Sample records for palmitoyltransferase ii deficiency

  1. Genetics Home Reference: carnitine palmitoyltransferase II deficiency

    MedlinePlus

    ... Zierz S. Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol. 2005 Jan; ... K, Hermann T, Zierz S. Carnitine palmitoyltransferase II deficiency: molecular and biochemical analysis of 32 ... Bulletins Genetics Home Reference Celebrates Its ...

  2. Carnitine palmitoyltransferase II deficiency

    PubMed Central

    Roe, C R.; Yang, B-Z; Brunengraber, H; Roe, D S.; Wallace, M; Garritson, B K.

    2008-01-01

    Background: Carnitine palmitoyltransferase II (CPT II) deficiency is an important cause of recurrent rhabdomyolysis in children and adults. Current treatment includes dietary fat restriction, with increased carbohydrate intake and exercise restriction to avoid muscle pain and rhabdomyolysis. Methods: CPT II enzyme assay, DNA mutation analysis, quantitative analysis of acylcarnitines in blood and cultured fibroblasts, urinary organic acids, the standardized 36-item Short-Form Health Status survey (SF-36) version 2, and bioelectric impedance for body fat composition. Diet treatment with triheptanoin at 30% to 35% of total daily caloric intake was used for all patients. Results: Seven patients with CPT II deficiency were studied from 7 to 61 months on the triheptanoin (anaplerotic) diet. Five had previous episodes of rhabdomyolysis requiring hospitalizations and muscle pain on exertion prior to the diet (two younger patients had not had rhabdomyolysis). While on the diet, only two patients experienced mild muscle pain with exercise. During short periods of noncompliance, two patients experienced rhabdomyolysis with exercise. None experienced rhabdomyolysis or hospitalizations while on the diet. All patients returned to normal physical activities including strenuous sports. Exercise restriction was eliminated. Previously abnormal SF-36 physical composite scores returned to normal levels that persisted for the duration of the therapy in all five symptomatic patients. Conclusions: The triheptanoin diet seems to be an effective therapy for adult-onset carnitine palmitoyltransferase II deficiency. GLOSSARY ALT = alanine aminotransferase; AST = aspartate aminotransferase; ATP = adenosine triphosphate; BHP = β-hydroxypentanoate; BKP = β-ketopentanoate; BKP-CoA = β-ketopentanoyl–coenzyme A; BUN = blood urea nitrogen; CAC = citric acid cycle; CoA = coenzyme A; CPK = creatine phosphokinase; CPT II = carnitine palmitoyltransferase II; LDL = low-density lipoprotein; MCT

  3. An ignored cause of red urine in children: rhabdomyolysis due to carnitine palmitoyltransferase II (CPT-II) deficiency.

    PubMed

    Melek, Engin; Bulut, Fatma Derya; Atmış, Bahriye; Yılmaz, Berna Şeker; Bayazıt, Aysun Karabay; Mungan, Neslihan Önenli

    2017-02-01

    Carnitine palmitoyltransferase II (CPT-II) deficiency is an autosomal recessively inherited disorder involving the β-oxidation of long-chain fatty acids, which leads to rhabdomyolysis and subsequent acute renal failure. The clinical phenotype varies from a severe infantile form to a milder muscle form. Here, we report a 9-year-old boy referred to our hospital for the investigation of hematuria with a 2-day history of dark urine and malaise. As no erythrocytes in the microscopic examination of the urine and hemoglobinuria were present, myoglobinuria due to rhabdomyolysis was the most probable cause of dark urine. After excluding the other causes of rhabdomyolysis, with the help of metabolic investigations, the patient was suspected to have CPT-II deficiency, the most common cause of metabolic rhabdomyolysis. Our aim in presenting this case is to emphasize considering rhabdomyolysis in the differential diagnosis of dark urine in order to prevent recurrent rhabdomyolysis and renal injury.

  4. Neonatal carnitine palmitoyltransferase II deficiency associated with Dandy-Walker syndrome and sudden death.

    PubMed

    Yahyaoui, Raquel; Espinosa, María Gracia; Gómez, Celia; Dayaldasani, Anita; Rueda, Inmaculada; Roldán, Ana; Ugarte, Magdalena; Lastra, Gonzalo; Pérez, Vidal

    2011-11-01

    Neonatal onset of carnitine palmitoyltransferase II (CPT II) deficiency is an autosomal recessive, often lethal disorder of the mitochondrial beta-oxidation of long-chain fatty acids. It is a rare multiorgan disease which includes hypoketotic hypoglycemia, severe hepatomuscular symptoms, cardiac abnormalities, seizures and lethargy, as well as dysmorphic features. Until now, only 22 affected families have been described in the literature. An increasing number of mutations are being identified in the CPT2 gene, with a distinct genotype-phenotype correlation in most cases. Herein we report a new case of neonatal CPT II deficiency associated with Dandy-Walker syndrome and sudden death at 13 days of life. CPT II deficiency was suggested by acylcarnitine analysis of dried-blood on filter paper in the expanded newborn screening. Genetic analysis of the CPT2 gene identified the presence of a previously described mutation in homozygosity (c.534_558del25bpinsT). All lethal neonatal CPT II deficiency patients previously described presented severe symptoms during the first week of life, although this was not the case in our patient, who remained stable and without apparent vital risk during the first 11 days of life. The introduction of tandem mass spectrometry to newborn screening has substantially improved our ability to detect metabolic diseases in the newborn period. This case illustrates the value of expanded newborn screening in a neonate with an unusual clinical presentation, combining hydrocephalus and sudden death, that might not commonly lead to the suspicion of an inborn error of metabolism. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Reliable Diagnosis of Carnitine Palmitoyltransferase Type IA Deficiency by Analysis of Plasma Acylcarnitine Profiles.

    PubMed

    Heiner-Fokkema, M Rebecca; Vaz, Frédéric M; Maatman, Ronald; Kluijtmans, Leo A J; van Spronsen, Francjan J; Reijngoud, Dirk-Jan

    2017-01-01

    Carnitine palmitoyltransferase IA (CPT-IA) deficiency is an inherited disorder of the carnitine cycle (MIM #255120). Patients affected by this deficiency might be missed easily because of lack of specific and sensitive biochemical markers. In this study, sensitivity and specificity of plasma free carnitine (C0) and long-chain acylcarnitines (lc-ac: C16:0-, C16:1-, C18:0-, C18:1- and C18:2-ac) was evaluated, including the sum of lc-ac (∑lc-ac) and the molar ratios C0/(C16:0-ac+C18:0-ac) and C0/∑lc-ac. Nine plasma acylcarnitine profiles of 4 CPT-IA deficient patients were compared with profiles of 2,190 subjects suspected of or diagnosed with an inherited disorder of metabolism. Age-dependent reference values were calculated based on the patient population without a definite diagnosis of an inborn error of metabolism (n = 1,600). Sensitivity, specificity, and Receiver Operating Characteristic (ROC) curves were calculated based on samples of the whole patient population. Concentrations of C0 in plasma were normal in all CPT-IA deficient patient samples. ROC analyses showed highest diagnostic values for C18:0-ac, C18:1-ac, and ∑lc-ac (AUC 1.000) and lowest for C0 (AUC 0.738). Combining two markers, i.e., a plasma C18:1-ac concentration <0.05 μmol/L and a molar ratio of C0/(C16:0-ac+C18:0-ac) >587, specificity to diagnose CPT-IA deficiency increased to 99.3% compared with either C18:1-ac (97.4%) or C0/(C16:0-ac+C18:0-ac) (96.9%) alone, all at a sensitivity of 100%. Combination of a low concentration of C18:1-ac with a high molar ratio of C0/(C16:0-ac+C18:0-ac) ratio in plasma has high diagnostic value for CPT-IA deficiency. Patients with a clinical suspicion of CPT-IA deficiency can be diagnosed with this test combination.

  6. Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse.

    PubMed

    Nyman, Lara R; Cox, Keith B; Hoppel, Charles L; Kerner, Janos; Barnoski, Barry L; Hamm, Doug A; Tian, Liqun; Schoeb, Trenton R; Wood, Philip A

    2005-01-01

    To better understand carnitine palmitoyltransferase 1a (liver isoform, gene=Cpt-1a, protein=CPT-1a) deficiency in human disease, we developed a gene knockout mouse model. We used a replacement gene targeting strategy in ES cells that resulted in the deletion of exons 11-18, thus producing a null allele. Homozygous deficient mice (CPT-1a -/-) were not viable. There were no CPT-1a -/- pups, embryos or fetuses detected from day 10 of gestation to term. FISH analysis demonstrated targeting vector recombination at the expected single locus on chromosome 19. The inheritance pattern from heterozygous matings was skewed in both C57BL/6NTac, 129S6/SvEvTac (B6;129 mixed) and 129S6/SvEvTac (129 coisogenic) genetic backgrounds biased toward CPT-1a +/- mice (>80%). There was no sex preference with regard to germ-line transmission of the mutant allele. CPT-1a +/- mice had decreased Cpt-1a mRNA expression in liver, heart, brain, testis, kidney, and white fat. This resulted in 54.7% CPT-1 activity in liver from CPT-1a +/- males but no significant difference in females as compared to CPT-1a +/+ controls. CPT-1a +/- mice showed no fatty change in liver and were cold tolerant. Fasting free fatty acid concentrations were significantly elevated, while blood glucose concentrations were significantly lower in 6-week-old CPT-1a +/- mice compared to controls. Although the homozygous mutants were not viable, we did find some aspects of haploinsufficiency in the CPT-1a +/- mutants, which will make them an important mouse model for studying the role of CPT-1a in human disease.

  7. Fatty Acid Oxidation Defects and Insulin Sensitivity

    ClinicalTrials.gov

    2018-05-14

    Very Long-chain Acyl-CoA Dehydrogenase Deficiency; Trifunctional Protein Deficiency; Long-chain 3-hydroxyacyl-CoA Dehydrogenase Deficiency; Medium-chain Acyl-CoA Dehydrogenase Deficiency; Normal Volunteers; Carnitine Palmitoyltransferase II Deficiency, Myopathic

  8. Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD) Extension Study for Subjects Previously Enrolled in Triheptanoin Studies.

    ClinicalTrials.gov

    2018-06-19

    Carnitine Palmitoyltransferase (CPT I or CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Long-chain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency; Carnitine-acylcarnitine Translocase (CACT) Deficiency

  9. An Open-label Phase 2 Study of UX007 (Triheptanoin) in Subjects With Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD)

    ClinicalTrials.gov

    2018-06-01

    Long-chain Fatty Acid Oxidation Disorders (LC-FAOD); Carnitine Palmitoyltransferase (CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Longchain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency

  10. Riboflavin transporter deficiency mimicking mitochondrial myopathy caused by complex II deficiency.

    PubMed

    Nimmo, Graeme A M; Ejaz, Resham; Cordeiro, Dawn; Kannu, Peter; Mercimek-Andrews, Saadet

    2018-02-01

    Biallelic likely pathogenic variants in SLC52A2 and SLC52A3 cause riboflavin transporter deficiency. It is characterized by muscle weakness, ataxia, progressive ponto-bulbar palsy, amyotrophy, and sensorineural hearing loss. Oral riboflavin halts disease progression and may reverse symptoms. We report two new patients whose clinical and biochemical features were mimicking mitochondrial myopathy. Patient 1 is an 8-year-old male with global developmental delay, axial and appendicular hypotonia, ataxia, and sensorineural hearing loss. His muscle biopsy showed complex II deficiency and ragged red fibers consistent with mitochondrial myopathy. Whole exome sequencing revealed a homozygous likely pathogenic variant in SLC52A2 (c.917G>A; p.Gly306Glu). Patient 2 is a 14-month-old boy with global developmental delay, respiratory insufficiency requiring ventilator support within the first year of life. His muscle biopsy revealed combined complex II + III deficiency and ragged red fibers consistent with mitochondrial myopathy. Whole exome sequencing identified a homozygous likely pathogenic variant in SCL52A3 (c.1223G>A; p.Gly408Asp). We report two new patients with riboflavin transporter deficiency, caused by mutations in two different riboflavin transporter genes. Both patients presented with complex II deficiency. This treatable neurometabolic disorder can mimic mitochondrial myopathy. In patients with complex II deficiency, riboflavin transporter deficiency should be included in the differential diagnosis to allow early treatment and improve neurodevelopmental outcome. © 2017 Wiley Periodicals, Inc.

  11. Paralysis Episodes in Carbonic Anhydrase II Deficiency.

    PubMed

    Al-Ibrahim, Alia; Al-Harbi, Mosa; Al-Musallam, Sulaiman

    2003-01-01

    Carbonic anhydrase II (CAII) deficiency is an autosomal recessive disorder manifest by osteopetrosis, renal tubular acidosis, and cerebral calcification. Other features include growth failure and mental retardation. Complications of the osteopetrosis include frequent bone fractures, cranial nerve compression, and dental mal-occlusion. A hyper-chloremic metabolic acidosis, sometimes with hypokalemia, occurs due to renal tubular acidosis that may be proximal, distal, or more commonly, the combined type. Such patients may present with global hypotonia, muscle weakness or paralysis. We report a case of CA II deficiency with recurrent attacks of acute paralysis which was misdiagnosed initially as Guillian-Barre syndrome.

  12. Autosomal Dominant Growth Hormone Deficiency (Type II).

    PubMed

    Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T

    2015-06-01

    Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.

  13. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency

    PubMed Central

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels. PMID:28095507

  14. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    PubMed

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  15. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae.

    PubMed

    Toume, Moeko; Tani, Motohiro

    2014-09-01

    Syringomycin E is a cyclic lipodepsipeptide produced by strains of the plant bacterium Pseudomonas syringae pv. syringae. Genetic studies involving the yeast Saccharomyces cerevisiae have revealed that complex sphingolipids play important roles in the action of syringomycin E. Here, we found a novel mutation that confers resistance to syringomycin E on yeast; that is, a deletion mutant of ORM1 and ORM2, which encode negative regulators of serine palmitoyltransferase catalyzing the initial step of sphingolipid biosynthesis, exhibited resistance to syringomycin E. On the contrary, overexpression of Orm2 resulted in high sensitivity to the toxin. Moreover, overexpression of Lcb1 and Lcb2, catalytic subunits of serine palmitoyltransferase, causes resistance to the toxin, whereas partial repression of expression of Lcb1 had the opposite effect. Partial reduction of complex sphingolipids by repression of expression of Aur1, an inositol phosphorylceramide synthase, also resulted in high sensitivity to the toxin. These results suggested that an increase in sphingolipid biosynthesis caused by a change in the activity of serine palmitoyltransferase causes resistance to syringomycin E. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin: cholesterol acyltransferase deficiency and fish-eye disease.

    PubMed Central

    Rader, D J; Ikewaki, K; Duverger, N; Schmidt, H; Pritchard, H; Frohlich, J; Clerc, M; Dumon, M F; Fairwell, T; Zech, L

    1994-01-01

    Classic (complete) lecithin:cholesterol acyltransferase (LCAT) deficiency and Fish-eye disease (partial LCAT deficiency) are genetic syndromes associated with markedly decreased plasma levels of high density lipoprotein (HDL) cholesterol but not with an increased risk of atherosclerotic cardiovascular disease. We investigated the metabolism of the HDL apolipoproteins (apo) apoA-I and apoA-II in a total of five patients with LCAT deficiency, one with classic LCAT deficiency and four with Fish-eye disease. Plasma levels of apoA-II were decreased to a proportionately greater extent (23% of normal) than apoA-I (30% of normal). In addition, plasma concentrations of HDL particles containing both apoA-I and apoA-II (LpA-I:A-II) were much lower (18% of normal) than those of particles containing only apoA-I (LpA-I) (51% of normal). The metabolic basis for the low levels of apoA-II and LpA-I:A-II was investigated in all five patients using both exogenous radiotracer and endogenous stable isotope labeling techniques. The mean plasma residence time of apoA-I was decreased at 2.08 +/- 0.27 d (controls 4.74 +/- 0.65 days); however, the residence time of apoA-II was even shorter at 1.66 +/- 0.24 d (controls 5.25 +/- 0.61 d). In addition, the catabolism of apoA-I in LpA-I:A-II was substantially faster than that of apoA-I in LpA-I. In summary, genetic syndromes of either complete or partial LCAT deficiency result in low levels of HDL through preferential hypercatabolism of apoA-II and HDL particles containing apoA-II. Because LpA-I has been proposed to be more protective than LpA-I:A-II against atherosclerosis, this selective effect on the metabolism of LpA-I:A-II may provide a potential explanation why patients with classic LCAT deficiency and Fish-eye disease are not at increased risk for premature atherosclerosis despite markedly decreased levels of HDL cholesterol and apoA-I. PMID:8282802

  17. Depletion in LpA-I:A-II particles enhances HDL-mediated endothelial protection in familial LCAT deficiency[S

    PubMed Central

    Gomaraschi, Monica; Ossoli, Alice; Castelnuovo, Samuela; Simonelli, Sara; Pavanello, Chiara; Balzarotti, Gloria; Arca, Marcello; Di Costanzo, Alessia; Sampietro, Tiziana; Vaudo, Gaetano; Baldassarre, Damiano; Veglia, Fabrizio; Franceschini, Guido; Calabresi, Laura

    2017-01-01

    The aim of this study was to evaluate the vasoprotective effects of HDL isolated from carriers of LCAT deficiency, which are characterized by a selective depletion of LpA-I:A-II particles and predominance of preβ migrating HDL. HDLs were isolated from LCAT-deficient carriers and tested in vitro for their capacity to promote NO production and to inhibit vascular cell adhesion molecule-1 (VCAM-1) expression in cultured endothelial cells. HDLs from carriers were more effective than control HDLs in promoting eNOS activation with a gene-dose-dependent effect (PTrend = 0.048). As a consequence, NO production induced by HDL from carriers was significantly higher than that promoted by control HDL (1.63 ± 0.24-fold vs. 1.34 ± 0.07-fold, P = 0.031). HDLs from carriers were also more effective than control HDLs in inhibiting the expression of VCAM-1 (homozygotes, 65.0 ± 8.6%; heterozygotes, 53.1 ± 7.2%; controls, 44.4 ± 4.1%; PTrend = 0.0003). The increased efficiency of carrier HDL was likely due to the depletion in LpA-I:A-II particles. The in vitro findings might explain why carriers of LCAT deficiency showed flow-mediated vasodilation and plasma-soluble cell adhesion molecule concentrations comparable to controls, despite low HDL-cholesterol levels. These results indicate that selective depletion of apoA-II-containing HDL, as observed in carriers of LCAT deficiency, leads to an increased capacity of HDL to stimulate endothelial NO production, suggesting that changes in HDL apolipoprotein composition may be the target of therapeutic interventions designed to improve HDL functionality. PMID:28351888

  18. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation.

