations, the biogeographic history of Southeast Asia, and/or ecological opportunities due to the diversification of high-stature dipterocarps in Asian TRFs. PMID:25620977
Couvreur, Thomas L P; Kissling, W Daniel; Condamine, Fabien L; Svenning, Jens-Christian; Rowe, Nick P; Baker, William J
2014-01-01
Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae). We quantify to what extent macroecological diversity patterns are related to contemporary climate, forest canopy height, and paleoclimatic changes. We test whether diversification rates are higher for climbing than non-climbing palms and estimate the origin of the climbing habit. Climbers account for 22% of global palm species diversity, mostly concentrated in Southeast Asia. Global variation in climbing palm species richness can be partly explained by past and present-day climate and rain forest canopy height, but regional differences in residual species richness after accounting for current and past differences in environment suggest a strong role of historical contingencies in climbing palm diversification. Climbing palms show a higher net diversification rate than non-climbers. Diversification analyses of palms detected a diversification rate increase along the branches leading to the most species-rich clade of climbers. Ancestral character reconstructions revealed that the climbing habit originated between early Eocene and Miocene. These results imply that changes from non-climbing to climbing habits may have played an important role in palm diversification, resulting in the origin of one fifth of all palm species. We suggest that, in addition to current climate and paleoclimatic changes after the late Neogene, present-day diversity of climbing palms can be explained by morpho-anatomical innovations, the biogeographic history of Southeast Asia, and/or ecological opportunities due to the diversification of high-stature dipterocarps in Asian TRFs.
Characterizing commercial oil palm expansion in Latin America: land use change and trade
NASA Astrophysics Data System (ADS)
Furumo, Paul Richard; Aide, T. Mitchell
2017-02-01
Commodity crop expansion has increased with the globalization of production systems and consumer demand, linking distant socio-ecological systems. Oil palm plantations are expanding in the tropics to satisfy growing oilseed and biofuel markets, and much of this expansion has caused extensive deforestation, especially in Asia. In Latin America, palm oil output has doubled since 2001, and the majority of expansion seems to be occurring on non-forested lands. We used MODIS satellite imagery (250 m resolution) to map current oil palm plantations in Latin America and determined prior land use and land cover (LULC) using high-resolution images in Google Earth. In addition, we compiled trade data to determine where Latin American palm oil flows, in order to better understand the underlying drivers of expansion in the region. Based on a sample of 342 032 ha of oil palm plantations across Latin America, we found that 79% replaced previously intervened lands (e.g. pastures, croplands, bananas), primarily cattle pastures (56%). The remaining 21% came from areas that were classified as woody vegetation (e.g. forests), most notably in the Amazon and the Petén region in northern Guatemala. Latin America is a net exporter of palm oil but the majority of palm oil exports (70%) stayed within the region, with Mexico importing about half. Growth of the oil palm sector may be driven by global factors, but environmental and economic outcomes vary between regions (i.e. Asia and Latin America), within regions (i.e. Colombia and Peru), and within single countries (i.e. Guatemala), suggesting that local conditions are influential. The present trend of oil palm expanding onto previously cleared lands, guided by roundtable certifications programs, provides an opportunity for more sustainable development of the oil palm sector in Latin America.
Estimation the Amount of Oil Palm Trees Production Using Remote Sensing Technique
NASA Astrophysics Data System (ADS)
Fitrianto, A. C.; Tokimatsu, K.; Sufwandika, M.
2017-12-01
Currently, fossil fuels were used as the main source of power supply to generate energy including electricity. Depletion in the amount of fossil fuels has been causing the increasing price of crude petroleum and the demand for alternative energy which is renewable and environment-friendly and it is defined from vegetable oils such palm oil, rapeseed and soybean. Indonesia known as the big palm oil producer which is the largest agricultural industry with total harvested oil palm area which is estimated grew until 8.9 million ha in 2015. On the other hand, lack of information about the age of oil palm trees and changes also their spatial distribution is mainly problem for energy planning. This research conducted to estimate fresh fruit bunch (FFB) of oil palm and their distribution using remote sensing technique. Cimulang oil palm plantation was choose as study area. First step, estimated the age of oil palm trees based on their canopy density as the result from Landsat 8 OLI analysis and classified into five class. From this result, we correlated oil palm age with their average FFB production per six months and classified into seed (0-3 years, 0kg), young (4-8 years, 68.77kg), teen (9-14 years, 109.08kg), and mature (14-25 years, 73.91kg). The result from satellite image analysis shows if Cimulang plantation area consist of teen old oil palm trees that it is covers around 81.5% of that area, followed by mature oil palm trees with 18.5% or corresponding to 100 hectares and have total production of FFB every six months around 7,974,787.24 kg.
Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae)
Barfod, Anders S.; Hagen, Melanie; Borchsenius, Finn
2011-01-01
Background With more than 90 published studies of pollination mechanisms, the palm family is one of the better studied tropical families of angiosperms. Understanding palm–pollinator interactions has implications for tropical silviculture, agroforestry and horticulture, as well as for our understanding of palm evolution and diversification. We review the rich literature on pollination mechanisms in palms that has appeared since the last review of palm pollination studies was published 25 years ago. Scope and Conclusions Visitors to palm inflorescences are attracted by rewards such as food, shelter and oviposition sites. The interaction between the palm and its visiting fauna represents a trade-off between the services provided by the potential pollinators and the antagonistic activities of other insect visitors. Evidence suggests that beetles constitute the most important group of pollinators in palms, followed by bees and flies. Occasional pollinators include mammals (e.g. bats and marsupials) and even crabs. Comparative studies of palm–pollinator interactions in closely related palm species document transitions in floral morphology, phenology and anatomy correlated with shifts in pollination vectors. Synecological studies show that asynchronous flowering and partitioning of pollinator guilds may be important regulators of gene flow between closely related sympatric taxa and potential drivers of speciation processes. Studies of larger plant–pollinator networks point out the importance of competition for pollinators between palms and other flowering plants and document how the insect communities in tropical forest canopies probably influence the reproductive success of palms. However, published studies have a strong geographical bias towards the South American region and a taxonomic bias towards the tribe Cocoseae. Future studies should try to correct this imbalance to provide a more representative picture of pollination mechanisms and their evolutionary implications across the entire family. PMID:21831852
Measurement of gastric emptying during and between meal intake in free-feeding Lewis rats.
van der Velde, P; Koslowsky, I; Koopmans, H S
1999-02-01
A new scintigraphic measurement technique is described that allows accurate assessment of gastric emptying in between as well as during a number of successive meals. Measurements were made every minute of food intake, gastric nutrient filling, and gastric emptying over a 6 h, 40 min period in conscious, free-feeding, loosely restrained rats. Before receiving access to the food, the animals had been deprived for a period of 31 h. Over the full duration of the experiment, an average rate of gastric emptying of 2.46 +/- 0.18 (SE) kcal/h was established. During most meals, however, the gastric emptying rate was increased so that an average of 26.9 +/- 2.7% of the ingested calories was emptied while the animals were feeding, with an average emptying rate of 0.15 +/- 0.014 kcal/min or 8.88 +/- 0.84 kcal/h. This transient increase in the rate of gastric emptying was followed by a subsequent slowing of gastric emptying after meal termination; in the 10-min postmeal interval, an average emptying rate of 0.96 +/- 0.12 kcal/h was found. Despite these fluctuations during and immediately after meals, a relatively constant rate of caloric emptying is maintained over longer periods. There were no differences between the emptying rate during the first meal when the gastrointestinal tract was still empty, compared with later meals when the gastrointestinal tract had been filled with food. The emptying rate during the 10-min postmeal interval, however, was significantly reduced during later meals. The results suggest that gastric emptying is controlled by different mechanisms during and after the ingestion of food and that these mechanisms remain in effect at various degrees of gastrointestinal filling.
Oil palm natural diversity and the potential for yield improvement
Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N. V.; Lopes, Ricardo; Motoike, Sérgio Y.; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei
2015-01-01
African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25–30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11–18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah
The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-basedmore » compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.« less
Oil palm natural diversity and the potential for yield improvement.
Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N V; Lopes, Ricardo; Motoike, Sérgio Y; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei
2015-01-01
African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.
Abad-Franch, Fernando; Ferraz, Gonçalo; Campos, Ciro; Palomeque, Francisco S.; Grijalva, Mario J.; Aguilar, H. Marcelo; Miles, Michael A.
