NASA Astrophysics Data System (ADS)
Haryanto, B.; Bukit, R. Br; Situmeang, E. M.; Christina, E. P.; Pandiangan, F.
2018-02-01
The purpose of this study was to determine the performance, productivity and feasibility of the operation of palm kernel processing plant based on Energy Productivity Ratio (EPR). EPR is expressed as the ratio of output to input energy and by-product. Palm Kernel plan is process in palm kernel to become palm kernel oil. The procedure started from collecting data needed as energy input such as: palm kernel prices, energy demand and depreciation of the factory. The energy output and its by-product comprise the whole production price such as: palm kernel oil price and the remaining products such as shells and pulp price. Calculation the equality of energy of palm kernel oil is to analyze the value of Energy Productivity Ratio (EPR) bases on processing capacity per year. The investigation has been done in Kernel Oil Processing Plant PT-X at Sumatera Utara plantation. The value of EPR was 1.54 (EPR > 1), which indicated that the processing of palm kernel into palm kernel oil is feasible to be operated based on the energy productivity.
The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030
NASA Astrophysics Data System (ADS)
Hambali, E.; Rivai, M.
2017-05-01
During replanting activity in oil palm plantation, biomass including palm frond and trunk are produced. In palm oil mills, during the conversion process of fresh fruit bunches (FFB) into crude palm oil (CPO), several kinds of waste including empty fruit bunch (EFB), mesocarp fiber (MF), palm kernel shell (PKS), palm kernel meal (PKM), and palm oil mills effluent (POME) are produced. The production of these wastes is abundant as oil palm plantation area, FFB production, and palm oil mills spread all over 22 provinces in Indonesia. These wastes are still economical as they can be utilized as sources of alternative fuel, fertilizer, chemical compounds, and biomaterials. Therefore, breakthrough studies need to be done in order to improve the added value of oil palm, minimize the waste, and make oil palm industry more sustainable.
Oil point and mechanical behaviour of oil palm kernels in linear compression
NASA Astrophysics Data System (ADS)
Kabutey, Abraham; Herak, David; Choteborsky, Rostislav; Mizera, Čestmír; Sigalingging, Riswanti; Akangbe, Olaosebikan Layi
2017-07-01
The study described the oil point and mechanical properties of roasted and unroasted bulk oil palm kernels under compression loading. The literature information available is very limited. A universal compression testing machine and vessel diameter of 60 mm with a plunger were used by applying maximum force of 100 kN and speed ranging from 5 to 25 mm min-1. The initial pressing height of the bulk kernels was measured at 40 mm. The oil point was determined by a litmus test for each deformation level of 5, 10, 15, 20, and 25 mm at a minimum speed of 5 mmmin-1. The measured parameters were the deformation, deformation energy, oil yield, oil point strain and oil point pressure. Clearly, the roasted bulk kernels required less deformation energy compared to the unroasted kernels for recovering the kernel oil. However, both kernels were not permanently deformed. The average oil point strain was determined at 0.57. The study is an essential contribution to pursuing innovative methods for processing palm kernel oil in rural areas of developing countries.
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Cocoa butter substitute from coconut oil, palm... HUMAN CONSUMPTION Multipurpose Additives § 172.861 Cocoa butter substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
Analysis Monthly Import of Palm Oil Products Using Box-Jenkins Model
NASA Astrophysics Data System (ADS)
Ahmad, Nurul F. Y.; Khalid, Kamil; Saifullah Rusiman, Mohd; Ghazali Kamardan, M.; Roslan, Rozaini; Che-Him, Norziha
2018-04-01
The palm oil industry has been an important component of the national economy especially the agriculture sector. The aim of this study is to identify the pattern of import of palm oil products, to model the time series using Box-Jenkins model and to forecast the monthly import of palm oil products. The method approach is included in the statistical test for verifying the equivalence model and statistical measurement of three models, namely Autoregressive (AR) model, Moving Average (MA) model and Autoregressive Moving Average (ARMA) model. The model identification of all product import palm oil is different in which the AR(1) was found to be the best model for product import palm oil while MA(3) was found to be the best model for products import palm kernel oil. For the palm kernel, MA(4) was found to be the best model. The results forecast for the next four months for products import palm oil, palm kernel oil and palm kernel showed the most significant decrease compared to the actual data.
Fouling mechanism in ultrafiltration of vegetable oil
NASA Astrophysics Data System (ADS)
Ariono, D.; Wardani, A. K.; Widodo, S.; Aryanti, Putu T. P.; Wenten, I. G.
2018-03-01
Energy efficient and cost-effective separation of impurities from vegetable oil is a great challenge for vegetable oil processing. Several technologies have been developed, including pressurized membrane, chemical treatment, and chemical free separation methods. Among those technologies, ultrafiltration membrane is one of the most attractive processes with low operating pressure and temperature. In this work, hydrophobic polypropylene ultrafiltration membrane was used to remove impurities such as non-dissolved solids from palm kernel oil. Unfortunately, the hydrophobicity of polypropylene membrane leads to significant impact on the reduction of permeate flux due to membrane fouling. This fouling is associated with the accumulation of substances on the membrane surface or within the membrane pores. For better understanding, fouling mechanism that occurred during palm kernel oil ultrafiltration using hydrophobic polypropylene membrane was investigated. The effect of trans-membrane pressure and feed temperature on fouling mechanism was also studied. The result showed that cake formation became the dominant fouling mechanism up to 50 min operation of palm kernel oil ultrafiltration. Furthermore, the fouling mechanism was not affected by the increase of trans-membrane pressure and feed temperature.
Life Cycle Assessment for the Production of Oil Palm Seeds
Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen
2014-01-01
The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598
Life Cycle Assessment for the Production of Oil Palm Seeds.
Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen
2014-12-01
The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.
Loo, Ching-Yee; Lee, Wing-Hin; Tsuge, Takeharu; Doi, Yoshiharu; Sudesh, Kumar
2005-09-01
Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (M(n)) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6-3.9.
Processing of palm oil mill wastes based on zero waste technology
NASA Astrophysics Data System (ADS)
Irvan
2018-02-01
Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2010 CFR
2010-04-01
... fatty acids (complying with § 172.860) derived from edible coconut oil, edible palm kernel oil, or both oils. (b) The ingredient meets the following specifications: Acid number: Not to exceed 0.5..., citric acid, succinic acid, and spices; and (2) In compound coatings, cocoa creams, cocoa-based sweets...
Norlida, H M; Md Ali, A R; Muhadhir, I
1996-01-01
Palm oil (PO ; iodin value = 52), palm stearin (POs1; i.v. = 32 and POs2; i.v. = 40) and palm kernel oil (PKO; i.v. = 17) were blended in ternary systems. The blends were then studied for their physical properties such as melting point (m.p.), solid fat content (SFC), and cooling curve. Results showed that palm stearin increased the blends melting point while palm kernel oil reduced it. To produce table margarine with melting point (m.p.) below 40 degrees C, the POs1 should be added at level of < or = 16%, while POs2 at level of < or = 20%. At 10 degrees C, eutectic interaction occur between PO and PKO which reach their maximum at about 60:40 blending ratio. Within the eutectic region, to maintain the SFC at 10 degrees C to be < or = 50%, POs1 may be added at level of < or = 7%, while POs2 at level of < or = 12%. The addition of palm stearin increased the blends solidification Tmin and Tmax values, while PKO reduced them. Blends which contained high amount of palm stearin showed melting point and cooling curves quite similar to that of pastry margarine.
Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.
Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar
2012-02-10
Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.
Decision Support Model for Selection Technologies in Processing of Palm Oil Industrial Liquid Waste
NASA Astrophysics Data System (ADS)
Ishak, Aulia; Ali, Amir Yazid bin
2017-12-01
The palm oil industry continues to grow from year to year. Processing of the palm oil industry into crude palm oil (CPO) and palm kernel oil (PKO). The ratio of the amount of oil produced by both products is 30% of the raw material. This means that 70% is palm oil waste. The amount of palm oil waste will increase in line with the development of the palm oil industry. The amount of waste generated by the palm oil industry if it is not handled properly and effectively will contribute significantly to environmental damage. Industrial activities ranging from raw materials to produce products will disrupt the lives of people around the factory. There are many alternative technologies available to process other industries, but problems that often occur are difficult to implement the most appropriate technology. The purpose of this research is to develop a database of waste processing technology, looking for qualitative and quantitative criteria to select technology and develop Decision Support System (DSS) that can help make decisions. The method used to achieve the objective of this research is to develop a questionnaire to identify waste processing technology and develop the questionnaire to find appropriate database technology. Methods of data analysis performed on the system by using Analytic Hierarchy Process (AHP) and to build the model by using the MySQL Software that can be used as a tool in the evaluation and selection of palm oil mill processing technology.
NASA Astrophysics Data System (ADS)
Chang, Jessie S. L.; Chan, Y. S.; Law, M. C.; Leo, C. P.
2017-07-01
The implementation of microwave technology in palm oil processing offers numerous advantages; besides elimination of polluted palm oil mill effluent, it also reduces energy consumption, processing time and space. However, microwave exposure could damage a material’s microstructure which affected the quality of fruit that can be related to its physical structure including the texture and appearance. In this work, empty fruit bunches, mesocarp and kernel was microwave dried and their respective microstructures were examined. The microwave pretreatments were conducted at 100W and 200W and the microstructure investigation of both treated and untreated samples were evaluated using scanning electron microscope. The micrographs demonstrated that microwave does not significantly influence kernel and mesocarp but noticeable change was found on the empty fruit bunches where the sizes of the granular starch were reduced and a small portion of the silica bodies were disrupted. From the experimental data, the microwave irradiation was shown to be efficiently applied on empty fruit bunches followed by mesocarp and kernel as significant weight loss and size reduction was observed after the microwave treatments. The current work showed that microwave treatment did not change the physical surfaces of samples but sample shrinkage is observed.
... at room temperature. Foods like butter, palm and coconut oils, cheese, and red meat have high amounts ... pudding, cheese, whole milk) Solid fats such as coconut oil, palm, and palm kernel oils (found in ...
Zhang, Wencan; Leong, Siew Mun; Zhao, Feifei; Zhao, Fangju; Yang, Tiankui; Liu, Shaoquan
2018-05-01
With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Defect Analysis Of Quality Palm Kernel Meal Using Statistical Quality Control In Kernels Factory
NASA Astrophysics Data System (ADS)
Sembiring, M. T.; Marbun, N. J.
2018-04-01
The production quality has an important impact retain the totality of characteristics of a product or service to pay attention to its capabilities to meet the needs that have been established. Quality criteria Palm Kernel Meal (PKM) set Factory kernel is as follows: oil content: max 8.50%, water content: max 12,00% and impurity content: max 4.00% While the average quality of the oil content of 8.94%, the water content of 5.51%, and 8.45% impurity content. To identify the defective product quality PKM produced, then used a method of analysis using Statistical Quality Control (SQC). PKM Plant Quality Kernel shows the oil content was 0.44% excess of a predetermined maximum value, and 4.50% impurity content. With excessive PKM content of oil and dirt cause disability content of production for oil, amounted to 854.6078 kg PKM and 8643.193 kg impurity content of PKM. Analysis of the results of cause and effect diagram and SQC, the factors that lead to poor quality of PKM is Ampere second press oil expeller and hours second press oil expeller.
Tan, Jason Cx; Chuah, Cheng-Hock; Cheng, Sit-Foon
2017-04-01
Conventional palm oil milling involves multiple stages after fruit collection; in particular, oil clarification introduces water into the pressed oil, which results in a large quantity of wastewater. A combined process of microwave pretreatment and solvent extraction to mill crude palm oil, without introducing water or steam, is described. An excellent yield (up to 30%) of oil was obtained with pretreatment in a 42 L, 1000 W and 2450 MHz microwave oven followed by hexane extraction. The optimum conditions (10 min microwave pretreatment and 12 h solvent extraction) yielded an oil with a low free fatty acid content (<1.0%) and an acceptable anisidine value (<3.0 meq kg -1 ). The oil had a fatty acid composition not resembling those of conventional crude palm oil and crude palm kernel oil. In the pretreatment, the leached oil had 6.3% lauric acid whereas the solvent extracted oil had only 1.5% lauric acid. Among the factors affecting the oil quality, microwave pretreatment affected the oil quality significantly; however, an optimised duration that would ensure high efficiency in solvent extraction also resulted in ruptured fruitlets, although not to the extent of causing excessive oxidation. In fact, microwave pretreatment should exceed 12 min; after only 15 min, the oil had 1-methylcyclopentanol (12.96%), 1-tetradecanol (9.44%), 1-nonadecene (7.22%), nonanal (7.13%) and 1-tridecene (5.09%), which probably arose from the degradation of fibres. Microwave pretreatment represents an alternative milling process for crude palm oil compared with conventional processes in the omission of wet treatment with steam. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Bazargan, Alireza; Rough, Sarah L; McKay, Gordon
2018-04-01
Palm kernel shell biochars (PKSB) ejected as residues from a gasifier have been used for solid fuel briquette production. With this approach, palm kernel shells can be used for energy production twice: first, by producing rich syngas during gasification; second, by compacting the leftover residues from gasification into high calorific value briquettes. Herein, the process parameters for the manufacture of PKSB biomass briquettes via compaction are optimized. Two possible optimum process scenarios are considered. In the first, the compaction speed is increased from 0.5 to 10 mm/s, the compaction pressure is decreased from 80 Pa to 40 MPa, the retention time is reduced from 10 s to zero, and the starch binder content of the briquette is halved from 0.1 to 0.05 kg/kg. With these adjustments, the briquette production rate increases by more than 20-fold; hence capital and operational costs can be reduced and the service life of compaction equipment can be increased. The resulting product satisfactorily passes tensile (compressive) crushing strength and impact resistance tests. The second scenario involves reducing the starch weight content to 0.03 kg/kg, while reducing the compaction pressure to a value no lower than 60 MPa. Overall, in both cases, the PKSB biomass briquettes show excellent potential as a solid fuel with calorific values on par with good-quality coal. CHNS: carbon, hydrogen, nitrogen, sulfur; FFB: fresh fruit bunch(es); HHV: higher heating value [J/kg]; LHV: lower heating value [J/kg]; PKS: palm kernel shell(s); PKSB: palm kernel shell biochar(s); POME: palm oil mill effluent; RDF: refuse-derived fuel; TGA: thermogravimetric analysis.
Material flow analysis for resource management towards resilient palm oil production
NASA Astrophysics Data System (ADS)
Kamahara, H.; Faisal, M.; Hasanudin, U.; Fujie, K.; Daimon, H.
2018-03-01
Biomass waste generated from palm oil mill can be considered not only as the feedstock of renewable energy but also as the nutrient-rich resources to produce organic fertilizer. This study explored the appropriate resource management towards resilient palm oil production by applying material flow analysis. This study was conducted based on two palm oil mills in Lampung, Indonesia. The results showed that the empty fruit bunch (EFB) has the largest potential in terms of amount and energy among the biomass waste. The results also showed that the palm oil mills themselves had already self-managed their energy consumption thatwas obtained from palm kernel shell and palm press fiber. Finally, this study recommended the several utilization options of EFB for improvement of soil sustainability to contribute towards resilient palm oil production.
NASA Astrophysics Data System (ADS)
Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya
2017-11-01
Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS
Mechanical behaviour of selected bulk oilseeds under compression loading
NASA Astrophysics Data System (ADS)
Mizera, Č.; Herák, D.; Hrabě, P.; Aleš, Z.; Pavlů, J.
2017-09-01
Pressing of vegetable oils plays an important role in modern agriculture. This study was focused on the linear pressing of soybean seeds (Glycine max L.), Jatropha seeds (Jatropha curcas L.) and palm kernel (Elaeisguineensis). For pressing test the compressive device (ZDM, model 50, Germany) was used. The maximum pressing force of 100 kN with a compression speed of 1 mm s-1 was used to record the force-deformation characteristics. The pressing vessel with diameter 60 mm and initial height of seeds 80 mm were used. The specific energy per gram of oil of soybean, palm kernel and Jatropha was 158.92 ± 7.21, 128.78 ± 8.36 and 68.26 ± 5.94 J.goil-1, respectively. The oil content of soybean, palm kernel and Jatropha was 20.4 ± 1.23, 44.7 ± 2.27 and 34.2 ± 1.75 %, respectively. Water concentration, dynamic and kinematic viscosity of obtained oils was also determined.
Productivity improvement with green approach to palm oil factory productivity
NASA Astrophysics Data System (ADS)
Matondang, N.
2018-02-01
The palm oil factory (POF) processes fresh fruit bunches into crude palm oil (CPO) and palm kernel oil (PKO) by products in the form of liquid and solid waste. One of the solid wastes produced in POF Tanjung Kasau is empty fruit bunches of palm oil (FBPO) which have been burned completely on incinerator tubes so that potentially produces pollutants that pollute the environment. If FBPO waste is managed properly, it will improve the productivity of the company. Therefore, it is necessary to conduct a study to find out how far the increased productivity of the company can reduce their impact on the environment, if FBPO is used as raw material of liquid smoke. The productivity improvement approach is done by Green Productivity concept, by looking at three aspects: environmental, social and economical. Green Productivity aims to protect the environment simultaneously by increasing the productivity of the company. One way is to turn FBPO waste into liquid smoke product is by pyrolysis process. The results showed that turning FBPO solid waste into liquid smoke will increase productivity by 18.18%. Implementation of Green Productivity can improve productivity through the improvement of FBPO waste treatment process which has been done by perfect combustion by pyrolysis process so that waste can be minimized to create environment industry POF clean and friendly environment.
Celluclast 1.5L pretreatment enhanced aroma of palm kernels and oil after kernel roasting.
Zhang, Wencan; Zhao, Fangju; Yang, Tiankui; Zhao, Feifei; Liu, Shaoquan
2017-12-01
The aroma of palm kernel oil (PKO) affects its applications. Little information is available on how enzymatic modification of palm kernels (PK) affects PK and PKO aroma after kernel roasting. Celluclast (cellulase) pretreatment of PK resulted in a 2.4-fold increment in the concentration of soluble sugars, with glucose being increased by 6.0-fold. Higher levels of 1.7-, 1.8- and 1.9-fold of O-heterocyclic volatile compounds were found in the treated PK after roasting at 180 °C for 8, 14 and 20 min respectively relative to the corresponding control, with furfural, 5-methyl-2-furancarboxaldehyde, 2-furanmethanol and maltol in particularly higher amounts. Volatile differences between PKOs from control and treated PK were also found, though less obvious owing to the aqueous extraction process. Principal component analysis based on aroma-active compounds revealed that upon the proceeding of roasting, the differentiation between control and treated PK was enlarged while that of corresponding PKOs was less clear-cut. Celluclast pretreatment enabled the medium roasted PK to impart more nutty, roasty and caramelic odor and the corresponding PKO to impart more caramelic but less roasty and burnt notes. Celluclast pretreatment of PK followed by roasting may be a promising new way of improving PKO aroma. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Sembiring, M. T.; Wahyuni, D.; Sinaga, T. S.; Silaban, A.
2018-02-01
Cost allocation at manufacturing industry particularly in Palm Oil Mill still widely practiced based on estimation. It leads to cost distortion. Besides, processing time determined by company is not in accordance with actual processing time in work station. Hence, the purpose of this study is to eliminates non-value-added activities therefore processing time could be shortened and production cost could be reduced. Activity Based Costing Method is used in this research to calculate production cost with Value Added and Non-Value-Added Activities consideration. The result of this study is processing time decreasing for 35.75% at Weighting Bridge Station, 29.77% at Sorting Station, 5.05% at Loading Ramp Station, and 0.79% at Sterilizer Station. Cost of Manufactured for Crude Palm Oil are IDR 5.236,81/kg calculated by Traditional Method, IDR 4.583,37/kg calculated by Activity Based Costing Method before implementation of Activity Improvement and IDR 4.581,71/kg after implementation of Activity Improvement Meanwhile Cost of Manufactured for Palm Kernel are IDR 2.159,50/kg calculated by Traditional Method, IDR 4.584,63/kg calculated by Activity Based Costing Method before implementation of Activity Improvement and IDR 4.582,97/kg after implementation of Activity Improvement.
do Nascimento Silva, Jaqueline; Mascarin, Gabriel Moura; Dos Santos Gomes, Isabel Cristina; Tinôco, Ricardo Salles; Quintela, Eliane Dias; Dos Reis Castilho, Leda; Freire, Denise Maria Guimarães
2018-03-01
The present study aimed to add value to palm oil by-products as substrates to efficiently produce conidia of Beauveria bassiana and Isaria javanica (Hypocreales: Cordycipitaceae) for biological control of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), through a solid-state fermentation process using palm kernel cake and palm fiber as nutrient source and solid matrix, respectively. The optimum culture conditions yielded high concentrations of viable conidia after air-drying, when the fungi were grown on palm kernel cake (B. bassiana 7.65 × 10 9 and I. javanica 2.91 × 10 9 conidia g -1 dry substrate) after 6 days under optimal growth conditions set to 60% substrate moisture and 32 °C. Both fungal strains exhibited high efficacy against third-instar whitefly nymphs, inducing mortality up to 62.9 and 56.6% by B. bassiana and I. javanica, respectively, assessed after 9 days post-application in a screenhouse. Furthermore, we noted that insect mortality was strongly correlated with high atmospheric moisture, while B. bassiana appeared to require shorter accumulative hours under high moisture to kill whitefly nymphs compared to I. javanica. Our results underpin a feasible and cost-effective mass production method for aerial conidia, using palm kernel as the main substrate in order to produce efficacious fungal bioinsecticides against an invasive whitefly species in Brazil. Finally, our fermentation process may offer a sustainable and cost-effective means to produce eco-friendly mycoinsecticides, using an abundant agro-industrial by-product from Brazil that will ultimately assist in the integrated management of agricultural insect pests.
NASA Astrophysics Data System (ADS)
Daud, D.; Abd. Rahman, A.; Shamsuddin, A. H.
2016-03-01
In this work, palm oil biomass consisting of empty fruit bunch (EFB), mesocarp fibre and palm kernel shell (PKS) were chosen as raw material for torrefaction process. Torrefaction process was conducted at various temperatures of 240 °C, 270 °C and 300 °C with a residence time of 60 minutes. The morphology of the raw and torrefied biomass was then observed through Scanning Electron Microscopy (SEM) images. Also, through this experiment the correlation between the torrefaction temperatures with the volatile gases released were studied. From the observation, the morphology structure of the biomass exhibited inter-particle gaps due to the release of volatile gases and it is obviously seen more at higher temperatures. Moreover, the change of the biomass structure is influenced by the alteration of the lignocellulose biomass.
Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir
2012-11-01
The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sung, Kristine K; Goff, H Douglas
2010-04-01
The development of a structural fat network in ice cream as influenced by the solid:liquid fat ratio at the time of freezing/whipping was investigated. The solid fat content was varied with blends of a hard fraction of palm kernel oil (PKO) and high-oleic sunflower oil ranging from 40% to 100% PKO. Fat globule size and adsorbed protein levels in mix and overrun, fat destabilization, meltdown resistance, and air bubble size in ice cream were measured. It was found that blends comprising 60% to 80% solid fat produced the highest rates of fat destabilization that could be described as partial coalescence (as opposed to coalescence), lowest rates of meltdown, and smallest air bubble sizes. Lower levels of solid fat produced fat destabilization that was better characterized as coalescence, leading to loss of structural integrity, whereas higher levels of solid fat led to lower levels of fat network formation and thus also to reduced structural integrity. Blends of highly saturated palm kernel oil and monounsaturated high-oleic sunflower oil were used to modify the solid:liquid ratio of fat blends used for ice cream manufacture. Blends that contained 60% to 80% solid fat at freezing/whipping temperatures produced optimal structures leading to low rates of meltdown. This provides a useful reference for manufacturers to help in the selection of appropriate fat blends for nondairy-fat ice cream.
Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste
NASA Astrophysics Data System (ADS)
Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.
2018-03-01
This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.
Stein, Hans Henrik; Casas, Gloria Amparo; Abelilla, Jerubella Jerusalem; Liu, Yanhong; Sulabo, Rommel Casilda
2015-01-01
High fiber co-products from the copra and palm kernel industries are by-products of the production of coconut oil and palm kernel oil. The co-products include copra meal, copra expellers, palm kernel meal, and palm kernel expellers. All 4 ingredients are very high in fiber and the energy value is relatively low when fed to pigs. The protein concentration is between 14 and 22 % and the protein has a low biological value and a very high Arg:Lys ratio. Digestibility of most amino acids is less than in soybean meal but close to that in corn. However, the digestibility of Lys is sometimes low due to Maillard reactions that are initiated due to overheating during drying. Copra and palm kernel ingredients contain 0.5 to 0.6 % P. Most of the P in palm kernel meal and palm kernel expellers is bound to phytate, but in copra products less than one third of the P is bound to phytate. The digestibility of P is, therefore, greater in copra meal and copra expellers than in palm kernel ingredients. Inclusion of copra meal should be less than 15 % in diets fed to weanling pigs and less than 25 % in diets for growing-finishing pigs. Palm kernel meal may be included by 15 % in diets for weanling pigs and 25 % in diets for growing and finishing pigs. Rice bran contains the pericarp and aleurone layers of brown rice that is removed before polished rice is produced. Rice bran contains approximately 25 % neutral detergent fiber and 25 to 30 % starch. Rice bran has a greater concentration of P than most other plant ingredients, but 75 to 90 % of the P is bound in phytate. Inclusion of microbial phytase in the diets is, therefore, necessary if rice bran is used. Rice bran may contain 15 to 24 % fat, but it may also have been defatted in which case the fat concentration is less than 5 %. Concentrations of digestible energy (DE) and metabolizable energy (ME) are slightly less in full fat rice bran than in corn, but defatted rice bran contains less than 75 % of the DE and ME in corn. The concentration of crude protein is 15 to 18 % in rice bran and the protein has a high biological value and most amino acids are well digested by pigs. Inclusion of rice bran in diets fed to pigs has yielded variable results and based on current research it is recommended that inclusion levels are less than 25 to 30 % in diets for growing-finishing pigs, and less than 20 % in diets for weanling pigs. However, there is a need for additional research to determine the inclusion rates that may be used for both full fat and defatted rice bran.
NASA Astrophysics Data System (ADS)
Kormin, Shaharuddin; Rus, Anika Zafiah M.; Azahari, M. Shafiq M.
2017-09-01
Liquefaction is known to be an effective method for converting biomass into a biopolyol. The biomass liquefaction of oil palm fruit waste (PFW) in the presence of liquefaction solvent/polyhydric alcohol (PA): polyethylene glycol 400 (PEG400) using sulfuric acid as catalyst was studied. For all experiments, the liquefaction was conducted at 150°C and atmospheric pressure. The mass ratio of OPFW to liquefaction solvents used in all the experiments was, 1/3. Thermogravimetric analyses (TGA) were used to analyze their biopolyol and residue behaviors. It was found that thermal stability of oil palm mesocarp fibre (PM), oil palm shell (PS) and oil palm kernel (PK) fibre exhibited the first degradation of hard segment at (232, 104, 230°C) and the second degradation of soft segment at (314, 226, 412°C) as compared to PM, PS and PK residue which (229, 102, 227°C) of hard segment and (310, 219, 299°C) of segment, respectively. This behavior of thermal degradation of the hard segment and soft segment of biopolyol was changes after undergo solvolysis liquefaction process. The result analysis showed that the resulting biopolyol and its residue was suitable monomer for polyurethane (PU) synthesis for the production of PU foams.
Oil palm genome sequence reveals divergence of interfertile species in old and new worlds
Singh, Rajinder; Ong-Abdullah, Meilina; Low, Eng-Ti Leslie; Manaf, Mohamad Arif Abdul; Rosli, Rozana; Nookiah, Rajanaidu; Ooi, Leslie Cheng-Li; Ooi, Siew–Eng; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Nagappan, Jayanthi; Bacher, Blaire; Lakey, Nathan; Smith, Steven W; He, Dong; Hogan, Michael; Budiman, Muhammad A; Lee, Ernest K; DeSalle, Rob; Kudrna, David; Goicoechea, Jose Louis; Wing, Rod; Wilson, Richard K; Fulton, Robert S; Ordway, Jared M; Martienssen, Robert A; Sambanthamurthi, Ravigadevi
2013-01-01
Oil palm is the most productive oil-bearing crop. Planted on only 5% of the total vegetable oil acreage, palm oil accounts for 33% of vegetable oil, and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8 gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators1, which are highly expressed in the kernel. We also report the draft sequence of the S. American oil palm Elaeis oleifera, which has the same number of chromosomes (2n=32) and produces fertile interspecific hybrids with E. guineensis2, but appears to have diverged in the new world. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations which restrict the use of clones in commercial plantings3, and thus helps achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop. PMID:23883927
Pilot scale system for the production of palm-based Monoester-OH
NASA Astrophysics Data System (ADS)
Ngah, Muhammad Syukri; Badri, Khairiah Haji
2016-11-01
A mechanically agitate reactor vessel in a moderate scale size of 500 L has been developed. This vessel was constructed to produce palm-based polyurethane polyol with a capacity of maximum 400 L. This is to accomodate the demand required for marketing trial run as part of the commercialization intention. The chemistry background of the process design was thoroughly studied. The esterification and condensation in batch process was maintained from the laboratory scale. Only RBD palm kernel oil was used in this study. This paper will describe the engineering design for the reactor vessel development beginning at the stoichiometric equations for the production process to the detail engineering including the equipment selection and fabrication in order to meet the design and objective specifications.
Tropical oils: nutritional and scientific issues.
Elson, C E
1992-01-01
Individually and in combination with other oils, the tropical oils impart into manufactured foods functional properties that appeal to consumers. The use of and/or labeling in the ingredient lists give the impression that these oils are used extensively in commercially processed foods. The estimated daily intake of tropical oils by adult males is slightly more than one fourth of a tablespoon (3.8 g), 75% of which consists of saturated fatty acids. Dietary fats containing saturated fatty acids at the beta-position tend to raise plasma total and LDL-cholesterol, which, of course, contribute to atherosclerosis and coronary heart disease. Health professionals express concern that consumers who choose foods containing tropical oils unknowingly increase their intake of saturated fatty acids. The saturated fatty acid-rich tropical oils, coconut oil, hydrogenated coconut oil, and palm kernel oil, raise cholesterol levels; studies demonstrating this effect are often confounded by a developing essential fatty acid deficiency. Palm oil, an essential fatty acid-sufficient tropical oil, raises plasma cholesterol only when an excess of cholesterol is presented in the diet. The failure of palm oil to elevate blood cholesterol as predicted by the regression equations developed by Keys et al. and Hegsted et al. might be due to the dominant alpha-position location of its constituent saturated fatty acids. If so, the substitution of interesterified artificial fats for palm oil in food formulations, a recommendation of some health professionals, has the potential of raising cholesterol levels. A second rationale addresses prospective roles minor constituents of palm oil might play in health maintenance. This rationale is founded on the following observations. Dietary palm oil does not raise plasma cholesterol. Single fat studies suggests that oils richer in polyunsaturated fatty acid content tend to decrease thrombus formation. Anomalously, palm oil differs from other of the more saturated fats in tending to decrease thrombus formation. Finally, in studies comparing palm oil with other fats and oils, experimental carcinogenesis is enhanced both by vegetable oils richer in linoleic acid content and by more highly saturated animal fats. The carotenoid constituents of red palm oil are potent dietary anticarcinogens. A second group of antioxidants, the tocotrienols, are present in both palm olein and red palm oil. These vitamin E-active constituents are potent suppressors of cholesterol biosynthesis; emerging data point to their anticarcinogenic and antithrombotic activities. This review does not support claims that foods containing palm oil have no place in a prudent diet.
Famurewa, Ademola C; Nwankwo, Onyebuchi E; Folawiyo, Abiola M; Igwe, Emeka C; Epete, Michael A; Ufebe, Odomero G
2017-01-01
The literature reports that the health benefits of vegetable oil can be deteriorated by repeated heating, which leads to lipid oxidation and the formation of free radicals. Virgin coconut oil (VCO) is emerging as a functional food oil and its health benefits are attributed to its potent polyphenolic compounds. We investigated the beneficial effect of VCO supplementation on lipid profile, liver and kidney markers in rats fed repeatedly heated palm kernel oil (HPO). Rats were divided into four groups (n = 5). The control group rats were fed with a normal diet; group 2 rats were fed a 10% VCO supplemented diet; group 3 administered 10 ml HPO/kg b.w. orally; group 4 were fed 10% VCO + 10 ml HPO/kg for 28 days. Subsequently, serum markers of liver damage (ALT, AST, ALP and albumin), kidney damage (urea, creatinine and uric acid), lipid profile and lipid ratios as cardiovascular risk indices were evaluated. HPO induced a significant increase in serum markers of liver and kidney damage as well as con- comitant lipid abnormalities and a marked reduction in serum HDL-C. The lipid ratios evaluated for atherogenic and coronary risk indices in rats administered HPO only were remarkably higher than control. It was observed that VCO supplementation attenuated the biochemical alterations, including the indices of cardiovascular risks. VCO supplementation demonstrates beneficial health effects against HPO-induced biochemical alterations in rats. VCO may serve to modulate the adverse effects associated with consumption of repeatedly heated palm kernel oil.
Effect of feeding palm oil by-products based diets on muscle fatty acid composition in goats.
Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael
2015-01-01
The present study aims to evaluate the effects of feeding palm oil by-products based diets on different muscle fatty acid profiles in goats. Thirty-two Cacang × Boer goats were randomly assigned to four dietary treatments: (1) control diet (CD), (2) 80% decanter cake diet (DCD), (3) 80% palm kernel cake diet (PKCD) and (4) CD plus 5% palm oil (PO) supplemented diet (CPOD). After 100 days of feeding, four goats from each group were slaughtered and longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) were sampled for analysis of fatty acids. Goats fed the PKCD had higher (P<0.05) concentration of lauric acid (C12:0) than those fed the other diets in all the muscles tested. Compared to the other diets, the concentrations of palmitic acid (C16:0) and stearic acid (C18:0) were lower (P<0.05) and that of linoleic acid (C18:2 n-6) was higher (P<0.05) in the muscles from goats fed the CD. It was concluded that palm kernel cake and decanter cake can be included in the diet of goats up to 80% with more beneficial than detrimental effects on the fatty acid profile of their meat.
Norizzah, Abd Rashid; Nur Azimah, Kamarulzaman; Zaliha, Omar
2018-04-01
Interesterification reaction involves rearrangement of the fatty acid radicals on the glycerol backbone, either randomly (chemical interesterification) or regioselectivity (enzymatic interesterification). Refined, bleached and deodourised palm oil (RBDPO) and palm kernel oil (RBDPKO) were blended in ratios from 25:75 to 75:25 (wt/wt). All blends were subjected to enzymatic (EI) and chemical interesterification (CI) using Lipozyme TL IM (4% w/w) and sodium methoxide (0.2% m/m) as the catalysts, respectively. The effect of EI and CI on the triacylglycerol (TAG) composition, thermal behaviour, polymorphism, crystal morphology and crystallisation kinetics were studied. The aim of this research is to characterise the nature of crystals in food product for certain desired structure. The crystallisation behaviour discussed in this study involves microstructure (PLM), polymorphism (XRD), thermal properties and crystallisation kinetics by DSC. The alteration in TAG composition was greater after CI as compared to EI with the reduction of LaLaLa (from 11.00% to 5.15%) and POO (from 14.28% to 4.87%). The DSC complete melting and crystallisation temperature of blend with 75% PO increased after CI, from 39.58 °C to 41.67 °C and from -30.84 °C to -28.33 °C, respectively. EI contributed to finer crystals than CI. However, the β' and β polymorph mixture and crystallisation kinetics (n = 2) of PO-PKO blends did not change after CI and EI. The knowledge on controlling crystallisation of RBDPO and RBDPKO blends is vital for proper processing condition like margarine production. Copyright © 2018 Elsevier Ltd. All rights reserved.
19 CFR 10.56 - Vegetable oils, denaturing; release.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...
19 CFR 10.56 - Vegetable oils, denaturing; release.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...
19 CFR 10.56 - Vegetable oils, denaturing; release.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...
19 CFR 10.56 - Vegetable oils, denaturing; release.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...
19 CFR 10.56 - Vegetable oils, denaturing; release.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...
The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICK
Singh, Rajinder; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Chin, Ting Ngoot; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Abdul Manaf, Mohamad Arif; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W; Budiman, Muhammad A; Hogan, Michael; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Ordway, Jared M; Sambanthamurthi, Ravigadevi; Martienssen, Robert A
2014-01-01
A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the mapping and identification of the Shell gene responsible for the different fruit forms. Using homozygosity mapping by sequencing we found two independent mutations in the DNA binding domain of a homologue of the MADS-box gene SEEDSTICK (STK) which controls ovule identity and seed development in Arabidopsis. The Shell gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene heterosis attributed to Shell, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation6. PMID:23883930
Coimbra, Michelle C; Jorge, Neuza
2012-02-01
Bioactive compounds are capable of providing health benefits, reducing disease incidence or favoring body functioning. There is a growing search for vegetable oils containing such compounds. This study aimed to characterize the pulp and kernel oils of the Brazilian palm species guariroba (Syagrus oleracea), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata), aiming at possible uses in several industries. Fatty acid composition, phenolic and carotenoid contents, tocopherol composition were evaluated. The majority of the fatty acids in pulps were oleic and linoleic; macaúba pulp contained 526 g kg⁻¹ of oleic acid. Lauric acid was detected in the kernels of all three species as the major saturated fatty acid, in amounts ranging from 325.8 to 424.3 g kg⁻¹. The jerivá pulp contained carotenoids and tocopherols on average of 1219 µg g⁻¹ and 323.50 mg kg⁻¹, respectively. The pulps contained more unsaturated fatty acids than the kernels, mainly oleic and linoleic. Moreover, the pulps showed higher carotenoid and tocopherol contents. The kernels showed a predominance of saturated fatty acids, especially lauric acid. The fatty acid profiles of the kernels suggest that these oils may be better suited for the cosmetic and pharmaceutical industries than for use in foods. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Imbuzeiro, H. A.
2016-12-01
The Macauba palm (Acrocomia aculeata (Jacq.) Lood. ex Mart) is a native oil palm of the tropical America growing in anthropic areas, especially in grazing lands of Brazilian Cerrado. Macauba palm displays intense fruiting which results in high fruit and oil yield (3.0 - 6.0 ton/ha/year). The main Macauba palm differentials are: it is adapted to the environment with marked water restriction (1000 mm annual precipitation) which makes it resistant to drought and it does not compete with areas of rainforest; the oil is similar in composition to the African palm oil (Elaeis guineensis Jacq.) and can be used in several industrial applications such as biofuels, food, cosmetics, pharmaceutics and oil chemistry. Additionally, Macauba fruit processing generates several by-products like edible pulp bran, high-protein edible kernel bran, dense endocarp biomass, and husk biomass, all valuable products. Today, 172 million hectares of Brazilian land are used for grazing, of which 30 million hectares of these lands are degraded due to poor land use, 6 million in the state of Minas Gerais, in Brazil. Macauba could be cultivated in these degraded lands and is a candidate to become the main raw material for production of biokerosene. A new productive chain is forming in Brazil, the first commercial plantation of Macauba was implemented last year in Minas Gerais state and it is important to estimate the environmental impacts of this plantation, in terms of carbon (C) allocation. There is a lack of experimental data on Macauba carbon allocation and this study aimed to estimate the carbon allocation (leaves, stems and roots) of Macauba palm. The results suggest that Macauba palm is important in contributing to the carbon allocation and nutrient cycling.
NASA Astrophysics Data System (ADS)
Imbuzeiro, H. A.; Moreira, S. L. S.; Motoike, S. Y.; Fernandes, R. B. A.
2017-12-01
The Macauba palm (Acrocomia aculeata (Jacq.) Lood. ex Mart) is a native oil palm of the tropical America growing in anthropic areas, especially in grazing lands of Brazilian Cerrado. Macauba palm displays intense fruiting which results in high fruit and oil yield (3.0 - 6.0 ton/ha/year). The main Macauba palm differentials are: it is adapted to the environment with marked water restriction (1000 mm annual precipitation) which makes it resistant to drought and it does not compete with areas of rainforest; the oil is similar in composition to the African palm oil (Elaeis guineensis Jacq.) and can be used in several industrial applications such as biofuels, food, cosmetics, pharmaceutics and oil chemistry. Additionally, Macauba fruit processing generates several by-products like edible pulp bran, high-protein edible kernel bran, dense endocarp biomass, and husk biomass, all valuable products. Today, 172 million hectares of Brazilian land are used for grazing, of which 30 million hectares of these lands are degraded due to poor land use, 6 million in the state of Minas Gerais, in Brazil. Macauba could be cultivated in these degraded lands and is a candidate to become the main raw material for production of biokerosene. A new productive chain is forming in Brazil, the first commercial plantation of Macauba was implemented last year in Minas Gerais state and it is important to estimate the environmental impacts of this plantation, in terms of carbon (C) allocation. There is a lack of experimental data on Macauba carbon allocation and this study aimed to estimate the carbon allocation (leaves, stems and roots) of Macauba palm. The results suggest that Macauba palm is important in contributing to the carbon allocation.
Adsorption of mercury from aqueous solutions using palm oil fuel ash as an adsorbent - batch studies
NASA Astrophysics Data System (ADS)
Imla Syafiqah, M. S.; Yussof, H. W.
2018-03-01
Palm oil fuel ash (POFA) is one of the most abundantly produced waste materials. POFA is widely used by the oil palm industry which was collected as ash from the burning of empty fruit bunches fiber (EFB) and palm oil kernel shells (POKS) in the boiler as fuel to generate electricity. Mercury adsorption was conducted in a batch process to study the effects of contact time, initial Hg(II) ion concentration, and temperature. In this study, POFA was prepared and used for the removal of mercury(II) ion from the aqueous phase. The effects of various parameters such as contact time (0- 360 min), temperature (15 – 45 °C) and initial Hg(II) ion concentration (1 – 5 mg/L) for the removal of Hg(II) ion were studied in a batch process. The surface characterization was examined by scanning electron microscopy (SEM) and particle size distribution analysis. From this study, it was found that the highest Hg(II) ion removal was 99.60 % at pH 7, contact time of 4 h, initial Hg(II) ion concentration of 1 mg/L, adsorbent dosage 0.25 g and agitation speed of 100 rpm. The results implied that POFA has the potential as a low-cost and environmental friendly adsorbent for the removal of mercury from aqueous solution.
Oil palm natural diversity and the potential for yield improvement
Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N. V.; Lopes, Ricardo; Motoike, Sérgio Y.; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei
2015-01-01
African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25–30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11–18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604
Oil palm natural diversity and the potential for yield improvement.
Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N V; Lopes, Ricardo; Motoike, Sérgio Y; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei
2015-01-01
African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.
The Feasibility of Palm Kernel Shell as a Replacement for Coarse Aggregate in Lightweight Concrete
NASA Astrophysics Data System (ADS)
Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Issa Ayash, Usama
2016-03-01
Implementing sustainable materials into the construction industry is fast becoming a trend nowadays. Palm Kernel Shell is a by-product of Malaysia’s palm oil industry, generating waste as much as 4 million tons per annum. As a means of producing a sustainable, environmental-friendly, and affordable alternative in the lightweight concrete industry, the exploration of the potential of Palm Kernel Shell to be used as an aggregate replacement was conducted which may give a positive impact to the Malaysian construction industry as well as worldwide concrete usage. This research investigates the feasibility of PKS as an aggregate replacement in lightweight concrete in terms of compressive strength, slump test, water absorption, and density. Results indicate that by using PKS for aggregate replacement, it increases the water absorption but decreases the concrete workability and strength. Results however, fall into the range acceptable for lightweight aggregates, hence it can be concluded that there is potential to use PKS as aggregate replacement for lightweight concrete.
An Experimental Study of Briquetting Process of Torrefied Rubber Seed Kernel and Palm Oil Shell.
Hamid, M Fadzli; Idroas, M Yusof; Ishak, M Zulfikar; Zainal Alauddin, Z Alimuddin; Miskam, M Azman; Abdullah, M Khalil
2016-01-01
Torrefaction process of biomass material is essential in converting them into biofuel with improved calorific value and physical strength. However, the production of torrefied biomass is loose, powdery, and nonuniform. One method of upgrading this material to improve their handling and combustion properties is by densification into briquettes of higher density than the original bulk density of the material. The effects of critical parameters of briquetting process that includes the type of biomass material used for torrefaction and briquetting, densification temperature, and composition of binder for torrefied biomass are studied and characterized. Starch is used as a binder in the study. The results showed that the briquette of torrefied rubber seed kernel (RSK) is better than torrefied palm oil shell (POS) in both calorific value and compressive strength. The best quality of briquettes is yielded from torrefied RSK at the ambient temperature of briquetting process with the composition of 60% water and 5% binder. The maximum compressive load for the briquettes of torrefied RSK is 141 N and the calorific value is 16 MJ/kg. Based on the economic evaluation analysis, the return of investment (ROI) for the mass production of both RSK and POS briquettes is estimated in 2-year period and the annual profit after payback was approximately 107,428.6 USD.
Phan The, D; Péroval, C; Debeaufort, F; Despré, D; Courthaudon, J L; Voilley, A
2002-01-16
This work is a contribution to better knowledge of the influence of the structure of films on their functional properties obtained from emulsions based on arabinoxylans, hydrogenated palm kernel oil (HPKO), and emulsifiers. The sucroesters (emulsifiers) have a great effect on the stabilization of the emulsified film structure containing arabinoxylans and hydrogenated palm kernel oil. They improve the moisture barrier properties. Several sucroesters having different esterification degrees were tested. Both lipophilic (90% of di and tri-ester) and hydrophilic (70% of mono-ester) sucrose esters can ensure the stability of the emulsion used to form the film, especially during preparation and drying. These emulsifiers confer good moisture barrier properties to emulsified films.
Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik
2015-02-01
A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zaliha, Omar; Elina, Hishamuddin; Sivaruby, Kanagaratnam; Norizzah, Abd Rashid; Marangoni, Alejandro G
2018-06-01
The in situ polymorphic forms and thermal transitions of refined, bleached and deodorized palm oil (RBDPO), palm stearin (RBDPS) and palm kernel oil (RBDPKO) were investigated using coupled X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results indicated that the DSC onset crystallisation temperature of RBDPO was at 22.6°C, with a single reflection at 4.2Å started to appear from 23.4 to 17.1°C, and were followed by two prominent exothermic peaks at 20.1°C and 8.5°C respectively. Further cooling to -40°C leads to the further formation of a β'polymorph. Upon heating, a of β'→βtransformation was observed between 32.1 to 40.8°C, before the sample was completely melted at 43.0°C. The crystallization onset temperature of RBDPS was 44.1°C, with the appearance of the α polymorph at the same temperature as the appearance of the first sharp DSC exothermic peak. This quickly changed from α→β´ in the range 25 to 21.7°C, along with the formation of a small β peak at -40°C. Upon heating, a small XRD peak for the β polymorph was observed between 32.2 to 36.0°C, becoming a mixture of (β´+ β) between 44.0 to 52.5°C. Only the β polymorph survived further heating to 59.8°C. For RBDPKO, the crystallization onset temperature was 11.6°C, with the formation of a single sharp exothermic peak at 6.5°C corresponding to the β' polymorphic form until the temperature reached -40°C. No transformation of the polymorphic form was observed during the melting process of RBDPKO, before being completely melted at 33.2°C. This work has demonstrated the detailed dynamics of polymorphic transformations of PKO and PS, two commercially important hardstocks used widely by industry and will contribute to a greater understanding of their crystallization and melting dynamics.
Olutoye, M A; Hameed, B H
2013-03-01
An active heterogeneous Al2O3 modified MgZnO (MgZnAlO) catalyst was prepared and the catalytic activity was investigated for the transesterification of different vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil and coconut oil) with methanol to produce biodiesel. The catalyst was characterized by using X-ray diffraction, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis to ascertain its versatility. Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Within the range of studied variability, the suitable transesterification conditions (methanol/oil ratio 16:1, catalyst loading 3.32 wt.%, reaction time 6h, temperature 182°C), the oil conversion of 98% could be achieved with reference to coconut oil in a single stage. The catalyst can be easily recovered and reused for five cycles without significant deactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Oparaocha, Evangeline T; Iwu, Iraneus; Ahanakuc, J E
2010-03-01
The study examined the mosquito-repellent and mosquitocidal activities of the volatile oil of Ocimum gratissimum at three different locations (World Bank Estate, Ihitte and Umuekunne) in Imo State, eastern Nigeria, with the purpose of sourcing for mosquito repellent that is cheap, abundant, environment and user-friendly. Four different lotions; 20% (v/v) and 30% (v/v) concentrations each of the extracted volatile oil in two natural oil bases (olive and palm kernel) were made and six volunteered human baits were used to evaluate the mosquito repellent and mosquitocidal activities of the stock materials at the three different centres from September to November 2008. Topical application of each of the four different lotions significantly (p <0.05) reduced the biting rate of mosquitoes in all the three locations tested. The 30% (v/v) concentration in olive oil base exhibiting highest average percentage repellencies of 97.2, 95.7 and 96.3% at World Bank Estate, Ihitte and Umuekunne centres respectively while the 20% (v/v) concentration in palm kernel oil base had the least repellency of 36.3, 41.6 and 36.3%, respectively. The other two formulations had values ranging from 67.8 to 80% in the three locations. The 30% (v/v) concentration in both olive and palm kernel oil bases afforded all night protection against mosquito bites in all the centres, and demonstrated fast knockdown and paralyzing effect on few mosquitoes at the urban centre (World Bank Estate). The study confirms that O. gratissimum grown in eastern Nigeria has mosquito-repellent and mosquitocidal potentials and the formulations could be used to reduce human-mosquito contacts and hence mosquito-borne diseases and irritations caused by their bites.
USDA-ARS?s Scientific Manuscript database
Cuphea is a new crop of temperate regions that produces seed oil with medium-chain length fatty acids, which can substitute for imported coconut and palm kernels oils. Only four herbicides are known to be tolerated by cuphea to date. More herbicides, especially POST products, are needed for continue...
Chai, Xiu-Hang; Meng, Zong; Cao, Pei-Rang; Liang, Xin-Yu; Piatko, Michael; Campbell, Shawn; Koon Lo, Seong; Liu, Yuan-Fa
2018-07-30
Purification of triglycerides from fully hydrogenated palm kernel oil (FHPKO) and fully hydrogenated coconut oil (FHCNO) was performed by a chromatographic method. Lipid composition, thermal properties, polymorphism, isothermal crystallization behaviour, nanostructure and microstructure of FHPKO, FHPKO-triacylglycerol (TAG), FHCNO and FHCNO-TAG were evaluated. Removal of minor components had no effect on triglycerides composition. However, the presence of the minor components did increase the slip melting point and promote onset of crystallization. Furthermore, the thickness of the nanoscale crystals increased, and polymorphic transformation from β' to β occurred in FHPKO after the removal of minor components, and from α to β' in FHCNO. Sharp changes in the values of the Avrami constant K and exponent n suggested that the presence of minor components changed the crystal growth mechanism. The PLM results indicated that a coarser crystal structure with lower fractal dimension appeared after the removal of minor components from both FHPKO and FHCNO. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of Acrocomia aculeata Kernel Oil on Adiposity in Type 2 Diabetic Rats.
Nunes, Ângela A; Buccini, Danieli F; Jaques, Jeandre A S; Portugal, Luciane C; Guimarães, Rita C A; Favaro, Simone P; Caldas, Ruy A; Carvalho, Cristiano M E
2018-03-01
The macauba palm (Acrocomia aculeata) is native of tropical America and is found mostly in the Cerrados and Pantanal biomes. The fruits provide an oily pulp, rich in long chain fatty acids, and a kernel that encompass more than 50% of lipids rich in medium chain fatty acids (MCFA). Based on biochemical and nutritional evidences MCFA is readily catabolized and can reduce body fat accumulation. In this study, an animal model was employed to evaluate the effect of Acrocomia aculeata kernel oil (AKO) on the blood glucose level and the fatty acid deposit in the epididymal adipose tissue. The A. aculeata kernel oil obtained by cold pressing presented suitable quality as edible oil. Its fatty acid profile indicates high concentration of MCFA, mainly lauric, capric and caprilic. Type 2 diabetic rats fed with that kernel oil showed reduction of blood glucose level in comparison with the diabetic control group. Acrocomia aculeata kernel oil showed hypoglycemic effect. A small fraction of total dietary medium chain fatty acid was accumulated in the epididymal adipose tissue of rats fed with AKO at both low and high doses and caprilic acid did not deposit at all.
Experimental atherosclerosis in rabbits fed cholesterol-free diets.
Kritchevsky, D; Tepper, S A; Bises, G; Klurfeld, D M
1982-02-01
Rabbits were fed a semipurified, cholesterol-free atherogenic diet containing 40% sucrose, 25% casein, 14% fat, 15% fiber, 5% salt mix and 1% vitamin mix. The fats were corn oil (CO), palm kernel oil (PO), cocoa butter (CB), and coconut oil (CNO). The rabbits were bled at 3, 6, and 9 months and killed at 9 months. Serum lipids of rabbits fed CO were unaffected. Serum cholesterol levels (mg/dl) at 9 months were: CO -- 64; PO -- 436; CB -- 220; and CNO -- 474. HDL-cholesterol (%) was: CO -- 37; PO -- 8.6; CB -- 25.1; and CNO -- 7.0. Average atherosclerosis (arch + thoracic/2) was: CO -- 0.15; PO -- 1.28; CB -- 0.53; and CNO -- 1.60. Cocoa butter (iodine value 33) is significantly less cholesterolemic and atherogenic than palm oil (iodine value 17) or coconut oil (iodine value 6). The difference between the atherogenic effects of cocoa butter and palm oil may lie in the fact that about half of the fatty acids of palm oil are C 16 or shorter, whereas 76% of the fatty acids of cocoa butter are C 18 or longer.
Suitability of polystyrene as a functional barrier layer in coloured food contact materials.
Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy
2015-01-01
Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act.
Kim, Seon-Jin; Jung, Su-Hwa; Kim, Joo-Sik
2010-12-01
Palm kernel shells were pyrolyzed in a pyrolysis plant equipped with a fluidized-bed reactor and a char-separation system. The influence of reaction temperature, feed size and feed rate on the product spectrum was also investigated. In addition, the effect of reaction temperature on the yields of phenol and phenolic compounds in the bio-oil was examined. The maximum bio-oil yield was 48.7 wt.% of the product at 490 degrees C. The maximum yield of phenol plus phenolic compounds amounted to about 70 area percentage at 475 degrees C. The yield of pyrolytic lignin after its isolation from the bio-oil was approximately 46 wt.% based on the water and ash free oil. The pyrolytic lignin was mainly composed of phenol, phenolic compounds and oligomers of coniferyl, sinapyl and p-coumaryl alcohols. From the result of a GPC analysis, the number average molecular weight and the weight average molecular weight were 325 and 463 g/mol, respectively. 2010 Elsevier Ltd. All rights reserved.
Jørgensen, Henning; Sanadi, Anand R; Felby, Claus; Lange, Niels Erik Krebs; Fischer, Morten; Ernst, Steffen
2010-05-01
Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, beta-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43 +/- 0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.
Data on PKO biodiesel production using CaO catalyst from Turkey bones.
Ayoola, A A; Fayomi, O S I; Usoro, I F
2018-08-01
In this research paper the production of biodiesel from palm kernel oil (PKO) using CaO obtained from waste turkey bones (WTB) and analytical grade calcium oxide was investigated. Treated WTB was reduced to fine particulate size of <150 µm and then calcinated at 800 °C for 3 h to increase its catalytic activity by its conversion from Calcium phosphate hydroxide (Ca 10 P 6 O 26 H 2 ) to CaO. X-ray diffraction (XRD) and X-ray fluorescent (XRF) analysis of the analytical grade CaO, uncalcined and calcined WTB were carried out to establish their elemental chemical composition. The transesterification reaction between the triglyceride of palm kernel oil (PKO) and methanol was carried out at a constant agitation speed of 600 rpm and temperature of 65 °C, with varied methanol to oil molar ratio (8-14), catalyst concentration (1-7 wt/wt%) and the reaction time (1-3 h). Minitab 17 software (using response surface method) was employed for the design of experiment and statistical analysis required in the transesterification process of biodiesel production. The qualities of the biodiesel produced were assessed and the results obtained showed conformity of the biodiesel produced to the ASTM standard for biodiesel.
Dollah, Sarafhana; Abdulkarim, Sabo Mohammed; Ahmad, Siti Hajar; Khoramnia, Anahita; Mohd Ghazali, Hasanah
2016-08-01
High oleic acid Moringa oleifera seed oil (MoO) has been rarely applied in food products due to the low melting point and lack of plasticity. Enzymatic interesterification (EIE) of MoO with palm stearin (PS) and palm kernel oil (PKO) could yield harder fat stocks that may impart desirable nutritional and physical properties. Blends of MoO and PS or PKO were examined for triacylglycerol (TAG) composition, thermal properties and solid fat content (SFC). EIE caused rearrangement of TAGs, reduction of U3 and increase of U2 S in MoO/PS blends while reduction of U3 and S3 following increase of S2 U and U2 S in MoO/PKO blends (U, unsaturated and S, saturated fatty acids). SFC measurements revealed a wide range of plasticity, enhancements of spreadability, mouthfeel and cooling effect for interesterified MoO/PS, indicating the possible application of these blends in margarines. However, interesterified MoO/PKO was not suitable in margarine application, while ice-cream may be formulated from these blends. A soft margarine formulated from MoO/PS 70:30 revealed high oxidative stability during 8 weeks storage with no significant changes in peroxide and p-anisidine values. EIE of fats with MoO allowed nutritional and oxidative stable plastic fats to be obtained, suitable for possible use in industrial food applications. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Chee, J-Y; Lau, N-S; Samian, M-R; Tsuge, T; Sudesh, K
2012-01-01
Burkholderia sp. USM (JCM15050) isolated from oil-polluted wastewater is capable of utilizing palm oil products and glycerol to synthesize poly(3-hydroxybutyrate) [P(3HB)]. To confer the ability to produce polymer containing 3-hydroxyhexanoate (3HHx), plasmid (pBBREE32d13) harbouring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae (phaC(Ac)) was transformed into this strain. The resulting transformant incorporated approximately 1 ± 0·3 mol% of 3HHx in the polymer when crude palm kernel oil (CPKO) or palm kernel acid oil was used as the sole carbon source. In addition, when the transformed strain was cultivated in the mixtures of CPKO and sodium valerate, PHA containing 69 mol% 3HB, 30 mol% 3-hydroxyvalerate and 1 mol% 3HHx monomers was produced. Batch feeding of carbon sources with 0·5% (v/v) CPKO at 0 h and 0·25% (w/v) sodium valerate at 36 h yielded 6 mol% of 3HHx monomer by controlled-feeding strategies. Burkholderia sp. USM (JCM15050) has the metabolic pathways to supply both the short-chain length (SCL) and medium-chain length (MCL) PHA monomers. By transforming the strain with the Aer. caviae PHA synthase with broader substrate specificity, SCL-MCL PHA was produced. This is the first study demonstrating the ability of transformant Burkholderia to produce P(3HB-co-3HHx) from a single carbon source. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Effect of one step KOH activation and CaO modified carbon in transesterification reaction
NASA Astrophysics Data System (ADS)
Yacob, Abd Rahim; Zaki, Muhammad Azam Muhammad
2017-11-01
In this work, one step activation was introduced using potassium hydroxide (KOH) and calcium oxide (CaO) modified palm kernel shells. Various concentration of calcium oxide was used as catalyst while maintaining the same concentration of potassium hydroxide to activate and impregnate the palm kernel shell before calcined at 500°C for 5 hours. All the prepared samples were characterized using Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscope (FESEM). FTIR analysis of raw palm kernel shell showed the presence of various functional groups. However, after activation, most of the functional groups were eliminated. The basic strength of the prepared samples were determined using back titration method. The samples were then used as base heterogeneous catalyst for the transesterification reaction of rice bran oil with methanol. Analysis of the products were performed using Gas Chromatography Flame Ionization Detector (GC-FID) to calculate the percentage conversion of the biodiesel products. This study shows, as the percentage of one step activation potassium and calcium oxide doped carbon increases thus, the basic strength also increases followed by the increase in biodiesel production. Optimization study shows that the optimum biodiesel production was at 8 wt% catalyst loading, 9:1 methanol: oil molar ratio at 65°C and 6 hours which gives a conversion up to 95%.