    PubMed

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Cohn, Dianne; Heywood, Elizabeth B; Jones, Karrie L; Lovett, David H; Howatt, Deborah A; Daugherty, Alan; Bruemmer, Dennis

    2011-02-01

    Abdominal aortic aneurysms (AAA) are an age-related vascular disease and an important cause of morbidity and mortality. In this study, we sought to determine whether the catalytic component of telomerase, telomerase reverse transcriptase (TERT), modulates angiotensin (Ang) II-induced AAA formation. Low-density lipoprotein receptor-deficient (LDLr-/-) mice were lethally irradiated and reconstituted with bone marrow-derived cells from TERT-deficient (TERT-/-) mice or littermate wild-type mice. Mice were placed on a diet enriched in cholesterol, and AAA formation was quantified after 4 weeks of Ang II infusion. Repopulation of LDLr-/- mice with TERT-/- bone marrow-derived cells attenuated Ang II-induced AAA formation. TERT-deficient recipient mice revealed modest telomere attrition in circulating leukocytes at the study end point without any overt effect of the donor genotype on white blood cell counts. In mice repopulated with TERT-/- bone marrow, aortic matrix metalloproteinase-2 (MMP-2) activity was reduced, and TERT-/- macrophages exhibited decreased expression and activity of MMP-2 in response to stimulation with Ang II. Finally, we demonstrated in transient transfection studies that TERT overexpression activates the MMP-2 promoter in macrophages. TERT deficiency in bone marrow-derived macrophages attenuates Ang II-induced AAA formation in LDLr-/- mice and decreases MMP-2 expression. These results point to a previously unrecognized role of TERT in the pathogenesis of AAA.

  19. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency.

    PubMed

    Farhan, Sali M K; Wang, Jian; Robinson, John F; Lahiry, Piya; Siu, Victoria M; Prasad, Chitra; Kronick, Jonathan B; Ramsay, David A; Rupar, C Anthony; Hegele, Robert A

    2014-01-01

    Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich's ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G>A, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology.

  20. Sphingolipid Long-Chain Base Synthesis in Plants (Characterization of Serine Palmitoyltransferase Activity in Squash Fruit Microsomes).

    PubMed

    Lynch, D. V.; Fairfield, S. R.

    1993-12-01

    The activity of serine palmitoyltransferase (palmitoyl-coenzyme A [CoA]:L-serine [Ser]-C-palmitoyltransferase [decarboxylating], EC 2.3.1.50), the enzyme catalyzing the first step in the synthesis of the long-chain base required for sphingolipid assembly, has been characterized in a plant system. Enzyme activity in a microsomal membrane fraction from summer squash fruit (Cucurbita pepo L. cv Early Prolific Straightneck) was assayed by monitoring the incorporation of L-[3H]Ser into the chloroform-soluble product, 3-ketosphinganine. Addition of NADPH to the assay system resulted in the conversion of 3-ketosphinganine to sphinganine. The apparent Km for Ser was approximately 1.8 mM. The enzyme exhibited a strong preference for palmitoyl-CoA, with optimal activity at a substrate concentration of 200 [mu]M. Pyridoxal 5[prime]-phosphate was required as a coenzyme. The pH optimum was 7.6, and the temperature optimum was 36 to 40[deg]C. Enzyme activity was greatest in the microsomal fraction obtained by differential centrifugation and was localized to the endoplasmic reticulum using marker enzymes. Two known mechanism-based inhibitors of the mammalian enzyme, L-cycloserine and [beta]-chloro-L-alanine, were effective inhibitors of enzyme activity in squash microsomes. Changes in enzyme activity with size (age) of squash fruit were observed. The results from this study suggest that the properties and catalytic mechanism of Ser palmitoyltransferase from squash are similar to those of the animal, fungal, and bacterial enzyme in most respects. The specific activity of the enzyme in squash microsomes ranged from 0.57 to 0.84 nmol min-1 mg-1 of protein, values 2- to 20-fold higher than those previously reported for preparations from animal tissues.

  1. Calpain-2 Compensation Promotes Angiotensin II-Induced Ascending and Abdominal Aortic Aneurysms in Calpain-1 Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Moorleghen, Jessica J.; Balakrishnan, Anju; Howatt, Deborah A.; Chishti, Athar H.; Uchida, Haruhito A.

    2013-01-01

    Background and Objective Recently, we demonstrated that angiotensin II (AngII)-infusion profoundly increased both aortic protein and activity of calpains, calcium-activated cysteine proteases, in mice. In addition, pharmacological inhibition of calpain attenuated AngII-induced abdominal aortic aneurysm (AA) in mice. Recent studies have shown that AngII infusion into mice leads to aneurysmal formation localized to the ascending aorta. However, the precise functional contribution of calpain isoforms (-1 or -2) in AngII-induced abdominal AA formation is not known. Similarly, a functional role of calpain in AngII-induced ascending AA remains to be defined. Using BDA-410, an inhibitor of calpains, and calpain-1 genetic deficient mice, we examined the relative contribution of calpain isoforms in AngII-induced ascending and abdominal AA development. Methodology/Results To investigate the relative contribution of calpain-1 and -2 in development of AngII-induced AAs, male LDLr −/− mice that were either calpain-1 +/+ or −/− were fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min) for 4 weeks. Calpain-1 deficiency had no significant effect on body weight or blood pressure during AngII infusion. Moreover, calpain-1 deficiency showed no discernible effects on AngII-induced ascending and abdominal AAs. Interestingly, AngII infusion induced increased expression of calpain-2 protein, thus compensating for total calpain activity in aortas of calpain-1 deficient mice. Oral administration of BDA-410, a calpain inhibitor, along with AngII-infusion significantly attenuated AngII-induced ascending and abdominal AA formation in both calpain-1 +/+ and −/− mice as compared to vehicle administered mice. Furthermore, BDA-410 administration attenuated AngII-induced aortic medial hypertrophy and macrophage accumulation. Western blot and immunostaining analyses revealed BDA-410 administration attenuated AngII-induced C-terminal fragmentation of filamin A, an

  2. von Willebrand's disease antigen II. A new plasma and platelet antigen deficient in severe von Willebrand's disease.

    PubMed Central

    Montgomery, R R; Zimmerman, T S

    1978-01-01

    Factor VIII-related antigen (VIIIag) is deficient in plasma and platelets of patients with severe von Willebrand's disease. This study reports a second von Willebrand's disease antigen (vWagII), distinct from VIIIag, that is also deficient in the platelets and plasma of patients with severe von Willebrand's disease. VIIIag and vWagII are separable by molecular exclusion chromatography, sucrose density gradient ultracentrifugation, and crossed immunoelectrophoresis. They show reactions of immunologic nonidentity with each other, and thus, do not share a precursor-product relationship. vWagII is released from normal platelets during blood clotting, accounting for a fourfold higher concentration of vWagII in serum over plasma. Images PMID:307007

  3. Study of Triheptanoin for Treatment of Long-Chain Fatty Acid Oxidation Disorder

    ClinicalTrials.gov

    2017-03-21

    Very Long-chain acylCoA Dehydrogenase (VLCAD) Deficiency; Carnitine Palmitoyltransferase 2 (CPT2) Deficiency; Mitochondrial Trifunctional Protein (TFP) Deficiency; Long-chain 3 hydroxyacylCoA Dehydrogenase (LCHAD) Deficiency

  4. Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice

    PubMed Central

    Knudsen, Lars; Ochs, Matthias; MacKay, Rosemarie; Townsend, Paul; Deb, Roona; Mühlfeld, Christian; Richter, Joachim; Gilbert, Fabian; Hawgood, Samuel; Reid, Kenneth; Clark, Howard

    2007-01-01

    Background Surfactant protein D (SP-D) deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D) has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. Methods SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. Main Results After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. Conclusion Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are characterized by decreased SP

  5. Factor II deficiency

    MedlinePlus

    ... disorders: coagulation factor deficiencies. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. ... Florida Cancer Specialists & Research Institute, Wellington, FL. Review provided by ...

  6. Hypoglycemia due to 3β-Hydroxysteroid Dehydrogenase type II Deficiency in a Newborn.

    PubMed

    Konar, M C; Goswami, S; Babu, B G; Mallick, A K

    2015-11-01

    3β-hydroxysteroid dehydrogenase type II deficiency results in decreased production of all three groups of adrenal steroids. Recurrent hypoglycemia as a presenting feature of this disorder has not been reported earlier. A genotypically and phenotypically normal female newborn delivered by in-vitro fertilization presenting with recurrent hypoglycemia. Primary adrenal insufficiency with insignificant mineralocorticoid deficiency and slightly elevated levels of 17-hydro-xyprogesterone, dehydroepian-drosterone sulphate and testosterone. Successfully managed only with corticosteroid replacement. Congenital adrenal hyperplasia can rarely cause recurrent hypoglycemia in newborns.

  7. Deficiency of Carbonic Anhydrase II Results in a Urinary Concentrating Defect

    PubMed Central

    Krishnan, Devishree; Pan, Wanling; Beggs, Megan R.; Trepiccione, Francesco; Chambrey, Régine; Eladari, Dominique; Cordat, Emmanuelle; Dimke, Henrik; Alexander, R. Todd

    2018-01-01

    Carbonic anhydrase II (CAII) is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1) interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL); however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice. PMID:29354070

  8. Effect of iron deficiency on the expression of insulin-like growth factor-II and its receptor in neuronal and glial cells.

    PubMed

    Morales González, E; Contreras, I; Estrada, J A

    2014-09-01

    Many studies have demonstrated that iron deficiency modifies the normal function of the central nervous system and alters cognitive abilities. When cellular damage occurs in the central nervous system, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF- II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified. Mixed primary cell cultures from the central nervous system were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the western blot test. We observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in iron-deficient cultures. In vitro iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  9. Review on Vitamin K Deficiency and its Biomarkers: Focus on the Novel Application of PIVKA-II in Clinical Practice.

    PubMed

    Dong, Rui; Wang, Nianyue; Yang, Yongfeng; Ma, Li; Du, Qiang; Zhang, Wei; Tran, Anh H; Jung, Haiyoung; Soh, Andrew; Zheng, Yijie; Zheng, Shan

    2018-04-01

    Vitamin K (VK) is a co-factor of the γ-glutamyl carboxylase that catalyzes the conversion of glutamate residues to γ-carboxyglutamate in VK-dependent proteins. The carboxylation reaction imparts the essential calcium-binding residues for the biological function of several proteins involved in the process of coagulation and bone metabolism. VK deficiency is frequently encountered in newborns and can lead to fatal hemorrhagic complications. This review describes and discusses the clinical application of VK deficiency testing. References and data were researched in PubMed and reviewed. In adults, VK deficiency is associated with uncontrolled bleeding, liver dysfunction, osteoporosis, and coronary diseases. An improved understanding of the role of VK deficiency in health and illness can be achieved by setting a gold-standard in the inter-laboratory estimations of VK. However, conventional methods used to measure the VK deficiency based upon the coagulation time lack sensitivity and specificity. Recently, the alterations in proteins induced by VK absence or antagonism (PIVKA) have proven to be suitable biomarkers for detecting VK deficiency. The measurement of PIVKA-II exhibits an enhanced sensitivity and specificity in comparison to other methods conventionally used for the assessment of VK deficiency in newborns and adults. PIVKA-II could potentially be employed as an effective biomarker in the diagnosis of VK deficiency.

  10. Compassionate Use of Triheptanoin (C7) for Inherited Disorders of Energy Metabolism

    ClinicalTrials.gov

    2018-05-02

    Very Long-chain acylCoA Dehydrogenase (VLCAD) Deficiency; Carnitine Palmitoyltransferase Deficiencies (CPT1, CPT2); Mitochondrial Trifunctional Protein Deficiency; Long-chain Hydroxyacyl-CoA Dehydrogenase Deficiency; Glycogen Storage Disorders; Pyruvate Carboxylase Deficiency Disease; ACYL-CoA DEHYDROGENASE FAMILY, MEMBER 9, DEFICIENCY of; Barth Syndrome

  11. Postnatally elevated levels of insulin-like growth factor (IGF)-II fail to rescue the dwarfism of IGF-I-deficient mice except kidney weight.

    PubMed

    Moerth, Corinna; Schneider, Marlon R; Renner-Mueller, Ingrid; Blutke, Andreas; Elmlinger, Martin W; Erben, Reinhold G; Camacho-Hübner, Cecilia; Hoeflich, Andreas; Wolf, Eckhard

    2007-01-01

    This study tested whether elevated levels of IGF-II in the postnatal period can rescue the dwarfism in IGF-I-deficient mice. Heterozygous Igf1 mutant mice [I(+/-) II(wt)] were crossed with heterozygous Igf1 mutant, phosphoenolpyruvate carboxykinase promoter IGF-II transgenic mice [I(+/-) II(tg)], and [I(+/+) II(wt)], [I(+/+) II(tg)], [I(-/-) II(wt)], and [I(-/-) II(tg)] offspring were investigated. IGF-II levels were 11- and 6-fold higher in male and female [I(-/-) II(tg)] vs. [I(-/-) II(wt)] animals. Western ligand blot analysis revealed markedly reduced activities of 30- and 32-kDa IGF binding proteins (IGFBPs) (most likely IGFBP-1 and IGFBP-2) and the 39- to 43-kDa IGFBP-3 double band in serum from IGF-I-deficient mice. These binding proteins were partially restored by overexpression of IGF-II. Analysis of weight data from the early postnatal period until d 60 showed that, in the absence of IGF-I, elevated levels of IGF-II have no effect on body weight gain. A detailed analysis of body proportions, bone parameters, and organ weights of 60-d-old mice also failed to show effects of IGF-II with one important exception: in Igf1 mutant and also Igf1 intact male mice, IGF-II overexpression significantly increased absolute (+32.4 and +28.6%; P < 0.01) and relative kidney weights (+29.0 and +22.4%; P < 0.001). These changes in kidney weight were associated with reduced phosphorylation of p38 MAPK. In summary, our genetic model shows that substantial amounts of IGF-II in the circulation do not rescue the postnatal growth deficit of IGF-I-deficient mice but increase absolute and relative kidney weights of normal and IGF-I-deficient male mice, suggesting a gender-specific role of IGF-II for kidney growth.

  12. A Method for Selective Depletion of Zn(II) Ions from Complex Biological Media and Evaluation of Cellular Consequences of Zn(II) Deficiency

    PubMed Central

    Richardson, Christopher E. R.; Cunden, Lisa S.; Butty, Vincent L.; Nolan, Elizabeth M.; Lippard, Stephen J.; Shoulders, Matthew D.

    2018-01-01

    We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the “A12-resin,” that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids, including human serum. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293 cells cultured in medium depleted of Zn(II) using S100A12. The resulting data provide insight into how cells respond to acute Zn(II) deficiency. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology. PMID:29334734

  13. Targeting GH-1 splicing as a novel pharmacological strategy for growth hormone deficiency type II.

    PubMed

    Miletta, Maria Consolata; Flück, Christa E; Mullis, Primus-E

    2017-01-15

    Isolated growth hormone deficiency type II (IGHD II) is a rare genetic splicing disorder characterized by reduced growth hormone (GH) secretion and short stature. It is mainly caused by autosomal dominant-negative mutations within the growth hormone gene (GH-1) which results in missplicing at the mRNA level and the subsequent loss of exon 3, producing the 17.5-kDa GH isoform: a mutant and inactive GH protein that reduces the stability and the secretion of the 22-kDa GH isoform, the main biologically active GH form. At present, patients suffering from IGHD II are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent the toxic effects of the 17.5-kDa mutant on the pituitary gland, which may eventually lead to other hormonal deficiencies. As the severity of the disease inversely correlates with the 17.5-kDa/22-kDa ratio, increasing the inclusion of exon 3 is expected to ameliorate disease symptoms. This review focuses on the recent advances in experimental and therapeutic strategies applicable to treat IGHD II in clinical and preclinical contexts. Several avenues for alternative IGHD II therapy will be discussed including the use of small interfering RNA (siRNA) and short hairpin RNA (shRNA) constructs that specifically target the exon 3-deleted transcripts as well as the application of histone deacetylase inhibitors (HDACi) and antisense oligonucleotides (AONs) to enhance full-length GH-1 transcription, correct GH-1 exon 3 splicing and manipulate GH pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase.

    PubMed

    Zhakupova, Assem; Debeuf, Nincy; Krols, Michiel; Toussaint, Wendy; Vanhoutte, Leen; Alecu, Irina; Kutalik, Zoltán; Vollenweider, Peter; Ernst, Daniela; von Eckardstein, Arnold; Lambrecht, Bart N; Janssens, Sophie; Hornemann, Thorsten

    2016-12-01

    ORMDL proteins are believed to be negative regulators of serine palmitoyltransferase (SPT), which catalyzes the first and rate limiting step in sphingolipid (SL) de novo synthesis. Several single-nucleotide polymorphisms (SNPs) that are close to the ORMDL3 locus have been reported to increase ORMDL3 expression and to be associated with an elevated risk for early childhood asthma; however, the direct effect of ORMDL3 expression on SPT activity and its link to asthma remains elusive. In this study, we investigated whether ORMDL3 expression is associated with changes in SPT activity and total SL levels. Ormdl3-knockout (Ormdl3 -/- ) and transgenic (Ormdl3 Tg/wt ) mice were generated to study the effect of ORMDL3 on total SL levels in plasma and tissues. Cellular SPT activity was measured in mouse embryonic fibroblasts from Ormdl3 -/- mice, as well as in HEK293 cells in which ORMDL3 was overexpressed and silenced. Furthermore, we analyzed the association of the reported ORMDL3 asthma SNPs with plasma sphingoid bases in a population-based cohort of 971 individuals. Total C 18 -long chain bases were not significantly altered in the plasma and tissues of Ormdl3 -/- mice, whereas C 18 -sphinganine showed a small and significant increase in plasma, lung, and liver tissues. Mouse embryonic fibroblast cells from Ormdl3 -/- mice did not show an altered SPT activity compared with Ormdl3 +/- and Ormdl3 +/+ mice. Overexpression or knockdown of ORMDL3 in HEK293 cells did not alter SPT activity; however, parallel knockdown of all 3 ORMDL isoforms increased enzyme activity significantly. A significant association of the annotated ORMDL3 asthma SNPs with plasma long-chain sphingoid base levels could not be confirmed. ORMDL3 expression levels seem not to be directly associated with changes in SPT activity. ORMDL3 might influence de novo sphingolipid metabolism downstream of SPT.-Zhakupova, A., Debeuf, N., Krols, M., Toussaint, W., Vanhoutte, L., Alecu, I., Kutalik, Z., Vollenweider, P

  15. [Different patterns of 123I-BMIPP myocardial accumulation in patients with type I and II CD36 deficiency].