2010-01-01
Background Failure to detect a disease agent or vector where it actually occurs constitutes a serious drawback in epidemiology. In the pervasive situation where no sampling technique is perfect, the explicit analytical treatment of detection failure becomes a key step in the estimation of epidemiological parameters. We illustrate this approach with a study of Attalea palm tree infestation by Rhodnius spp. (Triatominae), the most important vectors of Chagas disease (CD) in northern South America. Methodology/Principal Findings The probability of detecting triatomines in infested palms is estimated by repeatedly sampling each palm. This knowledge is used to derive an unbiased estimate of the biologically relevant probability of palm infestation. We combine maximum-likelihood analysis and information-theoretic model selection to test the relationships between environmental covariates and infestation of 298 Amazonian palm trees over three spatial scales: region within Amazonia, landscape, and individual palm. Palm infestation estimates are high (40–60%) across regions, and well above the observed infestation rate (24%). Detection probability is higher (∼0.55 on average) in the richest-soil region than elsewhere (∼0.08). Infestation estimates are similar in forest and rural areas, but lower in urban landscapes. Finally, individual palm covariates (accumulated organic matter and stem height) explain most of infestation rate variation. Conclusions/Significance Individual palm attributes appear as key drivers of infestation, suggesting that CD surveillance must incorporate local-scale knowledge and that peridomestic palm tree management might help lower transmission risk. Vector populations are probably denser in rich-soil sub-regions, where CD prevalence tends to be higher; this suggests a target for research on broad-scale risk mapping. Landscape-scale effects indicate that palm triatomine populations can endure deforestation in rural areas, but become rarer in heavily disturbed urban settings. Our methodological approach has wide application in infectious disease research; by improving eco-epidemiological parameter estimation, it can also significantly strengthen vector surveillance-control strategies. PMID:20209149
Nicholas, Khristopher; Fanzo, Jessica; MacManus, Kytt
2018-01-01
Background: Palm oil consumption is potentially deleterious to human health, and its production has resulted in 11 million hectares of deforestation globally. Importing roughly 394,000 metric tons of palm oil in 2012 alone, the Burmese government has recently pushed for intensive oil palm development to sate domestic demand for consumption and become international market players. Given well-studied linkages between biodiversity loss and ecosystem instability, this study aims to characterize the nature of deforestation for oil palm production in Myanmar, its relationship to increased biodiversity loss, and contextualize the potential impacts of this loss on diets and human health in rural Myanmar. Methods: First, a GIS land suitability analysis overlaying spatial data on rainfall, elevation, and slope was conducted in order to identify areas of Myanmar best suited to oil palm tree growth. Second, after narrowing the geographic range, vegetation indices using varying spectral band models in ENVI (Environment for Visualizing Images) allowed a more granular examination of changes in vegetation phenology from 1975 to 2015. Lastly, ground truthing permitted an in-person verification of GIS and ENVI results and provided contextual understanding of oil palm development in Myanmar. Results: GIS analysis revealed that the Tanintharyi Region, one of the most biodiverse regions in Myanmar, is highly suitable for oil palm growth. Next, vegetation indices revealed a progressive shift from smallholder farming, with little observable deforestation between 1975 and 1990, to industrial oil palm plantations all throughout Tanintharyi starting around 2000—a shift concomitant with biodiversity loss of primary forestland. Ground truthing indicated that plantation development has advanced rapidly, though not without barriers to growth. Conclusions: If these trends of Burmese oil palm intensification continue, 4 key outcomes may follow: (1) even higher levels of biodiversity loss, (2) increased access and affordability of edible palm oil, (3) decreased importing of palm oil, and (4) large profits made from selling excess palm oil on the international market. Although the first 2 outcomes may adversely affect low-income Burmese populations, the latter 2 may bode well for the domestic economy and international trade partners, thus encouraging competing interests. This increased domestic access and affordability of palm oil may increase consumption and cause increased prevalence of cardiovascular disease, diabetes, and obesity. Finally, this biodiversity loss concurrent with industrial deforestation may disproportionately impact vulnerable, rural communities. PMID:29602872
Impact of savanna conversion to oil palm plantations on C stocks dynamics and soil fertility
NASA Astrophysics Data System (ADS)
Quezada, Juan Carlos; Guillaume, Thomas; Buttler, Alexandre; Ruegg, Johanna
2017-04-01
Large-scale expansion of oil palm cultivation on forested land in South-East Asia during the last decades lead to high negative environmental impacts. Because rainforests store high amount of C, their conversion to oil palm plantations results in large net CO2 emissions. Oil palm cultivation in tropical ecosystems such as savanna that store less C than forests is seen as an alternative to reduce greenhouse gas emissions of future oil palm development. While this option is more and more frequently mentioned, few data are available on the effective gain in C storage. Furthermore negative impact on soil organic carbon and soil fertility could offset gains of C storage in oil palm biomass. Here, we present results on aboveground and belowground C stocks and soil nutrient dynamics over a full rotation cycle of oil palm plantations established on tropical savanna grasslands. Three natural savanna grasslands as reference sites and 9 oil palm plantations ranging from two to twenty-seven years old were selected in the Llanos in Colombia. Oxisols were sampled down to 70 cm in each management zones of oil palm plantations (weeded circle, interrow, frond piles and harvesting path). Taking advantages of a shift from C4 to C3 vegetation, we quantified savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC stabilization rates and how they were affected by management practices (mineral fertilization, organic amendments, etc.). Results show that, in opposite to forest conversion, C storage increases when savannas are converted to oil palm plantations. Because soil C storage was very low in natural conditions, SOC changes had little effects on overall C storage. Substitution of savanna-derived SOC by oil palm-derived SOC was very fast in the topsoil and highest under frond pile and weeded circle where C and nutrients inputs are highest. However, stabilization of oil palm-derived SOC compensated loss of savanna-derived SOC rather than increased SOC stocks, indicating high SOC turnover. High turnover are explained by high nutrients inputs and little capacity of Oxisols to physically protect SOC. In conclusion, conversion of savanna to oil palm plantations results in a gain in ecosystem C storage as long as the cultivation lasts. Negative impacts on soil fertility are limited because savanna soils have low initial soil fertility. With more than 7 million ha of well-drained natural savanna grasslands, the Llanos could play a significant role in oil palm development. Nonetheless, a complete assessment of environmental impacts including biodiversity or water consumption is still necessary for the assessment on sustainability of the conversion of savanna to oil palm plantations.
Transformation of Palm Beach Community College to Palm Beach State College: A Case Study
ERIC Educational Resources Information Center
Basiratmand, Mehran
2013-01-01
The purpose of this single-site case study was to examine the organization and leadership change process of Palm Beach State College, a publicly funded institution in Florida, as it embarked on offering bachelor's degree programs. The study examined the organizational change process and the extent to which Palm Beach State College's organization…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...
New initiatives for managment of red palm weevil threats to historical Arabian date palms
USDA-ARS?s Scientific Manuscript database
The date palm is an important part of the religious, cultural, and economic heritage of the Arabian Peninsula. This heritage is threatened by the recent invasion of the red palm weevil(RPW) from Southeast Asia. In Saudi Arabia, a national campaign for control of RPW by containment/destruction of inf...
Kevin T. Smith
2013-01-01
Palms are real, but are they really trees? The answer depends on definitions. As usually tall, peremrial plants with roots, stems, and leaves, palms seem to qualify. Palms should also qualify because arborists care for them, and arborists care for trees, right? My introduction to botany class defined trees as plants that produce wood. Unraveling the question of whether...
76 FR 77383 - Amendment of Class C Airspace; Palm Beach International Airport, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
...-0527; Airspace Docket No. 11-AWA-2] Amendment of Class C Airspace; Palm Beach International Airport, FL... action modifies the Palm Beach International Airport, FL, Class C airspace area by raising the floor of Class C airspace over Palm Beach County Park Airport. The FAA is taking this action to enhance safety...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Cocoa butter substitute from coconut oil, palm... HUMAN CONSUMPTION Multipurpose Additives § 172.861 Cocoa butter substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or...
Empty sella associated with growth hormone deficiency and polydactyly.
Jurcă, Maria Claudia; Bembea, Marius; Kozma, Kinga; Şandor, Mircea Ioan; Negrean, Rodica Anamaria; Dobjanschi, Luciana; Cuc, Emilia Albiniţa; Petcheşi, Codruţa Diana; Jurcă, Alexandru Daniel
2018-01-01
Empty sella means the absence of the pituitary gland on cranial computed tomography or magnetic resonance imaging. Empty sella syndrome is the pathological variant of the imaging-described empty sella. We present the case of a male Caucasian child, aged four years and two months, for short stature and diagnosed by imaging procedures as empty sella. The cause of short stature was isolated growth hormone (GH) deficiency. Associated he presented left hand postaxial polydactyly. In connection with this particular case, we propose a review of current knowledge in empty sella syndrome. The particularity of reported case consists of association empty sella with GH deficiency and polydactyly. The association of empty sella with polydactyly is not reported yet in the medical literature and is probably coincidental.
Stomach emptiness in fishes: Sources of variation and study design implications
Vinson, M.R.; Angradi, T.R.
2011-01-01
This study summarizes fish stomach content data from 369,000 fish from 402 species in 1,096 collections and reports on the percentage of individuals with empty stomachs. The mean percentage of individuals with empty stomachs among all species, locations, habitats, seasons, regions, and collection methods was 26.4%. Mean percentage of individuals with empty stomachs varied significantly among fish collection gear types, taxonomic orders, trophic groups, feeding behaviors, and habitats, and with species length at maturity. Most of the variation in percentage of individuals with empty stomachs was explained by species length at maturity, fish collection gear type, and two autecological factors: trophic group (piscivore percentage of individuals with empty stomachs > non-piscivore percentage of individuals with empty stomachs) and feeding habitat (water column feeder percentage of individuals with empty stomachs > benthic feeder percentage of individuals with empty stomachs). After accounting for variation with fish length, the percentage of individuals with empty stomachs did not vary with the stomach removal collection method (dissection vs. gastric lavage), feeding time (diurnal or nocturnal), or time of collection (day or night). The percentage of individuals with empty stomachs was similar between fresh and saltwater fish, but differed within finer habitat classifications and appeared to follow a general prey availability or productivity gradient: percentage of individuals with empty stomachs of open ocean collections > estuary collections, lentic > lotic, and pelagic > littoral. Gear type (active or passive) was the most influential factor affecting the occurrence of empty stomachs that can be readily controlled by researchers.
NASA Astrophysics Data System (ADS)
Daud, Syarifah Nadiah Syed Mat; Ghani, Idris Abd.
2016-11-01
The pollinating weevil, Elaedobius kamerunicus (EK) has been known to be the most efficient insect pollinator of oil palm, and has successfully improved the oil palm pollination and increased the yield. Its introduction has greatly reduced the need for assisted pollination. The purpose of this study was to identify the population density of oil palm pollinator weevil EK using the concept of pollinator force and to relate the population density with the seasonal effect and the age of oil palm at Lekir Oil Palm Plantation Batu 14, Perak, Peninsular Malaysia. The pollinator force of the weevil was sustained at a range between 3095.2 to 19126.1 weevils per ha. The overall mean of weevil per spikelet shows that the range of weevil was between 13.51 and 54.06 per spikelet. There was no correlation between rainfall and population density of EK. However, positive correlation was obtained between weevil density and the number of anthesising female inflorescence of oil palm (r= 0.938, p< 0.05). Results of t-test show that the 6-year old oil palm stands had significantly different population density than that of a 8-year old oil palm stand. The information of this study should be useful as a baseline data to investigate why there is such a wide range of weevils per ha or spikelet. Further study should also be done to relate the number pollinator force per spikelete and the Fresh fruit Bunch (FFB), fruit set or fruit to bunch ratio.
Kusin, Faradiella Mohd; Akhir, Nurul Izzati Mat; Mohamat-Yusuff, Ferdaus; Awang, Muhamad
2017-02-01
The environmental impacts with regard to agro-based biofuel production have been associated with the impact of greenhouse gas (GHG) emissions. In this study, field GHG emissions during plantation stage of palm oil-based biofuel production associated with land use changes for oil palm plantation development have been evaluated. Three different sites of different land use changes prior to oil palm plantation were chosen; converted land-use (large and small-scales) and logged-over forest. Field sampling for determination of soil N-mineralisation and soil organic carbon (SOC) was undertaken at the sites according to the age of palm, i.e. <5 years (immature), 5-20 and >21 years (mature oil palms). The field data were incorporated into the estimation of nitrous oxide (N 2 O) and the resulting CO 2 -eq emissions as well as for estimation of carbon stock changes. Irrespective of the land conversion scenarios, the nitrous oxide emissions were found in the range of 6.47-7.78 kg N 2 O-N/ha resulting in 498-590 kg CO 2 -eq/ha. On the other hand, the conversion of tropical forest into oil palm plantation has resulted in relatively higher GHG emissions (i.e. four times higher and carbon stock reduction by >50%) compared to converted land use (converted rubber plantation) for oil palm development. The conversion from previously rubber plantation into oil palm plantation would increase the carbon savings (20% in increase) thus sustaining the environmental benefits from the palm oil-based biofuel production.
Mitigating the impact of oil-palm monoculture on freshwater fishes in Southeast Asia.
Giam, Xingli; Hadiaty, Renny K; Tan, Heok Hui; Parenti, Lynne R; Wowor, Daisy; Sauri, Sopian; Chong, Kwek Yan; Yeo, Darren C J; Wilcove, David S
2015-10-01
Anthropogenic land-cover change is driving biodiversity loss worldwide. At the epicenter of this crisis lies Southeast Asia, where biodiversity-rich forests are being converted to oil-palm monocultures. As demand for palm oil increases, there is an urgent need to find strategies that maintain biodiversity in plantations. Previous studies found that retaining forest patches within plantations benefited some terrestrial taxa but not others. However, no study has focused on aquatic taxa such as fishes, despite their importance to human well-being. We assessed the efficacy of forested riparian reserves in conserving freshwater fish biodiversity in oil-palm monoculture by sampling stream fish communities in an oil-palm plantation in Central Kalimantan, Indonesia. Forested riparian reserves maintained preconversion local fish species richness and functional diversity. In contrast, local and total species richness, biomass, and functional diversity declined markedly in streams without riparian reserves. Mechanistically, riparian reserves appeared to increase local species richness by increasing leaf litter cover and maintaining coarse substrate. The loss of fishes specializing in leaf litter and coarse substrate decreased functional diversity and altered community composition in oil-palm plantation streams that lacked riparian reserves. Thus, a land-sharing strategy that incorporates the retention of forested riparian reserves may maintain the ecological integrity of fish communities in oil-palm plantations. We urge policy makers and growers to make retention of riparian reserves in oil-palm plantations standard practice, and we encourage palm-oil purchasers to source only palm oil from plantations that employ this practice. © 2015 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Rendon Santillan, Jojene; Makinano-Santillan, Meriam
2018-04-01
We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa) to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345-1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2). Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.