Idris, Siti Shawalliah; Abd Rahman, Norazah; Ismail, Khudzir; Alias, Azil Bahari; Abd Rashid, Zulkifli; Aris, Mohd Jindra
2010-06-01
This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends. (c) 2010 Elsevier Ltd. All rights reserved.
Karri, Rama Rao; Sahu, J N
2018-01-15
Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R 2 equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dussert, Stéphane; Guerin, Chloé; Andersson, Mariette; Joët, Thierry; Tranbarger, Timothy J.; Pizot, Maxime; Sarah, Gautier; Omore, Alphonse; Durand-Gasselin, Tristan; Morcillo, Fabienne
2013-01-01
Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis. PMID:23735505
NASA Astrophysics Data System (ADS)
Phang, K. Y.; Lau, S. W.
2017-06-01
As one of the world’s largest palm oil producers and exporters, Malaysia is committed to sustainable management of this industry to address the emerging environmental challenges. This descriptive study aims to evaluate the oil palm planters’ opinions regarding the usage of biomass wastes from palm oil mills and its impact on sustainable development of oil palm plantations in Sarawak. 253 planters across Sarawak were approached for their opinions about the usage of empty fruit bunch (EFB), palm oil mill effluent (POME), mesocarp fibre (MF), and palm kernel shell (PKS). This study revealed that the planters had generally higher agreement on the beneficial application of EFB and POME in oil palm plantations. This could be seen from the higher means of agreement rating of 3.64 - 4.22 for EFB and POME, compared with the rating of 3.19 - 3.41 for MF and PKS in the 5-point Likert scale (with 5 being the strongest agreement). Besides, 94.7 percent of the planters’ companies were found to comply with the Environmental Impact Assessment (EIA) requirements where nearly 38 percent carried out the EIA practice twice a year. Therefore high means of agreement were correlated to the compliance of environmental regulations, recording a Likert rating of 3.89 to 4.31. Lastly, the usage of EFB and POME also gained higher Likert scale point of 3.76 to 4.17 against MF and PKS of 3.34 to 3.49 in the evaluation of the impact of sustainability in oil palm plantations. The planters agreed that the usage of EFB and POME has reduced the environmental impact and improved the sustainable development, and its application has been improved and increased by research and development. However the planters were uncertain of the impact of usage of biomass wastes with respect to the contribution to social responsibility and company image in terms of transparency in waste management.
Nasir, Salisu; Hussein, Mohd Zobir; Yusof, Nor Azah; Zainal, Zulkarnain
2017-01-01
Herein, a new approach was proposed to produce reduced graphene oxide (rGO) from graphene oxide (GO) using various oil palm wastes: oil palm leaves (OPL), palm kernel shells (PKS) and empty fruit bunches (EFB). The effect of heating temperature on the formation of graphitic carbon and the yield was examined prior to the GO and rGO synthesis. Carbonization of the starting materials was conducted in a furnace under nitrogen gas for 3 h at temperatures ranging from 400 to 900 °C and a constant heating rate of 10 °C/min. The GO was further synthesized from the as-carbonized materials using the ‘improved synthesis of graphene oxide’ method. Subsequently, the GO was reduced by low-temperature annealing reduction at 300 °C in a furnace under nitrogen gas for 1 h. The IG/ID ratio calculated from the Raman study increases with the increasing of the degree of the graphitization in the order of rGO from oil palm leaves (rGOOPL) < rGO palm kernel shells (rGOPKS) < rGO commercial graphite (rGOCG) < rGO empty fruit bunches (rGOEFB) with the IG/ID values of 1.06, 1.14, 1.16 and 1.20, respectively. The surface area and pore volume analyses of the as-prepared materials were performed using the Brunauer Emmett Teller-Nitrogen (BET-N2) adsorption-desorption isotherms method. The lower BET surface area of 8 and 15 m2 g−1 observed for rGOCG and rGOOPL, respectively could be due to partial restacking of GO layers and locally-blocked pores. Relatively, this lower BET surface area is inconsequential when compared to rGOPKS and rGOEFB, which have a surface area of 114 and 117 m2 g−1, respectively. PMID:28703757
Kwong, Qi Bin; Ong, Ai Ling; Teh, Chee Keng; Chew, Fook Tim; Tammi, Martti; Mayes, Sean; Kulaveerasingam, Harikrishna; Yeoh, Suat Hui; Harikrishna, Jennifer Ann; Appleton, David Ross
2017-06-06
Genomic selection (GS) uses genome-wide markers to select individuals with the desired overall combination of breeding traits. A total of 1,218 individuals from a commercial population of Ulu Remis x AVROS (UR x AVROS) were genotyped using the OP200K array. The traits of interest included: shell-to-fruit ratio (S/F, %), mesocarp-to-fruit ratio (M/F, %), kernel-to-fruit ratio (K/F, %), fruit per bunch (F/B, %), oil per bunch (O/B, %) and oil per palm (O/P, kg/palm/year). Genomic heritabilities of these traits were estimated to be in the range of 0.40 to 0.80. GS methods assessed were RR-BLUP, Bayes A (BA), Cπ (BC), Lasso (BL) and Ridge Regression (BRR). All methods resulted in almost equal prediction accuracy. The accuracy achieved ranged from 0.40 to 0.70, correlating with the heritability of traits. By selecting the most important markers, RR-BLUP B has the potential to outperform other methods. The marker density for certain traits can be further reduced based on the linkage disequilibrium (LD). Together with in silico breeding, GS is now being used in oil palm breeding programs to hasten parental palm selection.
Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael
2014-01-01
Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: control diet (CD), decanter cake diet (DCD), palm kernel cake diet (PKCD) and CD plus 5% PO diet (CPOD) were fed to rumen cannulated goats and rumen samples were collected at the start of the experimental diets (day 0) and on days 4, 6, 8, 12, 18, 24 and 30 post dietary treatments. Feeding DCD and PKCD resulted in significantly higher (P<0.05) DNA copy number of total bacteria, Fibrobacter succinogenes, Ruminococcus flavefeciens, and Ruminococcus albus. Rumen methanogenic archaea was significantly lower (P<0.05) in goats fed PKCD and CPOD and the trend showed a severe reduction on days 4 and 6 post experimental diets. In conclusion, results indicated that feeding DCD and PKC increased the populations of cellulolytic bacteria and decreased the density of methanogenic archaea in the rumen of goats.
Extraction process of palm kernel cake as a source of mannan for feed additive on poultry diet
NASA Astrophysics Data System (ADS)
Tafsin, M.; Hanafi, N. D.; Yusraini, E.
2017-05-01
Palm Kernel Cake (PKC) is a by-product of palm kernel oil extraction and found in large quantity in Indonesia. The inclusion of PKC on poultry diet are limited due to some nutritional problems such as anti-nutritional properties (mannan). On the other hand, mannan containing polysaccharides play in various biological functions particularly in enhancing the immune response and to control pathogen in poultry. The research objective to find out the extraction process of PKC and conducted at animal nutrition and Feed Science Laboratory, Agricultural Faculty, University of Sumatera Utara. Various extraction methode were used in this experiment, including fraction analysis used 7 number sieves, and followed by water and acetic acid extraction. The result indicated that PKC had different particle size according to sieve size and dominated by particle size 850 um. The analysis of sugar content indicated that each particle size had different characteristic on treatment by hot water extraction. The particle size 180—850 um had higher sugar content than coarse PKC (2000—3000 um). The total sugar content were recovered vary between 0.9—3,2% from PKC were extracted. Treatment grinding method followed by hot water extraction (100—120 °C, 1 h) increased total sugar content than previous treatments and reach 8% from PKC were extracted. Utilisation acetic acid decreased the total amount of total sugar from PKC were extracted. It is concluded that treatment by hot temperature (110—120 °C) for 1 h show highest yield to extract sugar from PKC.
Phoungthong, Khamphe; Tekasakul, Surajit; Tekasakul, Perapong; Prateepchaikul, Gumpon; Jindapetch, Naret; Furuuchi, Masami; Hata, Mitsuhiko
2013-04-01
Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work, the degummed, deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long-term usage. The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler. The 50% cut-off aerodynamic diameters for the first three stages were 10, 2.5 and 1 microm, while the last stage collected all particles smaller than 1 microm. Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography. The results indicated that the size distribution of particulate matter was in the accumulation mode and the pattern of total PAHs associated with fine-particles (< 1 microm) showed a dominance of larger molecular weight PAHs (4-6 aromatic rings), especially pyrene. The mass median diameter, PM and total PAH concentrations decreased when increasing the palm oil content, but increased when the running hours of the engine were increased. In addition, Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaP(eq)) for all particle size ranges. As the palm oil was increased, the BaP(eq) decreased gradually. Therefore the degummed-deacidified MCPO blends are recommended for diesel substitute.
Teh, Chee-Keng; Muaz, Siti Dalila; Tangaya, Praveena; Fong, Po-Yee; Ong, Ai-Ling; Mayes, Sean; Chew, Fook-Tim; Kulaveerasingam, Harikrishna; Appleton, David
2017-06-08
The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh AVROS , sh MPOB , sh MPOB2 , sh MPOB3 and sh MPOB4 ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.
Nutrition quality of extraction mannan residue from palm kernel cake on brolier chicken
NASA Astrophysics Data System (ADS)
Tafsin, M.; Hanafi, N. D.; Kejora, E.; Yusraini, E.
2018-02-01
This study aims to find out the nutrient residue of palm kernel cake from mannan extraction on broiler chicken by evaluating physical quality (specific gravity, bulk density and compacted bulk density), chemical quality (proximate analysis and Van Soest Test) and biological test (metabolizable energy). Treatment composed of T0 : palm kernel cake extracted aquadest (control), T1 : palm kernel cake extracted acetic acid (CH3COOH) 1%, T2 : palm kernel cake extracted aquadest + mannanase enzyme 100 u/l and T3 : palm kernel cake extracted acetic acid (CH3COOH) 1% + enzyme mannanase 100 u/l. The results showed that mannan extraction had significant effect (P<0.05) in improving the quality of physical and numerically increase the value of crude protein and decrease the value of NDF (Neutral Detergent Fiber). Treatments had highly significant influence (P<0.01) on the metabolizable energy value of palm kernel cake residue in broiler chickens. It can be concluded that extraction with aquadest + enzyme mannanase 100 u/l yields the best nutrient quality of palm kernel cake residue for broiler chicken.
Numerical estimation of deformation energy of selected bulk oilseeds in compression loading
NASA Astrophysics Data System (ADS)
Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G. A. K.
2017-09-01
This paper aimed at the determination of the deformation energy of some bulk oilseeds or kernels namely oil palm, sunflower, rape and flax in linear pressing applying the trapezoidal rule which is characterized by the area under the force and deformation curve.The bulk samples were measured at the initial pressing height of 60 mm with the vessel diameter of 60 mm where they were compressed under the universal compression machine at a maximum force of 200 kN and speed of 5 mm/min.Based on the compression test, the optimal deformation energy for recovering the oil was observed at a force of 163 kN where there was no seed/kernel cake ejection in comparison to the initial maximum force used particularly for rape and flax bulk oilseeds.This information is needed for analyzing the energy efficiency of the non-linear compression process involving a mechanical screw press or expeller.
NASA Astrophysics Data System (ADS)
Lawal, S. A.; Choudhury, I. A.; Nukman, Y.
2015-01-01
The understanding of cutting fluids performance in turning process is very important in order to improve the efficiency of the process. This efficiency can be determined based on certain process parameters such as flank wear, cutting forces developed, temperature developed at the tool chip interface, surface roughness on the work piece, etc. In this study, the objective is to determine the influence of cutting fluids on flank wear during turning of AISI 4340 with coated carbide inserts. The performances of three types of cutting fluids were compared using Taguchi experimental method. The results show that palm kernel oil based cutting fluids performed better than the other two cutting fluids in reducing flank wear. Mathematical models for cutting parameters such as cutting speed, feed rate, depth of cut and cutting fluids were obtained from regression analysis using MINITAB 14 software to predict flank wear. Experiments were conducted based on the optimized values to validate the regression equations for flank wear and 5.82 % error was obtained. The optimal cutting parameters for the flank wear using S/N ratio were 160 m/min of cutting speed (level 1), 0.18 mm/rev of feed (level 1), 1.75 mm of depth of cut (level 2) and 2.97 mm2/s palm kernel oil based cutting fluid (level 3). ANOVA shows cutting speed of 85.36 %; and feed rate 4.81 %) as significant factors.
Wong, Yoke-Ming; Brigham, Christopher J; Rha, ChoKyun; Sinskey, Anthony J; Sudesh, Kumar
2012-10-01
The potential of plant oils as sole carbon sources for production of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction using the recombinant Cupriavidus necator strain Re2160/pCB113 has been investigated. Various types and concentrations of plant oils were evaluated for efficient conversion of P(3HB-co-3HHx) copolymer. Crude palm kernel oil (CPKO) at a concentration of 2.5 g/L was found to be most suitable for production of copolymer with a 3HHx content of approximately 70 mol%. The time profile of these cells was also examined in order to study the trend of 3HHx monomer incorporation, PHA production and PHA synthase activity. (1)H NMR and (13)C NMR analyses confirmed the presence of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction, in which monomers were not randomly distributed. The results of various characterization analyses revealed that the copolymers containing a high 3HHx monomer fraction demonstrated soft and flexible mechanical properties. Copyright © 2012 Elsevier Ltd. All rights reserved.
Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto
2016-01-01
Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.
Determination of the herbicide fluroxypyr in oil matrices.
Muhamad, Halimah B; Ai, Tan Yew; Sahid, Ismail B
2008-02-01
The purpose of this study was to develop a method for the determination of fluroxypyr (4-amino-3,5-dichloro-6-fluro2-pyridyloxyacetic acid) residue in palm oil namely crude palm oil (CPO) and crude palm kernel oil (CPKO). The method involves the extraction of the herbicide from the oil matrix followed by low temperature precipitation and finally quantification of the residues using the high performance liquid chromatography (HPLC). The extraction efficiency of the method was evaluated by conducting recovery studies. The recovery of fluroxypyr from the fortified CPO samples ranged from 78%-111% with the relative values for the coefficient of variation ranging from 1.4 to 8.6%. Furthermore, the recovery of fluroxypyr from the spiked CPKO samples ranged from 91-107% with the relative values for the coefficient of variation ranging from 0.6 to 4.5%. The minimum detection limit of fluroxypyr in CPO and CPKO was 0.05 microg/g. The method was used to determine fluroxypyr residues from the field-treated samples of CPO and CPKO. When fluroxypyr was used for weed control in oil palm plantations no residue was detected in CPO and CPKO irrespective of the sampling interval and the dosage applied at the recommended or double the manufacturer's recommended dosage.
Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon
NASA Astrophysics Data System (ADS)
Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira
2018-04-01
Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.
Jin, Yuanhang; Yuan, Yijun; Gao, Lingchao; Sun, Ruhao; Chen, Lizhi; Li, Dongdong; Zheng, Yusheng
2017-01-01
Oil palm ( Elaeis guineensis Jacq.) is the highest oil-yielding plant in the world, storing 90 and 60% (dry weight) oil in its mesocarp and kernel, respectively. To gain insights into the oil accumulation mechanism, one of the key enzymes involved in triacylglycerol (TAG) biosynthesis, a Type 2 diacylglycerol acyltransferase (DGAT2) from oil palm, was characterized for its in vivo activity. EgDGAT2 is highly expressed in mesocarp during the last two developmental stages while large amounts of oil are accumulated at the highest rate during ripening. Heterologous expression of EgDGAT2 in mutant yeast H1246 restored TAG biosynthesis with substrate preference toward unsaturated fatty acids (FAs) (16:1 and 18:1). Furthermore, seed-specific overexpression of EgDGAT2 in Arabidopsis thaliana enhanced the content of polyunsaturated FAs 18:2 and 18:3 (each by 6 mol%) in seed TAGs, when compared to that from wild-type Arabidopsis. In turn, the proportion of 18:0 and 20:0 FAs in seed TAGs from EgDGAT2 transgenic lines decreased accordingly. These results provide new insights into understanding the in vivo activity of EgDGAT2 from oil palm mesocarp, which will be of importance for metabolic enhancement of unsaturated FAs production.
Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael
2014-01-01
Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: control diet (CD), decanter cake diet (DCD), palm kernel cake diet (PKCD) and CD plus 5% PO diet (CPOD) were fed to rumen cannulated goats and rumen samples were collected at the start of the experimental diets (day 0) and on days 4, 6, 8, 12, 18, 24 and 30 post dietary treatments. Feeding DCD and PKCD resulted in significantly higher (P<0.05) DNA copy number of total bacteria, Fibrobacter succinogenes, Ruminococcus flavefeciens, and Ruminococcus albus. Rumen methanogenic archaea was significantly lower (P<0.05) in goats fed PKCD and CPOD and the trend showed a severe reduction on days 4 and 6 post experimental diets. In conclusion, results indicated that feeding DCD and PKC increased the populations of cellulolytic bacteria and decreased the density of methanogenic archaea in the rumen of goats. PMID:24756125
NASA Astrophysics Data System (ADS)
Irfan, Muhammad; Ahmad, Tausif; Moniruzzaman, Muhammad; Abdullah, Bawadi
2017-05-01
This study was conducted for microwave assisted synthesis of stable gold nanoparticles (AuNPs) by reduction of chloroauric acid with Elaeis Guineensis (palm oil) kernel (POK) extract which was prepared in aqueous solution of ionic liquid, [EMIM][OAc], 1-Ethyl-3-methylimidazolium acetate. Effect of initial pH of reaction mixture (3.5 - 8.5) was observed on SPR absorbance, maximum wavelength (λmax ) and size distribution of AuNPs. Change of pH of reaction mixture from acidic to basic region resulted in appearance of strong SPR absorption peaks and blue shifting of λmax from 533 nm to 522 nm. TEM analysis revealed the formation of predominantly spherical AuNPs with mean diameter of 8.51 nm. Presence of reducing moieties such as flavonoids, phenolic and carboxylic groups in POK extract was confirmed by FTIR analysis. Colloidal solution of AuNPs was remained stable at room temperature and insignificant difference in zeta value was recorded within experimental tenure of 4 months.
Study on Handing Process and Quality Degradation of Oil Palm Fresh Fruit Bunches (FFB)
NASA Astrophysics Data System (ADS)
Mat Sharif, Zainon Binti; Taib, Norhasnina Binti Mohd; Yusof, Mohd Sallehuddin Bin; Rahim, Mohammad Zulafif Bin; Tobi, Abdul Latif Bin Mohd; Othman, Mohd Syafiq Bin
2017-05-01
The main objective of this study is to determine the relationship between quality of oil palm fresh fruit bunches (FFB) and handling processes. The study employs exploratory and descriptive design, with quantitative approach and purposive sampling using self-administrated questionnaires, were obtained from 30 smallholder respondents from the Southern Region, Peninsular Malaysia. The study reveals that there was a convincing relationship between quality of oil palm fresh fruit bunches (FFB) and handling processes. The main handling process factors influencing quality of oil palm fresh fruit bunches (FFB) were harvesting activity and handling at the plantation area. As a result, it can be deduced that the handling process factors variable explains 82.80% of the variance that reflects the quality of oil palm fresh fruit bunches (FFB). The overall findings reveal that the handling process factors do play a significant role in the quality of oil palm fresh fruit bunches (FFB).
Chew, Thiam Leng; Bhatia, Subhash
2008-11-01
In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.
Soha, Sahel; Mortazavian, Amir M; Piravi-Vanak, Zahra; Mohammadifar, Mohammad A; Sahafar, Hamed; Nanvazadeh, Sara
2015-01-01
In this research a comparison has been made between the fatty acid and sterol compositions of Iranian pure butter and three samples of adulterated butter. These samples were formulated using edible vegetable fats/oils with similar milk fat structures including palm olein, palm kernel and coconut oil to determine the authenticity of milk fat. The amount of vegetable fats/oils used in the formulation of the adulterated butter was 10%. The adulterated samples were formulated so that their fatty acid profiles were comforted with acceptable levels of pure butter as specified by the Iranian national standard. Based on the type of the vegetable oil/fat, fatty acids such as C4:0, C12:0 and C18:2 were used as indicators for the adulterated formulations. According to the standard method of ISO, the analysis was performed using gas chromatography. The cholesterol contents were 99.71% in pure butter (B1), and 97.61%, 98.48% and 97.98% of the total sterols in the samples adulterated with palm olein, palm kernel and coconut oil (B2, B3 and B4), respectively. Contents of the main phytosterol profiles such as β-sitosterol, stigmasterol and campesterol were also determined. The β-sitosterol content, as an indicator of phytosterols, was 0% in pure butter, and 1.81%, 1.67% and 2.16%, of the total sterols in the adulterated samples (B2, B3 and B4), respectively. Our findings indicate that fatty acid profiles are not an efficient indicator for butter authentication. Despite the increase in phytosterols and the reduction in cholesterol and with regard to the conformity of the sterol profiles of the edible fats/oils used in the formulations with Codex standards, lower cholesterol and higher phytosterols contents should have been observed. It can therefore be concluded that sterol measurement is insufficient to verify the authenticity of the milk fat in butter. It can therefore be concluded that sterol measurement is insufficient in verifying the authenticity of milk fat.
Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning
NASA Astrophysics Data System (ADS)
Sembiring, Pasukat; Mawengkang, Herman; Sadyadharma, Hendaru; Bu'ulolo, F.; Fajriana
2018-01-01
The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.
Deproteinated palm kernel cake-derived oligosaccharides: A preliminary study
NASA Astrophysics Data System (ADS)
Fan, Suet Pin; Chia, Chin Hua; Fang, Zhen; Zakaria, Sarani; Chee, Kah Leong
2014-09-01
Preliminary study on microwave-assisted hydrolysis of deproteinated palm kernel cake (DPKC) to produce oligosaccharides using succinic acid was performed. Three important factors, i.e., temperature, acid concentration and reaction time, were selected to carry out the hydrolysis processes. Results showed that the highest yield of DPKC-derived oligosaccharides can be obtained at a parameter 170 °C, 0.2 N SA and 20 min of reaction time.
NASA Astrophysics Data System (ADS)
Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen
2013-11-01
The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.
Urea adsorption by activated carbon prepared from palm kernel shell
NASA Astrophysics Data System (ADS)
Ooi, Chee-Heong; Sim, Yoke-Leng; Yeoh, Fei-Yee
2017-07-01
Dialysis treatment is crucial for patients suffer from renal failure. The dialysis system removes the uremic toxin to a safe level in a patient's body. One of the major limitations of the current hemodialysis system is the capability to efficiently remove uremic toxins from patient's body. Nanoporous materials can be applied to improve the treatment. Palm kernel shell (PKS) biomass generated from palm oil mills can be utilized to prepare high quality nanoporous activated carbon (AC) and applied for urea adsorption in the dialysis system. In this study, AC was prepared from PKS via different carbonization temperatures and followed by carbon dioxide gas activation processes. The physical and chemical properties of the samples were studied. The results show that the porous AC with BET surface areas ranging from 541 to 622 m2g-1 and with total pore volumes varying from 0.254 to 0.297 cm3g-1, are formed with different carbonization temperatures. The equilibrium constant for urea adsorption by AC samples carbonized at 400, 500 and 600 °C are 0.091, 0.287 and 0.334, respectively. The increase of carbonization temperatures from 400 to 600 °C resulted in the increase in urea adsorption by AC predominantly due to increase in surface area. The present study reveals the feasibility of preparing AC with good porosity from PKS and potentially applied in urea adsorption application.
Smith, Kevin W; Cain, Fred W; Talbot, Geoff
2004-08-25
Palm kernel stearin and hydrogenated palm kernel stearin can be used to prepare compound chocolate bars or coatings. The objective of this study was to characterize the chemical composition, polymorphism, and melting behavior of the bloom that develops on bars of compound chocolate prepared using these fats. Bars were stored for 1 year at 15, 20, or 25 degrees C. At 15 and 20 degrees C the bloom was enriched in cocoa butter triacylglycerols, with respect to the main fat phase, whereas at 25 degrees C the enrichment was with palm kernel triacylglycerols. The bloom consisted principally of solid fat and was sharper melting than was the fat in the chocolate. Polymorphic transitions from the initial beta' phase to the beta phase accompanied the formation of bloom at all temperatures.
A case study of pyrolysis of oil palm wastes in Malaysia
NASA Astrophysics Data System (ADS)
Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila
2013-05-01
Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.
Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry
2015-01-01
Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.
Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry
2015-01-01
Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics. PMID:26581109
Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor
NASA Astrophysics Data System (ADS)
Rinaldi, Nino; Simanungkalit, Sabar P.; Kiky Corneliasari, S.
2017-01-01
Fast pyrolysis process of palm fronds has been conducted in the fluidized bed reactor to yield bio-oil product (pyrolysis oil). The process employed sea sand as the heat transfer medium. The objective of this study is to design of the fluidized bed rector, to conduct fast pyrolysis process to product bio-oil from palm fronds, and to characterize the feed and bio-oil product. The fast pyrolysis process was conducted continuously with the feeding rate around 500 g/hr. It was found that the biomass conversion is about 35.5% to yield bio-oil, however this conversion is still minor. It is suggested due to the heating system inside the reactor was not enough to decompose the palm fronds as a feedstock. Moreover, the acids compounds ware mostly observed on the bio-oil product.
NASA Astrophysics Data System (ADS)
Sihotang, Iqbal Huda; Supriyatna, Yayat Iman; Ismail, Ika; Sulistijono
2018-04-01
Indonesia is a country that is rich in natural resources. Being a third country which has a nickel laterite ore in the world after New Caledonia and Philippines. However, the processing of nickel laterite ore to increase its levels in Indonesia is still lacking. In the processing of nickel laterite ore into metal, it can be processed by pyrometallurgy method that typically use coal as a reductant. However, coal is a non-renewable energy and have high enough levels of pollution. One potentially replace is the biomass, that is a renewable energy. Palm kernel shell are biomass that can be used as a reductant because it has a fairly high fix carbon content. This research aims to make nickel laterite ores become metal using palm kernel shell charcoal as reductant in mini electric arc furnace. The result show that the best smelting time of this research is 60 minutes with the best composition of the reductant is 2,000 gram.
Kinetic study of nickel laterite reduction roasting by palm kernel shell charcoal
NASA Astrophysics Data System (ADS)
Sugiarto, E.; Putera, A. D. P.; Petrus, H. T. B. M.
2017-05-01
Demand to process nickel-bearing laterite ore increase as continuous depletion of high-grade nickel-bearing sulfide ore takes place. Due to its common nickel association with iron, processing nickel laterite ore into nickel pig iron (NPI) has been developed by some industries. However, to achieve satisfying nickel recoveries, the process needs massive high-grade metallurgical coke consumption. Concerning on the sustainability of coke supply and positive carbon emission, reduction of nickel laterite ore using biomass-based reductor was being studied.In this study, saprolitic nickel laterite ore was being reduced by palm kernel shell charcoal at several temperatures (800-1000 °C). Variation of biomass-laterite composition was also conducted to study the reduction mechanism. X-ray diffraction and gravimetry analysis were applied to justify the phenomenon and predict kinetic model of the reduction. Results of this study provide information that palm kernel shell charcoal has similar reducing result compared with the conventional method. Reduction, however, was carried out by carbon monoxide rather than solid carbon. Regarding kinetics, Ginstling-Brouhnstein kinetic model provides satisfying results to predict the reduction phenomenon.
Other factors to consider in the formation of chloropropandiol fatty esters in oil processes.
Ramli, Muhamad Roddy; Siew, Wai Lin; Ibrahim, Nuzul Amri; Kuntom, Ainie; Abd Razak, Raznim Arni
2015-01-01
This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.
Yeoh, Keat-Hor; Shafie, S A; Al-Attab, K A; Zainal, Z A
2018-06-15
In this study, three different methods for high quality solid fuel production were tested and compared experimentally. Oil palm empty fruit bunches, mesocarp fibers, palm kernel shells and rubber seeds shells were treated using thermal (TC), hydrothermal (HTC) and vapothermal (VTC) carbonization. All thermochemical methods were accomplished by using a custom made batch-type reactor. Utilization of novel single reactor equipped with suspended internal container provided efficient operation since both steam generator and raw materials were placed inside the same reactor. Highest energy densification was achieved by VTC process followed by TC and HTC processes. The heating value enhancement in VTC and TC was achieved by the increase in fixed carbon content and reduction in volatile matter. The formation of the spherical components in HTC hydrochar which gave a sharp peak at 340 °C in the DTG curves was suggested as the reason that led to the increment in energy content. Copyright © 2018 Elsevier Ltd. All rights reserved.
Masoumi, Hamid Reza Fard; Basri, Mahiran; Samiun, Wan Sarah; Izadiyan, Zahra; Lim, Chaw Jiang
2015-01-01
Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3-6 wt%), lecithin (2-3 wt%), Tween 80 (0.5-1 wt%), glycerol (1.5-3 wt%), and water (87-93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%.
NASA Astrophysics Data System (ADS)
Sembiring, N.; Nasution, A. H.
2018-02-01
Corrective maintenance i.e replacing or repairing the machine component after machine break down always done in a manufacturing company. It causes the production process must be stopped. Production time will decrease due to the maintenance team must replace or repair the damage machine component. This paper proposes a preventive maintenance’s schedule for a critical component of a critical machine of an crude palm oil and kernel company due to increase maintenance efficiency. The Reliability Engineering & Maintenance Value Stream Mapping is used as a method and a tool to analize the reliability of the component and reduce the wastage in any process by segregating value added and non value added activities.
Life cycle inventory for palm based plywood: A gate-to-gate case study
NASA Astrophysics Data System (ADS)
Ahmad, Shamim; Sahid, Ismail; Subramaniam, Vijaya; Muhamad, Halimah; Mokhtar, Anis
2013-11-01
The oil palm industry heavily relies on the world market. It is essential to ensure that the oil palm industry is ready to meet the demands and expectation of these overseas customers on the environmental performance of the oil palm industry. Malaysia produces 13.9 million tons of oil palm biomass including oil palm trunk (OPT), frond and empty fruits bunches (EFB) annually. OPT felled in some oil palm plantations during replanting is transported to various industries and one such industry is the plywood factories. In order to gauge the environmental performance of the use of OPT as plywood a Life Cycle Assessment (LCA) study was conducted for palm based plywood. LCA is an important tool to assess the environmental performance of a product or process. Life cycle inventory (LCI) is the heart of a LCA study. This LCI study has a gate-to-gate system boundary and the functional unit is 1 m3 palm plywood produced and covers three types of plywood; Moisture Resistance Plywood (MR), Weather Boiling Proof Plywood Grade 1 (WBP Grade 1) at Factory D and Weather Boiling Proof Plywood Grade 2 (WBP Grade 2) at Factory E. Both factories use two different types of drying processes; conventional drying at Factory D and kiln drying at Factory E. This inventory data was collected from two factories (D and E) representing 40% of Malaysia palm plywood industry. The inputs are mainly the raw materials which are the oil palm trunks and tropical wood veneers and the energy from diesel and electricity from grid which is mainly used for the drying process. The other inputs include water, urea formaldehyde, phenol formaldehyde, flour and melamine powder. The outputs are the biomass waste which consists of oil palm trunk off-cut and emission from boiler. Generally, all types of plywood production use almost same materials and processing methods in different quantities. Due to the different process efficiency, Factory D uses less input of raw materials and energy compared to Factory E.
de Oliveira, R L; de Carvalho, G G P; Oliveira, R L; Tosto, M S L; Santos, E M; Ribeiro, R D X; Silva, T M; Correia, B R; de Rufino, L M A
2017-10-01
The objective of this study was to evaluate the effects of the inclusion of palm kernel (Elaeis guineensis) cake in diets for goats on feeding behaviors, rectal temperature, and cardiac and respiratory frequencies. Forty crossbred Boer male, non-castrated goats (ten animals per treatment), with an average age of 90 days and an initial body weight of 15.01 ± 1.76 kg, were used. The goats were fed Tifton 85 (Cynodon spp.) hay and palm kernel supplemented at the rates of 0, 7, 14, and 21% of dry matter (DM). The feeding behaviors (rumination, feeding, and idling times) were observed for three 24-h periods. DM and neutral detergent fiber (NDF) intake values were estimated as the difference between the total DM and NDF contents of the feed offered and the total DM and NDF contents of the orts. There was no effect of palm kernel cake inclusion in goat diets on DM intake (P > 0.05). However, palm kernel cake promoted a linear increase (P < 0.05) in NDF intake and time spent feeding and ruminating (min/day; %; period) and a linear decrease in time spent idling. Palm kernel cakes had no effects (P > 0.05) on the chewing, feeding, and rumination efficiency (DM and NDF) or on physiological variables. The use up to 21% palm kernel cake in the diet of crossbred Boer goats maintained the feeding behaviors and did not change the physiological parameters of goats; therefore, its use is recommended in the diet of these animals.
Carcass characteristics and meat quality of lambs that are fed diets with palm kernel cake.
da Conceição Dos Santos, Rozilda; Gomes, Daiany Iris; Alves, Kaliandra Souza; Mezzomo, Rafael; Oliveira, Luis Rennan Sampaio; Cutrim, Darley Oliveira; Sacramento, Samara Bianca Moraes; de Moura Lima, Elizanne; de Carvalho, Francisco Fernando Ramos
2017-06-01
The aim was to evaluate carcass characteristics, cut yield, and meat quality in lambs that were fed different inclusion levels of palm kernel cake. Forty-five woolless castrated male Santa Inês crossbred sheep with an initial average body weight of 23.16±0.35 kg were used. The experimental design was a completely randomized design with five treatments, with palm kernel cake in the proportions of 0.0%, 7.5%, 15.0%, 22.5%, and 30.0% with nine replications per treatment. After slaughter, the gastrointestinal tract was weighed when it was full, after which it was then emptied. The heart, liver, kidney, pancreas perirenal fat were also collected and weighed. The carcass was split into two identical longitudinal halves and weighed to determine the quantitative and qualitative characteristics. The empty body weight, carcass weight and yield, and fat thickness decreased linearly (p<0.05) as a function of palm kernel inclusion in the diet. There was no difference (p>0.05) for the rib eye area of animals that were fed palm kernel cake. There was a reduction in the commercial cut weight (p<0.05), except for the neck weight. The weights of the heart, liver, kidney fat, small, and large intestine, and gastrointestinal tract decreased. Nevertheless, the gastrointestinal content was greater for animals that were fed increasing levels of cake. For the other organs and viscera, differences were not verified (p>0.05). The sarcomere length decreased linearly (p<0.05), although an effect of the inclusion of palm kernel cake was not observed in other meat quality variables. It is worth noting that the red staining intensity, indicated as A, had a tendency to decrease (p = 0.050). The inclusion of palm kernel cake up to 30% in the diet does not lead to changes in meat quality characteristics, except for sarcomere length. Nevertheless, carcass quantitative characteristics decrease with the use of palm kernel cake.
Carcass characteristics and meat quality of lambs that are fed diets with palm kernel cake
da Conceição dos Santos, Rozilda; Gomes, Daiany Iris; Alves, Kaliandra Souza; Mezzomo, Rafael; Oliveira, Luis Rennan Sampaio; Cutrim, Darley Oliveira; Sacramento, Samara Bianca Moraes; de Moura Lima, Elizanne; de Carvalho, Francisco Fernando Ramos
2017-01-01
Objective The aim was to evaluate carcass characteristics, cut yield, and meat quality in lambs that were fed different inclusion levels of palm kernel cake. Methods Forty-five woolless castrated male Santa Inês crossbred sheep with an initial average body weight of 23.16±0.35 kg were used. The experimental design was a completely randomized design with five treatments, with palm kernel cake in the proportions of 0.0%, 7.5%, 15.0%, 22.5%, and 30.0% with nine replications per treatment. After slaughter, the gastrointestinal tract was weighed when it was full, after which it was then emptied. The heart, liver, kidney, pancreas perirenal fat were also collected and weighed. The carcass was split into two identical longitudinal halves and weighed to determine the quantitative and qualitative characteristics. Results The empty body weight, carcass weight and yield, and fat thickness decreased linearly (p<0.05) as a function of palm kernel inclusion in the diet. There was no difference (p>0.05) for the rib eye area of animals that were fed palm kernel cake. There was a reduction in the commercial cut weight (p<0.05), except for the neck weight. The weights of the heart, liver, kidney fat, small, and large intestine, and gastrointestinal tract decreased. Nevertheless, the gastrointestinal content was greater for animals that were fed increasing levels of cake. For the other organs and viscera, differences were not verified (p>0.05). The sarcomere length decreased linearly (p<0.05), although an effect of the inclusion of palm kernel cake was not observed in other meat quality variables. It is worth noting that the red staining intensity, indicated as A, had a tendency to decrease (p = 0.050). Conclusion The inclusion of palm kernel cake up to 30% in the diet does not lead to changes in meat quality characteristics, except for sarcomere length. Nevertheless, carcass quantitative characteristics decrease with the use of palm kernel cake. PMID:27857029
Adam, Hélène; Collin, Myriam; Richaud, Frédérique; Beulé, Thierry; Cros, David; Omoré, Alphonse; Nodichao, Leifi; Nouy, Bruno; Tregear, James W
2011-12-01
The African oil palm (Elaeis guineensis) is a monoecious species of the palm subfamily Arecoideae. It may be qualified as 'temporally dioecious' in that it produces functionally unisexual male and female inflorescences in an alternating cycle on the same plant, resulting in an allogamous mode of reproduction. The 'sex ratio' of an oil palm stand is influenced by both genetic and environmental factors. In particular, the enhancement of male inflorescence production in response to water stress has been well documented. This paper presents a review of our current understanding of the sex determination process in oil palm and discusses possible insights that can be gained from other species. Although some informative phenological studies have been carried out, nothing is as yet known about the genetic basis of sex determination in oil palm, nor the mechanisms by which this process is regulated. Nevertheless new genomics-based techniques, when combined with field studies and biochemical and molecular cytological-based approaches, should provide a new understanding of the complex processes governing oil palm sex determination in the foreseeable future. Current hypotheses and strategies for future research are discussed.
Sim, Biow Ing; Muhamad, Halimah; Lai, Oi Ming; Abas, Faridah; Yeoh, Chee Beng; Nehdi, Imededdine Arbi; Khor, Yih Phing; Tan, Chin Ping
2018-04-01
This paper examines the interactions of degumming and bleaching processes as well as their influences on the formation of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters in refined, bleached and deodorized palm oil by using D-optimal design. Water degumming effectively reduced the 3-MCPDE content up to 50%. Acid activated bleaching earth had a greater effect on 3-MCPDE reduction compared to natural bleaching earth and acid activated bleaching earth with neutral pH, indicating that performance and adsorption capacities of bleaching earth are the predominant factors in the removal of esters, rather than its acidity profile. The combination of high dosage phosphoric acid during degumming with the use of acid activated bleaching earth eliminated almost all glycidyl esters during refining. Besides, the effects of crude palm oil quality was assessed and it was found that the quality of crude palm oil determines the level of formation of 3-MCPDE and glycidyl esters in palm oil during the high temperature deodorization step of physical refining process. Poor quality crude palm oil has strong impact towards 3-MCPDE and glycidyl esters formation due to the intrinsic components present within. The findings are useful to palm oil refining industry in choosing raw materials as an input during the refining process.
Oil palm mapping for Malaysia using PALSAR-2 dataset
NASA Astrophysics Data System (ADS)
Gong, P.; Qi, C. Y.; Yu, L.; Cracknell, A.
2016-12-01
Oil palm is one of the most productive vegetable oil crops in the world. The main oil palm producing areas are distributed in humid tropical areas such as Malaysia, Indonesia, Thailand, western and central Africa, northern South America, and central America. Increasing market demands, high yields and low production costs of palm oil are the primary factors driving large-scale commercial cultivation of oil palm, especially in Malaysia and Indonesia. Global demand for palm oil has grown exponentially during the last 50 years, and the expansion of oil palm plantations is linked directly to the deforestation of natural forests. Satellite remote sensing plays an important role in monitoring expansion of oil palm. However, optical remote sensing images are difficult to acquire in the Tropics because of the frequent occurrence of thick cloud cover. This problem has led to the use of data obtained by synthetic aperture radar (SAR), which is a sensor capable of all-day/all-weather observation for studies in the Tropics. In this study, the ALOS-2 (Advanced Land Observing Satellite) PALSAR-2 (Phased Array type L-band SAR) datasets for year 2015 were used as an input to a support vector machine (SVM) based machine learning algorithm. Oil palm/non-oil palm samples were collected using a hexagonal equal-area sampling design. High-resolution images in Google Earth and PALSAR-2 imagery were used in human photo-interpretation to separate oil palm from others (i.e. cropland, forest, grassland, shrubland, water, hard surface and bareland). The characteristics of oil palms from various aspects, including PALSAR-2 backscattering coefficients (HH, HV), terrain and climate by using this sample set were further explored to post-process the SVM output. The average accuracy of oil palm type is better than 80% in the final oil palm map for Malaysia.
Palm fruit in traditional African food culture.
Atinmo, Tola; Bakre, Aishat Taiwo
2003-01-01
The centre of origin of the oil palm is the tropical rain forest region of West Africa. It is considered to be the 200-300 kilometre wide coastal belt between Liberia and Mayumbe. The oil palm tree has remained the 'tree of life' of Yoruba land as well as of other parts of southern West Africa to which it is indigenous. The Yoruba are adept at spinning philosophical and poetical proverbs around such ordinary things as hills, rivers, birds, animals and domestic tools. Hundreds of the traditional proverbs are still with us, and through them one can see the picture of the environment that contributed to the moulding of the thoughts of the people. Yoruba riddles or puzzles were also couched in terms of the environment and the solutions to them were also environmental items. They have a popular saying: A je eran je eran a kan egungun, a je egungun je egungun a tun kan eran: 'A piece of meat has an outer layer of flesh, an intermediate layer of bone and an inner layer of flesh'. What is it? A palm fruit: it has an outer edible layer, the mesocarp; then a layer of shell, inedible, and the kernel inside, edible. The solution to this puzzle summarises the botanical and cultural characteristics of the palm fruit.
NASA Astrophysics Data System (ADS)
Kasmin, Hasimah; Lazim, Azwan Mat; Awang, Roila
2015-09-01
Palm oil contains about 45% of saturated palmitic acid and 39% of mono-unsaturated oleic acid. Investigations made in the past to trace the fatty acid composition in palm revealed that ripeness of fresh fruit bunch (FFB) affect oil composition. However, there is no evidence that processing operations affect oil composition, although different stage of processing does affect the quality of oil extracted. An improved method for sterilizing the oil palm fruits by dry heating, followed by oil extraction has been studied. This method eliminates the use of water, thus, increasing the extraction of lipid soluble. The objective of this study is to determine the possibility production of palm oil with different fatty acid composition (FAC) as well as the changes in quality from conventional milling. The unripe and ripe FFB were collected, sterilized and extracted using different method of solvent extraction. Preliminary data have shown that variation in FAC will also alter the physical and chemical properties of the oil extracted.
Tsouko, Erminda; Kachrimanidou, Vasiliki; Dos Santos, Anderson Fragoso; do Nascimento Vitorino Lima, Maria Eduarda; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise Maria Guimarães; Koutinas, Apostolis A
2017-04-01
This study demonstrates the production of a generic nutrient-rich feedstock using by-product streams from palm oil production that could be used as a substitute for commercial fermentation supplements. Solid-state fermentations of palm kernel cake (PKC) and palm-pressed fiber (PPF) were conducted in tray bioreactors and a rotating drum bioreactor by the fungal strain Aspergillus oryzae for the production of crude enzymes. The production of protease was optimized (319.3 U/g) at an initial moisture content of 55 %, when PKC was used as the sole substrate. The highest free amino nitrogen (FAN) production (5.6 mg/g) obtained via PKC hydrolysis using the crude enzymes produced via solid-state fermentation was achieved at 50 °C. Three initial PKC concentrations (48.7, 73.7, and 98.7 g/L) were tested in hydrolysis experiments, leading to total Kjeldahl nitrogen to FAN conversion yields up to 27.9 %. Sequential solid-state fermentation followed by hydrolysis was carried out in the same rotating drum bioreactor, leading to the production of 136.7 U/g of protease activity during fermentation and 196.5 mg/L of FAN during hydrolysis. Microbial oil production was successfully achieved with the oleaginous yeast strain Lipomyces starkeyi DSM 70296 cultivated on the produced PKC hydrolysate mixed with commercial carbon sources, including glucose, xylose, mannose, galactose, and arabinose.
Wong, Yick Ching; Teh, Huey Fang; Mebus, Katharina; Ooi, Tony Eng Keong; Kwong, Qi Bin; Koo, Ka Loo; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna
2017-06-21
The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production.
An experiment of used palm oil refinery using the value engineering method
NASA Astrophysics Data System (ADS)
Sumiati; Waluyo, M.
2018-01-01
Palm Oil is one of prime materials which very necessary for Indonesia. In the development of palm oil industry the constraint which faced is raw material availability and the economic crisis that attack Indonesia which cause increasing of cost industry so that the salaes price become very expensive . With using alternative raw material namely used palm oil them be made palm oil design to solve this problems. In the designing which comply the consideration of good pal oil planning aspect be use value engineer study. While the criteria parameter of hygienic palm oil which obtained from the questioner area free fatty acid, water content, Iodine number, peroxide number, odor, taste and the color. The research which use value engineer study is throught any phase that is information phase, analyzes phase, creative phase, development phase and presentation phase. This research began with doing the identification of palm oil demand, continued by methodology development in order to measure oil design. By using creative process could be obtained flow rate position, the amount of adsorbent and the best settling time for palm oil alternative that is in the flow rate 70 ml/sec, 4% of adsorbent and the 70 minute for the settling time with free fatty acid value: 0.299. While the best palm oil alternative are palm oil with free fatty acid value = 0.299, water content = 0.31, Iodine number = 40.08, Peroxide number = 3.72, odor and taste = Normal, the color = Normal. The Evalution which done by value engineer study generate the value from alternative palm oil is 1.330 and market palm oil 1.392. Thus, can be conclude thet the value engineer study can be good implemented in the alternative palm oil planning so that alternative palm oil can be produced largely because they have better value that market palm oil and appropriate for little industries.
Teh, Huey Fang; Neoh, Bee Keat; Wong, Yick Ching; Kwong, Qi Bin; Ooi, Tony Eng Keong; Ng, Theresa Lee Mei; Tiong, Soon Huat; Low, Jaime Yoke Sum; Danial, Asma Dazni; Ersad, Mohd Amiron; Kulaveerasingam, Harikrishna; Appleton, David R
2014-08-13
Oil palm is one of the most productive oil-producing crops and can store up to 90% oil in its fruit mesocarp. Oil palm fruit is a sessile drupe consisting of a fleshy mesocarp from which palm oil is extracted. Biochemical changes in the mesocarp cell walls, polyamines, and hormones at different ripening stages of oil palm fruits were studied, and the relationship between the structural and the biochemical metabolism of oil palm fruits during ripening is discussed. Time-course analysis of the changes in expression of polyamines, hormones, and cell-wall-related genes and metabolites provided insights into the complex processes and interactions involved in fruit development. Overall, a strong reduction in auxin-responsive gene expression was observed from 18 to 22 weeks after pollination. High polyamine concentrations coincided with fruit enlargement during lipid accumulation and latter stages of maturation. The trend of abscisic acid (ABA) concentration was concordant with GA₄ but opposite to the GA₃ profile such that as ABA levels increase the resulting elevated ABA/GA₃ ratio clearly coincides with maturation. Polygalacturonase, expansin, and actin gene expressions were also observed to increase during fruit maturation. The identification of the master regulators of these coordinated processes may allow screening for oil palm variants with altered ripening profiles.
The effect of power intensity properties of microwave modified oil palm trunk lumber
NASA Astrophysics Data System (ADS)
Izzati Ibrahim, Anis; Salim, Nurjannah; Roslan, Rasidi; Ashry Jusoh, Mohammad; Hashim, Rokiah
2018-04-01
In the decade, oil palm (Elaeis guineensis) in Malaysia is one of the conventional sources that will be rising, and the rate of biomass will considerably increase in yet to come. Presently, oil palm biomass is going through research and development and appears to be the most sustainable alternative. Investigations on oil palm biomass have been conducted to support in draw out waste of oil palm and in the meantime can help economic yield to the country. This study was expected to estimate the effect of power intensity properties of microwave modified oil palm trunk lumber. Microwave treatment of oil palm trunk samples was set of connections by using a microwave operating at 2.45 GHz with the liberated process input power intensity (600-1000W) were studied under the given condition. Impact and compression of the samples were tested. The analysis of properties of the fresh material and dry samples was employed by scanning electron microscopy. Oven drying technique also was involved as a comparison of the conventional drying process in this research. Based on the outcomes of this study, both drying methods improved the characteristics of the specimens.
NASA Astrophysics Data System (ADS)
Sembiring, N.; Panjaitan, N.; Saragih, A. F.
2018-02-01
PT. XYZ is a manufacturing company that produces fresh fruit bunches (FFB) to Crude Palm Oil (CPO) and Palm Kernel Oil (PKO). PT. XYZ consists of six work stations: receipt station, sterilizing station, thressing station, pressing station, clarification station, and kernelery station. So far, the company is still implementing corrective maintenance maintenance system for production machines where the machine repair is done after damage occurs. Problems at PT. XYZ is the absence of scheduling engine maintenance in a planned manner resulting in the engine often damaged which can disrupt the smooth production. Another factor that is the problem in this research is the kernel station environment that becomes less convenient for operators such as there are machines and equipment not used in the production area, slippery, muddy, scattered fibers, incomplete use of PPE, and lack of employee discipline. The most commonly damaged machine is in the seed processing station (kernel station) which is cake breaker conveyor machine. The solution of this problem is to propose a schedule plan for maintenance of the machine by using the method of reliability centered maintenance and also the application of 5S. The result of the application of Reliability Centered maintenance method is obtained four components that must be treated scheduled (time directed), namely: for bearing component is 37 days, gearbox component is 97 days, CBC pen component is 35 days and conveyor pedal component is 32 days While after identification the application of 5S obtained the proposed corporate environmental improvement measures in accordance with the principles of 5S where unused goods will be moved from the production area, grouping goods based on their use, determining the procedure of cleaning the production area, conducting inspection in the use of PPE, and making 5S slogans.
Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin
2014-10-02
Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.
Jardine, Kolby J.; Gimenez, Bruno O.; Araujo, Alessandro C.; ...
2016-01-01
Oil palm plantations are rapidly expanding in the tropics because of insatiable global demand for fruit oil to be used in food, biofuels and cosmetics. Here we show that three tissue-specific volatiles can be quantified in ambient air above an African-American hybrid oil palm plantation in Brazil and linked photosynthesis (isoprene), floral scent (estragole), and for the first time, fruit oil processing (6-methyl-5-hepten-2-one, MHO). Plant enclosure techniques verified their tissue specific emission sources with ambient concentrations displaying distinct diurnal patterns above the canopy. Isoprene concentrations were near zero at night, but dramatically increased during the day while estragole showed elevatedmore » concentrations at night suggesting a light-independent, temperature-driven emission pattern from flowers. MHO also showed elevated concentrations at night and both estragole and MHO increased during the day. Our observations demonstrate that the African-American oil palm hybrid is strong isoprene emitter and suggest that MHO is a specific oxidation product of lycopene released during the industrial processing of palm oil. This study highlights the potential value of quantifying volatile oil palm signals in the atmosphere as a novel, non-invasive method to better understand biological functioning and its interactions with the environment including carbon assimilation, floral-insect interactions, and fruit oil production/processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, Kolby J.; Gimenez, Bruno O.; Araujo, Alessandro C.
Oil palm plantations are rapidly expanding in the tropics because of insatiable global demand for fruit oil to be used in food, biofuels and cosmetics. Here we show that three tissue-specific volatiles can be quantified in ambient air above an African-American hybrid oil palm plantation in Brazil and linked photosynthesis (isoprene), floral scent (estragole), and for the first time, fruit oil processing (6-methyl-5-hepten-2-one, MHO). Plant enclosure techniques verified their tissue specific emission sources with ambient concentrations displaying distinct diurnal patterns above the canopy. Isoprene concentrations were near zero at night, but dramatically increased during the day while estragole showed elevatedmore » concentrations at night suggesting a light-independent, temperature-driven emission pattern from flowers. MHO also showed elevated concentrations at night and both estragole and MHO increased during the day. Our observations demonstrate that the African-American oil palm hybrid is strong isoprene emitter and suggest that MHO is a specific oxidation product of lycopene released during the industrial processing of palm oil. This study highlights the potential value of quantifying volatile oil palm signals in the atmosphere as a novel, non-invasive method to better understand biological functioning and its interactions with the environment including carbon assimilation, floral-insect interactions, and fruit oil production/processing.« less
Edem, D O
2002-01-01
The link between dietary fats and cardiovascular diseases has necessitated a growing research interest in palm oil, the second largest consumed vegetable oil in the world. Palm oil, obtained from a tropical plant, Elaeis guineensis contains 50% saturated fatty acids, yet it does not promote atherosclerosis and arterial thrombosis. The saturated fatty acid to unsaturated fatty acid ratio of palm oil is close to unity and it contains a high amount of the antioxidants, beta-carotene, and vitamin E. Although palm oil-based diets induce a higher blood cholesterol level than do corn, soybean, safflower seed, and sunflower oils, the consumption of palm oil causes the endogenous cholesterol level to drop. This phenomenon seems to arise from the presence of the tocotrienols and the peculiar isomeric position of its fatty acids. The benefits of palm oil to health include reduction in risk of arterial thrombosis and atherosclerosis, inhibition of endogenous cholesterol biosynthesis, platelet aggregation, and reduction in blood pressure. Palm oil has been used in the fresh state and/or at various levels of oxidation. Oxidation is a result of processing the oil for various culinary purposes. However, a considerable amount of the commonly used palm oil is in the oxidized state, which poses potential dangers to the biochemical and physiological functions of the body. Unlike fresh palm oil, oxidized palm oil induces an adverse lipid profile, reproductive toxicity and toxicity of the kidney, lung, liver, and heart. This may be as a result of the generation of toxicants brought on by oxidation. In contrast to oxidized palm oil, red or refined palm oil at moderate levels in the diet of experimental animals promotes efficient utilization of nutrients, favorable body weight gains, induction of hepatic drug metabolizing enzymes, adequate hemoglobinization of red cells and improvement of immune function. Howerer, high palm oil levels in the diet induce toxicity to the liver as shown by loss of cellular radial architecture and cell size reductions which are corroborated by alanine transaminase to asparate transaminase ratios which are higher than unity. The consumtion of moderate amounts of palm oil and reduction in the level of oxidation may reduce the health risk believed to be associated with the consumption of palm oil. Red palm oil, by virtue of its beta-carotene content, may protect against vitamin A deficiency and certain forms of cancer.
NASA Astrophysics Data System (ADS)
Tarigan, U.; Sidabutar, R. F.; Tarigan, U. P. P.; Chen, A.
2018-04-01
Manufacturers engaged in the business, producing CPO and kernels whose raw materials are oil palm fresh fruit bunches taken from their own plantation, generally face problems of transporting from plantation to factory where there is often a change of distance traveled by the truck the carrier of FFB is due to non-specific transport instructions. The research was conducted to determine the optimal transportation route in terms of distance, time and route number. The determination of this transportation route is solved using Nearest Neighbours and Clarke & Wright Savings methods. Based on the calculations performed then found in area I with method Nearest Neighbours has a distance of 200.78 Km while Clarke & Wright Savings as with a result of 214.09 Km. As for the harvest area, II obtained results with Nearest Neighbours method of 264.37 Km and Clarke & Wright Savings method with a total distance of 264.33 Km. Based on the calculation of the time to do all the activities of transporting FFB juxtaposed with the work time of the driver got the reduction of conveyance from 8 units to 5 units. There is also improvement of fuel efficiency by 0.8%.
Age of oil palm plantations causes a strong change in surface biophysical variables
NASA Astrophysics Data System (ADS)
Sabajo, Clifton; le Maire, Guerric; Knohl, Alexander
2016-04-01
Over the last decades, Indonesia has experienced dramatic land transformations with an expansion of oil palm plantations at the expense of tropical forests. As vegetation is a modifier of the climate near the ground these large-scale land transformations are expected to have major impacts on the surface biophysical variables i.e. surface temperature, albedo, and vegetation indices, e.g. the NDVI. Remote sensing data are needed to assess such changes at regional scale. We used 2 Landsat images from Jambi Province in Sumatra/Indonesia covering a chronosequence of oil palm plantations to study the 20 - 25 years life cycle of oil palm plantations and its relation with biophysical variables. Our results show large differences between the surface temperature of young oil palm plantations and forest (up to 9.5 ± 1.5 °C) indicating that the surface temperature is raised substantially after the establishment of oil palm plantations following the removal of forests. During the oil palm plantation lifecycle the surface temperature differences gradually decreases and approaches zero around an oil palm plantation age of 10 years. Similarly, NDVI increases and the albedo decreases approaching typical values of forests. Our results show that in order to assess the full climate effects of oil palm expansion biophysical processes play an important role and the full life cycle of oil palm plantations need to be considered.
Yahya, Azmi; Sye, Chong Puay; Ishola, Tajudeen Abiodun; Suryanto, Hadi
2010-11-01
Formation of compost from oil palm empty fruit bunches (EFB) and decanter cake slurry by adding palm oil mill effluent (POME) with regular turning operation was investigated. The experiment was conducted in a commercial composting plant under the normal production process. The addition of decanter cake slurry has hastened the composting process of the EFB. The C/N ratio after 51 days for the mature compost with the decanter cake slurry was 18.65 while that of the matured compost without the decanter cake slurry remained high at 28.96. The compost formed from the addition of decanter cake to EFB and POME had 46.4% nitrogen, 17.9% phosphorus, 17.7% potassium and 23.1% calcium more than that without decanter cake. The use of compost produced from EFB, POME and decanter cake slurry could solve more environmental problems and enhance economic benefits in the oil palm industry.