    PubMed

    Watanabe, K; Toba, K; Ogawa, Y; Aizawa, Y; Tanabe, N; Miyajima, S; Kusano, Y; Nagatomo, T; Hirokawa, Y

    1997-12-01

    The CD36 molecule is a multifunctional membrane type receptor glycoprotein that reacts with thrombospondin, collagen, oxidized LDL and long-chain fatty acids (LCFA). LCFA are one of the major cardiac energy substrates, hence LCFA metabolism may have an important role in cardiac diseases. In this study, we analyzed CD36 expression in 200 patients with heart diseases [44 patients with hypertrophic cardiomyopathy (HCM), 16 with dilated cardiomyopathy (DCM), 26 with old myocardial infarction (OMI), 55 with angina pectoris (AP) and 59 with other miscellaneous heart diseases] using a flow cytometer. 123I-beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) myocardial accumulation was also examined in some patients. Eight patients (2 with HCM, 1 with DCM, 2 with OMI, and 3 with AP) were diagnosed as having type I CD36 deficiency (neither platelets nor monocytes expressed CD36). Sixteen patients (3 with HCM, 1 with DCM, 1 with OMI, 8 with AP, and 3 with other heart diseases) showed type II CD36 deficiency (monocytes expressed CD36 but platelets did not). In all 8 patients with type I CD36 deficiency, there was no BMIPP accumulation in the heart. However, in 13 patients with type II CD36 deficiency, focally reduced BMIPP accumulation was observed, but there were no patients without BMIPP accumulation. CD36 deficiency was observed in a higher proportion (12%) of patients with heart disease in this study than in a reported control study. Type I CD36 deficiency is associated with absence of BMIPP accumulation in the heart, hence it may have an important role in LCFA metabolic disorders and some types of cardiac hypertrophy as well as other heart diseases.

  16. Genetics Home Reference: carnitine palmitoyltransferase I deficiency

    MedlinePlus

    ... prevents the body from using certain fats for energy, particularly during periods without food (fasting). The severity ... during the breakdown of fats and used for energy. Together these signs are called hypoketotic hypoglycemia. People ...

  17. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.

  18. ApoA-I deficiency in mice is associated with redistribution of apoA-II and aggravated AApoAII amyloidosis[S

    PubMed Central

    Wang, Yaoyong; Sawashita, Jinko; Qian, Jinze; Zhang, Beiru; Fu, Xiaoying; Tian, Geng; Chen, Lei; Mori, Masayuki; Higuchi, Keiichi

    2011-01-01

    Apolipoprotein A-II (apoA-II) is the second major apolipoprotein following apolipoprotein A-I (apoA-I) in HDL. ApoA-II has multiple physiological functions and can form senile amyloid fibrils (AApoAII) in mice. Most circulating apoA-II is present in lipoprotein A-I/A-II. To study the influence of apoA-I on apoA-II and AApoAII amyloidosis, apoA-I-deficient (C57BL/6J.Apoa1−/−) mice were used. Apoa1−/− mice showed the expected significant reduction in total cholesterol (TC), HDL cholesterol (HDL-C), and triglyceride (TG) plasma levels. Unexpectedly, we found that apoA-I deficiency led to redistribution of apoA-II in HDL and an age-related increase in apoA-II levels, accompanied by larger HDL particle size and an age-related increase in TC, HDL-C, and TG. Aggravated AApoAII amyloidosis was induced in Apoa1−/− mice systemically, especially in the heart. These results indicate that apoA-I plays key roles in maintaining apoA-II distribution and HDL particle size. Furthermore, apoA-II redistribution may be the main reason for aggravated AApoAII amyloidosis in Apoa1−/− mice. These results may shed new light on the relationship between apoA-I and apoA-II as well as provide new information concerning amyloidosis mechanism and therapy. PMID:21622630

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnefont, J.P.; Cepanec, C.; Leroux, J.P.

    Carnitine palmitoyltransferase (CPT) II deficiency, an inherited disorder of mitochondrial long-chain fatty-acid (LCFA) oxidation, results in two distinct clinical act phenotypes, namely, an adult (muscular) form and an infantile (hepatocardiomuscular) form. The rationale of this phenotypic heterogeneity is poorly understood. The adult form of the disease is commonly ascribed to the Ser-113-Leu substitution in CPT II. Only few data are available regarding the molecular basis of the infantile form of the disease. We report herein a homozygous A-2399-C transversion predicting a Tyr-628-Ser substitution in a CPT II-deficient infant. In vitro expression of mutant cDNA in COS-1 cells demonstrated the responsibilitymore » of this mutation for the disease. Metabolic consequences of the Ser-113-Leu and Tyr-628-Ser substitutions were studied in fibroblasts. The Tyr-628-Ser substitution (infantile form) resulted in a 10% CPT II residual activity, markedly impairing LCFA oxidation, whereas the Ser-113-Leu substitution (adult form) resulted in a 20% CPT II residual activity, without consequence on LCFA oxidation. These data show that CPT II activity has to be reduced below a critical threshold in order for LCFA oxidation in fibroblasts to be impaired. The hypothesis that this critical threshold differs among tissues could provide a basis to explain phenotypic heterogeneity of CPT II deficiency. 32 refs., 5 figs.« less

  20. Molecular Diagnosis of 5α-Reductase Type II Deficiency in Brazilian Siblings with 46,XY Disorder of Sex Development

    PubMed Central

    de Calais, Flávia Leme; Soardi, Fernanda Caroline; Petroli, Reginaldo José; Lusa, Ana Letícia Gori; de Paiva e Silva, Roberto Benedito; Maciel-Guerra, Andréa Trevas; Guerra-Júnior, Gil; de Mello, Maricilda Palandi

    2011-01-01

    The steroid 5α-reductase type II enzyme catalyzes the conversion of testosterone (T) to dihydrotestosterone (DHT), and its deficiency leads to undervirilization in 46,XY individuals, due to an impairment of this conversion in genital tissues. Molecular analysis in the steroid 5α-reductase type II gene (SRD5A2) was performed in two 46,XY female siblings. SRD5A2 gene sequencing revealed that the patients were homozygous for p.Gln126Arg missense mutation, which results from the CGA > CAA nucleotide substitution. The molecular result confirmed clinical diagnosis of 46,XY disorder of sex development (DSD) for the older sister and directed the investigation to other family members. Studies on SRD5A2 protein structure showed severe changes at NADPH binding region indicating that structural modeling analysis can be useful to evaluate the deleterious role of a mutation as causing 5α-reductase type II enzyme deficiency. PMID:22272144

  1. Reconstruction for chronic grade-II posterior cruciate ligament deficiency in Malaysian military personnel.

    PubMed

    Ahmad, Shahrulazua; Mahidon, Rafedon; Shukur, Mohammad Hassan; Hamdan, Amiruddin; Kasmin, Musa

    2014-12-01

    To evaluate the outcome of reconstruction for chronic grade-II posterior cruciate ligament (PCL) deficiency in Malaysian military personnel. Medical records of 16 male military personnel aged 25 to 41 years who underwent reconstruction for chronic grade-II PCL deficiency using the quadruple hamstrings tendon by a single surgeon were reviewed. The mean time from injury to surgery was 43.6 (range, 3-104) months. 10 patients had grade-I (n=4), grade-III (n=2), and grade-IV (n=4) lesions of the medial femoral condyles. Seven patients had medial (n=6) and lateral (n=1) meniscus tears. At the 2-year follow-up, patients were asked to complete a questionnaire consisting of the Lysholm score, Tegner activity level, and International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form. Posterior drawer test, KT-2000 arthrometer test for posterior translation of the tibia, and military health grade (MHG) were assessed by an independent assessor. At the 2-year follow-up, the mean Lysholm score was 83; the score was excellent in 2 patients, good in 9, fair in 4, and poor in one. The mean IKDC subjective score was 74. The median Tegner activity level increased from 5.5 to 6. The posterior drawer test of 11 patients improved to grade I and the remaining 5 remained at grade II. The mean posterior translation of the tibia was 2.4 mm postoperatively; the posterior translation was normal in 8 patients, nearly normal in 7, and abnormal (≥ 6 mm) in one. The MHG improved in 14 patients and remained unchanged in 2. The latter 2 patients had no chondral lesion or meniscus injury. The first one was 40 years old with a postoperative IKDC score of 55 and a Tegner activity level of 2. The second one was 34 years old with a postoperative IKDC score of 65 and posterior translation of the tibia of 6 mm. Surgical reconstruction for chronic grade-II PCL injury achieved satisfactory outcome and may be appropriate for military personnel.

  2. Effects of methionine deficiencies on plasma levels of thyroid hormones, insulin-like growth factors-I and -II, liver and body weights, and feed intake in growing chickens.

    PubMed

    Carew, L B; McMurtry, J P; Alster, F A

    2003-12-01

    We showed previously that Met deficiency at 0.25% of the diet causes elevations in plasma triiodothyronine (T3) in broilers. In the present study, plasma levels of thyroid hormones as well as insulin-like growth factors (IGF)-I and -II were measured in chicks fed 3 deficient levels of total Met. Control (0.5%) and Met-deficient diets (0.4, 0.3, and 0.2%) were fed to male broilers from 8 to 22 d of age. Additional groups of control chicks were pair-fed with the Met-deficient ones. Chicks receiving 0.4% Met increased feed intake by 10% with no significant change in body weight. The more severe Met deficiencies of 0.3 and 0.2% caused graded reductions in feed intake and weight gain. However, corresponding pair-fed control chicks were significantly heavier. These changes suggest more marked alterations in metabolic processes with 0.3 and 0.2% Met than with 0.4% Met. Liver weights were heavier in chicks fed 0.3 and 0.2% Met but not 0.4%. Plasma T3 was higher in all deficient chicks compared with the free-fed control, which was significant only with 0.3% Met. However, with 0.3 and 0.2% Met, plasma T3 was significantly elevated compared to pair-fed controls. Plasma thyroxine (T4) was lower in all deficient groups, which was significant only with 0.2% Met, whereas no significant differences occurred between deficient chicks and their pair-fed controls. Plasma IGF-I levels were not significantly different, but they were consistently lower in deficient chicks and deserve further study. Plasma IGF-II was significantly less in chicks fed 0.2% Met compared to pair-fed controls suggesting that Met deficiency interferes with IGF-II metabolism. We concluded that a deficit of dietary Met altered plasma T3 and IGF-II levels, but the effect was dependent on the degree of deficiency.

  3. Aliskiren Attenuates Steatohepatitis and Increases Turnover of Hepatic Fat in Mice Fed with a Methionine and Choline Deficient Diet

    PubMed Central

    Lee, Kuei-Chuan; Chan, Che-Chang; Yang, Ying-Ying; Hsieh, Yun-Cheng; Huang, Yi-Hsiang; Lin, Han-Chieh

    2013-01-01

    Background & Aims Activation of the renin-angiotensin-system is known to play a role in nonalcoholic steatohepatitis. Renin knockout mice manifest decreased hepatic steatosis. Aliskiren is the first direct renin inhibitor to be approved for clinical use. Our study aims to evaluate the possible therapeutic effects and mechanism of the chronic administration of aliskiren in a dietary steatohepatitis murine model. Methods Male C57BL/6 mice were fed with a methionine and choline-deficient (MCD) diet to induce steatohepatitis. After 8 weeks of feeding, the injured mice were randomly assigned to receive aliskiren (50 mg·kg-1 per day) or vehicle administration for 4 weeks. Normal controls were also administered aliskiren (50 mg·kg-1 per day) or a vehicle for 4 weeks. Results In the MCD mice, aliskiren attenuated hepatic steatosis, inflammation and fibrosis. Aliskiren did not change expression of lipogenic genes but increase turnover of hepatic fat by up-regulating peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1a, cytochrome P450-4A14 and phosphorylated AMP-activated protein kinase. Furthermore, aliskiren decreased the hepatic expression of angiotensin II and nuclear factor κB. The levels of oxidative stress, hepatocyte apoptosis, activation of Kupffer cells and hepatic stellate cells, and pro-fibrotic markers were also reduced in the livers of the MCD mice receiving aliskiren. Conclusions Aliskiren attenuates steatohepatitis and fibrosis in mice fed with a MCD diet. Thus, the noted therapeutic effects might come from not only the reduction of angiotensin II but also the up-regulation of fatty acid oxidation-related genes. PMID:24204981

  4. Neurologic sequelae of deficiency diseases in World War II prisoners of war: Extracts from a videographic narrative.

    PubMed

    Kumar, Neeraj; Boes, Christopher J; Vilensky, Joel

    2010-03-01

    This report aims at bringing attention to still frames from a film that provides a videographic narrative of neurologic deficiency diseases in post World War II prisoners of war. An abbreviated version of the original film is provided as Supplementary material. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Lipid Absorption Defects in Intestine-specific Microsomal Triglyceride Transfer Protein and ATP-binding Cassette Transporter A1-deficient Mice*

    PubMed Central

    Iqbal, Jahangir; Parks, John S.; Hussain, M. Mahmood

    2013-01-01

    We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92–95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations. PMID:24019513

  6. Myriocin, a serine palmitoyltransferase inhibitor, increases melanin synthesis in Mel-Ab cells and a skin equivalent model.

    PubMed

    Li, Hailan; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Park, Kyoung-Chan; Kim, Dong-Seok

    2014-03-01

    The purpose of this study was to investigate effects of myriocin, an inhibitor of serine palmitoyltransferase, on melanogenesis. It was found that myriocin increased melanin synthesis in a concentration-dependent manner. Moreover, myriocin up-regulated microphthalmia-associated transcription factor (MITF) and tyrosinase expression via phosphorylation of CREB, but it did not directly activate tyrosinase, a rate-limiting melanogenic enzyme. Furthermore, we demonstrated increased melanin synthesis with myriocin on a pigmented skin equivalent model established using Cervi cornus Colla (deer antler glue). One and 5 microM of myriocin darkened the color of the skin equivalent. These results suggest that myriocin may have potential effects for the treatment of hypopigmentary skin diseases like vitiligo or for sunless tanning.

  7. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice

    PubMed Central

    Haque, Jamil A; McMahan, Ryan S; Campbell, Jean S; Shimizu-Albergine, Masami; Wilson, Angela M; Botta, Dianne; Bammler, Theo K; Beyer, Richard P; Montine, Thomas J; Yeh, Matthew M; Kavanagh, Terrance J; Fausto, Nelson

    2011-01-01

    In nonalcoholic fatty liver disease (NAFLD), depletion of hepatic antioxidants may contribute to the progression of steatosis to nonalcoholic steatohepatitis (NASH) by increasing oxidative stress that produces lipid peroxidation, inflammation, and fibrosis. We investigated whether depletion of glutathione (GSH) increases NASH-associated hepatic pathology in mice fed a diet deficient in methionine and choline (MCD diet). Wild-type (wt) mice and genetically GSH-deficient mice lacking the modifier subunit of glutamate cysteine ligase (Gclm null mice), the rate-limiting enzyme for de novo synthesis of GSH, were fed the MCD diet, a methionine/choline-sufficient diet, or standard chow for 21 days. We assessed NASH-associated hepatic pathology, including steatosis, fibrosis, inflammation, and hepatocyte ballooning, and used the NAFLD Scoring System to evaluate the extent of changes. We measured triglyceride levels, determined the level of lipid peroxidation products, and measured by qPCR the expression of mRNAs for several proteins associated with lipid metabolism, oxidative stress, and fibrosis. MCD-fed GSH-deficient Gclm null mice were to a large extent protected from MCD diet-induced excessive fat accumulation, hepatocyte injury, inflammation, and fibrosis. Compared with wt animals, MCD-fed Gclm null mice had much lower levels of F2-isoprostanes, lower expression of acyl-CoA oxidase, carnitine palmitoyltransferase 1a, uncoupling protein-2, stearoyl-coenzyme A desaturase-1, transforming growth factor-β, and plas-minogen activator inhibitor-1 mRNAs, and higher activity of catalase, indicative of low oxidative stress, inhibition of triglyceride synthesis, and lower expression of profibrotic proteins. Global gene analysis of hepatic RNA showed that compared with wt mice, the livers of Gclm null mice have a high capacity to metabolize endogenous and exogenous compounds, have lower levels of lipogenic proteins, and increased antioxidant activity. Thus, metabolic adaptations

  8. Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency

    PubMed Central

    Stepensky, Polina; Rensing-Ehl, Anne; Gather, Ruth; Revel-Vilk, Shoshana; Fischer, Ute; Nabhani, Schafiq; Beier, Fabian; Brümmendorf, Tim H.; Fuchs, Sebastian; Zenke, Simon; Firat, Elke; Pessach, Vered Molho; Borkhardt, Arndt; Rakhmanov, Mirzokhid; Keller, Bärbel; Warnatz, Klaus; Eibel, Hermann; Niedermann, Gabriele; Elpeleg, Orly

    2015-01-01

    Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8+ T-cells had a senescent CCR7-CD127−CD28−CD57+ phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21− CD11c+ phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias. PMID:25414442

  9. Zinc Deficiency Is associated With Depressive Symptoms-Results From the Berlin Aging Study II.

    PubMed

    Jung, Alissa; Spira, Dominik; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja; Norman, Kristina

    2017-08-01

    Zinc plays an important role for behavioral and mental function, maintaining the correct functions of intracellular signal transduction, cellular and trans-membrane transport, protein synthesis, and antioxidant system. We investigated both dietary zinc intake and plasma zinc levels and the correlation with depressive symptoms in a large sample of community-dwelling old. One thousand five hundred fourteen older people (aged 60-84 years, 772 women) from the Berlin Aging Study II were included. Zinc intake was assessed by the EPIC Food Frequency Questionnaire. Plasma zinc levels were assessed with atomic-absorption spectrophotometry. Depressive symptoms were assessed with the "Center for Epidemiological Studies Depression Scale" and the "Geriatric Depression Scale." Zinc deficiency in blood plasma was found in 18.7% of participants, and depressive symptoms in 15.7%. Participants with depressive symptoms had lower energy-adjusted zinc intake (median 11.1 vs 11.6 µmol/L; p = .048) and lower plasma zinc levels (median 12.2 vs12.3 mg/dL; p = .037). Even after adjustment for known predictors of depression, plasma zinc deficiency remained significantly associated with depressive symptoms (odds ratio: 1.490, 95% confidence interval: 1.027-2.164; p = .036). In the multiple logistic regression model stratified by sex, we found that plasma zinc deficiency was strongly associated with a higher risk for depressive symptoms in women (odds ratio: 1.739, 95% confidence interval: 1.068-2.833; p = .026). Plasma zinc deficiency was common in our old study population. An increase in dietary zinc and higher plasma zinc levels may reduce the risk of depressive symptoms. A screening for reduced dietary zinc intake or plasma zinc deficiency might be beneficial in older people at risk of depressive symptoms. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD genemore » region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.« less

  11. Laboratory variables for assessing iron deficiency in REDS-II Iron Status Evaluation (RISE) blood donors

    PubMed Central

    Kiss, Joseph E.; Steele, Whitney R.; Wright, David J.; Mast, Alan E.; Carey, Patricia M.; Murphy, Edward L.; Gottschall, Jerry L.; Simon, Toby L.; Cable, Ritchard G.