Cherif, Hanene; Marasco, Ramona; Rolli, Eleonora; Ferjani, Raoudha; Fusi, Marco; Soussi, Asma; Mapelli, Francesca; Blilou, Ikram; Borin, Sara; Boudabous, Abdellatif; Cherif, Ameur; Daffonchio, Daniele; Ouzari, Hadda
2015-08-01
Oases are desert-farming agro-ecosystems, where date palm (Phoenix dactylifera L.) plays a keystone role in offsetting the effects of drought and maintaining a suitable microclimate for agriculture. At present, abundance, diversity and plant growth promotion (PGP) of date palm root-associated bacteria remain unknown. Considering the environmental pressure determined by the water scarcity in the desert environments, we hypothesized that bacteria associated with date palm roots improve plant resistance to drought. Here, the ecology of date palm root endophytes from oases in the Tunisian Sahara was studied with emphasis on their capacity to promote growth under drought. Endophytic communities segregated along a north-south gradient in correlation with geo-climatic parameters. Screening of 120 endophytes indicated that date palm roots select for bacteria with multiple PGP traits. Bacteria rapidly cross-colonized the root tissues of different species of plants, including the original Tunisian date palm cultivar, Saudi Arabian cultivars and Arabidopsis. Selected endophytes significantly increased the biomass of date palms exposed to repeated drought stress periods during a 9-month greenhouse experiment. Overall, results indicate that date palm roots shape endophytic communities that are capable to promote plant growth under drought conditions, thereby contributing an essential ecological service to the entire oasis ecosystem. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Masani, Mat Yunus Abdul; Noll, Gundula A; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk
2014-01-01
Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants.
Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection
Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk
2014-01-01
Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306
78 FR 11094 - Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... 1625-AA00 Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL AGENCY... safety zone on Lake Worth Inlet, West Palm Beach, Florida, to provide for the safety of life and vessels..., dredging operations will be conducted on Lake Worth Inlet in West Palm Beach, Florida. These operations...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
An investigation of age and yield of fresh fruit bunches of oil palm based on ALOS PALSAR 2
NASA Astrophysics Data System (ADS)
Darmawan, S.; Takeuchi, W.; Haryati, A.; M, R. Najib A.; Na'aim, M.
2016-06-01
The objective on this study is to investigate age and yield of FFB of oil palms based on ALOS PALSAR 2. Study areas in oil palm plantations areas of Jerantut, Pahang Malaysia. Methodology consists collecting of ALOS PALSAR 2 and tabular data on the study area, processing of ALOS PALSAR 2 including of converting digital numbers to normalize radar cross sections (NRCS), topography correction and filtering, making of regions of interest according to areas of age and yield of FFB of oil palms and making of relationship analysis between backscatter value of HH, HV and age and yield of FFB of oil palm. The results have showed relationship between HH, HV and age of oil palm which R2 of 0.63 for HH and 0.42 for HV that indicated increasing of age of oil palm as increasing of HH and HV value. Also relationship between HH, HV and yield of FFB of oil palm which R2 of 0.26 for HH and 0.15 for HV, that indicated increasing of yield of FFB as decreasing of HH and HV value.
Biotechnology of oil palm: strategies towards manipulation of lipid content and composition.
Parveez, Ghulam Kadir Ahmad; Rasid, Omar Abdul; Masani, Mat Yunus Abdul; Sambanthamurthi, Ravigadevi
2015-04-01
Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress.
Molecular defense response of oil palm to Ganoderma infection.
Ho, C-L; Tan, Y-C
2015-06-01
Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganoderma boninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spatial distribution pattern of termite in Endau Rompin Plantation
NASA Astrophysics Data System (ADS)
Jalaludin, Nur-Atiqah; Rahim, Faszly
2015-09-01
We censused 18 field blocks approximately 190 ha with total of 28,604 palms in a grid of 2×4 palms from July 2011 to March 2013. The field blocks comprise of rows of palm trees, harvesting paths, field drains and stacking rows with maximum of 30 palms per row, planted about 9 m apart, alternately in maximum of 80 rows. SADIE analysis generating index of aggregation, Ia, local clustering value, Vi and local gap value, Vj is adopted to estimate spatial pattern. The patterns were then presented in contour map using Surfer 12 software. The patterns produced associated with factors i.e. habitat disturbance, habitat fragmentation and resources affecting nesting and foraging activities. Result shows that field blocks with great habitat disturbance recorded highest dead palms and termites hits. Blocks located far from the main access road recorded less than 2% palms with termite hits. This research may provide ecological data on termite spatial pattern in oil palm ecosystem.
Feasibility study on utilization of palm fibre waste into fired clay brick
NASA Astrophysics Data System (ADS)
Kadir, A. A.; Sarani, N. A.; Zaman, N. N.; Abdullah, Mohd Mustafa Al Bakri
2017-04-01
Malaysia is the second largest of palm oil producer after Indonesia, which contribute to 50 % of palm oil production. With this demand, the increasing of palm oil plantation over the years has led to the large production of agricultural waste, for example palm fibre waste. This study investigates different percentages of palm fibre (0 %, 1 %, 5 % and 10 %) to be incorporated into fired clay brick. Manufactured bricks were fired at 1 °C/min heating rate up to 1050 °C. The effects of manufacture bricks on the physical and mechanical properties of manufactured brick were also determined. All brick samples were tested due to the physical and mechanical properties which include dry density, firing shrinkage, initial rate of suction (IRS), water absorption, porosity and compressive strength. Findings show that increasing palm fibre waste affected the properties of brick, which decreased their density, besides increased firing shrinkage, IRS, water absorption, porosity and compressive strength. However, all the manufactured brick still followed the requirement.
Zulkurnain, Musfirah; Lai, Oi Ming; Latip, Razam Abdul; Nehdi, Imededdine Arbi; Ling, Tau Chuan; Tan, Chin Ping
2012-11-15
The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate
2013-01-01
Background A green approach to synthesize nanomaterials using biotemplates has been subjected to intense research due to several advantages. Palm olein as a biotemplate offers the benefits of eco-friendliness, low-cost and scale-up for large scale production. Therefore, the effect of palm olein on morphology and surface properties of ZnO nanostructures were investigated. Results The results indicate that palm olein as a biotemplate can be used to modify the shape and size of ZnO particles synthesized by hydrothermal method. Different morphology including flake-, flower- and three dimensional star-like structures were obtained. FTIR study indicated the reaction between carboxyl group of palm olein and zinc species had taken place. Specific surface area enhanced while no considerable change were observed in optical properties. Conclusion Phase-pure ZnO particles were successfully synthesized using palm olein as soft biotemplating agent by hydrothermal method. The physico-chemical properties of the resulting ZnO particles can be tuned using the ratio of palm olein to Zn cation. PMID:23601826
Camilleri, Matt J; Malige, Ajith; Fujimoto, Jeffrey; Rempel, David M
2013-01-01
Direct touch displays can improve the human-computer experience and productivity; however, the higher hand locations may increase shoulder fatigue. Palm rejection (PR) technology may reduce shoulder loads by allowing the palms to rest on the display and increase productivity by registering the touched content and fingertips through the palms rather than shoulders. The effects of PR were evaluated by having participants perform touch tasks while posture and reaction force on the display were measured. Enabling PR, during which the subjects could place the palms on the display (but were not required to), resulted in increased wrist extension, force applied to the display and productivity, and less discomfort, but had no effect on the self-selected positioning of the display. Participants did not deliberately place their palms on the display; therefore, there was no reduction in shoulder load and the increased productivity was not due to improved hand registration. The increased productivity may have been due to reduced interruptions from palm contacts or reduced motor control demands.
Improved Method for the Qualitative Analyses of Palm Oil Carotenes Using UPLC.
Ng, Mei Han; Choo, Yuen May
2016-04-01
Palm oil is the richest source of natural carotenes, comprising 500-700 ppm in crude palm oil (CPO). Its concentration is found to be much higher in oil extracted from palm-pressed fiber, a by-product from the milling of oil palm fruits. There are 11 types of carotenes in palm oil, excluding the cis/trans isomers of some of the carotenes. Qualitative separation of these individual carotenes is particularly useful for the identification and confirmation of different types of oil as the carotenes profile is unique to each type of vegetable oil. Previous studies on HPLC separation of the individual palm carotenes reported a total analyses time of up to 100 min using C30 stationary phase. In this study, the separation was completed in <5 min. The qualitative separation was successfully carried out using a commonly used stationary phase, C18. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
What is emptiness? Clarifying the 7th criterion for borderline personality disorder.
Klonsky, E David
2008-08-01
The present study aims to clarify the 7th DSM-IV criterion for Borderline Personality Disorder: "chronic feelings of emptiness." Emptiness has been the subject of little empirical investigation. The relationship of emptiness to boredom and other affect-states is uncertain, and patients and clinicians can find it difficult to generate verbal descriptions of emptiness. In the present study, two sets of analyses address the meaning and clinical implications of feeling empty. First, affect-states that co-occur with emptiness are identified in 45 young adults who exhibit a prominent feature of Borderline Personality Disorder (i.e., self-injury). Second, the relationship of chronic emptiness to key psychiatric variables is examined in a large nonclinical sample (n = 274). Results indicate that emptiness is negligibly related to boredom, is closely related to feeling hopeless, lonely, and isolated, and is a robust predictor of depression and suicidal ideation (but not anxiety or suicide attempts). Findings are consistent with DSM-IV revisions regarding the 7th criterion for Borderline Personality Disorder. In addition, findings suggest that emptiness reflects pathologically low positive affect and significant psychiatric distress.
... information. Common Names: saw palmetto, American dwarf palm tree, cabbage palm Latin Name: Serenoa repens, Serenoa serrulata, ... serrulata Background Saw palmetto is a small palm tree native to the southeastern United States. Its fruit ...
El Sharabasy, Sherif F; Soliman, Khaled A
2017-01-01
The date palm is an ancient domesticated plant with great diversity and has been cultivated in the Middle East and North Africa for at last 5000 years. Date palm cultivars are classified based on the fruit moisture content, as dry, semidry, and soft dates. There are a number of biochemical and molecular techniques available for characterization of the date palm variation. This chapter focuses on the DNA-based markers random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) techniques, in addition to biochemical markers based on isozyme analysis. These techniques coupled with appropriate statistical tools proved useful for determining phylogenetic relationships among date palm cultivars and provide information resources for date palm gene banks.
How will oil palm expansion affect biodiversity?
Fitzherbert, Emily B; Struebig, Matthew J; Morel, Alexandra; Danielsen, Finn; Brühl, Carsten A; Donald, Paul F; Phalan, Ben
2008-10-01
Oil palm is one of the world's most rapidly increasing crops. We assess its contribution to tropical deforestation and review its biodiversity value. Oil palm has replaced large areas of forest in Southeast Asia, but land-cover change statistics alone do not allow an assessment of where it has driven forest clearance and where it has simply followed it. Oil palm plantations support much fewer species than do forests and often also fewer than other tree crops. Further negative impacts include habitat fragmentation and pollution, including greenhouse gas emissions. With rising demand for vegetable oils and biofuels, and strong overlap between areas suitable for oil palm and those of most importance for biodiversity, substantial biodiversity losses will only be averted if future oil palm expansion is managed to avoid deforestation.