Dollah, Sarafhana; Abdulkarim, Sabo Muhammad; Ahmad, Siti Hajar; Khoramnia, Anahita; Ghazali, Hasanah Mohd
2014-01-01
Blends (30:70, 50:50 and 70:30 w/w) of Moringa oleifera seed oil (MoO) with palm olein (PO), palm stearin (PS), palm kernel oil (PKO) and virgin coconut oil (VCO) were prepared. To determine the physicochemical properties of the blends, the iodine value (IV), saponication value (SV), fatty acid (FA) composition, triacylglycerol (TAG) composition, thermal behaviour (DSC) and solid fat content (SFC) tests were analysed. The incorporation of high oleic acid (81.73%) MoO into the blends resulted in the reduction of palmitic acid content of PO and PS from 36.38% to 17.17% and 54.66% to 14.39% and lauric acid content of PKO and VCO from 50.63% to 17.70% and 51.26% to 26.05% respectively while oleic acid and degree of unsaturation were increased in all blends. Changes in the FA composition and TAG profile have significantly affected the thermal behavior and solid fat content of the oil blends. In MoO/PO blends the melting temperature of MoO decreased while, in MoO/PS, MoO/PKO and MoO/VCO blends, it increased indicating produce of zero-trans harder oil blends without use of partial hydrogenation. The spreadability of PS, PKO and VCO in low temperatures was also increased due to incorporation of MoO. The melting point of PS significantly decreased in MoO/PS blends which proved to be suitable for high oleic bakery shortening and confectionary shortening formulation. The finding appears that blending of MoO with other vegetable oils would enable the initial properties of the oils to be modified or altered and provide functional and nutritional attributes for usage in various food applications, increasing the possibilities for the commercial use of these oils.
NASA Astrophysics Data System (ADS)
Purba, S. S. A.; Tafsin, M.; Ginting, S. P.; Khairani, Y.
2018-02-01
Palm kernel cake is an agricultural waste that can be used as raw material in the preparation of poultry rations. The design used was Completely Randomized Design (CRD) with 5 treatments and 4 replications. Level endopower β used 0 % (R0), 0.02% (R1), 0.04% (R2) and 0.06% (R3). The results showed that R0a and R0b were significantly different from R3 in terms of diet consumption, body weight gain and the conversion ratio The utilization of endopower β in commercial diets containing palm kernel cake in broilers can increase body weight gain, feed consumption, improve feed use efficiency and even energy. It is concluded that utilization endpower β improve performances of broiler chicken fed by diet containing palm kernel cake.
Lee, Xin Jiat; Lee, Lai Yee; Gan, Suyin; Thangalazhy-Gopakumar, Suchithra; Ng, Hoon Kiat
2017-07-01
This research investigated the potential of palm kernel shell (PKS), empty fruit bunch (EFB) and palm oil sludge (POS), abundantly available agricultural wastes, as feedstock for biochar production by slow pyrolysis (50mLmin -1 N 2 at 500°C). Various characterization tests were performed to establish the thermochemical properties of the feedstocks and obtained biochars. PKS and EFB had higher lignin, volatiles, carbon and HHV, and lower ash than POS. The thermochemical conversion had enhanced the biofuel quality of PKS-char and EFB-char exhibiting increased HHV (26.18-27.50MJkg -1 ) and fixed carbon (53.78-59.92%), and decreased moisture (1.03-2.26%). The kinetics of pyrolysis were evaluated by thermogravimetry at different heating rates (10-40°C). The activation energies determined by Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models were similar, and comparable with literature data. The findings implied that PKS and EFB are very promising sources for biochars synthesis, and the obtained chars possessed significant biofuel potential. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zulkurnain, Musfirah; Lai, Oi Ming; Latip, Razam Abdul; Nehdi, Imededdine Arbi; Ling, Tau Chuan; Tan, Chin Ping
2012-11-15
The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis.
Zakaria, Mohd Rafein; Fujimoto, Shinji; Hirata, Satoshi; Hassan, Mohd Ali
2014-08-01
Oil palm biomass, namely empty fruit bunch and frond fiber, were pretreated using a planetary ball mill. Particle sizes and crystallinity index values of the oil palm biomass were significantly reduced with extended ball mill processing time. The treatment efficiency was evaluated by the generation of glucose, xylose, and total sugar conversion yields from the pretreatment process compared to the amount of sugars from raw materials. Glucose and xylose contents were determined using high-performance liquid chromatography. An increasing trend in glucose and xylose yield as well as total sugar conversion yield was observed with decreasing particle size and crystallinity index. Oil palm frond fiber exhibited the best material yields using ball milling pretreatment with generated glucose, xylose, and total sugar conversion yields of 87.0, 81.6, and 85.4%, respectively. In contrast, oil palm empty fruit bunch afforded glucose and xylose of 70.0 and 82.3%, respectively. The results obtained in this study showed that ball mill-treated oil palm biomass is a suitable pretreatment method for high conversion of glucose and xylose.
NASA Astrophysics Data System (ADS)
Dewi, Ratni; Sari, Ratna; Syafruddin
2017-06-01
Palm oil mill effluent is waste produced from palm oil processing activities. This waste are comingfrom condensate water, process water and hydrocyclone water. The high levels of contaminants in the palm oil mill effluent causes the waste becomes inappropriate to be discharged to water body before processing, one of the most major contaminants in wastewater is fats, oils and COD.This study investigated the effectiveness of chemically activated bentonite that serves as an alternative to reduce the COD in adsorption and floatation based palm oil effluent waste processing. Natural bentonite was activated by using nitrit acid and benzene. In the existing adsorption material to improve COD reduction capability whereas the flotation method was used to further remove residual effluent which is still remain after the adsorption process. An adsorption columns which operated in batch was used in the present study. By varying the circulation time and adsorbent treatment (activated and non-activated), it was shown that percentage of COD reduction reached 75% at the circulation time of 180 minutes for non activated adsorbent. On the other hand the percentof COD reduction in adsorption and flotation process using activated bentonite reached as high as 88% and 93% at the circulation time of 180 minutes.
Foster, William A; Snaddon, Jake L; Turner, Edgar C; Fayle, Tom M; Cockerill, Timothy D; Ellwood, M D Farnon; Broad, Gavin R; Chung, Arthur Y C; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M
2011-11-27
The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.
Foster, William A.; Snaddon, Jake L.; Turner, Edgar C.; Fayle, Tom M.; Cockerill, Timothy D.; Ellwood, M. D. Farnon; Broad, Gavin R.; Chung, Arthur Y. C.; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M.
2011-01-01
The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape. PMID:22006968
NASA Astrophysics Data System (ADS)
Prihapsara, F.; Mufidah; Artanti, A. N.; Harini, M.
2018-03-01
The present study was aimed to study the acute and subchronic toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with Palm Kernel Oil as carrier. In acute toxicity test, five groups of rat (n=5/groups) were orally treated with Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with doses at 48, 240, 1200 and 6000 mg/kg/day respectively, then the median lethal dose LD50, advers effect and mortality were recorded up to 14 days. Meanwhile, in subchronic toxicity study, 4 groups of rats (n=6/group) received by orally treatment of SNEDDS from chloroform bay leaf extract with doses at 91.75; 183.5; 367 mg/kg/day respectively for 28 days, and biochemical, hematological and histopatological change in tissue such as liver, kidney, and pancreatic were determined. The result show that LD50 is 1045.44 mg/kg. Although histopathological examination of most of the organs exhibited no structural changes, some moderate damage was observed in high‑ dose group animals (367 mg/kg/day). The high dose of SNEDDS extract has shown mild signs of toxicity on organ function test.
Fard Masoumi, Hamid Reza; Basri, Mahiran; Sarah Samiun, Wan; Izadiyan, Zahra; Lim, Chaw Jiang
2015-01-01
Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3–6 wt%), lecithin (2–3 wt%), Tween 80 (0.5–1 wt%), glycerol (1.5–3 wt%), and water (87–93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%. PMID:26508853
Modeling and simulation of an enzymatic reactor for hydrolysis of palm oil.
Bhatia, S; Naidu, A D; Kamaruddin, A H
1999-01-01
Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time.
NASA Astrophysics Data System (ADS)
Utama, P. S.; Saputra, E.; Khairat
2018-04-01
Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.
McCarthy, John
2010-01-01
Changes in globalised agriculture raise critical questions as rapid agricultural development leads to widespread social and environmental transformation. With increased global demand for vegetable oils and biofuel, in Indonesia the area under oil palm has doubled over the last decade. This paper presents a case study of how micro-processes that are linked to wider dynamics shape oil palm related agrarian change in villages in Sumatra, Indonesia. It pursues related questions regarding the impact of agribusiness-driven agriculture, the fate of smallholders experiencing contemporary agrarian transition, and the impact of increased demand for vegetable oils and biofuels on agrarian structures in Sumatra. It argues that the paths of agrarian change are highly uneven and depend on how changing livelihood strategies are enabled or constrained by economic, social and political relations that vary over time and space. In contrast to simplifying narratives of inclusion/exclusion, it argues that outcomes depend on the terms under which smallholders engage with oil palm. Distinguishing between exogenous processes of agribusiness expansion and endogenous commodity market expansion, it finds each is associated with characteristic processes of change. It concludes that the way successive policy interventions have worked with the specific characteristics of oil palm have cumulatively shaped the space where agrarian change occurs in Sumatra.
Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch
Fadilah, Norasyikin; Mohamad-Saleh, Junita; Halim, Zaini Abdul; Ibrahim, Haidi; Ali, Syed Salim Syed
2012-01-01
Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category. PMID:23202043
Intelligent color vision system for ripeness classification of oil palm fresh fruit bunch.
Fadilah, Norasyikin; Mohamad-Saleh, Junita; Abdul Halim, Zaini; Ibrahim, Haidi; Syed Ali, Syed Salim
2012-10-22
Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category.
An investigation of age and yield of fresh fruit bunches of oil palm based on ALOS PALSAR 2
NASA Astrophysics Data System (ADS)
Darmawan, S.; Takeuchi, W.; Haryati, A.; M, R. Najib A.; Na'aim, M.
2016-06-01
The objective on this study is to investigate age and yield of FFB of oil palms based on ALOS PALSAR 2. Study areas in oil palm plantations areas of Jerantut, Pahang Malaysia. Methodology consists collecting of ALOS PALSAR 2 and tabular data on the study area, processing of ALOS PALSAR 2 including of converting digital numbers to normalize radar cross sections (NRCS), topography correction and filtering, making of regions of interest according to areas of age and yield of FFB of oil palms and making of relationship analysis between backscatter value of HH, HV and age and yield of FFB of oil palm. The results have showed relationship between HH, HV and age of oil palm which R2 of 0.63 for HH and 0.42 for HV that indicated increasing of age of oil palm as increasing of HH and HV value. Also relationship between HH, HV and yield of FFB of oil palm which R2 of 0.26 for HH and 0.15 for HV, that indicated increasing of yield of FFB as decreasing of HH and HV value.
Dual resonant frequencies effects on an induction-based oil palm fruit sensor.
Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa
2014-11-19
As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.
Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor
Harun, Noor Hasmiza; Misron, Norhisam; Sidek, Roslina Mohd; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa
2014-01-01
As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept. PMID:25414970
Azhar, Badrul; Saadun, Norzanalia; Prideaux, Margi; Lindenmayer, David B
2017-12-01
Most palm oil currently available in global markets is sourced from certified large-scale plantations. Comparatively little is sourced from (typically uncertified) smallholders. We argue that sourcing sustainable palm oil should not be determined by commercial certification alone and that the certification process should be revisited. There are so-far unrecognized benefits of sourcing palm oil from smallholders that should be considered if genuine biodiversity conservation is to be a foundation of 'environmentally sustainable' palm oil production. Despite a lack of certification, smallholder production is often more biodiversity-friendly than certified production from large-scale plantations. Sourcing palm oil from smallholders also alleviates poverty among rural farmers, promoting better conservation outcomes. Yet, certification schemes - the current measure of 'sustainability' - are financially accessible only for large-scale plantations that operate as profit-driven monocultures. Industrial palm oil is expanding rapidly in regions with weak environmental laws and enforcement. This warrants the development of an alternative certification scheme for smallholders. Greater attention should be directed to deforestation-free palm oil production in smallholdings, where production is less likely to cause large scale biodiversity loss. These small-scale farmlands in which palm oil is mixed with other crops should be considered by retailers and consumers who are interested in promoting sustainable palm oil production. Simultaneously, plantation companies should be required to make their existing production landscapes more compatible with enhanced biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.
The characteristics of palm oil plantation solid biomass wastes as raw material for bio oil
NASA Astrophysics Data System (ADS)
Yanti, RN; Hambali, E.; Pari, G.; Suryani, A.
2018-03-01
Indonesia is the largest palm oil plantations estate in the world. It reached 11,30 million hectares in 2015 and increased up to 11,67 million hectares in 2016. The advancement of technology recent, the solid waste of palm oil plantation can be re-produced become bio oil through pyrolysis hydrothermal process and utilized for biofuel. The purpose of this research was to analyze the characteristics of feedstock of bio oil of solid waste of palm oil plantations estate. The feedstock used was derived from solid waste of palm oil plantations in Riau Province. Characteristic analysis of waste oil included chemical compound content (cellulose, hemicellulose, lignin), ultimate analysis (C, H, N, O, S) to know height heating value (HHV). The result of analysis of chemical content showed that solid waste of palm cellulose 31,33 – 66,36 %, hemicellulose 7,54 – 17,94 %, lignin 21,43 - 43,1. The HHV of hydrothermal pyrolysis feedstock was 15,18 kJ/gram - 19,57 kJ/gram. Generally, the solid waste of palm oil plantations estate containing lignocellulose can be utilized as bio oil through hydrothermal pyrolysis. The CG-MS analysis of bio oil indicated hydrocarbon contents such as pentadecane, octadecane, hexadecane and benzene.
NASA Astrophysics Data System (ADS)
Kadir, A. A.; Sarani, N. A.; Abdullah, M. M. A. B.; Perju, M. C.; Sandu, A. V.
2017-06-01
Palm oil is one of the major agricultural industries in Malaysia. Due to the poor management system, the discarded palm oil waste has always been linked to the environment issues. During processing of palm oil, a considerable amount of solid waste by-products in the form of fibres, shells, empty fruit bunches and fly ashes are produce rapidly. Therefore, this study was conducted to incorporate 1%, 5% and 10% of palm oil waste into fired clay brick. Samples of brick were fired at 1050°C temperature with heating rates of 1°C/min. Manufactured bricks were tested with physical and mechanical properties including firing shrinkage, dry density, water absorption and compressive strength. The results demonstrated that the replacement of 1% up to 5% of palm oil waste had improved several properties, although, a decrease of performance in certain aspects has also been observed. As a result, palm oil waste can be utilized in an environmentally safe way into fired clay brick thus providing adequate properties of fired clay brick.
Zulkurnain, Musfirah; Lai, Oi Ming; Tan, Soo Choon; Abdul Latip, Razam; Tan, Chin Ping
2013-04-03
The reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation in refined palm oil was achieved by incorporation of additional processing steps in the physical refining process to remove chloroester precursors prior to the deodorization step. The modified refining process was optimized for the least 3-MCPD ester formation and acceptable refined palm oil quality using response surface methodology (RSM) with five processing parameters: water dosage, phosphoric acid dosage, degumming temperature, activated clay dosage, and deodorization temperature. The removal of chloroester precursors was largely accomplished by increasing the water dosage, while the reduction of 3-MCPD esters was a compromise in oxidative stability and color of the refined palm oil because some factors such as acid dosage, degumming temperature, and deodorization temperature showed contradictory effects. The optimization resulted in 87.2% reduction of 3-MCPD esters from 2.9 mg/kg in the conventional refining process to 0.4 mg/kg, with color and oil stability index values of 2.4 R and 14.3 h, respectively.
Gutiérrez, Luis F; Sánchez, Oscar J; Cardona, Carlos A
2009-02-01
In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol.
Proteomic profiling of mature leaves from oil palm (Elaeis guineensis Jacq.).
Tan, Hooi Sin; Jacoby, Richard P; Ong-Abdullah, Meilina; Taylor, Nicolas L; Liddell, Susan; Chee, Wong Wei; Chin, Chiew Foan
2017-04-01
Oil palm is one of the most productive oil bearing crops grown in Southeast Asia. Due to the dwindling availability of agricultural land and increasing demand for high yielding oil palm seedlings, clonal propagation is vital to the oil palm industry. Most commonly, leaf explants are used for in vitro micropropagation of oil palm and to optimize this process it is important to unravel the physiological and molecular mechanisms underlying somatic embryo production from leaves. In this study, a proteomic approach was used to determine protein abundance of mature oil palm leaves. To do this, leaf proteins were extracted using TCA/acetone precipitation protocol and separated by 2DE. A total of 191 protein spots were observed on the 2D gels and 67 of the most abundant protein spots that were consistently observed were selected for further analysis with 35 successfully identified using MALDI TOF/TOF MS. The majority of proteins were classified as being involved in photosynthesis, metabolism, cellular biogenesis, stress response, and transport. This study provides the first proteomic assessment of oil palm leaves in this important oil crop and demonstrates the successful identification of selected proteins spots using the Malaysian Palm Oil Board (MPOB) Elaeis guineensis EST and NCBI-protein databases. The MS data have been deposited in the ProteomeXchange Consortium database with the data set identifier PXD001307. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kumaradevan, D.; Chuah, K. H.; Moey, L. K.; Mohan, V.; Wan, W. T.
2015-09-01
The extraction of crude palm oil (CPO) begins with the sterilization of oil palm fresh fruit bunch (FFB) in a pressurized, saturated-steam chamber. Sterilization loosens the palm fruits from the stalks and deactivates the free fatty acid (FFA)-producing enzymes. Operational parameters affecting the quality and yield of CPO from an industrial spherical sterilizer are studied at a palm oil mill. The factors are the ripeness of FFB, the number of days before treatment of FFB, and the number of pressure peaks applied in the sterilization process. The results indicate that the degree of ripeness of FFB is the most important parameter affecting the quality and yield of CPO. Ripeness is graded based on the fruits’ colour and the presence of loose fruits. Over ripe FFB that goes for the sterilization process has higher FFA content in CPO and more oil loss to the condensate chamber. The spontaneous reaction on FFB due to accumulation at the loading ramp also gives rise to higher FFA content. Oil loss to condensate chamber is reduced using a two-peak sterilization technique for over ripe FFB; the peak refers to the pressure level of stream after a flushing and refilling cycle. Overall, the generated solution improves the quality and yield of the palm oil mill.
A high performance liquid chromatography method for determination of furfural in crude palm oil.
Loi, Chia Chun; Boo, Huey Chern; Mohammed, Abdulkarim Sabo; Ariffin, Abdul Azis
2011-09-01
A modified steam distillation method was developed to extract furfural from crude palm oil (CPO). The collected distillates were analysed using high performance liquid chromatography (HPLC) coupled with an ultraviolet diode detector at 284nm. The HPLC method allowed identification and quantification of furfural in CPO. The unique thermal extraction of CPO whereby the fresh fruit bunches (FFB) are first subjected to steam treatment, distinguishes itself from other solvent-extracted or cold-pressed vegetable oils. The presence of furfural was also determined in the fresh palm oil from FFB (without undergoing the normal extraction process), palm olein, palm stearin, olive oil, coconut oil, sunflower oil, soya oil and corn oil. The chromatograms of the extracts were compared to that of standard furfural. Furfural was only detected in CPO. The CPO consignments obtained from four mills were shown to contain 7.54 to 20.60mg/kg furfural. Copyright © 2011 Elsevier Ltd. All rights reserved.
Adam, Siti Khadijah; Das, Srijit; Jaarin, Kamsiah
2009-06-01
Hypercholesterolaemia, increase in lipid peroxidation and hyperhomocysteinaemia may contribute to the pathogenesis of atherosclerosis. This study was performed to examine the effects of repeatedly heated palm oil mixed with 2% cholesterol diet on atherosclerosis in oestrogen-deficient postmenopausal rats. Ovariectomy causes disruption of tunica intima layer of the rat aorta simulating a postmenopausal condition in females. Twenty-four ovariectomized female Sprague-Dawley rats were divided into four groups. The control group received 2% cholesterol diet without palm oil. A diet with 2% cholesterol content fortified with fresh, once-heated and five-times-heated palm oil was given to the other treatment groups. The rats were sacrificed at the end of 4 months of study and the aortic arch tissue was processed for histomorphometry and electron microscopy. On observation, there was disruption of the intimal layer of the ovariectomized rat aorta. There was no obvious ultrastructural change in the aorta of the rats fed with fresh palm oil. The ultrastructural changes were minimal with once-heated palm oil, in which there was a focal disruption of the endothelial layer. The focal disruption was more pronounced with five-times-heated palm oil. The results of this study show that the ingestion of fresh palm oil may have a protective effect on the aorta but such a protective action may be lost when the palm oil is repeatedly heated. The study may be clinically important for all postmenopausal women who are susceptible to atherosclerosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah
The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-basedmore » compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.« less
Tholstrup, T; Marckmann, P; Jespersen, J; Sandström, B
1994-02-01
The effect of fats high in individual, prevalent saturated dietary fatty acids on lipoproteins and hemostatic variables in young healthy subjects was evaluated in a randomized strictly controlled metabolic feeding study. Three experimental diets: shea butter (S; 42% stearic acid), palm oil (P; 43% palmitic palmitic acid), and palm-kernel oil with high-oleic sunflower oil (ML; 10% myristic acid, 30% lauric acid) were served to 15 men for 3 wk each, separated by washout periods. Diet S compared with diet P resulted in significant reduction in plasma cholesterol (22%) LDL cholesterol (26%), apolipoprotein B (18%), HDL cholesterol (12%), apolipoprotein A-I (13%), and a 13% lower factor VII coagulant activity (P = 0.001). Similar differences were observed between diets S and ML. In conclusion, intake of shea butter high in stearic acid favorably affects blood lipids and factor VII coagulant activity in young men, compared with fats high in saturated fatty acids with 12-16 carbons.
Bioactive compounds from palm fatty acid distillate and crude palm oil
NASA Astrophysics Data System (ADS)
Estiasih, T.; Ahmadi, K.
2018-03-01
Crude palm oil (CPO) and palm fatty acid distillate (PFAD) are rich sources of bioactive compounds. PFAD is a by-product of palm oil refinery that produce palm frying oil. Physical refining of palm oil by deodorization produces palm fatty acid distillate. CPO and PFAD contain some bioactive compounds such as vitamin E (tocopherol and tocotrienols), phytosterol, and squalene. Bioactive compounds of CPO and PFAD are vitamin E, phytosterols, and squalene. Vitamin E of CPO and PFAD mainly comprised of tocotrienols and the remaining is tocopherol. Phytosterols of CPO and PFAD contained beta sitosterol, stigmasterol, and campesterol. Tocotrienols and phytosterols of CPO and PFAD, each can be separated to produce tocotrienol rich fraction and phytosterol rich fraction. Tocotrienol rich fraction from PFAD has both antioxidant and cholesterol lowering properties. Bioactive compounds of PFAD silmultaneously have been proven to improve lipid profile, and have hepatoprotector effect, imunomodulator, antioxidant properties, and lactogenic effect in animal test experiment. It is possible to develop separation of bioactive compounds of CPO and PFAD integratively with the other process that utilizes fatty acid.
Utilization of Palm Oil Clinker as Cement Replacement Material
Kanadasan, Jegathish; Abdul Razak, Hashim
2015-01-01
The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized. PMID:28793748
Utilization of Palm Oil Clinker as Cement Replacement Material.
Kanadasan, Jegathish; Abdul Razak, Hashim
2015-12-16
The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.
Elemental and thermo-chemical analysis of oil palm fronds for biomass energy conversion
NASA Astrophysics Data System (ADS)
Guangul, Fiseha Mekonnen; Sulaiman, Shaharin Anwar; Raghavan, Vijay R.
2012-06-01
Oil palm frond is the most abundant yet untapped biomass waste in Malaysia. This paper investigates the characteristics of raw oil palm fronds and its ash to evaluate its potential utilization as a biomass fuel for gasification process using single throat downdraft gasifier. The morphological nature, elemental content, proximate and ultimate analysis and calorific value were studied. Field emission scanning electron microscopy and x-ray fluorescence were used to investigate the surface morphology, elemental and mineralogical nature of oil palm frond and its ash. The results were compared with other agricultural and forestry biomass wastes. From proximate analysis volatile matter, fixed carbon and ash were found to be 83.5%, 15.2% and 1.3%, respectively on dry basis. From ultimate analysis result values of 44.58%, 4.53%, 0.71% and 0.07% for carbon, hydrogen, nitrogen and sulfur were found respectively on dry basis. Oxygen was determined by difference and found to be 48.81%. The proximate and ultimate analysis results indicate that oil palm frond is better than agricultural wastes and less than most forestry wastes to use as a feedstock in the gasification process in order to get a better quality of syngas. The amount of ash content in OPF was found to be much less than in agricultural wastes and higher than most forestry wastes. From x-ray fluorescence analysis CaO and K2O were found as the major oxides in oil palm fronds and rice husk ash with the amount of 28.46% and 15.71% respectively. The overall results of oil palm fronds were found to be satisfactory to use as a feedstock for the process of gasification.
Synthesis of polyhydroxyalkanoate from palm oil and some new applications.
Sudesh, Kumar; Bhubalan, Kesaven; Chuah, Jo-Ann; Kek, Yik-Kang; Kamilah, Hanisah; Sridewi, Nanthini; Lee, Yan-Fen
2011-03-01
Polyhydroxyalkanoate (PHA) is a potential substitute for some petrochemical-based plastics. This biodegradable plastic is derived from microbial fermentation using various carbon substrates. Since carbon source has been identified as one of the major cost-absorbing factors in PHA production, cheap and renewable substrates are currently being investigated as substitutes for existing sugar-based feedstock. Plant oils have been found to result in high-yield PHA production. Malaysia, being the world's second largest producer of palm oil, is able to ensure continuous supply of palm oil products for sustainable PHA production. The biosynthesis and characterization of various types of PHA using palm oil products have been described in detail in this review. Besides, by-products and waste stream from palm oil industry have also demonstrated promising results as carbon sources for PHA biosynthesis. Some new applications in cosmetic and wastewater treatment show the diversity of PHA usage. With proper management practices and efficient milling processes, it may be possible to supply enough palm oil-based raw materials for human consumption and other biotechnological applications such as production of PHA in a sustainable manner.
Azeman, Nur Hidayah; Yusof, Nor Azah; Abdullah, Jaafar; Yunus, Robiah; Hamidon, Mohd Nizar; Hajian, Reza
2015-07-07
In this paper, a comprehensive study has been made on the detection of free fatty acids (FFAs) in palm oil via an optical technique based on enzymatic aminolysis reactions. FFAs in crude palm oil (CPO) were converted into fatty hydroxamic acids (FHAs) in a biphasic lipid/aqueous medium in the presence of immobilized lipase. The colored compound formed after complexation between FHA and vanadium (V) ion solution was proportional to the FFA content in the CPO samples and was analyzed using a spectrophotometric method. In order to develop a rapid detection system, the parameters involved in the aminolysis process were studied. The utilization of immobilized lipase as catalyst during the aminolysis process offers simplicity in the product isolation and the possibility of conducting the process under extreme reaction conditions. A good agreement was found between the developed method using immobilized Thermomyces lanuginose lipase as catalyst for the aminolysis process and the Malaysian Palm Oil Board (MPOB) standard titration method (R2 = 0.9453).
Pollutant in palm oil production process.
Hosseini, Seyed Ehsan; Abdul Wahid, Mazlan
2015-07-01
Palm oil mill effluent (POME) is a by-product of the palm industry and it releases large amounts of greenhouse gases (GHGs). Water systems are also contaminated by POME if it is released into nonstandard ponds or rivers where it endangers the lives of fish and water fowl. In this paper, the environmental bottlenecks faced by palm oil production were investigated by analyzing the data collected from wet extraction palm oil mills (POMs) located in Malaysia. Strategies for reducing pollution and technologies for GHG reduction from the wet extraction POMs were also proposed. Average GHG emissions produced from processing 1 ton of crude palm oil (CPO) was 1100 kg CO2eq. This amount can be reduced to 200 kg CO2eq by capturing biogases. The amount of GHG emissions from open ponds could be decreased from 225 to 25 kg CO2eq/MT CPO by covering the ponds. Installation of biogas capturing system can decrease the average of chemical oxygen demand (COD) to about 17,100 mg/L and stabilizing ponds in the final step could decrease COD to 5220 mg/L. Using a biogas capturing system allows for the reduction of COD by 80% and simultaneously using a biogas capturing system and by stabilizing ponds can mitigate COD by 96%. Other ways to reduce the pollution caused by POME, including the installation of wet scrubber vessels and increasing the performance of biogas recovery and biogas upgrading systems, are studied in this paper. Around 0.87 m3 POME is produced per 1 ton palm fruit milled. POME consists of around 2% oil, 2-4% suspended solid, 94-96% water. In palm oil mills, more than 90% of GHGs were emitted from POME. From 1 ton crude palm oil, 1100 kg CO2eq GHGs are generated, which can be reduced to 200 kg CO2eq by installation of biogas capturing equipment.
Oil palm biomass as an adsorbent for heavy metals.
Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra
2014-01-01
Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The advantages that oil palm biomass has includes the following:available and exists in abundance, appears to be effective technically, and can be integrated into existing processes. Despite these advantages, oil palm biomasses have disadvantages such as low adsorption capacity, increased COD, BOD and TOC. These disadvantages can be overcome by modifying the biomass either chemically or thermally. Such modification creates a charged surface and increases the heavy metal ion binding capacity of the adsorbent.
Utilization of oil palm fronds in producing activated carbon using Na2CO3 as an activator
NASA Astrophysics Data System (ADS)
Maulina, S.; Anwari, FN
2018-02-01
Oil Palm Frond is a waste in palm oil plantations that have the potential to be processed into more valuable products. This possibility is because of the presence of cellulose, hemicellulose, and lignin in oil palm fronds. Therefore, this study aimed to utilize oil palm fronds in manufacturing of activated carbon through pyrolysis and impregnation that meets the requirements of the Industrial National Standard 06-3730-1995. The palm-fringed oil palm fronds were pyrolyzed in reactors at 150°C, 200°C, and 250°C for 60 minutes. Subsequently, the charcoal produced from the pyrolysis was smoothed with a ball mill, sieved with a size of 140 meshes, and impregnated using a Sodium Carbonate (Na2CO3) for 24 hours at a concentration of 0 %, 2.5%, 5%, and 7.5 % (w/v). The activated carbon has 35.13% of charcoal yield, 8.6% of water content, 14.25% of ash content, 24.75% of volatile matter, 72.75% of fixed carbon, and 492.29 of iodine number. Moreover, SEM analysis indicated that activated carbon porous are coarse and distributed.
Chuen, Onn Chiu; Yusoff, Sumiani
2012-03-01
This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.
Zakaria, Mohd Rafein; Hirata, Satoshi; Fujimoto, Shinji; Hassan, Mohd Ali
2015-10-01
Combined pretreatment with hot compressed water and wet disk milling was performed with the aim to reduce the natural recalcitrance of oil palm biomass by opening its structure and provide maximal access to cellulase attack. Oil palm empty fruit bunch and oil palm frond fiber were first hydrothermally pretreated at 150-190° C and 10-240 min. Further treatment with wet disk milling resulted in nanofibrillation of fiber which caused the loosening of the tight biomass structure, thus increasing the subsequent enzymatic conversion of cellulose to glucose. The effectiveness of the combined pretreatments was evaluated by chemical composition changes, power consumption, morphological alterations by SEM and the enzymatic digestibility of treated samples. At optimal pretreatment process, approximately 88.5% and 100.0% of total sugar yields were obtained from oil palm empty fruit bunch and oil palm frond fiber samples, which only consumed about 15.1 and 23.5 MJ/kg of biomass, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zakwan; Raja, PM; Giyanto
2018-02-01
Indonesia is one of the crude palm oil (CPO) production country in the world. As many products are derivated from the CPO, the quality must be increased continuously. One of the things that influence the quality of palm oil is the Fe and Cu content. The objective of this research was to reduce Fe and Cu content in Refined Bleached Palm Oil (RBPO). In processing CPO or Refined Bleachead Palm Oil (RBPO) may be contaminated by Fe and Cu from metal tank and pipe in the factory. The zeolite and bentonite was activated by maceration method using hydrochloric acid (0,1 N). Four batch reactions consisting of refined palm oil (RPO), activated natural zeolite-bentonite (ANZB) was bleached by heating and stirring them at about 105°C and 1200 rpm for 30 minutes. The results showed that all combinations of ANZB can reduce the Fe content. Thereafter, the optimal combination of ANZB was obtained in K1, K2 and K4 with Cu content 0.02 ppm. In the future, it is needed to study on the reduction of the Fe and Cu content in palm oil with the other adsorbent.
NASA Astrophysics Data System (ADS)
Sylvia, N.; Hakim, L.; Fardian, N.; Yunardi
2018-03-01
When the manganese is under the acceptable limit, then the removal of Fe (II) ion, the common metallic compound contained in groundwater, is one of the most important stages in the processing of groundwater to become potable water. This study was aimed at investigating the performance of a fixed-bed adsorption column filled, with activated carbon prepared from palm kernel shells, in the removal of Fe (II) ion from groundwater. The influence of important parameters such as bed depth and the flow rate was investigated. The bed depth adsorbent was varied at 7.5, 10 and 12 cm. At a different flow rate of 6, 10 and 14 L/minute. The Atomic Absorb Spectrophotometer was used to measure the Fe (II) ion concentration, thereafter the results were confirmed using a breakthrough curve showing that flow rate and bed depth affected the curve. The mathematical model that used to predict the result was the Thomas and Adams-Bohart model. This model is used to process design, in which predicting time and bed depth needed to meet the breakthrough. This study reveals that the Thomas model was the most appropriate one, including the use of Palm Kernel Shell for processing groundwater. According to the Thomas Model, the highest capacity of adsorption (66.189 mg/g) of 0.169-mg/L of groundwater was achieved with a flow rate of 6 L/minute, with the bed depth at 14 cm.
NASA Astrophysics Data System (ADS)
Benami, E.; Curran, L. M.
2017-12-01
Brazil has the world's largest suitable land area for oil palm (Elaeis guineensis) establishment, with estimates as high as 238 million ha. To promote oil palm development, Brazil launched the Sustainable Palm Oil Production Program (SPOPP) in 2010 and delineated 30 million ha for its growth that excluded forested areas and indigenous reserves. Here we examine oil palm expansion (2006-2014) as well as the SPOPP's effectiveness in Pará, the major oil palm producing state in Brazil. By combining analyses of satellite imagery, land registration data, and site based interviews, we found that oil palm area expanded 205%. Although >50% of oil palm parcels were located within 0.5 km of intact forests, <5% of intact forests were converted by direct deforestation. In contrast, 15-90% of oil palm expansion in Asia and other Latin American countries came from directly converting forested lands. Direct intact forest conversion pre- and post-SPOPP declined from 4% to <1%; however, <1% of the 30 million ha promoted for oil palm was developed by 2014. To explore the major factors that may have constrained oil palm expansion under the SPOPP, we conducted microeconomic simulations of oil palm production, combined with interviews with actors/individuals from oil palm companies, civil society, researchers at universities and NGOs, and governmental agencies. Brazil's oil palm-deforestation dynamics, policies, and economic conditions will be discussed.
Modification of oil palm wood using acetylation and impregnation process
NASA Astrophysics Data System (ADS)
Subagiyo, Lambang; Rosamah, Enih; Hesim
2017-03-01
The purpose of this study is chemical modification by process of acetylation and impregnation of oil palm wood to improve the dimensional stability. Acetylation process aimed at substituting the hydroxyl groups in a timber with an acetyl group. By increasing the acetyl groups in wood is expected to reduce the ability of wood to absorb water vapor which lead to the dimensions of the wood becomes more stable. Studies conducted on oil palm wood (Elaeis guineensis Jacq) by acetylation and impregnation method. The results showed that acetylated and impregnated wood oil palm (E. guineensis Jacq) were changed in their physical properties. Impregnation with coal ashfly provide the greatest response to changes in weight (in wet conditions) and after conditioning (dry) with the average percentage of weight gain of 198.16% and 66.41% respectively. Changes in volume indicates an increase of volume in the wet condition (imbibition) with the coal ashfly treatment gave highest value of 23.04 %, whereas after conditioning (dry) the highest value obtained in the treatment of gum rosin:ethanol with a volume increase of 13:44%. The highest changes of the density with the coal ashfly impregnation in wet condition (imbibition) in value of 142.32% and after conditioning (dry) of 57.87%. The result of reduction in water absorption (RWA) test showed that in the palm oil wood samples most stable by using of gum rosin : ethanol of 0.97%, whereas the increase in oil palm wood dimensional stability (ASE) is the best of 59.42% after acetylation with Acetic Anhydride: Xylene.
Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina
2010-07-01
Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances. Copyright 2010 Elsevier Ltd. All rights reserved.
Research advancements in palm oil nutrition.
May, Choo Yuen; Nesaretnam, Kalanithi
2014-10-01
Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers ( sn) -2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil.
Research advancements in palm oil nutrition*
May, Choo Yuen; Nesaretnam, Kalanithi
2014-01-01
Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil. PMID:25821404
Indonesia palm oil production without deforestation and peat conversion by 2050.
Afriyanti, Dian; Kroeze, Carolien; Saad, Asmadi
2016-07-01
Palm oil is a promising source of cooking oil and biodiesel. The demand for palm oil has been increasing worldwide. However, concerns exist surrounding the environmental and socio-economic sustainability of palm oil production. Indonesia is a major palm oil producing country. We explored scenarios for palm oil production in Indonesia until 2050, focusing on Sumatra, Kalimantan and Papua. Our scenarios describe possible trends in crude palm oil production in Indonesia, while considering the demand for cooking oil and biodiesel, the available land for plantations, production capacity (for crude palm oil and fresh fruit bunches) and environmentally restricting conditions. We first assessed past developments in palm oil production. Next, we analysed scenarios for the future. In the past 20years, 95% of the Indonesian oil palm production area was in Sumatra and Kalimantan and was increasingly cultivated in peatlands. Our scenarios for the future indicate that Indonesia can meet a considerable part of the global and Asian demand for palm oil, while avoiding further cultivation of peatlands and forest. By 2050, 264-447Mt crude palm oil may be needed for cooking oil and biodiesel worldwide. In Indonesia, the area that is potentially suitable for oil palm is 17 to 26Mha with a potential production rate of 27-38t fresh fruit bunches/ha, yielding 130-176Mt crude palm oil. Thus Indonesia can meet 39-60% of the international demand. In our scenarios this would be produced in Sumatra (21-26%), Kalimantan (12-16%), and Papua (2%). The potential areas include the current oil palm plantation in mineral lands, but exclude the current oil palm plantations in peatlands. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fan, Y.; Roupsard, O.; Bernoux, M.; Le Maire, G.; Panferov, O.; Kotowska, M. M.; Knohl, A.
2015-11-01
In order to quantify the effects of forests to oil palm conversion occurring in the tropics on land-atmosphere carbon, water and energy fluxes, we develop a new perennial crop sub-model CLM-Palm for simulating a palm plant functional type (PFT) within the framework of the Community Land Model (CLM4.5). CLM-Palm is tested here on oil palm only but is meant of generic interest for other palm crops (e.g., coconut). The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced so that each phytomer has its own prognostic leaf growth and fruit yield capacity but with shared stem and root components. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, separated by a thermal period. An important phenological phase is identified for the oil palm - the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization and leaf pruning are represented. Parameters introduced for the oil palm were calibrated and validated with field measurements of leaf area index (LAI), yield and net primary production (NPP) from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched notably well between simulation and observation (mean percentage error = 3 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites and sufficiently represent the significant nitrogen- and age-related site-to-site variability in NPP and yield. Results also indicate that seasonal dynamics of yield and remaining small-scale site-to-site variability of NPP are driven by processes not yet implemented in the model or reflected in the input data. The new sub-canopy structure and phenology and allocation functions in CLM-Palm allow exploring the effects of tropical land-use change, from natural ecosystems to oil palm plantations, on carbon, water and energy cycles and regional climate.
Effect of Kevlar and carbon fibres on tensile properties of oil palm/epoxy composites
NASA Astrophysics Data System (ADS)
Amir, S. M. M.; Sultan, M. T. H.; Jawaid, M.; Cardona, F.; Ishak, M. R.; Yusof, M. R.
2017-12-01
Hybrid composites with natural and synthetic fibers have captured the interests of many researchers. In this work, Kevlar/oil palm Empty Fruit Bunch (EFB)/Kevlar and carbon/oil palm EFB hybrid/carbon composites were prepared using hand lay-up technique by keeping the oil palm EFB fiber as the core material. The tensile properties which include tensile strength, tensile modulus and elongation at break were investigated. It is observed that the tensile strength and modulus for carbon/oil palm EFB/carbon hybrid composites were much higher as compared with Kevlar/oil palm EFB/Kevlar hybrid composites. However, the elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites exhibited higher value as compared to carbon/oil palm EFB/carbon hybrid composites and oil palm EFB/epoxy composites. The tensile strength for carbon/oil palm EFB/carbon hybrid composites is 93.6 MPa and the tensile modulus for carbon/oil palm EFB/carbon hybrid composites is 6.5 GPa. The elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites is 3.6%.
NASA Astrophysics Data System (ADS)
Nanihar, Nadiarulah; Khalid, Amir; Mustaffa, Norrizal; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Sunar, Norshuhaila Mohamed
2017-10-01
Biodiesel based on vegetable oil is an alternative that had various advantage in term of sustainability and environmental attractive compare to others conventional diesel. Biodiesel is product of any fat or oil that derived from any organic sources through a refinery process called transesterification process. This research investigates the effects of storage duration and variant ambient condition on the biodiesel properties and characteristics. In this study, there are three types of blending which is 5vol% blends ( 5vol% plant oil 95vol% diesel), 10vol% blending (10vol% plant oil and 90vol% diesel) and 15vol% blending (15vol% plant oil and 85vol% diesel) each called CPO5 (crude palm oil 5vol%), CPO10 (crude palm oil 10vol%),CPO15 (crude palm oil 15vol%), JO5 (jatropha oil 5vol%), JO10 (jatropha oil 10vol%),and JO15 (jatropha oil 15vol%) respectively. Biodiesel samples were stored at indoor condition and outdoor condition for a 3 months period. The fuel properties such as acid value, viscosity, density, water content and flash point are observed with the laboratory instrument. Flash point value and water content increased under both of indoor and outdoor condition and a steady data for viscosity and density. However, acid value at indoor condition nearly constant but increased dramatically for outdoor condition over the time.
Oil Palm expansion over Southeast Asia: land use change and air quality
NASA Astrophysics Data System (ADS)
Silva, S. J.; Heald, C. L.; Geddes, J.; Marlier, M. E.; Austin, K.; Kasibhatla, P. S.
2015-12-01
Over recent decades oil palm plantations have rapidly expanded across Southeast Asia (SEA). Much of this expansion has come at the expense of natural forests and grasslands. Aircraft measurements from a 2008 campaign, OP3, found that oil palm plantations emit as much as 7 times more isoprene than nearby natural forests. Furthermore, SEA is a rapidly developing region, with increasing urban population, and growing air quality concerns. Thus, SEA represents an ideal case study to examine the impacts of land use change on air quality in the region, and whether those changes can be detected from satellite observations of atmospheric composition. We investigate the impacts of historical and future oil palm expansion in SEA using satellite data, high-resolution land maps, and the chemical transport model GEOS-Chem. We examine the impact of palm plantations on surface-atmosphere processes (dry deposition, biogenic emissions). We show the sensitivity of air quality to current and future oil palm expansion scenarios, and discuss the limitations of current satellite measurements in capturing these changes. Our results indicate that while the impact of oil palm expansion on air quality can be significant, the retrieval error and sensitivity of the satellite measurements limit our ability to observe these impacts from space.
Zakry, Fitri Abdul Aziz; Shamsuddin, Zulkifli H.; Rahim, Khairuddin Abdul; Zakaria, Zin Zawawi; Rahim, Anuar Abdul
2012-01-01
There are increasing applications of diazotrophic rhizobacteria in the sustainable agriculture system. A field experiment on young immature oil palm was conducted to quantify the uptake of N derived from N2 fixation by the diazotroph Bacillus sphaericus strain UPMB-10, using the 15N isotope dilution method. Eight months after 15N application, young immature oil palms that received 67% of standard N fertilizer application together with B. sphaericus inoculation had significantly lower 15N enrichment than uninoculated palms that received similar N fertilizers. The dilution of labeled N served as a marker for the occurrence of biological N2 fixation. The proportion of N uptake that was derived from the atmosphere was estimated as 63% on the whole plant basis. The inoculation process increased the N and dry matter yields of the palm leaflets and rachis significantly. Field planting of young, immature oil palm in soil inoculated with B. sphaericus UPMB-10 might mitigate inorganic fertilizer-N application through supplementation by biological nitrogen fixation. This could be a new and important source of nitrogen biofertilizer in the early phase of oil palm cultivation in the field. PMID:22446306
Olafisoye, O B; Oguntibeju, O O; Osibote, O A
2017-05-03
Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.
NASA Astrophysics Data System (ADS)
Israyandi, Zahrina, Ida; Mulia, Kamarza
2017-03-01
One of many steps in palm oil refining process is deacidification which aims to separate free fatty acids and other compounds from the oil. The deacidification process was using a green solvent, known as NADES, that consisted of betaine monohydrate and propionic acid at molar ratio of 1:8. In this study, the process conditions were optimized using the response surface method (RSM) through central composite design in order to predict the maximum distribution coefficient of palmitic acid. The obtained regression equation of the basic model for optimization was: y = 0.717 + 0.003x1 + 0.043 x2 + 0.148x3 - 0.005 x1x1 - 0.030 x2x2 + 0.047 x3x3 - 0.008 x1x2 + 0.008 x1x3 + 0.033 x2x3. The independent variables are x1 ≡ temperature (40, 60, 80 °C), x2≡ amount of palmitic acid in the palm oil (2, 5, 8 %) and x3 ≡ mass ratios of oil to NADES (1:2, 1:1, 2:1). The optimum process condition found was temperature of 62.3°C, palmitic acid content of 8%, and NADES to palm oil mass ratio of 1:2, resulting in the maximum distribution coefficient of 0.96.
A Gate-to-gate Case Study of the Life Cycle Assessment of an Oil Palm Seedling
Muhamad, Halimah; Sahid, Ismail Bin; Surif, Salmijah; Ai, Tan Yew; May, Choo Yuen
2012-01-01
The palm oil industry has played an important role in the economic development of Malaysia and has enhanced the economic welfare of its people. To determine the environmental impact of the oil palm seedling at the nursery stage, information on inputs and outputs need to be assessed. The oil palm nursery is the first link in the palm oil supply chain. A gate-to-gate study was carried out whereby the system boundary was set to only include the process of the oil palm seedling. The starting point was a germinated seed in a small polyethylene bag (6 in × 9 in) in which it remained until the seedling was approximately 3 to 4 months old. The seedling was then transferred into a larger polyethylene bag (12 in × 15 in), where it remained until it was 10–12 months old, when it was planted in the field (plantation). The functional unit for this life cycle inventory (LCI) is based on the production of one seedling. Generally, within the system boundary, the production of an oil palm seedling has only two major environmental impact points, the polybags used to grow the seedling and the fungicide (dithiocarbamate) used to control pathogenic fungi, as both the polybags and the dithiocarbamate are derived from fossil fuel. PMID:24575222
Evaluation of methods and marker Systems in Genomic Selection of oil palm (Elaeis guineensis Jacq.).
Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Yeoh, Suat Hui; Appleton, David Ross; Harikrishna, Jennifer Ann
2017-12-11
Genomic selection (GS) uses genome-wide markers as an attempt to accelerate genetic gain in breeding programs of both animals and plants. This approach is particularly useful for perennial crops such as oil palm, which have long breeding cycles, and for which the optimal method for GS is still under debate. In this study, we evaluated the effect of different marker systems and modeling methods for implementing GS in an introgressed dura family derived from a Deli dura x Nigerian dura (Deli x Nigerian) with 112 individuals. This family is an important breeding source for developing new mother palms for superior oil yield and bunch characters. The traits of interest selected for this study were fruit-to-bunch (F/B), shell-to-fruit (S/F), kernel-to-fruit (K/F), mesocarp-to-fruit (M/F), oil per palm (O/P) and oil-to-dry mesocarp (O/DM). The marker systems evaluated were simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RR-BLUP, Bayesian A, B, Cπ, LASSO, Ridge Regression and two machine learning methods (SVM and Random Forest) were used to evaluate GS accuracy of the traits. The kinship coefficient between individuals in this family ranged from 0.35 to 0.62. S/F and O/DM had the highest genomic heritability, whereas F/B and O/P had the lowest. The accuracies using 135 SSRs were low, with accuracies of the traits around 0.20. The average accuracy of machine learning methods was 0.24, as compared to 0.20 achieved by other methods. The trait with the highest mean accuracy was F/B (0.28), while the lowest were both M/F and O/P (0.18). By using whole genomic SNPs, the accuracies for all traits, especially for O/DM (0.43), S/F (0.39) and M/F (0.30) were improved. The average accuracy of machine learning methods was 0.32, compared to 0.31 achieved by other methods. Due to high genomic resolution, the use of whole-genome SNPs improved the efficiency of GS dramatically for oil palm and is recommended for dura breeding programs. Machine learning slightly outperformed other methods, but required parameters optimization for GS implementation.
NASA Astrophysics Data System (ADS)
Begum, Shahida; P, Kumaran; M, Jayakumar
2013-06-01
One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane - a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.
The Effect Of Additional Detergent In Crude Palm Oil In The Process Of Separation Stearin
NASA Astrophysics Data System (ADS)
Rezekyah Hasibuan, Vina; aini, Nur; Febriyanti; Ayubi Pane, Salahudin Al
2018-03-01
This study aims to find out how much stearin is formed from the addition of detergent and to understand the process of separation of crude olein with crude stearin from raw material of crude palm oil (CPO). Using a detergent fractionation system, detergent fractionation is a continuous crystallization of oil with controlled cooling and the separation of fractions by weight or centrifuge after supplementing surfactant.
Health promoting effects of phytonutrients found in palm oil.
Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K
2010-08-01
The oil palm tree, Elaeis guineesis, is the source of palm oil, otherwise known as the "tropical golden oil". To date, Malaysia and Indonesia are the leading producers of palm oil. Palm oil is widely used for domestic cooking in Malaysia. Palm oil is a rich source of phytonutrients such as tocotrienols, tocopherol, carotene, phytosterols, squalene, coenzyme Q10, polyphenols, and phospholipids. Although the phytonutrients constitute only about 1% of its weight in crude palm oil, these are the main constituents through which palm oil exhibits its nutritional properties. Among the major health promoting properties shown to be associated with the various types of phytonutrients present in palm oil are anti-cancer, cardio-protection and anti-angiogenesis, cholesterol inhibition, brain development and neuro protective properties, antioxidative defence mechanisms, provitamin A activity and anti-diabetes.
Design of transportation and distribution Oil Palm Trunk of (OPT) in Indonesia
NASA Astrophysics Data System (ADS)
Norita, Defi; Arkeman, Yandra
2018-03-01
This research initiated from the area of oil palm plantations in Indonesia 13 million hectares, triggering consternation of abundance of oil palm trunk when garden regeneration is done. If 4 percent of the area is rehabilitated every year, almost 100 million cubic feet of oil palm will be trash. Biomass in the form of pellets can be processed from oil palm trunk. It is then disseminated back to the palm oil processing area into biomass. The amount of transportation cost of the used ships and trucks was defined as parameters. So the objective function determined the type and number of ship and truck trips that provide the minimum transportation cost. To optimize logistics transportation network in regional port cluster, combining hub-and-spoke transportation system among regional port with consolidation and dispersing transportation systems between ports and their own hinterlands, a nonlinear optimization model for two-stage logistics system in regional port cluster was introduced to simultaneously determine the following factors: the hinterlands serviced by individual ports and transportation capacity operated between each port and its hinterland, cargo transportation volume and corresponding transportation capacity allocated via a hub port from an original port to a destination port, cargo transportation volume and corresponding transportation capacity allocated directly from an original port to a destination port. Finally, a numerical example is given to demonstrate the application of the proposed model. It can be shown that the solution to the proposed non-linear model can be obtained by transforming it into linear programming models.
Fabrication of hydrophobic compressed oil palm trunk surface by sol-gel process
NASA Astrophysics Data System (ADS)
Muzakir, Syafiqah; Salim, Nurjannah; Huda Abu Bakar, Nurul; Roslan, Rasidi; Sin, Lim Wan; Hashim, Rokiah
2018-04-01
Improvement of the robustness of hydrophobic surfaces is crucial to achieving commercial applications of these surfaces in such various areas as self-cleaning, water repellency and corrosion resistance. Compressed oil palm trunk (OPT) panel is one of potential product which can be used as panelling and indoor furniture application. By adding hydrophobic properties to compressed oil palm trunk panel might increase the application of compressed oil palm trunk especially for outdoor application. In this study, fabrication is using the sol-gel technique. Sol-gel was prepared by adding ethanol with Hexadecyl Trimethyl Ammonium Bromide (CTAB) solution with Tetraethyl Orthosilicate (TEOS) with surface modification of chlorotrimethylsilane (CTMS). The surface with hydrophobic coating was undergone surface analysis with contact angle machine with the aid of software SCA 20 and the determined of the morphology of surface with scanning electron microscope (SEM). The produced compressed oil palm trunk surfaces exhibited promising hydrophobic properties with a contact angle of 104° and the relatively better mechanical robustness.
Sahebi, Mahbod; Hanafi, Mohamed M; Mohidin, Hasmah; Rafii, M Y; Azizi, Parisa; Idris, Abu Seman; Fariz, A; Abiri, Rambod; Taheri, Sima; Moradpoor, Mehdi
2018-01-01
Oil palm ( Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β -1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.
Mohidin, Hasmah; Idris, Abu Seman; Fariz, A.; Abiri, Rambod; Taheri, Sima; Moradpoor, Mehdi
2018-01-01
Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease. PMID:29721500
NASA Astrophysics Data System (ADS)
Priambodo, R.; Witarto, A. B.; Salamah, A.; Setiorini, Triyono, D.; Bowolaksono, A.
2017-07-01
Oil palm is a plant that widely cultivated in Indonesia, with an area of about 11 million hectares in 2014. There are three main variants that most cultivated; Dura, Pisifera, and Tenera. Oil palm pollen was spread through the wind. The very wide area of oil palm plantation and those characteristics of oil palm pollen dispersion makes oil palm pollen may give negative effect to the people around plantation, such as an allergy. The research on the morphology and protein characters of the oil palm pollen from three variants has not done yet. This research aims to observe the morphology and protein character from three variants of oil palm pollen. The study begins with the pollen collection from three variants of oil palm. Oil palm pollen was observed using the light and scanning electron microscope. Oil palm pollen protein was extracted and the molecular weight of these proteins was analyzed. The result of this research was the morphology character from three variants of oil palm pollen have successfully been observed. Those three variant of oil palm have no differences structures; triangular shaped with round edge, tricolpate with connected colpus aperture, psilate exine ornamentation at the front side and peripheral side, while at the back side has microreticulate exine ornamentation. Three variants of oil palm pollen protein show the same characteristics. The molecular weight of the protein was ranged from 10-00 KDa. The information can be useful for the next research to figure out component of proteins inside the oil palm pollen.
Characterization of Bio-Oil from Fast Pyrolysis of Palm Frond and Empty Fruit Bunch
NASA Astrophysics Data System (ADS)
Solikhah, M. D.; Pratiwi, F. T.; Heryana, Y.; Wimada, A. R.; Karuana, F.; Raksodewanto, AA; Kismanto, A.
2018-04-01
As the world’s biggest producer of palm oil, 109 million tons of palm frond and 46 million tons of empty fruit bunch (EFB) were produced annually in Indonesia. These two kinds of palm biomass were still in low-application and could be potentially used as future energy resources such as biofuel. One of the promising methods to convert palm frond and EFB into biofuel, as a dense and easy to transport material, is fast pyrolysis. Before pyrolysis, biomass feedstock was characterized their component and elemental compositions, moisture content and higher heating value (HHV). Fast pyrolysis processes were conducted at a temperature of 350˚C using thermal oil heater as a heat carrier. The gas phase from pyrolysis was condensed and produced a dark color and water soluble liquid called bio-oil. As GC-MS data shows, the bio-oil from both feed stocks was dominated by acetic acid, furans, phenols, aldehydes, and ketones. The HHV was reported 12.19 and 26.49 MJ/kg, while water content was 41.91 and 11.54 wt% for bio-oil from palm frond and EFB, respectively. The high content of lignin in EFB effects to the low content of water, high content of phenolic compound, and high calorific value in the bio-oil from EFB.
Performance of fly ash based geopolymer incorporating palm kernel shell for lightweight concrete
NASA Astrophysics Data System (ADS)
Razak, Rafiza Abd; Abdullah, Mohd Mustafa Al Bakri; Yahya, Zarina; Jian, Ang Zhi; Nasri, Armia
2017-09-01
A concrete which cement is totally replaced by source material such as fly ash and activated by highly alkaline solutions is known as geopolymer concrete. Fly ash is the most common source material for geopolymer because it is a by-product material, so it can get easily from all around the world. An investigation has been carried out to select the most suitable ingredients of geopolymer concrete so that the geopolymer concrete can achieve the desire compressive strength. The samples were prepared to determine the suitable percentage of palm kernel shell used in geopolymer concrete and cured for 7 days in oven. After that, other samples were prepared by using the suitable percentage of palm kernel shell and cured for 3, 14, 21 and 28 days in oven. The control sample consisting of ordinary Portland cement and palm kernel shell and cured for 28 days were prepared too. The NaOH concentration of 12M, ratio Na2SiO3 to NaOH of 2.5, ratio fly ash to alkaline activator solution of 2.0 and ratio water to geopolymer of 0.35 were fixed throughout the research. The density obtained for the samples were 1.78 kg/m3, water absorption of 20.41% and the compressive strength of 14.20 MPa. The compressive strength of geopolymer concrete is still acceptable as lightweight concrete although the compressive strength is lower than OPC concrete. Therefore, the proposed method by using fly ash mixed with 10% of palm kernel shell can be used to design geopolymer concrete.