    2014-01-01

    BACKGROUND Iron deficiency is common in regular blood donors. We evaluated the diagnostic sensitivity and specificity of red blood cell (RBC) hematology analyzer indices to assess iron status as a part of donor management. STUDY DESIGN AND METHODS A total of 1659 male and female donors from the Retrovirus Epidemiology Donor Study-II (REDS-II) Donor Iron Status Evaluation (RISE) study who were either first-time/reactivated (FT/ RA; no donations for 2 years) or frequent donors were recruited into a longitudinal study of regular donation of RBCs. Of these, 1002 donors returned 15 to 24 months later for a final assessment. Absent iron stores (AIS) was defined as plasma ferritin level of less than 12 µ.g/L. Logarithm of the ratio of soluble transferrin receptor to ferritin of at least 2.07 (≥97.5% in FT/RA males) was used to define iron-deficient erythropoiesis (IDE). Receiver operating characteristics analysis was performed to assess selected RBC indices (e.g., percentage of hypochromic mature RBCs, proportion of hypochromic mature RBCs [HYPOm], and hemoglobin [Hb] content of reticulocytes [CHr]) in identifying AIS and IDE. RESULTS HYPOm and CHr detected IDE with comparable sensitivity, 72% versus 69%, but differed in specificity: HYPOm 68% and CHr 53%. For detecting AIS, sensitivity was improved to 85% for HYPOm and 81% for CHr but specificity was reduced for both. Venous Hb had high specificity but poor sensitivity for IDE and AIS. A plasma ferritin level of less than 26.7 u.g/L was a good surrogate for assessing IDE. CONCLUSION RBC indices correlate with AIS and IDE and are more informative than Hb measurement, but lack sufficient sensitivity and specificity to be used as diagnostic tools in blood donors at risk for iron deficiency. PMID:23617531

  12. Laboratory variables for assessing iron deficiency in REDS-II Iron Status Evaluation (RISE) blood donors.

    PubMed

    Kiss, Joseph E; Steele, Whitney R; Wright, David J; Mast, Alan E; Carey, Patricia M; Murphy, Edward L; Gottschall, Jerry L; Simon, Toby L; Cable, Ritchard G

    2013-11-01

    Iron deficiency is common in regular blood donors. We evaluated the diagnostic sensitivity and specificity of red blood cell (RBC) hematology analyzer indices to assess iron status as a part of donor management. A total of 1659 male and female donors from the Retrovirus Epidemiology Donor Study-II (REDS-II) Donor Iron Status Evaluation (RISE) study who were either first-time/reactivated (FT/RA; no donations for 2 years) or frequent donors were recruited into a longitudinal study of regular donation of RBCs. Of these, 1002 donors returned 15 to 24 months later for a final assessment. Absent iron stores (AIS) was defined as plasma ferritin level of less than 12 μg/L. Logarithm of the ratio of soluble transferrin receptor to ferritin of at least 2.07 (≥97.5% in FT/RA males) was used to define iron-deficient erythropoiesis (IDE). Receiver operating characteristics analysis was performed to assess selected RBC indices (e.g., percentage of hypochromic mature RBCs, proportion of hypochromic mature RBCs [HYPOm], and hemoglobin [Hb] content of reticulocytes [CHr]) in identifying AIS and IDE. HYPOm and CHr detected IDE with comparable sensitivity, 72% versus 69%, but differed in specificity: HYPOm 68% and CHr 53%. For detecting AIS, sensitivity was improved to 85% for HYPOm and 81% for CHr but specificity was reduced for both. Venous Hb had high specificity but poor sensitivity for IDE and AIS. A plasma ferritin level of less than 26.7 μg/L was a good surrogate for assessing IDE. RBC indices correlate with AIS and IDE and are more informative than Hb measurement, but lack sufficient sensitivity and specificity to be used as diagnostic tools in blood donors at risk for iron deficiency. © 2013 American Association of Blood Banks.

  13. Selenium Deficiency Induces Autophagy in Immune Organs of Chickens.

    PubMed

    Khoso, Pervez Ahmed; Pan, Tingru; Wan, Na; Yang, Zijiang; Liu, Ci; Li, Shu

    2017-05-01

    The aim of the present study was to investigate the effects of selenium (Se) deficiency on autophagy-related genes and on ultrastructural changes in the spleen, bursa of Fabricius, and thymus of chickens. The Se deficiency group was fed a basal diet containing Se at 0.033 mg/kg and the control group was fed the same basal diet containing Se at 0.15 mg/kg. The messenger RNA (mRNA) levels of the autophagy genes microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin 1, dynein, autophagy associated gene 5 (ATG5), and target of rapamycin complex 1 (TORC1) were assessed using real-time qPCR. The protein levels of LC3-II, Beclin 1, and dynein were investigated using western blot analysis. Furthermore, the ultrastructure was observed using an electron microscope. The results indicated that spleen mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of LC3-II, Beclin 1, and dynein were increased in the Se deficiency group compared with the control group. In the bursa of Fabricius, the mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of Beclin 1 and dynein were increased; furthermore, the protein level of LC3-II was decreased in the Se deficiency group compared to the control group. In the thymus, the mRNA levels of LC3-I, Beclin 1, and ATG5 increased; the levels of LC3-II, dynein, and TORC1 were decreased; the protein level of Beclin 1 increased; and the levels of LC3-II and dynein decreased in the Se deficiency group compared to those in the control group. Further cellular morphological changes, such as autophagy vacuoles, autolysosomes, and lysosomal degradation, were observed in the spleen, bursa of Fabricius, and thymus of the Se-deficiency group. In summary, Se deficiency caused changes in autophagy-related genes, which increased the autophagic process and also caused structural damages to the immune organs of chickens.

  14. Neonatal growth restriction-related leptin deficiency enhances leptin-triggered sympathetic activation and central angiotensin II receptor-dependent stress-evoked hypertension.

    PubMed

    Peotta, Veronica; Rahmouni, Kamal; Segar, Jeffrey L; Morgan, Donald A; Pitz, Kate M; Rice, Olivia M; Roghair, Robert D

    2016-08-01

    Neonatal growth restriction (nGR) leads to leptin deficiency and increases the risk of hypertension. Previous studies have shown nGR-related hypertension is normalized by neonatal leptin (nLep) and exacerbated by psychological stress. With recent studies linking leptin and angiotensin signaling, we hypothesized that nGR-induced nLep deficiency increases adult leptin sensitivity; leading to leptin- or stress-induced hypertension, through a pathway involving central angiotensin II type 1 receptors. We randomized mice with incipient nGR, by virtue of their presence in large litters, to vehicle or physiologic nLep supplementation (80 ng/g/d). Adult caloric intake and arterial pressure were monitored at baseline, during intracerebroventricular losartan infusion and during systemic leptin administration. nGR increased leptin-triggered renal sympathetic activation and hypertension with increased leptin receptor expression in the arcuate nucleus of the hypothalamus; all of those nGR-associated phenotypes were normalized by nLep. nGR mice also had stress-related hyperphagia and hypertension, but only the stress hypertension was blocked by central losartan infusion. nGR leads to stress hypertension through a pathway that involves central angiotensin II receptors, and nGR-associated leptin deficiency increases leptin-triggered hypertension in adulthood. These data suggest potential roles for preservation of neonatal growth and nLep supplementation in the prevention of nGR-related hypertension.

  15. Lithospermic acid derivatives from Lithospermum erythrorhizon increased expression of serine palmitoyltransferase in human HaCaT cells.

    PubMed

    Thuong, Phuong Thien; Kang, Keon Wook; Kim, Jeong Kee; Seo, Dae Bang; Lee, Sang Jun; Kim, Sung Han; Oh, Won Keun

    2009-03-15

    A MeOH extract of the dry root of Lithospermum erythrorhizon showed strong increasing effect on serine palmitoyltransferase (SPT) in normal human keratinocyte cells (HaCaT cells). Bioassay-guided separation on this extract using repeated chromatography resulted in the isolation of lithospermic acid (1) and two derivative esters, 9''-methyl lithospermate (2) and 9'-methyl lithospermate (3). Compounds 1-3 significantly increased SPT expressions in the relative quantity (%) of SPT1 mRNA as well as SPT2 mRNA. These constituents also raised the level of SPT protein in HaCaT cells in a dose-dependent manner, with the increased level of SPT protein in HaCaT cells of 55%, 23%, and 81% at the concentration of 100 microg/ml, respectively. This finding suggests that lithospermic acid and its derivatives from L. erythrorhizon might improve the permeability barrier by stimulating the protein level of SPT.

  16. Failure of antioxidants to protect against angiotensin II-induced aortic rupture in aged apolipoprotein(E)-deficient mice.

    PubMed

    Jiang, F; Jones, G T; Dusting, G J

    2007-11-01

    Oxidative stress may be involved in the development of abdominal aortic aneurysms (AAAs). Previous studies indicate that antioxidants protect against AAA formation during chronic angiotensin (Ang) II infusion in apolipoprotein E-deficient (ApoE(0)) mice. We here examine if these protective effects also occurred in aged ApoE(0) mice. Male ApoE(0) mice (50-60 weeks) were randomly divided into 4 groups: saline, Ang II (1000 ng kg(-1) min(-1) for 4 weeks), Ang II plus antioxidants (0.1% vitamin E in food plus 0.1% vitamin C in drinking water), and Ang II plus losartan (30 mg kg(-1) day(-1)). Exogenous Ang II increased systolic blood pressure by 40 mmHg and resulted in the formation of pseudoaneurysms (rupture and extramural haematoma) in the abdominal aorta in 50% of animals. True aneurysmal dilatation was rarely observed. Antioxidants decreased systemic oxidative stress (plasma malondialdehyde), but had only minor effects on aortic rupture, relative to the complete prevention by losartan. Immunohistochemistry revealed strong matrix metalloproteinase-9 (MMP-9) expression in atherosclerotic plaques and at the sites of rupture. Antioxidants did not affect tumour necrosis factor-alpha-stimulated MMP-9 release from U937 cells. In addition, antioxidants had little effects on Ang II-induced renal dysfunction. In contrast to previous findings in younger mice, antioxidants had only minor effects on Ang II-induced aortic rupture in aged mice. Our results demonstrate that the pathological features of the aneurysmal remodelling induced by Ang II in old ApoE(0) mice are distinct from those of human AAA.

  17. Antitumor activity of a novel and orally available inhibitor of serine palmitoyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaguchi, Masahiro; Shibata, Sachio; Satomi, Yoshinori

    Metabolic reprogramming is an essential hallmark of neoplasia. Therefore, targeting cancer metabolism, including lipid synthesis, has attracted much interest in recent years. Serine palmitoyltransferase (SPT) plays a key role in the initial and rate-limiting step of de novo sphingolipid biosynthesis, and inhibiting SPT activity prevents the proliferation of certain cancer cells. Here, we identified a novel and orally available SPT inhibitor, compound-2. Compound-2 showed an anti-proliferative effect in several cancer cell models, reducing the levels of the sphingolipids ceramide and sphingomyelin. In the presence of compound-2, exogenously added S1P partially compensated the intracellular sphingolipid levels through the salvage pathway bymore » partially rescuing compound-2-induced cytotoxicity. This suggested that the mechanism underlying the anti-proliferative effect of compound-2 involved the reduction of sphingolipid levels. Indeed, compound-2 promoted multinuclear formation with reduced endogenous sphingomyelin levels specifically in a compound-2-sensitive cell line, indicating that the effect was induced by sphingolipid reduction. Furthermore, compound-2 showed potent antitumor activity without causing significant body weight loss in the PL-21 acute myeloid leukemia mouse xenograft model. Therefore, SPT may be an attractive therapeutic anti-cancer drug target for which compound-2 may be a promising new drug. - Highlights: • We discovered compound-2, a novel and orally available SPT inhibitor. • Compound-2 was cytotoxic against PL-21 acute myeloid leukemia cells. • Compound-2 showed antitumor activity in the PL-21 mouse xenograft model.« less

  18. Newly proposed hormonal criteria via genotypic proof for type II 3beta-hydroxysteroid dehydrogenase deficiency.

    PubMed

    Lutfallah, Chantal; Wang, Weihua; Mason, J Ian; Chang, Ying Tai; Haider, Anzar; Rich, Barry; Castro-Magana, Mariano; Copeland, Kenneth C; David, Raphael; Pang, Songya

    2002-06-01

    To define the hormonal criteria via genotypic proof for 3beta-hydroxysteroid dehydrogenase (3beta-HSD) deficiency in the adrenals and gonads, we investigated the type II 3beta-HSD genotype in 55 patients with clinical and/or hormonal presentation suggesting compromised adrenal with or without gonadal 3beta-HSD activity. Fourteen patients (11 males and 3 females) had ambiguous genitalia with or without salt wasting and with or without premature pubarche. One female neonate had salt wasting only. Twenty-five children (4 males and 21 females) had premature pubarche only. Fifteen adolescent and adult females had hirsutism with or without menstrual disorder. The type II 3beta-HSD gene, including the promoter region up to -1053 base, all exons I, II, III, IV, and exon and intron boundaries, was sequenced in all subjects. Eight patients had a proven or predictably deleterious mutation in both alleles of the type II 3beta-HSD gene, and 47 patients had no apparent mutation in the gene. ACTH-stimulated (1 h post iv bolus of 250 microg Cortrosyn) serum 17-hydroxypregnenolone (Delta5-17P) levels and basal and ACTH-stimulated ratios of Delta5-17P to cortisol (F) in the genotypic proven patients were unequivocally higher than those of age-matched or pubic hair stage matched genotype-normal patients or control subjects (n = 7-30 for each group). All other baseline and ACTH-stimulated hormone parameters, including dehydroepiandrosterone (DHEA) levels, ratios of Delta5-17P to 17-OHP and DHEA to androstenedione in the genotype-proven patients, overlapped with the genotype-normal patients or control subjects. The hormonal findings in the genotype-proven patients suggest that the following hormonal criteria are compatible with 3beta-HSD deficiency congenital adrenal hyperplasia (numeric and graphic reference standards from infancy to adulthood are provided): ACTH-stimulated Delta5-17P levels in 1) neonatal infants with ambiguous genitalia at or greater than 378 nmol/liter equivalent

  19. Effect of dietary calcium deficiency on the cardiac function of broiler chickens based on electro- and echocardiography.

    PubMed

    Zamani Moghaddam, Abdol Karim; Hassanpour, Hossein; Soroori, Sarang; Yadegari, Mehrdad; Tajeri, Ghodsieh

    2010-06-01

    To determine the effects of dietary calcium deficiency on the heart function of broiler chickens based on electro- and echocardiography, chicks were reared for 42 days and fed rations with different amounts of calcium. At 28 and 42 days of age, electrocardiographic and echocardiographic parameters were assessed. There were significant reductions of R wave amplitude (leads II and aVR) in the Ca-deficient group II at 42 day of age as compared to the control. S wave amplitudes were decreased in most leads but the decrease was significant (P < 0.05) only at 28 days (lead aVL, Ca-deficient group I) and 42 days (leads III, aVR, aVF, Ca-deficient groups I and II). T wave amplitudes were significantly (P < 0.05) decreased at 42 days (leads II, aVR and aVF) in the Ca-deficient group II compared to the control group. Variations in QT, ST and RR intervals were insignificant in the Ca-deficient groups compared with the control. There was a significant (P < 0.05) increase in left ventricular diameter at end-systole and a reduction of left ventricular fractional shortening in the Ca-deficient group II at 28 and 42 days as compared to the controls. Right ventricular fractional shortening was significantly (P < 0.05) decreased only in the Ca-deficient group II at 42 days of age. These results suggest that dose-dependent dietary calcium deficiency alters variations in electro- and echocardiographic parameters which could reflect decreased cardiac function in growing broiler chickens.

  20. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spilsberg, Bjorn; Hanada, Kentaro; Sandvig, Kirsten

    2005-04-08

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to lowmore » pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids.« less

  1. Novel ETF dehydrogenase mutations in a patient with mild glutaric aciduria type II and complex II-III deficiency in liver and muscle

    PubMed Central

    Wolfe, Lynne A.; He, Miao; Vockley, Jerry; Payne, Nicole; Rhead, William; Hoppel, Charles; Spector, Elaine; Gernert, Kim; Gibson, K. Michael

    2014-01-01

    We describe a 22-year-old male who developed severe hypoglycemia and lethargy during an acute illness at 4 months of age and subsequently grew and developed normally. At age 4 years he developed recurrent vomiting with mild hyperammonemia and dehydration requiring frequent hospitalizations. Glutaric aciduria Type II was suspected based upon biochemical findings and managed with cornstarch, carnitine and riboflavin supplements. He did not experience metabolic crises between ages 4-12 years. He experienced recurrent vomiting, mild hyperammonemia, and generalized weakness associated with acute illnesses and growth spurts. At age 18 years, he developed exercise intolerance and proximal muscle weakness leading to the identification of multiple acyl-CoAdehydrogenase and complex II/III deficiencies in both skeletal muscle and liver. Subsequent molecular characterization of the ETFDH gene revealed novel heterozygous mutations, p.G274X:c.820 G>T (exon 7) and p.P534L: c.1601 C>T (exon 12), the latter within the iron sulfur-cluster and predicted to affect ubiquinone reductase activity of ETFDH and the docking of ETF to ETFDH. Our case supports the concept of a structural interaction between ETFDH and other enzyme partners, and suggests that the conformational change upon ETF binding to ETFDH may play a key role in linking ETFDH to II/III super-complex formation. PMID:21088898

  2. Novel ETF dehydrogenase mutations in a patient with mild glutaric aciduria type II and complex II-III deficiency in liver and muscle.

    PubMed

    Wolfe, Lynne A; He, Miao; Vockley, Jerry; Payne, Nicole; Rhead, William; Hoppel, Charles; Spector, Elaine; Gernert, Kim; Gibson, K Michael

    2010-12-01

    We describe a 22-year-old male who developed severe hypoglycemia and lethargy during an acute illness at 4 months of age and subsequently grew and developed normally. At age 4 years he developed recurrent vomiting with mild hyperammonemia and dehydration requiring frequent hospitalizations. Glutaric aciduria Type II was suspected based upon biochemical findings and managed with cornstarch, carnitine and riboflavin supplements. He did not experience metabolic crises between ages 4-12 years. He experienced recurrent vomiting, mild hyperammonemia, and generalized weakness associated with acute illnesses and growth spurts. At age 18 years, he developed exercise intolerance and proximal muscle weakness leading to the identification of multiple acyl-CoA dehydrogenase and complex II/III deficiencies in both skeletal muscle and liver. Subsequent molecular characterization of the ETFDH gene revealed novel heterozygous mutations, p.G274X:c.820 G > T (exon 7) and p.P534L: c.1601 C > T (exon 12), the latter within the iron sulfur-cluster and predicted to affect ubiquinone reductase activity of ETFDH and the docking of ETF to ETFDH. Our case supports the concept of a structural interaction between ETFDH and other enzyme partners, and suggests that the conformational change upon ETF binding to ETFDH may play a key role in linking ETFDH to II/III super-complex formation.

  3. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes.