Nothing to it: Precursors to a Zero Concept in Preschoolers
Merritt, Dustin J.; Brannon, Elizabeth M.
2013-01-01
Do young children understand the numerical value of empty sets prior to developing a concept of symbolic zero? Are empty sets represented as mental magnitudes? In order to investigate these questions, we tested 4-year old children and adults with a numerical ordering task in which the goal was to select two stimuli in ascending numerical order with occasional empty set stimuli. Both children and adults showed distance effects for empty sets.. Children who were unable to order the symbol zero (e.g., 0 < 1), but who successfully ordered countable integers (e.g., 2 < 4) nevertheless showed distance effects with empty sets. These results suggest that empty sets are represented on the same numerical continuum as non-empty sets and that children represent empty sets numerically prior to understanding symbolic zero. PMID:23219980
Gender Identification in Date Palm Using Molecular Markers.
Awan, Faisal Saeed; Maryam; Jaskani, Muhammad J; Sadia, Bushra
2017-01-01
Breeding of date palm is complicated because of its long life cycle and heterozygous nature. Sexual propagation of date palm does not produce true-to-type plants. Sex of date palms cannot be identified until the first flowering stage. Molecular markers such as random amplified polymorphic DNA (RAPD), sequence-characterized amplified regions (SCAR), and simple sequence repeats (SSR) have successfully been used to identify the sex-linked loci in the plant genome and to isolate the corresponding genes. This chapter highlights the use of three molecular markers including RAPD, SCAR, and SSR to identify the gender of date palm seedlings.
Gastric emptying abnormal in duodenal ulcer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, S.; Heading, R.C.; Taylor, T.V.
1986-07-01
To investigate the possibility that an abnormality of gastric emptying exists in duodenal ulcer and to determine if such an abnormality persists after ulcer healing, scintigraphic gastric emptying measurements were undertaken in 16 duodenal ulcer patients before, during, and after therapy with cimetidine; in 12 patients with pernicious anemia, and in 12 control subjects. No difference was detected in the rate or pattern of gastric emptying in duodenal ulcer patients before and after ulcer healing with cimetidine compared with controls, but emptying of the solid component of the test meal was more rapid during treatment with the drug. Comparison ofmore » emptying patterns obtained in duodenal ulcer subjects during and after cimetidine treatment with those obtained in pernicious anemia patients and controls revealed a similar relationship that was characterized by a tendency for reduction in the normal differentiation between the emptying of solid and liquid from the stomach. The similarity in emptying patterns in these groups of subjects suggests that gastric emptying of solids may be influenced by changes in the volume of gastric secretion. The failure to detect an abnormality of gastric emptying in duodenal ulcer subjects before and after ulcer healing calls into question the widespread belief that abnormally rapid gastric emptying is a feature with pathogenetic significance in duodenal ulcer disease.« less
Physical characteristics of indigestible solids affect emptying from the fasting human stomach.
Meyer, B; Beglinger, C; Neumayer, M; Stalder, G A
1989-01-01
Gastric emptying of indigestible solids depends on their size. It is not clear whether physical characteristics other than particle size affect emptying of indigestible solids from the fasting human stomach. We studied gastric emptying of three differently shaped particles, (cubes, spheres, rods) of either hard or soft consistency during the fasting state in human volunteers. The shape of indigestible particles did not affect their emptying. The area under the gastric emptying curve (AUC: particles x hour) was for hard cubes 24.7 (2.2), for hard spheres 27.9 (1.6), for hard rods 26.9 (2.7). All soft particles emptied faster than their identically shaped hard counterparts, but there was no difference among the three shapes (AUC for soft cubes: 29.2 (3.0), for soft spheres 32.0 (1.8), for soft rods 34.1 (1.2). If gastric emptying of hard and soft particles was compared independently of their shape, soft particles emptied significantly faster than hard ones: AUC 31.8 (1.2) v 26.5 (1.3) (p less than 0.01). In conclusion, the consistency but not the shape significantly affects gastric emptying. Specific physical characteristics other than size and shape may affect gastric emptying of indigestible particles which may be of importance in the design of drugs. PMID:2599438
Gastric emptying of solid radiopaque markers: studies in healthy subjects and diabetic patients.
Feldman, M; Smith, H J; Simon, T R
1984-10-01
The purpose of these studies was to develop a radiologic method for assessing gastric emptying of an indigestible solid in humans and to apply this technique to the evaluation of patients with diabetes mellitus. Thirty healthy subjects ingested 10 solid radiopaque markers (small pieces of nasogastric tubing) together with a standard meal (donuts and 7-Up). Radiographs of the upper abdomen were obtained hourly for up to 6 h until all markers had emptied from the stomach. Although most of the liquid component of the meal, labeled with 111In, emptied during the first hour (as assessed simultaneously by radionuclide scintigraphy), few radiopaque markers emptied from the stomach during the first 2 h after the meal. Most markers emptied during the fourth postprandial hour, and all 10 markers had emptied by 6 h in 45 of 46 experiments. In contrast, not all of the solid radiopaque markers emptied from the stomach by 6 h in 16 of 26 experiments in patients with diabetes mellitus (p less than 0.001 vs. healthy controls). In some experiments, 99mTc-labeled scrambled eggs were added to the meal so that emptying of this digestible solid, assessed by scintigraphy, could be compared with emptying of liquids and solid radiopaque markers. In healthy subjects, the digestible solid emptied more slowly than the liquid (t 1/2 = 154 +/- 11 min vs. 30 +/- 3 min, p less than 0.001), but emptying of digestible solid was significantly faster than the emptying of the indigestible solid radiopaque markers. In diabetics, emptying rates for the digestible solid and liquid were close to normal (t 1/2 = 178 +/- 5 min and 40 +/- 3 min, respectively), whereas indigestible solid markers were retained in the stomach 6 h after the meal in 50% of the patients. Radiopaque markers proved to be a simple method for measuring gastric emptying of indigestible solids in humans. Using this technique, patients with insulin-dependent diabetes mellitus had a high incidence of abnormally slow gastric emptying of indigestible solids; the method may be a more sensitive indicator of gastric motor dysfunction than radionuclide scintigraphy.
... at room temperature. Foods like butter, palm and coconut oils, cheese, and red meat have high amounts ... pudding, cheese, whole milk) Solid fats such as coconut oil, palm, and palm kernel oils (found in ...
Ho, Chai-Ling; Kwan, Yen-Yen; Choi, Mei-Chooi; Tee, Sue-Sean; Ng, Wai-Har; Lim, Kok-Ang; Lee, Yang-Ping; Ooi, Siew-Eng; Lee, Weng-Wah; Tee, Jin-Ming; Tan, Siang-Hee; Kulaveerasingam, Harikrishna; Alwee, Sharifah Shahrul Rabiah Syed; Abdullah, Meilina Ong
2007-01-01
Background Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST) analysis on oil palm. Results In this study, six cDNA libraries from oil palm zygotic embryos, suspension cells, shoot apical meristems, young flowers, mature flowers and roots, were constructed. We have generated a total of 14537 expressed sequence tags (ESTs) from these libraries, from which 6464 tentative unique contigs (TUCs) and 2129 singletons were obtained. Approximately 6008 of these tentative unique genes (TUGs) have significant matches to the non-redundant protein database, from which 2361 were assigned to one or more Gene Ontology categories. Predominant transcripts and differentially expressed genes were identified in multiple oil palm tissues. Homologues of genes involved in many aspects of flower development were also identified among the EST collection, such as CONSTANS-like, AGAMOUS-like (AGL)2, AGL20, LFY-like, SQUAMOSA, SQUAMOSA binding protein (SBP) etc. Majority of them are the first representatives in oil palm, providing opportunities to explore the cause of epigenetic homeotic flowering abnormality in oil palm, given the importance of flowering in fruit production. The transcript levels of two flowering-related genes, EgSBP and EgSEP were analysed in the flower tissues of various developmental stages. Gene homologues for enzymes involved in oil biosynthesis, utilization of nitrogen sources, and scavenging of oxygen radicals, were also uncovered among the oil palm ESTs. Conclusion The EST sequences generated will allow comparative genomic studies between oil palm and other monocotyledonous and dicotyledonous plants, development of gene-targeted markers for the reference genetic map, design and fabrication of DNA array for future studies of oil palm. The outcomes of such studies will contribute to oil palm improvements through the establishment of breeding program using marker-assisted selection, development of diagnostic assays using gene targeted markers, and discovery of candidate genes related to important agronomic traits of oil palm. PMID:17953740
Oil palm plantation effects on water quality in Kalimantan, Indonesia
NASA Astrophysics Data System (ADS)
Carlson, K. M.; Curran, L. M.
2011-12-01
Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and agroforests, streams draining oil palm show greater biological activity, as indicated by elevated pH and reduced dissolved oxygen levels. Moreover, turbidity is elevated in young oil palm plantations watersheds compared to forest, agroforest, and old oil palm land covers. We discuss the implications of these findings for communities and ecosystems.
Stemflow-induced processes of soil water storage
NASA Astrophysics Data System (ADS)
Germer, Sonja
2013-04-01
Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might partly explain the competitive position of babassu palms on pastures or secondary forests.
Grahn, Dennis A; Cao, Vinh H; Nguyen, Christopher M; Liu, Mengyuan T; Heller, H Craig
2012-09-01
Body core cooling via the palm of a hand increases work volume during resistive exercise. We asked: (a) "Is there a correlation between elevated core temperatures and fatigue onset during resistive exercise?" and (b) "Does palm cooling between sets of resistive exercise affect strength and work volume training responses?" Core temperature was manipulated by 30-45 minutes of fixed load and duration treadmill exercise in the heat with or without palm cooling. Work volume was then assessed by 4 sets of fixed load bench press exercises. Core temperatures were reduced and work volumes increased after palm cooling (Control: Tes = 39.0 ± 0.1° C, 36 ± 7 reps vs. Cooling: Tes = 38.4 ± 0.2° C, 42 ± 7 reps, mean ± SD, n = 8, p < 0.001). In separate experiments, the impact of palm cooling on work volume and strength training responses were assessed. The participants completed biweekly bench press or pull-up exercises for multiple successive weeks. Palm cooling was applied for 3 minutes between sets of exercise. Over 3 weeks of bench press training, palm cooling increased work volume by 40% (vs. 13% with no treatment; n = 8, p < 0.05). Over 6 weeks of pull-up training, palm cooling increased work volume by 144% in pull-up experienced subjects (vs. 5% over 2 weeks with no treatment; n = 7, p < 0.001) and by 80% in pull-up naïve subjects (vs. 20% with no treatment; n = 11, p < 0.01). Strength (1 repetition maximum) increased 22% over 10 weeks of pyramid bench press training (4 weeks with no treatment followed by 6 weeks with palm cooling; n = 10, p < 0.001). These results verify previous observations about the effects of palm cooling on work volume, demonstrate a link between core temperature and fatigue onset during resistive exercise, and suggest a novel means for improving strength and work volume training responses.
Wong, Yick Ching; Teh, Huey Fang; Mebus, Katharina; Ooi, Tony Eng Keong; Kwong, Qi Bin; Koo, Ka Loo; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna
2017-06-21
The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production.