Lee, Yee-Ying; Tang, Teck-Kim; Ab Karim, Nur Azwani; Alitheen, Noorjahan Banu Mohamed; Lai, Oi-Ming
2014-01-01
Structured lipid medium- and long-chain triacylglycerols (MLCT) are claimed to be able to manage obesity. The present study investigated the body fat influence of enzymatically interesterifed palm-based medium- and long-chain triacylglycerols (P-MLCT) on diet-induced obesity (DIO) C57BL/6J mice compared with commercial MLCT oil (C-MLCT) and a control, which was the non enzymatically modified palm kernel and palm oil blend (PKO-PO blend). It also investigated the low fat and high fat effects of P-MLCT. DIO C57BL/6J mice were fed ad libitum with low fat (7%) and high fat (30%) experimental diets for 8 weeks before being sacrificed to obtain blood serum for analysis. From the results, there is a trend that P-MLCT fed mice were found to have the lowest body weight, body weight gain, total fat pad accumulation (perirenal, retroperitoneal, epididymal and mesenteric), total triglyceride levels and efficiency in controlling blood glucose level, compared with C-MLCT and the PKO-PO blend in both low fat and high fat diets. Nevertheless, the PKO-PO blend and P-MLCT caused significantly (P < 0.05) higher total cholesterol levels compared to C-MLCT. P-MLCT present in low fat and high fat dosage were shown to be able to suppress body fat accumulation. This effect is more prominent with the low fat dosage.
Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia.
Acevedo, Juan C; Hernández, Jorge A; Valdés, Carlos F; Khanal, Samir Kumar
2015-01-01
The present study aims to evaluate the operating costs of biodiesel production using palm oil in a pilot-scale plant with a capacity of 20,000 L/day (850 L/batch). The production plant uses crude palm oil as a feedstock, and methanol in a molar ratio of 1:10. The process incorporated acid esterification, basic transesterification, and dry washing with absorbent powder. Production costs considered in the analysis were feedstock, supplies, labor, electricity, quality and maintenance; amounting to $3.75/gal ($0.99/L) for 2013. Feedstocks required for biodiesel production were among the highest costs, namely 72.6% of total production cost. Process efficiency to convert fatty acids to biodiesel was over 99% and generated a profit of $1.08/gal (i.e., >22% of the total income). According to sensitivity analyses, it is more economically viable for biodiesel production processes to use crude palm oil as a feedstock and take advantage of the byproducts such as glycerine and fertilizers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bello, Mustapha Mohammed; Abdul Raman, Abdul Aziz
2017-08-01
Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ooi, Tony Eng Keong; Yeap, Wan Chin; Daim, Leona Daniela Jeffery; Ng, Boon Zean; Lee, Fong Chin; Othman, Ainul Masni; Appleton, David Ross; Chew, Fook Tim; Kulaveerasingam, Harikrishna
2015-01-01
The oil palm Elaeis guineensis Jacq. which produces the highest yield per unit land area of the oil crops is the most important commercial oil crop in South East Asia. The fleshy mesocarp of oil palm fruit, where oil is mostly derived from, contains up to 90 % dry weight of oil (one of the most concentrated in plant tissues). Hence, there is attention given to gain insights into the processes of oil deposition in this oil rich tissue. For that purpose, two-dimensional differential gel electrophoresis (DIGE) coupled with western assays, were used here to analyze differential protein levels in genetically-related high-and low-yielding oil palm mesocarps. From the DIGE comparative analysis in combination with western analysis, 41 unique differentially accumulated proteins were discovered. Functional categorization of these proteins placed them in the metabolisms of lipid, carbohydrate, amino acids, energy, structural proteins, as well as in other functions. In particular, higher abundance of fructose-1,6-biphosphate aldolase combined with reduced level of triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase may be indicative of important flux balance changes in glycolysis, while amino acid metabolism also appeared to be closely linked with oil yield. Forty-one proteins in several important biological pathways were identified as exhibiting differential in abundance at critical oil production stages. These confirm that oil yield is a complex trait involving the regulation of genes in multiple biological pathways. The results also provide insights into key control points of lipid biosynthesis in oil palm and can assist in the development of genetic markers for use in oil palm breeding programmes.
Optimization of squalene extraction from Palm Fatty Acid Distillate (PFAD) in multistage process
NASA Astrophysics Data System (ADS)
Sibuyo, Leah; Widiputri, Diah; Legowo, Evita
2017-01-01
Squalene is a compound widely known as one of the natural antioxidants used in the cosmetic and pharmaceutical industries. As the main source of squalene, which is shark liver oil, is becoming more limited in its availability, attempts have been made to extract squalene from other sources, e.g. from vegetable oils. Research has found that one of the wastes produced by palm oil industry, namely the palm fatty acid distillate (PFAD), contains squalene among other useful compounds. Since Indonesia is one of the largest producers of palm oil, the abundant amount of PFAD becomes very interesting to be a solution in coping with today demand of natural squalene. In this research, the extraction of squalene from PFAD is optimized through a multiple-stage extraction process, where results show a significant increase of squalene yield. Furthermore, the liquid-liquid phase equilibrium data for an extraction using dichloromethane (DCM) were plotted to develop a ternary-phase-diagram between squalene, DCM and free-fatty acids.
Reheated Palm Oil Consumption and Risk of Atherosclerosis: Evidence at Ultrastructural Level
Xian, Tan Kai; Omar, Noor Azzizah; Ying, Low Wen; Hamzah, Aniza; Raj, Santhana; Jaarin, Kamsiah; Othman, Faizah; Hussan, Farida
2012-01-01
Background. Palm oil is commonly consumed in Asia. Repeatedly heating the oil is very common during food processing. Aim. This study is aimed to report on the risk of atherosclerosis due to the reheated oil consumption. Material and Methods. Twenty four male Sprague Dawley rats were divided into control, fresh-oil, 5 times heated-oil and 10 times heated-oil feeding groups. Heated palm oil was prepared by frying sweet potato at 180°C for 10 minutes. The ground standard rat chows were fortified with the heated oils and fed it to the rats for six months. Results. Tunica intima thickness in aorta was significantly increased in 10 times heated-oil feeding group (P < 0.05), revealing a huge atherosclerotic plaque with central necrosis projecting into the vessel lumen. Repeatedly heated oil feeding groups also revealed atherosclerotic changes including mononuclear cells infiltration, thickened subendothelial layer, disrupted internal elastic lamina and smooth muscle cells fragmentation in tunica media of the aorta. Conclusion. The usage of repeated heated oil is the predisposing factor of atherosclerosis leading to cardiovascular diseases. It is advisable to avoid the consumption of repeatedly heated palm oil. PMID:23320039
Energy fluxes in oil palm plantations as affected by water storage in the trunk
NASA Astrophysics Data System (ADS)
Meijide, Ana; Röll, Alexander; Fan, Yuanchao; Herbst, Mathias; Niu, Furong; Tiedemann, Frank; June, Tania; Rauf, Abdul; Hölscher, Dirk; Knohl, Alexander
2017-04-01
Oil palm is increasingly expanding, particularly in Indonesia, but information on water and energy fluxes in oil palm plantations is still very limited and on how those are affected by environmental conditions or oil palm age. Using the eddy covariance technique, we studied turbulent fluxes of sensible (H) and latent (LE) heat and gross primary production (GPP) for 8 months each in a young oil palm plantation (1-year old) and subsequently in a mature plantation (12-year old) in Jambi Province, Sumatra, Indonesia. We measured transpiration (T) simultaneously using a sap flux technique. The energy budget was dominated by LE in both plantations, particularly in the mature one, where it represented up to 70% of the available energy. In the young oil palm plantation, evapotranspiration (ET) was significantly reduced and H fluxes were higher. This affected the Bowen ratio, defined as the ratio of H and LE, which was higher in the 1-year old plantation (0.67±0.33), where it remained constant during the day, than in the mature plantation (0.14±0.09), where it varied considerably over the day, suggesting that water accumulated inside the canopy. Using the Community Land Model (CLM), a process based land surface model that has been adapted to oil palm functional traits (i.e. CLM-Palm), we investigated the contribution of different water sources to the measured fluxes. CLM-Palm differentiates leaf and stem surfaces in modelling water interception and is therefore able to diagnose the fraction of dry leaves that contribute to T and the wet fraction of all vegetation surfaces (leaf and stem) that contributes to evaporation. Results from our simulations strengthen our hypothesis of significant contribution of canopy evaporation to ET. As observed in the field, water accumulates inside the canopy in the mature plantation in oil palm trunk surfaces including epiphytes, creating water reservoirs in the trunk, which potentially contribute to ET when they evaporate. The decoupling between GPP and T in the morning and the early decreases of both fluxes at midday suggest the existence of internal water storage mechanisms in oil palms both in the leaves and in the stem, which delayed the detection of water movement at the leaf petioles. The combination of our measured data with the model simulations suggest the existence of both external and internal trunk water storage mechanisms in mature oil palms contributing to ecosystem water fluxes. Oil palm plantations can lead to surface warming at early stages of development, but further assessments should be performed at landscape level to understand the climatic feedbacks of oil palm expansion.
NASA Astrophysics Data System (ADS)
Benami, E.; Curran, L. M.; Cochrane, M.; Venturieri, A.; Franco, R.; Kneipp, J.; Swartos, A.
2018-03-01
Global models of biophysical suitability for oil palm consistently rank Brazil as having the greatest potential for expansion, with estimates as high as 238 Mha of suitable lands. In 2010, Brazil launched the Sustainable Palm Oil Production Program (SPOPP) to incentivize oil palm development without deforestation on as much as 30 Mha. Here we examine oil palm expansion before and after the SPOPP’s launch. In Pará, the major oil palm producing state in Brazil, we analyze the extent and change in oil palm cultivation from 2006-2014 using satellite imagery, ground-truthed verification, site-based interviews, and rural environmental (land) registration data. Between 2006-2014, oil palm area (≥9 ha) expanded >200% to ~219 000 ha. Of the ~148 000 ha of oil palm developed, ~91% converted pasturelands while ~8% replaced natural vegetation, including intact and secondary forests. Although >80% of all oil palm parcels rest <0.5 km from intact forests, direct conversion of intact forests declined from ~4% pre-SPOPP (2006-2010) to <1% post-SPOPP (2010-2014). Despite low and declining deforestation rates associated with oil palm expansion in Pará, our results also show a low area of oil palm development overall compared with reported land suitability. To explore potential contributing factors, we conducted semi-structured interviews with researchers, company representatives, and government officials involved in the sector to characterize the perceived factors influencing oil palm development and the role of agro-ecological suitability mapping among them. Interviews indicated that: (1) individual effects of suitability mapping efforts to encourage oil palm expansion on cleared areas, i.e. without deforestation, cannot be disentangled from pre-existing public and private deforestation reduction initiatives; and, (2) socio-economic constraints, e.g. high relative production costs and limited familiarity with this crop, appear to partially explain the major discrepancy between estimated potential suitable areas with realized oil palm development.
NASA Astrophysics Data System (ADS)
Ibrahim, M. H. Wan; Mangi, Sajjad Ali; Burhanudin, M. K.; Ridzuan, M. B.; Jamaluddin, N.; Shahidan, S.; Wong, YH; Faisal, SK; Fadzil, M. A.; Ramadhansyah, P. J.; Ayop, S. S.; Othman, N. H.
2017-11-01
This paper presents the effects of using palm oil biomass (POB) clinker with polypropylene (PP) fibres in concrete on its compressive and flexural strength performances. Due to infrastructural development works, the use of concrete in the construction industry has been increased. Simultaneously, it raises the demand natural sand, which causes depletion of natural resources. While considering the environmental and economic benefits, the utilization of industrial waste by-products in concrete will be the alternative solution of the problem. Among the waste products, one of such waste by-product is the palm oil biomass clinker, which is a waste product from burning processes of palm oil fibres. Therefore, it is important to utilize palm oil biomass clinker as partial replacement of fine aggregates in concrete. Considering the facts, an experimental study was conducted to find out the potential usage of palm oil fibres in concrete. In this study, total 48 number of specimens were cast to evaluate the compressive and flexural strength performances. Polypropylene fibre was added in concrete at the rate of 0.2%, 0.4% and 0.6%, and sand was replaced at a constant rate of 10% with palm oil biomass clinker. The flexural strength of concrete was noticed in the range of 2.25 MPa and 2.29 MPa, whereas, the higher value of flexural strength was recorded with 0.4% polypropylene fibre addition. Hence, these results show that the strength performances of concrete containing POB clinker could be improved with the addition of polypropylene fibre.
Red palm oil production by microwave irradiation
NASA Astrophysics Data System (ADS)
Sarah, M.; Widyastuti, S.; Ningsih, D.
2018-02-01
Preliminary study of red palm oil (RPO) production from palm fruitlets by microwave irradiation carried out in domestic microwave oven equipped with thermocouple. The various mass of fruitlets (800, 900 and 1000 g) were heated for 10-18 minutes with 2 minutes interval and microwave power of 400, 560 and 800 Watt respectively. Heated fruitlets were pressed by hydraulic presser to obtain RPO. This study observed heating time parameter was more crucial to RPO quality rather than temperature. Prolonged heating degraded carotenoids in the fruitlets during heating process yielded less carotenoids content in the palm oil. The best time and microwave power combination to produce RPO in this study was 14 minutes and 800 Watt respectively which yielded 11.67% RPO with 1.27% FFA content and carotenoids concentration of 1219.37 ppm. Overall, RPO production by microwave irradiation proceeded faster as compared to conventional process.
NASA Astrophysics Data System (ADS)
Anuar, M. A. M.; Anting, N.; Shahidan, S.; Lee, Y. Y.; Din, M. F. Md; Khalid, F. S.; Nazri, W. M. H. W.
2017-11-01
Malaysia is one of the biggest producer of palm oil product and currently as main source of economy for the country. During the production of crude palm oil, a large amount of waste material is generated, such as palm oil fibres, palm oil shells and empty fruit bunches. Palm oil shell aggregate (POSA) is identified as a material that shows good potential to be used as a fine aggregate replacement in asphaltic concrete. On other hand, the chemical compound that exist in the Palm Oil Shell (POS) have shown a good potential as reflective component in cool-material. The purpose of this study is to obtain the physical and chemical properties of palm oil shell. The result shows the apparent particle density of Palm Oil Shell is 1.6 mg/m3. The specific gravity of palm oil shell was obtained with the value 1.6 and the water absorption amount of palm oil shell recorded from this study was 25.1%. The X-Ray Fluorescence study shows that palm oil shell contains the highest amount of SiO2 (46.412 wt%) and the second highest amount of Fe2O3 (34.016 wt%), both is the main output of relectivity compound. As a conclusion, waste palm oil shell has a potential to be used as alternative material for fine aggregate replacement. Besides that, the amount of chemical element that consist in palm oil shell which high in SiO2 and Fe2O3, promising the benefit to mitigate urban heat island as a cooling material agent.
Transgenic oil palm: production and projection.
Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C
2000-12-01
Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.
Bourgis, Fabienne; Kilaru, Aruna; Cao, Xia; Ngando-Ebongue, Georges-Frank; Drira, Noureddine; Ohlrogge, John B; Arondel, Vincent
2011-07-26
Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript levels for all fatty acid synthesis enzymes, specific plastid transporters, and key enzymes of plastidial carbon metabolism, including phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. Transcripts representing an ortholog of the WRI1 transcription factor were 57-fold higher in oil palm relative to date palm and displayed a temporal pattern similar to its target genes. Unexpectedly, despite more than a 100-fold difference in flux to lipids, most enzymes of triacylglycerol assembly were expressed at similar levels in oil palm and date palm. Similarly, transcript levels for all but one cytosolic enzyme of glycolysis were comparable in both species. Together, these data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm. In addition to greatly increasing molecular resources devoted to oil palm and date palm, the combination of temporal and comparative studies illustrates how deep sequencing can provide insights into gene expression patterns of two species that lack genome sequence information.
Bourgis, Fabienne; Kilaru, Aruna; Cao, Xia; Ngando-Ebongue, Georges-Frank; Drira, Noureddine; Ohlrogge, John B.; Arondel, Vincent
2011-01-01
Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript levels for all fatty acid synthesis enzymes, specific plastid transporters, and key enzymes of plastidial carbon metabolism, including phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. Transcripts representing an ortholog of the WRI1 transcription factor were 57-fold higher in oil palm relative to date palm and displayed a temporal pattern similar to its target genes. Unexpectedly, despite more than a 100-fold difference in flux to lipids, most enzymes of triacylglycerol assembly were expressed at similar levels in oil palm and date palm. Similarly, transcript levels for all but one cytosolic enzyme of glycolysis were comparable in both species. Together, these data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm. In addition to greatly increasing molecular resources devoted to oil palm and date palm, the combination of temporal and comparative studies illustrates how deep sequencing can provide insights into gene expression patterns of two species that lack genome sequence information. PMID:21709233
Electrochemical Immunosensor for the Detection of Aflatoxin B₁ in Palm Kernel Cake and Feed Samples.
Azri, Farah Asilah; Selamat, Jinap; Sukor, Rashidah
2017-11-30
Palm kernel cake (PKC) is the solid residue following oil extraction of palm kernels and useful to fatten animals either as a single feed with only minerals and vitamins supplementation, or mixed with other feedstuffs such as corn kernels or soy beans. The occurrence of mycotoxins (aflatoxins, ochratoxins, zearalenone, and fumonisins) in feed samples affects the animal's health and also serves as a secondary contamination to humans via consumption of eggs, milk and meats. Of these, aflatoxin B₁ (AFB₁) is the most toxically potent and a confirmed carcinogen to both humans and animals. Methods such as High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Mass Spectrometry (LC-MS/MS) are common in the determination of mycotoxins. However, these methods usually require sample pre-treatment, extensive cleanup and skilled operator. Therefore, in the present work, a rapid method of electrochemical immunosensor for the detection of AFB₁ was developed based on an indirect competitive enzyme-linked immunosorbent assay (ELISA). Multi-walled carbon nanotubes (MWCNT) and chitosan (CS) were used as the electrode modifier for signal enhancement. N -ethyl- N '-(3-dimethylaminopropyl)-carbodiimide (EDC) and N -hydroxysuccinimide (NHS) activated the carboxyl groups at the surface of nanocomposite for the attachment of AFB₁-BSA antigen by covalent bonding. An indirect competitive reaction occurred between AFB₁-BSA and free AFB₁ for the binding site of a fixed amount of anti-AFB₁ antibody. A catalytic signal based on horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H₂O₂) and 3,3',5,5'-tetramethylbenzidine (TMB) mediator was observed as a result of attachment of the secondary antibody to the immunoassay system. As a result, the reduction peak of TMB (Ox) was measured by using differential pulse voltammetry (DPV) analysis. Based on the results, the electrochemical surface area was increased from 0.396 cm² to 1.298 cm² due to the electrode modification with MWCNT/CS. At the optimal conditions, the working range of the electrochemical immunosensor was from 0.0001 to 10 ng/mL with limit of detection of 0.1 pg/mL. Good recoveries were obtained for the detection of spiked feed samples (PKC, corn kernels, soy beans). The developed method could be used for the screening of AFB₁ in real samples.
NASA Astrophysics Data System (ADS)
Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.
2014-10-01
The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (<10 years old), as young oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.
NASA Astrophysics Data System (ADS)
Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.
2018-05-01
Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.
The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss
Pimm, Stuart L.; Jenkins, Clinton N.; Smith, Sharon J.
2016-01-01
Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems. PMID:27462984
The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss.
Vijay, Varsha; Pimm, Stuart L; Jenkins, Clinton N; Smith, Sharon J
2016-01-01
Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems.
Transpiration in an oil palm landscape: effects of palm age
NASA Astrophysics Data System (ADS)
Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.
2015-06-01
Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25 year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12 year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of two years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2 year old to 2.5 mm day-1 in a 12 year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Confronting sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2 year old stand and 53 % in the 12 year old stand, indicating variable and substantial additional sources of evaporation, e.g. from the soil, the ground vegetation and from trunk epiphytes. Diurnally, oil palm transpiration rates were characterized by an early peak between 10 and 11 a.m.; there was a pronounced hysteresis in the leaf water use response to changes in vapor pressure deficit for all palms of advanced age. On the day-to-day basis this resulted in a relatively low variability of oil palm water use regardless of fluctuations in vapor pressure deficit and radiation. We conclude, that oil palm dominated landscapes show some spatial variations in (evapo)transpiration rates, e.g. due to varying age-structures, but that the temporal variability of oil palm transpiration is rather low. Stand transpiration rates of some studied oil palm stands compared to or even exceed values reported for different tropical forests, indicating a high water use of oil palms under certain site or management conditions. Our study provides first insights into the eco-hydrological characteristics of oil palms as well as a first estimate of oil palm water use across a gradient of plantation age. It sheds first light on some of the hydrological consequences of the continuing expansion of oil palm plantations.
Transpiration in an oil palm landscape: effects of palm age
NASA Astrophysics Data System (ADS)
Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.
2015-10-01
Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25-year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12-year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of 2 years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2-year old to 2.5 mm day-1 in a 12-year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Comparing sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2-year old stand and 53 % in the 12-year old stand, indicating variable and substantial additional sources of evaporation, e.g., from the soil, the ground vegetation and from trunk epiphytes. Diurnally, oil palm transpiration rates were characterized by an early peak between 10 and 11 a.m.; there was a pronounced hysteresis in the leaf water use response to changes in vapor pressure deficit for all palms of advanced age. On the day-to-day basis this resulted in a relatively low variability of oil palm water use regardless of fluctuations in vapor pressure deficit and radiation. We conclude that oil palm dominated landscapes show some spatial variations in (evapo)transpiration rates, e.g., due to varying age-structures, but that the temporal variability of oil palm transpiration is rather low. The stand transpiration of some of the studied oil palm stands was as high or even higher than values reported for different tropical forests, indicating a high water use of oil palms under yet to be explained site or management conditions. Our study provides first insights into the eco-hydrological characteristics of oil palms as well as a first estimate of oil palm water use across a gradient of plantation age. It sheds first light on some of the hydrological consequences of the continuing expansion of oil palm plantations.
Utilization of sulphurized palm oil as cutting fluid base oil for broaching process
NASA Astrophysics Data System (ADS)
Sukirno; Ningsih, Y. R.
2017-03-01
Broaching is one of the most severe metal cutting operation that requires the use of cutting fluids formulated with extreme pressure (EP) additives to minimize metal-to-metal contact and improve tool life. Enhancement of EP performances of the cutting fluids can be achieved by addition of sulphur containing compounds that will allow the formation of metal sulfide film that has low shear strength and good antiweld properties and acts as protection layer from wear and seizure. Most of the cutting fluids are mineral oil based. However, as regards to health and environmental issues, reseach on vegetable oil based cutting fluid have been increased recently. This paper reports a study on the sulphurization of palm oil derivatives and its usage as broaching oil. Sulphurization of the palm oil derivative was conducted via non-catalytic sulphurization using elemental sulphur at various composition and under heating of 150-160°C for 3 hr. Broaching oil was made by blending the sulphurized palm oil and additive packages. The performance parameters of the broaching oil that has been observed including load carrying capacity, wear scar diameter, corrosion protection, oxidative stability, and surface finish of workpiece. From this research, it was found that sulphurized FAME based broaching oil has excellent EP properties. The optimum formulation was obtained on composition of sulphurized FAME-mineral oil with 6% wt of sulphur. The result from the test showed that kinematic viscosity of sulphurized palm oil was about 25.3 cSt (at 40 °C), load carrying capacity was 400 kgf, and wear scar diameter was 0.407 mm. In addition, it can be concluded that the class of corrosion protection of modified palm oil was 1.b (slight tarnish category), oxidative stability at 160 °C was obtained for 0.11 hr, and the surface roughness of workpiece was about 0.0418-0.0579 μm. These performances are comparable to commercial broaching oil. By this result, it indicates that sulphurized palm oil is applicable for industrial cutting fluids formulation.
Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Shirai, Yoshihito; Tashiro, Kosuke; Sakai, Kenji; Tashiro, Yukihiro
2017-06-01
A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.
Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder
NASA Astrophysics Data System (ADS)
Maulina, S.; Iriansyah, M.
2018-02-01
Activated carbon is the product of a charcoal impregnation process that has a higher absorption capacity and has more benefits than regular char. Therefore, this study aims to cultivate the powder of oil palm fronds into activated carbon that meets the requirements of Standard National Indonesia 06-3730-1995. To do so, the carbonization process of the powder of oil palm fronds was carried out using a pyrolysis reactor for 30 minutes at a temperature of 150 °C, 200 °C, and 250 °C in order to produce activated char. Then, the char was impregnated using Phosphoric Acid activator (H3PO4) for 24 hours. Characteristics of activated carbon indicate that the treatment of char by chemical activation of oil palm fronds powder has an effect on the properties of activated carbon. The activated carbons that has the highest absorption properties to Iodine (822.91 mg/g) were obtained from the impregnation process with 15% concentration of Phosphoric Acid (H3PO4) at pyrolysis temperature of 200 °C. Furthermore, the activation process resulted in activated carbon with water content of 8%, ash content of 4%, volatile matter 39%, and fixed carbon 75%, Iodine number 822.91 mg/g.
Stability evaluation of quality parameters for palm oil products at low temperature storage.
Ramli, Nur Aainaa Syahirah; Mohd Noor, Mohd Azmil; Musa, Hajar; Ghazali, Razmah
2018-07-01
Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated. In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P < 0.05), whereas the moisture content for CPO, IV for RBDPO and RBDPOo, stearic acid composition for CPO and linolenic acid composition for CPO, RBDPO, RBDPOo and RBDPS did not (P > 0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature. The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Suitability of online 3D visualization technique in oil palm plantation management
NASA Astrophysics Data System (ADS)
Mat, Ruzinoor Che; Nordin, Norani; Zulkifli, Abdul Nasir; Yusof, Shahrul Azmi Mohd
2016-08-01
Oil palm industry has been the backbone for the growth of Malaysia economy. The exports of this commodity increasing almost every year. Therefore, there are many studies focusing on how to help this industry increased its productivity. In order to increase the productivity, the management of oil palm plantation need to be improved and strengthen. One of the solution in helping the oil palm manager is by implementing online 3D visualization technique for oil palm plantation using game engine technology. The potential of this application is that it can helps in fertilizer and irrigation management. For this reason, the aim of this paper is to investigate the issues in managing oil palm plantation from the view of oil palm manager by interview. The results from this interview will helps in identifying the suitable issues could be highlight in implementing online 3D visualization technique for oil palm plantation management.
Removal of oil palm trunk lignin in ammonium hydroxide pretreatment
NASA Astrophysics Data System (ADS)
Az-Zahraa, Balqis; Zakaria, Sarani; Daud, Muhammad F. B.; Jaafar, Sharifah Nabihah Syed
2018-04-01
Alkaline pretreatment using ammonium hydroxide, NH4OH serves as one of a process to remove lignin from lignocellulosic biomass such as oil palm trunk fiber. In this study, the effect of NH4OH pretreatment on removal of oil palm trunk lignin was investigated. The oil palm trunk fiber was dissolved in NH4OH with different concentrations (6, 8 and 10 %), different duration (3, 5 and 7 h) and temperatures (60, 80 and 100 °C). The samples were analyzed by using UV-Vis to estimate the concentration of extracted lignin. The result indicates that the optimum conditions to gain maximum extracted lignin were 8% NH4OH, 100 °C and 5 h with concentration of 64 mgL-1 while the lowest was at 6% NH4OH, 100 °C and 5 h with concentration of 62.5 mgL-1.
Study of oil palm root architecture with variation of crop stage and soil type vulnerable to drought
NASA Astrophysics Data System (ADS)
Safitri, Lisma; Suryanti, Sri; Kautsar, Valensi; Kurniawan, Agung; Santiabudi, Fajar
2018-03-01
Root arhitecture is affected by watertable level, characteristic of soil, organic matter and also the crop stages. Root architecture spread horizontally and vertically which each consist of primary, secondary, tertiary and quaternary downward root. The oil palm root observation with variation of crop stage and soil type showed that the root of oil palm plant year 2008 on spodosols soil spread along 650 cm horizontally from the trunk and penetrate downward in range of 9-28 cm vertically. Planted in the same type of soil, the root of oil palm plant year 2004 spread along 650 cm horizontally and reached to downward in a larger range from 3 to 57 cm vertically. As a comparison, the root architecture of oil palm on inceptisols soil established the range much greater vertically than the previous. The root of oil palm plant year 2008 spread along 640 cm horizontally and penetrate downward in range of 52-90 cm vertically. With the variation of crop age, the root of oil palm plant year 2003 spread along 650 cm horizontally and reached to downward in a larger range from 150 to 200 cm vertically. Based on this study, root architecture of oil palm was varied and need to be detailed. The precise root architecture of oil palm allows a better understanding on hydrological properties of oil palm root particularly which is cultivated on soil type vulnerable to drought. Referring to this root architecture, it was enable to develop the study on early drought detection of oil palm to optimise production and towards oil palm sustainability.
Yahya, Muhammad S; Syafiq, Muhamad; Ashton-Butt, Adham; Ghazali, Amal; Asmah, Siti; Azhar, Badrul
2017-08-01
Monoculture farming is pervasive in industrial oil palm agriculture, including those RSPO plantations certified as sustainably managed. This farming practice does not promote the maintenance of farmland biodiversity. However, little scientific attention has been given to polyculture farming in oil palm production landscapes. Polyculture farming is likely to increase the floristic diversity and stand structural complexity that underpins biodiversity. Mist nets were used to sample birds at 120 smallholdings in Peninsular Malaysia. At each site, 12 vegetation structure characteristics were measured. We compared bird species richness, abundance, and composition between monoculture and polyculture smallholdings and used predictive models to examine the effects of habitat quality on avian biodiversity. Bird species richness was significantly greater in polyculture than that of monoculture smallholdings. The number of fallen and standing, dead oil palms were also important positive predictors of species richness. Bird abundance was also strongly increased by standing and dead oil palms and decreased with oil palm stand height. Our results indicate that polyculture farming can improve bird species richness in oil palm production landscapes. In addition, key habitat variables that are closely associated with farming practices, such as the removal of dead trees, should and can be managed by oil palm growers in order to promote biodiversity. To increase the sustainability of oil palm agriculture, it is imperative that stakeholders modify the way oil palms are currently planted and managed. Our findings can guide policy makers and certification bodies to promote oil palm production landscapes that will function more sustainably and increase existing biodiversity of oil palm landscapes.
Palm oil and the heart: A review
Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie
2015-01-01
Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono or polyunsaturated fatty acids. PMID:25810814
Occurrence of 3-MCPD and glycidyl esters in edible oils in the United States.
MacMahon, Shaun; Begley, Timothy H; Diachenko, Gregory W
2013-01-01
Fatty acid esters of 3-monochloropropanediol (3-MCPD) and glycidol are processing contaminants found in a wide range of edible oils. While both 3 MCPD and glycidol have toxicological properties that at present has concerns for food safety, the published occurrence data are limited. Occurrence information is presented for the concentrations of 3-MCPD and glycidyl esters in 116 retail and/or industrial edible oils and fats using LC-MS/MS analysis of intact esters. The concentrations for bound 3-MCPD ranged from below the limit of quantitation (
Simulation of Oil Palm Shell Pyrolysis to Produce Bio-Oil with Self-Pyrolysis Reactor
NASA Astrophysics Data System (ADS)
Fika, R.; Nelwan, L. O.; Yulianto, M.
2018-05-01
A new self-pyrolysis reactor was designed to reduce the utilization of electric heater due to the energy saving for the production of bio-oil from oil palm shell. The yield of the bio- oil was then evaluated with the developed mathematical model by Sharma [1] with the characteristic of oil palm shell [2]. During the simulation, the temperature on the combustion chamber on the release of the bio-oil was utilized to determine the volatile composition from the combustion of the oil palm shell as fuel. The mass flow was assumed constant for three experiments. The model resulted in a significant difference between the simulated bio-oil and experiments. The bio-oil yields from the simulation were 22.01, 16.36, and 21.89 % (d.b.) meanwhile the experimental yields were 10.23, 9.82, and 8.41% (d.b.). The char yield varied from 30.7 % (d.b.) from the simulation to 40.9 % (d.b.) from the experiment. This phenomenon was due to the development of process temperature over time which was not considered as one of the influential factors in producing volatile matters on the simulation model. Meanwhile the real experiments highly relied on the process conditions (reactor type, temperature over time, gas flow). There was also possibilities of the occurrence of the gasification inside the reactor which caused the liquid yield was not as high as simulated. Further simulation model research on producing the bio-oil yield will be needed to predict the optimum condition and temperature development on the newly self-pyrolysis reactor.
NASA Astrophysics Data System (ADS)
Limbardo, Rebecca Putri; Santoso, Herry; Witono, Judy Retti
2017-05-01
Cocoa butter has responsibility for dispersion medium to create a stable chocolate bar. Due to the economic reason, cocoa butter is partially or wholly substituted by edible oils e.g palm oil and coconut oil. The objective of the research was to observe the effect of oil substitution in the chocolate bar towards its melting point and texture. The research were divided in three steps which were preliminary research started with fat content analysis in cocoa powder, melting point analysis of substituted oils anc cocoa butter, and iodine number analysis in vegetable fats (cocoa butter, coconut oil, and palm oil), chocolate bar production with substitution 0%, 20%, 40%, 60%, 80%, and 100%wt of cocoa butter with each of substituted oils, and analysis process to determine the chocolate bar melting point with DSC and chocolate bar hardness with texture analyser. The increasement of substituted oils during substitution in chocolate bar would reduce the melting point of chocolate bar from 33.5°C to 31.6°C in palm oil substitution with cocoa butter and 33.5°C to 30.75°C in coconut oil substitution. The hardness of chocolate with palm oil were around 88.5 to 139 g on the 1st cycle and 22.75 to 132 g on the 2nd cycle. The hardness of chocolate with coconut oil were around 74.75 to 152.5 g on the 1st cycle and 53.25 to 132 g on the 2nd cycle. Maximum amount of fats substitution to produce a stable texture chocolate bar is 60% wt.
NASA Astrophysics Data System (ADS)
Gea, S.; Zulfahmi, Z.; Yunus, D.; Andriayani, A.; Hutapea, Y. A.
2018-03-01
Cellulose nanofibrils were obtained from oil palm empty fruit bunch using steam explosion and hydrolized with 10% solution of HCl. Steam explosion coupled with acid hydrolysis pretreatment on the oil palm empty fruit bunch was very effective in the depolymerization and defibrillation process of the fibre to produce fibers in nanodimension. Structural analysis of steam exploded fibers was determined by Fourier Transform Infrared (FT-IR) spectroscopy. Thermal stability of cellulose measured using image analysis software image J. Characterization of the fibers by TEM and SEM displayed that fiber diameter decreases with mechanical-chemical treatment and final nanofibril size was 20-30 nm. FT-IR and TGA data confirmed the removal of hemicellulose and lignin during the chemical treatment process.
Auto Guided Oil Palm Planter by using multi-GNSS
NASA Astrophysics Data System (ADS)
Nur Aini, I.; W, Aimrun; Amin, M. S. M.; Ezrin, M. H.; Shafri, H. Z.
2014-06-01
Planting is one of the most important operations in plantation because it could affect the total area of productivity since it is the starting point in cultivation. In oil palm plantation, lining and spacing of oil palm shall be laid out and coincided with the topographic area and a system of drains. Conventionally, planting of oil palm will require the polarization process in order to prevent and overcome the lack of influence of the sun rise and get a regular crop row. Polarization is done after the completion of the opening area by using the spike wood with 1 m length painted at the top and 100 m length of wire. This process will generally require at least five persons at a time to pull the wire and carry the spikes while the other two persons will act as observer and spikes craftsmen respectively with the ability of the team is 3ha/day. Therefore, the aim of this project is to develop the oil palm planting technique by using multi- GNSS (Global Navigation Satellite System). Generally, this project will involve five main steps mainly; design of planting pattern by using SOLIDWORKS software, determine the boundary coordinate of planting area, georeference process with ArcGIS, stakeout process with Tracy software and finally marking up the location with the wooden spikes. The results proved that the multi- GNSS is capable to provide the high accuracy with less than 1 m in precise positioning system without augmentation data. With the ability of one person, time taken to complete 70 m × 50 m planting area is 290 min, which is 25 min faster than using GPS (Global Positioning System) only.
NASA Astrophysics Data System (ADS)
Guillaume, Thomas; Muhammad, Damris; Kuzyakov, Yakov
2015-04-01
Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber and extensive rubber plantations in Jambi province on Sumatra Island. We developed and applied a new δ13C based approach to assess and separate two processes: 1) erosion and 2) decomposition. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). The C content in the subsoil was similar in the forest and the plantations. We therefore assumed that a shift to higher δ13C values in the subsoil of the plantations corresponds to the losses of the upper soil layer by erosion. Erosion was estimated by comparing the δ13C profiles in the undisturbed soils under forest with the disturbed soils under plantations. The estimated erosion was the strongest in oil palm (35±8 cm) and rubber (33±10 cm) plantations. The 13C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. SOC availability, measured by microbial respiration rate and Fourier Transformed Infrared Spectroscopy, was lower under oil palm plantations. Despite similar trends in C losses and erosion in intensive plantations, our results indicate that microorganisms in oil palm plantations mineralized mainly the old C stabilized prior to conversion, whereas microorganisms under rubber plantations mineralized the fresh C from the litter, leaving the old C pool mainly untouched. Based on the lack of C input from litter, we expect further losses of SOC under oil palm plantations, which therefore are a less sustainable land-use compared to rubber plantations. Finally, we discussed the advantages and limitations of the new δ13C based approach to assess erosion and decomposition as well as possibilities for its development and broader application. The reestablishment of new oil palm plantations has just started in the studied region. We therefore advise 1) to reduce the period without soil protection by planting cover crops at the early stage of the establishment to reduce soil erosion and 2) to leave a maximum of the biomass from the old palm trees on site and/or to keep the land lying fallow for a few years to enable the reconstruction of the SOC pool for the next oil palm generation.
Babalola, T O O; Adebayo, M A; Apata, D F; Omotosho, J S
2009-03-01
The worldwide increase in aquaculture production and the decrease of wild fish stocks has made the replacement of fish oil (FO) in aquafeed industry a priority. Therefore, the use of terrestrial animal fats and vegetable oils, which has lower cost and larger supplies, may be good as substitute for FO. This study investigate the effects of total replacement of FO by two terrestrial animal fats (pork lard and poultry fat) and three vegetable oils (palm kernel oil, sheabutter oil and sunflower oil) on haematological and serum biochemical profile of Heterobranchus longifilis over 70 days. FO-diet was used as the control. The haematological parameters were significantly affected by dietary lipid sources. Serum total protein was not influenced by the dietary lipids. However, serum cholesterol was significantly higher in fish fed diet containing sunflower oil. Glucose and activities of liver enzymes in blood serum were significantly reduced in fish fed alternative lipids when compared with the control. These results indicate that FO can be replaced completely with alternative lipids without any serious negative health impacts.
Will oil palm's homecoming spell doom for Africa's great apes?
Wich, Serge A; Garcia-Ulloa, John; Kühl, Hjalmar S; Humle, Tatanya; Lee, Janice S H; Koh, Lian Pin
2014-07-21
Expansion of oil palm plantations has led to extensive wildlife habitat conversion in Southeast Asia [1]. This expansion is driven by a global demand for palm oil for products ranging from foods to detergents [2], and more recently for biofuels [3]. The negative impacts of oil palm development on biodiversity [1, 4, 5], and on orangutans (Pongo spp.) in particular, have been well documented [6, 7] and publicized [8, 9]. Although the oil palm is of African origin, Africa's production historically lags behind that of Southeast Asia. Recently, significant investments have been made that will likely drive the expansion of Africa's oil palm industry [10]. There is concern that this will lead to biodiversity losses similar to those in Southeast Asia. Here, we analyze the potential impact of oil palm development on Africa's great apes. Current great ape distribution in Africa substantially overlaps with current oil palm concessions (by 58.7%) and areas suitable for oil palm production (by 42.3%). More importantly, 39.9% of the distribution of great ape species on unprotected lands overlaps with suitable oil palm areas. There is an urgent need to develop guidelines for the expansion of oil palm in Africa to minimize the negative effects on apes and other wildlife. There is also a need for research to support land use decisions to reconcile economic development, great ape conservation, and avoiding carbon emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jaligot, Estelle; Adler, Sophie; Debladis, Émilie; Beulé, Thierry; Richaud, Frédérique; Ilbert, Pascal; Finnegan, E. Jean; Rival, Alain
2011-01-01
Background The large-scale clonal propagation of oil palm (Elaeis guineensis) is being stalled by the occurrence of the mantled somaclonal variation. Indeed, this abnormality which presents a homeotic-like conversion of male floral organs into carpelloid structures, hampers oil production since the supernumerary female organs are either sterile or produce fruits with poor oil yields. Scope In the last 15 years, the prevailing point of view on the origin of the mantled floral phenotype has evolved from a random mutation event triggered by in vitro culture to a hormone-dependent dysfunction of gene regulation processes. In this review, we retrace the history of the research on the mantled variation in the light of the parallel advances made in the understanding of plant development regulation in model systems and more specifically in the role of epigenetic mechanisms. An overview of the current state of oil palm genomic and transcriptomic resources, which are key to any comparison with model organisms, is given. We show that, while displaying original characteristics, the mantled phenotype of oil palm is morphologically, and possibly molecularly, related to MADS-box genes mutants described in model plants. We also discuss the occurrence of comparable floral phenotypes in other palm species. Conclusions Beyond its primary interest in the search for discriminating markers against an economically crippling phenotype, the study of the mantled abnormality also provides a unique opportunity to investigate the regulation of reproductive development in a perennial tropical palm. On the basis of recent results, we propose that future efforts should concentrate on the epigenetic regulation targeting MADS-box genes and transposable elements of oil palm, since both types of sequences are most likely to be involved in the mantled variant phenotype. PMID:21224269
Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.
Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali
2016-02-01
An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. © The Author(s) 2015.
Minimizing the biodiversity impact of Neotropical oil palm development.
Gilroy, James J; Prescott, Graham W; Cardenas, Johann S; Castañeda, Pamela González del Pliego; Sánchez, Andrés; Rojas-Murcia, Luis E; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P
2015-04-01
Oil palm agriculture is rapidly expanding in the Neotropics, at the expense of a range of natural and seminatural habitats. A key question is how this expansion should be managed to reduce negative impacts on biodiversity. Focusing on the Llanos of Colombia, a mixed grassland-forest system identified as a priority zone for future oil palm development, we survey communities of ants, dung beetles, birds and herpetofauna occurring in oil palm plantations and the other principal form of agriculture in the region--improved cattle pasture--together with those of surrounding natural forests. We show that oil palm plantations have similar or higher species richness across all four taxonomic groups than improved pasture. For dung beetles, species richness in oil palm was equal to that of forest, whereas the other three taxa had highest species richness in forests. Hierarchical modelling of species occupancy probabilities indicated that oil palm plantations supported a higher proportion of species characteristic of forests than did cattle pastures. Across the bird community, occupancy probabilities within oil palm were positively influenced by increasing forest cover in a surrounding 250 m radius, whereas surrounding forest cover did not strongly influence the occurrence of other taxonomic groups in oil palm. Overall, our results suggest that the conversion of existing improved pastures to oil palm has limited negative impacts on biodiversity. As such, existing cattle pastures of the Colombian Llanos could offer a key opportunity to meet governmental targets for oil palm development without incurring significant biodiversity costs. Our results also highlight the value of preserving remnant forests within these agricultural landscapes, protecting high biodiversity and exporting avian 'spill-over' effects into oil palm plantations. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yuliasmi, S.; Pardede, T. R.; Nerdy; Syahputra, H.
2017-03-01
Oil palm midrib is one of the waste generated by palm plants containing 34.89% cellulose. Cellulose has the potential to produce microcrystalline cellulose can be used as an excipient in tablet formulations by direct compression. Microcrystalline cellulose is the result of a controlled hydrolysis of alpha cellulose, so the alpha cellulose extraction process of oil palm midrib greatly affect the quality of the resulting microcrystalline cellulose. The purpose of this study was to compare the microcrystalline cellulose produced from alpha cellulose extracted from oil palm midrib by two different methods. Fisrt delignization method uses sodium hydroxide. Second method uses a mixture of nitric acid and sodium nitrite, and continued with sodium hydroxide and sodium sulfite. Microcrystalline cellulose obtained by both method was characterized separately, including organoleptic test, color reagents test, dissolution test, pH test and determination of functional groups by FTIR. The results was compared with microcrystalline cellulose which has been available on the market. The characterization results showed that microcrystalline cellulose obtained by first method has the most similar characteristics to the microcrystalline cellulose available in the market.
A specific PFT and sub-canopy structure for simulating oil palm in the Community Land Model
NASA Astrophysics Data System (ADS)
Fan, Y.; Knohl, A.; Roupsard, O.; Bernoux, M.; LE Maire, G.; Panferov, O.; Kotowska, M.; Meijide, A.
2015-12-01
Towards an effort to quantify the effects of rainforests to oil palm conversion on land-atmosphere carbon, water and energy fluxes, a specific plant functional type (PFT) and sub-canopy structure are developed for simulating oil palm within the Community Land Model (CLM4.5). Current global land surface models only simulate annual crops beside natural vegetation. In this study, a multilayer oil palm subroutine is developed in CLM4.5 for simulating oil palm's phenology and carbon and nitrogen allocation. The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a natural multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced, so that multiple phytomer components develop simultaneously but according to their different phenological steps (growth, yield and senescence) at different canopy layers. This specific multilayer structure was proved useful for simulating canopy development in terms of leaf area index (LAI) and fruit yield in terms of carbon and nitrogen outputs in Jambi, Sumatra (Fan et al. 2015). The study supports that species-specific traits, such as palm's monopodial morphology and sequential phenology, are necessary representations in terrestrial biosphere models in order to accurately simulate vegetation dynamics and feedbacks to climate. Further, oil palm's multilayer structure allows adding all canopy-level calculations of radiation, photosynthesis, stomatal conductance and respiration, beside phenology, also to the sub-canopy level, so as to eliminate scale mismatch problem among different processes. A series of adaptations are made to the CLM model. Initial results show that the adapted multilayer radiative transfer scheme and the explicit represention of oil palm's canopy structure improve on simulating photosynthesis-light response curve. The explicit photosynthesis and dynamic leaf nitrogen calculations per canopy layer also enhance simulated CO2 flux when compared to eddy covariance flux data. More investigations on energy and water fluxes and nitrogen balance are being conducted. These new schemes would hopefully promote the understanding of climatic effects of the tropical land use transformation system.
Questioning the sustainable palm oil demand: case study from French-Indonesia supply chain
NASA Astrophysics Data System (ADS)
Chalil, D.; Barus, R.
2018-02-01
Sustainable palm oil has been widely debated. Consuming countries insist certified sustainable produces palm oil, but in fact the absorption of the certified palm oil is still less than 60%. This raise questions about the sustainable palm oil demand. In this study, such a condition will be analysed in French-Indonesia supply chain case. Using monthly and quarterly data from 2010 to 2016 with Autoregressive Distributed Lag (ARDL) approach and Error Correction Model, demand influencing factors and price integration in each market of the supply chain is estimated. Two scenarios namely re-export and direct export models are considered in the Error Correction Model. The results show that France Gross Domestic Product, prices of France palm oil import from Indonesia, Malaysia, and Germany, and price of France groundnut import significantly influence the France palm oil import volume from Indonesia. Prices in each market along palm oil re-export France-Indonesia supply chain are co-integrated and converge towards long-run equilibrium, but not in the direct export supply chain. This leads to a conclusion that France market preferences in specific and EU market preferences in general need to be considered by Indonesian palm oil decision makers.
NASA Astrophysics Data System (ADS)
Shahputra, M. A.; Zen, Z.
2018-02-01
The aim of the study is to deepen understanding the role of palm oil on Indonesian economy, poverty elevation and to investigate the positive and negative impacts of oil palm expansion, due to the burden of GHG emissions; and prospect to be more sustainable palm oil industry. The statistics show that average rural poverty tends to be lower and Gross Regional Product tends to be higher in provinces which have greater levels of oil palm cultivation. Indonesian oil palm will grow from 10.6 in 2013 to 13.7 million ha by 2020. This will release 135.59 million tons of CO2 if nothing is done to mitigate BAU emissions. Unless there are sustained efforts to redirect development and expansion of oil palm, plantation growth will continue to encroach on intact forest and peat land.. In fact Indonesia has large areas of degraded land, an estimated total 19,144,000 ha is available for planting oil palm and other crops. A large-scale expansion program driven by estate companies needs to be accompanied by effective smallholder development program in order to achieve the best outcome for local farmers and avoid the conflicts.
Inhibition of palm oil oxidation by zeolite nanocrystals.
Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh
2015-05-13
The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.
Poor Prospects for Avian Biodiversity in Amazonian Oil Palm
Lees, Alexander C.; Vieira, Ima C. G.
2015-01-01
Expansion of oil palm plantations across the humid tropics has precipitated massive loss of tropical forest habitats and their associated speciose biotas. Oil palm plantation monocultures have been identified as an emerging threat to Amazonian biodiversity, but there are no quantitative studies exploring the impact of these plantations on the biome’s biota. Understanding these impacts is extremely important given the rapid projected expansion of oil palm cultivation in the basin. Here we investigate the biodiversity value of oil palm plantations in comparison with other dominant regional land-uses in Eastern Amazonia. We carried out bird surveys in oil palm plantations of varying ages, primary and secondary forests, and cattle pastures. We found that oil palm plantations retained impoverished avian communities with a similar species composition to pastures and agrarian land-uses and did not offer habitat for most forest-associated species, including restricted range species and species of conservation concern. On the other hand, the forests that the oil palm companies are legally obliged to protect hosted a relatively species-rich community including several globally-threatened bird species. We consider oil palm to be no less detrimental to regional biodiversity than other agricultural land-uses and that political pressure exerted by large landowners to allow oil palm to count as a substitute for native forest vegetation in private landholdings with forest restoration deficits would have dire consequences for regional biodiversity. PMID:25955243
Identification of molecular performance from oil palm clones based on SSR markers
NASA Astrophysics Data System (ADS)
Putri, Lollie Agustina P.; Basyuni, M.; Bayu, Eva S.; Arvita, D.; Arifiyanto, D.; Syahputra, I.
2018-03-01
In Indonesia, the oil palms are an important economic crop, producing food and raw materials for the food, confectionary, cosmetics and oleo-chemical industrial demands of oil palm products. Clonal oil palm offers the potential for greater productivity because it is possible to establish uniform tree stands comprising identical copies (clones) of a limited number of highly productive oil palms. Unfortunately, tissue culture sometimes accentuates the expression of detects in oil palm, particularly when embryogenesis is induced in particullar callus for prolonged periods. This research is conducted by taking individual tree sample of clone germplasm two years old. The purpose of this research is to molecular performance analysis of some oil palm clones based on SSR markers. A total of 30 trees oil palm clones were used for analysis. In this experiment, the DNA profile diversity was assessed using five loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 SSR markers (FR-0779, FR-3663 and FR-0782) showed monomorphic of PCR product and 2 SSR markers (FR-0783 and FR- 3745) showed polymorphic of PCR product. There are 10 total number of PCR product. These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of oil palm clones.
Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K
2015-01-01
The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.
Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina
2009-01-01
During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products.
Lee, Yee-Ying; Tang, Teck-Kim; Phuah, Eng-Tong; Karim, Nur Azwani Ab; Alwi, Siti Maslina Mohd; Lai, Oi-Ming
2015-02-01
Structured lipid such as medium-and long-chain triacylglycerol (MLCT) is claimed to be able to suppress body fat accumulation and be used to manage obesity. Response surface methodology (RSM) with four factors and three levels (+1,0,-1) faced centered composite design (FCCD) was employed for optimization of the enzymatic interesterification conditions of palm-based MLCT (P-MLCT) production. The effect of the four variables namely: substrate ratio palm kernel oil: palm oil, PKO:PO (40:60-100:0 w/w), temperature (50-70 °C), reaction time (0.5-7.5 h) and enzyme load (5-15 % w/w) on the P-MLCT yield (%) and by products (%) produced were investigated. The responses were determined via acylglycerol composition obtained from high performance liquid chromatography. Well-fitted models were successfully established for both responses: P-MLCT yield (R (2) = 0.9979) and by-products (R (2) = 0.9892). The P-MLCT yield was significantly (P < 0.05) affected by substrate ratio, reaction time and reaction temperature but not enzyme load (P > 0.05). Substrate ratio PKO: PO (100:0 w/w) gave the highest yield of P-MLCT (61 %). Nonetheless, substrate ratio of PKO: PO (90:10w/w) was chosen to improve the fatty acid composition of the P-MLCT. The optimized conditions for substrate ratio PKO: PO (90:10 w/w) was 7.26 h, 50 °C and 5 % (w/w) Lipozyme TLIM lipase, which managed to give 60 % yields of P-MLCT. Up scaled results in stirred tank batch reactor gave similar yields as lab scale. A 20 % increase in P-MLCT yield was obtained via RSM. The effect of enzymatic interesterification on the physicochemical properties of PKO:PO (90:10 w/w) were also studied. Thermoprofile showed that the P-MLCT oil melted below body temperature of 37 °C.
NASA Astrophysics Data System (ADS)
Andarani, Pertiwi; Nugraha, Winardi Dwi; Wieddya
2017-03-01
Indonesia is one of the largest palm oil producers in the world. The total exported crude palm oil (CPO) and its derivatives in 2015 reached about 26.40 million tons or increase at 21% compared to the previous year (2014). However, the further expansion of the CPO production system could potentially have environmental impacts. The objective of this study is to analyze the energy balances and greenhouse gas emissions at mill P, PT X located in Sumatera Island. System analysis approaches was applied to this study and the assessment was focused on a CPO production system in PT XYZ located on the Sumatera Island. The system boundary was determined based on the field study. The data collection consisted of all the input and output energy which involving all input materials (including fertilizers, herbicides, pesticides, water, etc.) and energy consumption (consumption of diesel, electricity, etc.) starting from plantation activities (at the oil palm plantation) to the conversion process (at the palm oil mill). The energy output from biodiesel was 480.46 GJ/ha (2014) and decreased to 450.79 GJ/ha (2015). Surplus energy from biogas was 15.21 GJ/ha (2014) and 13.57 GJ/ha (2015). The NEP was 494.56 GJ/ha and decreased to 317.84 GJ/ha. Meanwhile, the NER decreased from 3.27 (2014) to 3.17 (2015). The NEP in this mill is significantly higher than other related studies of similar palm oil production system in other companies. The emission of the activities in the palm estate increased from 12.50 kgCO2eq/ton FFB to 22.057 kgCO2eq/ton FFB. In the palm oil mill, the emission decreased from 2,509.93 kgCO2eq/ton CPO to 2,057.14 kgCO2eq/ton CPO.
Degumming of crude palm oil by membrane filtration.
Ong, K K; Fakhru'l-Razi, A; Baharin, B S; Hassan, M A
1999-01-01
The application of membrane separation in palm oil refining process has potential for energy and cost savings. The conventional refining of crude palm oil results in loss of oil and a contaminated effluent. Degumming of crude palm oil by membrane technology is conducted in this study. The objective of this research is to study the feasibility of membrane filtration for the removal of phospholipids in the degumming of crude palm oil, including analyses of phosphorus content, carotene content free fatty acids (as palmitic acid), colour and volatile matter. A PCI membrane module was used which was equipped with polyethersulfone membranes having a molecular weight cut off of 9,000 (type ES209). In this study, phosphorus content was the most important parameter monitored. The membrane effectively removed phospholipids resulting in a permeate with a phosphorus content of less than 0.3 ppm The percentage removal of phosphorus was 96.4% and was considered as a good removal. Lovibond colour was reduced from 27R 50Y to 20R 30Y. The percentage removal of carotene was 15.8%. The removal of colour was considered good but the removal of carotene was considered insignificant by the membrane. Free fatty acids and volatile matter were not removed. Typical of membrane operations, the permeate flux decreased with time and must be improved in order to be adopted on an industrial scale. Membrane technology was found to have good potential in crude palm oil degumming. However, an appropriate method has to be developed to clean the membranes for reuse.
NASA Astrophysics Data System (ADS)
Destyorini, F.; Indayaningsih, N.
2017-04-01
Empty fruit bunches of oil palm is a by-product of the palm oil industry that contains a high element of carbon. This by-product can be processed into a conductive carbon paper that could be applied as fuel cell electrodes. Carbon paper for this application must be conductive, porous, and hydrophobic. Utilization of oil palm empty fruit bunches begins with the carbonization process at a temperature of 500°C that produced charcoal. It is followed by heating at temperature of 900°C and 1300°C. To obtain the carbon paper, powdered charcoal with polymer binder (PEG and EVA) were mixed in solvent and molded using tape casting method. This process successfully produced carbon paper with dimensions of ±(20x20) cm2 and a thickness of 0.1-0.3 mm. Properties of carbon paper were characterized and analyzed in terms of electrical conductivity, porosity, hydrophobic property, and microstructure. Polytetrafluoroethylene (PTFE), a hydrophobic agent, was treated on carbon paper to enhance the hydrophobicity of the carbon paper. PTFE coating on the surface of the carbon paper could change their physical properties. Carbon paper shows excellent properties in terms of porosity and hydrophobicity. Whereas, its electrical property needs to be improved further by increasing the pyrolysis temperature. But overall, this might show a potential GDL material for PEMFC.
Estimation the Amount of Oil Palm Trees Production Using Remote Sensing Technique
NASA Astrophysics Data System (ADS)
Fitrianto, A. C.; Tokimatsu, K.; Sufwandika, M.
2017-12-01
Currently, fossil fuels were used as the main source of power supply to generate energy including electricity. Depletion in the amount of fossil fuels has been causing the increasing price of crude petroleum and the demand for alternative energy which is renewable and environment-friendly and it is defined from vegetable oils such palm oil, rapeseed and soybean. Indonesia known as the big palm oil producer which is the largest agricultural industry with total harvested oil palm area which is estimated grew until 8.9 million ha in 2015. On the other hand, lack of information about the age of oil palm trees and changes also their spatial distribution is mainly problem for energy planning. This research conducted to estimate fresh fruit bunch (FFB) of oil palm and their distribution using remote sensing technique. Cimulang oil palm plantation was choose as study area. First step, estimated the age of oil palm trees based on their canopy density as the result from Landsat 8 OLI analysis and classified into five class. From this result, we correlated oil palm age with their average FFB production per six months and classified into seed (0-3 years, 0kg), young (4-8 years, 68.77kg), teen (9-14 years, 109.08kg), and mature (14-25 years, 73.91kg). The result from satellite image analysis shows if Cimulang plantation area consist of teen old oil palm trees that it is covers around 81.5% of that area, followed by mature oil palm trees with 18.5% or corresponding to 100 hectares and have total production of FFB every six months around 7,974,787.24 kg.
Policies for healthy and sustainable edible oil consumption: a stakeholder analysis for Thailand.