    PubMed Central

    Skorin, C; Necochea, C; Johow, V; Soto, U; Grau, A M; Bremer, J; Leighton, F

    1992-01-01

    Fatty acid oxidation was studied in the presence of inhibitors of carnitine palmitoyltransferase I (CPT I), in normal and in peroxisome-proliferated rat hepatocytes. The oxidation decreased in mitochondria, as expected, but in peroxisomes it increased. These two effects were seen, in variable proportions, with (+)-decanoylcarnitine, 2-tetradecylglycidic acid (TDGA) and etomoxir. The decrease in mitochondrial oxidation (ketogenesis) affected saturated fatty acids with 12 or more carbon atoms, whereas the increase in peroxisomal oxidation (H2O2 production) affected saturated fatty acids with 8 or more carbon atoms. The peroxisomal increase was sensitive to chlorpromazine, a peroxisomal inhibitor. To study possible mechanisms, palmitoyl-, octanoyl- and acetyl-carnitine acyltransferase activities were measured, in homogenates and in subcellular fractions from control and TDGA-treated cells. The palmitoylcarnitine acyltransferase was inhibited, as expected, but the octanoyltransferase activity also decreased. The CoA derivative of TDGA was synthesized and tentatively identified as being responsible for inhibition of the octanoylcarnitine acyltransferase. These results show that inhibitors of the mitochondrial CPT I may also inhibit the peroxisomal octanoyl transferase; they also support the hypothesis that the octanoyltransferase has the capacity to control or regulate peroxisomal fatty acid oxidation. PMID:1736904

  4. Carnitine Palmitoyltransferase 1A P479L and Infant Death: Policy Implications of Emerging Data

    PubMed Central

    Fohner, Alison E.; Garrison, Nanibaa’ A.; Austin, Melissa A.; Burke, Wylie

    2017-01-01

    Carnitine Palmitoyltransferase 1 Isoform A (CPT1A) is a crucial enzyme for the transport of long chain fatty acids into the mitochondria. The CPT1A P479L variant is found in high frequencies among indigenous populations residing on the west and north coasts of Alaska and Canada and in northeast Siberia and Greenland. Epidemiological studies have reported a statistical association between P479L homozygosity and infant death in Alaska Native and Canadian Inuit populations. Here, we review the available evidence about the P479L variant and apply to these data the epidemiological criteria for assessing causal associations. We find insufficient evidence to support a causal association with infant death and further, that if a causal association is present, the genotype is likely to be only one of a complex set of factors contributing to an increased risk of infant death. We conclude that additional research is needed to clarify the observed association and to inform effective preventative measures for infant death. In light of these findings, we discuss the policy implications for public health efforts, as policies based on the observed association between P479L homozygosity and infant death data are premature. PMID:28125087

  5. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation

    USDA-ARS?s Scientific Manuscript database

    Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been repor...

  6. Partial IGF-1 deficiency is sufficient to reduce heart contractibility, angiotensin II sensibility, and alter gene expression of structural and functional cardiac proteins.

    PubMed

    González-Guerra, José Luis; Castilla-Cortazar, Inma; Aguirre, Gabriel A; Muñoz, Úrsula; Martín-Estal, Irene; Ávila-Gallego, Elena; Granado, Miriam; Puche, Juan E; García-Villalón, Ángel Luis

    2017-01-01

    Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R). In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides); carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions.

  7. Partial IGF-1 deficiency is sufficient to reduce heart contractibility, angiotensin II sensibility, and alter gene expression of structural and functional cardiac proteins

    PubMed Central

    Aguirre, Gabriel A.; Muñoz, Úrsula; Martín-Estal, Irene; Ávila-Gallego, Elena; Granado, Miriam; Puche, Juan E.; García-Villalón, Ángel Luis

    2017-01-01

    Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R). In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides); carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions. PMID:28806738

  8. [Metabolic intolerance to exercise].

    PubMed

    Arenas, J; Martín, M A

    2003-01-01

    Exercise intolerance (EI) is a frequent cause of medical attention, although it is sometimes difficult to come to a final diagnosis. However, there is a group of patients in whom EI is due to a metabolic dysfunction. McArdle's disease (type V glucogenosis) is due to myophosphorylase (MPL) deficiency. The ischemic exercise test shows a flat lactate curve. The most frequent mutations in the PYGM gene (MPL gene) in Spanish patients with MPL deficiency are R49X and W797R. Carnitine palmitoyltransferase (CPT) II deficiency is invariably associated to repetitive episodes of myoglobinuria triggered by exercise, cold, fever or fasting. The diagnosis depends on the demonstration of CPT II deficiency in muscle. The most frequent mutation in the CPT2 gene is the S113L. Patients with muscle adenylate deaminase deficiency usually show either a mild myopathy or no symptom. The diagnosis is based on the absence of enzyme activity in muscle and the lack of rise of ammonia in the forearm ischemic exercise test. The mutation Q12X in the AMPD1 gene is strongly associated with the disease. Exercise intolerance is a common complaint in patients with mitochondrial respiratory chain (MRC) deficiencies, although it is often overshadowed by other symptoms and signs. Only recently we have come to appreciate that exercise intolerance can be the sole presentation of defects in the mtDNA, particularly in complex I, complex III, complex IV, or in some tRNAs. In addition, myoglobinuria can be observed in patients under statin treatment, particularly if associated with fibrates, due to an alteration in the assembly of the complex IV of the MRC.

  9. Formation of Rhamnogalacturonan II-Borate Dimer in Pectin Determines Cell Wall Thickness of Pumpkin Tissue1

    PubMed Central

    Ishii, Tadashi; Matsunaga, Toshiro; Hayashi, Noriko

    2001-01-01

    Boron (B) deficiency results in inhibition of pumpkin (Cucurbia moschata Duchesne) growth that is accompanied by swelling of the cell walls. Monomeric rhamnogalacturonan II (mRG-II) accounted for 80% to 90% of the total RG-II in B-deficient walls, whereas the borate ester cross-linked RG-II dimer (dRG-II-B) accounted for more than 80% of the RG-II in control plants. The results of glycosyl residue and glycosyl linkage composition analyses of the RG-II from control and B-deficient plants were similar. Thus, B deficiency does not alter the primary structure of RG-II. The addition of 10B-enriched boric acid to B-deficient plants resulted within 5 h in the conversion of mRG-II to dRG-II-10B. The wall thickness of the 10B-treated plants and control plants was similar. The formation and possible functions of a borate ester cross-linked RG-II in the cell walls are discussed. PMID:11500567

  10. Pathogenetic role of Factor VII deficiency and thrombosis in cross-reactive material positive patients.

    PubMed

    Girolami, A; Sambado, L; Bonamigo, E; Ferrari, S; Lombardi, A M

    2013-12-01

    Congenital Factor VII (FVII) deficiency can be divided into two groups: cases of "true" deficiency, or cross-reactive material (CRM) negative and variants that are cross-reactive material positive.The first form is commonly recognized as Type I condition whereas the second one is known as Type II. FVII deficiency has been occasionally associated with thrombotic events, mainly venous. The reasons underlying this peculiar manifestation are unknown even though in the majority of associated patients thrombotic risk factors are present. The purpose of the present study was to investigate if a thrombotic event was more frequent in Type I or in Type II defect.The majority of patients with FVII deficiency and thrombosis belong to Type II defects. In the following paper we discuss the possible role of the dysfunctional FVII cross-reaction material as a contributory cause for the occurrence of thrombosis.

  11. 21 CFR 864.7290 - Factor deficiency test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... state (a person carrying both a recessive gene for a coagulation factor deficiency such as hemophilia and the corresponding normal gene). (b) Classification. Class II (performance standards). [45 FR 60613...

  12. Carbonic anhydrase II deficiency: Single-base deletion in exon 7 is the predominant mutation in Caribbean Hispanic patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, P.Y.; Ernst, A.R.; Sly, W.S.

    1994-04-01

    To date, three different structural gene mutations have been identified in patients with carbonic anhydrase II deficiency (osteopetrosis with renal tubular acidosis and cerebral calcification). These include a missense mutation (H107Y) in two families, a splice junction mutation in intron 5 in one of these families, and a splice junction mutation in intron 2 for which many Arabic patients are homozygous. The authors report here a novel mutation for which carbonic anhydrase II-deficient patients from seven unrelated Hispanic families were found to be homozygous. The proband was a 2 1/2-year-old Hispanic girl of Puerto Rican ancestry who was unique clinically,more » in that she had no evidence of renal tubular acidosis, even though she did have osteopetrosis, developmental delay, and cerebral calcification. She proved to be homozygous for a single-base deletion in the coding region of exon 7 that produces a frameshift that changes the next 12 amino acids before leading to chain termination and that also introduces a new MaeIII restriction site. The 27-kD truncated enzyme produced when the mutant cDNA was expressed in COS cells was enzymatically inactive, present mainly in insoluble aggregates, and detectable immunologically at only 5% the level of the 29-kD normal carbonic anhydrase II expressed from the wild-type cDNA. Metabolic labeling revealed that this 27-kD mutant protein has an accelerated rate of degradation. Six subsequent Hispanic patients of Caribbean ancestry, all of whom had osteopetrosis and renal tubular acidosis but who varied widely in clinical severity, were found to be homozygous for the same mutation. These findings identify a novel mutation common to Hispanic patients from the Caribbean islands and provide a ready means for PCR-based diagnosis of the [open quotes]Hispanic mutation.[close quotes] The basis for their phenotypic variability is not yet clear. 15 refs., 5 figs., 1 tab.« less

  13. Biological Systems of Vitamin K: A Plasma Nutriproteomics Study of Subclinical Vitamin K Deficiency in 500 Nepalese Children.

    PubMed

    Lee, Sun Eun; Schulze, Kerry J; Cole, Robert N; Wu, Lee S F; Yager, James D; Groopman, John; Christian, Parul; West, Keith P

    2016-04-01

    Vitamin K (VK) is a fat-soluble vitamin whose deficiency disrupts coagulation and may disturb bone and cardiovascular health. However, the scale and systems affected by VK deficiency in pediatric populations remains unclear. We conducted a study of the plasma proteome of 500 Nepalese children 6-8 years of age (male/female ratio = 0.99) to identify proteins associated with VK status. We measured the concentrations of plasma lipids and protein induced by VK absence-II (PIVKA-II) and correlated relative abundance of proteins quantified by mass spectrometry with PIVKA-II. VK deficiency (PIVKA-II>2 μg/L) was associated with a higher abundance of low-density lipoproteins, total cholesterol, and triglyceride concentrations (p<0.01). Among 978 proteins observed in >10% of the children, five proteins were associated with PIVKA-II and seven proteins were differentially abundant between VK deficient versus sufficient children, including coagulation factor-II, hemoglobin, and vascular endothelial cadherin, passing a false discovery rate (FDR) threshold of 10% (q<0.10). Among 27 proteins associated with PIVKA-II or VK deficiency at a less stringent FDR (q<0.20), a network comprised of hemoglobin subunits and erythrocyte anti-oxidative enzymes were highly and positively correlated each other (all r>0.7). Untargeted proteomics offers a novel systems approach to elucidating biological processes of coagulation, vascularization, and erythrocyte oxidative stress related to VK status. The results may help elucidate subclinical metabolic disturbances related to VK deficiency in populations.

  14. Deficiency of angiotensinogen in hepatocytes markedly decreases blood pressure in lean and obese male mice.

    PubMed

    Yiannikouris, Frederique; Wang, Yu; Shoemaker, Robin; Larian, Nika; Thompson, Joel; English, Victoria L; Charnigo, Richard; Su, Wen; Gong, Ming; Cassis, Lisa A

    2015-10-01

    We recently demonstrated that adipocyte deficiency of angiotensinogen (AGT) ablated high-fat diet-induced elevations in plasma angiotensin II (Ang II) concentrations and obesity-hypertension in male mice. Hepatocytes are the predominant source of systemic AGT. Therefore, in this study, we defined the contribution of hepatocyte-derived AGT to obesity-induced elevations in plasma AGT concentrations and hypertension. Male Agt(fl/fl) mice expressing albumin-driven Cre recombinase were bred to female Agt(fl/fl) mice to generate Agt(fl/fl) or hepatocyte AGT-deficient male mice (Agt(Alb)). Mice were fed a low-fat or high-fat diet for 16 weeks. Hepatocyte AGT deficiency had no significant effect on body weight. Plasma AGT concentrations were increased in obese Agt(fl/fl) mice. Hepatocyte AGT deficiency markedly reduced plasma AGT and Ang II concentrations in lean and obese mice. Moreover, hepatocyte AGT deficiency reduced the content and release of AGT from adipose explants. Systolic blood pressure was markedly decreased in lean (by 18 mm Hg) and obese Agt(Alb) mice (by 54 mm Hg) compared with Agt(fl/fl) controls. To define mechanisms, we quantified effects of Ang II on mRNA abundance of megalin, an AGT uptake transporter, in 3T3-L1 adipocytes. Ang II stimulated adipocyte megalin mRNA abundance and decreased media AGT concentrations. These results demonstrate that hepatocytes are the predominant source of systemic AGT in both lean and obese mice. Moreover, reductions in plasma angiotensin concentrations in obese hepatocyte AGT-deficient mice may have limited megalin-dependent uptake of AGT into adipocytes for the production of Ang II in the development of obesity-hypertension. © 2015 American Heart Association, Inc.

  15. A serine palmitoyltransferase inhibitor blocks hepatitis C virus replication in human hepatocytes.

    PubMed

    Katsume, Asao; Tokunaga, Yuko; Hirata, Yuichi; Munakata, Tsubasa; Saito, Makoto; Hayashi, Hitohisa; Okamoto, Koichi; Ohmori, Yusuke; Kusanagi, Isamu; Fujiwara, Shinya; Tsukuda, Takuo; Aoki, Yuko; Klumpp, Klaus; Tsukiyama-Kohara, Kyoko; El-Gohary, Ahmed; Sudoh, Masayuki; Kohara, Michinori

    2013-10-01

    Host cell lipid rafts form a scaffold required for replication of hepatitis C virus (HCV). Serine palmitoyltransferases (SPTs) produce sphingolipids, which are essential components of the lipid rafts that associate with HCV nonstructural proteins. Prevention of the de novo synthesis of sphingolipids by an SPT inhibitor disrupts the HCV replication complex and thereby inhibits HCV replication. We investigated the ability of the SPT inhibitor NA808 to prevent HCV replication in cells and mice. We tested the ability of NA808 to inhibit SPT's enzymatic activity in FLR3-1 replicon cells. We used a replicon system to select for HCV variants that became resistant to NA808 at concentrations 4- to 6-fold the 50% inhibitory concentration, after 14 rounds of cell passage. We assessed the ability of NA808 or telaprevir to inhibit replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in mice with humanized livers (transplanted with human hepatocytes). NA808 was injected intravenously, with or without pegylated interferon alfa-2a and HCV polymerase and/or protease inhibitors. NA808 prevented HCV replication via noncompetitive inhibition of SPT; no resistance mutations developed. NA808 prevented replication of all HCV genotypes tested in mice with humanized livers. Intravenous NA808 significantly reduced viral load in the mice and had synergistic effects with pegylated interferon alfa-2a and HCV polymerase and protease inhibitors. The SPT inhibitor NA808 prevents replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in cultured hepatocytes and in mice with humanized livers. It might be developed for treatment of HCV infection or used in combination with pegylated interferon alfa-2a or HCV polymerase or protease inhibitors. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Flux control exerted by overt carnitine palmitoyltransferase over palmitoyl-CoA oxidation and ketogenesis is lower in suckling than in adult rats.

    PubMed Central

    Krauss, S; Lascelles, C V; Zammit, V A; Quant, P A

    1996-01-01

    We examined the potential of overt carnitine palmitoyltransferase (CPT I) to control the hepatic catabolism of palmitoyl-CoA in suckling and adult rats, using a conceptually simplified model of fatty acid oxidation and ketogenesis. By applying top-down control analysis, we quantified the control exerted by CPT I over total carbon flux from palmitoyl-CoA to ketone bodies and carbon dioxide. Our results show that in both suckling and adult rat, CPT I exerts very significant control over the pathways under investigation. However, under the sets of conditions we studied, less control is exerted by CPT I over total carbon flux in mitochondria isolated from suckling rats than in those isolated from adult rats. Furthermore the flux control coefficient of CPT I changes with malonyl-CoA concentration and ATP turnover rate. PMID:8912677

  17. Angiotensin II-mediated microvascular thrombosis

    PubMed Central

    Senchenkova, Elena Y.; Russell, Janice; Almeida-Paula, Lidiana D.; Harding, Joseph W.; Granger, D. Neil

    2010-01-01

    Hypertension is associated with an increased risk of thrombosis that appears to involve an interaction between the renin-angiotensin system and hemostasis. In this study we determined whether angiotensin II-mediatedthrombosis occurs in arterioles and/or venules, and assessed the involvement of type-1 (AT1), type-2 (AT2) and type 4 (AT4) angiotensin II receptors, as well as receptors for endothelin-1 (ET-1) and bradykinin (BK-1, BK-2) in angiotensin II-enhanced microvascular thrombosis. Thrombus development in mouse cremaster microvessels was quantified after light/dye injury using the time of onset of the thrombus and time to blood flow cessation. Wild type and AT1-receptor deficient mice were implanted with an angiotensin II-loaded Alzet pump for 2 wks. Angiotensin II administration in both wild type and AT1-receptor deficient mice significantly accelerated thrombosis in arterioles. Genetic deficiency and pharmacological antagonism of AT1-receptors did not alter the thrombosis response to angiotensin II. Isolated murine platelets aggregated in response to low (pM), but not high (nM), concentrations of angiotensin II. The platelet aggregation response to angiotensin II was dependent on AT1-receptors. Antagonism of AT2-receptors in vivo significantly prolonged the onset of angiotensin II enhanced thrombosis, while an AT4-receptor antagonist prolonged the time to flow cessation. Selective antagonism of either ET-1 or BK-1 receptors largely prevented both the onset and flow cessation responses to chronic angiotensin II infusion. Our findings indicate that angiotensin II-induced hypertension is accompanied by enhanced thrombosis in arterioles and this response is mediated by a mechanism that involves AT2, AT4, BK-1 and ET-1 receptor-mediated signaling. PMID:20975035

  18. Mitochondrial Carnitine Palmitoyltransferase 1a (CPT1a) Is Part of an Outer Membrane Fatty Acid Transfer Complex*

    PubMed Central

    Lee, Kwangwon; Kerner, Janos; Hoppel, Charles L.

    2011-01-01

    CPT1a (carnitine palmitoyltransferase 1a) in the liver mitochondrial outer membrane (MOM) catalyzes the primary regulated step in overall mitochondrial fatty acid oxidation. It has been suggested that the fundamental unit of CPT1a exists as a trimer, which, under native conditions, could form a dimer of the trimers, creating a hexamer channel for acylcarnitine translocation. To examine the state of CPT1a in the MOM, we employed a combined approach of sizing by mass and isolation using an immunological method. Blue native electrophoresis followed by detection with immunoblotting and mass spectrometry identified large molecular mass complexes that contained not only CPT1a but also long chain acyl-CoA synthetase (ACSL) and the voltage-dependent anion channel (VDAC). Immunoprecipitation with antisera against the proteins revealed a strong interaction between the three proteins. Immobilized CPT1a-specific antibodies immunocaptured not only CPT1a but also ACSL and VDAC, further strengthening findings with blue native electrophoresis and immunoprecipitation. This study shows strong protein-protein interaction between CPT1a, ACSL, and VDAC. We propose that this complex transfers activated fatty acids through the MOM. PMID:21622568

  19. Replacement of C305 in heart/muscle-type isozyme of human carnitine palmitoyltransferase I with aspartic acid and other amino acids.