Microbial diversity and biochemical characteristics of Borassus akeassii wine.
Tapsoba, F; Savadogo, A; Legras, J-L; Zongo, C; Traore, A S
2016-10-01
Palm wine produced traditionally and consumed by many people in the South-West of Burkina Faso is subject to alteration. In this study, we carried out a follow-up of two palm wines' fermentation during the 10 days in which palm wines are classically produced and consumed. We monitored biochemical characteristics of fermenting wines as well as followed the microflora kinetics using culture-dependent and culture-independent methods. The analysis of the acid content and the bacterial population revealed the correlation between the development of Lactic acid bacteria, acetic acid, and total acidity. Ribosomal intergenic spacer analysis and sequencing results revealed different yeast and bacterial populations for the two palm wines. Although Saccharomyces cerevisiae remained the sole yeast species in one fermentation, it was quickly replaced by Clavispora lusitaniae in the second fermentation, which had never been described until now in palm wine. When considering bacteria, the species Corynebacterium sp., Lactobacillus casei, Lactobacillus paracasei and Leuconostoc sp. were detected in both palm wines. But we also detected Acetobacter pasteurianus, Bacillus cereus and Bacillus thuringiensis in the second fermentation. Our results highlight the evolution of palm wine during the 10 days separating palm tapping and consumption of the fermented wine. The fermentation step is performed within few hours and completed after 24 h. The next days, its acidity increases progressively with the production of lactic and acetic acids by bacteria. The high production of acetic acid is very likely one of the main cause of palm wine degradation during this period. This indicates that the solution to palm wine preservation might be protection against oxygen, as well as the limit of bacterial growth through the use of preservatives. © 2016 The Society for Applied Microbiology.
American palm ethnomedicine: A meta-analysis
2009-01-01
Background Many recent papers have documented the phytochemical and pharmacological bases for the use of palms (Arecaceae) in ethnomedicine. Early publications were based almost entirely on interviews that solicited local knowledge. More recently, ethnobotanically guided searches for new medicinal plants have proven more successful than random sampling for identifying plants that contain biodynamic ingredients. However, limited laboratory time and the high cost of clinical trials make it difficult to test all potential medicinal plants in the search for new drug candidates. The purpose of this study was to summarize and analyze previous studies on the medicinal uses of American palms in order to narrow down the search for new palm-derived medicines. Methods Relevant literature was surveyed and data was extracted and organized into medicinal use categories. We focused on more recent literature than that considered in a review published 25 years ago. We included phytochemical and pharmacological research that explored the importance of American palms in ethnomedicine. Results Of 730 species of American palms, we found evidence that 106 species had known medicinal uses, ranging from treatments for diabetes and leishmaniasis to prostatic hyperplasia. Thus, the number of American palm species with known uses had increased from 48 to 106 over the last quarter of a century. Furthermore, the pharmacological bases for many of the effects are now understood. Conclusions Palms are important in American ethnomedicine. Some, like Serenoa repens and Roystonea regia, are the sources of drugs that have been approved for medicinal uses. In contrast, recent ethnopharmacological studies suggested that many of the reported uses of several other palms do not appear to have a strong physiological basis. This study has provided a useful assessment of the ethnobotanical and pharmacological data available on palms. PMID:20034398
Sayed, Shahin; Cherniak, William; Lawler, Mark; Tan, Soo Yong; El Sadr, Wafaa; Wolf, Nicholas; Silkensen, Shannon; Brand, Nathan; Looi, Lai Meng; Pai, Sanjay A; Wilson, Michael L; Milner, Danny; Flanigan, John; Fleming, Kenneth A
2018-05-12
Insufficient awareness of the centrality of pathology and laboratory medicine (PALM) to a functioning health-care system at policy and governmental level, with the resultant inadequate investment, has meant that efforts to enhance PALM in low-income and middle-income countries have been local, fragmented, and mostly unsustainable. Responding to the four major barriers in PALM service delivery that were identified in the first paper of this Series (workforce, infrastructure, education and training, and quality assurance), this second paper identifies potential solutions that can be applied in low-income and middle-income countries (LMICs). Increasing and retaining a quality PALM workforce requires access to mentorship and continuing professional development, task sharing, and the development of short-term visitor programmes. Opportunities to enhance the training of pathologists and allied PALM personnel by increasing and improving education provision must be explored and implemented. PALM infrastructure must be strengthened by addressing supply chain barriers, and ensuring laboratory information systems are in place. New technologies, including telepathology and point-of-care testing, can have a substantial role in PALM service delivery, if used appropriately. We emphasise the crucial importance of maintaining PALM quality and posit that all laboratories in LMICs should participate in quality assurance and accreditation programmes. A potential role for public-private partnerships in filling PALM services gaps should also be investigated. Finally, to deliver these solutions and ensure equitable access to essential services in LMICs, we propose a PALM package focused on these countries, integrated within a nationally tiered laboratory system, as part of an overarching national laboratory strategic plan. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chew, Thiam Leng; Bhatia, Subhash
2008-11-01
In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.
Krauss, Ken W.; Duberstein, Jamie A.; Cormier, Nicole; Young, Hillary S.; Hathaway, Stacie A.
2015-01-01
Competition for fresh water between native and introduced plants is one important challenge facing native forests as rainfall variability increases. Competition can be especially acute for vegetation on Pacific atolls, which depend upon consistent rainfall to replenish shallow groundwater stores. Patterns of sap flow, water use, and diameter growth of Pisonia grandis trees were investigated on Sand Islet, Palmyra Atoll, Line Islands, during a period of low rainfall. Sap flow in the outer sapwood was reduced by 53% for P. grandis trees growing within coconut palm (Cocos nucifera) stands (n = 9) versus away from coconut palm (n = 9). This suggested that water uptake was being limited by coconut palm. Radial patterns of sap flow into the sapwood of P. grandis also differed between stands with and without coconut palm, such that individual tree water use for P. grandis ranged from 14 to 67 L day−1, averaging 47·8 L day−1 without coconut palm and 23·6 L day−1 with coconut palm. Diameter growth of P. grandis was measured from nine islets. In contrast to sap flow, competition with coconut palm increased diameter growth by 89%, equating to an individual tree basal area increment of 5·4 versus 10·3 mm2 day−1. Greater diameter growth countered by lower rates of water use by P. grandis trees growing in competition with coconut palm suggests that stem swell may be associated with water storage when positioned in the understory of coconut palm, and may facilitate survival when water becomes limiting until too much shading overwhelms P. grandis.
Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J. Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W.; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A.; Hewitt, C. Nicholas
2011-01-01
This paper reports measurements of land–atmosphere fluxes of sensible and latent heat, momentum, CO2, volatile organic compounds (VOCs), NO, NO2, N2O and O3 over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO2 flux to the two canopies differs by approximately a factor of 2, 1200 mg C m−2 h−1 for the oil palm and 700 mg C m−2 h−1 for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O3 to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces. PMID:22006962
Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A; Hewitt, C Nicholas
2011-11-27
This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.
Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield.
Edwards, Felicity A; Edwards, David P; Sloan, Sean; Hamer, Keith C
2014-01-01
Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture.
Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia.
Austin, Kemen G; Kasibhatla, Prasad S; Urban, Dean L; Stolle, Fred; Vincent, Jeffrey
2015-01-01
Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1) under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double.
Sustainable Management in Crop Monocultures: The Impact of Retaining Forest on Oil Palm Yield
Edwards, Felicity A.; Edwards, David P.; Sloan, Sean; Hamer, Keith C.
2014-01-01
Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture. PMID:24638038
Erazo, Diana; Cordovez, Juan
2016-11-18
Chagas disease is a major public health concern in Latin America and it is transmitted by insects of the subfamily Triatominae, including Rhodnius spp. Since palm trees are ubiquitous in Colombia and a habitat for Rhodnius spp., the presence of palms near villages could increase contact rates between vectors and humans. Therefore, knowing whether a relationship exists between the proximity of palms to villages and the abundance and distribution of vectors therein, may be critical for Chagas disease prevention programs. Adapting a mathematical model for R. prolixus population dynamics in a small village, we model the implications of changing distances between palms and dwellings, to the risk of Chagas disease infection. We implemented a mathematical model that reflects R. prolixus population dynamics in a small village located in the department of Casanare (Colombia) to study the role of palm-house proximity. We varied the distance between palms and houses by monitoring the network global efficiency metric. We constructed 1,000 hypothetical villages varying distances and each one was run 100 times. According to the model, as palm-house proximity increases, houses were more likely to be visited by triatomine bugs. The number of bugs per unit time increased progressively in a non-linear fashion with high variability. We stress the importance of village configuration on the model output. From a theoretical perspective, palm-house proximity may have a positive effect on the incidence of Chagas disease. The model predicts a 1% increase in new human cases per year when houses and palms are brought closer by 75%.
A review of methods for assessment of the rate of gastric emptying in the dog and cat: 1898-2002.
Wyse, C A; McLellan, J; Dickie, A M; Sutton, D G M; Preston, T; Yam, P S
2003-01-01
Gastric emptying is the process by which food is delivered to the small intestine at a rate and in a form that optimizes intestinal absorption of nutrients. The rate of gastric emptying is subject to alteration by physiological, pharmacological, and pathological conditions. Gastric emptying of solids is of greater clinical significance because disordered gastric emptying rarely is detectable in the liquid phase. Imaging techniques have the disadvantage of requiring restraint of the animal and access to expensive equipment. Radiographic methods require administration of test meals that are not similar to food. Scintigraphy is the gold standard method for assessment of gastric emptying but requires administration of a radioisotope. Magnetic resonance imaging has not yet been applied for assessment of gastric emptying in small animals. Ultrasonography is a potentially useful, but subjective, method for assessment of gastric emptying in dogs. Gastric tracer methods require insertion of gastric or intestinal cannulae and are rarely applied outside of the research laboratory. The paracetamol absorption test has been applied for assessment of liquid phase gastric emptying in the dog, but requires IV cannulation. The gastric emptying breath test is a noninvasive method for assessment of gastric emptying that has been applied in dogs and cats. This method can be carried out away from the veterinary hospital, but the effects of physiological and pathological abnormalities on the test are not known. Advances in technology will facilitate the development of reliable methods for assessment of gastric emptying in small animals.
Palm: Easing the Burden of Analytical Performance Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallent, Nathan R.; Hoisie, Adolfy
2014-06-01
Analytical (predictive) application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult because they must be both accurate and concise. To ease the burden of performance modeling, we developed Palm, a modeling tool that combines top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. To express insight, Palm defines a source code modeling annotation language. By coordinating models and source code, Palm's models are `first-class' and reproducible. Unlike prior work, Palm formally links models, functions, and measurements. As a result, Palm (a) uses functions to either abstract or express complexitymore » (b) generates hierarchical models (representing an application's static and dynamic structure); and (c) automatically incorporates measurements to focus attention, represent constant behavior, and validate models. We discuss generating models for three different applications.« less
NASA Astrophysics Data System (ADS)
Heilmayr, R.; Carlson, K. M.; Gibbs, H.; Noojipady, P.; Burns, D.; Morton, D. C.; Walker, N.; Paoli, G.; Kremen, C.