Shankar, Bhavani; Thaiprasert, Nalitra; Gheewala, Shabbir; Smith, Richard
2017-04-01
Palm oil is a cheap and versatile edible oil in widespread use as a food ingredient that has been linked to negative health and environmental outcomes. The current study aimed to understand the prospects for future health-focused policy development to limit food use of palm oil and promote a greater diversity of oils in Thailand's food system. Eighteen semi-structured interviews were conducted with a range of stakeholders. The interviews probed views on the economic, health and environmental dimensions of the issue, the prospects for health-focused policy development and the policy development process. Transcripts were analysed using a health policy analytical framework. Thailand. Stakeholders from a range of ministries, regulatory agencies, the private sector, non-governmental organizations and academia. There are several impediments to the emergence of strong regulation, including the primacy of economic considerations in setting policy, doubt and misperception about health implications and a complex regulatory environment with little space for health-related considerations. At the same time, some sections of the food industry producing food for domestic consumption are substituting palm with other oils on the basis of consumer health perceptions. Strong regulation to curb the growth of palm oil is unlikely to emerge soon. However, a long-term strategy can be envisaged that relies on greater policy support for other indigenous oils, strategic rebalancing towards the use of palm oil for biofuels and oleochemicals, and harnessing Thailand's food technology capabilities to promote substitution in food production in favour of oils with healthier fatty acid composition.
Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production.
Silveira, Erick A; Tardioli, Paulo W; Farinas, Cristiane S
2016-06-01
The use of residues from the industrial processing of palm oil as carbon source and inducer for microbial lipase production can be a way to add value to such residues and to contribute to reduced enzyme costs. The aim of this work was to investigate the feasibility of using palm oil industrial waste as feedstock for lipase production in different cultivation systems. Evaluation was made of lipase production by a selected strain of Aspergillus niger cultivated under solid-state (SSF) and submerged fermentation (SmF). Lipase activity levels up to 15.41 IU/mL were achieved under SSF. The effects of pH and temperature on the lipase activity of the SSF extract were evaluated using statistical design methodology, and maximum activities were obtained between pH 4.0 and 6.5 and at temperatures between 37 and 55 °C. This lipase presented good thermal stability up to 60 °C and higher specificity towards long carbon chain substrates. The results demonstrate the potential application of palm oil industrial residues for lipase production and contribute to the technological advances needed to develop processes for industrial enzymes production.
In vitro digestibility of oil palm frond treated by local microorganism (MOL)
NASA Astrophysics Data System (ADS)
Tafsin, M.; Khairani, Y.; Hanafi, N. D.; Yunilas
2018-02-01
Oil palm frond is by product from oil palm plantation and were found in large quantity in Indonesia. This research aims to examine the ability of local microorganisms and buffalo rumen isolates in improving the digestibility of dry matter and organic matter in vitro of oil palm frond. The research used experimental method with four treatments and three replications. The treatments were given: Oil palms without treatment (P0); Starbio (P2); Aspergillus niger + Saccharomyces cerevisiae (P3); Aspergillus niger + Saccharomyces cerevisiae + Isolate of buffalo rumen bacteria (P4). The results showed that the fermented Oil Palm Frond had higher (P<0.05) DMD and OMD than control. The addition of Aspergillus niger and Saccharomyces cerevisiae plus buffalo rumen bacterial isolates had higher (P<0.05) DMD and OMD than other treatments. It can be concluded that the utilisation of MOL can improve the digestibility of oil palm frond in vitro.
Ooi, Leslie C.-L.; Low, Eng-Ti L.; Abdullah, Meilina O.; Nookiah, Rajanaidu; Ting, Ngoot C.; Nagappan, Jayanthi; Manaf, Mohamad A. A.; Chan, Kuang-Lim; Halim, Mohd A.; Azizi, Norazah; Omar, Wahid; Murad, Abdul J.; Lakey, Nathan; Ordway, Jared M.; Favello, Anthony; Budiman, Muhammad A.; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T.; Jiang, Nan; Smith, Steven W.; Brown, Clyde R.; Kuek, Alex C. S.; Bahrain, Shabani; Hoynes-O’Connor, Allison; Nguyen, Amelia Y.; Chaudhari, Hemangi G.; Shah, Shivam A.; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder
2016-01-01
Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts. PMID:27446094
Ooi, Leslie C-L; Low, Eng-Ti L; Abdullah, Meilina O; Nookiah, Rajanaidu; Ting, Ngoot C; Nagappan, Jayanthi; Manaf, Mohamad A A; Chan, Kuang-Lim; Halim, Mohd A; Azizi, Norazah; Omar, Wahid; Murad, Abdul J; Lakey, Nathan; Ordway, Jared M; Favello, Anthony; Budiman, Muhammad A; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T; Jiang, Nan; Smith, Steven W; Brown, Clyde R; Kuek, Alex C S; Bahrain, Shabani; Hoynes-O'Connor, Allison; Nguyen, Amelia Y; Chaudhari, Hemangi G; Shah, Shivam A; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder
2016-01-01
Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts.
Effect of unground oil palm ash as mixing ingredient towards properties of concrete
NASA Astrophysics Data System (ADS)
Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.
2018-04-01
Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.
Suksong, Wantanasak; Kongjan, Prawit; Prasertsan, Poonsuk; Imai, Tsuyoshi; O-Thong, Sompong
2016-08-01
This study investigated the improvement of biogas production from solid-state anaerobic digestion (SS-AD) of oil palm biomass by optimizing of total solids (TS) contents, feedstock to inoculum (F:I) ratios and carbon to nitrogen (C:N) ratios. Highest methane yield from EFB, OPF and OPT of 358, 280 and 324m(3)CH4ton(-1)VS, respectively, was achieved at TS content of 16%, C:N ratio of 30:1 and F:I ratio of 2:1. The main contribution to methane from biomass was the degradation of cellulose and hemicellulose. The highest methane production of 72m(3)CH4ton(-1) biomass was achieved from EFB. Bacteria community structure in SS-AD process of oil palm biomass was dominated by Ruminococcus sp. and Clostridium sp., while archaea community was dominated by Methanoculleus sp. Oil palm biomass has great potential for methane production via SS-AD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali
2015-01-01
The present works investigate hydrothermal pretreatment of oil palm empty fruit bunch and oil palm frond fiber in a batch tube reactor system with temperature and time range from 170 to 250°C and 10 to 20min, respectively. The behavior of soluble sugars, acids, furans, and phenols dramatically changed over treatment severities as determined by HPLC. The cellulose-rich treated solids were analyzed by SEM, WAXD, and BET surface area. Enzymatic hydrolysis was performed from both pretreated slurries and washed solid, and data obtained suggested that tannic acid derived from lignin degradation was a potential cellulase inhibitor. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused structural changes on the cellulose-hemicellulose-lignin matrix, resulting in the opening and expansion of specific surface area and pore volume. The current results provided important factors that maximize conversion of cellulose to glucose from oil palm biomass by hydrothermal process. Copyright © 2014 Elsevier Ltd. All rights reserved.
de Paiva, Carina Kaory Sasahara; de Faria, Ana Paula Justino; Calvão, Lenize Batista; Juen, Leandro
2017-08-01
The production of oil palm is expected to increase in the Amazon region. However, expansion of oil palm plantation leads to significant changes in the physical structure of aquatic ecosystems, mainly through the reduction of riparian vegetation that is essential for aquatic biodiversity. Here, we evaluated the effects of oil palm on the physical habitat structure of Amazonian stream environments and assemblages of Plecoptera and Trichoptera (PT), both found in these streams. We compared streams sampled in oil palm plantations (n = 13) with natural forest areas ("reference" streams, n = 8), located in the eastern Amazon, Brazil. Our results showed that oil palm streams were more likely to be in close proximity to roads, had higher pH values, and higher amounts of fine substrate deposited in the channel than reference streams. Further, these environmental changes had important effects on the aquatic invertebrate assemblages, reducing the abundance and richness of PT. Nevertheless, the genera composition of the assemblages did not differ between reference and oil palm (PERMANOVA, pseudo-F (1,19) = 1.891; p = 0.111). We conclude that oil palm production has clear negative impacts on aquatic environments and PT assemblages in Amazonian streams. We recommend that oil palm producers invest more in planning of road networks to avoid the construction of roads near to the riparian vegetation. This planning can minimize impacts of oil palm production on aquatic systems in the Amazon.
Soil C dynamics under intensive oil palm plantations in poor tropical soils
NASA Astrophysics Data System (ADS)
Guillaume, Thomas; Ruegg, Johanna; Quezada, Juan Carlos; Buttler, Alexandre
2017-04-01
Oil palm cultivation mainly takes place on heavily-weathered tropical soils where nutrients are limiting factors for plant growth and microbial activity. Intensive fertilization and changes of C input by oil palms strongly affects soil C and nutrient dynamics, challenging long-term soil fertility. Oil palm plantations management offers unique opportunities to study soil C and nutrients interactions in field conditions because 1) they can be considered as long-term litter manipulation experiments since all aboveground C inputs are concentrated in frond pile areas and 2) mineral fertilizers are only applied in specific areas, i.e. weeded circle around the tree and interrows, but not in harvest paths. Here, we determined impacts of mineral fertilizer and organic matter input on soil organic carbon dynamics and microbial activity in mature oil palm plantation established on savanna grasslands. Rates of savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC net stabilization were determined using changes in isotopic signature of in C input following a shift from C4 (savanna) to C3 (oil palm) vegetation. Application of mineral fertilizer alone did not affect savanna-derived SOC decomposition or oil palm-derived SOC stabilization rates, but fertilization associated with higher C input lead to an increase of oil palm-derived SOC stabilization rates, with about 50% of topsoil SOC derived from oil palm after 9 years. High carbon and nutrients inputs did not increase microbial biomass but microorganisms were more active per unit of biomass and SOC. In conclusion, soil organic matter decomposition was limited by C rather than nutrients in the studied heavily-weathered soils. Fresh C and nutrient inputs did not lead to priming of old savanna-derived SOC but increased turnover and stabilization of new oil palm-derived SOC.
Characterizing commercial oil palm expansion in Latin America: land use change and trade
NASA Astrophysics Data System (ADS)
Furumo, Paul Richard; Aide, T. Mitchell
2017-02-01
Commodity crop expansion has increased with the globalization of production systems and consumer demand, linking distant socio-ecological systems. Oil palm plantations are expanding in the tropics to satisfy growing oilseed and biofuel markets, and much of this expansion has caused extensive deforestation, especially in Asia. In Latin America, palm oil output has doubled since 2001, and the majority of expansion seems to be occurring on non-forested lands. We used MODIS satellite imagery (250 m resolution) to map current oil palm plantations in Latin America and determined prior land use and land cover (LULC) using high-resolution images in Google Earth. In addition, we compiled trade data to determine where Latin American palm oil flows, in order to better understand the underlying drivers of expansion in the region. Based on a sample of 342 032 ha of oil palm plantations across Latin America, we found that 79% replaced previously intervened lands (e.g. pastures, croplands, bananas), primarily cattle pastures (56%). The remaining 21% came from areas that were classified as woody vegetation (e.g. forests), most notably in the Amazon and the Petén region in northern Guatemala. Latin America is a net exporter of palm oil but the majority of palm oil exports (70%) stayed within the region, with Mexico importing about half. Growth of the oil palm sector may be driven by global factors, but environmental and economic outcomes vary between regions (i.e. Asia and Latin America), within regions (i.e. Colombia and Peru), and within single countries (i.e. Guatemala), suggesting that local conditions are influential. The present trend of oil palm expanding onto previously cleared lands, guided by roundtable certifications programs, provides an opportunity for more sustainable development of the oil palm sector in Latin America.
Ho, Chai-Ling; Kwan, Yen-Yen; Choi, Mei-Chooi; Tee, Sue-Sean; Ng, Wai-Har; Lim, Kok-Ang; Lee, Yang-Ping; Ooi, Siew-Eng; Lee, Weng-Wah; Tee, Jin-Ming; Tan, Siang-Hee; Kulaveerasingam, Harikrishna; Alwee, Sharifah Shahrul Rabiah Syed; Abdullah, Meilina Ong
2007-01-01
Background Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST) analysis on oil palm. Results In this study, six cDNA libraries from oil palm zygotic embryos, suspension cells, shoot apical meristems, young flowers, mature flowers and roots, were constructed. We have generated a total of 14537 expressed sequence tags (ESTs) from these libraries, from which 6464 tentative unique contigs (TUCs) and 2129 singletons were obtained. Approximately 6008 of these tentative unique genes (TUGs) have significant matches to the non-redundant protein database, from which 2361 were assigned to one or more Gene Ontology categories. Predominant transcripts and differentially expressed genes were identified in multiple oil palm tissues. Homologues of genes involved in many aspects of flower development were also identified among the EST collection, such as CONSTANS-like, AGAMOUS-like (AGL)2, AGL20, LFY-like, SQUAMOSA, SQUAMOSA binding protein (SBP) etc. Majority of them are the first representatives in oil palm, providing opportunities to explore the cause of epigenetic homeotic flowering abnormality in oil palm, given the importance of flowering in fruit production. The transcript levels of two flowering-related genes, EgSBP and EgSEP were analysed in the flower tissues of various developmental stages. Gene homologues for enzymes involved in oil biosynthesis, utilization of nitrogen sources, and scavenging of oxygen radicals, were also uncovered among the oil palm ESTs. Conclusion The EST sequences generated will allow comparative genomic studies between oil palm and other monocotyledonous and dicotyledonous plants, development of gene-targeted markers for the reference genetic map, design and fabrication of DNA array for future studies of oil palm. The outcomes of such studies will contribute to oil palm improvements through the establishment of breeding program using marker-assisted selection, development of diagnostic assays using gene targeted markers, and discovery of candidate genes related to important agronomic traits of oil palm. PMID:17953740
Nicholas, Khristopher; Fanzo, Jessica; MacManus, Kytt
2018-01-01
Background: Palm oil consumption is potentially deleterious to human health, and its production has resulted in 11 million hectares of deforestation globally. Importing roughly 394,000 metric tons of palm oil in 2012 alone, the Burmese government has recently pushed for intensive oil palm development to sate domestic demand for consumption and become international market players. Given well-studied linkages between biodiversity loss and ecosystem instability, this study aims to characterize the nature of deforestation for oil palm production in Myanmar, its relationship to increased biodiversity loss, and contextualize the potential impacts of this loss on diets and human health in rural Myanmar. Methods: First, a GIS land suitability analysis overlaying spatial data on rainfall, elevation, and slope was conducted in order to identify areas of Myanmar best suited to oil palm tree growth. Second, after narrowing the geographic range, vegetation indices using varying spectral band models in ENVI (Environment for Visualizing Images) allowed a more granular examination of changes in vegetation phenology from 1975 to 2015. Lastly, ground truthing permitted an in-person verification of GIS and ENVI results and provided contextual understanding of oil palm development in Myanmar. Results: GIS analysis revealed that the Tanintharyi Region, one of the most biodiverse regions in Myanmar, is highly suitable for oil palm growth. Next, vegetation indices revealed a progressive shift from smallholder farming, with little observable deforestation between 1975 and 1990, to industrial oil palm plantations all throughout Tanintharyi starting around 2000—a shift concomitant with biodiversity loss of primary forestland. Ground truthing indicated that plantation development has advanced rapidly, though not without barriers to growth. Conclusions: If these trends of Burmese oil palm intensification continue, 4 key outcomes may follow: (1) even higher levels of biodiversity loss, (2) increased access and affordability of edible palm oil, (3) decreased importing of palm oil, and (4) large profits made from selling excess palm oil on the international market. Although the first 2 outcomes may adversely affect low-income Burmese populations, the latter 2 may bode well for the domestic economy and international trade partners, thus encouraging competing interests. This increased domestic access and affordability of palm oil may increase consumption and cause increased prevalence of cardiovascular disease, diabetes, and obesity. Finally, this biodiversity loss concurrent with industrial deforestation may disproportionately impact vulnerable, rural communities. PMID:29602872
Madhuvilakku, Rajesh; Piraman, Shakkthivel
2013-12-01
Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. Copyright © 2013. Published by Elsevier Ltd.
How will oil palm expansion affect biodiversity?
Fitzherbert, Emily B; Struebig, Matthew J; Morel, Alexandra; Danielsen, Finn; Brühl, Carsten A; Donald, Paul F; Phalan, Ben
2008-10-01
Oil palm is one of the world's most rapidly increasing crops. We assess its contribution to tropical deforestation and review its biodiversity value. Oil palm has replaced large areas of forest in Southeast Asia, but land-cover change statistics alone do not allow an assessment of where it has driven forest clearance and where it has simply followed it. Oil palm plantations support much fewer species than do forests and often also fewer than other tree crops. Further negative impacts include habitat fragmentation and pollution, including greenhouse gas emissions. With rising demand for vegetable oils and biofuels, and strong overlap between areas suitable for oil palm and those of most importance for biodiversity, substantial biodiversity losses will only be averted if future oil palm expansion is managed to avoid deforestation.
Improved Method for the Qualitative Analyses of Palm Oil Carotenes Using UPLC.
Ng, Mei Han; Choo, Yuen May
2016-04-01
Palm oil is the richest source of natural carotenes, comprising 500-700 ppm in crude palm oil (CPO). Its concentration is found to be much higher in oil extracted from palm-pressed fiber, a by-product from the milling of oil palm fruits. There are 11 types of carotenes in palm oil, excluding the cis/trans isomers of some of the carotenes. Qualitative separation of these individual carotenes is particularly useful for the identification and confirmation of different types of oil as the carotenes profile is unique to each type of vegetable oil. Previous studies on HPLC separation of the individual palm carotenes reported a total analyses time of up to 100 min using C30 stationary phase. In this study, the separation was completed in <5 min. The qualitative separation was successfully carried out using a commonly used stationary phase, C18. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Impact of savanna conversion to oil palm plantations on C stocks dynamics and soil fertility
NASA Astrophysics Data System (ADS)
Quezada, Juan Carlos; Guillaume, Thomas; Buttler, Alexandre; Ruegg, Johanna
2017-04-01
Large-scale expansion of oil palm cultivation on forested land in South-East Asia during the last decades lead to high negative environmental impacts. Because rainforests store high amount of C, their conversion to oil palm plantations results in large net CO2 emissions. Oil palm cultivation in tropical ecosystems such as savanna that store less C than forests is seen as an alternative to reduce greenhouse gas emissions of future oil palm development. While this option is more and more frequently mentioned, few data are available on the effective gain in C storage. Furthermore negative impact on soil organic carbon and soil fertility could offset gains of C storage in oil palm biomass. Here, we present results on aboveground and belowground C stocks and soil nutrient dynamics over a full rotation cycle of oil palm plantations established on tropical savanna grasslands. Three natural savanna grasslands as reference sites and 9 oil palm plantations ranging from two to twenty-seven years old were selected in the Llanos in Colombia. Oxisols were sampled down to 70 cm in each management zones of oil palm plantations (weeded circle, interrow, frond piles and harvesting path). Taking advantages of a shift from C4 to C3 vegetation, we quantified savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC stabilization rates and how they were affected by management practices (mineral fertilization, organic amendments, etc.). Results show that, in opposite to forest conversion, C storage increases when savannas are converted to oil palm plantations. Because soil C storage was very low in natural conditions, SOC changes had little effects on overall C storage. Substitution of savanna-derived SOC by oil palm-derived SOC was very fast in the topsoil and highest under frond pile and weeded circle where C and nutrients inputs are highest. However, stabilization of oil palm-derived SOC compensated loss of savanna-derived SOC rather than increased SOC stocks, indicating high SOC turnover. High turnover are explained by high nutrients inputs and little capacity of Oxisols to physically protect SOC. In conclusion, conversion of savanna to oil palm plantations results in a gain in ecosystem C storage as long as the cultivation lasts. Negative impacts on soil fertility are limited because savanna soils have low initial soil fertility. With more than 7 million ha of well-drained natural savanna grasslands, the Llanos could play a significant role in oil palm development. Nonetheless, a complete assessment of environmental impacts including biodiversity or water consumption is still necessary for the assessment on sustainability of the conversion of savanna to oil palm plantations.
Tan, Liping; Yu, Yongcheng; Li, Xuezhi; Zhao, Jian; Qu, Yinbo; Choo, Yuen May; Loh, Soh Kheang
2013-05-01
This study evaluates the effects of some pretreatment processes to improve the enzymatic hydrolysis of oil palm empty fruit bunch (EFB) for ethanol production. The experimental results show that the bisulfite pretreatment was practical for EFB pretreatment. Moreover, the optimum pretreatment conditions of the bisulfite pretreatment (180 °C, 30 min, 8% NaHSO3, 1% H2SO4) were identified. In the experiments, a biorefinery process of EFB was proposed to produce ethanol, xylose products, and lignosulfonates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Molecular defense response of oil palm to Ganoderma infection.
Ho, C-L; Tan, Y-C
2015-06-01
Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganoderma boninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB
2017-06-01
Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...
Monitoring and mapping leaf area index of rubber and oil palm in small watershed area
NASA Astrophysics Data System (ADS)
Rusli, N.; Majid, M. R.
2014-02-01
Existing conventional methods to determine LAI are tedious and time consuming for implementation in small or large areas. Thus, raster LAI data which are available free were downloaded for 4697.60 km2 of Sungai Muar watershed area in Johor. The aim of this study is to monitor and map LAI changes of rubber and oil palm throughout the years from 2002 to 2008. Raster datasets of LAI value were obtained from the National Aeronautics and Space Administration (NASA) website of available years from 2002 to year 2008. These data, were mosaicked and subset utilizing ERDAS Imagine 9.2. Next, the LAI raster dataset was multiplied by a scale factor of 0.1 to derive the final LAI value. Afterwards, to determine LAI values of rubber and oil palms, the boundaries of each crop from land cover data of the years 2002, 2006 and 2008 were exploited to overlay with LAI raster dataset. A total of 5000 sample points were generated utilizing the Hawths Tool (extension in ARcGIS 9.2) within these boundaries area and utilized for extracting LAI value of oil palm and rubber. In integration, a wide range of literature review was conducted as a guideline to derive LAI value of oil palm and rubber which range from 0 to 6. The results show, an overall mean LAI value from year 2002 to 2008 as decremented from 4.12 to 2.5 due to land cover transition within these years. In 2002, the mean LAI value of rubber and oil palm is 2.65 and 2.53 respectively. Meanwhile in 2006, the mean LAI value for rubber and oil palm is 2.54 and 2.82 respectively. In 2008, the mean LAI value for both crops is 0.85 for rubber and 1.04 for oil palm. In conclusion, apart from the original function of LAI which is related to the growth and metabolism of vegetation, the changes of LAI values from year 2002 to 2008 also capable to explain the process of land cover changes in a watershed area.
NASA Astrophysics Data System (ADS)
Guillaume, T.; Maranguit, D.; Murtilaksono, K.; Kuzyakov, Y.
2015-12-01
Tropical forest conversion to agricultural land leads to strong decrease of soil organic matter (SOM). Nonetheless, the magnitude of SOM losses and their impacts on soil fertility in oil palm and rubber plantations remain unclear, despite the large scale extension of such land-use types. We quantified SOM losses, and estimated soil erosion and changes in SOM turnover using SOM δ13C values in forest, oil palm plantations, extensive rubber plantations and rubber monocultures on Sumatra Island (Indonesia). Further, we assessed the response of biological (basal respiration, microbial biomass, acid phosphatase) and chemical fertility indicators (light fraction, DOC, total N, available P) to SOM losses. We used a new approach based on (non-)linear regressions between SOM losses and the indices standardized to natural ecosystem. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber (41%). The estimated erosion was the strongest in oil palm (35±8 cm) and rubber (33±10 cm) plantations. The SOM 13C enrichment used as a proxy of its turnover indicates a decrease of SOM turnover under oil palm after forest conversion. The negative impact of land-use changes on all measured indicators increased in the following sequence: forest > extensive rubber > rubber > oil palm. The basal respiration, microbial biomass and nutrients were comparatively resistant to SOM losses, whereas the light fraction was lost faster than the SOM. The resistance of the microbial activity to SOM losses is an indication that the microbial functions sustain SOM losses. However, responses of basal respiration and microbial biomass to SOM losses were non-linear. Below 2.7 % C content, the relationship was reversed. The basal respiration decreased faster than the SOM, resulting in a stronger drop of microbial activity under oil palm compared to rubber despite small difference in C content. We conclude that the new approach allows a quantitative assessment of the sensitivity and threshold of various soil functions to land-use changes and consequently, can be used to assess resilience of agroecosystem of gradual use intensity.
Translations on Environmental Quality, Number 180
1978-09-29
Where no processing indicator is given, the infor- Sfii nation was summarized or extracted . ill Unfamiliar names rendered phonetically or...Regulations on Discharge of Palm Oil Effluent in Effect (Anne Koh; BUSINESS TIMES, 1 Jul 78) .... 1 NEW ZEALAND Car Pollution Soars in Christchurch (THE...Out of Istanbul (Alp Orcun; GUNAYDIN, 8 Jul 78) 49 Briefs Marmaris Forest Fire Damage 51 - c - MALAYSIA REGULATIONS ON DISCHARGE OF PALM OIL
Gray, Claudia L; Lewis, Owen T; Chung, Arthur Y C; Fayle, Tom M
2015-01-01
The expansion of oil palm plantations at the expense of tropical forests is causing declines in many species and altering ecosystem functions. Maintaining forest-dependent species and processes in these landscapes may therefore limit the negative impacts of this economically important industry. Protecting riparian vegetation may be one such opportunity; forest buffer strips are commonly protected for hydrological reasons, but can also conserve functionally important taxa and the processes they support. We surveyed leaf litter ant communities within oil palm-dominated landscapes in Sabah, Malaysia, using protein baits. As the scavenging activity of ants influences important ecological characteristics such as nutrient cycling and soil structure, we quantified species-specific rates of bait removal to examine how this process may change across land uses and establish which changes in community structure underlie observed shifts in activity. Riparian reserves had similar ant species richness, community composition and scavenging rates to nearby continuous logged forest. Reserve width and vegetation structure did not affect ant species richness significantly. However, the number of foraging individuals decreased with increasing reserve width, and scavenging rate increased with vegetation complexity. Oil palm ant communities were characterized by significantly lower species richness than logged forest and riparian reserves and also by altered community composition and reduced scavenging rates. Reduced scavenging activity in oil palm was not explained by a reduction in ant species richness, nor by replacement of forest ant species by those with lower per species scavenging rates. There was also no significant effect of land use on the scavenging activity of the forest species that persisted in oil palm. Rather, changes in scavenging activity were best explained by a reduction in the mean rate of bait removal per individual ant across all species in the community. Synthesis and applications. Our results suggest that riparian reserves are comparable to areas of logged forest in terms of ant community composition and ant-mediated scavenging. Hence, in addition to protecting large continuous areas of primary and logged forest, maintaining riparian reserves is a successful strategy for conserving leaf litter ants and their scavenging activities in tropical agricultural landscapes. PMID:25678717
Methane for Power Generation in Muaro Jambi: A Green Prosperity Model Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriarty, K.; Elchinger, M.; Hill, G.
2014-07-01
NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates electricity generation from the organic content of wastewater at a palm oil mill in Muaro Jambi, Sumatra. Palm mills use vast amounts of water in the production process resulting in problematic waste water called palm oil mill effluent (POME). The POME releases methane to the atmosphere in open ponds which could be covered tomore » capture the methane to produce renewable electricity for rural villages. The study uses average Indonesia data to determine the economic viability of methane capture at a palm oil mill and also evaluates technology as well as social and environmental impacts of the project.« less
Farmers’ decision analysis to select certified palm oil seedlings in Lampung, Indonesia
NASA Astrophysics Data System (ADS)
Utoyo, Bambang; Yolandika, Clara
2018-03-01
This research aimed to analyse (1) decission making process of certified and uncertified palm oil seedlings and (2) factors that influence farmer decision to select certified and uncertified palm oil seedlings. This research was conducted in some districts in Lampung, such as Mesuji, Central Lampung, Tulang Bawang, North Lampung, Way Kanan and South Lampung. The respondents consisted of 30 farmers using certified seeds and 30 farmers using uncertified seeds. The study was conducted from January to May 2017. In addition, factors that influence farmer decision was analysed by logistic regression model. The results showed that decision making on the use of certified or uncertified palm seeds by farmers through the stages: introduction of problems or needs, searching of information, alternative evaluation, purchasing decisions, and post-purchase behaviour. Factors that significantly influence farmer's decision to use certified seeds were land area, seeds price, external influenced, and farmers’ perception.
Application of lidar and optical data for oil palm plantation management in Malaysia
NASA Astrophysics Data System (ADS)
Shafri, Helmi Z. M.; Ismail, Mohd Hasmadi; Razi, Mohd Khairil M.; Anuar, Mohd Izzuddin; Ahmad, Abdul Rahman
2012-11-01
Proper oil palm plantation management is crucial for Malaysia as the country depends heavily on palm oil as a major source of national income. Precision agriculture is considered as one of the approaches that can be adopted to improve plantation practices for plantation managers such as the government-owned FELDA. However, currently the implementation of precision agriculture based on remote sensing and GIS is still lacking. This study explores the potential of the use of LiDAR and optical remote sensing data for plantation road and terrain planning for planting purposes. Traditional approaches use land surveying techniques that are time consuming and costly for vast plantation areas. The first ever airborne LiDAR and multispectral survey for oil palm plantation was carried out in early 2012 to test its feasibility. Preliminary results show the efficiency of such technology in demanding engineering and agricultural requirements of oil palm plantation. The most significant advantage of the approach is that it allows plantation managers to accurately plan the plantation road and determine the planting positions of new oil palm seedlings. Furthermore, this creates for the first time, digital database of oil palm estate and the airborne imagery can also be used for related activities such as oil palm tree inventory and detection of palm diseases. This work serves as the pioneer towards a more frequent application of LiDAR and multispectral data for oil palm plantation in Malaysia.
NASA Astrophysics Data System (ADS)
Chairunnisak, A.; Arifin, B.; Sofyan, H.; Lubis, M. R.; Darmadi
2018-03-01
This research focuses on the Chemical Oxygen Demand (COD) treatment in palm oil mill effluent by electrocoagulation and electro-Fenton methods to solve it. Initially, the aqueous solution precipitates in acid condition at pH of about two. This study focuses on the palm oil mill effluent degradation by Fe electrodes in a simple batch reactor. This work is conducted by using different parameters such as voltage, electrolyte concentration of NaCl, volume of H2O2 and operation time. The processing of data resulted is by using response surface method coupled with Box-Behnken design. The electrocoagulation method results in the optimum COD reduction of 94.53% from operating time of 39.28 minutes, 20 volts, and without electrolyte concentration. For electro-Fenton process, experiment points out that voltage 15.78 volts, electrolyte concentration 0.06 M and H2O2 volume 14.79 ml with time 35.92 minutes yield 99.56% degradation. The result concluded that the electro-Fenton process was more effective to degrade COD of the palm-oil-mill effluent compared to electrocoagulation process.
NASA Astrophysics Data System (ADS)
Susanty, W.; Helwani, Z.; Zulfansyah
2018-04-01
Oil palm frond can be used as alternative energy source by torrefaction process. Torrefaction is a treatment process of biomass into solid fuel by heating within temperature range of 200-300°C in an inert environment. This research aims to result solid fuel through torrefaction and to study the effect of process variable interaction. Torrefaction of oil palm frond was using fixed bed horizontal reactor with operation condition of temperature (225-275 °C), time (15-45 minutes) and nitrogen flow rate (50-150 ml/min). Responses resulted were calorific value and proximate (moisture, ash, volatile matter and fixed carbon). Analysis result was processed by using Design Expert v7.0.0. Result obtained for calorific value was 17.700-19.600 kJ/kg and for the proximate were moisture range of 3-4%; ash range of 1.5-4%; volatile matter of 45-55% and fixed carbon of 37-46%. The most affecting factor signficantly towards the responses was temperature then followed by time and nitrogen flow rate.
NASA Astrophysics Data System (ADS)
Daud, Syarifah Nadiah Syed Mat; Ghani, Idris Abd.
2016-11-01
The pollinating weevil, Elaedobius kamerunicus (EK) has been known to be the most efficient insect pollinator of oil palm, and has successfully improved the oil palm pollination and increased the yield. Its introduction has greatly reduced the need for assisted pollination. The purpose of this study was to identify the population density of oil palm pollinator weevil EK using the concept of pollinator force and to relate the population density with the seasonal effect and the age of oil palm at Lekir Oil Palm Plantation Batu 14, Perak, Peninsular Malaysia. The pollinator force of the weevil was sustained at a range between 3095.2 to 19126.1 weevils per ha. The overall mean of weevil per spikelet shows that the range of weevil was between 13.51 and 54.06 per spikelet. There was no correlation between rainfall and population density of EK. However, positive correlation was obtained between weevil density and the number of anthesising female inflorescence of oil palm (r= 0.938, p< 0.05). Results of t-test show that the 6-year old oil palm stands had significantly different population density than that of a 8-year old oil palm stand. The information of this study should be useful as a baseline data to investigate why there is such a wide range of weevils per ha or spikelet. Further study should also be done to relate the number pollinator force per spikelete and the Fresh fruit Bunch (FFB), fruit set or fruit to bunch ratio.
Mitigating the impact of oil-palm monoculture on freshwater fishes in Southeast Asia.
Giam, Xingli; Hadiaty, Renny K; Tan, Heok Hui; Parenti, Lynne R; Wowor, Daisy; Sauri, Sopian; Chong, Kwek Yan; Yeo, Darren C J; Wilcove, David S
2015-10-01
Anthropogenic land-cover change is driving biodiversity loss worldwide. At the epicenter of this crisis lies Southeast Asia, where biodiversity-rich forests are being converted to oil-palm monocultures. As demand for palm oil increases, there is an urgent need to find strategies that maintain biodiversity in plantations. Previous studies found that retaining forest patches within plantations benefited some terrestrial taxa but not others. However, no study has focused on aquatic taxa such as fishes, despite their importance to human well-being. We assessed the efficacy of forested riparian reserves in conserving freshwater fish biodiversity in oil-palm monoculture by sampling stream fish communities in an oil-palm plantation in Central Kalimantan, Indonesia. Forested riparian reserves maintained preconversion local fish species richness and functional diversity. In contrast, local and total species richness, biomass, and functional diversity declined markedly in streams without riparian reserves. Mechanistically, riparian reserves appeared to increase local species richness by increasing leaf litter cover and maintaining coarse substrate. The loss of fishes specializing in leaf litter and coarse substrate decreased functional diversity and altered community composition in oil-palm plantation streams that lacked riparian reserves. Thus, a land-sharing strategy that incorporates the retention of forested riparian reserves may maintain the ecological integrity of fish communities in oil-palm plantations. We urge policy makers and growers to make retention of riparian reserves in oil-palm plantations standard practice, and we encourage palm-oil purchasers to source only palm oil from plantations that employ this practice. © 2015 Society for Conservation Biology.
Analyses of Hypomethylated Oil Palm Gene Space
Jayanthi, Nagappan; Mohd-Amin, Ab Halim; Azizi, Norazah; Chan, Kuang-Lim; Maqbool, Nauman J.; Maclean, Paul; Brauning, Rudi; McCulloch, Alan; Moraga, Roger; Ong-Abdullah, Meilina; Singh, Rajinder
2014-01-01
Demand for palm oil has been increasing by an average of ∼8% the past decade and currently accounts for about 59% of the world's vegetable oil market. This drives the need to increase palm oil production. Nevertheless, due to the increasing need for sustainable production, it is imperative to increase productivity rather than the area cultivated. Studies on the oil palm genome are essential to help identify genes or markers that are associated with important processes or traits, such as flowering, yield and disease resistance. To achieve this, 294,115 and 150,744 sequences from the hypomethylated or gene-rich regions of Elaeis guineensis and E. oleifera genome were sequenced and assembled into contigs. An additional 16,427 shot-gun sequences and 176 bacterial artificial chromosomes (BAC) were also generated to check the quality of libraries constructed. Comparison of these sequences revealed that although the methylation-filtered libraries were sequenced at low coverage, they still tagged at least 66% of the RefSeq supported genes in the BAC and had a filtration power of at least 2.0. A total 33,752 microsatellites and 40,820 high-quality single nucleotide polymorphism (SNP) markers were identified. These represent the most comprehensive collection of microsatellites and SNPs to date and would be an important resource for genetic mapping and association studies. The gene models predicted from the assembled contigs were mined for genes of interest, and 242, 65 and 14 oil palm transcription factors, resistance genes and miRNAs were identified respectively. Examples of the transcriptional factors tagged include those associated with floral development and tissue culture, such as homeodomain proteins, MADS, Squamosa and Apetala2. The E. guineensis and E. oleifera hypomethylated sequences provide an important resource to understand the molecular mechanisms associated with important agronomic traits in oil palm. PMID:24497974
Ting, Ngoot-Chin; Jansen, Johannes; Nagappan, Jayanthi; Ishak, Zamzuri; Chin, Cheuk-Weng; Tan, Soon-Guan; Cheah, Suan-Choo; Singh, Rajinder
2013-01-01
Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR) markers were developed for dura (ENL48) and pisifera (ML161), the two fruit forms of oil palm, Elaeis guineensis. The SSR markers were mapped onto earlier reported parental maps based on amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. The new linkage map of ENL48 contains 148 markers (33 AFLPs, 38 RFLPs and 77 SSRs) in 23 linkage groups (LGs), covering a total map length of 798.0 cM. The ML161 map contains 240 markers (50 AFLPs, 71 RFLPs and 119 SSRs) in 24 LGs covering a total of 1,328.1 cM. Using the improved maps, two quantitative trait loci (QTLs) associated with tissue culturability were identified each for callusing rate and embryogenesis rate. A QTL for callogenesis was identified in LGD4b of ENL48 and explained 17.5% of the phenotypic variation. For embryogenesis rate, a QTL was detected on LGP16b in ML161 and explained 20.1% of the variation. This study is the first attempt to identify QTL associated with tissue culture amenity in oil palm which is an important step towards understanding the molecular processes underlying clonal regeneration of oil palm. PMID:23382832
Masani, Mat Yunus Abdul; Noll, Gundula A; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk
2014-01-01
Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants.
Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection
Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk
2014-01-01
Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306
In-situ data collection for oil palm tree height determination using synthetic aperture radar
NASA Astrophysics Data System (ADS)
Pohl, C.; Loong, C. K.
2016-04-01
The oil palm is recognized as the “golden crop,” producing the highest oil yield among oil seed crops. Malaysia, the world's second largest producer of palm oil, has 16 per cent of its territory planted with oil palms. To cope with the increasing global demand on edible oil, additional areas of oil palm are forecast to increase globally by 12 to 19 million hectares by 2050. Due to the limited land bank in Malaysia, new strategies have to be developed to avoid unauthorized clearing of primary forest for the use of oil palm cultivation. Microwave remote sensing could play a part by providing relevant, timely and accurate information for a plantation monitoring system. The use of synthetic aperture radar (SAR) has the advantage of daylight- and weather-independence, a criterion that is very relevant in constantly cloud-covered tropical regions, such as Malaysia. Using interferometric SAR, (InSAR) topographical and tree height profiles of oil palm plantations can be created; such information is useful for mapping oil palm age profiles of the plantations in the country. This paper reports on the use of SAR and InSAR in a multisensory context to provide up-to-date information at plantation level. Remote sensing and in-situ data collection for tree height determination are described. Further research to be carried out over the next two years is outlined.
Biotechnology of oil palm: strategies towards manipulation of lipid content and composition.
Parveez, Ghulam Kadir Ahmad; Rasid, Omar Abdul; Masani, Mat Yunus Abdul; Sambanthamurthi, Ravigadevi
2015-04-01
Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress.
Processing of oil palm empty fruit bunch as filler material of polymer recycles
NASA Astrophysics Data System (ADS)
Saepulloh, D. R.; Nikmatin, S.; Hardhienata, H.
2017-05-01
Oil palm empty fruit bunches (OPEFB) is waste from crude palm oil (CPO) processing plants. This research aims to process OPEFB to be a reinforcement polymer recycle with the mechanical milling method and identify each establishment molecular with the orbital hybridization theory. OPEFB fibers were synthesized using a mechanical milling until the size shortfiber and microfiber. Then do the biocomposite granular synthesis with single screw extruder. TAPPI chemical test shows levels of α-cellulose fibers amounted 41.68%. Based on density, the most optimum composition contained in the filler amounted 15% with the size is the microfiber. The test results of morphology with SEM showed deployment of filler OPEFB fiber is fairly equitable distributed. Regarding the molecular interaction between matrix with OPEFB fiber, described by the theory of orbital hybridization. But the explanation establishment of the bond for more complex molecules likes this from the side of the molecular orbital theory is necessary complete information of the hybrid levels.
Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia.
Austin, Kemen G; Kasibhatla, Prasad S; Urban, Dean L; Stolle, Fred; Vincent, Jeffrey
2015-01-01
Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1) under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double.
Ultra-stable self-foaming oils.
Binks, Bernard P; Marinopoulos, Ioannis
2017-05-01
This paper is concerned with the foaming of a range of fats in the absence of added foaming agent/emulsifier. By controlling the temperature on warming from the solid or cooling from the melt, crystals of high melting triglycerides form in a continuous phase of low melting triglycerides. Such crystal dispersions in oil can be aerated to produce whipped oils of high foamability and extremely high stability. The foams do not exhibit drainage and bubbles neither coarsen nor coalesce as they become coated with solid crystals. The majority of the findings relate to coconut oil but the same phenomenon occurs in shea butter, cocoa butter and palm kernel stearin. For each fat, there exists an optimum temperature for foaming at which the solid fat content reaches up to around 30%. We demonstrate that the oil foams are temperature-responsive and foam collapse can be controllably triggered by warming the foam to around the melting point of the crystals. Our hypothesis is given credence in the case of the pure system of tristearin crystals in liquid tricaprylin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Amini, Seyed-Asadollah; Ghatreh-Samani, Keihan; Habibi-Kohi, Arash; Jafari, Laleh
2017-02-01
Due to increased consumption of canola oil and hydrogenated oil containing palm and palm olein, and their possible effects on serum lipoproteins, the present study was conducted to determine the effects of these oils on lipids and lipid oxidation level. In this experimental study, 88 Wistar rats were randomly assigned to four groups. Control group (A) was on a normal diet. Groups B, C, and D, in addition to normal diet, were fed with hydrogenated oil-contained palm oil, pure palm olein oil, and canola oil, respectively for 4 weeks. Serum Biochemical factors [total cholesterol (TC), triglyceride (TG), LDL, HDL, LDL/HDL ratio, oxLDL, paraoxanase-1 (PON1), and malondialdehyde (MDA)] were measured. The lowest mean serum TC was seen in the control group and the highest in the group B. There were differences in TC, TG, HDL, MDA, and PON1 between the control group and other groups (P<0.001). The lowest and highest LDL/HDL ratios were observed in the group C and the control group, respectively. Significant differences were seen in OxLDL and PON1 between the control group and other three groups (P<0.05), while there were no significant differences in oxLDL and PON1 among the other three groups (P>0.05). MDA was higher in groups C and D. Canola oil, hydrogenated oil-containing palm and palm olein may increase atherosclerosis risk through decreasing PON1 activity and elevating oxLDL. Palm olein oils in rats' diets cause a considerable decrease in LDL and help to increase HDL.
Oskoueian, Ehsan; Abdullah, Norhani; Zulkifli, Idrus; Ebrahimi, Mahdi; Karimi, Ehsan; Goh, Yong Meng; Oskoueian, Armin; Shakeri, Majid
2015-10-30
Palm kernel cake (PKC), a by-product of the palm oil industry is abundantly available in many tropical and subtropical countries. The product is known to contain high levels of phenolic compounds that may impede the deleterious effects of fungal mycotoxins. This study focused on the evaluation of PKC phenolics as a potential cytoprotective agent towards aflatoxin B1 (AFB1)-induced cell damage. The phenolic compounds of PKC were obtained by solvent extraction and the product rich in phenolic compounds was labeled as phenolic-enriched fraction (PEF). This fraction was evaluated for its phenolic compounds composition. The antioxidant activity of PEF was determined by using 1,1-diphenyl-2-picryl-hydrazil scavenging activity, ferric reducing antioxidant power, inhibition of ß-carotene bleaching, and thiobarbituric acid reactive substances assays. The cytotoxicity assay and molecular biomarkers analyses were performed to evaluate the cytoprotective effects of PEF towards aflatoxin B1 (AFB1)-induced cell damage. The results showed that PEF contained gallic acid, pyrogallol, vanillic acid, caffeic acid, syringic acid, epicatechin, catechin and ferulic acid. The PEF exhibited free radical scavenging activity, ferric reducing antioxidant power, ß-carotene bleaching inhibition and thiobarbituric acid reactive substances inhibition. The PEF demonstrated cytoprotective effects in AFB1-treated chicken hepatocytes by reducing the cellular lipid peroxidation and enhancing antioxidant enzymes production. The viability of AFB1-treated hepatocytes was improved by PEF through up-regulation of oxidative stress tolerance genes and down-regulation of pro-inflammatory and apoptosis associated genes. The present findings supported the proposition that the phenolic compounds present in PKC could be a potential cytoprotective agent towards AFB1 cytotoxicity.
Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah
2015-12-01
Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber.
Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah
2015-01-01
Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber. PMID:26868709
A study of palm biomass processing strategy in Sarawak
NASA Astrophysics Data System (ADS)
Lee, S. J. Y.; Ng, W. P. Q.; Law, K. H.
2017-06-01
In the past decades, palm industry is booming due to its profitable nature. An environmental concern regarding on the palm industry is the enormous amount of waste produced from palm industry. The waste produced or palm biomass is one significant renewable energy source and raw material for value-added products like fiber mats, activated carbon, dried fiber, bio-fertilizer and et cetera in Malaysia. There is a need to establish the palm biomass industry for the recovery of palm biomass for efficient utilization and waste reduction. The development of the industry is strongly depending on the two reasons, the availability and supply consistency of palm biomass as well as the availability of palm biomass processing facilities. In Malaysia, the development of palm biomass industry is lagging due to the lack of mature commercial technology and difficult logistic planning as a result of scattered locality of palm oil mill, where palm biomass is generated. Two main studies have been carried out in this research work: i) industrial study of the feasibility of decentralized and centralized palm biomass processing in Sarawak and ii) development of a systematic and optimized palm biomass processing planning for the development of palm biomass industry in Sarawak, Malaysia. Mathematical optimization technique is used in this work to model the above case scenario for biomass processing to achieve maximum economic potential and resource feasibility. An industrial study of palm biomass processing strategy in Sarawak has been carried out to evaluate the optimality of centralized processing and decentralize processing of the local biomass industry. An optimal biomass processing strategy is achieved.
Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji
2013-11-27
Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10{sup −6} S cm{sup −1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H)more » at 3600–3100 cm{sup −1}, carbonyl (-C=O) at 1750–1650 cm{sup −1} and ether (-C-O-C-) at 1150–1000 cm{sup −1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.« less
Oil palm plantation effects on water quality in Kalimantan, Indonesia
NASA Astrophysics Data System (ADS)
Carlson, K. M.; Curran, L. M.
2011-12-01
Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and agroforests, streams draining oil palm show greater biological activity, as indicated by elevated pH and reduced dissolved oxygen levels. Moreover, turbidity is elevated in young oil palm plantations watersheds compared to forest, agroforest, and old oil palm land covers. We discuss the implications of these findings for communities and ecosystems.
Shuid, Ahmad Nazrun; Chuan, Loh Hong; Mohamed, Norazlina; Jaarin, Kamsiah; Fong, Yew Su; Soelaiman, Ima Nirwana
2007-01-01
Palm oil is shown to have antioxidant, anticancer and cholesterol lowering effects. It is resistant to oxidation when heated compared to other frying oils such as soy oil. When a frying oil is heated repeatedly, it forms toxic degradation products, such as aldehydes which when consumed, may be absorbed into the systemic circulation. We have studied the effects of taking soy or palm oil that were mixed with rat chow on the bone histomorphometric parameters of ovariectomised rats. Female Sprague-Dawley rats were divided into eight groups: (1) normal control group; (2) ovariectomised-control group; (3) ovariectomised and fresh soy oil; (4) ovariectomised and soy oil heated once; (5) ovariectomised and soy oil heated five times; (6) ovariectomised and fresh palm oil; (7) ovariectomised and palm oil heated once; (8) ovariectomised and palm oil heated five times. These oils were mixed with rat chow at weight ratio of 15:100 and were given to the rats daily for six months. Ovariectomy had caused negative effects on the bone histomorphometric parameters. Ingestion of both fresh and once-heated oils, were able to offer protections against the negative effects of ovariectomy, but these protections were lost when the oils were heated five times. Soy oil that was heated five times actually worsens the histomorphometric parameters of ovariectomised rats. Therefore, it may be better for postmenopausal who are at risk of osteoporosis to use palm oil as frying oil especially if they practice recycling of frying oils.
NASA Astrophysics Data System (ADS)
Fan, Yuanchao; Bernoux, Martial; Roupsard, Olivier; Panferov, Oleg; Le Maire, Guerric; Tölle, Merja; Knohl, Alexander
2014-05-01
Deforestation and forest degradation driven by the expansion of oil palm (Elaeis guineensis) plantations has become the major source of GHG emission in Indonesia. Changes of land surface properties (e.g. vegetation composition, soil property, surface albedo) associated with rainforest to oil palm conversion might alter the patterns of land-atmosphere energy, water and carbon cycles and therefore affect local or regional climate. Land surface modeling has been widely used to characterize the two-way interactions between climate and human disturbances on land surface. The Community Land Model (CLM) is a third-generation land model that simulates a wide range of biogeophysical and biogeochemical processes. This project utilizes the land-cover/land-use change (LCLUC) capability of the latest CLM versions 4/4.5 to characterize quantitatively how anthropogenic land surface dynamics in Indonesia affect land-atmosphere carbon, water and energy fluxes. Before simulating land use changes, the first objective is to parameterize and validate the CLM model at local rainforest and oil palm plantation sites through separate point simulations. This entails creation and parameterization of a new plant functional type (PFT) for oil palm, as well as sensitivity analysis and adaptation of model parameters for the rainforest PFTs. CLM modelled fluxes for the selected sites are to be compared with field observations from eddy covariance (EC) flux towers (e.g. a rainforest site in Bariri, Sulawesi; an oil palm site in Jambi, Sumatra). After validation, the project will proceed to parameterize land-use transformation system using remote sensing data and to simulate the impacts of historical LUCs on carbon, water and energy fluxes. Last but not least, the effects of future LUCs in Indonesia on the fluxes and carbon sequestration capacity will be investigated through scenario study. Historical land cover changes, especially oil palm coverage, are retrieved from Landsat or MODIS archival images. Oil palm concession boundaries are used to define and project future land use scenarios. Initial results include outputs from a single-point simulation for the Bariri rainforest site forced with locally measured meteorological data which already showed significant advantage over global forcing data in predicting net ecosystem exchange and latent and sensible heat fluxes. Modeled fluxes are being compared with EC flux observations and with Mixfor-SVAT model outputs from another project at the same site. In the next few months, focus will be on sensitivity analyses of model parameters including PFT optical, morphological and physiological parameters that are necessary to configure the new oil palm PFT and represent rainforest to oil palm conversion. The new parameterization will contribute to the development of the CLM model and its implementation in the modelling of LUC effects in tropical regions will help understanding land-climate interactions.
Kusin, Faradiella Mohd; Akhir, Nurul Izzati Mat; Mohamat-Yusuff, Ferdaus; Awang, Muhamad
2017-02-01
The environmental impacts with regard to agro-based biofuel production have been associated with the impact of greenhouse gas (GHG) emissions. In this study, field GHG emissions during plantation stage of palm oil-based biofuel production associated with land use changes for oil palm plantation development have been evaluated. Three different sites of different land use changes prior to oil palm plantation were chosen; converted land-use (large and small-scales) and logged-over forest. Field sampling for determination of soil N-mineralisation and soil organic carbon (SOC) was undertaken at the sites according to the age of palm, i.e. <5 years (immature), 5-20 and >21 years (mature oil palms). The field data were incorporated into the estimation of nitrous oxide (N 2 O) and the resulting CO 2 -eq emissions as well as for estimation of carbon stock changes. Irrespective of the land conversion scenarios, the nitrous oxide emissions were found in the range of 6.47-7.78 kg N 2 O-N/ha resulting in 498-590 kg CO 2 -eq/ha. On the other hand, the conversion of tropical forest into oil palm plantation has resulted in relatively higher GHG emissions (i.e. four times higher and carbon stock reduction by >50%) compared to converted land use (converted rubber plantation) for oil palm development. The conversion from previously rubber plantation into oil palm plantation would increase the carbon savings (20% in increase) thus sustaining the environmental benefits from the palm oil-based biofuel production.
NASA Astrophysics Data System (ADS)
Said, A. A.; Mustafa
2018-02-01
A small proportion of the Palm Oil Mill Effluent (POME) treatment has used its wastewater to converted to methane gas which will then be converted again into electrical energy. However, for Palm Oil Mill whose has a value of Chemical Oxygen Demand in its wastewater is less than 60.000 mg / L this can’t so that the purpose wastewater treatment only to reach the standard that can be safe to dispose into the environment. Wastewater treatment systems that are general applied by Palm Oil Mill especially in North Sumatera are aerobic and anaerobic, this method takes a relatively long time due to very dependent on microbial activity. An alternative method for wastewater treatment offered is membrane technology because the process is much more effective, the time is relatively short, and expected to give more optimal result. The optimum membrane obtained is PSF19%DMFEVA2T75 membrane,while the parameter condition of the permeate analysis produced in the treatment of POME wastewater with membrane PSF19%DMFEVA2T75 obtained at pH = 7.0; TSS = 148 mg / L; BOD = 149 mg / L; And COD = 252 mg / L. The results obtained is accordance with the standard of the quality of POME.
Two-component mixture model: Application to palm oil and exchange rate
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad
2014-12-01
Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.
Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J. Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W.; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A.; Hewitt, C. Nicholas
2011-01-01
This paper reports measurements of land–atmosphere fluxes of sensible and latent heat, momentum, CO2, volatile organic compounds (VOCs), NO, NO2, N2O and O3 over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO2 flux to the two canopies differs by approximately a factor of 2, 1200 mg C m−2 h−1 for the oil palm and 700 mg C m−2 h−1 for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O3 to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces. PMID:22006962
Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A; Hewitt, C Nicholas
2011-11-27
This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.
Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield.
Edwards, Felicity A; Edwards, David P; Sloan, Sean; Hamer, Keith C
2014-01-01
Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture.
Sustainable Management in Crop Monocultures: The Impact of Retaining Forest on Oil Palm Yield
Edwards, Felicity A.; Edwards, David P.; Sloan, Sean; Hamer, Keith C.
2014-01-01
Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture. PMID:24638038
NASA Astrophysics Data System (ADS)
Heilmayr, R.; Carlson, K. M.; Gibbs, H.; Noojipady, P.; Burns, D.; Morton, D. C.; Walker, N.; Paoli, G.; Kremen, C.
2016-12-01
Dozens of trans-national corporations have made public commitments to purchase only zero-deforestation palm oil, a commodity responsible for substantial tropical forest loss. Eco-certification is a basic requirement of most such forest-related procurement policies, and >20% of palm oil was certified in 2015.While the impact of certification on deforestation in oil palm plantations has never been tested, such evaluation is critical to inform improvements of voluntary sustainability initiatives. Here, we use a new, comprehensive data set of Roundtable on Sustainable Palm Oil (RSPO) certified and non-certified oil palm plantation boundaries (191,561 km2) in Indonesia, the leading global producer of palm oil to generate robust spatio-temporal estimates of certification's impact on deforestation and fires from 2000-2014. We find that certification reduced forest cover loss embodied in RSPO certified palm oil through two mechanisms. Certification had a significant protective effect, which lowered plantation deforestation rates by 29%.However, due to preferential certification of plantations developed before 2000, little forest was available for protection; forest area conserved totaled 56±4.9 km2. Our models suggest that increased adoption of RSPO certification may reduce the ability of palm oil companies to selectively certify previously cleared regions, and consequently strengthen the role of certification in protecting the tropical forests at greatest risk from agricultural encroachment. We reflect upon the complex interactions between traditional government policies, and emerging market-based governance structures in this telecoupled system.
NASA Astrophysics Data System (ADS)
Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.
2015-12-01
Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.
Molecular performance of commercial MTG variety oil palm based on RAPD markers
NASA Astrophysics Data System (ADS)
Putri, L. A. P.; Setyo, I. E.; Basyuni, M.; Bayu, E. S.; Setiado, H.; Reynaldi, N. F.; Laia, H.; Puteri, S. A. K.; Arifiyanto, D.; Syahputra, I.
2018-02-01
The oil palm, an economically important tree in Indonesia, has been one of the world’s major sources of edible oil and a significant precursor of biodiesel fuel. This research is conducted by taking individual tree sample of commercial MTG variety germplasm oil palm one years old. The purpose of this research is to analyse molecular performance of some oil palm MTG variety based on RAPD markers. In this experiment, the DNA profile diversity was assessed using markers of oil palm’s random RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11). A total of 15 trees commercial MTG oil palm variety were used for analysis. The results of the experiment indicated out of 4 RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11) showed polymorphic of PCR product. These preliminary results demonstrated RAPD marker can be used to evaluate genetic relatedness among trees of commercial MTG variety oil palm and detecting either genetic variants or mislabelled.
Stem rots of oil palm caused by Ganoderma boninense: pathogen biology and epidemiology.
Pilotti, C A
2005-01-01
Oil palm (Elaeis guineensis Jacq.) has been grown in Papua New Guinea since the early 1960s. The most important disease of oil palm in PNG is a stem rot of the palm base. This is the same disease that constitutes a major threat to sustainable oil palm production in SE Asia. Investigations into the causal pathogen have revealed that the stem rots in PNG are caused predominantly by the basidiomycete Ganoderma boninense, with a minor pathogen identified as G. tornatum G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms. The population structure of G. boninense was investigated using inter-fertility studies between isolates collected from basal stem rots on oil palm. Although the G. boninense field populations are predominantly comprised of distinct individuals, a number of isolates were found that share single mating alleles. This indicates that out-crossing had occurred over several generations in the resident or wild population of G. boninense prior to colonization of oil palm. No direct hereditary relationship between isolates on neighbouring diseased palms was found, although an indirect link between isolates causing upper stem rot and basal stem rot was detected.
Life cycle environmental impacts of a prospective palm-based biorefinery in Pará State-Brazil.
Delivand, Mitra Kami; Gnansounou, Edgard
2013-12-01
The availability of about 18 million hectares of grassland in Pará State, Brazil, and the possibility of increasing the livestock density display a good perspective for the oil palm expansion in pasture land. A life cycle assessment is performed for a prospective palm-based biorefinery to view two regional and one global environmental impact and the consequences of the land-use change in terms of GHG emissions. Oil palm cultivation in an area of ∼110,000 hectares of land can annually produce ∼39,000 tons of bioethanol, ∼340,000 tons of biodiesel, ∼268 GW h net electricity and other co-products. The life cycle GHG emissions reduction for biodiesel and bioethanol as compared to fossil diesel and gasoline would be 76.9-79.3% and 83.7-88.6%. The advantage of grassland rehabilitation by oil palm plantation is the removal of ∼188 t CO2/ha from the atmosphere during the plant lifetime. The entire inflows and outflows for the conversion processes are schemed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Muthusamy, K.; Zamri, N. A.; Kusbiantoro, A.; Lim, N. H. A. S.; Ariffin, M. A. Mohd
2018-04-01
Both palm oil fuel ash (POFA) and palm oil boiler stone (POBS) are by-products which has been continuously generated by local palm oil mill in large amount. Both by products is usually disposed as profitless waste and considered as nuisance to environment. The present research investigates the workability and compressive strength performance of lightweight aggregate concrete (LWAC) made of palm oil boiler stone (POBS) known as palm oil boiler stone lightweight aggregate concrete (POBS LWAC) containing various content of palm oil fuel ash. The control specimen that is POBS LWAC of grade 60 were produced using 100% OPC. Then, another 4 mixes were prepared by varying the POFA percentage from 10%, 20%, 30% and 40% by weight of cement. Fresh mixes were subjected to slump test to determine its workability before casted in form of cubes. Then, all specimens were subjected to water curing up to 28 days and then tested for its compressive strength. It was found out that utilizing of optimum amount of POFA in POBS LWAC would improve the workability and compressive strength of the concrete. However, inclusion of POFA more than optimum amount is not recommended as it will increase the water demand leading to lower workability and strength reduction.