    PubMed

    Matsuo, Taisuke; Yamamoto, Atsushi; Yamamoto, Takenori; Otsuki, Kaoru; Yamazaki, Naoshi; Kataoka, Masatoshi; Terada, Hiroshi; Shinohara, Yasuo

    2010-04-01

    Liver- and heart/muscle-type isozymes of human carnitine palmitoyltransferase I (L- and M-CPTI, respectively) show a certain similarity in their amino acid sequences, and mutation studies on the conserved amino acids between these two isozymes often show essentially the same effects on their enzymatic properties. Earlier mutation studies on C305 in human M-CPTI and its counterpart residue, C304, in human L-CPTI showed distinct effects of the mutations, especially in the aspect of enzyme stability; however, simple comparison of these effects on the conserved Cys residue between L- and M-CPTI was difficult, because these studies were carried out using different expression systems and distinct amino acids as replacements. In the present study, we carried out mutation studies on the C305 in human M-CPTI using COS cells for the expression system. Our results showed that C305 was replaceable with aspartic acid but that substitution with other amino acids caused both loss of function and reduced expression.

  20. Mutations in the SPTLC2 Subunit of Serine Palmitoyltransferase Cause Hereditary Sensory and Autonomic Neuropathy Type I

    PubMed Central

    Rotthier, Annelies; Auer-Grumbach, Michaela; Janssens, Katrien; Baets, Jonathan; Penno, Anke; Almeida-Souza, Leonardo; Van Hoof, Kim; Jacobs, An; De Vriendt, Els; Schlotter-Weigel, Beate; Löscher, Wolfgang; Vondráček, Petr; Seeman, Pavel; De Jonghe, Peter; Van Dijck, Patrick; Jordanova, Albena; Hornemann, Thorsten; Timmerman, Vincent

    2010-01-01

    Hereditary sensory and autonomic neuropathy type I (HSAN-I) is an axonal peripheral neuropathy associated with progressive distal sensory loss and severe ulcerations. Mutations in the first subunit of the enzyme serine palmitoyltransferase (SPT) have been associated with HSAN-I. The SPT enzyme catalyzes the first and rate-limiting step in the de novo sphingolipid synthesis pathway. However, different studies suggest the implication of other genes in the pathology of HSAN-I. Therefore, we screened the two other known subunits of SPT, SPTLC2 and SPTLC3, in a cohort of 78 HSAN patients. No mutations were found in SPTLC3, but we identified three heterozygous missense mutations in the SPTLC2 subunit of SPT in four families presenting with a typical HSAN-I phenotype. We demonstrate that these mutations result in a partial to complete loss of SPT activity in vitro and in vivo. Moreover, they cause the accumulation of the atypical and neurotoxic sphingoid metabolite 1-deoxy-sphinganine. Our findings extend the genetic heterogeneity in HSAN-I and enlarge the group of HSAN neuropathies associated with SPT defects. We further show that HSAN-I is consistently associated with an increased formation of the neurotoxic 1-deoxysphinganine, suggesting a common pathomechanism for HSAN-I. PMID:20920666

  1. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice.

    PubMed

    Lucena, Carlos; Romera, Francisco J; García, María J; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-01-01

    Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.

  2. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice

    PubMed Central

    Lucena, Carlos; Romera, Francisco J.; García, María J.; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-01-01

    Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed. PMID:26640474

  3. The Cysteine-rich Domain of the DHHC3 Palmitoyltransferase Is Palmitoylated and Contains Tightly Bound Zinc*

    PubMed Central

    Gottlieb, Colin D.; Zhang, Sheng; Linder, Maurine E.

    2015-01-01

    DHHC palmitoyltransferases catalyze the addition of the fatty acid palmitate to proteins on the cytoplasmic leaflet of cell membranes. There are 23 members of the highly diverse mammalian DHHC protein family, all of which contain a conserved catalytic domain called the cysteine-rich domain (CRD). DHHC proteins transfer palmitate via a two-step catalytic mechanism in which the enzyme first modifies itself with palmitate in a process termed autoacylation. The enzyme then transfers palmitate from itself onto substrate proteins. The number and location of palmitoylated cysteines in the autoacylated intermediate is unknown. In this study, we present evidence using mass spectrometry that DHHC3 is palmitoylated at the cysteine in the DHHC motif. Mutation of highly conserved CRD cysteines outside the DHHC motif resulted in activity deficits and a structural perturbation revealed by limited proteolysis. Treatment of DHHC3 with chelating agents in vitro replicated both the specific structural perturbations and activity deficits observed in conserved cysteine mutants, suggesting metal ion-binding in the CRD. Using the fluorescent indicator mag-fura-2, the metal released from DHHC3 was identified as zinc. The stoichiometry of zinc binding was measured as 2 mol of zinc/mol of DHHC3 protein. Taken together, our data demonstrate that coordination of zinc ions by cysteine residues within the CRD is required for the structural integrity of DHHC proteins. PMID:26487721

  4. Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency.

    PubMed

    Allen, Michael D; Kropat, Janette; Tottey, Stephen; Del Campo, José A; Merchant, Sabeeha S

    2007-01-01

    For photoheterotrophic growth, a Chlamydomonas reinhardtii cell requires at least 1.7 x 10(7) manganese ions in the medium. At lower manganese ion concentrations (typically <0.5 microm), cells divide more slowly, accumulate less chlorophyll, and the culture reaches stationary phase at lower cell density. Below 0.1 microm supplemental manganese ion in the medium, the cells are photosynthetically defective. This is accompanied by decreased abundance of D1, which binds the Mn(4)Ca cluster, and release of the OEE proteins from the membrane. Assay of Mn superoxide dismutase (MnSOD) indicates loss of activity of two isozymes in proportion to the Mn deficiency. The expression of MSD3 through MSD5, encoding various isoforms of the MnSODs, is up-regulated severalfold in Mn-deficient cells, but neither expression nor activity of the plastid Fe-containing superoxide dismutase is changed, which contrasts with the dramatically increased MSD3 expression and plastid MnSOD activity in Fe-deficient cells. Mn-deficient cells are selectively sensitive to peroxide but not methyl viologen or Rose Bengal, and GPXs, APX, and MSRA2 genes (encoding glutathione peroxidase, ascorbate peroxidase, and methionine sulfoxide reductase 2) are slightly up-regulated. Elemental analysis indicates that the Mn, Fe, and P contents of cells in the Mn-deficient cultures were reduced in proportion to the deficiency. A natural resistance-associated macrophage protein homolog and one of five metal tolerance proteins were induced in Mn-deficient cells but not in Fe-deficient cells, suggesting that the corresponding gene products may be components of a Mn(2+)-selective assimilation pathway.

  5. Glutamate carboxypeptidase II and folate deficiencies result in reciprocal protection against cognitive and social deficits in mice: implications for neurodevelopmental disorders.

    PubMed

    Schaevitz, Laura R; Picker, Jonathan D; Rana, Jasmine; Kolodny, Nancy H; Shane, Barry; Berger-Sweeney, Joanne E; Coyle, Joseph T

    2012-06-01

    Interactions between genetic and environmental risk factors underlie a number of neuropsychiatric disorders, including schizophrenia (SZ) and autism (AD). Due to the complexity and multitude of the genetic and environmental factors attributed to these disorders, recent research strategies focus on elucidating the common molecular pathways through which these multiple risk factors may function. In this study, we examine the combined effects of a haplo-insufficiency of glutamate carboxypeptidase II (GCPII) and dietary folic acid deficiency. In addition to serving as a neuropeptidase, GCPII catalyzes the absorption of folate. GCPII and folate depletion interact within the one-carbon metabolic pathway and/or of modulate the glutamatergic system. Four groups of mice were tested: wild-type, GCPII hypomorphs, and wild-types and GCPII hypomorphs both fed a folate deficient diet. Due to sex differences in the prevalence of SZ and AD, both male and female mice were assessed on a number of behavioral tasks including locomotor activity, rotorod, social interaction, prepulse inhibition, and spatial memory. Wild-type mice of both sexes fed a folic acid deficient diet showed motor coordination impairments and cognitive deficits, while social interactions were decreased only in males. GCPII mutant mice of both sexes also exhibited reduced social propensities. In contrast, all folate-depleted GCPII hypomorphs performed similarly to untreated wild-type mice, suggesting that reduced GCPII expression and folate deficiency are mutually protective. Analyses of folate and neurometabolite levels associated with glutamatergic function suggest several potential mechanisms through which GCPII and folate may be interacting to create this protective effect. Copyright © 2011 Wiley Periodicals, Inc.

  6. GDP-mannose-4,6-dehydratase (GMDS) Deficiency Renders Colon Cancer Cells Resistant to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Receptor- and CD95-mediated Apoptosis by Inhibiting Complex II Formation*

    PubMed Central

    Moriwaki, Kenta; Shinzaki, Shinichiro; Miyoshi, Eiji

    2011-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors. PMID:22027835

  7. Mod II engine performance

    NASA Technical Reports Server (NTRS)

    Richey, Albert E.; Huang, Shyan-Cherng

    1987-01-01

    The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.

  8. Addressing Enterprise-Level Information System Deficiencies

    DTIC Science & Technology

    2015-03-26

    goals and effectiveness. This case study evaluates the Depot Source of Repair (DSOR) team and how it has addressed the USAF’s enterprise- level IS...deficiencies. A framework created from the literature review is used to evaluate the DSOR team’s IS called DSOR II. The case study evaluation ...7 IS Design Evaluation

  9. SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet.

    PubMed

    Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch

    2015-05-01

    Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Hepatic beta-oxidation and carnitine palmitoyltransferase I in neonatal pigs after dietary treatments of clofibric acid, isoproterenol, and medium-chain triglycerides.

    PubMed

    Peffer, Pasha Lyvers; Lin, Xi; Odle, Jack

    2005-06-01

    A suckling piglet model was used to study nutritional and pharmacologic means of stimulating hepatic fatty acid beta-oxidation. Newborn pigs were fed milk diets containing either long- or medium-chain triglycerides (LCT or MCT). The long-chain control diet was supplemented further with clofibric acid (0.5%) or isoproterenol (40 ppm), and growth was monitored for 10-12 days. Clofibrate increased rates of hepatic peroxisomal and mitochondrial beta-oxidation of [1-(14)C]-palmitate by 60 and 186%, respectively. Furthermore, malonyl-CoA sensitive carnitine palmitoyltransferase (CPT I) activity increased 64% (P < 0.05) in pigs receiving clofibrate. Increased CPT I activity was not congruent with changes in message, as elevated abundance of CPT I mRNA was not detected (P = 0.16) when assessed by qRT-PCR. Neither rates of beta-oxidation nor CPT activities were affected by dietary MCT or by isoproterenol treatment (P > 0.1). Collectively, these findings indicate that clofibrate effectively induced hepatic CPT activity concomitant with increased fatty acid beta-oxidation.

  11. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice.

    PubMed

    Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P

    1996-09-01

    The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.

  12. How prevalent is vitamin B(12) deficiency among vegetarians?

    PubMed

    Pawlak, Roman; Parrott, Scott James; Raj, Sudha; Cullum-Dugan, Diana; Lucus, Debbie

    2013-02-01

    Vegetarians are at risk for vitamin B(12) (B12) deficiency due to suboptimal intake. The goal of the present literature review was to assess the rate of B12 depletion and deficiency among vegetarians and vegans. Using a PubMed search to identify relevant publications, 18 articles were found that reported B12 deficiency rates from studies that identified deficiency by measuring methylmalonic acid, holo-transcobalamin II, or both. The deficiency rates reported for specific populations were as follows: 62% among pregnant women, between 25% and almost 86% among children, 21-41% among adolescents, and 11-90% among the elderly. Higher rates of deficiency were reported among vegans compared with vegetarians and among individuals who had adhered to a vegetarian diet since birth compared with those who had adopted such a diet later in life. The main finding of this review is that vegetarians develop B12 depletion or deficiency regardless of demographic characteristics, place of residency, age, or type of vegetarian diet. Vegetarians should thus take preventive measures to ensure adequate intake of this vitamin, including regular consumption of supplements containing B12. © 2012 International Life Sciences Institute.

  13. A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas reinhardtii.

    PubMed

    Pineau, Bernard; Girard-Bascou, Jacqueline; Eberhard, Stephan; Choquet, Yves; Trémolières, Antoine; Gérard-Hirne, Catherine; Bennardo-Connan, Annick; Decottignies, Paulette; Gillet, Sylvie; Wollman, Francis-André

    2004-01-01

    Two mutants of Chlamydomonas reinhardtii, mf1 and mf2, characterized by a marked reduction in their phosphatidylglycerol content together with a complete loss in its Delta3-trans hexadecenoic acid-containing form, also lost photosystem II (PSII) activity. Genetic analysis of crosses between mf2 and wild-type strains shows a strict cosegregation of the PSII and lipid deficiencies, while phenotypic analysis of phototrophic revertant strains suggests that one single nuclear mutation is responsible for the pleiotropic phenotype of the mutants. The nearly complete absence of PSII core is due to a severely decreased synthesis of two subunits, D1 and apoCP47, which is not due to a decrease in translation initiation. Trace amounts of PSII cores that were detected in the mutants did not associate with the light-harvesting chlorophyll a/b-binding protein antenna (LHCII). We discuss the possible role of phosphatidylglycerol in the coupled process of cotranslational insertion and assembly of PSII core subunits.

  14. Effects of Zn Deficiency and Bicarbonate on the Growth and Photosynthetic Characteristics of Four Plant Species

    PubMed Central

    Zhao, Kuan; Wu, Yanyou

    2017-01-01

    Calcareous soils are characterized by low nutrient contents, high bicarbonate (HCO3−) content, and high alkalinity. The effects of HCO3− addition under zinc-sufficient (+Zn) and zinc-deficient (−Zn) conditions on the growth and photosynthetic characteristics of seedlings of two Moraceae species (Broussonetia papyrifera and Morus alba) and two Brassicaceae species (Orychophragmus violaceus and Brassica napus) were investigated. These four species were hydroponically grown in nutrient solution with 0 mM Zn (−Zn) or 0.02 mM Zn (+Zn) and 0 mM or 10 mM HCO3−. The photosynthetic response to HCO3− treatment, Zn deficiency, or both varied according to plant species. Of the four species, Broussonetia papyrifera showed the best adaptability to Zn deficiency for both the 0 mM and 10 mM HCO3− treatments due to its strong growth and minimal inhibition of photosynthesis and photosystem II (PS II). Brassica napus was sensitive to Zn deficiency, HCO3− treatment, or both as evidenced by the considerable inhibition of photosynthesis and high PS II activity. The results indicated different responses of various plant species to Zn deficiency and excess HCO3−. Broussonetia papyrifera was shown to have potential as a pioneer species in karst regions. PMID:28076430

  15. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle.

    PubMed

    Kim, Jong-Yeon; Koves, Timothy R; Yu, Geng-Sheng; Gulick, Tod; Cortright, Ronald N; Dohm, G Lynis; Muoio, Deborah M

    2002-05-01

    Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC(50) for CPT Ibeta. We evaluated malonyl-CoA-suppressible [(14)C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 microM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Ibeta splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.

  16. HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship.

    PubMed

    Bode, Heiko; Bourquin, Florence; Suriyanarayanan, Saranya; Wei, Yu; Alecu, Irina; Othman, Alaa; Von Eckardstein, Arnold; Hornemann, Thorsten

    2016-03-01

    Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is a rare autosomal dominant inherited peripheral neuropathy caused by mutations in the SPTLC1 and SPTLC2 subunits of serine palmitoyltransferase (SPT). The mutations induce a permanent shift in the substrate preference from L-serine to L-alanine, which results in the pathological formation of atypical and neurotoxic 1-deoxy-sphingolipids (1-deoxySL). Here we compared the enzymatic properties of 11 SPTLC1 and six SPTLC2 mutants using a uniform isotope labelling approach. In total, eight SPT mutants (STPLC1p.C133W, p.C133Y, p.S331F, p.S331Y and SPTLC2p.A182P, p.G382V, p.S384F, p.I504F) were associated with increased 1-deoxySL synthesis. Despite earlier reports, canonical activity with l-serine was not reduced in any of the investigated SPT mutants. Three variants (SPTLC1p.S331F/Y and SPTLC2p.I505Y) showed an increased canonical activity and increased formation of C20 sphingoid bases. These three mutations are associated with an exceptionally severe HSAN1 phenotype, and increased C20 sphingosine levels were also confirmed in plasma of patients. A principal component analysis of the analysed sphingoid bases clustered the mutations into three separate entities. Each cluster was related to a distinct clinical outcome (no, mild and severe HSAN1 phenotype). A homology model based on the protein structure of the prokaryotic SPT recapitulated the same grouping on a structural level. Mutations associated with the mild form clustered around the active site, whereas mutations associated with the severe form were located on the surface of the protein. In conclusion, we showed that HSAN1 mutations in SPT have distinct biochemical properties, which allowed for the prediction of the clinical symptoms on the basis of the plasma sphingoid base profile. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Hereditary deficiency of the sixth component of complement in man. II. Studies of hemostasis.

    PubMed Central

    Heusinkveld, R S; Leddy, J P; Klemperer, M R; Breckenridge, R T

    1974-01-01

    Prompted by previous observations of defective blood clotting in rabbits deficient in the sixth component of complement (C6), an evaluation was made of the hemostatic functions of the homozygous proband of a newly recognized human kindred with hereditary C6 deficiency. This human subject, who had no clinical evidence of a bleeding disorder, exhibited a total lack of C6 by functional and immunoprecipitin assays of serum or plasma. Standard tests of hemostatic function were normal; however, when the whole blood clotting time was measured at 25 degrees C in plastic tubes, it was at the upper range of our normal values. In confirmation of this observation, prothrombin consumption, when performed at 37 degrees C in plastic tubes, was at the lower range of normal. Inulin and endotoxin, in concentrations shown to cause activation of human complement, had little or no effect on clotting times or prothrombin consumption of normal or C6-deficient human blood. These observations indicate that absence of C6 does not have a significant effect on hemostatic function in man. In the light of other investigations, the observed differences in clotting function between C6-deficient human blood and C6-deficient rabbit blood could be due to species differences governing the susceptibility of platelets to complement activation. PMID:11344569

  18. Hydroponics on a chip: analysis of the Fe deficient Arabidopsis thylakoid membrane proteome.

    PubMed

    Laganowsky, Arthur; Gómez, Stephen M; Whitelegge, Julian P; Nishio, John N

    2009-04-13

    The model plant Arabidopsis thaliana was used to evaluate the thylakoid membrane proteome under Fe-deficient conditions. Plants were cultivated using a novel hydroponic system, called "hydroponics on a chip", which yields highly reproducible plant tissue samples for physiological analyses, and can be easily used for in vivo stable isotope labeling. The thylakoid membrane proteome, from intact chloroplasts isolated from Fe-sufficient and Fe-deficient plants grown with hydroponics on a chip, was analyzed using liquid chromatography coupled to mass spectrometry. Intact masses of thylakoid membrane proteins were measured, many for the first time, and several proteins were identified with post-translational modifications that were altered by Fe deficiency; for example, the doubly phosphorylated form of the photosystem II oxygen evolving complex, PSBH, increased under Fe-deficiency. Increased levels of photosystem II protein subunit PSBS were detected in the Fe-deficient samples. Antioxidant enzymes, including ascorbate peroxidase and peroxiredoxin Q, were only detected in the Fe-deficient samples. We present the first biochemical evidence that the two major LHC IIb proteins (LHCB1 and LHCB2) may have significantly different functions in the thylakoid membrane. The study illustrates the utility of intact mass proteomics as an indispensable tool for functional genomics. "Hydroponics on a chip" provides the ability to grow A. thaliana under defined conditions that will be useful for systems biology.