2016-12-01
Dozens of trans-national corporations have made public commitments to purchase only zero-deforestation palm oil, a commodity responsible for substantial tropical forest loss. Eco-certification is a basic requirement of most such forest-related procurement policies, and >20% of palm oil was certified in 2015.While the impact of certification on deforestation in oil palm plantations has never been tested, such evaluation is critical to inform improvements of voluntary sustainability initiatives. Here, we use a new, comprehensive data set of Roundtable on Sustainable Palm Oil (RSPO) certified and non-certified oil palm plantation boundaries (191,561 km2) in Indonesia, the leading global producer of palm oil to generate robust spatio-temporal estimates of certification's impact on deforestation and fires from 2000-2014. We find that certification reduced forest cover loss embodied in RSPO certified palm oil through two mechanisms. Certification had a significant protective effect, which lowered plantation deforestation rates by 29%.However, due to preferential certification of plantations developed before 2000, little forest was available for protection; forest area conserved totaled 56±4.9 km2. Our models suggest that increased adoption of RSPO certification may reduce the ability of palm oil companies to selectively certify previously cleared regions, and consequently strengthen the role of certification in protecting the tropical forests at greatest risk from agricultural encroachment. We reflect upon the complex interactions between traditional government policies, and emerging market-based governance structures in this telecoupled system.
Adam, Siti Khadijah; Das, Srijit; Jaarin, Kamsiah
2009-06-01
Hypercholesterolaemia, increase in lipid peroxidation and hyperhomocysteinaemia may contribute to the pathogenesis of atherosclerosis. This study was performed to examine the effects of repeatedly heated palm oil mixed with 2% cholesterol diet on atherosclerosis in oestrogen-deficient postmenopausal rats. Ovariectomy causes disruption of tunica intima layer of the rat aorta simulating a postmenopausal condition in females. Twenty-four ovariectomized female Sprague-Dawley rats were divided into four groups. The control group received 2% cholesterol diet without palm oil. A diet with 2% cholesterol content fortified with fresh, once-heated and five-times-heated palm oil was given to the other treatment groups. The rats were sacrificed at the end of 4 months of study and the aortic arch tissue was processed for histomorphometry and electron microscopy. On observation, there was disruption of the intimal layer of the ovariectomized rat aorta. There was no obvious ultrastructural change in the aorta of the rats fed with fresh palm oil. The ultrastructural changes were minimal with once-heated palm oil, in which there was a focal disruption of the endothelial layer. The focal disruption was more pronounced with five-times-heated palm oil. The results of this study show that the ingestion of fresh palm oil may have a protective effect on the aorta but such a protective action may be lost when the palm oil is repeatedly heated. The study may be clinically important for all postmenopausal women who are susceptible to atherosclerosis.
Leigh, Jessica; MacMahon, Shaun
2017-03-01
This work presents occurrence data for fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD) and glycidol in 98 infant formula samples purchased in the United States. These contaminants are considered potentially carcinogenic and/or genotoxic, making their presence in refined oils and foods a potential health risk. Recently, attention has focused on methodology to quantify MCPD and glycidyl esters in infant formula for risk-assessment purposes. Occurrence data for 3-MCPD and glycidyl esters were produced using a procedure for extracting fat from infant formula and an LC-MS/MS method for analysing fat extracts for intact esters. Infant formulas were produced by seven manufacturers, five of which use palm oil and/or palm olein in their formulations. In formulas containing palm/palm olein, concentrations for bound 3-MCPD and glycidol ranged from 0.021 to 0.92 mg kg - 1 (ppm) and from < LOQ to 0.40 mg kg - 1 (ppm), respectively. Formulas not containing palm/palm olein, bound 3-MCPD and glycidol concentrations ranged from 0.072 to 0.16 mg kg - 1 (ppm) and from 0.005 to 0.15 mg kg - 1 (ppm), respectively. Although formulas from manufacturers A and G did not contain palm/palm olein, formulas from manufacturer E (containing palm olein) had the lowest concentrations of bound 3-MCPD and glycidol, demonstrating the effectiveness of industrial mitigation strategies.
NASA Astrophysics Data System (ADS)
Muthusamy, K.; Zamri, N. A.; Kusbiantoro, A.; Lim, N. H. A. S.; Ariffin, M. A. Mohd
2018-04-01
Both palm oil fuel ash (POFA) and palm oil boiler stone (POBS) are by-products which has been continuously generated by local palm oil mill in large amount. Both by products is usually disposed as profitless waste and considered as nuisance to environment. The present research investigates the workability and compressive strength performance of lightweight aggregate concrete (LWAC) made of palm oil boiler stone (POBS) known as palm oil boiler stone lightweight aggregate concrete (POBS LWAC) containing various content of palm oil fuel ash. The control specimen that is POBS LWAC of grade 60 were produced using 100% OPC. Then, another 4 mixes were prepared by varying the POFA percentage from 10%, 20%, 30% and 40% by weight of cement. Fresh mixes were subjected to slump test to determine its workability before casted in form of cubes. Then, all specimens were subjected to water curing up to 28 days and then tested for its compressive strength. It was found out that utilizing of optimum amount of POFA in POBS LWAC would improve the workability and compressive strength of the concrete. However, inclusion of POFA more than optimum amount is not recommended as it will increase the water demand leading to lower workability and strength reduction.
Oil palm monoculture induces drastic erosion of an Amazonian forest mammal fauna
Maués, Paula Cristina R. de A.; Oliveira, Geovana Linhares; Mineiro, Ivo G. B.; de Maria, Susanne L. Silva; Lima, Renata C. S.
2017-01-01
Oil palm monoculture comprises one of the most financially attractive land-use options in tropical forests, but cropland suitability overlaps the distribution of many highly threatened vertebrate species. We investigated how forest mammals respond to a landscape mosaic, including mature oil palm plantations and primary forest patches in Eastern Amazonia. Using both line-transect censuses (LTC) and camera-trapping (CT), we quantified the general patterns of mammal community structure and attempted to identify both species life-history traits and the environmental and spatial covariates that govern species intolerance to oil palm monoculture. Considering mammal species richness, abundance, and species composition, oil palm plantations were consistently depauperate compared to the adjacent primary forest, but responses differed between functional groups. The degree of forest habitat dependency was a leading trait, determining compositional dissimilarities across habitats. Considering both the LTC and CT data, distance from the forest-plantation interface had a significant effect on mammal assemblages within each habitat type. Approximately 87% of all species detected within oil palm were never farther than 1300 m from the forest edge. Our study clearly reinforces the notion that conventional oil palm plantations are extremely hostile to native tropical forest biodiversity, which does not bode well given prospects for oil palm expansion in both aging and new Amazonian deforestation frontiers. PMID:29117202
Genetic analysis identifies the region of origin of smuggled peach palm seeds.
Cristo-Araújo, Michelly; Molles, David Bronze; Rodrigues, Doriane Picanço; Clement, Charles R
2017-04-01
Seeds of a plant, supposedly a palm tree known popularly as peach palm (Bactris gasipaes), were seized by the Federal Police in the state of Pará, Brazil, without documentation of legal origin to authorize transportation and marketing in Brazil. They were alleged to be from the western part of Amazonas, Brazil, near the frontier with Peru and Colombia, justifying the lack of documentation. The species was confirmed to be peach palm. To determine the likely place of origin, a genetic analysis was performed to determine the relationship between the seized seeds and representative populations of peach palm from all of Amazonia, maintained in the Peach palm Core Collection, at the National Research Institute for Amazonia, using nine microsatellite loci. Reynolds' coancestry analysis showed a strong relationship between the seeds and the Pampa Hermosa landrace, around Yurimaguas, Peru. The Structure program, used to infer the probability of an individual belonging to a given population, showed that most seeds grouped with populations close to Yurimaguas, Peru, corroborating the coancestry analysis. The Pampa Hermosa landrace is the main source of spineless peach palm seeds used in the Brazilian heart-of-palm agribusiness, which motivated the smugglers to attempt this biopiracy. Copyright © 2017 Elsevier B.V. All rights reserved.
Srivastava, Rashmi; Srivastava, Gaurav; Dilcher, David L.
2014-01-01
Premise of research A large number of fossil coryphoid palm wood and fruits have been reported from the Deccan Intertrappean beds of India. We document the oldest well-preserved and very rare costapalmate palm leaves and inflorescence like structures from the same horizon. Methodology A number of specimens were collected from Maastrichtian–Danian sediments of the Deccan Intertrappean beds, Ghughua, near Umaria, Dindori District, Madhya Pradesh, India. The specimens are compared with modern and fossil taxa of the family Arecaceae. Pivotal results Sabalites dindoriensis sp. nov. is described based on fossil leaf specimens including basal to apical parts. These are the oldest coryphoid fossil palm leaves from India as well as, at the time of deposition, from the Gondwana- derived continents. Conclusions The fossil record of coryphoid palm leaves presented here and reported from the Eurasian localities suggests that this is the oldest record of coryphoid palm leaves from India and also from the Gondwana- derived continents suggesting that the coryphoid palms were well established and wide spread on both northern and southern hemispheres by the Maastrichtian–Danian. The coryphoid palms probably dispersed into India from Europe via Africa during the latest Cretaceous long before the Indian Plate collided with the Eurasian Plate. PMID:25394208
Shuhada, Siti Noor; Salim, Sabiha; Nobilly, Frisco; Zubaid, Akbar; Azhar, Badrul
2017-09-01
Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large-scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human-modified landscapes.
Time series ARIMA models for daily price of palm oil
NASA Astrophysics Data System (ADS)
Ariff, Noratiqah Mohd; Zamhawari, Nor Hashimah; Bakar, Mohd Aftar Abu
2015-02-01
Palm oil is deemed as one of the most important commodity that forms the economic backbone of Malaysia. Modeling and forecasting the daily price of palm oil is of great interest for Malaysia's economic growth. In this study, time series ARIMA models are used to fit the daily price of palm oil. The Akaike Infromation Criterion (AIC), Akaike Infromation Criterion with a correction for finite sample sizes (AICc) and Bayesian Information Criterion (BIC) are used to compare between different ARIMA models being considered. It is found that ARIMA(1,2,1) model is suitable for daily price of crude palm oil in Malaysia for the year 2010 to 2012.
Assessment of Gastric Emptying in Patients with Autoimmune Gastritis.
Kalkan, Çağdaş; Soykan, Irfan; Soydal, Çiğdem; Özkan, Elgin; Kalkan, Emra
2016-06-01
Symptoms of patients with autoimmune gastritis are not specific, and some patients may present symptoms suggestive of delayed gastric emptying. This study aims to investigate whether any delay in gastric emptying of solid food exists in patients with autoimmune gastritis and, if so, to identify the factors that might affect delayed gastric emptying. A total of 165 patients (106 women) diagnosed as having autoimmune gastritis were analyzed by means of a gastric emptying test. All patients underwent a standardized scintigraphic gastric emptying study. Patients with delayed gastric emptying and normal gastric emptying tests were then compared by means of factors that might affect gastric emptying. Also 65 patients with functional dyspepsia who had a gastric emptying study constituted the control group. The median gastric emptying T ½ time was 127.43 min (min-max 50-953) for patients with AIG and 81 min (min-max 21-121.6) for functional dyspepsia patients (p < 0.001), and median percent retention at 2 h was 63.8 versus 20.2 (p < 0.001). In multivariate analysis, parameters that affected gastric emptying T ½ time were found as serum gastrin level (OR 1.002, 95 % CI 1.001-1.004, p < 0.001, chronic inflammation (OR 3.689, 95 % CI 1.44-9.39, p < 0.001), and increase in the degree of the atrophy of the gastric mucosa (OR 8.96, 95 % CI 2.98-26.93, p < 0.001). In patients with autoimmune gastritis, gastric emptying is generally delayed. Autoimmune gastritis is an important etiology to explain the finding of delayed gastric emptying on a radionuclide test. This new finding is likely to be relevant to clinicians when evaluating and initiating appropriate medical treatment for patients with autoimmune gastritis manifesting upper gastrointestinal symptoms.