Oil palm monoculture induces drastic erosion of an Amazonian forest mammal fauna
Maués, Paula Cristina R. de A.; Oliveira, Geovana Linhares; Mineiro, Ivo G. B.; de Maria, Susanne L. Silva; Lima, Renata C. S.
2017-01-01
Oil palm monoculture comprises one of the most financially attractive land-use options in tropical forests, but cropland suitability overlaps the distribution of many highly threatened vertebrate species. We investigated how forest mammals respond to a landscape mosaic, including mature oil palm plantations and primary forest patches in Eastern Amazonia. Using both line-transect censuses (LTC) and camera-trapping (CT), we quantified the general patterns of mammal community structure and attempted to identify both species life-history traits and the environmental and spatial covariates that govern species intolerance to oil palm monoculture. Considering mammal species richness, abundance, and species composition, oil palm plantations were consistently depauperate compared to the adjacent primary forest, but responses differed between functional groups. The degree of forest habitat dependency was a leading trait, determining compositional dissimilarities across habitats. Considering both the LTC and CT data, distance from the forest-plantation interface had a significant effect on mammal assemblages within each habitat type. Approximately 87% of all species detected within oil palm were never farther than 1300 m from the forest edge. Our study clearly reinforces the notion that conventional oil palm plantations are extremely hostile to native tropical forest biodiversity, which does not bode well given prospects for oil palm expansion in both aging and new Amazonian deforestation frontiers. PMID:29117202
Shuhada, Siti Noor; Salim, Sabiha; Nobilly, Frisco; Zubaid, Akbar; Azhar, Badrul
2017-09-01
Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large-scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human-modified landscapes.
Mohammed, Issam Ahmed; Al-Mulla, Emad Abbas Jaffar; Kadar, Nurul Khizien Abdul; Ibrahim, Mazlan
2013-01-01
Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4'-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, (1)H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials.
Time series ARIMA models for daily price of palm oil
NASA Astrophysics Data System (ADS)
Ariff, Noratiqah Mohd; Zamhawari, Nor Hashimah; Bakar, Mohd Aftar Abu
2015-02-01
Palm oil is deemed as one of the most important commodity that forms the economic backbone of Malaysia. Modeling and forecasting the daily price of palm oil is of great interest for Malaysia's economic growth. In this study, time series ARIMA models are used to fit the daily price of palm oil. The Akaike Infromation Criterion (AIC), Akaike Infromation Criterion with a correction for finite sample sizes (AICc) and Bayesian Information Criterion (BIC) are used to compare between different ARIMA models being considered. It is found that ARIMA(1,2,1) model is suitable for daily price of crude palm oil in Malaysia for the year 2010 to 2012.
Oil palm for biodiesel in Brazil—risks and opportunities
NASA Astrophysics Data System (ADS)
Englund, Oskar; Berndes, Göran; Persson, U. Martin; Sparovek, Gerd
2015-04-01
Although mainly used for other purposes, and historically mainly established at the expense of tropical forests, oil palm can be the most land efficient feedstock for biodiesel. Large parts of Brazil are suitable for oil palm cultivation and a series of policy initiatives have recently been launched to promote oil palm production. These initiatives are however highly debated both in the parliament and in academia. Here we present results of a high resolution modelling study of opportunities and risks associated with oil palm production for biodiesel in Brazil, under different energy, policy, and infrastructure scenarios. Oil palm was found to be profitable on extensive areas, including areas under native vegetation where establishment would cause large land use change (LUC) emissions. However, some 40-60 Mha could support profitable biodiesel production corresponding to approximately 10% of the global diesel demand, without causing direct LUC emissions or impinging on protected areas. Pricing of LUC emissions could make oil palm production unprofitable on most lands where conversion would impact on native ecosystems and carbon stocks, if the carbon price is at the level 125/tC, or higher.
Palm oil: a healthful and cost-effective dietary component.
Ong, A S H; Goh, S H
2002-03-01
Palm oil is an excellent choice for food manufacturers because of its nutritional benefits and versatility. The oil is highly structured to contain predominantly oleic acid at the sn2-position in the major triacylglycerols to account for the beneficial effects described in numerous nutritional studies. Oil quality and nutritional benefits have been assured for the variety of foods that can be manufactured from the oil directly or from blends with other oils while remaining trans-free. The oxidative stability coupled with the cost-effectiveness is unparalleled among cholesterol-free oils, and these values can be extended to blends of polyunsaturated oils to provide long shelf-life. Presently the supply of genetic-modification-free palm oil is assured at economic prices, since the oil palm is a perennial crop with unparalleled productivity. Numerous studies have confirmed the nutritional value of palm oil as a result of the high monounsaturation at the crucial 2-position of the oil's triacylglycerols, making the oil as healthful as olive oil. It is now recognized that the contribution of dietary fats to blood lipids and cholesterol modulation is a consequence of the digestion, absorption, and metabolism of the fats. Lipolytic hydrolysis of palm oil glycerides containing predominantly oleic acid at the 2 position and palmitic and stearic acids at the 1 and 3 positions allows for the ready absorption of the 2-monoacrylglycerols while the saturated free fatty acids remain poorly absorbed. Dietary palm oil in balanced diets generally reduced blood cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides while raising the high-density lipoprotein (HDL) cholesterol. Improved lipoprotein(a) and apo-A1 levels were also demonstrated from palm oil diets; an important benefits also comes from the lowering of blood triglycerides (or reduced fat storage) as compared with those from polyunsaturated fat diets. Virgin palm oil also provides carotenes apart from tocotrienols and tocopherols that have been shown to be powerful antioxidants and potential mediators of cellular functions. These compounds can be antithrombotic, cause an increase of the prostacyclin/thromboxane ratio, reduce restenosis, and inhibit HMG-CoA-reductase (thus reducing) cholesterol biosynthesis). Red palm oil is a rich source of beta-carotene as well as of alpha-tocopherol and tocotrienols.
NASA Astrophysics Data System (ADS)
Rahayu Prastyaningsih, Sri; Azwin
2017-12-01
The development of agar wood plants in oil palm plantation requires the forestry techniques in order to obtain maximum production. In an oil palm stands, the age of plant will affect the height, diameter, population and stands density. The older age of an oil palm stands will affect the canopy cover on the forest floor. Agar wood plants are semi-tolerant growth and oil palm can be used as shade. Unilak has an oil palm plantation area of 10 hectares around the campus with 10 years old and 20 years old. The soil condition at the study is Podsolik Merah Kuning (PMK) which poor nutrient and needs fertilization to increase soil fertility. This study aims to find out the effect of age of oil palm stands and fertilization for optimal growth. The split plot design with 2 main plots of the age of palm tree ( 10 years old and 20 years old) and five kinds of fertilizing sub plot (without fertilizer, 40 gram/plant of NPK, 80 gram/plat of NPK, 120 gram/plant of NPK and 180 gram/plant of NPK were used. The results of this research showed that the age of palm tree (canopy cover) treatment gave non-significant influence on the growing of agar wood until it reaches 4 months of growth. The canopyy cover by 10 years old of oil palm tree produce the best response on height (15 cm) and diameter (0,4 cm) growth of agar woods..Fertilizing treatment di not give any significant influence on the heigh and diameter growth of agarwood plants until reach 3 months. The interaction by 10 years old of palm with fertilizing gave non significant results.
NASA Astrophysics Data System (ADS)
Fan, Y.; Roupsard, O.; Bernoux, M.; Le Maire, G.; Panferov, O.; Kotowska, M. M.; Knohl, A.
2015-06-01
Land surface modelling has been widely used to characterize the two-way interactions between climate and human activities in terrestrial ecosystems such as deforestation, agricultural expansion, and urbanization. Towards an effort to quantify the effects of forests to oil palm conversion occurring in the tropics on land-atmosphere carbon, water and energy fluxes, we introduce a new perennial crop plant functional type (PFT) for oil palm. Due to the modular and sequential nature of oil palm growth (around 40 stacked phytomers) and yield (fruit bunches axillated on each phytomer), we developed a specific sub-canopy structure for simulating palm's growth and yield within the framework of the Community Land Model (CLM4.5). In this structure each phytomer has its own prognostic leaf growth and fruit yield capacity like a PFT but with shared stem and root components among all phytomers. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, so that multiple fruit yields per annum are enabled in terms of carbon and nitrogen outputs. An important phenological phase is identified for the palm PFT - the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization, and leaf pruning are represented. Parameters introduced for the new PFT were calibrated and validated with field measurements of leaf area index (LAI) and yield from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched perfectly between simulation and observation (mean percentage error = 4 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites but also indicates that seasonal dynamics and site-to-site variability of yield are driven by processes not yet implemented in the model. The new sub-canopy structure and phenology and allocation functions now allow exploring the effects of tropical land use change, from natural ecosystems to oil palm plantations, on carbon, water and energy cycles and regional climate.
Mapping palm oil expansion using SAR to study the impact on the CO2 cycle
NASA Astrophysics Data System (ADS)
Pohl, Christine
2014-06-01
With Malaysia being the second largest palm oil producer in the world and the fact that palm oil ranks first in vegetable oil production on the world market the palm oil industry became an important factor in the country. Along with the expansion of palm oil across the nation causing deforestation of natural rain forest and conversion of peat land into plantation land there are several factors causing a tremendous increase in carbon dioxide (CO2) emissions. Main causes of CO2 emission apart from deforestation and peat-land conversion are the fires to create plantation land plus the fires burning waste products of the plantations itself. This paper describes a project that aims at the development of a remote sensing monitoring system to allow a continuous observation of oil palm plantation activities and expansion in order to be able to quantify CO2 emissions. The research concentrates on developing a spaceborne synthetic aperture radar information extraction system for palm oil plantations in the Tropics. This will lead to objective figures that can be used internationally to create a policy implementation plan to sustainably reduce CO2 emission in the future.
Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma
2015-02-01
The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Legros, S.; Mialet-Serra, I.; Caliman, J.-P.; Siregar, F. A.; Clement-Vidal, A.; Fabre, D.; Dingkuhn, M.
2009-01-01
Background and Aims Despite its simple architecture and small phenotypic plasticity, oil palm has complex phenology and source–sink interactions. Phytomers appear in regular succession but their development takes years, involving long lag periods between environmental influences and their effects on sinks. Plant adjustments to resulting source–sink imbalances are poorly understood. This study investigated oil palm adjustments to imbalances caused by severe fruit pruning. Methods An experiment with two treatments (control and complete fruit pruning) during 22 months in 2006–2008) and six replications per treatment was conducted in Indonesia. Phenology, growth of above-ground vegetative and reproductive organs, leaf morphology, inflorescence sex differentiation, dynamics of non-structural carbohydrate reserves and light-saturated net photosynthesis (Amax) were monitored. Key Results Artificial sink limitation by complete fruit pruning accelerated development rate, resulting in higher phytomer, leaf and inflorescence numbers. Leaf size and morphology remained unchanged. Complete fruit pruning also suppressed the abortion of male inflorescences, estimated to be triggered at about 16 months before bunch maturity. The number of female inflorescences increased after an estimated lag of 24–26 months, corresponding to time from sex differentiation to bunch maturity. The most important adjustment process was increased assimilate storage in the stem, attaining nearly 50 % of dry weight in the stem top, mainly as starch, whereas glucose, which in controls was the most abundant non-structural carbohydrate stored in oil palm, decreased. Conclusions The development rate of oil palm is in part controlled by source–sink relationships. Although increased rate of development and proportion of female inflorescences constituted observed adjustments to sink limitation, the low plasticity of plant architecture (constant leaf size, absence of branching) limited compensatory growth. Non-structural carbohydrate storage was thus the main adjustment process. PMID:19748908
Soliman, T.; Lim, F. K. S.; Lee, J. S. H.
2016-01-01
Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land. PMID:27853605
Soliman, T; Lim, F K S; Lee, J S H; Carrasco, L R
2016-08-01
Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land.
NASA Astrophysics Data System (ADS)
Sigalingging, R.; Sumono; Rahmansyah, N.
2018-02-01
The estimation of crop water requirement is an important part of oil palm plantation because fruit yield of oil palm can be affected by water stress. Evapotranspiration and crop coefficient of oil palm using Tenera variety at 7-12 months old was determined. Soil texture was sandy loam with 73.8 % sand, 10.8 % silt, 15.77 % clay and 1.41 % organic matter. The results showed that the oil palm getting older decreased significantly in bulk density, particle density and porosity of soil caused the root of oil palm enlarged (19.42 g to 53.37 g). This was indicated by increased the dry root weight. On the other hand, the value of evapotranspiration and crop coefficient increased significantly, that was 1.85 to 2.00 mm/day and 0.8 to 0.87 respectively.
NASA Astrophysics Data System (ADS)
Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham
2013-03-01
Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.
Production and characterization of hydrophobic zinc borate by using palm oil
NASA Astrophysics Data System (ADS)
Acarali, Nil Baran; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye
2013-11-01
Zinc borate (ZB) was synthesized using zinc oxide, boric acid synthesized from colemanite, and reference ZB as seed. The effects of reaction parameters such as reaction time, reactant ratio, and seed ratio on its yield were examined. Then, the effects of palm oil with solvents (isopropyl alcohol (IPA), ethanol, and methanol) added to the reaction on its hydrophobicity were explored. Reactions were carried out under determined reaction conditions with magnetically and mechanically stirred systems. The produced ZB was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and measurements of contact angle identified hydrophobicity. The results showed that hydrophobic ZB was successfully produced under determined reaction conditions. The change of process parameters influenced its yield and the usage of palm oil provided hydrophobicity.
Reconciling Oil Palm Expansion and Climate Change Mitigation in Kalimantan, Indonesia
Austin, Kemen G.; Kasibhatla, Prasad S.; Urban, Dean L.; Stolle, Fred; Vincent, Jeffrey
2015-01-01
Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world’s most abundant vegetable oil and a commodity that has contributed significantly to Indonesia’s economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4–211.4 MtCO2 yr-1 under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55–60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia’s national emissions mitigation goal, while allowing oil palm area to double. PMID:26011182
Effect of oil palm sustainability certification on deforestation and fire in Indonesia.
Carlson, Kimberly M; Heilmayr, Robert; Gibbs, Holly K; Noojipady, Praveen; Burns, David N; Morton, Douglas C; Walker, Nathalie F; Paoli, Gary D; Kremen, Claire
2018-01-02
Many major corporations and countries have made commitments to purchase or produce only "sustainable" palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km 2 ) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y -1 Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation. Copyright © 2017 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Hewitt, Nick; Lee, James
2010-05-01
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an ‘‘environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.
Responses of tropical fruit bats to monoculture and polyculture farming in oil palm smallholdings
NASA Astrophysics Data System (ADS)
Syafiq, Muhamad; Nur Atiqah, Abd Rahman; Ghazali, Amal; Asmah, Siti; Yahya, Muhammad S.; Aziz, Najjib; Puan, Chong Leong; Azhar, Badrul
2016-07-01
The oil palm industry is one of the main economic drivers in Southeast Asia. The industry has caused tropical deforestation on a massive scale in producing countries, and this forest conversion to oil palm agriculture has decimated the habitat of numerous native species. Monoculture and polyculture practices are two distinctive oil palm production systems. We hypothesize that polyculture farming hosts a greater diversity of species than monoculture farming. Habitat complexity in smallholdings is influenced by multiple farming practices (i.e. polyculture and monoculture). However, little is known about the effects of such farming practices in smallholdings on mammalian biodiversity, and particularly frugivorous bats. Our study aimed to find the best farming practice to reconcile oil palm production with biodiversity conservation. Mist-nets were used to trap frugivorous bats at 120 smallholdings in Peninsular Malaysia. We compared species richness and the abundance of frugivorous bats between monoculture and polyculture smallholdings. We investigated their relationships with vegetation structure characteristics. Our results revealed that species richness and abundance of frugivorous bats were significantly greater in polyculture smallholdings than monoculture smallholdings. We also found that 28.21% of the variation in species richness was explained by in situ habitat characteristics, including the number of dead standing oil palms and immature oil palms, non-grass cover, height of non-grass cover, and farming practices. The in situ habitat quality was closely associated with oil palm farming management. Commercial growers should implement polyculture rather than monoculture farming because polyculture farming has positive effects on the abundance and species richness of bats in oil palm production landscapes.
The Impact of Selective-Logging and Forest Clearance for Oil Palm on Fungal Communities in Borneo
Kerfahi, Dorsaf; Tripathi, Binu M.; Lee, Junghoon; Edwards, David P.; Adams, Jonathan M.
2014-01-01
Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest. PMID:25405609
The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.
Kerfahi, Dorsaf; Tripathi, Binu M; Lee, Junghoon; Edwards, David P; Adams, Jonathan M
2014-01-01
Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.
Effect of oil palm sustainability certification on deforestation and fire in Indonesia
Gibbs, Holly K.; Noojipady, Praveen; Burns, David N.; Morton, Douglas C.; Walker, Nathalie F.; Paoli, Gary D.; Kremen, Claire
2018-01-01
Many major corporations and countries have made commitments to purchase or produce only “sustainable” palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km2) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y−1. Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation. PMID:29229857
Hewitt, C. N.; MacKenzie, A. R.; Di Carlo, P.; Di Marco, C. F.; Dorsey, J. R.; Evans, M.; Fowler, D.; Gallagher, M. W.; Hopkins, J. R.; Jones, C. E.; Langford, B.; Lee, J. D.; Lewis, A. C.; Lim, S. F.; McQuaid, J.; Misztal, P.; Moller, S. J.; Monks, P. S.; Nemitz, E.; Oram, D. E.; Owen, S. M.; Phillips, G. J.; Pugh, T. A. M.; Pyle, J. A.; Reeves, C. E.; Ryder, J.; Siong, J.; Skiba, U.; Stewart, D. J.
2009-01-01
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an “environmentally friendly” fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided. PMID:19841269
Palm oil price forecasting model: An autoregressive distributed lag (ARDL) approach
NASA Astrophysics Data System (ADS)
Hamid, Mohd Fahmi Abdul; Shabri, Ani
2017-05-01
Palm oil price fluctuated without any clear trend or cyclical pattern in the last few decades. The instability of food commodities price causes it to change rapidly over time. This paper attempts to develop Autoregressive Distributed Lag (ARDL) model in modeling and forecasting the price of palm oil. In order to use ARDL as a forecasting model, this paper modifies the data structure where we only consider lagged explanatory variables to explain the variation in palm oil price. We then compare the performance of this ARDL model with a benchmark model namely ARIMA in term of their comparative forecasting accuracy. This paper also utilize ARDL bound testing approach to co-integration in examining the short run and long run relationship between palm oil price and its determinant; production, stock, and price of soybean as the substitute of palm oil and price of crude oil. The comparative forecasting accuracy suggests that ARDL model has a better forecasting accuracy compared to ARIMA.
Effect of vegetable oils on fatty acid composition and cholesterol content of chicken frankfurters
NASA Astrophysics Data System (ADS)
Belichovska, D.; Pejkovski, Z.; Belichovska, K.; Uzunoska, Z.; Silovska-Nikolova, A.
2017-09-01
To study the effect of pork adipose tissue substitution with vegetable oils in chicken frankfurters, six frankfurter formulations were produced: control; with pork backfat; with olive oil; with rapeseed oil; with sunflower oil; with palm oil, and; with a mixture of 12% rapeseed oil and 8% palm oil. Fatty acid composition and cholesterol content and some oxides thereof were determined in the final products. The use of vegetable oils resulted in improvement of the fatty acid composition and nutritional of frankfurters. Frankfurters with vegetable oils contained significantly less cholesterol and some of its oxides, compared to the frankfurters with pork fat. The formulation with palm oil had the least favourable fatty acid composition. The use of 12% rapeseed oil improved the ratio of fatty acids in frankfurters with a mixture of rapeseed and palm oils. Complete pork fat replacement with vegetable oils in chicken frankfurter production is technologically possible. The mixture of 12% rapeseed oil and 8% palm oil is a good alternative to pork fat from health aspects. Further research is needed to find the most appropriate mixture of vegetable oils, which will produce frankfurters with good sensory characteristics, a more desirable fatty acid ratio and high nutritional value.
Chan, Pek-Lan; Rose, Ray J; Abdul Murad, Abdul Munir; Zainal, Zamri; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder
2014-01-01
The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm tissues and in the expression profiling of genes relating to yield, biotic and abiotic stresses.
Optimization of squalene produced from crude palm oil waste
NASA Astrophysics Data System (ADS)
Wandira, Irda; Legowo, Evita H.; Widiputri, Diah I.
2017-01-01
Squalene is a hydrocarbon originally and still mostly extracted from shark liver oil. Due to environmental issues over shark hunting, there have been efforts to extract squalene from alternative sources, such as Palm Fatty Acid Distillate (PFAD), one of crude palm oil (CPO) wastes. Previous researches have shown that squalene can be extracted from PFAD using saponification process followed with liquid-liquid extraction process although the method had yet to be optimized in order to optimize the amount of squalene extracted from PFAD. The optimization was done by optimizing both processes of squalene extraction method: saponification and liquid-liquid extraction. The factors utilized in the saponification process optimization were KOH concentration and saponification duration while during the liquid-liquid extraction (LLE) process optimization, the factors used were the volumes of distilled water and dichloromethane. The optimum percentage of squalene content in the extract (24.08%) was achieved by saponifying the PFAD with 50%w/v KOH for 60 minutes and subjecting the saponified PFAD to LLE, utilizing 100 ml of distilled water along with 3 times addition of fresh dichloromethane, 75 ml each; those factors would be utilized in the optimum squalene extraction method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Alina Rahayu; Hamzah, Zainab; Daud, Mohamed Zulkali Mohamed
2014-07-10
The production of crude palm oil from the processing of palm fresh fruit bunches in the palm oil mills in Malaysia hs resulted in a huge quantity of empty fruit bunch (EFB) accumulated. The EFB was used as a feedstock in the pyrolysis process using a fixed-bed reactor in the present study. The optimization of process parameters such as pyrolysis temperature (factor A), biomass particle size (factor B) and holding time (factor C) were investigated through Central Composite Design (CCD) using Stat-Ease Design Expert software version 7 with bio-oil yield considered as the response. Twenty experimental runs were conducted. Themore » results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. All factors studied were significant with p-values < 0.05. The pyrolysis temperature (factor A) was considered as the most significant parameter because its F-value of 116.29 was the highest. The value of R{sup 2} was 0.9564 which indicated that the selected factors and its levels showed high correlation to the production of bio-oil from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical bio-oil yield. The maximum bio-oil yield of 46.2 % was achieved at pyrolysis temperature of 442.15 °C using the EFB particle size of 866 μm which corresponded to the EFB particle size in the range of 710–1000 μm and holding time of 483 seconds.« less
NASA Astrophysics Data System (ADS)
Mohamed, Alina Rahayu; Hamzah, Zainab; Daud, Mohamed Zulkali Mohamed
2014-07-01
The production of crude palm oil from the processing of palm fresh fruit bunches in the palm oil mills in Malaysia hs resulted in a huge quantity of empty fruit bunch (EFB) accumulated. The EFB was used as a feedstock in the pyrolysis process using a fixed-bed reactor in the present study. The optimization of process parameters such as pyrolysis temperature (factor A), biomass particle size (factor B) and holding time (factor C) were investigated through Central Composite Design (CCD) using Stat-Ease Design Expert software version 7 with bio-oil yield considered as the response. Twenty experimental runs were conducted. The results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. All factors studied were significant with p-values < 0.05. The pyrolysis temperature (factor A) was considered as the most significant parameter because its F-value of 116.29 was the highest. The value of R2 was 0.9564 which indicated that the selected factors and its levels showed high correlation to the production of bio-oil from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical bio-oil yield. The maximum bio-oil yield of 46.2 % was achieved at pyrolysis temperature of 442.15 °C using the EFB particle size of 866 μm which corresponded to the EFB particle size in the range of 710-1000 μm and holding time of 483 seconds.
Basri, Mahiran; Tripathy, Minaketan; Abdul-Malek, Emilia
2014-01-01
Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w) and beeswax (1–3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions. PMID:25165736
Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando
2016-08-23
Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values ofmore » 2.6, 2.1 and 2.5 respectively. Finally, these results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando
Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values ofmore » 2.6, 2.1 and 2.5 respectively. Finally, these results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.« less
NASA Astrophysics Data System (ADS)
Tugiman; Ariani, F.; Taher, F.; Hasibuan, M. S.; Suprianto
2017-12-01
Palm oil processing industries are very attractive because they offer plenty products with high economic value. The CPO factory processes not only produces crude palm oil but also generates fly ash (FA) particles waste in its final process. The purpose of this investigation to analyze and increase the benefits of particles as reinforcement materials for fabricating aluminum matrix composites (AMC’s) by different casting route. Stirring, centrifugal and squeeze casting method was conducted in this study. Further, the chemical composition of FA particles, densities and mechanical properties have been analyzed. The characteristics of composite material were investigated using an Optical microscope, scanning electron microscope (SEM), hardness (Brinell), impact strength (Charpy). The pin on disc method was used to measure the wear rate. The results show that SiO2, Fe2O3, and Al2O3 are the main compounds of fly ash particles. These particles enhanced the hardness and reduce wear resistance of aluminum matrix composites. The squeeze method gives better results than stir and centrifugal casting.
Coconut, date and oil palm genomics
USDA-ARS?s Scientific Manuscript database
A review of genomics research is presented for the three most economically important palm crops, coconut (Cocos nucifera), date palm (Phoenix dactylifera) and oil palm (Elaeis guineensis), encompassing molecular markers studies of genetic diversity, genetic mapping, quantitative trait loci discovery...
Evidence-based gene models for structural and functional annotations of the oil palm genome.
Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie
2017-09-08
Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC 3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC 3 -rich genes (GC 3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC 3 -rich and intronless), as well as those associated with important functions, such as FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database ( http://palmxplore.mpob.gov.my ), will provide important resources for studies on the genomes of oil palm and related crops. This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov.
Corn kernel oil and corn fiber oil
USDA-ARS?s Scientific Manuscript database
Unlike most edible plant oils that are obtained directly from oil-rich seeds by either pressing or solvent extraction, corn seeds (kernels) have low levels of oil (4%) and commercial corn oil is obtained from the corn germ (embryo) which is an oil-rich portion of the kernel. Commercial corn oil cou...
Life cycle inventory of oil palm lumber production: A gate-to-gate case study
NASA Astrophysics Data System (ADS)
Shamsudin, Noor Ainna; Sahid, Ismail; Mokhtar, Anis; Muhamad, Halimah; Ahmad, Shamim
2018-04-01
Life Cycle Assessment (LCA) has been applied in the Malaysian oil palm industry since 2010. It is important to ensure that this main industry is ready to meet the demands and expectations of European market on the environmental performance of the oil palm industry. In addition, oil palm biomass, especially oil palm trunk (OPT) are abundantly available after replanting every year. In order to maximize the usage of OPT as a green product, it can be converted to palm lumber as a value-added product. Palm lumber act as a basis product from OPT before it is converted to panel product such as plywood, sandwich board and so on. However, the LCA study on palm lumber production is still scarce in Malaysia. Hence, this paper aims to perform and collect the inventory data for palm lumber production, which is known as Life Cycle Inventory (LCI). A gate-to-gate system boundary and the functional unit of 1 m3 of palm lumber produced have been used in this study. This inventory data was collected from three batches of the production cycle. The inputs are mainly the raw materials which are the OPT and the energy from diesel and electricity from the grid. Generally, each consumption of input such as energy and fossil fuel were different at each stage of palm lumber production. Kiln-drying represents a prominent stage in terms of energy consumption, which electrical use in the dryer represents 94% of total electrical grid consumption as compared to another stage of palm lumber production. By adding the inventory information especially in the downstream sector of biomass industry, hopefully it can improve the sustainability of oil palm industry in Malaysia.
Oil palm and the emission of greenhouse gasses- from field measurements in Indonesia
NASA Astrophysics Data System (ADS)
Rahman, Niharika; Bruun, Thilde Bech; Giller, Ken E.; Magid, Jakob; van de Ven, Gerrie; de Neergaard, Andreas
2017-04-01
Palm oil from the oil palm (Elaeis guianensis) has in recent years become the world's most important vegetable oil. The increasing demand for palm oil has led to expansion of oil palm plantations, which has caused environmental controversies associated with carbon losses and the use of large amounts of mineral fertilizers. Efforts to increase sustainability of oil palm cultivation, include recycling of oil-mill residues and pruning's, but with this comes increased potential for methane emission from the plantations. Until now no field-based data on greenhouse gas emissions from oil palm plantations have been reported. Here for the first time we present data from a long term (360 days) field trial in Bah Lias Research Station, North Sumatra, Indonesia on greenhouse gas emissions from an oil palm plantation with various treatments of recycled oil palm waste products, fertilizers and simulated rainfall. The first experiment was conducted over a full year (dry + wet season) with mineral fertilizer treatments including urea and ammonium sulphate, and organic fertilizer treatments constituting: empty fruit bunches (EFB), enriched mulch (EFB + palm oil mill effluent (POME) ) and pruned oil palm fronds (OPF). Treatment doses represent the current management in Indonesian plantations and the higher doses that are expected in the imminent future. For the organic treatments several methods of application (applied in inter-rows, piles, patches or bands) were evaluated. The second experiment investigated effects of soil water saturation on GHG emissions through adding 25 mm simulated rainfall per day for 21 days. Each palm tree received 1 kg of N fertilizer as urea or ammonium sulphate and enriched mulch. The gas fluxes in the fields was measured by a large static-chamber (1.8 m x 1.2 m) method and CH4 and N2O concentrations were determined using gas chromatographs. We found that emissions were significantly affected by the type and dose of mineral fertilizers. Application of urea leads to significantly higher N2O emission than application of ammonium sulphate. Organic fertilizers resulted in significantly higher CH4 emissions than N2O. The combination of enriched mulch and urea produced the highest N2O emission. When applied in piles, organic fertilizers emitted significantly more N2O and CH4 than when spread out. 25 mm simulated rainfall daily resulted in 76% higher N2O emissions than in the control (no water addition) with highest rates day seven after fertilization. This study will contribute to the development of more accountable and sustainable oil palm production systems and help to guide nutrient management practices to slow down or counteract climate change.
Adding palm oil to the diet of sheep alters fatty acids profile on yogurt: Benefits to consumers.
Bianchi, Anderson E; Silva, Aleksandro S DA; Biazus, Angelisa H; Richards, Neila S P S; Pellegrini, Luis G; Baldissera, Matheus D; Macedo, Vicente P; Silveira, André L F DA
2017-01-01
The aim of this study was to modify the fatty acid profile of yogurt from sheep milk by the inclusion of different concentrations of palm oil into their diet. Thus, thirty-six sheep during lactation were separated in four groups with nine animals each, as described below: the group T0 (0%); the group T2 (inclusion of 2% of palm oil); the group T4 (inclusion of 4% of palm oil) and the group T6 (inclusion of 6% of palm oil). After 60 days of the supplementation, milk samples were collected and yogurt was produced, which was evaluated regarding the concentration of saturated fatty acids (SFA), monounsaturated fatty acids (MFA), and polyunsaturated fatty acids (PFA). A significant reduction (p<0.05) in most SFA and a significant increase (p<0.05) on MFA and PFA was observed in the yogurt of sheep supplemented with 4 and 6% of palm oil. Consequently, it is possible to conclude that palm oil supplementation exerts positive effects on yogurt, since it led to the reduction of undesirable fatty acids and increased fatty acids beneficial to human health.
Relative Estimation of Water Content for Flat-Type Inductive-Based Oil Palm Fruit Maturity Sensor
Misron, Norhisam; Aliteh, Nor Aziana; Harun, Noor Hasmiza; Tashiro, Kunihisa; Sato, Toshiro; Wakiwaka, Hiroyuki
2016-01-01
The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB) which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz) against time (Weeks). It is observed that the resonance frequencies obtained for Week 10 (pre-mature) and Week 18 (mature) are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB. PMID:28036040
Zhou, L X; Xiao, Y; Xia, W; Yang, Y D
2015-12-08
Genetic diversity and patterns of population structure of the 94 oil palm lines were investigated using species-specific simple sequence repeat (SSR) markers. We designed primers for 63 SSR loci based on their flanking sequences and conducted amplification in 94 oil palm DNA samples. The amplification result showed that a relatively high level of genetic diversity was observed between oil palm individuals according a set of 21 polymorphic microsatellite loci. The observed heterozygosity (Ho) was 0.3683 and 0.4035, with an average of 0.3859. The Ho value was a reliable determinant of the discriminatory power of the SSR primer combinations. The principal component analysis and unweighted pair-group method with arithmetic averaging cluster analysis showed the 94 oil palm lines were grouped into one cluster. These results demonstrated that the oil palm in Hainan Province of China and the germplasm introduced from Malaysia may be from the same source. The SSR protocol was effective and reliable for assessing the genetic diversity of oil palm. Knowledge of the genetic diversity and population structure will be crucial for establishing appropriate management stocks for this species.
Relative Estimation of Water Content for Flat-Type Inductive-Based Oil Palm Fruit Maturity Sensor.
Misron, Norhisam; Aliteh, Nor Aziana; Harun, Noor Hasmiza; Tashiro, Kunihisa; Sato, Toshiro; Wakiwaka, Hiroyuki
2016-12-28
The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB) which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz) against time (Weeks). It is observed that the resonance frequencies obtained for Week 10 (pre-mature) and Week 18 (mature) are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB.
Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash
2011-11-01
The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Trischan, John
Rapid deforestation has been occurring in Southeast Asia for majority of the last quarter century. This is due in large by the expansion of oil palm plantations. These plantations fill the need globally for the palm oil they provide. On the other hand, they are removing some of the last remaining primary rainforests on the planet. The issue concerning the ongoing demise of rainforests in the region involves the availability of data in order to monitor the expansion of palm, at the cost of rainforest. Providing a simplified approach to mapping oil palm plantations in hopes of spreading palm analysis regionally in an effort to obtain a better grasp on the land use dynamics. Using spatial filtering techniques, the complexity of radar data are simplified in order to use for palm detection.
Wu, Y H; Cheong, L C; Meon, S; Lau, W H; Kong, L L; Joseph, H; Vadamalai, G
2013-06-01
A 246-nt variant of Coconut cadang-cadang viroid (CCCVd) has been identified and described from oil palms with orange spotting symptoms in Malaysia. Compared with the 246-nt form of CCCVd from coconut, the oil palm variant substituted C(31)→U in the pathogenicity domain and G(70)→C in the central conserved domain. This is the first sequence reported for a 246-nt variant of CCCVd in oil palms expressing orange spotting symptoms.
1987-04-01
such as palm oil and coconut oil . In 1985, for example, Malaysia alone exported 470,887 tonnes of palm oil and palm ker- nel oil to the EEC valued...SOUTHEAST ASIA REPORT CONTENTS INTER-ASIAN AFFAIRS ASEAN To Protest EEC Duties on Vegetable Oils , Fats (Hardev Kaur; BUSINESS TIMES, 18 Feb 87) 1...DAN (TAP CHI QUAN DOI NHAN DAN, Dec 86) 112 /12223 - f - ASEAN TO PROTEST EEC DUTIES ON VEGETABLE OILS , FATS Kuala Lumpur BUSINESS TIMES in
Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S
2011-01-01
Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DNA Profiles of MTG (Moderat Tahan Gano) Oil Palm Variety Based on SSR Marker
NASA Astrophysics Data System (ADS)
Putri, L. A. P.; Setiado, H.; Hardianti, R.
2017-03-01
The oil palm, an economically important tree in Indonesia, has been one of the world’s major sources of edible oil and a significant precursor of biodiesel fuel. The objectives of this study were to know DNA profile of commercial MTG (Moderat Tahan Gano) oil palm variety collections. A total of 10 trees MTG oil palm variety were used for analysis. In this experiment, the DNA profile diversity was assessed using mEgCIR0174 and SSR-1 loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 alleles of pcr product of mEgCIR0174 (198, 203 and 208 bp) and SSR-1 (201, 217 and 232 bp). These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of MTG (Moderat Tahan Gano) oil palm variety derived from different crossing or difference to desease resistance trait or misslabeled.
Increasing the fertilizer value of palm oil mill sludge: bioaugmentation in nitrification.
Onyia, C O; Uyu, A M; Akunna, J C; Norulaini, N A; Omar, A K
2001-01-01
Malaysia is essentially an agricultural country and her major polluting effluents have been from agro-based industries of which palm oil and rubber industries together contribute about 80% of the industrial pollution. Palm oil sludge, commonly referred to, as palm oil mill effluent (POME) is brown slurry composed of 4-5% solids, mainly organic, 0.5-1% residual oil, and about 95% water. The effluent also contains high concentrations of organic nitrogen. The technique for the treatment of POME is basically biological, consisting of pond systems, where the organic nitrogen is converted to ammonia, which is subsequently transformed to nitrate, in a process called nitrification. A 15-month monitoring program of a pond system (combined anaerobic, facultative, and aerobic ponds in series) confirmed studies by other authors and POME operators that nitrification in a pond system demands relatively long hydraulic retention time (HRT), which is not easily achieved, due to high production capacity of most factories. Bioaugmentation of POME with mixed culture of nitrifiers (ammonia and nitrite oxidizers) has been identified as an effective tool not only for enhancing nitrification of POME but also for improving quality of POME as source of liquid nitrogen fertilizer for use in the agricultural sector, especially in oil palm plantations. Nitrate is readily absorbable by most plants, although some plants are able to absorb nitrogen in the form of ammoniun. In this study, up to 60% reduction in HRT (or up to 20% reduction in potential land requirement) was achieved when bioaugmentation of POME was carried out with the aim of achieving full nitrification.
Xu, Xiaoping; Huang, Qingming; Chen, Shanshan; Yang, Peiqiang; Chen, Shaojiang; Song, Yiqiao
2016-01-01
One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed. PMID:27454427
Singh, Bimala; Kale, R K; Rao, A R
2004-04-01
Cashew nut shell oil has been reported to possess tumour promoting property. Therefore an attempt has been made to study the modulatory effect of cashew nut (Anlacardium occidentale) kernel oil on antioxidant potential in liver of Swiss albino mice and also to see whether it has tumour promoting ability like the shell oil. The animals were treated orally with two doses (50 and 100 microl/animal/day) of kernel oil of cashew nut for 10 days. The kernel oil was found to enhance the specific activities of SOD, catalase, GST, methylglyoxalase I and levels of GSH. These results suggested that cashew nut kernel oil had an ability to increase the antioxidant status of animals. The decreased level of lipid peroxidation supported this possibility. The tumour promoting property of the kernel oil was also examined and found that cashew nut kernel oil did not exhibit any solitary carcinogenic activity.
Guillaume, Thomas; Damris, Muhammad; Kuzyakov, Yakov
2015-09-01
Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha(-1) after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ(13) C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ(13) C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The (13) C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ(13) C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ(13) C values with depth. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Systematic review of palm oil consumption and the risk of cardiovascular disease.
Ismail, Sophia Rasheeqa; Maarof, Siti Khuzaimah; Siedar Ali, Syazwani; Ali, Azizan
2018-01-01
The high amount of saturated fatty acids (SFA) coupled with the rising availability and consumption of palm oil have lead to the assumption that palm oil contributes to the increased prevalence of cardiovascular diseases worldwide. We aimed at systematically synthesising the association of palm oil consumption with cardiovascular disease risk and cardiovascular disease-specific mortality. We systematically searched Central, Medline and Embase databases up to June 2017 without restriction on setting or language. We performed separate searches based on the outcomes: coronary heart disease and stroke, using keywords related to these outcomes and palm oil. We searched for published interventional and observational studies in adults (Age: >18 years old). Two investigators extracted data and a consensus was reached with involvement of a third. Only narrative synthesis was performed for all of the studies, as the data could not be pooled. Our search retrieved 2,738 citations for stroke with one included study and 1,777 citations for coronary heart disease (CHD) with four included studies. Palmitic acid was reported to be associated with risk of myocardial infarction (MI) (OR 2.76; 95%CI = 1.39-5.47). Total SFA intake was reported to be not significant for risk of MI. Varying intake of fried foods, highest contributor to total SFA with 36% of households using palm oil for frying, showed no significant associations to risk of MI. Odds of developing first non-fatal acute MI was higher in palm oil compared to soybean oil with 5% trans-fat (OR = 1.33; 95%CI = 1.09-1.62) than palm oil compared to soybean oil with 22% trans-fat (OR = 1.16; 95%CI = 0.86-1.56). Nevertheless, these risk estimates were non-significant and imprecise. The trend amongst those taking staple pattern diet (characterised by higher palm oil, red meat and added sugar consumption) was inconsistent across the factor score quintiles. During the years of 1980 and 1997, for every additional kilogram of palm oil consumed per-capita annually, CHD mortality risk was 68 deaths per 100,000 (95% CI = 21-115) in developing countries and 17 deaths per 100,000 (95%CI = 5.3-29) in high-income countries, whereas stroke was associated with 19 deaths per 100,000 (95%CI = -12-49) and 5.1 deaths per 100,000 (95% CI: -1.2-11) respectively. The evidence for the outcomes of this review were all graded as very low. The findings of this review should be interpreted with some caution, owing to the lack of a pooled effect estimate of the association, significant bias in selection criteria and confounding factors, inclusion of other food items together with palm oil, and the possible out-dated trend in the ecological study. In view of the abundance of palm oil in the market, quantifying its true association with CVD outcomes is challenging. The present review could not establish strong evidence for or against palm oil consumption relating to cardiovascular disease risk and cardiovascular disease-specific mortality. Further studies are needed to establish the association of palm oil with CVD. A healthy overall diet should still be prioritised for good cardiometabolic health.
Narang, Deepak; Sood, Subeena; Thomas, Mathew Kadali; Dinda, Amit Kumar; Maulik, Subir Kumar
2004-01-01
Background Palm olein oil (PO), obtained from refining of palm oil is rich in monounsaturated fatty acid and antioxidant vitamins and is widely used as oil in diet in many parts of the world including India. Palm oil has been reported to have beneficial effects in oxidative stress associated with hypertension and arterial thrombosis. Oxidative stress plays a major role in the etiopathology of myocardial ischemic-reperfusion injury (IRI) which is a common sequel of ischemic heart disease. Antioxidants have potent therapeutic effects on both ischemic heart disease and ischemic-reperfusion injury. Information on the effect of PO on ischemic-reperfusion injury is, however, lacking. In the present study, the effect of dietary palm olein oil on oxidative stress associated with IRI was investigated in an isolated rat heart model. Wistar rats (150–200 gm) of either sex were divided into three different groups (n = 16). Rats were fed with palm olein oil supplemented commercial rat diet, in two different doses [5% v / w (PO 5) and 10% v / w (PO 10) of diet] for 30 days. Control rats (C) were fed with normal diet. After 30 days, half the rats from each group were subjected to in vitro myocardial IRI (20 min of global ischemia, followed by 40 min of reperfusion). Hearts from all the groups were then processed for biochemical and histopathological studies. One way ANOVA followed by Bonferroni test was applied to test for significance and values are expressed as mean ± SE (p < 0.05). Results There was a significant increase in myocardial catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities with no significant change in myocardial thiobarbituric acid reactive substances (TBARS) only in group PO 5 as compared to group C. There was no light microscopic evidence of tissue injury. A significant rise in myocardial TBARS and depletion of myocardial endogenous antioxidants (SOD, CAT and GPx) along with significant myocyte injury was observed in control rats subjected to ischemia-reperfusion (C IR). Hearts from palm olein oil fed rats subjected to ischemia-reperfusion (PO 5 IR and PO 10 IR) were protected from increase in TBARS and depletion of endogenous antioxidants as compared to C IR group. No significant myocyte injury was present in the treated groups. Conclusions The present study demonstrated for the first time that dietary palm olein oil protected rat heart from oxidative stress associated with ischemic-reperfusion injury. PMID:15535879
NASA Astrophysics Data System (ADS)
Kamiran, N.; Sarker, M. L. R.
2014-02-01
The land use/land cover transformation in Malaysia is enormous due to palm oil plantation which has provided huge economical benefits but also created a huge concern for carbon emission and biodiversity. Accurate information about oil palm plantation and the age of plantation is important for a sustainable production, estimation of carbon storage capacity, biodiversity and the climate model. However, the problem is that this information cannot be extracted easily due to the spectral signature for forest and age group of palm oil plantations is similar. Therefore, a noble approach "multi-scale and multi-texture algorithms" was used for mapping vegetation and different age groups of palm oil plantation using a high resolution panchromatic image (WorldView-1) considering the fact that pan imagery has a potential for more detailed and accurate mapping with an effective image processing technique. Seven texture algorithms of second-order Grey Level Co-occurrence Matrix (GLCM) with different scales (from 3×3 to 39×39) were used for texture generation. All texture parameters were classified step by step using a robust classifier "Artificial Neural Network (ANN)". Results indicate that single spectral band was unable to provide good result (overall accuracy = 34.92%), while higher overall classification accuracies (73.48%, 84.76% and 93.18%) were obtained when textural information from multi-scale and multi-texture approach were used in the classification algorithm.
Experimental Biodiversity Enrichment in Oil-Palm-Dominated Landscapes in Indonesia.
Teuscher, Miriam; Gérard, Anne; Brose, Ulrich; Buchori, Damayanti; Clough, Yann; Ehbrecht, Martin; Hölscher, Dirk; Irawan, Bambang; Sundawati, Leti; Wollni, Meike; Kreft, Holger
2016-01-01
Tropical biodiversity is threatened by the expansion of oil-palm plantations. Reduced-impact farming systems such as agroforests, have been proposed to increase biodiversity and ecosystem functioning. In regions where oil-palm plantations already dominate the landscape, this increase can only be achieved through systematic ecological restoration. However, our knowledge about the underlying ecological and socio-economic processes, constraints, and trade-offs of ecological restoration in oil-palm landscapes is very limited. To bridge this gap, we established a long-term biodiversity enrichment experiment. We established experimental tree islands in a conventional oil-palm plantation and systematically varied plot size, tree diversity, and tree species composition. Here, we describe the rationale and the design of the experiment, the ecosystem variables (soil, topography, canopy openness) and biotic characteristics (associated vegetation, invertebrates, birds) of the experimental site prior to the establishment of the experiment, and initial experimental effects on the fauna. Already one year after establishment of the experiment, tree plantings had an overall positive effect on the bird and invertebrate communities at the plantation scale. The diversity and abundance of invertebrates was positively affected by the size of the tree islands. Based on these results, we expect a further increase of biodiversity and associated ecological functions in the future. The long-term interdisciplinary monitoring of ecosystem variables, flora, fauna, and socio-economic aspects will allow us to evaluate the suitability of tree islands as a restoration measure. Thereof, guidelines for ecologically improved and socio-economically viable restoration and management concepts could be developed.
Soil burial biodegradation studies of palm oil-based UV-curable films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajau, Rida, E-mail: rida@nuclearmalaysia.gov.my; Salleh, Mek Zah, E-mail: mekzah@nuclearmalaysia.gov.my; Salleh, Nik Ghazali Nik, E-mail: nik-ghazali@nuclearmalaysia.gov.my
The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respectmore » to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.« less
NASA Astrophysics Data System (ADS)
Nawik, N. S. M.; Deros, B. M.; Rahman, M. N. A.; Sukadarin, E. H.; Nordin, N.; Tamrin, S. B. M.; Bakar, S. A.; Norzan, M. L.
2015-12-01
An ergonomics problem is one of the main issues faced by palm oil plantation workers especially during harvesting and collecting of fresh fruit bunches (FFB). Intensive manual handling and labor activities involved have been associated with high prevalence of musculoskeletal disorders (MSDs) among palm oil plantation workers. New and safe technology on machines and equipment in palm oil plantation are very important in order to help workers reduce risks and injuries while working. The aim of this research is to improve the design of a wheelbarrow, which is suitable for workers and a small size oil palm plantation. The wheelbarrow design was drawn using CATIA ergonomic features. The characteristic of ergonomics assessment is performed by comparing the existing design of wheelbarrow. Conceptual design was developed based on the problems that have been reported by workers. From the analysis of the problem, finally have resulting concept design the ergonomic quality of semi-automatic wheelbarrow with safe and suitable used for palm oil plantation workers.
Influence of palm oil and glycerol on properties of fish skin gelatin-based films.
Nilsuwan, Krisana; Benjakul, Soottawat; Prodpran, Thummanoon
2016-06-01
Properties of fish skin gelatin film incorporated with palm oil at 50 and 75 % (w/w) as affected by glycerol at 0-30 % (w/w) were investigated. Increases in water vapour permeability and elongation at break along with decrease in tensile strength were noticed when levels of glycerol were increased (p < 0.05). Decrease in L*- and a*-values with coincidental increase in b*- and ΔE*-values were observed in emulsified films when amount of palm oil incorporated increased (p < 0.05). Light transmittance of all films increased as glycerol levels were increased (p < 0.05). FTIR results suggested that the protein-protein interaction in film matrix decreased when palm oil was incorporated. Films added with palm oil had lower glass transition and degradation temperatures than control films. The addition of 75 % palm oil and 10 % glycerol improved water vapour barrier property of fish skin gelatin films without drastic alteration of mechanical properties.
Adsorbent capability testing using desorption efficiency method on palm oil fiber
NASA Astrophysics Data System (ADS)
Manap, Nor Rahafza Abdul; Shamsudin, Roslinda
2015-09-01
The palm oil fiber had been used as filler in making thermoplastics, biocomposites and also used as adsorbent in treating waste water. In this study, palm oil fiber was used as adsorbent to treat indoor air pollutants that caused by toluene, ethylbenzene, ortho-, meta-, and para- xylene (o-, m-, p-xylene). Known amount of pollutants, ranges between 1.3 to 28 ppm was spiked into palm oil fiber and left in refrigerator for 24 hours. Then, elution of the pollutants was carried out by carbon disulphide as mobile phase or eluent. The ability of palm oil fiber as adsorbent was determine using desorption efficiency technique by gas chromatography with flame ionization detector (GC/FID). The desorption efficiency percentage given by toluene was in the range of 88.9% to 100%, 91% to 100% for ethylbenzene, 65% to 100% for pm-xylene and 92.9% to 100% for o-xylene. This percentage indicates that palm oil fiber can be used as adsorbent to treat indoor air pollutants.
Soil burial biodegradation studies of palm oil-based UV-curable films
NASA Astrophysics Data System (ADS)
Tajau, Rida; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi; Hamidi, Nur Amira
2016-01-01
The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia's Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.
Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S
2008-01-01
The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.
NASA Astrophysics Data System (ADS)
Baker, M. P.; King, J. C.; Gorman, B. P.; Braley, J. C.
2015-03-01
Current methods of TRISO fuel kernel production in the United States use a sol-gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.
The impact of tropical forest logging and oil palm agriculture on the soil microbiome.
Tripathi, Binu M; Edwards, David P; Mendes, Lucas William; Kim, Mincheol; Dong, Ke; Kim, Hyoki; Adams, Jonathan M
2016-05-01
Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes. © 2016 John Wiley & Sons Ltd.
De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.).
Ho, Chai-Ling; Tan, Yung-Chie; Yeoh, Keat-Ai; Ghazali, Ahmad-Kamal; Yee, Wai-Yan; Hoh, Chee-Choong
2016-01-19
Basal stem rot (BSR) is a fungal disease in oil palm (Elaeis guineensis Jacq.) which is caused by hemibiotrophic white rot fungi belonging to the Ganoderma genus. Molecular responses of oil palm to these pathogens are not well known although this information is crucial to strategize effective measures to eradicate BSR. In order to elucidate the molecular interactions between oil palm and G. boninense and its biocontrol fungus Trichoderma harzianum, we compared the root transcriptomes of untreated oil palm seedlings with those inoculated with G. boninense and T. harzianum, respectively. Differential gene expression analyses revealed that jasmonate (JA) and salicylate (SA) may act in an antagonistic manner in affecting the hormone biosynthesis, signaling, and downstream defense responses in G. boninense-treated oil palm roots. In addition, G. boninense may compete with the host to control disease symptom through the transcriptional regulation of ethylene (ET) biosynthesis, reactive oxygen species (ROS) production and scavenging. The strengthening of host cell walls and production of pathogenesis-related proteins as well as antifungal secondary metabolites in host plants, are among the important defense mechanisms deployed by oil palm against G. boninense. Meanwhile, endophytic T. harzianum was shown to improve the of nutrition status and nutrient transportation in host plants. The findings of this analysis have enhanced our understanding on the molecular interactions of G. boninense and oil palm, and also the biocontrol mechanisms involving T. harzianum, thus contributing to future formulations of better strategies for prevention and treatment of BSR.
Pediatric Age Palm Oil Consumption.
Di Genova, Lorenza; Cerquiglini, Laura; Penta, Laura; Biscarini, Anna; Esposito, Susanna
2018-04-01
Palm oil is widely used in the food industry for its chemical/physical properties, low cost and wide availability. Its widespread use has provoked an intense debate about whether it is a potential danger to human health. In a careful review of the scientific literature, we focused on nutritional characteristics and health effects of the use of palm oil with regards to children, seeking to determine whether there is evidence that justifies fears about the health effects of palm oil. Our review showed that palm oil represents a significant source of saturated fatty acids, to which scientific evidence attributes negative health effects when used in excess, especially with regards to cardiovascular diseases. However, to date, there is no evidence about the harmful effects of palm oil on the health of children. Nevertheless, palm oil has possible ill health effects linked to its composition of fatty acids: its consumption is not correlated to risk factors for cardiovascular diseases in young people with a normal weight and cholesterol level; the elderly and patients with dyslipidaemia or previous cardiovascular events or hypertension are at a greater risk. Therefore, the matter is not palm oil itself but the fatty-acid-rich food group to which it belongs. The most important thing is to consume no more than 10% of saturated fatty acids, regardless of their origin and regardless of one's age. Correct information based on a careful analysis of the scientific evidence, rather than a focus on a singular presumed culprit substance, should encourage better lifestyles.
Image processing analysis of geospatial uav orthophotos for palm oil plantation monitoring
NASA Astrophysics Data System (ADS)
Fahmi, F.; Trianda, D.; Andayani, U.; Siregar, B.
2018-03-01
Unmanned Aerial Vehicle (UAV) is one of the tools that can be used to monitor palm oil plantation remotely. With the geospatial orthophotos, it is possible to identify which part of the plantation land is fertile for planted crops, means to grow perfectly. It is also possible furthermore to identify less fertile in terms of growth but not perfect, and also part of plantation field that is not growing at all. This information can be easily known quickly with the use of UAV photos. In this study, we utilized image processing algorithm to process the orthophotos for more accurate and faster analysis. The resulting orthophotos image were processed using Matlab including classification of fertile, infertile, and dead palm oil plants by using Gray Level Co-Occurrence Matrix (GLCM) method. The GLCM method was developed based on four direction parameters with specific degrees 0°, 45°, 90°, and 135°. From the results of research conducted with 30 image samples, it was found that the accuracy of the system can be reached by using the features extracted from the matrix as parameters Contras, Correlation, Energy, and Homogeneity.
Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman
2015-04-01
Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. © The Author(s) 2015.
Morphology and topography study of graphene synthesized from plant oil
NASA Astrophysics Data System (ADS)
Robaiah, M.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Azhan, H.; Laila, M. O.; Salifairus, M. J.; Asli, N. A.
2018-05-01
The graphene is material consists of bonded atom carbon atoms in sheet form one atom thick. The different types of carbon sources which are refined corn oil, palm oil and waste cooking palm oil were used as carbon feedstock to supply carbon atom for synthesizing graphene on the nickel substrate by thermal chemical vapour deposition. The substrate and carbon sources were placed in double zone furnaces. The carbon sources and the substrate were heated at 300 °C and 900 °C respectively. The both furnaces were switched off after synthesis time for cooling process finish. The formation of the graphene on the Ni surface appears due to segregation and precipitation of a high amount of carbon from the source material during the cooling process. FESEM, AFM, UV-VIS Spectroscopy and Raman Spectroscopy were used to characterize and synthesized graphene.
NASA Astrophysics Data System (ADS)
Ayisi, Christian Larbi; Zhao, Jinliang
2016-02-01
Palm oil is of great potential as one of the sustainable alternatives to fish oil (FO) in aquafeeds. In this present study, five isonitrogenous diets (32% crude protein) with elevated palm oil levels of 0%, 2%, 4%, 6% and 8% were used during an 8-week feeding trial to evaluate its effects on RNA/DNA ratio and lipoprotein lipase (LPL) and MyoD mRNA expressions in muscle of Oreochromis niloticus. The results showed that RNA, DNA content as well as ratio of RNA to DNA were significantly affected ( P < 0.05), in each case the highest was recorded in fish group subjected to 6% palm oil level. There was a strong positive correlation between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and specific growth rate (SGR), protein efficiency ratio (PER), while a negative correlation existed between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and feed conversion ratio (FCR). The mRNA expressions of LPL and MyoD in muscle were not significantly affected by the different palm oil levels, although the highest expression was observed in fish fed with 6% palm oil level. There also existed a strong positive correlation between the mRNA expression of LPL, MyoD and SGR, PER, while their correlation with FCR was negative. In conclusion, elevated palm oil affected the RNA, DNA concentration as well as RNA/DNA ratio significantly, although the mRNA expression of LPL and MyoD were not affected significantly by elevated palm oil levels.
Synergies for Improving Oil Palm Production and Forest Conservation in Floodplain Landscapes
Abram, Nicola K.; Xofis, Panteleimon; Tzanopoulos, Joseph; MacMillan, Douglas C.; Ancrenaz, Marc; Chung, Robin; Peter, Lucy; Ong, Robert; Lackman, Isabelle; Goossens, Benoit; Ambu, Laurentius; Knight, Andrew T.
2014-01-01
Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world’s tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates ($413/ha− yr–$637/ha− yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of $-299/ha− yr-$-65/ha− yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring these into policy and practice, may provide conservation and economic opportunities within these seemingly high opportunity cost landscapes. PMID:24887555
Synergies for improving oil palm production and forest conservation in floodplain landscapes.
Abram, Nicola K; Xofis, Panteleimon; Tzanopoulos, Joseph; MacMillan, Douglas C; Ancrenaz, Marc; Chung, Robin; Peter, Lucy; Ong, Robert; Lackman, Isabelle; Goossens, Benoit; Ambu, Laurentius; Knight, Andrew T
2014-01-01
Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world's tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates ($413/ha-yr-$637/ha-yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of $-299/ha-yr-$-65/ha-yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring these into policy and practice, may provide conservation and economic opportunities within these seemingly high opportunity cost landscapes.