  19. Diastereoselective Radical‐Type Cyclopropanation of Electron‐Deficient Alkenes Mediated by the Highly Active Cobalt(II) Tetramethyltetraaza[14]annulene Catalyst

    PubMed Central

    Chirila, Andrei; Gopal Das, Braja; Paul, Nanda D.

    2017-01-01

    Abstract A new protocol for the catalytic synthesis of cyclopropanes using electron‐deficient alkenes is presented, which is catalysed by a series of affordable, easy to synthesise and highly active substituted cobalt(II) tetraaza[14]annulenes. These catalysts are compatible with the use of sodium tosylhydrazone salts as precursors to diazo compounds in one‐pot catalytic transformations to afford the desired cyclopropanes in almost quantitative yields. The reaction takes advantage of the metalloradical character of the Co complexes to activate the diazo compounds. The reaction is practical and fast, and proceeds from readily available starting materials. It does not require the slow addition of diazo reagents or tosylhydrazone salts or heating and tolerates many solvents, which include protic ones such as MeOH. The CoII complexes derived from the tetramethyltetraaza[14]annulene ligand are easier to prepare than cobalt(II) porphyrins and present a similar catalytic carbene radical reactivity but are more active. The reaction proceeds at 20 °C in a matter of minutes and even at −78 °C in a few hours. The catalytic system is robust and can operate with either the alkene or the diazo reagent as the limiting reagent, which inhibits the dimerisation of diazo compounds totally. The protocol has been applied to synthesise a variety of substituted cyclopropanes. High yields and selectivities were achieved for various substrates with an intrinsic preference for trans cyclopropanes. PMID:28529668

  20. Formation of reactive oxygen species in lung alveolar cells: effect of vitamin E deficiency.

    PubMed

    Sabat, Robert; Guthmann, Florian; Rüstow, Bernd

    2008-01-01

    Reactive oxygen species (ROS) play an important role in the pathogenesis of numerous pulmonary diseases. Various mainly membrane-bound ROS-generating processes exist in alveolar cells. Vitamin E (vit. E) is the most important lipophilic antioxidant. However, the significance of vit. E levels in alveolar cells for the regulation of ROS generation has not been investigated so far. We demonstrated here that feeding rats with vit. E-depleted nourishment for 5 weeks reduced the concentration of vit. E in alveolar type II cell preparations to one-fifth the amount of control animals. This reduction of vit. E levels was associated with an approximately threefold increase in ROS generation in type II pneumocytes, lymphocytes, and macrophages. The contribution of individual processes of ROS formation in control animals differed strongly among these three cell types. However, vit. E deficiency induced predominantly nonmitochondrial ROS formation in alveolar cells. Expression and NAD(P)H-oxidase activity in alveolar type II cell preparations was not affected by vit. E deficiency. Moreover, protein kinase C (PKC) also did not seem to be responsible for vit. E deficiency-induced ROS generation in alveolar cells. Alimentary vit. E supplementation for 2 days corrected the cellular vit. E concentration but failed to normalize ROS generation in alveolar cells. These data let us assume that alimentary vit. E deficiency caused a preferentially nonmitochondria-mediated increase of ROS formation in type II pneumocytes, macrophages, and lymphocytes. However, the short-term supplementation of vit. E does not reverse these effects.

  1. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA)

    PubMed Central

    Finberg, Karin E; Heeney, Matthew M; Campagna, Dean R; Aydınok, Yeşim; Pearson, Howard A; Hartman, Kip R; Mayo, Mary M; Samuel, Stewart M; Strouse, John J; Markianos, Kyriacos; Andrews, Nancy C; Fleming, Mark D

    2011-01-01

    Iron deficiency is usually attributed to chronic blood loss or inadequate dietary intake. Here, we show that iron deficiency anemia refractory to oral iron therapy can be caused by germline mutations in TMPRSS6, which encodes a type II transmembrane serine protease produced by the liver that regulates the expression of the systemic iron regulatory hormone hepcidin. These findings demonstrate that TMPRSS6 is essential for normal systemic iron homeostasis in humans. PMID:18408718

  2. Freeze-Fracture Ultrastructure of Thylakoid Membranes in Chloroplasts from Manganese-Deficient Plants

    PubMed Central

    Simpson, David J.; Robinson, Simon P.

    1984-01-01

    Leaves from spinach (Spinacia oleracea L. cv Hybrid 102) plants grown in Mn-deficient nutrient solution were characterized by chlorosis, lowered chlorophyll a/b ratio and reduced electron transport. There were characteristic changes in room temperature fluorescence induction kinetics with increased initial yield (Fo) and decreased variable fluorescence (Fv). The fluorescence yield after the maximum fell rapidly to a level below Fo. The shape of the rise from Fo to the maximum was altered and the size of photosystem II units increased, as measured by half-rise time of Fv in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The Mn-deficient leaves were harvested before necrosis, when thin section electron microscopy revealed no disorganization of the thylakoid system. Thylakoid membranes were examined by freeze-fracture electron microscopy. The effect of Mn-deficiency was the specific loss of three-quarters of the particles from the endoplasmic fracture face of appressed thylakoids (EFs). Mn-deficient leaves were restored to near normal 2 days after application of exogenous Mn to the nutrient solution. It is concluded that the loss of most, but not all, functional photosystem II reaction centers from grana, with no alteration in light-harvesting complex or photosystem I, is responsible for the fluorescence and functional properties observed. The response of thylakoids to Mn deficiency shows that there is a fundamental difference in composition and function of stacked and unstacked endoplasmic fracture particles. The stacked endoplasmic fracture particle probably contains, in close association, the photosystem II reaction center and also the Mn-containing polypeptide, the 3-(3,4-dichlorophenyl)-1,1-dimethylurea-binding protein, and all electron transport components in between. Images Fig. 3 Fig. 4 Fig. 5 PMID:16663491

  3. Manganese Deficiency in Chlamydomonas Results in Loss of Photosystem II and MnSOD Function, Sensitivity to Peroxides, and Secondary Phosphorus and Iron Deficiency1[W][OA

    PubMed Central

    Allen, Michael D.; Kropat, Janette; Tottey, Stephen; Del Campo, José A.; Merchant, Sabeeha S.

    2007-01-01

    For photoheterotrophic growth, a Chlamydomonas reinhardtii cell requires at least 1.7 × 107 manganese ions in the medium. At lower manganese ion concentrations (typically <0.5 μm), cells divide more slowly, accumulate less chlorophyll, and the culture reaches stationary phase at lower cell density. Below 0.1 μm supplemental manganese ion in the medium, the cells are photosynthetically defective. This is accompanied by decreased abundance of D1, which binds the Mn4Ca cluster, and release of the OEE proteins from the membrane. Assay of Mn superoxide dismutase (MnSOD) indicates loss of activity of two isozymes in proportion to the Mn deficiency. The expression of MSD3 through MSD5, encoding various isoforms of the MnSODs, is up-regulated severalfold in Mn-deficient cells, but neither expression nor activity of the plastid Fe-containing superoxide dismutase is changed, which contrasts with the dramatically increased MSD3 expression and plastid MnSOD activity in Fe-deficient cells. Mn-deficient cells are selectively sensitive to peroxide but not methyl viologen or Rose Bengal, and GPXs, APX, and MSRA2 genes (encoding glutathione peroxidase, ascorbate peroxidase, and methionine sulfoxide reductase 2) are slightly up-regulated. Elemental analysis indicates that the Mn, Fe, and P contents of cells in the Mn-deficient cultures were reduced in proportion to the deficiency. A natural resistance-associated macrophage protein homolog and one of five metal tolerance proteins were induced in Mn-deficient cells but not in Fe-deficient cells, suggesting that the corresponding gene products may be components of a Mn2+-selective assimilation pathway. PMID:17085511

  4. 40 CFR 52.2126 - VOC rule deficiency correction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Carolina § 52.2126 VOC rule deficiency correction. Sections I and II of South Carolina's Regulations 62.1 and 62.5 is approved. The State... Toxics Management Division, to Mr. Otto E. Pearson, former Director of the South Carolina Department of...

  5. Iron deficiency cause changes in photochemistry, thylakoid organization, and accumulation of photosystem II proteins in Chlamydomonas reinhardtii.

    PubMed

    Devadasu, Elsin Raju; Madireddi, Sai Kiran; Nama, Srilatha; Subramanyam, Rajagopal

    2016-12-01

    A trace element, iron (Fe) plays a pivotal role in photosynthesis process which in turn mediates the plant growth and productivity. Here, we have focused majorly on the photochemistry of photosystem (PS) II, abundance of proteins, and organization of supercomplexes of thylakoids from Fe-depleted cells in Chlamydomonas reinhardtii. Confocal pictures show that the cell's size has been reduced and formed rosette-shaped palmelloids; however, there is no cell death. Further, the PSII photochemistry was reduced remarkably. Further, the photosynthetic efficiency analyzer data revealed that both donor and acceptor side of PSII were equally damaged. Additionally, the room-temperature emission spectra showed the fluorescence emission maxima increased due to impaired energy transfer from PSII to PSI. Furthermore, the protein data reveal that most of the proteins of reaction center and light-harvesting antenna were reduced in Fe-depleted cells. Additionally, the supercomplexes of PSI and PSII were destabilized from thylakoids under Fe-deficient condition showing that Fe is an important element in photosynthesis mechanism.

  6. Vitamin K1 versus vitamin K3 for prevention of subclinical vitamin deficiency: a randomized controlled trial.

    PubMed

    Chawla, D; Deorari, A K; Saxena, R; Paul, V K; Agarwal, R; Biswas, A; Meena, A

    2007-11-01

    To compare efficacy of intramuscular phytomenadione (fat soluble vitamin K or vitamin K1) with menadione (water soluble vitamin K or vitamin K3) in prevention of subclinical vitamin K deficiency. A doubleblind randomized controlled trial. Tertiary care hospital. Healthy term neonates were randomized to receive 1 mg of either phytomenadione (Group I, n = 85) or menadione (Group II, n = 85) intramuscularly within 2 hours of birth. PIVKA-II, a sensitive and specific marker of vitamin K deficiency was measured by ELISA method (Diagnostica Stago, France). Plasma level > 2 ng/mL was labeled as detectable PIVKA-II. Birth weight (2914 +/- 318 vs 2958 +/- 312 g), gestation (38.4 +/- 1.2 vs 38.4 +/- 1.0 wk) and other baseline variables were comparable between the two groups. 48.2% (41/85) neonates in Group I and 44.7%(38/85) neonates in Group II had detectable PIVKAII levels ([Relative Risk (95% confidence interval): 1.1 (0.8-1.5); P = 0.76]). Median PIVKA-II levels in Group I and Group II were 1.99 ng/mL and 1.97 ng/mL respectively (P = 0.26). At 72 +/- 12 h of age, mean packed cell volume and mean serum bilirubin levels were comparable in the two groups. Comparable PIVKAII detection rate and PIVKAII levels in neonates receiving phytomenadione or menadione indicate their similar efficacy in prevention of vitamin K deficiency. However, high PIVKAII detection rate observed with both preparations indicates recent vitamin K deficiency and may be due to either inadequate dose of vitamin K or persistence of PIVKAII of fetal origin.

  7. [6]-Gingerol inhibits de novo fatty acid synthesis and carnitine palmitoyltransferase-1 activity which triggers apoptosis in HepG2.

    PubMed

    Impheng, Hathaichanok; Richert, Lysiane; Pekthong, Dumrongsak; Scholfield, C Norman; Pongcharoen, Sutatip; Pungpetchara, Ittipon; Srisawang, Piyarat

    2015-01-01

    The de novo fatty acid synthesis catalyzed by key lipogenic enzymes, including fatty acid synthase (FASN) has emerged as one of the novel targets of anti-cancer approaches. The present study explored the possible inhibitory efficacy of [6]-gingerol on de novo fatty acid synthesis associated with mitochondrial-dependent apoptotic induction in HepG2 cells. We observed a dissipation of mitochondrial membrane potential accompanied by a reduction of fatty acid levels. [6]-gingerol administration manifested inhibition of FASN expression, indicating FASN is a major target of [6]-gingerol inducing apoptosis in HepG2 cells. Indeed, we found that increased ROS generation could likely be a mediator of the anti-cancer effect of [6]-gingerol. A reduction of fatty acid levels and induction of apoptosis were restored by inhibition of acetyl-CoA carboxylase (ACC) activity, suggesting an accumulation of malonyl-CoA level could be the major cause of apoptotic induction of [6]-gingerol in HepG2 cells. The present study also showed that depletion of fatty acid following [6]-gingerol treatment caused an inhibitory effect on carnitine palmitoyltransferase-1 activity (CPT-1), whereas C75 augmented CPT-1 activity, indicating that [6]-gingerol exhibits the therapeutic benefit on suppression of fatty acid β-oxidation.

  8. Long-term increased carnitine palmitoyltransferase 1A expression in ventromedial hypotalamus causes hyperphagia and alters the hypothalamic lipidomic profile.

    PubMed

    Mera, Paula; Mir, Joan Francesc; Fabriàs, Gemma; Casas, Josefina; Costa, Ana S H; Malandrino, Maria Ida; Fernández-López, José-Antonio; Remesar, Xavier; Gao, Su; Chohnan, Shigeru; Rodríguez-Peña, Maria Sol; Petry, Harald; Asins, Guillermina; Hegardt, Fausto G; Herrero, Laura; Serra, Dolors

    2014-01-01

    Lipid metabolism in the ventromedial hypothalamus (VMH) has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT) 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH), long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT) and reduced vesicular glutamate transporter 2 (VGLUT2) expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH.

  9. Long-Term Increased Carnitine Palmitoyltransferase 1A Expression in Ventromedial Hypotalamus Causes Hyperphagia and Alters the Hypothalamic Lipidomic Profile

    PubMed Central

    Fabriàs, Gemma; Casas, Josefina; Costa, Ana S. H.; Malandrino, Maria Ida; Fernández-López, José-Antonio; Remesar, Xavier; Gao, Su; Chohnan, Shigeru; Rodríguez-Peña, Maria Sol; Petry, Harald; Asins, Guillermina; Hegardt, Fausto G.; Herrero, Laura; Serra, Dolors

    2014-01-01

    Lipid metabolism in the ventromedial hypothalamus (VMH) has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT) 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH), long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT) and reduced vesicular glutamate transporter 2 (VGLUT2) expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH. PMID:24819600

  10. Prevalence of glucose-6-phosphate dehydrogenase deficiency in U.S. Army personnel.

    PubMed

    Chinevere, Troy D; Murray, Clinton K; Grant, Earl; Johnson, Gregory A; Duelm, Felix; Hospenthal, Duane R

    2006-09-01

    The U.S. Army recently mandated that soldiers undergo glucose-6-phosphate dehydrogenase (G6PD) testing before deployment to malarious regions. We retrospectively characterize the presence and degree of G6PD deficiency in U.S. military personnel by sex, self-reported ethnicity, and World Health Organization deficiency classification through test results obtained October 1, 2004 through January 17, 2005. Data were available for 63,302 (54,874 males and 8,428 females) subjects; 2.5% of males and 1.6% of females were deficient, with most having only moderate enzyme deficiency. African American males (12.2%) and females (4.1%), along with Asian males (4.3%), had the highest rates of G6PD deficiency. Most males were found to have class III variants while most females were class IV variants. The most severely deficient were Asian males (class II). These results suggest that universal screening for G6PD deficiency is clinically warranted, and particularly essential for those male service members who self-report ethnicity as African American, Asian, or Hispanic.

  11. Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice

    PubMed Central

    Khoriaty, Rami; Everett, Lesley; Chase, Jennifer; Zhu, Guojing; Hoenerhoff, Mark; McKnight, Brooke; Vasievich, Matthew P.; Zhang, Bin; Tomberg, Kärt; Williams, John; Maillard, Ivan; Ginsburg, David

    2016-01-01

    In humans, loss of function mutations in SEC23B result in Congenital Dyserythropoietic Anemia type II (CDAII), a disease limited to defective erythroid development. Patients with two nonsense SEC23B mutations have not been reported, suggesting that complete SEC23B deficiency might be lethal. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration and that mice with hematopoietic SEC23B deficiency do not exhibit CDAII. We now show that SEC23B deficiency restricted to the pancreas is sufficient to explain the lethality observed in mice with global SEC23B-deficiency. Immunohistochemical stains demonstrate an acinar cell defect but normal islet cells. Mammalian genomes contain two Sec23 paralogs, Sec23A and Sec23B. The encoded proteins share ~85% amino acid sequence identity. We generate mice with pancreatic SEC23A deficiency and demonstrate that these mice survive normally, exhibiting normal pancreatic weights and histology. Taken together, these data demonstrate that SEC23B but not SEC23A is essential for murine pancreatic development. We also demonstrate that two BAC transgenes spanning Sec23b rescue the lethality of mice homozygous for a Sec23b gene trap allele, excluding a passenger gene mutation as the cause of the pancreatic lethality, and indicating that the regulatory elements critical for Sec23b pancreatic function reside within the BAC transgenes. PMID:27297878

  12. Red cell glucose 6-phosphate dehydrogenase deficiency in the northern region of Turkey: is G6PD deficiency exclusively a male disease?

    PubMed

    Albayrak, Canan; Albayrak, Davut

    2015-03-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive genetic defect that can cause hemolytic crisis. However, this disease affects both males and females. In Turkey, the frequency of this enzyme deficiency was reported to vary, from 0.25 to 18%, by the geographical area. Its prevalence in the northern Black Sea region of Turkey is unknown. The aims of this study were to assess the prevalence of G6PD deficiency in the northern region Turkey in children and adults with hyperbilirubinemia and hemolytic anemia. This report included a total of 976 G6PD enzyme results that were analyzed between May 2005 and January 2014. G6PD deficiency was detected in 5.0% of all patients. G6PD deficiency was significantly less frequent in females (1.9%, 6/323) than in males (6.6%, 43/653). G6PD deficiency was detected in 3.7% of infants with hyperbilirubinemia, 9.2% of children, and 4.5% of adults with hemolytic anemia. In both the newborn group and the group of children, G6PD deficiency was significantly more frequent in males. In the combined group of children (groups I and II), the proportion of males was 74% and 67% in all groups (P = .0008). In conclusion, in northern region of Turkey, G6PD deficiency is an important cause of neonatal hyperbilirubinemia and hemolytic crisis in children and adults. This study suggests that most pediatricians thought that G6PD deficiency is exclusively a male disease. For this reason, some female patients may have been undiagnosed.