RELATIONSHIP BETWEEN GLYCEMIC CONTROL AND GASTRIC EMPTYING IN POORLY CONTROLLED TYPE 2 DIABETES
Bharucha, Adil E.; Kudva, Yogish; Basu, Ananda; Camilleri, Michael; Low, Phillip A.; Vella, Adrian; Zinsmeister, Alan R.
2014-01-01
Background & Aims Acute hyperglycemia delays gastric emptying in patients with diabetes. However, it is not clear whether improved control of glycemia affects gastric emptying in these patients. We investigated whether overnight and short-term (6 months) improvements in control of glycemia affect gastric emptying. Methods We studied 30 patients with poorly controlled type 2 diabetes (levels of glycated hemoglobin >9%). We measured gastric emptying using the [13C]-spirulina platensis breath test on the patients’ first visit (visit 1), after overnight administration of insulin or saline, 1 week later (visit 2), and 6 months after intensive therapy for diabetes. We also measured fasting and post-prandial plasma levels of C-peptide, GLP1, and amylin, as well as autonomic functions. Results At visit 1, gastric emptying was normal in 10 patients, delayed in 14, and accelerated in 6; 6 patients had gastrointestinal symptoms; vagal dysfunction was associated with delayed gastric emptying (P<.05). Higher fasting blood levels of glucose were associated with shorter half-times of gastric emptying (thalf) at visits 1 (r= −0.46, P=.01) and 2 (r= −0.43, P=.02). Although blood levels of glucose were lower after administration of insulin (132±7 mg/dl) than saline (211±15 mg/dl; P=0.0002), gastric emptying thalf was not lower after administration of insulin, compared with saline. After 6 months of intensive therapy, levels of glycated hemoglobin decreased from 10.6%±0.3% to 9%±0.4% (P=.0003), but gastric emptying thalf did not change (92±8 min before, 92±7 min after). Gastric emptying did not correlate with plasma levels of GLP1 and amylin. Conclusions Two-thirds of patients with poorly-controlled type 2 diabetes have mostly asymptomatic yet abnormal gastric emptying. Higher fasting blood levels of glucose are associated with faster gastric emptying. Overnight and sustained (6 months) improvements in glycemic control do not affect gastric emptying. PMID:25041866
Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch
Fadilah, Norasyikin; Mohamad-Saleh, Junita; Halim, Zaini Abdul; Ibrahim, Haidi; Ali, Syed Salim Syed
2012-01-01
Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category. PMID:23202043
The use of date palm as a potential adsorbent for wastewater treatment: a review.
Ahmad, Tanweer; Danish, Mohammad; Rafatullah, Mohammad; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah; Ibrahim, Mohamad Nasir Mohamad
2012-06-01
In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution. This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years. Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.
Intelligent color vision system for ripeness classification of oil palm fresh fruit bunch.
Fadilah, Norasyikin; Mohamad-Saleh, Junita; Abdul Halim, Zaini; Ibrahim, Haidi; Syed Ali, Syed Salim
2012-10-22
Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category.
Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste
NASA Astrophysics Data System (ADS)
Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.
2018-03-01
This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.
Oil palm for biodiesel in Brazil—risks and opportunities
NASA Astrophysics Data System (ADS)
Englund, Oskar; Berndes, Göran; Persson, U. Martin; Sparovek, Gerd
2015-04-01
Although mainly used for other purposes, and historically mainly established at the expense of tropical forests, oil palm can be the most land efficient feedstock for biodiesel. Large parts of Brazil are suitable for oil palm cultivation and a series of policy initiatives have recently been launched to promote oil palm production. These initiatives are however highly debated both in the parliament and in academia. Here we present results of a high resolution modelling study of opportunities and risks associated with oil palm production for biodiesel in Brazil, under different energy, policy, and infrastructure scenarios. Oil palm was found to be profitable on extensive areas, including areas under native vegetation where establishment would cause large land use change (LUC) emissions. However, some 40-60 Mha could support profitable biodiesel production corresponding to approximately 10% of the global diesel demand, without causing direct LUC emissions or impinging on protected areas. Pricing of LUC emissions could make oil palm production unprofitable on most lands where conversion would impact on native ecosystems and carbon stocks, if the carbon price is at the level 125/tC, or higher.
Combining PALM and SOFI for quantitative imaging of focal adhesions in living cells
NASA Astrophysics Data System (ADS)
Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Feletti, Lely; Lasser, Theo; Radenovic, Aleksandra
2017-02-01
Focal adhesions are complicated assemblies of hundreds of proteins that allow cells to sense their extracellular matrix and adhere to it. Although most focal adhesion proteins have been identified, their spatial organization in living cells remains challenging to observe. Photo-activated localization microscopy (PALM) is an interesting technique for this purpose, especially since it allows estimation of molecular parameters such as the number of fluorophores. However, focal adhesions are dynamic entities, requiring a temporal resolution below one minute, which is difficult to achieve with PALM. In order to address this problem, we merged PALM with super-resolution optical fluctuation imaging (SOFI) by applying both techniques to the same data. Since SOFI tolerates an overlap of single molecule images, it can improve the temporal resolution compared to PALM. Moreover, an adaptation called balanced SOFI (bSOFI) allows estimation of molecular parameters, such as the fluorophore density. We therefore performed simulations in order to assess PALM and SOFI for quantitative imaging of dynamic structures. We demonstrated the potential of our PALM-SOFI concept as a quantitative imaging framework by investigating moving focal adhesions in living cells.
Urbain, J L; Penninckx, F; Siegel, J A; Vandenborre, P; Van Cutsem, E; Vandenmaegdenbergh, V; De Roo, M
1990-10-01
The role of the distal stomach in gastric emptying was studied. Ten patients with proximal gastric vagotomy (PV) and 10 age-matched patients with Roux-en-Y gastro-jejunostomy (R-Y) were compared with 10 healthy controls. Gastric emptying of solids and liquids was determined by the use of Tc-99m SC scrambled eggs and In-111 DTPA. In PV, gastric emptying of both solids and liquids was delayed; the prolongation with solids was mainly accounted for by an abnormal lag phase. In R-Y patients, no lag phase was observed, and the solid emptying curve pattern was characterized by early rapid emptying followed by very slow emptying. Both the solid and liquid phases were prolonged. The lag phase is affected by proximal vagotomy and is mainly determined by the distal stomach, which appears to be essential for normal emptying.
Deden, Laura N; Cooiman, Mellody I; Aarts, Edo O; Janssen, Ignace M C; Gotthardt, Martin; Hendrickx, Baudewijn W; Berends, Frits J
2017-11-01
After Roux-en-Y gastric bypass (RYGB), approximately 10% of patients have insufficient weight loss (excess body mass index loss<50%). Gastric pouch emptying may have a role in weight loss. To compare pouch emptying of patients with poor weight loss and patients with successful weight loss after RYGB. A research-intensive nonacademic hospital and center of expertise in bariatric surgery in the Netherlands METHODS: Female patients were included from among patients with the least (poor weight loss group [P-WL]) and the most weight loss (successful weight loss group [S-WL]) in our center 2 years after RYGB. Pouch emptying scintigraphy was performed after ingestion of a radiolabeled solid meal. Emptying curves, intestinal content (IC) at meal completion and after 15, 30, 45, and 60 minutes, half emptying time, and maximal pouch emptying rate were compared. Five individuals were included in P-WL and 5 in S-WL, on average 2.5 ± .3 years after RYGB. Total weight loss was 18 ± 4.1% in P-WL and 44 ± 5.7% in S-WL (P<.001). In P-WL, a fast initial pouch emptying and exponential emptying curve was observed, compared with a slower initial emptying and more linear curve in S-WL. Faster emptying in P-WL was also shown by a larger IC meal (42 ± 18% versus 4.0 ± 3.3%,), IC 15 (76 ± 15% versus 35 ± 22%), and IC 30 (85 ± 12% versus 54 ± 25%), and a greater maximal pouch emptying rate (17 ± 4.7 versus 5.6 ± 3.4%/min) compared with S-WL (P<.05). A linear correlation was found between total weight loss and maximal pouch emptying rate (Pearson R = .82, P = .004). Pouch emptying for solid food was faster in patients with the least weight loss compared with patients with the most weight loss after RYGB. If pouch emptying is an important mechanism in weight loss, altering the pouch outlet may improve poor weight loss management. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Agoraphobia and Melancholia: Thoughts on Milrod's "Emptiness in Agoraphobia Patients".
Yates, Sheena
2015-08-01
Milrod (2007) identifies persistent emptiness in agoraphobic patients whose symptoms of anxiety and avoidance have remitted. To this important identification, a number of critical considerations may be raised regarding the meanings of emptiness in the psychoanalytic clinic. Milrod's admonishment to distinguish between an emptiness that indicates a deficit in the structure and stability of self-representation, and an emptiness that is strictly defensive, is a case in point. While much of the literature supports an interpretation of emptiness as a defense against overwhelming rage, these patients' assertions and experiences of emptiness can be better explained by the presence of traumatic, unmourned losses. Several explanations are offered as to why agoraphobic patients, in particular, defend unconsciously against mourning. © 2015 by the American Psychoanalytic Association.
Soliman, T.; Lim, F. K. S.; Lee, J. S. H.
2016-01-01
Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land. PMID:27853605
Soliman, T; Lim, F K S; Lee, J S H; Carrasco, L R
2016-08-01
Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land.
Study on Handing Process and Quality Degradation of Oil Palm Fresh Fruit Bunches (FFB)
NASA Astrophysics Data System (ADS)
Mat Sharif, Zainon Binti; Taib, Norhasnina Binti Mohd; Yusof, Mohd Sallehuddin Bin; Rahim, Mohammad Zulafif Bin; Tobi, Abdul Latif Bin Mohd; Othman, Mohd Syafiq Bin
2017-05-01
The main objective of this study is to determine the relationship between quality of oil palm fresh fruit bunches (FFB) and handling processes. The study employs exploratory and descriptive design, with quantitative approach and purposive sampling using self-administrated questionnaires, were obtained from 30 smallholder respondents from the Southern Region, Peninsular Malaysia. The study reveals that there was a convincing relationship between quality of oil palm fresh fruit bunches (FFB) and handling processes. The main handling process factors influencing quality of oil palm fresh fruit bunches (FFB) were harvesting activity and handling at the plantation area. As a result, it can be deduced that the handling process factors variable explains 82.80% of the variance that reflects the quality of oil palm fresh fruit bunches (FFB). The overall findings reveal that the handling process factors do play a significant role in the quality of oil palm fresh fruit bunches (FFB).
NASA Astrophysics Data System (ADS)
Sigalingging, R.; Sumono; Rahmansyah, N.
2018-02-01
The estimation of crop water requirement is an important part of oil palm plantation because fruit yield of oil palm can be affected by water stress. Evapotranspiration and crop coefficient of oil palm using Tenera variety at 7-12 months old was determined. Soil texture was sandy loam with 73.8 % sand, 10.8 % silt, 15.77 % clay and 1.41 % organic matter. The results showed that the oil palm getting older decreased significantly in bulk density, particle density and porosity of soil caused the root of oil palm enlarged (19.42 g to 53.37 g). This was indicated by increased the dry root weight. On the other hand, the value of evapotranspiration and crop coefficient increased significantly, that was 1.85 to 2.00 mm/day and 0.8 to 0.87 respectively.