Natural Organochlorines as Precursors of 3-Monochloropropanediol Esters in Vegetable Oils.
Tiong, Soon Huat; Saparin, Norliza; Teh, Huey Fang; Ng, Theresa Lee Mei; Md Zain, Mohd Zairey Bin; Neoh, Bee Keat; Md Noor, Ahmadilfitri; Tan, Chin Ping; Lai, Oi Ming; Appleton, David Ross
2018-01-31
During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products. Analysis of the chlorine isotope mass pattern exhibited in high-resolution mass spectrometry enabled organochlorine compound identification in crude palm oils as constituents of wax esters, fatty acid, diacylglycerols, and sphingolipids, which are produced endogenously in oil palm mesocarp throughout ripening. Analysis of thermal decomposition and changes during refining suggested that these naturally present organochlorine compounds in palm oils and perhaps in other vegetable oils are precursors of 3-MCPD esters. Enrichment and dose-response showed a linear relationship to 3-MCPD ester formation and indicated that the sphingolipid-based organochlorine compounds are the most active precursors of 3-MCPD esters.
NASA Astrophysics Data System (ADS)
Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad
2015-01-01
Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.
Palm oil taxes and cardiovascular disease mortality in India: economic-epidemiologic model
Babiarz, Kim S; Ebrahim, Shah; Vellakkal, Sukumar; Stuckler, David; Goldhaber-Fiebert, Jeremy D
2013-01-01
Objective To examine the potential effect of a tax on palm oil on hyperlipidemia and on mortality due to cardiovascular disease in India. Design Economic-epidemiologic model. Modeling methods A microsimulation model of mortality due to myocardial infarction and stroke among Indian populations was constructed, incorporating nationally representative data on systolic blood pressure, total cholesterol, tobacco smoking, diabetes, and cardiovascular event history, and stratified by age, sex, and urban/rural residence. Household expenditure data were used to estimate the change in consumption of palm oil following changes in oil price and the potential substitution of alternative oils that might occur after imposition of a tax. A 20% excise tax on palm oil purchases was simulated over the period 2014-23. Main outcome measures The model was used to project future mortality due to myocardial infarction and stroke, as well as the potential effect of a tax on food insecurity, accounting for the effect of increased food prices. Results A 20% tax on palm oil purchases would be expected to avert approximately 363 000 (95% confidence interval 247 000 to 479 000) deaths from myocardial infarctions and strokes over the period 2014-23 in India (1.3% reduction in cardiovascular deaths) if people do not substitute other oils for reduced palm oil consumption. Given estimates of substitution of palm oil with other oils following a 20% price increase for palm oil, the beneficial effects of increased polyunsaturated fat consumption would be expected to enhance the projected reduction in deaths to as much as 421 000 (256 000 to 586 000). The tax would be expected to benefit men more than women and urban populations more than rural populations, given differential consumption and cardiovascular risk. In a scenario incorporating the effect of taxation on overall food expenditures, the tax may increase food insecurity by <1%, resulting in 16 000 (95% confidence interval 12 000 to 22 000) deaths. Conclusions Curtailing palm oil intake through taxation may modestly reduce hyperlipidemia and cardiovascular mortality, but with potential distributional consequences differentially benefiting male and urban populations, as well as affecting food security. PMID:24149818
Palm oil taxes and cardiovascular disease mortality in India: economic-epidemiologic model.
Basu, Sanjay; Babiarz, Kim S; Ebrahim, Shah; Vellakkal, Sukumar; Stuckler, David; Goldhaber-Fiebert, Jeremy D
2013-10-22
To examine the potential effect of a tax on palm oil on hyperlipidemia and on mortality due to cardiovascular disease in India. Economic-epidemiologic model. A microsimulation model of mortality due to myocardial infarction and stroke among Indian populations was constructed, incorporating nationally representative data on systolic blood pressure, total cholesterol, tobacco smoking, diabetes, and cardiovascular event history, and stratified by age, sex, and urban/rural residence. Household expenditure data were used to estimate the change in consumption of palm oil following changes in oil price and the potential substitution of alternative oils that might occur after imposition of a tax. A 20% excise tax on palm oil purchases was simulated over the period 2014-23. The model was used to project future mortality due to myocardial infarction and stroke, as well as the potential effect of a tax on food insecurity, accounting for the effect of increased food prices. A 20% tax on palm oil purchases would be expected to avert approximately 363,000 (95% confidence interval 247,000 to 479,000) deaths from myocardial infarctions and strokes over the period 2014-23 in India (1.3% reduction in cardiovascular deaths) if people do not substitute other oils for reduced palm oil consumption. Given estimates of substitution of palm oil with other oils following a 20% price increase for palm oil, the beneficial effects of increased polyunsaturated fat consumption would be expected to enhance the projected reduction in deaths to as much as 421,000 (256,000 to 586,000). The tax would be expected to benefit men more than women and urban populations more than rural populations, given differential consumption and cardiovascular risk. In a scenario incorporating the effect of taxation on overall food expenditures, the tax may increase food insecurity by <1%, resulting in 16,000 (95% confidence interval 12,000 to 22,000) deaths. Curtailing palm oil intake through taxation may modestly reduce hyperlipidemia and cardiovascular mortality, but with potential distributional consequences differentially benefiting male and urban populations, as well as affecting food security.
Somyong, Suthasinee; Poopear, Supannee; Sunner, Supreet Kaur; Wanlayaporn, Kitti; Jomchai, Nukoon; Yoocha, Thippawan; Ukoskit, Kittipat; Tangphatsornruang, Sithichoke; Tragoonrung, Somvong
2016-06-01
Oil palm (Elaeis guineesis Jacq.) is the most productive oil-bearing crop, yielding more oil per area than any other oil-bearing crops. However, there are still efforts to improve oil palm yield, in order to serve consumer and manufacturer demand. Oil palm produces female and male inflorescences in an alternating cycle. So, high sex ratio (SR), the ratio of female inflorescences to the total inflorescences, is a favorable trait in term of increasing yields in oil palm. This study aims to understand the genetic control for SR related traits, such as fresh fruit bunch yield (FFB), by characterizing genes at FFB quantitative trait loci (QTLs) on linkage 10 (chromosome 6) and linkage 15 (chromosome 10). Published oil palm sequences at the FFB QTLs were used to develop gene-based and simple sequence repeat (SSR) markers. We used the multiple QTL analysis model (MQM) to characterize the relationship of new markers with the SR traits in the oil palm population. The RNA expression of the most linked QTL genes was also evaluated in various tissues of oil palm. We identified EgACCO1 (encoding aminocyclopropane carboxylate (ACC) oxidase) at chromosome 10 and EgmiR159a (microRNA 159a) at chromosome 6 to be the most linked QTL genes or determinants for FFB yield and/or female inflorescence number with a phenotype variance explained (PVE) from 10.4 to 15 % and suggest that these play the important roles in sex determination and differentiation in oil palm. The strongest expression of EgACCO1 and the predicted precursor of EgmiR159a was found in ovaries and, to a lesser extent, fruit development. In addition, highly normalized expression of EgmiR159a was found in female flowers. In summary, the QTL analysis and the RNA expression reveal that EgACCO1 and EgmiR159a are the potential genetic factors involved in female flower determination and hence would affect yield in oil palm. However, to clarify how these genetic factors regulate female flower determination, more investigation of their down regulation or target may be essential. Additionally, if more sex determination genes controlled by plant hormones are identified, it may possible to reveal a crosstalk of sex determination genes with hormones and environment factors.
Lam, Man Kee; Lee, Keat Teong
2011-01-01
Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Orewa, S. I.
The study was carried out to investigate farmers reasons for intercropping their oil palm farms with food and other cash crops rather than the sole oil palm planting arrangement specified for participation in the World Bank Assistance Smallholder Oil Palm development project financed during the 1975-83 period. The study was conducted at the Ekuku-Agbor Tree Crop Unit Zone (to the East) and Mosogar Tree Crop Unit Zone (to the Southwest) of the old Bendel State of Nigeria. A total of 35 oil palm farmers were randomly selected from each zone for the study. The study tried to identify the size of oil palm cultivated, types of food and cash crops planted and the proportion consumed and sold and the sufficiency of labour for various farm activities. The study showed that the average oil palm farm size at Ekuku-Agbor zone was smaller (about 1.57 ha) and more fragmented while for Mosogar zone it was 2.28 ha. However a greater percentage (over 65%) of the farms at both locations were within 0.01-2.00 ha farm size range which could be said to be relatively small. The study revealed that among other factors the farmers desire to ensure adequate family food needs which equates to food security and some cash to meet regular family financial needs necessitated their intercropping of the oil palm farms. Others include the need to maximize the returns from the use of labour which they considered a major limiting factor in farm maintenance and to take advantage of the relative high unit price of cassava and its products that prevailed then by cultivating on any available land space including the palm plantations and thereby increasing their farm income.
Code of Federal Regulations, 2011 CFR
2011-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2013 CFR
2013-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2012 CFR
2012-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Chen, Brian K; Seligman, Benjamin; Farquhar, John W; Goldhaber-Fiebert, Jeremy D
2011-12-16
Cardiovascular diseases represent an increasing share of the global disease burden. There is concern that increased consumption of palm oil could exacerbate mortality from ischemic heart disease (IHD) and stroke, particularly in developing countries where it represents a major nutritional source of saturated fat. The study analyzed country-level data from 1980-1997 derived from the World Health Organization's Mortality Database, U.S. Department of Agriculture international estimates, and the World Bank (234 annual observations; 23 countries). Outcomes included mortality from IHD and stroke for adults aged 50 and older. Predictors included per-capita consumption of palm oil and cigarettes and per-capita Gross Domestic Product as well as time trends and an interaction between palm oil consumption and country economic development level. Analyses examined changes in country-level outcomes over time employing linear panel regressions with country-level fixed effects, population weighting, and robust standard errors clustered by country. Sensitivity analyses included further adjustment for other major dietary sources of saturated fat. In developing countries, for every additional kilogram of palm oil consumed per-capita annually, IHD mortality rates increased by 68 deaths per 100,000 (95% CI [21-115]), whereas, in similar settings, stroke mortality rates increased by 19 deaths per 100,000 (95% CI [-12-49]) but were not significant. For historically high-income countries, changes in IHD and stroke mortality rates from palm oil consumption were smaller (IHD: 17 deaths per 100,000 (95% CI [5.3-29]); stroke: 5.1 deaths per 100,000 (95% CI [-1.2-11.0])). Inclusion of other major saturated fat sources including beef, pork, chicken, coconut oil, milk cheese, and butter did not substantially change the differentially higher relationship between palm oil and IHD mortality in developing countries. Increased palm oil consumption is related to higher IHD mortality rates in developing countries. Palm oil consumption represents a saturated fat source relevant for policies aimed at reducing cardiovascular disease burdens.
Ng, Chun-Yi; Kamisah, Yusof; Faizah, Othman; Jubri, Zakiah; Qodriyah, Hj Mohd Saad; Jaarin, Kamsiah
2012-01-01
Oil thermoxidation during deep frying generates harmful oxidative free radicals that induce inflammation and increase the risk of hypertension. This study aimed to investigate the effect of repeatedly heated palm oil on blood pressure, aortic morphometry, and vascular cell adhesion molecule-1 (VCAM-1) expression in rats. Male Sprague-Dawley rats were divided into five groups: control, fresh palm oil (FPO), one-time-heated palm oil (1HPO), five-time-heated palm oil (5HPO), or ten-time-heated palm oil (10HPO). Feeding duration was six months. Blood pressure was measured at baseline and monthly using tail-cuff method. After six months, the rats were sacrificed and the aortic arches were dissected for morphometric and immunohistochemical analyses. FPO group showed significantly lower blood pressure than all other groups. Blood pressure was increased significantly in 5HPO and 10HPO groups. The aortae of 5HPO and 10HPO groups showed significantly increased thickness and area of intima-media, circumferential wall tension, and VCAM-1 than other groups. Elastic lamellae were disorganised and fragmented in 5HPO- and 10HPO-treated rats. VCAM-1 expression showed a significant positive correlation with blood pressure. In conclusion, prolonged consumption of repeatedly heated palm oil causes blood pressure elevation, adverse remodelling, and increased VCAM-1, which suggests a possible involvement of inflammation. PMID:22778962
Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques.
Tres, A; Ruiz-Samblas, C; van der Veer, G; van Ruth, S M
2013-04-15
Analytical methods are required in addition to administrative controls to verify the geographical origin of vegetable oils such as palm oil in an objective manner. In this study the application of fatty acid and volatile organic compound fingerprinting in combination with chemometrics have been applied to verify the geographical origin of crude palm oil (continental scale). For this purpose 94 crude palm oil samples were collected from South East Asia (55), South America (11) and Africa (28). Partial least squares discriminant analysis (PLS-DA) was used to develop a hierarchical classification model by combining two consecutive binary PLS-DA models. First, a PLS-DA model was built to distinguish South East Asian from non-South East Asian palm oil samples. Then a second model was developed, only for the non-Asian samples, to discriminate African from South American crude palm oil. Models were externally validated by using them to predict the identity of new authentic samples. The fatty acid fingerprinting model revealed three misclassified samples. The volatile compound fingerprinting models showed an 88%, 100% and 100% accuracy for the South East Asian, African and American class, respectively. The verification of the geographical origin of crude palm oil is feasible by fatty acid and volatile compound fingerprinting. Further research is required to further validate the approach and to increase its spatial specificity to country/province scale. Copyright © 2012 Elsevier Ltd. All rights reserved.
Naturally p-Hydroxybenzoylated Lignins in Palms
Fachuang Lu; Steven D. Karlen; Matt Regner; Hoon Kim; Sally A. Ralph; Run-Cang Sun; Ken-ichi Kuroda; Mary Ann Augustin; Raymond Mawson; Henry Sabarez; Tanoj Singh; Gerardo Jimenez-Monteon; Sarani Zakaria; Stefan Hill; Philip J. Harris; Wout Boerjan; Curtis G. Wilkerson; Shawn D. Mansfield; John Ralph
2015-01-01
The industrial production of palm oil concurrently generates a substantial amount of empty fruit bunch (EFB) fibers that could be used as a feedstock in a lignocellulose based biorefinery. Lignin byproducts generated by this process may offer opportunities for the isolation of value-added products, such as p-hydroxybenzoate (pBz),...
Systematic review of palm oil consumption and the risk of cardiovascular disease
Ali, Azizan
2018-01-01
Background The high amount of saturated fatty acids (SFA) coupled with the rising availability and consumption of palm oil have lead to the assumption that palm oil contributes to the increased prevalence of cardiovascular diseases worldwide. We aimed at systematically synthesising the association of palm oil consumption with cardiovascular disease risk and cardiovascular disease-specific mortality. Methods We systematically searched Central, Medline and Embase databases up to June 2017 without restriction on setting or language. We performed separate searches based on the outcomes: coronary heart disease and stroke, using keywords related to these outcomes and palm oil. We searched for published interventional and observational studies in adults (Age: >18 years old). Two investigators extracted data and a consensus was reached with involvement of a third. Only narrative synthesis was performed for all of the studies, as the data could not be pooled. Results Our search retrieved 2,738 citations for stroke with one included study and 1,777 citations for coronary heart disease (CHD) with four included studies. Palmitic acid was reported to be associated with risk of myocardial infarction (MI) (OR 2.76; 95%CI = 1.39–5.47). Total SFA intake was reported to be not significant for risk of MI. Varying intake of fried foods, highest contributor to total SFA with 36% of households using palm oil for frying, showed no significant associations to risk of MI. Odds of developing first non-fatal acute MI was higher in palm oil compared to soybean oil with 5% trans-fat (OR = 1.33; 95%CI = 1.09–1.62) than palm oil compared to soybean oil with 22% trans-fat (OR = 1.16; 95%CI = 0.86–1.56). Nevertheless, these risk estimates were non-significant and imprecise. The trend amongst those taking staple pattern diet (characterised by higher palm oil, red meat and added sugar consumption) was inconsistent across the factor score quintiles. During the years of 1980 and 1997, for every additional kilogram of palm oil consumed per-capita annually, CHD mortality risk was 68 deaths per 100,000 (95% CI = 21–115) in developing countries and 17 deaths per 100,000 (95%CI = 5.3–29) in high-income countries, whereas stroke was associated with 19 deaths per 100,000 (95%CI = -12–49) and 5.1 deaths per 100,000 (95% CI: -1.2–11) respectively. The evidence for the outcomes of this review were all graded as very low. The findings of this review should be interpreted with some caution, owing to the lack of a pooled effect estimate of the association, significant bias in selection criteria and confounding factors, inclusion of other food items together with palm oil, and the possible out-dated trend in the ecological study. Conclusion In view of the abundance of palm oil in the market, quantifying its true association with CVD outcomes is challenging. The present review could not establish strong evidence for or against palm oil consumption relating to cardiovascular disease risk and cardiovascular disease-specific mortality. Further studies are needed to establish the association of palm oil with CVD. A healthy overall diet should still be prioritised for good cardiometabolic health. PMID:29489910
MacMillan, Douglas C.; Xofis, Panteleimon; Ancrenaz, Marc; Tzanopoulos, Joseph; Ong, Robert; Goossens, Benoit; Koh, Lian Pin; Del Valle, Christian; Peter, Lucy; Morel, Alexandra C.; Lackman, Isabelle; Chung, Robin; Kler, Harjinder; Ambu, Laurentius; Baya, William; Knight, Andrew T.
2016-01-01
Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380–416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD+ competitiveness in tropical floodplain landscapes; and, providing a robust approach for identifying and targeting limited REDD+ funds. PMID:27276218
Abram, Nicola K; MacMillan, Douglas C; Xofis, Panteleimon; Ancrenaz, Marc; Tzanopoulos, Joseph; Ong, Robert; Goossens, Benoit; Koh, Lian Pin; Del Valle, Christian; Peter, Lucy; Morel, Alexandra C; Lackman, Isabelle; Chung, Robin; Kler, Harjinder; Ambu, Laurentius; Baya, William; Knight, Andrew T
2016-01-01
Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD+ competitiveness in tropical floodplain landscapes; and, providing a robust approach for identifying and targeting limited REDD+ funds.
Health-promoting effects of red palm oil: evidence from animal and human studies.
Loganathan, Radhika; Subramaniam, Kanthimathi M; Radhakrishnan, Ammu K; Choo, Yuen-May; Teng, Kim-Tiu
2017-02-01
The fruit of the oil palm tree (Elaeis guineesis) is the source of antioxidant-rich red palm oil. Red palm oil is a rich source of phytonutrients such as tocotrienols, tocopherols, carotenoids, phytosterols, squalene, and coenzyme Q10, all of which exhibit nutritional properties and oxidative stability. Mutagenic, nutritional, and toxicological studies have shown that red palm oil contains highly bioavailable β-carotene and vitamin A and is reasonably stable to heat without any adverse effects. This review provides a comprehensive overview of the nutritional properties of red palm oil. The possible antiatherogenic, antihemorrhagic, antihypertensive, anticancer, and anti-infective properties of red palm oil are examined. Moreover, evidence supporting the potential effectiveness of red palm oil to overcome vitamin A deficiency in children and pregnant women, to improve ocular complications of vitamin A deficiency, to protect against ischemic heart disease, to promote normal reproduction in males and females, to aid in the management of diabetes, to ameliorate the adverse effects of chemotherapy, and to aid in managing hypobaric conditions is presented. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work properly cited. For commercial re-use, please contact journals.permissions@oup.com.
Park, Sungkwon; Yan, Zhang; Choi, Changweon; Kim, Kyounghoon; Lee, Hyunjeong; Oh, Youngkyoon; Jeong, Jinyoung; Lee, Jonggil; Smith, Stephen B; Choi, Seongho
2017-01-01
We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase ( SCD ) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased ( p <0.05) expression of AMP-activated protein kinase-α and peroxisome proliferator-activated receptor-γ, but decreased ( p <0.05) CAAT/enhancer binding protein-β gene expression and tended to decrease stearoyl-CoA desaturase gene expression in i.m. adipose tissue. Palm oil increased total i.m. polyunsaturated fatty acids ( p <0.05) compared to the control i.m. adipose tissue, but had no effect on saturated or monounsaturated fatty acids. Although there were significant effects of supplemental palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle.
Park, Sungkwon; Yan, Zhang; Choi, Changweon; Kim, Kyounghoon; Lee, Hyunjeong; Oh, Youngkyoon; Jeong, Jinyoung; Lee, Jonggil; Smith, Stephen B.; Choi, Seongho
2017-01-01
We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase (SCD) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased (p<0.05) expression of AMP-activated protein kinase-α and peroxisome proliferator-activated receptor-γ, but decreased (p<0.05) CAAT/enhancer binding protein-β gene expression and tended to decrease stearoyl-CoA desaturase gene expression in i.m. adipose tissue. Palm oil increased total i.m. polyunsaturated fatty acids (p<0.05) compared to the control i.m. adipose tissue, but had no effect on saturated or monounsaturated fatty acids. Although there were significant effects of supplemental palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle. PMID:28515640
NASA Astrophysics Data System (ADS)
Knohl, Alexander; Meijide, Ana; Fan, Yuanchao; Gunawan, Dodo; Hölscher, Dirk; June, Tania; Niu, Furong; Panferov, Oleg; Ringeler, Andre; Röll, Alexander; Sabajo, Clifton; Tiralla, Nina
2016-04-01
Indonesia currently experiences rapid and large-scale land-use changes resulting in forest loss and the expansion of cash crop plantations such as oil palm and rubber. Such land transformations are associated with changes in surface properties that affect biophysical processes influencing the atmosphere. Yet, the overall effect of such land transformations on the atmosphere at local and regional scale remains unclear. In our study, we combine measurements of microclimate, transpiration via sap-flux, surface energy fluxes via eddy covariance, surface temperature via remote sensing, land surface (CLM) and regional climate modeling (WRF) for Jambi Province in Indonesia. Our microclimatic measurements showed that air temperature within the canopy was on average 0.7-0.8°C higher in monoculture plantations (oil palm and rubber) compared to forest. Remote sensing analysis using MODIS and Landsat revealed a higher canopy surface temperature for oil palm plantations (+1.5°C) compared to forest, but only little differences for rubber plantations. Transpiration (T) and evapotranspiration (ET) as well as the contribution of T to ET of oil palm showed a strong age-dependent increase. The sensible to latent heat flux ratio decreased with age. Overall, rubber plantations showed the lowest transpirations rates (320 mm year-1), oil palm intermediate rates (414 mm year-1), and forest the highest rates (558 mm year-1) indicating substantial differences in water use. Despite the differences in water use and the higher within-canopy and surface temperatures of the plantations compared to the forest, there was only a minor effect of land transformation on the atmosphere at the regional scale (<0.2 °C), irrespectively of the large spatial extend of the transformation. In conclusion, our study shows a strong local scale biophysical impact affecting the conditions at the stand level, which is however mitigated in the atmosphere at the regional level.
NASA Astrophysics Data System (ADS)
Knohl, A.; Meijide, A.; Fan, Y.; Hölscher, D.; June, T.; Niu, F.; Panferov, O.; Ringeler, A.; Röll, A.; Sabajo, C.; Tiralla, N.
2015-12-01
Indonesia currently experiences rapid and large-scale land-use changes resulting in forest loss and the expansion of cash crop plantations such as oil palm and rubber. Such land transformations are associated with changes in surface properties that affect biophysical processes influencing the atmosphere. Yet, the overall effect of such land transformations on the atmosphere at local and regional scale remains unclear. In our study, we combine measurements of microclimate, transpiration via sap-flux, surface energy fluxes via eddy covariance, surface temperature via remote sensing, land surface (CLM) and regional climate modeling (WRF) for Jambi Province in Indonesia. Our microclimatic measurements showed that air temperature within the canopy was on average 0.7-0.8°C higher in monoculture plantations (oil palm and rubber) compared to forest. Remote sensing analysis using MODIS and Landsat revealed a higher canopy surface temperature for oil palm plantations (+1.5°C) compared to forest, but only little differences for rubber plantations. Transpiration (T) and evapotranspiration (ET) as well as the contribution of T to ET of oil palm showed a strong age-dependent increase. The sensible to latent heat flux ratio decreased with age. Overall, rubber plantations showed the lowest transpirations rates (320 mm year-1), oil palm intermediate rates (414 mm year-1), and forest the highest rates (558 mm year-1) indicating substantial differences in water use. Despite the differences in water use and the higher within-canopy and surface temperatures of the plantations compared to the forest, there was only a minor effect of land transformation on the atmosphere at the regional scale (<0.2 °C), irrespectively of the large spatial extend of the transformation. In conclusion, our study shows a strong local scale biophysical impact affecting the conditions at the stand level, which is however mitigated in the atmosphere at the regional level.
Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments.
Rafii, M Y; Jalani, B S; Rajanaidu, N; Kushairi, A; Puteh, A; Latif, M A
2012-10-04
We evaluated 38 dura x pisifera (DP) oil palm progenies in four locations in Malaysia for genotype by environment interaction and genotypic stability studies. The DP progenies derived from crosses between pisifera palms of AVROS, Serdang S27B, Serdang 29/36, and Lever Cameroon were chosen to be the males' parent and Deli dura palms designated as females' parent. All the locations differed in terms of soil physical and chemical properties, and the soil types ranged from coastal clay to inland soils. The genotype by environment interaction and stability of the individual genotypes were analyzed for oil yield trait using several stability techniques. A genotype by environment interaction was detected for oil yield and it had a larger variance component than genotypic variance (σ(2)(gl)/σ(2)(g) = 139.7%). Genotype by environment interaction of oil yield was largely explained by a non-linear relationship between genotypic and environmental values. Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total individual genotype stability scored more than 10 and mean oil yielded above the average of the environment (genotype means are more than 34.37 kg·palm(-1)·year(-1))]. These genotypes will be useful for oil palm breeding and tissue culture programs for developing high oil yielding planting materials with stable performance.
Optimization of Protein Extraction and Two-Dimensional Electrophoresis Protocols for Oil Palm Leaf.
Daim, Leona Daniela Jeffery; Ooi, Tony Eng Keong; Yusof, Hirzun Mohd; Majid, Nazia Abdul; Karsani, Saiful Anuar Bin
2015-08-01
Oil palm (Elaeis guineensis) is an important economic crop cultivated for its nutritional palm oil. A significant amount of effort has been undertaken to understand oil palm growth and physiology at the molecular level, particularly in genomics and transcriptomics. Recently, proteomics studies have begun to garner interest. However, this effort is impeded by technical challenges. Plant sample preparation for proteomics analysis is plagued with technical challenges due to the presence of polysaccharides, secondary metabolites and other interfering compounds. Although protein extraction methods for plant tissues exist, none work universally on all sample types. Therefore, this study aims to compare and optimize different protein extraction protocols for use with two-dimensional gel electrophoresis of young and mature leaves from the oil palm. Four protein extraction methods were evaluated: phenol-guanidine isothiocyanate, trichloroacetic acid-acetone precipitation, sucrose and trichloroacetic acid-acetone-phenol. Of these four protocols, the trichloroacetic acid-acetone-phenol method was found to give the highest resolution and most reproducible gel. The results from this study can be used in sample preparations of oil palm tissue for proteomics work.
Forecasting of palm oil price in Malaysia using linear and nonlinear methods
NASA Astrophysics Data System (ADS)
Nor, Abu Hassan Shaari Md; Sarmidi, Tamat; Hosseinidoust, Ehsan
2014-09-01
The first question that comes to the mind is: "How can we predict the palm oil price accurately?" This question is the authorities, policy makers and economist's question for a long period of time. The first reason is that in the recent years Malaysia showed a comparative advantage in palm oil production and has become top producer and exporter in the world. Secondly, palm oil price plays significant role in government budget and represents important source of income for Malaysia, which potentially can influence the magnitude of monetary policies and eventually have an impact on inflation. Thirdly, knowledge on the future trends would be helpful in the planning and decision making procedures and will generate precise fiscal and monetary policy. Daily data on palm oil prices along with the ARIMA models, neural networks and fuzzy logic systems are employed in this paper. Empirical findings indicate that the dynamic neural network of NARX and the hybrid system of ANFIS provide higher accuracy than the ARIMA and static neural network for forecasting the palm oil price in Malaysia.
NASA Astrophysics Data System (ADS)
Setyowati, Paulina Adina Hari; Halim, Lenny; Mellyanawaty, Melly; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni
2017-05-01
Palm oil mill effluent (POME) is the wastewater discharged from sludge separation, sterilization, and clarification process of palm oil industries. Each ton of palm oil produces about half ton of high organic load wastewater. Up to now, POME treatment is done in lagoon, leaving major problems in land requirement and greenhouse gasses release. The increasing of palm oil production provokes the urgency of appropriate technology application in treating POME to prevent the greenhouse gasses emission while exploit POME as renewable energy source. The purposes of this study were firstly to test the effectiveness of using the digested biodiesel waste as the inoculum and secondly to evaluate the effectiveness of natural zeolite addition in minimizing the inhibitory effect in digesting POME. It was expected that the oil-degrading bacteria in the inoculum would shorten the adaptation period in digesting POME. Furthermore, the consortium formation of anaerobic bacteria accelerated by natural zeolite powder addition would increase the microbial resistance to the inhibitors contained in the POME. The batch digesters, containing 0 (control); 17; 38; and 63 g natural zeolite/g sCOD substrate were observed for 43 days. The result showed that zeolite addition did not give significant effect on sCOD reduction (97.3-98.6% of initial sCOD). Moreover, addition of immobilization media up to 17 g natural zeolite/g stimulated the acidification and biogas production up to 10% higher than control. The purity of methane produced with various amount of immobilization media did not differ for each variation, i.e. 50-54% v/v methane. The increasing amount of natural zeolite up to 63 g/g sCOD did not significantly enhance biogas product rate nor methane content.
Design of Integrated Polarizer for Detection of Lard Impurities in Cooking Oil
NASA Astrophysics Data System (ADS)
Sugito, H.; Firdausi, K. S.; Putri, N. K.
2018-05-01
This research was conducted to find the “fingerprint” of the existence of lard in vegetable cooking oil. Integrated Polarizer is composed of light source, polarizer, analizer, cuvette, electrodes, and a camera. This tool works based on the transmission polarization method. Cooking oil used is palm oil that has been contaminated with chicken oil and lard the light source used is a green laser with wavelength of 532 ± 10 nm. Measurements are made by observing the change of transmission polarization angle. The results show that palm oil which contaminated by lard has the greatest polarization angle change compared to pure palm oil. The content of saturated fatty acids in lard is greater than pure palm oil resulting in a greater change in transmission polarization angles from the results showed that integrated polarizer can be used for detection of lard impurities in cooking oil
Chemical components of cold pressed kernel oils from different Torreya grandis cultivars.
He, Zhiyong; Zhu, Haidong; Li, Wangling; Zeng, Maomao; Wu, Shengfang; Chen, Shangwei; Qin, Fang; Chen, Jie
2016-10-15
The chemical compositions of cold pressed kernel oils of seven Torreya grandis cultivars from China were analyzed in this study. The contents of the chemical components of T. grandis kernels and kernel oils varied to different extents with the cultivar. The T. grandis kernels contained relatively high oil and protein content (45.80-53.16% and 10.34-14.29%, respectively). The kernel oils were rich in unsaturated fatty acids including linoleic (39.39-47.77%), oleic (30.47-37.54%) and eicosatrienoic acid (6.78-8.37%). The kernel oils contained some abundant bioactive substances such as tocopherols (0.64-1.77mg/g) consisting of α-, β-, γ- and δ-isomers; sterols including β-sitosterol (0.90-1.29mg/g), campesterol (0.06-0.32mg/g) and stigmasterol (0.04-0.18mg/g) in addition to polyphenols (9.22-22.16μgGAE/g). The results revealed that the T. grandis kernel oils possessed the potentially important nutrition and health benefits and could be used as oils in the human diet or functional ingredients in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Andrés, S; Huerga, L; Mateo, J; Tejido, M L; Bodas, R; Morán, L; Prieto, N; Rotolo, L; Giráldez, F J
2014-02-01
Thirty two lambs were fed a total mixed ration (TMR) formulated either with palm oil (CTRL; 34 g palm oil kg(-1) TMR) or whole flaxseed (+FS, 85 g flaxseed kg(-1) TMR) alone or enriched with quercetin (+QCT, 34 g palm oil plus 2 g quercetin kg(-1) TMR; +FS+QCT, 85 g flaxseed plus 2 g quercetin kg(-1) TMR). Dietary flaxseed did not affect, in a significant manner, the lipid peroxidation of meat samples. Quercetin treatment reduced oxysterol content (P<0.05) after 7 days of refrigerated storage of fresh meat, but did not affect significantly (P>0.05) the level of lipid-derived volatiles in the headspace of the light-exposed stored cooked meat. Sensory evaluation showed flaxseed as being responsible for a negative effect on meat flavour, probably associated with a modification of the fatty acid profile whereas, unexpectedly, quercetin seemed to worsen meat tenderisation. © 2013.
Estimating the age of oil palm trees using remote sensing technique
NASA Astrophysics Data System (ADS)
Fitrianto, A. C.; Darmawan, A.; Tokimatsu, K.; Sufwandika, M.
2018-04-01
One of renewable energy that can be converted into electricity is biomass. Biomass energy or bio energy is the largest source of domestic renewable energy in Indonesia. Since palm oil development is rapidly increasing, Empty Fruit Bunch (EFB) and Mesocarp Fiber (MF) are becoming the highest contributor of oil palm waste. Understanding biomass waste potential is very important for further utilization. Remote sensing technique can be used to detect oil palm trees age based on the canopy density and to estimate the amount of EFB in further analysis. In this research, the percentage of canopy density of oil palm trees/stands depends on their ages and the age is divided into four classes; seeds (<3 years old; <10%), young (3-8 years old; 10-40 %), teenage (9-14 years old; 41-80 %), and mature (15-25 years old; >80 %).
NASA Astrophysics Data System (ADS)
Bardant, Teuku Beuna; Winarni, Ina; Sukmana, Hadid
2017-01-01
It was desired to obtain a general formula for producing bio-ethanol from any part of lignocelluloses wastes that came from palm oil industries due to its abundance. Optimum condition that obtained by using RSM for conducting high-loading-substrate enzymatic hydrolysis of palm oil empty fruit bunch was applied to palm oil trunks and then followed by unsterilized fermentation for producing bio-ethanol. From several optimized conditions investigated, the resulted ethanol concentration could reach 7.92 %v by using 36.5 %w of palm oil trunks but the results were averagely 2.46 %v lower than palm oil empty fruit bunch. The results was statistically compared and showed best correlative coefficient at 0.808 (in scale 0-1) which support the conclusion that the optimum condition for empty fruit bunch and trunks are similar. Utilization of mixed-culture yeast was investigated to produce ethanol from unsterilized hydrolysis product but the improvement wasn't significant compares to single culture yeast.
NASA Astrophysics Data System (ADS)
Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.
2017-08-01
Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce sustainable
palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance is unclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009, forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident active fire detections. Interannual variability in fire detections was strongly influenced by El Niño and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Niño events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75 % and 66 % lower on certified plantations than noncertified plantations during the 2009 and 2015 El Niño events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero deforestation.
NASA Technical Reports Server (NTRS)
Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.
2017-01-01
Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce "sustainable" palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance isunclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009,forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident activefire detections. Interannual variability in fire detections was strongly influenced by El Nino and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Nino events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75% and 66% lower on certified plantations than noncertified plantations during the 2009 and 2015 El Nino events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero forestation.
Yeoh, K-A; Othman, A; Meon, S; Abdullah, F; Ho, C-L
2013-01-01
Chitinases are glycosyl hydrolases that cleave the β-1,4-glycosidic linkages between N-acetylglucosamine residues in chitin which is a major component of fungal cell wall. Plant chitinases hydrolyze fungal chitin to chitin oligosaccharides that serve as elicitors of plant defense system against fungal pathogens. However, plants synthesize many chitinase isozymes and some of them are not pathogenesis-related. In this study, three full-length cDNA sequences encoding a putative chitinase (EgChit3-1) and two chitinase-like proteins (EgChit1-1 and EgChit5-1) have been cloned from oil palm (Elaeis guineensis) by polymerase chain reaction (PCR). The abundance of these transcripts in the roots and leaves of oil palm seedlings treated with Ganoderma boninense (a fungal pathogen) or Trichoderma harzianum (an avirulent symbiont), and a combination of both fungi at 3, 6 and 12 weeks post infection were profiled by real time quantitative reverse-transcription (qRT)-PCR. Our findings showed that the gene expression of EgChit3-1 increased significantly in the roots of oil palm seedlings treated with either G. boninense or T. harzianum and a combination of both; whereas the gene expression of EgChit1-1 in the treated roots of oil palm seedlings was not significantly higher compared to those of the untreated oil palm roots. The gene expression of EgChit5-1 was only higher in the roots of oil palm seedlings treated with T. harzianum compared to those of the untreated oil palm roots. In addition, the gene expression of EgChit1-1 and EgChit3-1 showed a significantly higher gene expression in the leaf samples of oil palm seedlings treated with either G. boninense or T. harzianum.
Wang, Wendy Y; Foster, William A
2015-08-01
Beta diversity - the variation in species composition among spatially discrete communities - and sampling grain - the size of samples being compared - may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in agricultural landscapes may be greater than expected when beta diversity is accounted for at large spatial scales.
Experimental Biodiversity Enrichment in Oil-Palm-Dominated Landscapes in Indonesia
Teuscher, Miriam; Gérard, Anne; Brose, Ulrich; Buchori, Damayanti; Clough, Yann; Ehbrecht, Martin; Hölscher, Dirk; Irawan, Bambang; Sundawati, Leti; Wollni, Meike; Kreft, Holger
2016-01-01
Tropical biodiversity is threatened by the expansion of oil-palm plantations. Reduced-impact farming systems such as agroforests, have been proposed to increase biodiversity and ecosystem functioning. In regions where oil-palm plantations already dominate the landscape, this increase can only be achieved through systematic ecological restoration. However, our knowledge about the underlying ecological and socio-economic processes, constraints, and trade-offs of ecological restoration in oil-palm landscapes is very limited. To bridge this gap, we established a long-term biodiversity enrichment experiment. We established experimental tree islands in a conventional oil-palm plantation and systematically varied plot size, tree diversity, and tree species composition. Here, we describe the rationale and the design of the experiment, the ecosystem variables (soil, topography, canopy openness) and biotic characteristics (associated vegetation, invertebrates, birds) of the experimental site prior to the establishment of the experiment, and initial experimental effects on the fauna. Already one year after establishment of the experiment, tree plantings had an overall positive effect on the bird and invertebrate communities at the plantation scale. The diversity and abundance of invertebrates was positively affected by the size of the tree islands. Based on these results, we expect a further increase of biodiversity and associated ecological functions in the future. The long-term interdisciplinary monitoring of ecosystem variables, flora, fauna, and socio-economic aspects will allow us to evaluate the suitability of tree islands as a restoration measure. Thereof, guidelines for ecologically improved and socio-economically viable restoration and management concepts could be developed. PMID:27799935
Investigation on Nonlinear-Optical Properties of Palm Oil/Silver Nanoparticles
NASA Astrophysics Data System (ADS)
Zamiri, R.; Parvizi, R.; Zakaria, A.; Sadrolhosseini, A. R.; Zamiri, G.; Darroudi, M.; Husin, M. S.
2012-06-01
We have investigated the spatial self phase modulation of palm oil containing silver nanoparticles (palm oil/Ag-NPs). The study carried out using continuous wave diode pumped solid state laser with wavelength of 405 nm and power of 50 mW. The strong spatial self phase modulation patterns were observed that suggest the palm oil/Ag-NPs have a relatively large nonlinear refractive index. The obtained values of nonlinear refractive index were increased with the increment in the volume fractions. The observed experimental patterns were also theoretically modeled which are in good agreement with experimental results.
Al Juhaimi, Fahad; Musa Özcan, Mehmet; Ghafoor, Kashif; Babiker, Elfadıl E
2018-03-15
In this study, the effect of microwave (360W, 540W and 720W) oven roasting on oil yields, phenolic compounds, antioxidant activity, and fatty acid composition of some apricot kernel and oils was investigated. While total phenol contents of control group of apricot kernels change between 54.41mgGAE/100g (Soğancıoğlu) and 59.61mgGAE/100g (Hasanbey), total phenol contents of kernel samples roasted in 720W were determined between 27.41mgGAE/100g (Çataloğlu) and 34.52mgGAE/100g (Soğancıoğlu). Roasting process in microwave at 720W caused the reduction of some phenolic compounds of apricot kernels. The gallic acid contents of control apricot kernels ranged between 7.23mg/100g (Kabaaşı) and 11.23mg/100g (Çataloğlu) whereas the gallic acid contents of kernels roasted in 540W changed between 15.35mg/100g (Soğancıoğlu) and 21.17mg/100g (Çataloğlu). In addition, oleic acid contents of control group oils vary between 65.98% (Soğancıoğlu) and 71.86% (Hasanbey), the same fatty acid ranged from 63.48% (Soğancıoğlu) to 70.36% (Hasanbey). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hassler, Evelyn; Corre, Marife D.; Kurniawan, Syahrul; Veldkamp, Edzo
2017-06-01
Oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations cover large areas of former rainforest in Sumatra, Indonesia, supplying the global demand for these crops. Although forest conversion is known to influence soil nitrous oxide (N2O) and nitric oxide (NO) fluxes, measurements from oil palm and rubber plantations are scarce (for N2O) or nonexistent (for NO). Our study aimed to (1) quantify changes in soil-atmosphere fluxes of N oxides with forest conversion to rubber and oil palm plantations and (2) determine their controlling factors. In Jambi, Sumatra, we selected two landscapes that mainly differed in texture but were both on heavily weathered soils: loam and clay Acrisol soils. Within each landscape, we investigated lowland forests, rubber trees interspersed in secondary forest (termed as jungle rubber
), both as reference land uses and smallholder rubber and oil palm plantations as converted land uses. In the loam Acrisol landscape, we conducted a follow-on study in a large-scale oil palm plantation (called PTPN VI) for comparison of soil N2O fluxes with smallholder oil palm plantations. Land-use conversion to smallholder plantations had no effect on soil N-oxide fluxes (P = 0. 58 to 0.76) due to the generally low soil N availability in the reference land uses that further decreased with land-use conversion. Soil N2O fluxes from the large-scale oil palm plantation did not differ with those from smallholder plantations (P = 0. 15). Over 1-year measurements, the temporal patterns of soil N-oxide fluxes were influenced by soil mineral N and water contents. Across landscapes, annual soil N2O emissions were controlled by gross nitrification and sand content, which also suggest the influence of soil N and water availability. Soil N2O fluxes (µg N m-2 h-1) were 7 ± 2 to 14 ± 7 (reference land uses), 6 ± 3 to 9 ± 2 (rubber), 12 ± 3 to 12 ± 6 (smallholder oil palm) and 42 ± 24 (large-scale oil palm). Soil NO fluxes (µg N m-2 h-1) were -0.6 ± 0.7 to 5.7 ± 5.8 (reference land uses), -1.2 ± 0.5 to -1.0 ± 0.2 (rubber) and -0.2 ± 1.2 to 0.7 ± 0.7 (smallholder oil palm). To improve the estimate of soil N-oxide fluxes from oil palm plantations in this region, studies should focus on large-scale plantations (which usually have 2 to 4 times higher N fertilization rates than smallholders) with frequent measurements following fertilizer application.
Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A
2011-10-01
An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). Copyright © 2011 Elsevier Ltd. All rights reserved.
Naher, Laila; Tan, Soon Guan; Ho, Chai Ling; Yusuf, Umi Kalsom; Ahmad, Siti Hazar; Abdullah, Faridah
2012-01-01
Basal stem rot (BSR) disease caused by the fungus Ganoderma boninense is the most serious disease affecting the oil palm; this is because the disease escapes the early disease detection. The biocontrol agent Trichoderma harzianum can protect the disease only at the early stage of the disease. In the present study, the expression levels of three oil palm (Elaeis guineensis Jacq.) chitinases encoding EgCHI1, EgCHI2, and EgCHI3 at 2, 5, and 8 weeks inoculation were measured in oil palm leaves from plants treated with G. boninense or T. harzianum alone or both. The five-month-old oil palm seedlings were treated with Gano-wood blocks inoculum and trichomulch. Expression of EgCHI1, EgCHI2, and EgCHI3 in treated leaves tissue was determined by real-time PCR. Oil palm chitinases were not strongly expressed in oil palm leaves of plants treated with G. boninense alone compared to other treatments. Throughout the 8-week experiment, expression of EgCHI1 increased more than 3-fold in leaves of plants treated with T. harzianum and G. boninense when compared to those of control and other treated plants. The data illustrated that chitinase cDNA expression varied depending on tissue and the type of treatment.
Farma, R; Deraman, M; Awitdrus, A; Talib, I A; Taer, E; Basri, N H; Manjunatha, J G; Ishak, M M; Dollah, B N M; Hashmi, S A
2013-03-01
Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rosli, Rozana; Amiruddin, Nadzirah; Ab Halim, Mohd Amin; Chan, Pek-Lan; Chan, Kuang-Lim; Azizi, Norazah; Morris, Priscilla E; Leslie Low, Eng-Ti; Ong-Abdullah, Meilina; Sambanthamurthi, Ravigadevi; Singh, Rajinder; Murphy, Denis J
2018-01-01
Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.
Rosli, Rozana; Amiruddin, Nadzirah; Ab Halim, Mohd Amin; Chan, Pek-Lan; Chan, Kuang-Lim; Azizi, Norazah; Morris, Priscilla E.; Leslie Low, Eng-Ti; Ong-Abdullah, Meilina; Sambanthamurthi, Ravigadevi; Singh, Rajinder
2018-01-01
Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops. PMID:29672525
Asnaashari, Maryam; Hashemi, Seyed Mohammad Bagher; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi
2015-03-01
In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.
NASA Astrophysics Data System (ADS)
Hassler, Evelyn; Corre, Marife D.; Kurniawan, Syahrul; Allen, Kara; Veldkamp, Edzo
2017-04-01
Due to an increasing global demand in cheap oils and biofuels, forest conversion to oil palm plantations is rapidly increasing in Indonesia. Although forest conversion is known to influence soil N2O fluxes, measurements from oil palm are scarce. Our study aimed to (1) quantify changes in soil N2O fluxes with forest conversion to oil palm plantations, (2) quantify the contribution of oil-palm canopy soil (lodged between the stems and leaf axils) to N2O fluxes, and (3) determine their controlling factors. In Jambi, Sumatra, we selected two landscapes that mainly differed in soil texture but both on heavily weathered soils: loam and clay Acrisol soils. Within each landscape, we investigated lowland forest, jungle rubber (rubber trees interspersed in secondary forest), both as the reference (previous) land uses, and the converted oil palm plantations by smallholders. Each land use had four replicate plots within each landscape. Each replicate plot had four permanently placed chambers, and soil N2O fluxes were measured monthly from December 2012 to December 2013 by placing vented static covers on chamber bases for 30 minutes for gas flux measurement. For oil-palm canopy soil, each replicate plot was represented by five oil palms, and each oil palm stem was delineated into three 1-m sections (low, middle, and top) in order to represent possible gradients of canopy soil conditions that influence N2O fluxes. Measurements were conducted from February 2013 to May 2014 by collecting canopy soil from each stem section and incubating it in-situ in an air-tight glass jar. Land-use conversion to smallholder plantations had no effect on soil N-oxide fluxes (P = 0.58 to 0.76) due to the inherently low soil N availability and the low N fertilization rates (commonly 48 to 88 kg N ha-1 yr-1) of smallholder oil palm plantations. Soil N2O fluxes (kg N ha-1 yr-1) were: 0.6 ± 0.1 to 1.2 ± 0.6 from the reference land uses and 1.0 ± 0.2 to 1.1 ± 0.5 from the smallholder oil palm plantations. N fertilizer-induced N2O emissions were 0.2 - 0.7 % of the applied N. Oil-palm canopy soil N2O emissions per soil mass were large, but on a hectare basis these emissions were small due to the low amount of canopy soil per hectare (170 kg ha-1). Canopy soil N2O emission was 10.7 ± 3.3 g N2O-N ha-1 yr-1, which contributed only 1% of the total soil (canopy soil + ground soil) N2O fluxes. Over one-year measurements, the temporal patterns of ground and canopy soil N2O fluxes were controlled by soil mineral N and water contents. To improve estimate of soil N-oxide fluxes from oil palm plantations in this region, studies should focus on large-scale plantations (which usually have two to four times higher N fertilization rates than smallholders) with frequent measurements following fertilizer application.
Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.
Tanaka, W; Mantese, A I; Maddonni, G A
2009-08-01
Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0.01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P < 0.01) and soluble sugars (r = 0.95, P < 0.05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0.05-0.10) scutellum cell area occupied by starch granules and fewer oil bodies. The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.
Development of an aerial counting system in oil palm plantations
NASA Astrophysics Data System (ADS)
Zulyma Miserque Castillo, Jhany; Laverde Diaz, Rubbermaid; Rueda Guzmán, Claudia Leonor
2016-07-01
This paper proposes the development of a counting aerial system capable of capturing, process and analyzing images of an oil palm plantation to register the number of cultivated palms. It begins with a study of the available UAV technologies to define the most appropriate model according to the project needs. As result, a DJI Phantom 2 Vision+ is used to capture pictures that are processed by a photogrammetry software to create orthomosaics from the areas of interest, which are handled by the developed software to calculate the number of palms contained in them. The implemented algorithm uses a sliding window technique in image pyramids to generate candidate windows, an LBP descriptor to model the texture of the picture, a logistic regression model to classify the windows and a non-maximum suppression algorithm to refine the decision. The system was tested in different images than the ones used for training and for establishing the set point. As result, the system showed a 95.34% detection rate with a 97.83% precision in mature palms and a 79.26% detection rate with a 97.53% precision in young palms giving an FI score of 0.97 for mature palms and 0.87 for the small ones. The results are satisfactory getting the census and high-quality images from which is possible to get more information from the area of interest. All this, achieved through a low-cost system capable of work even in cloudy conditions.
Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder
2014-01-01
Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm tissues and in the expression profiling of genes relating to yield, biotic and abiotic stresses. PMID:24927412
Choo, Yuen May; Ng, Mei Han; Ma, Ah Ngan; Chuah, Cheng Hock; Hashim, Mohd Ali
2005-04-01
The application of supercritical fluid chromatography (SFC) coupled with a UV variable-wavelength detector to isolate the minor components (carotenes, vitamin E, sterols, and squalene) in crude palm oil (CPO) and the residual oil from palm-pressed fiber is reported. SFC is a good technique for the isolation and analysis of these compounds from the sources mentioned. The carotenes, vitamin E, sterols, and squalene were isolated in less than 20 min. The individual vitamin E isomers present in palm oil were also isolated into their respective components, alpha-tocopherol, alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol. Calibration of all the minor components of palm as well as the individual components of palm vitamin E was carried out and was found to be comparable to those analyzed by other established analytical methods.
Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents
Tian, Guangyan; Zhu, Yongfeng; Zong, Li; Kang, Yuru; Wang, Aiqin
2018-01-01
Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT) composite adsorbents by a one-step in-situ carbonization process with natural starch (St) as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB), methyl violet (MV), and malachite green (MG) dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT–Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste. PMID:29316634
Roongsattham, Peerapat; Morcillo, Fabienne; Jantasuriyarat, Chatchawan; Pizot, Maxime; Moussu, Steven; Jayaweera, Dasuni; Collin, Myriam; Gonzalez-Carranza, Zinnia H; Amblard, Philippe; Tregear, James W; Tragoonrung, Somvong; Verdeil, Jean-Luc; Tranbarger, Timothy J
2012-08-25
Cell separation that occurs during fleshy fruit abscission and dry fruit dehiscence facilitates seed dispersal, the final stage of plant reproductive development. While our understanding of the evolutionary context of cell separation is limited mainly to the eudicot model systems tomato and Arabidopsis, less is known about the mechanisms underlying fruit abscission in crop species, monocots in particular. The polygalacturonase (PG) multigene family encodes enzymes involved in the depolymerisation of pectin homogalacturonan within the primary cell wall and middle lamella. PG activity is commonly found in the separation layers during organ abscission and dehiscence, however, little is known about how this gene family has diverged since the separation of monocot and eudicots and the consequence of this divergence on the abscission process. The objective of the current study was to identify PGs responsible for the high activity previously observed in the abscission zone (AZ) during fruit shedding of the tropical monocot oil palm, and to analyze PG gene expression during oil palm fruit ripening and abscission. We identified 14 transcripts that encode PGs, all of which are expressed in the base of the oil palm fruit. The accumulation of five PG transcripts increase, four decrease and five do not change during ethylene treatments that induce cell separation. One PG transcript (EgPG4) is the most highly induced in the fruit base, with a 700-5000 fold increase during the ethylene treatment. In situ hybridization experiments indicate that the EgPG4 transcript increases preferentially in the AZ cell layers in the base of the fruit in response to ethylene prior to cell separation. The expression pattern of EgPG4 is consistent with the temporal and spatial requirements for cell separation to occur during oil palm fruit shedding. The sequence diversity of PGs and the complexity of their expression in the oil palm fruit tissues contrast with data from tomato, suggesting functional divergence underlying the ripening and abscission processes has occurred between these two fruit species. Furthermore, phylogenetic analysis of EgPG4 with PGs from other species suggests some conservation, but also diversification has occurred between monocots and eudicots, in particular between dry and fleshy fruit species.
2012-01-01
Background Cell separation that occurs during fleshy fruit abscission and dry fruit dehiscence facilitates seed dispersal, the final stage of plant reproductive development. While our understanding of the evolutionary context of cell separation is limited mainly to the eudicot model systems tomato and Arabidopsis, less is known about the mechanisms underlying fruit abscission in crop species, monocots in particular. The polygalacturonase (PG) multigene family encodes enzymes involved in the depolymerisation of pectin homogalacturonan within the primary cell wall and middle lamella. PG activity is commonly found in the separation layers during organ abscission and dehiscence, however, little is known about how this gene family has diverged since the separation of monocot and eudicots and the consequence of this divergence on the abscission process. Results The objective of the current study was to identify PGs responsible for the high activity previously observed in the abscission zone (AZ) during fruit shedding of the tropical monocot oil palm, and to analyze PG gene expression during oil palm fruit ripening and abscission. We identified 14 transcripts that encode PGs, all of which are expressed in the base of the oil palm fruit. The accumulation of five PG transcripts increase, four decrease and five do not change during ethylene treatments that induce cell separation. One PG transcript (EgPG4) is the most highly induced in the fruit base, with a 700–5000 fold increase during the ethylene treatment. In situ hybridization experiments indicate that the EgPG4 transcript increases preferentially in the AZ cell layers in the base of the fruit in response to ethylene prior to cell separation. Conclusions The expression pattern of EgPG4 is consistent with the temporal and spatial requirements for cell separation to occur during oil palm fruit shedding. The sequence diversity of PGs and the complexity of their expression in the oil palm fruit tissues contrast with data from tomato, suggesting functional divergence underlying the ripening and abscission processes has occurred between these two fruit species. Furthermore, phylogenetic analysis of EgPG4 with PGs from other species suggests some conservation, but also diversification has occurred between monocots and eudicots, in particular between dry and fleshy fruit species. PMID:22920238
Ecosystem-based greenhouse budgets in oil palm plantations differ with plantation age
NASA Astrophysics Data System (ADS)
Meijide, Ana; Hassler, Evelyn; Corre, Marife D.; June, Tania; Veldkamp, Edzo; Knohl, Alexander
2016-04-01
Global increase in demand of palm oil is leading to the expansion of oil palm plantations, particularly in SE Asia. Oil palm plantations in Sumatra, Indonesia, together with those in Kalimantan, are responsible for half of the world's palm oil production. Available studies point to plantations being large carbon dioxide (CO2) sinks due to the high photosynthetic rates of oil palm as a result of high fertilizer inputs, especially in large-scale plantations. However, methane (CH4) uptake in the soil of oil palm plantations is reduced and soil nitrous oxide (N2O) emissions increased right after nitrogen (N) fertilization. Greenhouse gas (GHG) budgets at the ecosystem level are still missing, and the few available information was derived from mature plantations, pointing to a lack of knowledge on the changes of these GHG budgets with plantation age. With the aim of quantifying CO2, CH4 and N2O fluxes during the non-productive and productive phases of oil palm cultivation, an eddy covariance (EC) tower was installed in a 2-year old (non-productive) oil palm plantation and was subsequently moved to a 12-year old (productive) plantation. Both sites were on Acrisol soils and were located in Jambi province, Sumatra. Chamber-based measurements of soil GHG fluxes were also carried out along the EC footprint. Net ecosystem exchange (NEE), based on EC measurement, showed that the non-productive plantation was a strong CO2 source (990 g C m-2 yr-1) whereas the productive plantation was a CO2 sink (-790 g C m-2 yr-1). For CH4 fluxes, both plantations showed similar soil CH4 uptake that led to a small carbon sink of (~1.3 g C m-2 yr-1). Soil N2O fluxes were high in the productive plantation (3.26 ± 1.73 kg N ha-1 yr-1), as measurements were carried out in a plantation with high fertilization rates. In the non-productive plantation, soil N2O fluxes were lower and were associated with fertilization events. Our results show that the global warming potential of a non-productive oil palm plantation was dominated by CO2 fluxes, whereas in a productive plantation N2O contribution to the global warming could be significant due to high N fertilizer input. Our results also highlight the need of evaluating various stages of development of oil palm cultivation when assessing their GHG budgets at a regional scale in order to support quantitative-based mitigation strategies.
Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention.
DebMandal, Manisha; Mandal, Shyamapada
2011-03-01
Coconut, Cocos nucifera L., is a tree that is cultivated for its multiple utilities, mainly for its nutritional and medicinal values. The various products of coconut include tender coconut water, copra, coconut oil, raw kernel, coconut cake, coconut toddy, coconut shell and wood based products, coconut leaves, coir pith etc. Its all parts are used in someway or another in the daily life of the people in the traditional coconut growing areas. It is the unique source of various natural products for the development of medicines against various diseases and also for the development of industrial products. The parts of its fruit like coconut kernel and tender coconut water have numerous medicinal properties such as antibacterial, antifungal, antiviral, antiparasitic, antidermatophytic, antioxidant, hypoglycemic, hepatoprotective, immunostimulant. Coconut water and coconut kernel contain microminerals and nutrients, which are essential to human health, and hence coconut is used as food by the peoples in the globe, mainly in the tropical countries. The coconut palm is, therefore, eulogised as 'Kalpavriksha' (the all giving tree) in Indian classics, and thus the current review describes the facts and phenomena related to its use in health and disease prevention. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Genualdi, Susie; MacMahon, Shaun; Robbins, Katherine; Farris, Samantha; Shyong, Nicole; DeJager, Lowri
2016-01-01
Sudan I, II, III and IV dyes are banned for use as food colorants in the United States and European Union because they are toxic and carcinogenic. These dyes have been illegally used as food additives in products such as chilli spices and palm oil to enhance their red colour. From 2003 to 2005, the European Union made a series of decisions requiring chilli spices and palm oil imported to the European Union to contain analytical reports declaring them free of Sudan I–IV. In order for the USFDA to investigate the adulteration of palm oil and chilli spices with unapproved colour additives in the United States, a method was developed for the extraction and analysis of Sudan dyes in palm oil, and previous methods were validated for Sudan dyes in chilli spices. Both LC-DAD and LC-MS/MS methods were examined for their limitations and effectiveness in identifying adulterated samples. Method validation was performed for both chilli spices and palm oil by spiking samples known to be free of Sudan dyes at concentrations close to the limit of detection. Reproducibility, matrix effects, and selectivity of the method were also investigated. Additionally, for the first time a survey of palm oil and chilli spices was performed in the United States, specifically in the Washington, DC, area. Illegal dyes, primarily Sudan IV, were detected in palm oil at concentrations from 150 to 24 000 ng ml−1. Low concentrations (< 21 μg kg−1) of Sudan dyes were found in 11 out of 57 spices and are most likely a result of cross-contamination during preparation and storage and not intentional adulteration. PMID:26824489
Genualdi, Susie; MacMahon, Shaun; Robbins, Katherine; Farris, Samantha; Shyong, Nicole; DeJager, Lowri
2016-01-01
Sudan I, II, III and IV dyes are banned for use as food colorants in the United States and European Union because they are toxic and carcinogenic. These dyes have been illegally used as food additives in products such as chilli spices and palm oil to enhance their red colour. From 2003 to 2005, the European Union made a series of decisions requiring chilli spices and palm oil imported to the European Union to contain analytical reports declaring them free of Sudan I-IV. In order for the USFDA to investigate the adulteration of palm oil and chilli spices with unapproved colour additives in the United States, a method was developed for the extraction and analysis of Sudan dyes in palm oil, and previous methods were validated for Sudan dyes in chilli spices. Both LC-DAD and LC-MS/MS methods were examined for their limitations and effectiveness in identifying adulterated samples. Method validation was performed for both chilli spices and palm oil by spiking samples known to be free of Sudan dyes at concentrations close to the limit of detection. Reproducibility, matrix effects, and selectivity of the method were also investigated. Additionally, for the first time a survey of palm oil and chilli spices was performed in the United States, specifically in the Washington, DC, area. Illegal dyes, primarily Sudan IV, were detected in palm oil at concentrations from 150 to 24 000 ng ml(-1). Low concentrations (< 21 µg kg(-1)) of Sudan dyes were found in 11 out of 57 spices and are most likely a result of cross-contamination during preparation and storage and not intentional adulteration.
NASA Astrophysics Data System (ADS)
Swails, E.; Jaye, D.; Verchot, L. V.; Hergoualc'h, K.; Wahyuni, N. S.; Borchard, N.; Lawrence, D.
2015-12-01
In Indonesia, peatlands are a major and growing source of greenhouse gas emissions due to increasing pressure from oil palm and pulp wood plantations. We are using a combination of field measures, laboratory experiments, and remote sensing to investigate relationships among land use, climatic factors and biogeochemical controls, and their influence on trace gas fluxes from tropical peat soils. Analysis of soils collected from peat sites on two major islands indicated substantial variation in peat substrate quality and nutrient content among land uses and geographic location. We conducted laboratory incubations to test the influence of substrate quality and nutrient availability on CO2 production from peat decomposition. Differences in peat characteristics attributable to land use change were tested by comparison of forest and oil palm peat samples collected from the same peat dome in Kalimantan. Regional differences in peat characteristics were tested by comparison of samples from Sumatra with samples from Kalimantan. We conducted additional experiments to test the influence of N and P availability and labile carbon on CO2 production. Under moisture conditions typical of oil palm plantations, CO2 production was higher from peat forest samples than from oil palm samples. CO2 production from Sumatra and Kalimantan oil palm samples was not different, despite apparent differences in nutrient content of these soils. N and P treatments representative of fertilizer application rates raised CO2 production from forest samples but not oil palm samples. Labile carbon treatments raised CO2 production in all samples. Our results suggest that decomposition of peat forest soils is nutrient limited, while substrate quality controls decomposition of oil palm soils post-conversion. Though fertilizer application could accelerate peat decomposition initially, fertilizer application may not influence long-term CO2 emissions from oil palm on peat.
Oguntibeju, O O; Esterhuyse, A J; Truter, E J
2009-01-01
The link between dietary fats and cardiovascular disease has created a growing interest in dietary red palm oil research. Also, the link between nutrition and health, oxidative stress and the severity or progression of disease has stimulated further interest in the potential role of red palm oil (a natural antioxidant product) to improve oxidative status by reducing oxidative stress in patients with cardiovascular disease, cancer and other chronic diseases. In spite of its level of saturated fatty acid content (50%), red palm oil has not been found to promote atherosclerosis and/or arterial thrombosis. This is probably due to the ratio of its saturated fatty acid to unsaturated fatty acid content and its high concentration of antioxidants such as beta-carotene, tocotrienols, tocopherols and vitamin E. It has also been reported that the consumption of red palm oil reduces the level of endogenous cholesterol, and this seems to be due to the presence of the tocotrienols and the peculiar isomeric position of its fatty acids. The benefits of red palm oil to health include a reduction in the risk of arterial thrombosis and/or atherosclerosis, inhibition of endogenous cholesterol biosynthesis, platelet aggregation, a reduction in oxidative stress and a reduction in blood pressure. It has also been shown that dietary red palm oil, taken in moderation in animals and humans, promotes the efficient utilisation of nutrients, activates hepatic drug metabolising enzymes, facilitates the haemoglobinisation of red blood cells and improves immune function. This review provides a comprehensive overview of the nutritional, physiological and biochemical roles of red palm oil in improving wellbeing and quality of life.
Separation of vitamin E (tocopherol, tocotrienol, and tocomonoenol) in palm oil.
Ng, Mei Han; Choo, Yuen May; Ma, Ah Ngan; Chuah, Cheng Hock; Hashim, Mohd Ali
2004-10-01
Previous reports showed that vitamin E in palm oil consists of various isomers of tocopherols and tocotrienols [alpha-tocopherol (alpha-T), alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol), and this is normally analyzed using silica column HPLC with fluorescence detection. In this study, an HPLC-fluorescence method using a C30 silica stationary phase was developed to separate and analyze the vitamin E isomers present in palm oil. In addition, an alpha-tocomonoenol (alpha-T1) isomer was quantified and characterized by MS and NMR. (alpha-T1 constitutes about 3-4% (40+/-5 ppm) of vitamin E in crude palm oil (CPO) and is found in the phytonutrient concentrate (350+/-10 ppm) from palm oil, whereas its concentration in palm fiber oil (PFO) is about 11% (430+/-6 ppm). The relative content of each individual vitamin E isomer before and after interesterification/transesterification of CPO to CPO methyl esters, followed by vacuum distillation of CPO methyl esters to yield the residue, remained the same except for alpha-T and gamma-T3. Whereas alpha-T constitutes about 36% of the total vitamin E in CPO, it is present at a level of 10% in the phytonutrient concentrate. On the other hand, the composition of gamma-T3 increases from 31% in CPO to 60% in the phytonutrient concentrate. Vitamin is present at 1160+/-43 ppm, and its concentrations in PFO and the phytonutrient concentrate are 4,040+/-41 and 13,780+/-65 ppm, respectively. The separation and quantification of alpha-T1 in palm oil will lead to more in-depth knowledge of the occurrence of vitamin E in palm oil.
Nusaibah, S A; Siti Nor Akmar, A; Idris, A S; Sariah, M; Mohamad Pauzi, Z
2016-12-01
Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Lee-Cruz, Larisa; Edwards, David P; Tripathi, Binu M; Adams, Jonathan M
2013-12-01
Tropical forests are being rapidly altered by logging and cleared for agriculture. Understanding the effects of these land use changes on soil bacteria, which constitute a large proportion of total biodiversity and perform important ecosystem functions, is a major conservation frontier. Here we studied the effects of logging history and forest conversion to oil palm plantations in Sabah, Borneo, on the soil bacterial community. We used paired-end Illumina sequencing of the 16S rRNA gene, V3 region, to compare the bacterial communities in primary, once-logged, and twice-logged forest and land converted to oil palm plantations. Bacteria were grouped into operational taxonomic units (OTUs) at the 97% similarity level, and OTU richness and local-scale α-diversity showed no difference between the various forest types and oil palm plantations. Focusing on the turnover of bacteria across space, true β-diversity was higher in oil palm plantation soil than in forest soil, whereas community dissimilarity-based metrics of β-diversity were only marginally different between habitats, suggesting that at large scales, oil palm plantation soil could have higher overall γ-diversity than forest soil, driven by a slightly more heterogeneous community across space. Clearance of primary and logged forest for oil palm plantations did, however, significantly impact the composition of soil bacterial communities, reflecting in part the loss of some forest bacteria, whereas primary and logged forests did not differ in composition. Overall, our results suggest that the soil bacteria of tropical forest are to some extent resilient or resistant to logging but that the impacts of forest conversion to oil palm plantations are more severe.
Sawangkeaw, Ruengwit; Teeravitud, Sunsanee; Bunyakiat, Kunchana; Ngamprasertsith, Somkiat
2011-11-01
Biofuel production from palm oil with supercritical methanol (SCM) and supercritical ethanol (SCE) at 400 °C and 15 MPa were evaluated. At the optimal alcohol to oil molar ratios of 12:1 and 18:1 for the SCM and SCE processes, respectively, the biofuel samples were synthesized in a 1.2-L reactor and the resulting biofuel was analyzed for the key properties including those for the diesel and biodiesel standard specifications. Biofuel samples derived from both the SCM and SCE processes could be used as an alternative fuel after slight improvement in their acid value and free glycerol content. The remarkable advantages of this novel process were: the additional fuel yield of approximately of 5% and 10% for SCM and SCE, respectively; the lower energy consumption for alcohol preheating, pumping and recovering than the biodiesel production with supercritical alcohols that use a high alcohol to oil molar ratio of 42:1. Copyright © 2011 Elsevier Ltd. All rights reserved.
Juhaimi, Fahad Al; Özcan, Mehmet Musa; Uslu, Nurhan; Doğu, Süleyman
2017-12-01
In this study, the effects of conventional and microwave roasting on phenolic compounds, free acidity, peroxide value, fatty acid composition and tocopherol content of pecan walnut kernel and oil was investigated. The oil content of pecan kernels was 73.78% for microwave oven roasted at 720 W and 73.56% for conventional oven roasted at 110 °C. The highest free fatty acid content (0.50%) and the lowest peroxide value (2.48 meq O 2 /kg) were observed during microwave roasting at 720 W. The fatty acid profiles and tocopherol contents of pecan kernel oils did not show significant differences compared to raw samples. Roasting process in microwave oven at 720 W caused the reduction of some phenolic compounds, while the content of gallic acid exhibited a significant increase.
... A deficiency, cancer, brain disease, aging; and treating malaria, high blood pressure, high cholesterol, and cyanide poisoning. ... oils, such as soybean, canola, or sunflower oil. Malaria. Some research suggests that dietary consumption of palm ...
Palm oil and human health. Meeting report of NFI: Nutrition Foundation of Italy symposium.
Marangoni, Franca; Galli, Claudio; Ghiselli, Andrea; Lercker, Giovanni; La Vecchia, Carlo; Maffeis, Claudio; Agostoni, Carlo; Ballardini, Donatella; Brignoli, Ovidio; Faggiano, Pompilio; Giacco, Rosalba; Macca, Claudio; Magni, Paolo; Marelli, Giuseppe; Marrocco, Walter; Miniello, Vito Leonardo; Mureddu, Gian Francesco; Pellegrini, Nicoletta; Stella, Roberto; Troiano, Ersilia; Verduci, Elvira; Volpe, Roberto; Poli, Andrea
2017-09-01
The use of palm oil by the food industry is increasingly criticized, especially in Italy, for its purported negative effects on human health and environment. This paper summarizes the conclusions of a Symposium on this topic, gathered by the Nutrition Foundation of Italy, among experts representing a number of Italian Medical and Nutritional Scientific Societies. Toxicological and environmental issues were not considered. Participants agreed that: no evidence does exist on the specific health effects of palm oil consumption as compared to other saturated fatty acids-rich fats; the stereospecific distribution of saturated fatty acids in the triacylglycerol molecule of palm oil limits their absorption rate and metabolic effects; in agreement with International guidelines, saturated fatty acids intake should be kept <10% of total energy, within a balanced diet; within these limits, no effect of palm oil consumption on human health (and specifically on CVD or cancer risk) can be foreseen.
Model of two infectious diseases in nettle caterpillar population
NASA Astrophysics Data System (ADS)
Firdausi, F. Z.; Nuraini, N.
2016-04-01
Palm oil is a vital commodity to the economy of Indonesia. The area of oil palm plantations in Indonesia has increased from year to year. However, the effectiveness of palm oil production is reduced by pest infestation. One of the pest which often infests oil palm plantations is nettle caterpillar. The pest control used in this study is biological control, viz. biological agents given to oil palm trees. This paper describes a mathematical model of two infectious diseases in nettle caterpillar population. The two infectious diseases arise due to two biological agents, namely Bacillus thuringiensis bacterium and parasite which usually attack nettle caterpillars. The derivation of the model constructed in this paper is obtained from ordinary differential equations without time delay. The equilibrium points are analyzed. Two of three equilibrium points are stable if the Routh-Hurwitz criteria are fulfilled. In addition, this paper also presents the numerical simulation of the model which has been constructed.
NASA Astrophysics Data System (ADS)
Erwin; Wahifiyah, E.; Hairani, R.; Panggabean, A. S.
2018-04-01
The purpose of this study was to determine the effect of the crude extract of tea leaves (Camellia sinensis L.) and storage time on the content of free fatty acid in palm oil. The dried tea leaves were macerated and concentrated by rotary evaporator. The extract obtained was added to crude palm oil with various added mass of the extract and various storage times. Phytochemical tests indicated the presence of secondary metabolites including alkaloids, triterpenoids, steroids, phenolics and flavonoids. The ANOVA test showed a decrease in free fatty acid content in crude palm oil with the addition of tea leaves extract. The LSD (Least Significant Difference) test showed the best influence on ALB of palm oil is on the total extract mass of 2 grams and the storage time of 20 days.
NASA Astrophysics Data System (ADS)
Arkeman, Y.; Rizkyanti, R. A.; Hambali, E.
2017-05-01
Development of Indonesian palm-oil-based bioenergy faces an international challenge regarding to sustainability issue, indicated by the establishment of standards on sustainable bioenergy. Currently, Indonesia has sustainability standards limited to palm-oil cultivation, while other standards are lacking appropriateness for Indonesian palm-oil-based bioenergy sustainability regarding to real condition in Indonesia. Thus, Indonesia requires sustainability indicators for Indonesian palm-oil-based bioenergy to gain recognition and easiness in marketing it. Determination of sustainability indicators was accomplished through three stages, which were preliminary analysis, indicator assessment (using fuzzy inference system), and system validation. Global Bioenergy partnership (GBEP) was used as the standard for the assessment because of its general for use, internationally accepted, and it contained balanced proportion between environment, economic, and social aspects. Result showed that the number of sustainability indicators using FIS method are 21 indicators. The system developed has an accuracy of 85%.
Lo, Hui-Chen; Wang, Yao-Horng; Chiou, Hue-Ying; Lai, Shan-Hu; Yang, Yu
2010-07-01
Diets that ameliorate the adverse effects of uric acid (UA) on renal damage deserve attention. The effects of casein or soya protein combined with palm or safflower-seed oil on various serum parameters and renal histology were investigated on hyperuricaemic rats. Male Wistar rats administered with oxonic acid and UA to induce hyperuricaemia were fed with casein or soya protein plus palm- or safflower-seed oil-supplemented diets. Normal rats and hyperuricaemic rats with or without allopurinol treatment (150 mg/l in drinking water) were fed with casein plus maize oil-supplemented diets. After 8 weeks, allopurinol treatment and soya protein plus safflower-seed oil-supplemented diet significantly decreased serum UA in hyperuricaemic rats (one-way ANOVA; P < 0.05). In addition, soya protein and casein attenuated hyperuricaemia-induced decreases in serum albumin and insulin, respectively (two-way ANOVA; P < 0.05). Safflower-seed oil significantly decreased serum TAG and UA, whereas palm oil significantly increased serum cholesterol, TAG, blood urea N and creatinine. However, soya protein significantly decreased renal NO and nitrotyrosine and palm oil significantly decreased renal nitrotyrosine, TNF-alpha and interferon-gamma and increased renal transforming growth factor-beta. Casein with safflower-seed oil significantly attenuated renal tubulointerstitial nephritis, crystals and fibrosis. Comparing casein v. soya protein combined with palm or safflower-seed oil, the results support that casein with safflower-seed oil may be effective in attenuating hyperuricaemia-associated renal damage, while soya protein with safflower-seed oil may be beneficial in lowering serum UA and TAG.
NASA Astrophysics Data System (ADS)
Aznury, Martha; Amin, Jaksen M.; Hasan, Abu; Himmatuliza, Astinesia
2017-05-01
Palm oil mill effluent (POME) is the biggest liquid waste which is produced from palm oil production. POME are containing organic matter, high levels of biological oxygen demand (BOD) and chemical oxygen demand (COD) were 28000 mg/L and 48000 mg/L. To reduce the levels of pollution caused by POME, is necessary to do stages of processing using a biological process that involves aerobic and anaerobic bacteria so that it can be utilized as a new product that has economic value, one is biogas. The processing into biogas in anaerobic performed by fed batch system. In the ratio between POME and activated microorganismes are 70:30%. The process of anaerobic fermentation in fed batch is done by time variation of the addition of the substrate. The mixture of POME and activated microorganismes were fermented for a month and then after one month substrates were added gradually as much as 1 liter into the digester with a variety of additional time are 1, 2, and 5 days. The interval of addition of the substrate give effect to the pH and the quantity of biogas produced. The highest increasing of the quantity of biomethane was 25.14 mol% at the time the addition of substrate every fifth day.
Kabir, G; Mohd Din, A T; Hameed, B H
2017-10-01
Oil palm mesocarp fiber (OPMF) and palm frond (PF) were respectively devolatilized by pyrolysis to OPMF-oil and PF-oil bio-oils and biochars, OPMF-char and PF-char in a slow-heating fixed-bed reactor. In particular, the OPMF-oil and PF-oil were produced to a maximum yield of 48wt% and 47wt% bio-oils at 550°C and 600°C, respectively. The high heating values (HHVs) of OPMF-oil and PF-oil were respectively found to be 23MJ/kg and 21MJ/kg, whereas 24.84MJ/kg and 24.15MJ/kg were for the corresponding biochar. The HHVs of the bio-oils and biochars are associated with low O/C ratios to be higher than those of the corresponding biomass. The Fourier transform infrared spectra and peak area ratios highlighted the effect of pyrolysis temperatures on the bio-oil compositions. The bio-oils are pervaded with numerous oxygenated carbonyl and aromatic compounds as suitable feedstocks for renewable fuels and chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Esterification free fatty acid in sludge palm oil using ZrO2/SO42- - rice husk ash catalyst
NASA Astrophysics Data System (ADS)
Hidayat, Arif; Sutrisno, Bachrun
2017-05-01
Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as sludge palm oil (SPO) from palm oil industries. The use of SPO can lower the cost of biodiesel production significantly, which makes SPO a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid on sludge palm oil was studied using rice husk ash as heterogeneous solid catalysts. Heterogeneous solid catalysts offer significant advantages of eliminating separation, corrosion, toxicity and environmental problems. In this paper the esterification of SPO, a by-product from palm oil industry, in the presence of modified rice husk ash catalysts was studied. The rice husk ash catalysts were synthesized by impregnating of Zirconia (Zr) on rice husk ash followed by sulfonation. The rice husk ash catalysts were characterized by using different techniques, such as FT-IR, XRD, and porous analysis. The effects of the mass ratio of catalyst to oil (1 - 10%), the molar ratio of methanol to oil (4:1 - 10:1), and the reaction temperature (40 - 60°C) were studied for the conversion of free fatty acids (FFAs) to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to oil molar ratio of 10:1, the amount of catalyst of 10%w, and reaction temperature of 60°C.
Evaluation of Ultrafiltration Performance for Phospholipid Separation
NASA Astrophysics Data System (ADS)
Aryanti, N.; Wardhani, D. H.; Maulana, Z. S.; Roberto, D.
2017-11-01
Ultrafiltration membrane for degumming of crude palm oil has been applied as an alternative method since the membrane process required less procedure than the conventional degumming. This research focused on the examination of ultrafiltration performance for phospholipid separation from model crude palm oil degumming. Specifically, profile flux and rejection, as well as blocking mechanism, were investigated. Feed consisting of Refined Crude Palm Oil - Isopropanol - Lecithin mixtures were represented as crude palm oil degumming. Lecithin was denoted a phospholipid component, and the concentrations of lecithin in feed were varied to 0.1%, 0.2%, and 0.3%. The concentration of phospholipid was determined as phosphor content. At the concentration of lecithin in feed representing phospholipid concentration of 8,45 mg/kg, 8,45 mg/kg, 24,87 mg/kg and 57,58 mg/kg, respectively. Flux profiles confirmed that there was a flux decline during filtration. In addition, the lecithin concentrations do not significantly effect on further flux decline. Rejection characteristic and phospholipid concentration in the permeate showed that the phospholipid rejections by ultrafiltration were in the range of 23-79,5% representing permeate’s phospholipid concentration of 1,73 - 44,25 mg/kg. Evaluation of fouling mechanism by Hermia’s blocking model confirmed that the standard blocking is the dominant mechanism in the ultrafiltration of lecithin mixture.
Rattanaporn, Kittipong; Tantayotai, Prapakorn; Phusantisampan, Theerawut; Pornwongthong, Peerapong; Sriariyanun, Malinee
2018-04-01
Effective lignocellulosic biomass saccharification is one of the crucial requirements of biofuel production via fermentation process. Organic acid pretreatments have been gained much interests as one of the high potential methods for promoting enzymatic saccharification of lignocellulosic materials due to their lower hazardous properties and lower production of inhibitory by-products of fermentation than typical chemical pretreatment methods. In this study, three organic acids, including acetic acid, oxalic acid, and citric acid, were examined for improvement of enzymatic saccharification and bioethanol production from oil palm trunk biomass. Based on response surface methodology, oxalic acid pretreated biomass released the maximum reducing sugar of 144 mg/g-pretreated biomass at the optimum condition, which was higher than untreated samples for 2.30 times. The released sugar yield of oil palm trunk also corresponded to the results of FT-IR analysis, which revealed the physical modification of cellulose and hemicellulose surface structures of pretreated biomass. Nevertheless, citric acid pretreatment is the most efficient pretreatment method to improve bioethanol fermentation of Saccharomyces cerevisiae TISTR 5606 at 1.94 times higher than untreated biomass. These results highlighted the selection of organic acid pretreatment as a potential method for biofuel production from oil palm trunk feedstocks.
NASA Astrophysics Data System (ADS)
Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.
2008-12-01
The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the HR-ToF-AMS. The measurements are interpreted in the context of the measurements over tropical rain forest at Danum and aircraft measurements across Sabah.
NASA Astrophysics Data System (ADS)
Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.
2017-02-01
Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.
Tranbarger, Timothy J.; Fooyontphanich, Kim; Roongsattham, Peerapat; Pizot, Maxime; Collin, Myriam; Jantasuriyarat, Chatchawan; Suraninpong, Potjamarn; Tragoonrung, Somvong; Dussert, Stéphane; Verdeil, Jean-Luc; Morcillo, Fabienne
2017-01-01
The oil palm (Elaeis guineensis), a monocotyledonous species in the family Arecaceae, has an extraordinarily oil rich fleshy mesocarp, and presents an original model to examine the ripening processes and regulation in this particular monocot fruit. Histochemical analysis and cell parameter measurements revealed cell wall and middle lamella expansion and degradation during ripening and in response to ethylene. Cell wall related transcript profiles suggest a transition from synthesis to degradation is under transcriptional control during ripening, in particular a switch from cellulose, hemicellulose, and pectin synthesis to hydrolysis and degradation. The data provide evidence for the transcriptional activation of expansin, polygalacturonase, mannosidase, beta-galactosidase, and xyloglucan endotransglucosylase/hydrolase proteins in the ripening oil palm mesocarp, suggesting widespread conservation of these activities during ripening for monocotyledonous and eudicotyledonous fruit types. Profiling of the most abundant oil palm polygalacturonase (EgPG4) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) transcripts during development and in response to ethylene demonstrated both are sensitive markers of ethylene production and inducible gene expression during mesocarp ripening, and provide evidence for a conserved regulatory module between ethylene and cell wall pectin degradation. A comprehensive analysis of NAC transcription factors confirmed at least 10 transcripts from diverse NAC domain clades are expressed in the mesocarp during ripening, four of which are induced by ethylene treatment, with the two most inducible (EgNAC6 and EgNAC7) phylogenetically similar to the tomato NAC-NOR master-ripening regulator. Overall, the results provide evidence that despite the phylogenetic distance of the oil palm within the family Arecaceae from the most extensively studied monocot banana fruit, it appears ripening of divergent monocot and eudicot fruit lineages are regulated by evolutionarily conserved molecular physiological processes. PMID:28487710
Equilibrium study for ternary mixtures of biodiesel
NASA Astrophysics Data System (ADS)
Doungsri, S.; Sookkumnerd, T.; Wongkoblap, A.; Nuchitprasittichai, A.
2017-11-01
The liquid-liquid equilibrium (LLE) data for the ternary mixtures of methanol + fatty acid methyl ester (FAME) + palm oil and FAME + palm oil + glycerol at various temperatures from 35 to 55°C, the tie lines and binodial curves were also investigated and plotted in the equilibrium curve. The experimental results showed that the binodial curves of methanol + FAME + palm oil depended significantly with temperature while the binodial curves of FAME + palm oil + glycerol illustrated insignificant change with temperatures. The interaction parameters between liquid pair obtained for NRTL (Nonrandom Two-Liquid) and UNIQUAC (Universal Quasi-Chemical Theory) models from the experimental data were also investigated. It was found that the correlated parameters of UNIQUAC model for system of FAME + palm oil + glycerol, denoted as a13 and a31, were 580.42K and -123.69K, respectively, while those for system of methanol + FAME + palm oil, denoted as a42 and a24, were 71.48 K and 965.57K, respectively. The ternary LLE data reported here would be beneficial for engineers and scientists to use for prediction of yield and purity of biodiesel for the production. The UNIQUAC model agreed well with the experimental data of ternary mixtures of biodiesel.
Getting Over the Barrel- Achieving Independence from Foreign Oil in 2018
2009-02-03
material called kerogen. Kerogen can be converted into oil via heating in the chemical process of pyrolysis .44 Depending on the richness of oil shale, it...vegetable oil, animal fat, corn , soybeans, jatropha seed oil, palm oil, switch grass and even algae. Biofuel production techniques and technologies...vary widely based on the input source – sugar-based, starch-based or oil-based. This document only examines corn -based ethanol production. The other
Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage
NASA Astrophysics Data System (ADS)
Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.
2017-08-01
This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction
NASA Astrophysics Data System (ADS)
Austin, Kemen G.; Lee, Michelle E.; Clark, Connie; Forester, Brenna R.; Urban, Dean L.; White, Lee; Kasibhatla, Prasad S.; Poulsen, John R.
2017-01-01
Industrial-scale oil palm cultivation is rapidly expanding in Gabon, where it has the potential to drive economic growth, but also threatens forest, biodiversity and carbon resources. The Gabonese government is promoting an ambitious agricultural expansion strategy, while simultaneously committing to minimize negative environmental impacts of oil palm agriculture. This study estimates the extent and location of suitable land for oil palm cultivation in Gabon, based on an analysis of recent trends in plantation permitting. We use the resulting suitability map to evaluate two proposed approaches to minimizing negative environmental impacts: a High Carbon Stock (HCS) approach, which emphasizes forest protection and climate change mitigation, and a High Conservation Value (HCV) approach, which focuses on safeguarding biodiversity and ecosystems. We quantify the forest area, carbon stock, and biodiversity resources protected under each approach, using newly developed maps of priority species distributions and forest biomass for Gabon. We find 2.7-3.9 Mha of suitable or moderately suitable land that avoid HCS areas, 4.4 million hectares (Mha) that avoid HCV areas, and 1.2-1.7 Mha that avoid both. This suggests that Gabon’s oil palm production target could likely be met without compromising important ecosystem services, if appropriate safeguards are put in place. Our analysis improves understanding of suitability for oil palm in Gabon, determines how conservation strategies align with national targets for oil palm production, and informs national land use planning.
Naher, Laila; Tan, Soon Guan; Ho, Chai Ling; Yusuf, Umi Kalsom; Ahmad, Siti Hazar; Abdullah, Faridah
2012-01-01
Background. Basal stem rot (BSR) disease caused by the fungus Ganoderma boninense is the most serious disease affecting the oil palm; this is because the disease escapes the early disease detection. The biocontrol agent Trichoderma harzianum can protect the disease only at the early stage of the disease. In the present study, the expression levels of three oil palm (Elaeis guineensis Jacq.) chitinases encoding EgCHI1, EgCHI2, and EgCHI3 at 2, 5, and 8 weeks inoculation were measured in oil palm leaves from plants treated with G. boninense or T. harzianum alone or both. Methods. The five-month-old oil palm seedlings were treated with Gano-wood blocks inoculum and trichomulch. Expression of EgCHI1, EgCHI2, and EgCHI3 in treated leaves tissue was determined by real-time PCR. Results. Oil palm chitinases were not strongly expressed in oil palm leaves of plants treated with G. boninense alone compared to other treatments. Throughout the 8-week experiment, expression of EgCHI1 increased more than 3-fold in leaves of plants treated with T. harzianum and G. boninense when compared to those of control and other treated plants. Conclusion. The data illustrated that chitinase cDNA expression varied depending on tissue and the type of treatment. PMID:22919345
Salleh, Norliyana Mohamad; Ismail, Sabariah; Ibrahim, Mohamad Nasir Mohamad
2017-01-01
Background: In order to develop oil palm empty fruit bunch (EFB) lignin as a nutraceutical and health supplement, the investigation of its potential in interacting with other drugs via inhibition of drug-metabolizing enzymes (DMEs) would ensure product safety. Objective: The study was aimed to investigate the in vitro effect of oil palm EFB lignin and its main oxidation compounds on phase II DME UDP-glucuronosyltransferases (UGTs) in rat liver and kidney microsomes. Materials and Methods: The p-nitrophenol (p-NP) and 4-methylumbelliferone (4-MU) were employed as probe substrates in glucuronidation assays. The effect of soda oil palm EFB lignin on Vmax, Km, CLint, Ki, and mode of inhibition of 4-MU glucuronidation in RLM was also determined. Results: The inhibitory potency of oil palm EFB lignin for both p-NP and 4-MU glucuronidation in rat liver microsome (RLM) and rat kidneys microsomes (RKM) was found to be in the rank order of soda > kraft > organosolv. However, the inhibitory potency of its main oxidation compounds were in the rank order of vanillin > syringaldehyde > p-hydroxybenzaldehyde. Soda oil palm EFB lignin exhibited mixed-type inhibition against 4-MU glucuronidation in RLM, showing the change in apparent Vmax and with only a minor effect on Km compared with control. Conclusions: The findings showed that effect of oil palm EFB lignin on both p-NP and 4-MU glucuronidation in RLM and RKM was enhanced by the presence of vanillin as well as flavonoids. Kinetic study showed that soda oil palm EFB lignin exhibited strong inhibition on UGT activity in RLM with mixed-type inhibition mode. SUMMARY The inhibitory potential of oil palm EFB lignin extracts for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: soda > kraft > organosolvThe inhibitory potential of oil palm EFB lignin main oxidation compounds for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: vanillin > syringaldehyde > p-hydroxybenzaldehydeResults suggested that the effect of oil palm EFB lignin on p-NP and 4-MU glucuronidation activity in both RLM and RKM was enhanced by the presence of vanillin as well as total flavonoid contentResults also suggested that oil palm EFB lignin may inhibit glucuronidation of substrate by UGT enzymes, especially UGT1A6, particularly in rat liver Abbreviations used: p-NP: p-Nitrophenol, 4-MU: 4-Methylumbelliferone, EFB: Empty fruit bunch, DME: Drug-metabolizing enzymes, UGT: UDPglucuronosyltransferase, Vmax: Maximal reaction velocity, Km: Michaelis-Menten constant, CLint: Intrinsic clearance, Ki: Dissociation constant of an inhibitor enzyme complex, 4-MUG: 4-Methylumbelliferone glucuronide, DMSO: Dimethyl sulfoxide, IC50: Half maximal inhibitory concentration, p-NPG: p-Nitrophenol glucuronide, RKM: Rat kidneys microsomes, RLM: Rat liver microsome, UDPGA: UDPglucuronic acid, TCA: trichloroacetic acid, MPA: mycophenolic acid PMID:28479734
Salleh, Norliyana Mohamad; Ismail, Sabariah; Ibrahim, Mohamad Nasir Mohamad
2017-01-01
In order to develop oil palm empty fruit bunch (EFB) lignin as a nutraceutical and health supplement, the investigation of its potential in interacting with other drugs via inhibition of drug-metabolizing enzymes (DMEs) would ensure product safety. The study was aimed to investigate the in vitro effect of oil palm EFB lignin and its main oxidation compounds on phase II DME UDP-glucuronosyltransferases (UGTs) in rat liver and kidney microsomes. The p -nitrophenol ( p -NP) and 4-methylumbelliferone (4-MU) were employed as probe substrates in glucuronidation assays. The effect of soda oil palm EFB lignin on V max , K m , CL int , K i , and mode of inhibition of 4-MU glucuronidation in RLM was also determined. The inhibitory potency of oil palm EFB lignin for both p -NP and 4-MU glucuronidation in rat liver microsome (RLM) and rat kidneys microsomes (RKM) was found to be in the rank order of soda > kraft > organosolv. However, the inhibitory potency of its main oxidation compounds were in the rank order of vanillin > syringaldehyde > p -hydroxybenzaldehyde. Soda oil palm EFB lignin exhibited mixed-type inhibition against 4-MU glucuronidation in RLM, showing the change in apparent V max and with only a minor effect on K m compared with control. The findings showed that effect of oil palm EFB lignin on both p -NP and 4-MU glucuronidation in RLM and RKM was enhanced by the presence of vanillin as well as flavonoids. Kinetic study showed that soda oil palm EFB lignin exhibited strong inhibition on UGT activity in RLM with mixed-type inhibition mode. The inhibitory potential of oil palm EFB lignin extracts for p -NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: soda > kraft > organosolvThe inhibitory potential of oil palm EFB lignin main oxidation compounds for p -NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: vanillin > syringaldehyde > p-hydroxybenzaldehydeResults suggested that the effect of oil palm EFB lignin on p -NP and 4-MU glucuronidation activity in both RLM and RKM was enhanced by the presence of vanillin as well as total flavonoid contentResults also suggested that oil palm EFB lignin may inhibit glucuronidation of substrate by UGT enzymes, especially UGT1A6, particularly in rat liver Abbreviations used: p -NP: p -Nitrophenol, 4-MU: 4-Methylumbelliferone, EFB: Empty fruit bunch, DME: Drug-metabolizing enzymes, UGT: UDPglucuronosyltransferase, V max : Maximal reaction velocity, K m : Michaelis-Menten constant, CLint: Intrinsic clearance, K i : Dissociation constant of an inhibitor enzyme complex, 4-MUG: 4-Methylumbelliferone glucuronide, DMSO: Dimethyl sulfoxide, IC50: Half maximal inhibitory concentration, p -NPG: p -Nitrophenol glucuronide, RKM: Rat kidneys microsomes, RLM: Rat liver microsome, UDPGA: UDPglucuronic acid, TCA: trichloroacetic acid, MPA: mycophenolic acid.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the Act, are as follows: Common name Botanical name of plant source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed Cydonia oblonga Miller. [42 FR 14640, Mar...
Kabagambe, Edmond K; Baylin, Ana; Ascherio, Alberto; Campos, Hannia
2005-11-01
Palm oil and soybean oil are the 2 most widely used cooking oils in the world. Palm oil is consumed mainly in developing countries, where morbidity and mortality due to cardiovascular disease (CVD) are on the rise. Although claims about adverse or protective effects of these oils are commonly made, there are no epidemiologic studies assessing the association between these oils and cardiovascular disease endpoints. We examined whether consumption of palm oil relative to soybean oil and other unsaturated oils (predominantly sunflower) is associated with myocardial infarction (MI) in Costa Rica. The cases (n = 2111) were survivors of a first acute MI and were matched to randomly selected population controls (n = 2111). Dietary intake was assessed with a validated semiquantitative FFQ. Adipose tissue profiles of essential fatty acids were assessed to validate cooking oil intake and found to be consistent with self-reported major oils used for cooking. The data were analyzed using conditional logistic regression. Palm oil users were more likely to have an MI than users of soybean oil [odds ratio (OR) = 1.33; 95% CI: 1.08-1.63] or other cooking oils (OR = 1.23; CI: 0.99-1.52), but they did not differ from users of soybean oil with a high trans-fatty acid content (OR = 1.14; CI: 0.84-1.56). These data suggest that as currently used in Costa Rica, and most likely in many other developing countries, the replacement of palm oil with a polyunsaturated nonhydrogenated vegetable oil would reduce the risk of MI.
Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent
Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong
2015-01-01
Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798
Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.
Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong
2015-01-01
Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.
Haines, Troy D.; Adlaf, Kevin J.; Pierceall, Robert M.; Lee, Inmok; Venkitasubramanian, Padmesh
2010-01-01
Analysis of MCPD esters and glycidyl esters in vegetable oils using the indirect method proposed by the DGF gave inconsistent results when salting out conditions were varied. Subsequent investigation showed that the method was destroying and reforming MCPD during the analysis. An LC time of flight MS method was developed for direct analysis of both MCPD esters and glycidyl esters in vegetable oils. The results of the LC–TOFMS method were compared with the DGF method. The DGF method consistently gave results that were greater than the LC–TOFMS method. The levels of MCPD esters and glycidyl esters found in a variety of vegetable oils are reported. MCPD monoesters were not found in any oil samples. MCPD diesters were found only in samples containing palm oil, and were not present in all palm oil samples. Glycidyl esters were found in a wide variety of oils. Some processing conditions that influence the concentration of MCPD esters and glycidyl esters are discussed. PMID:21350591
NASA Astrophysics Data System (ADS)
Ramadhani, L. I.; Damayanti, S. I.; Sudibyo, H.; Budhijanto, W.
2018-03-01
Palm Oil Mill Effluent (POME) becomes big problem for palm oil industries, especially for Crude Palm Oil (CPO) industry since it produces 3 tons of POME for every ton of CPO production.The high amount of organic loading in POME makes it potential as a substrate in anaerobic digestion to generate biogas as renewable energy source. The most common but conventional method by using open lagoon is still preferred for most CPO industry in Indonesia to treat POME because of its simplicity and easiness. However, this method creates new major problem for the water bodies since it has no significant chemical oxygen demand (COD) removal and needs wide area. Besides, greenhouse gas (CH4) is also released during the process. An innovation was made in this study by designing vertical column process equipment to run an anaerobic digestion of POME. The vertical column was functioned as anaerobic fluidized bed reactor (AFBR). To enhance the digestion rate in AFBR, natural zeolite was used as the immobilization media and the inoculum was taken from digested biodiesel waste. This research aimed to determine the kinetic constants of double-stage anaerobic POME digestion for COD removal and biogas production. To get close to the real condition, the POME used in this experiment had 8,000 mg/L of sCOD (the real sCOD was ±16,000 mg/L). The experiment was conducted under room temperature with up-flow velocity between 1.75 and 2.3 cm/s for optimum fluidization of immobilization media.
NASA Astrophysics Data System (ADS)
Herlina, Netti; Siska Dewi Harahap, Ici
2018-03-01
Bioethanol (C2H5OH) is a biochemical liquid produced by microorganisms through fermentation process on sugar molecules from carbohydrates. Bioethanol is a fuel of vegetable oil that has similar properties to premium. With its main product of palm juice, Sugar palm (Arenga pinnata) is a potential source of sugar and carbohydrate for bioethanol production. Production of palm juice can reach up to 12-14 liters/tree/day with total sugar content in palm juice ranges from 12-15%. The purpose of this research was to produce highly-concentrated bioethanol from palm juice through fermentation proccess to subtitude fossil fuel. This study was conducted with three stages of treatment, namely: the fermentation of palm juice, distillation of bioethanol, and purification of bioethanol with the addition of adsorbent zeolite and calcium oxide.
NASA Astrophysics Data System (ADS)
Hartill, Jodie; Hergoualc'h, Kristell; Comeau, Louis-Pierre; Jo, Smith; Lou, Verchot
2017-04-01
Half of the peatlands across Peninsular Malaysia, Borneo and Sumatra are 'managed'. Conversion of peat swamp forest to workable oil palm plantation requires a drastic, potentially irreversible, change to the landscape, to which fertilizers are then routinely applied. A combination of these factors is now widely thought to increase soil nitrous oxide (N2O) emissions, although there is high uncertainty due to gaps in the knowledge, both regionally and nationally. Despite the widespread use of fertilizers in plantations on peats, studies observing their effects remain very limited. Therefore, there is a need for in situ studies to evaluate how environmental parameters (edaphic properties, climate, soil moisture and N availability indicators) influence soil emissions. This 18 month study was located in plots local to each other, representing the start, intermediate and end of the land conversion process; namely mixed peat swamp forest, drained and logged forest and industrial oil palm plantation. Spatial variability was taken into account by differentiating the hollows and hummocks in the mixed peat swamp forest, and the fertilized zone and the zone without fertilizer addition in the oil palm plantation. Gas samples were collected each month from static chambers at the same time as key environmental parameters were measured. Intensive sampling was performed during a 35 day period following two fertilizer applications, in which urea was applied to palms at rates of 0.5 and 1 kg urea palm-1. Soil N2O emissions (kg N ha-1 y-1 ± SE) were low overall, but they were greater in the oil palm plantation (0.8 ± 0.1) than in the mixed peat swamp forest (0.3 ± 0.0) and the drained/logged forest (0.2 ± 0.0). In the mixed peat swamp forest, monthly average fluxes of N2O (g N ha-1 d-1 ± SE) were similar in the hollows (0.6 ± 0.2) and the hummocks (0.3 ± 0.1), whereas in the oil palm plantation they were consistently higher in the zone without fertilizer (2.5 ± 0.4) than in the fertilized zone (0.5 ± 0.1), even after fertilizer application. In the fertilized zones, the N2O fluxes following the two fertilizer applications were 2.4 and 4.5 times higher respectively than fluxes observed in the absence of fertilizers. No change in emissions was observed in the neighboring unfertilized zone at the time of fertilizer application. Soil N2O emissions were related to changes in air and soil temperature in the mixed peat swamp forest, air temperature and water table depth in the drained and logged forest, and rainfall on the day of measurement in the oil palm plantation. This research confirms that peat forest conversion to oil palm plantation has negative consequences on the emissions of N2O. It also corroborates an increase in emission due to fertilizer application, with a magnitude comparable to the emission factor provided by the IPCC guidelines, but this is restricted to the limited area of fertilizer application.
Biomass analysis at palm oil factory as an electric power plant
NASA Astrophysics Data System (ADS)
Yusniati; Parinduri, Luthfi; Krianto Sulaiman, Oris
2018-04-01
Biomassa found in palm oil mill industryis a by-product such as palm shell, fiber, empty fruit bunches and pome. The material can be used as an alternative fuel for fossil fuel. On PTPN IVpalm oil millDolokSinumbah with a capacity of 30 tons tbs/hour of palm fruit fiber and palm shells has been utilized as boiler fuel to produce steam to supplyboilers power plant. With this utilization, the use of generators that using fossil fuel can be reduced, this would provide added value for the company. From the analysis, the fiber and shell materials were sufficient to supply 18 tons/hoursteam for the boiler. Shell material even excess as much as 441,5 tons per month. By utilizing the 2 types of biomass that is available alone, the electricity needs of the factory of 734 Kwh can be met. While other materials such as empty bunches and pome can be utilized to increase the added value and profitability for the palm oil mill.
BVOC fluxes from oil palm canopies in South East Asia
NASA Astrophysics Data System (ADS)
Misztal, P. K.; Cape, J. N.; Langford, B.; Nemitz, E.; Helfter, C.; Owen, S.; Heal, M. R.; Hewitt, C. N.; Fowler, D.
2009-04-01
Fluxes by virtual disjunct eddy covariance were measured for the first time in South-East Asia in 2008 from an oil palm plantation. Malaysia and Indonesia account for more than 80% of world oil palm production. Our in situ findings suggest much higher isoprene emissions from oil palms than from rainforest, which is consistent with earlier lab-based predictions of emissions from oil palms (Wilkinson et al., 2006). 50% of global biogenic VOC emissions are estimated to derive from tropical rainforests (Guenther et al., 1995) although in fact a large portion of the emission may derive from oil palms in the tropics. Isoprene and monoterpenes are regarded as the most important biogenic VOCs for the atmospheric chemistry. Overall, maximum isoprene emissions from oil palms were recorded at 11:00 local time, with a mean value of 13 mg m-2 h-1. At the rainforest, the maximum fluxes of isoprene were observed later in the day, at about 13:00 with an average of 2.5 mg m-2 h-1. Initial flux results for total monoterpenes indicate that their mass emission ratio with respect to isoprene was about 1:9 at the rainforest and 1:18 at the oil palm plantation. The results are presented with reference to temperature, photosynthetic radiation and meteorological drivers as well as in comparison with CO2 and H2O fluxes. Empirical parameters in the Guenther algorithm for MEGAN (Guenther et al, 2006), which was originally designed for the Amazon region, have been optimised for this oil palm study. The emission factor obtained from eddy covariance measurements was 18.8 mg m-2 h-1, while the one obtained from leaf level studies at the site was 19.5 mg m-2 h-1. Isoprene fluxes from both Amazonia (Karl et al., 2007) and from rainforest in Borneo 2008 seem to be much lower than from oil palms. This can have consequences for atmospheric chemistry of land use change from rainforest to oil palm plantation, including formation of ozone, SOA and particles and indirect effects on the removal rate of greenhouse gases and pollutants by decreasing OH budgets. Global models predicting atmospheric changes and bottom-up estimates from the tropics must be constrained by direct measurements such as presented here, taking separate account of these major contributions from oil palm plantations and tropical rainforests. References: Guenther, A., C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T.E. Graedel, P. Harley, L. Klinger, M. Lerdau, W.A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor and P. Zimmerman, 1995: A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100, 8873-8892. Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. Discuss., 6, 107-173. Karl, T., A. Guenther, R. J. Yokelson, J. Greenberg, M. Potosnak, D. R. Blake, and P. Artaxo, 2007: The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. Journal of Geophysical Research 112, D18302. Wilkinson, M. J., S. M. Owen, M. Possell, J. Hartwell, P. Gould, A. Hall, C. Vickers, and C. N. Hewitt, 2006: Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant Journal 47, 960-968.
An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia
NASA Astrophysics Data System (ADS)
Yunus, S.; Abdullah, N. R.; Mamat, R.; Rashid, A. A.
2013-12-01
The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia.
NASA Astrophysics Data System (ADS)
Subekti, P.; Hambali, E.; Suryani, A.; Suryadarma, P.
2017-05-01
This study aims to analyze the potential aplication of of palm oil-based foaming agent as peat fires fighter in Indonesia. From literature review, it has been known that the foaming agent able to form foam to extinguish fire, wrap and refrigerate the burning peat. It is necessary to develop the production and application of foaming agent in Indonesia because peat fires occur almost every year that caused smoke haze. Potential raw material for the production of environmental friendly foaming agent as foam extinguishing for peat fires in Indonesia aong other is palm oil due to abundant availability, sustainable, and foam product easily degraded in the environment of the burnt areas. Production of foaming agent as fire-fighting in Indonesia is one alternative to reduce the time to control the fire and smog disaster impact. Application of palm oil as a raw material for fire-fighting is contribute to increase the value added and the development of palm oil downstream industry.
Topological and thermal properties of polypropylene composites based on oil palm biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, A. H., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com; Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com
Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and thenmore » injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.« less
Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini
2012-01-01
This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sequencing of Dust Filter Production Process Using Design Structure Matrix (DSM)
NASA Astrophysics Data System (ADS)
Sari, R. M.; Matondang, A. R.; Syahputri, K.; Anizar; Siregar, I.; Rizkya, I.; Ursula, C.
2018-01-01
Metal casting company produces machinery spare part for manufactures. One of the product produced is dust filter. Most of palm oil mill used this product. Since it is used in most of palm oil mill, company often have problems to address this product. One of problem is the disordered of production process. It carried out by the job sequencing. The important job that should be solved first, least implement, while less important job and could be completed later, implemented first. Design Structure Matrix (DSM) used to analyse and determine priorities in the production process. DSM analysis is sort of production process through dependency sequencing. The result of dependency sequences shows the sequence process according to the inter-process linkage considering before and after activities. Finally, it demonstrates their activities to the coupled activities for metal smelting, refining, grinding, cutting container castings, metal expenditure of molds, metal casting, coating processes, and manufacture of molds of sand.
Mohd Sauid, Suhaila; Krishnan, Jagannathan; Huey Ling, Tan; Veluri, Murthy V P S
2013-01-01
Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.
Yeoh, Keat-Ai; Othman, Abrizah; Meon, Sariah; Abdullah, Faridah; Ho, Chai-Ling
2012-10-15
Glucanases are enzymes that hydrolyze a variety β-d-glucosidic linkages. Plant β-1,3-glucanases are able to degrade fungal cell walls; and promote the release of cell-wall derived fungal elicitors. In this study, three full-length cDNA sequences encoding oil palm (Elaeis guineensis) glucanases were analyzed. Sequence analyses of the cDNA sequences suggested that EgGlc1-1 is a putative β-d-glucan exohydolase belonging to glycosyl hydrolase (GH) family 3 while EgGlc5-1 and EgGlc5-2 are putative glucan endo-1,3-β-glucosidases belonging to GH family 17. The transcript abundance of these genes in the roots and leaves of oil palm seedlings treated with Ganoderma boninense and Trichoderma harzianum was profiled to investigate the involvement of these glucanases in oil palm during fungal infection. The gene expression of EgGlc1-1 in the root of oil palm seedlings was increased by T. harzianum but suppressed by G. boninense; while the gene expression of both EgGlc5-1 and EgGlc5-2 in the roots of oil palm seedlings was suppressed by G. boninense or/and T. harzianum. Copyright © 2012 Elsevier GmbH. All rights reserved.
Effects of oil-palm plantations on diversity of tropical anurans.
Faruk, Aisyah; Belabut, Daicus; Ahmad, Norhayati; Knell, Robert J; Garner, Trenton W J
2013-06-01
Agriculturally altered vegetation, especially oil-palm plantations, is rapidly increasing in Southeast Asia. Low species diversity is associated with this commodity, but data on anuran diversity in oil-palm plantations are lacking. We investigated how anuran biological diversity differs between forest and oil-palm plantation, and whether observed differences in biological diversity of these areas is linked to specific environmental factors. We hypothesized that biological diversity is lower in plantations and that plantations support a larger proportion of disturbance-tolerant species than forest. We compared species richness, abundance, and community composition between plantation and forest areas and between site types within plantation and forest (forest stream vs. plantation stream, forest riparian vs. plantation riparian, forest terrestrial vs. plantation terrestrial). Not all measures of biological diversity differed between oil-palm plantations and secondary forest sites. Anuran community composition, however, differed greatly between forest and plantation, and communities of anurans in plantations contained species that prosper in disturbed areas. Although plantations supported large numbers of breeding anurans, we concluded the community consisted of common species that were of little conservation concern (commonly found species include Fejervarya limnocharis, Microhyla heymonsi, and Hylarana erythrea). We believe that with a number of management interventions, oil-palm plantations can provide habitat for species that dwell in secondary forests. © 2013 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
June, Tania; Meijide, Ana; Stiegler, Christian; Purba Kusuma, Alan; Knohl, Alexander
2018-05-01
Oil palm plantations are expanding vastly in Jambi, resulted in altered surface roughness and turbulence characteristics, which may influence exchange of heat and mass. Micrometeorological measurements above oil palm canopy were conducted for the period 2013–2015. The oil palms were 12.5 years old, canopy height 13 meters and 1.5 years old canopy height 2.5 m. We analyzed the influence of surface roughness and turbulence strenght on heat (sensible and latent) fluxes by investigating the profiles and gradient of wind speed, and temperature, surface roughness (roughness length, zo, and zero plane displacement, d), and friction velocity u*. Fluxes of heat were calculated using profile similarity methods taking into account atmospheric stability calculated using Richardson number Ri and the generalized stability factor ζ. We found that roughness parameters (zo, d, and u*) directly affect turbulence in oil palm canopy and hence heat fluxes; they are affected by canopy height, wind speed and atmospheric stability. There is a negative trend of d towards air temperature above the oil palm canopy, indicating the effect of plant volume and height in lowering air temperature. We propose studying the relation between zero plane displacement d with a remote sensing vegetation index for scaling up this point based analysis.
The robust design for improving crude palm oil quality in Indonesian Mill
NASA Astrophysics Data System (ADS)
Maretia Benu, Siti; Sinulingga, Sukaria; Matondang, Nazaruddin; Budiman, Irwan
2018-04-01
This research was conducted in palm oil mill in Sumatra Utara Province, Indonesia. Currently, the main product of this mill is Crude Palm Oil (CPO) and hasn’t met the expected standard quality. CPO is the raw material for many fat derivative products. The generally stipulated quality criteria are dirt count, free fatty acid, and moisture of CPO. The aim of this study is to obtain the optimal setting for factor’s affect the quality of CPO. The optimal setting will result in an improvement of product’s quality. In this research, Experimental Design with Taguchi Method is used. Steps of this method are identified influence factors, select the orthogonal array, processed data using ANOVA test and signal to noise ratio, and confirmed the research using Quality Loss Function. The result of this study using Taguchi Method is to suggest to set fruit maturity at 75.4-86.9%, digester temperature at 95°C and press at 21 Ampere to reduce quality deviation until 42.42%.
NASA Astrophysics Data System (ADS)
Kume, Tamikazu; Matsuhashi, Shinpei; Hashimoto, Shoji; Awang, Mat Rasol; Hamdini, Hassan; Saitoh, Hideharu
1993-10-01
The production of animal feeds and mushrooms from oil palm cellulosic wasres by radiation and fermentation has been investigated in order to utilize the agro-resources and to reduce the smoke pollution. The process is as follows: decontamination of microorganisms in fermentation media of empty fruit bunch of oil palm (EFB) by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 25 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus and P. sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased to 13 % and the crude fiber content decreased to 20% after 30 days of incubation with C. cinereus at 30°C in solid state fermentation. P. sajor-caju was suitable for the mushroom production on EFB with rice bran.
Kinetics study of palm oil hydrolysis using immobilized lipase Candida rugosa in packed bed reactor.
Min, C S; Bhatia, S; Kamaruddin, A H
1999-01-01
Continuous hydrolysis of palm oil triglyceride in organic solvent using immobilized Candida rugosa on the Amberlite MB-1 as a source of immobilized lipase was studied in packed bed reactor. The enzymatic kinetics of hydrolysis reaction was studied by changing the substrate concentration, reaction temperature and residence time(tau) in the reactor. At 55 degrees C, the optimum water concentration was found to be 15 % weight per volume of solution (%w/v). The Michaelis-Menten kinetic model was used to obtain the reaction parameters, Km(app) and V max(app). The activation energies were found to be quite low indicating that the lipase-catalyzed process is controlled by diffusion of substrates. The Michaelis-Menten kinetic model was found to be suitable at low water concentration 10-15 %w/v of solution. At higher water concentration, substrate inhibition model was used for data analysis. Reactor operation was found to play an important role in the palm oil hydrolysis kinetic.
NASA Astrophysics Data System (ADS)
Pinto, N.; Zhang, Z.; Perger, C.; Aguilar-Amuchastegui, N.; Almeyda Zambrano, A. M.; Broadbent, E. N.; Simard, M.; Banerjee, S.
2017-12-01
The oil palm Elaeis spp. grows exclusively in the tropics and provides 30% of the world's vegetable oil. While oil palm-derived biodiesel can reduce carbon emissions from fossil fuels, plantation establishment may be associated with peat fires and deforestation. The ability to monitor plantation establishment and their expansion over carbon-rich tropical forests is critical for quantifying the net impact of oil palm commodities on carbon fluxes. Our objective is to develop a robust methodology to map oil palm plantations in tropical biomes, based on Synthetic Aperture Radar (SAR) from Sentinel-1, ALOS/PALSAR2, and UAVSAR. The C- and L-band signal from these instruments are sensitive to vegetation parameters such as canopy volume, trunk shape, and trunk spatial arrangement, that are critical to differentiate crops from forests and native palms. Based on Bayesian statistics, the learning algorithm employed here adapts to growing knowledge as sites and trainning points are added. We will present an iterative approach wherein a model is initially built at the site with the most training points - in our case, Costa Rica. Model posteriors from Costa Rica, depicting polarimetric signatures of oil palm plantations, are then used as priors in a classification exercise taking place in South Kalimantan. Results are evaluated by local researchers using the LACO Wiki interface. All validation points, including missclassified sites, are used in an additional iteration to improve model results to >90% overall accuracy. We report on the impact of plantation age on polarimetric signatures, and we also compare model performance with and without L-band data.
Mercière, Maxime; Boulord, Romain; Carasco-Lacombe, Catherine; Klopp, Christophe; Lee, Yang-Ping; Tan, Joon-Sheong; Syed Alwee, Sharifah S R; Zaremski, Alba; De Franqueville, Hubert; Breton, Frédéric; Camus-Kulandaivelu, Létizia
Wood rot fungi form one of the main classes of phytopathogenic fungus. The group includes many species, but has remained poorly studied. Many species belonging to the Ganoderma genus are well known for causing decay in a wide range of tree species around the world. Ganoderma boninense, causal agent of oil palm basal stem rot, is responsible for considerable yield losses in Southeast Asian oil palm plantations. In a large-scale sampling operation, 357 sporophores were collected from oil palm plantations spread over peninsular Malaysia and Sumatra and genotyped using 11 SSR markers. The genotyping of these samples made it possible to investigate the population structure and demographic history of G. boninense across the oldest known area of interaction between oil palm and G. boninense. Results show that G. boninense possesses a high degree of genetic diversity and no detectable genetic structure at the scale of Sumatra and peninsular Malaysia. The fact that few duplicate genotypes were found in several studies including this one supports the hypothesis of spore dispersal in the spread of G. boninense. Meanwhile, spatial autocorrelation analysis shows that G. boninense is able to disperse across both short and long distances. These results bring new insight into mechanisms by which G. boninense spreads in oil palm plantations. Finally, the use of approximate Bayesian computation (ABC) modelling indicates that G. boninense has undergone a demographic expansion in the past, probably before the oil palm was introduced into Southeast Asia. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.