SARS-CoV Infection in a Restaurant from Palm Civet
Wang, Ming; Yan, Meiying; Xu, Huifang; Liang, Weili; Kan, Biao; Zheng, Bojian; Chen, Honglin; Zheng, Han; Xu, Yanmei; Zhang, Enmin; Wang, Hongxia; Ye, Jingrong; Li, Guichang; Li, Machao; Cui, Zhigang; Liu, Yu-Fei; Guo, Rong-Tong; Liu, Xiao-Ning; Zhan, Liu-Hua; Zhou, Duan-Hua; Zhao, Ailan; Hai, Rong; Yu, Dongzhen; Guan, Yi
2005-01-01
Epidemiologic investigations showed that 2 of 4 patients with severe acute respiratory syndrome (SARS) identified in the winter of 2003–2004 were a waitress at a restaurant in Guangzhou, China, that served palm civets as food and a customer who ate in the restaurant a short distance from animal cages. All 6 palm civets at the restaurant were positive for SARS-associated coronavirus (SARS-CoV). Partial spike (S) gene sequences of SARS-CoV from the 2 patients were identical to 4 of 5 S gene viral sequences from palm civets. Phylogenetic analysis showed that SARS-CoV from palm civets in the restaurant was most closely related to animal isolates. SARS cases at the restaurant were the result of recent interspecies transfer from the putative palm civet reservoir, and not the result of continued circulation of SARS-CoV in the human population. PMID:16485471
SARS-CoV infection in a restaurant from palm civet.
Wang, Ming; Yan, Meiying; Xu, Huifang; Liang, Weili; Kan, Biao; Zheng, Bojian; Chen, Honglin; Zheng, Han; Xu, Yanmei; Zhang, Enmin; Wang, Hongxia; Ye, Jingrong; Li, Guichang; Li, Machao; Cui, Zhigang; Liu, Yu-Fei; Guo, Rong-Tong; Liu, Xiao-Ning; Zhan, Liu-Hua; Zhou, Duan-Hua; Zhao, Ailan; Hai, Rong; Yu, Dongzhen; Guan, Yi; Xu, Jianguo
2005-12-01
Epidemiologic investigations showed that 2 of 4 patients with severe acute respiratory syndrome (SARS) identified in the winter of 2003-2004 were a waitresss at a restaurant in Guangzhou, China, that served palm civets as food and a customer who ate in the restaurant ashort distance from animal cages. All 6 palm civets at the restaurant were positive for SARS-associated coronavirus (SARS-CoV). Partial spike (S) gene sequences of SARS-CoV from the 2 patients were identical to 4 of 5 Sgene viral sequences from palm civets. Phylogenetic analysis showed that SARS-CoV from palm civets in the restaurant was most closely related to animal isolates. SARS cases at the restaurant were the result of recent interspecies transfer from the putative palm civet reservoir, and not the result of continued circulation of SARS-CoV in the human population.
Palm Power Free-Piston Stirling Engine Control Electronics
NASA Astrophysics Data System (ADS)
Keiter, Douglas E.; Holliday, Ezekiel
2007-01-01
A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.
NASA Astrophysics Data System (ADS)
Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham
2013-03-01
Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.
Choo, Yuen May; Ng, Mei Han; Ma, Ah Ngan; Chuah, Cheng Hock; Hashim, Mohd Ali
2005-04-01
The application of supercritical fluid chromatography (SFC) coupled with a UV variable-wavelength detector to isolate the minor components (carotenes, vitamin E, sterols, and squalene) in crude palm oil (CPO) and the residual oil from palm-pressed fiber is reported. SFC is a good technique for the isolation and analysis of these compounds from the sources mentioned. The carotenes, vitamin E, sterols, and squalene were isolated in less than 20 min. The individual vitamin E isomers present in palm oil were also isolated into their respective components, alpha-tocopherol, alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol. Calibration of all the minor components of palm as well as the individual components of palm vitamin E was carried out and was found to be comparable to those analyzed by other established analytical methods.
Energy fluxes in oil palm plantations as affected by water storage in the trunk
NASA Astrophysics Data System (ADS)
Meijide, Ana; Röll, Alexander; Fan, Yuanchao; Herbst, Mathias; Niu, Furong; Tiedemann, Frank; June, Tania; Rauf, Abdul; Hölscher, Dirk; Knohl, Alexander
2017-04-01
Oil palm is increasingly expanding, particularly in Indonesia, but information on water and energy fluxes in oil palm plantations is still very limited and on how those are affected by environmental conditions or oil palm age. Using the eddy covariance technique, we studied turbulent fluxes of sensible (H) and latent (LE) heat and gross primary production (GPP) for 8 months each in a young oil palm plantation (1-year old) and subsequently in a mature plantation (12-year old) in Jambi Province, Sumatra, Indonesia. We measured transpiration (T) simultaneously using a sap flux technique. The energy budget was dominated by LE in both plantations, particularly in the mature one, where it represented up to 70% of the available energy. In the young oil palm plantation, evapotranspiration (ET) was significantly reduced and H fluxes were higher. This affected the Bowen ratio, defined as the ratio of H and LE, which was higher in the 1-year old plantation (0.67±0.33), where it remained constant during the day, than in the mature plantation (0.14±0.09), where it varied considerably over the day, suggesting that water accumulated inside the canopy. Using the Community Land Model (CLM), a process based land surface model that has been adapted to oil palm functional traits (i.e. CLM-Palm), we investigated the contribution of different water sources to the measured fluxes. CLM-Palm differentiates leaf and stem surfaces in modelling water interception and is therefore able to diagnose the fraction of dry leaves that contribute to T and the wet fraction of all vegetation surfaces (leaf and stem) that contributes to evaporation. Results from our simulations strengthen our hypothesis of significant contribution of canopy evaporation to ET. As observed in the field, water accumulates inside the canopy in the mature plantation in oil palm trunk surfaces including epiphytes, creating water reservoirs in the trunk, which potentially contribute to ET when they evaporate. The decoupling between GPP and T in the morning and the early decreases of both fluxes at midday suggest the existence of internal water storage mechanisms in oil palms both in the leaves and in the stem, which delayed the detection of water movement at the leaf petioles. The combination of our measured data with the model simulations suggest the existence of both external and internal trunk water storage mechanisms in mature oil palms contributing to ecosystem water fluxes. Oil palm plantations can lead to surface warming at early stages of development, but further assessments should be performed at landscape level to understand the climatic feedbacks of oil palm expansion.
Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera
Erler, Silvio; Denner, Andreas; Bobiş, Otilia; Forsgren, Eva; Moritz, Robin F A
2014-01-01
Honeybee colonies offer an excellent environment for microbial pathogen development. The highest virulent, colony killing, bacterial agents are Paenibacillus larvae causing American foulbrood (AFB), and European foulbrood (EFB) associated bacteria. Besides the innate immune defense, honeybees evolved behavioral defenses to combat infections. Foraging of antimicrobial plant compounds plays a key role for this “social immunity” behavior. Secondary plant metabolites in floral nectar are known for their antimicrobial effects. Yet, these compounds are highly plant specific, and the effects on bee health will depend on the floral origin of the honey produced. As worker bees not only feed themselves, but also the larvae and other colony members, honey is a prime candidate acting as self-medication agent in honeybee colonies to prevent or decrease infections. Here, we test eight AFB and EFB bacterial strains and the growth inhibitory activity of three honey types. Using a high-throughput cell growth assay, we show that all honeys have high growth inhibitory activity and the two monofloral honeys appeared to be strain specific. The specificity of the monofloral honeys and the strong antimicrobial potential of the polyfloral honey suggest that the diversity of honeys in the honey stores of a colony may be highly adaptive for its “social immunity” against the highly diverse suite of pathogens encountered in nature. This ecological diversity may therefore operate similar to the well-known effects of host genetic variance in the arms race between host and parasite. PMID:25505523
Ryu, Dae Gon; Choi, Cheol Woong; Kang, Dae Hwan; Kim, Hyung Wook; Park, Su Bum; Kim, Su Jin; Nam, Hyeong Seok
2017-07-01
Although the Vienna Classification recommends endoscopic resection for gastric high-grade dysplasia (HGD), many resected lesions are diagnosed as gastric cancer after endoscopic resection. This study aims to evaluate the clinical outcomes of gastric HGD identified by endoscopic forceps biopsy (EFB) after endoscopic submucosal dissection (ESD) and factors associated with discrepant results. From December 2008 to July 2015, a total of 427 lesions diagnosed as initial HGD by EFB were enrolled. The rate of early gastric cancer (EGC) and factors predicting diagnosis upgrade were analyzed retrospectively. Tumors ranged between 2 and 65 mm in size (median 12.59). En bloc and complete resection rates were 97.4 and 95.3%, respectively. The diagnostic discrepancy rate was 76.3%. Upgrade and downgrade rates of pathological diagnoses were 66.5 and 9.8%, respectively. Central depression (OR 4.151), nodular surface (OR 5.582), surface redness (OR 2.926), lesion location (upper third of the stomach) (OR 3.894), and tumor size ≥10 mm (OR 2.287) were significantly associated with EGC. Nodular surface (OR 2.746), submucosal fibrosis (OR 3.958), lesion location (upper third of the stomach) (OR 6.652), and tumor size ≥10 mm (OR 4.935) significantly predicted invasive submucosal cancer. Central depression, nodular surface, surface redness, lesion location, large tumor size, and submucosal fibrosis were associated with EGC or submucosal cancer. Caution must be used in treating lesions with these features with ESD.
Falavigna, C; Lazzaro, I; Galaverna, G; Dall'Asta, C; Battilani, P
2016-01-18
Fatty acid esters of fumonisins, namely oleoyl- and linoleoyl esters of fumonisin B1 (EFB1OA and EFB1LA, respectively), are modified forms of fumonisins whose formation and occurrence have been reported so far in naturally infected maize and in artificially inoculated rice. There is a lack of knowledge about the mechanism of formation, mainly in relation to the role played by the substrate. Therefore, in this work we studied the dynamics of accumulation of the toxin and its esters, together with their precursor, in maize and rice based media inoculated with different strains of F. verticillioides and incubated at 25 °C for 7-45 days. The production pattern of FB1 and its modified forms was significantly influenced by growth media, reaching a higher concentration in cornmeal compared to rice based medium. Similarly, cornmeal was more supportive for the conversion of FB1 by considering the esterification rate, with a prevalence of linoleoyl esters compared to oleoyl esters resembling the OA/LA rate in both media. The conversion of FB1 into fatty acid esters was also shown as strain-related. Results, thus, strongly support the hypothesis that fatty acid esters of FB1 are produced by the fungus itself at a late stage of growth, or at a certain point of FB1 accumulation in the medium, using fatty acids from the substrate.
Effect of oil palm sustainability certification on deforestation and fire in Indonesia.
Carlson, Kimberly M; Heilmayr, Robert; Gibbs, Holly K; Noojipady, Praveen; Burns, David N; Morton, Douglas C; Walker, Nathalie F; Paoli, Gary D; Kremen, Claire
2018-01-02
Many major corporations and countries have made commitments to purchase or produce only "sustainable" palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km 2 ) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y -1 Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation. Copyright © 2017 the Author(s). Published by PNAS.