  13. Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-κB activation in apolipoprotein-E-deficient mice

    PubMed Central

    Zhao, Dong; Tong, Lufang; Zhang, Lixin; Li, Hong; Wan, Yingxin; Zhang, Tiezhong

    2016-01-01

    Tanshinone II A (TSIIA) is a diterpene quinone extracted from the roots of Salvia miltiorrhiza with anti-inflammatory and anti-oxidant properties that is used to treat atherosclerosis. In the current study, morphological analyses were conducted to evaluate the effects of TSIIA on atherosclerotic vulnerable plaque stability. Additionally, receptor of advanced glycation end products (RAGE), adhesion molecule, and matrix-metalloproteinases (MMPs) expression, and nuclear factor-κB (NF-κB) activation were examined in apolipoprotein E (apoE)-deficient mice treated with TSIIA. Eight-week-old apoE−/− mice were administered TSIIA and fed an atherogenic diet for 8 weeks. TSIIA exhibited no effects on plaque size. Analysis of the vulnerable plaque composition demonstrated decreased numbers of macrophages and smooth muscle cells, and increased collagen content in apoE-deficient mice treated with TSIIA compared with untreated mice. Western blotting revealed that TSIIA downregulated the expression levels of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and MMP-2, −3, and −9, suppressed RAGE, and inhibited NF-κB, JNK and p38 activation. The present study demonstrated that the underlying mechanism of TSIIA stabilization of vulnerable plaques involves interfering with RAGE and NF-κB activation, and downregulation of downstream inflammatory factors, including ICAM-1, VCAM-1, and MMP-2, −3 and −9 in apoE−/− mice. PMID:27840935

  14. CD70 encoded by modified vaccinia virus Ankara enhances CD8 T-cell-dependent protective immunity in MHC class II-deficient mice.

    PubMed

    Bathke, Barbara; Pätzold, Juliane; Kassub, Ronny; Giessel, Raphael; Lämmermann, Kerstin; Hinterberger, Maria; Brinkmann, Kay; Chaplin, Paul; Suter, Mark; Hochrein, Hubertus; Lauterbach, Henning

    2017-12-27

    The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic ® (MVA-BN ® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN ® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN ® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN ® backbone. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  15. Impaired Vascular Contractility and Aortic Wall Degeneration in Fibulin-4 Deficient Mice: Effect of Angiotensin II Type 1 (AT1) Receptor Blockade

    PubMed Central

    Moltzer, Els; te Riet, Luuk; Swagemakers, Sigrid M. A.; van Heijningen, Paula M.; Vermeij, Marcel; van Veghel, Richard; Bouhuizen, Angelique M.; van Esch, Joep H. M.; Lankhorst, Stephanie; Ramnath, Natasja W. M.; de Waard, Monique C.; Duncker, Dirk J.; van der Spek, Peter J.; Rouwet, Ellen V.; Danser, A. H. Jan; Essers, Jeroen

    2011-01-01

    Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of

  16. Prevalence of Vitamin B12 and folic acid deficiency in HIV-positive patients and its association with neuropsychiatric symptoms and immunological response.

    PubMed

    Adhikari, Prabha M R; Chowta, Mukta N; Ramapuram, John T; Rao, Satish; Udupa, Karthik; Acharya, Sahana Devdas

    2016-01-01

    Deficiency of micronutrients is prevalent even before the development of symptoms of HIV disease and is associated with accelerated HIV disease progression. This study evaluates the prevalence of folate and Vitamin B 12 deficiency in HIV-positive patients with or without tuberculosis (TB) and its association with neuropsychiatric symptoms and immunological response. Cross-sectional, observational study in an outpatient setting. Four groups of HIV-positive patients with TB (Group I), HIV-positive patients with neuropsychiatric symptoms (Group II), HIV-positive patients without neuropsychiatric symptoms or TB (Group III), and HIV-negative controls with neuropsychiatric symptoms (Group IV). Vitamin B 12 and folate estimation was done using carbonyl metallo-immunoassay method. ANOVA, Kruskal-Wallis and Mann-Whitney, Pearson's correlation. The prevalence of folic acid deficiency was 27.1% in the Group I, 31.9% in the Group II, 23.4% in the Group III, and 32% in the Group IV being higher in patients with neuropsychiatric symptoms in both HIV and non-HIV patients. The prevalence of Vitamin B 12 deficiency was 18.8% in Group I, 9.1% in Group II, 4.8% in Group III, and 16.7% in Group IV. The patients with folate deficiency had more severe depression and anxiety. Nearly, 30% of the HIV patients had a folic acid deficiency, and about 10% of the HIV patients had Vitamin B 12 deficiency. The folate deficiency was highest among neuropsychiatric patients with or without HIV infection and Vitamin B 12 deficiency was higher among HIV patients with TB.

  17. PIVKA-II correlates with INR but not protein C or protein S concentrations in cord blood among newborns.

    PubMed

    Teruya, M; Soundar, E; Hui, S R; Eldin, K; Adcock, D; Teruya, J

    2016-05-18

    Protein induced by vitamin K absence (PIVKA)-II, inactive precursor of prothrombin, is elevated in vitamin K (VK) deficiency. Our aims were to find the prevalence of VK deficiency in neonates, assess the utility of international normalized ratio (INR) as a screening tool, and explore the relationship between PIVKA-II, activated partial thromboplastin time (aPTT) and VK dependent anticoagulants. INR, aPTT, PIVKA-II, and proteins C and S activities were measured in neonatal cord blood prior to VK administration. We found 45% of neonates had subclinical VK deficiency based on PIVKA-II levels and 7% based on INR. Receiver operating characteristic (ROC) analysis assessed the utility of INR in detecting >4 ng/mL of PIVKA-II and ROC of the area under the curve was 0.70 (95% CI 0.46-0.92, p = 0.07). Proteins C and S activities were normal for age and did not correlate with PIVKA-II [(r = 0.40, p = 0.14) and (r = 0.29, p = 0.29), respectively]. There was no association between aPTT and PIVKA-II (p = 0.83). PIVKA-II seems to be a sensitive indicator of mild VK deficiency. Further studies are needed to investigate the lack of relationship between PIVKA-II and functional protein C or S levels.

  18. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons.

    PubMed

    Grünewald, Anne; Rygiel, Karolina A; Hepplewhite, Philippa D; Morris, Christopher M; Picard, Martin; Turnbull, Doug M

    2016-03-01

    To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI-IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single-neuron level. Multiple-label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI-IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser-capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication-associated 7S DNA employing a triplex real-time polymerase chain reaction (PCR) assay. Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single-cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription-primed mtDNA replication. Consistent with this, real-time PCR analysis revealed fewer transcription/replication-associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA-encoded factors mechanistically connected via TFAM. © 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  19. Mitochondrial DNA Depletion in Respiratory Chain–Deficient Parkinson Disease Neurons

    PubMed Central

    Rygiel, Karolina A.; Hepplewhite, Philippa D.; Morris, Christopher M.; Picard, Martin; Turnbull, Doug M.

    2016-01-01

    Objective To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI–IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single‐neuron level. Methods Multiple‐label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI–IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser‐capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication‐associated 7S DNA employing a triplex real‐time polymerase chain reaction (PCR) assay. Results Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single‐cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription‐primed mtDNA replication. Consistent with this, real‐time PCR analysis revealed fewer transcription/replication‐associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Interpretation Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA‐encoded factors mechanistically connected via TFAM. ANN NEUROL 2016;79:366–378 PMID:26605748

  20. Activation of Nrf2/Keap1 signaling and autophagy induction against oxidative stress in heart in iron deficiency.

    PubMed

    Inoue, Hirofumi; Kobayashi, Ken-Ichi; Ndong, Moussa; Yamamoto, Yuji; Katsumata, Shin-Ichi; Suzuki, Kazuharu; Uehara, Mariko

    2015-01-01

    We investigated the effects of dietary iron deficiency on the redox system in the heart. Dietary iron deficiency increased heart weight and accumulation of carbonylated proteins. However, expression levels of heme oxygenase-1 and LC3-II, an antioxidant enzyme and an autophagic marker, respectively, in iron-deficient mice were upregulated compared to the control group, resulting in a surrogate phenomenon against oxidative stress.

  1. Proximal tubule-dominant transfer of AT(1a) receptors induces blood pressure responses to intracellular angiotensin II in AT(1a) receptor-deficient mice.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2013-04-15

    The role of intracellular ANG II in proximal tubules of the kidney remains poorly understood. We tested the hypothesis that proximal tubule-dominant transfer of AT(1a) receptors in the cortex mediates intracellular ANG II-induced blood pressure responses in AT(1a) receptor-deficient (Agtr1a-/-) mice. A GFP-tagged AT(1a) receptor, AT(1a)R/GFP, and an enhanced cyan fluorescent intracellular ANG II fusion protein, ECFP/ANG II, were expressed in proximal tubules of Agtr1a-/- mouse kidneys via the adenoviral transfer using a sodium and glucose cotransporter 2 promoter. Transfer of AT(1a)R/GFP alone or with ECFP/ANG II induced proximal tubule-dominant expression of AT(1a)R/GFP and/or ECFP/ANG II with a peak response at 2 wk. No significant AT(1a)R/GFP and/or ECFP/ANG II expression was observed in the glomeruli, medulla, or extrarenal tissues. Transfer of AT(1a)R/GFP alone, but not ECFP/ANG II, increased systolic blood pressure by 12 ± 2 mmHg by day 14 (n = 9, P < 0.01). However, cotransfer of AT(1a)R/GFP with ECFP/ANG II increased blood pressure by 18 ± 2 mmHg (n = 12, P < 0.01). Twenty-four hour urinary sodium excretion was decreased by day 7 with proximal tubule-dominant transfer of AT(1a)R/GFP alone (P < 0.01) or with AT(1a)R/GFP and ECFP/ANG II cotransfer (P < 0.01). These responses were associated with twofold increases in phosphorylated ERK1/2, lysate, and membrane NHE-3 proteins in freshly isolated proximal tubules (P < 0.01). By contrast, transfer of control CMV-GFP (a recombinant human adenovirus type 5 expresses enhanced green fluorescent protein under the control of a cytomegalovirus (CMV) promoter), ECFP/ANG II, or a scrambled control ECFP/ANG IIc alone in proximal tubules had no effect on all indices. These results suggest that AT(1a) receptors and intracellular ANG II in proximal tubules of the kidney play an important physiological role in blood pressure regulation.

  2. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    PubMed

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  3. Germanium Does Not Substitute for Boron in Cross-Linking of Rhamnogalacturonan II in Pumpkin Cell Walls1

    PubMed Central

    Ishii, Tadashi; Matsunaga, Toshiro; Iwai, Hiroaki; Satoh, Shinobu; Taoshita, Junji

    2002-01-01

    Boron (B)-deficient pumpkin (Cucurbita moschata Duchesne) plants exhibit reduced growth, and their tissues are brittle. The leaf cell walls of these plants contain less than one-half the amount of borate cross-linked rhamnogalacturonan II (RG-II) dimer than normal plants. Supplying germanium (Ge), which has been reported to substitute for B, to B-deficient plants does not restore growth or reduce tissue brittleness. Nevertheless, the leaf cell walls of the Ge-treated plants accumulated considerable amounts of Ge. Dimeric RG-II (dRG-II) accounted for between 20% and 35% of the total RG-II in the cell walls of the second to fourth leaves from Ge-treated plants, but only 2% to 7% of the RG-II was cross-linked by germanate (dRG-II-Ge). The ability of RG-II to form a dimer is not reduced by Ge treatment because approximately 95% of the monomeric RG-II generated from the walls of Ge-treated plants is converted to dRG-II-Ge in vitro in the presence of germanium oxide and lead acetate. However, dRG-II-Ge is unstable and is converted to monomeric RG-II when the Ge is removed. Therefore, the content of dRG-II-Ge and dRG-II-B described above may not reflect the actual ratio of these in muro. 10B-Enriched boric acid and Ge are incorporated into the cell wall within 10 min after their foliar application to B-deficient plants. Foliar application of 10B but not Ge results in an increase in the proportion of dRG-II in the leaf cell wall. Taken together, our results suggest that Ge does not restore the growth of B-deficient plants. PMID:12481079

  4. Antiplatelet and invasive treatment in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency and acute coronary syndrome. The safety of aspirin.

    PubMed

    Kafkas, N V; Liakos, C I; Mouzarou, A G

    2015-06-01

    Aspirin is an important drug in acute coronary syndromes (ACS) and percutaneous coronary interventions (PCI). However, its use is contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency (risk for haemolytic anaemia). We report the management of 2 patients with class II G6PD deficiency and non-ST-segment elevation ACS (NSTE-ACS). The two patients were safely and efficiently treated with dual antiplatelet treatment (DAPT, aspirin plus ticagrelor) and PCI using new-generation drug-eluting stent (DES) despite G6PD deficiency. NSTE-ACS management with DAPT and DES is probably safe and effective in class II G6PD-deficient patients. © 2015 John Wiley & Sons Ltd.

  5. An audit of growth hormone replacement for GH-deficient adults in Scotland.

    PubMed

    Philip, Sam; Howat, Isobel; Carson, Maggie; Booth, Anne; Campbell, Karen; Grant, Donna; Patterson, Catherine; Schofield, Christopher; Bevan, John; Patrick, Alan; Leese, Graham; Connell, John

    2013-04-01

    Guidelines on the clinical use of growth hormone therapy in adults were issued by the UK National Institute for Clinical Excellence (NICE) in August 2003. We conducted a retrospective clinical audit on the use of growth hormone (GH) in Scotland to evaluate the use of these guidelines and their impact on clinical practice. The audit had two phases. In phase I, the impact of NICE criteria on specialist endocrine practice in starting and continuing GH replacement was assessed. In phase II, the reasons why some adults in Scotland with growth hormone deficiency were not on replacement therapy were evaluated. A retrospective cross-sectional case note review was carried out of all adult patients being followed up for growth hormone deficiency during the study period (1 March 2005 to 31 March 2008). Phase I of the audit included 208 patients and phase II 108 patients. Sellar tumours were the main cause of GH deficiency in both phases of the audit. In phase I, 53 patients (77%) had an AGHDA-QoL score >11 documented before commencing GH post-NICE guidance, compared with 35 (25%) pre-NICE guidance. Overall, only 39 patients (18%) met the full NICE criteria for starting and continuing GH (pre-NICE, 11%; post-NICE, 35%). Phase II indicated that the main reasons for not starting GH included perceived satisfactory quality of life (n = 47, 43%), patient reluctance (16, 15%) or a medical contraindication (16, 15%). Although the use of quality of life assessments has increased following publication of the NICE guidelines, most adults on GH in Scotland did not fulfil the complete set of NICE criteria. The main reason for not starting GH therapy in adult GH-deficient patients was perceived satisfactory quality of life. © 2012 Blackwell Publishing Ltd.

  6. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    PubMed

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  7. Severe Hyperammonemic Encephalopathy Requiring Dialysis Aggravated by Prolonged Fasting and Intermittent High Fat Load in a Ramadan Fasting Month in a Patient with CPTII Homozygous Mutation.

    PubMed

    Phowthongkum, P; Ittiwut, C; Shotelersuk, V

    2017-11-21

    Carnitine palmitoyltransferase II (CPTII) deficiency is a mitochondrial fatty acid oxidation disorder that can present antenatally as congenital brain malformations, or postnatally with lethal neonatal, severe infantile, or the most common adult myopathic forms. No case of severe hyperammonemia without liver dysfunction has been reported. We described a 23-year-old man who presented to the emergency department with seizures and was found to have markedly elevation of serum ammonia. Continuous renal replacement therapy was initiated with successfully decreased ammonia to a safety level. He had a prolonged history of epilepsies and encephalopathic attacks that was associated with high ammonia level. Molecular diagnosis revealed a homozygous mutation in CPTII. The plasma acylcarnitine profile was consistent with the diagnosis. Failure to produce acetyl-CoA, the precursor of urea cycle from fatty acid in prolonged fasting state in Ramadan month, worsening mitochondrial functions from circulating long chain fatty acid and valproate toxicities were believed to contribute to this critical metabolic decompensation. Fatty acid oxidation disorders should be considered in the differential diagnosis of hyperammonemia even without liver dysfunction. To our knowledge, this is the first case of CPTII deficiency presented with severe hyperammonemic encephalopathy required dialysis after prolonged religious related fasting.

  8. BMP type II receptors have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism.

    PubMed

    Mayeur, Claire; Leyton, Patricio A; Kolodziej, Starsha A; Yu, Binglan; Bloch, Kenneth D

    2014-09-25

    Expression of hepcidin, the hepatic hormone controlling iron homeostasis, is regulated by bone morphogenetic protein (BMP) signaling. We sought to identify which BMP type II receptor expressed in hepatocytes, ActR2a or BMPR2, is responsible for regulating hepcidin gene expression. We studied Bmpr2 heterozygous mice (Bmpr2(+/-)), mice with hepatocyte-specific deficiency of BMPR2, mice with global deficiency of ActR2a, and mice in which hepatocytes lacked both BMPR2 and ActR2a. Hepatic hepcidin messenger RNA (mRNA) levels, serum hepcidin and iron levels, and tissue iron levels did not differ in wild-type mice, Bmpr2(+/-) mice, and mice in which either BMPR2 or ActR2a was deficient. Deficiency of both BMP type II receptors markedly reduced hepatic hepcidin gene expression and serum hepcidin levels leading to severe iron overload. Iron injection increased hepatic hepcidin mRNA levels in mice deficient in either BMPR2 or ActR2a, but not in mice deficient in both BMP type II receptors. In addition, in mouse and human primary hepatocytes, deficiency of both BMPR2 and ActR2a profoundly decreased basal and BMP6-induced hepcidin gene expression. These results suggest that BMP type II receptors, BMPR2 and ActR2a, have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism. © 2014 by The American Society of Hematology.

  9. DMA and DMB are the only genes in the class II region of the human MHC needed for class II-associated antigen processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceman, S.; Rudersdorf, R.A.; Petersen, J.M.

    1995-03-15

    Previous studies have shown that homozygous mutations between the LMP2 and DNA loci in the human MHC cause class II molecules to be abnormally conformed and unstable in the presence of SDS at low temperature, and impede class II-associated Ag processing and presentation. These abnormalities result from impaired ability to form intracellular class II/peptide complexes that predominate in normal cells. We show in this work that this defect results from deficient expression of either the DMA or the DMB gene. Human B-LCL.174 (DR3) cells, which have a deletion of all known expressible genes in the class II region, express transgene-encodedmore » HLA-DR3, but have the abnormalities. Transfer of cosmid HA14, which contains the DMA and DMB genes, into .174 (DR3) cells restored normal DR3 conformation, stability in 0.4% SDS at 0{degrees}, and ability to process and present tetanus toxoid, but only when both DMA and DMB mRNAs were present. The requirement for both genetic expressions in engendering normal phenotypes was confirmed by transferring the cloned genes into .174 (DR3) cells separately or together. Because normal phenotypes were fully restored in transferent cells expressing DMA plus DMB, other genes in the {approximately} 1-mb homozygous class II region deletion in .174 (DR3) cells either do not participate in or are dispensable for apparently normal production of intracellular class II/peptide complexes. The properties of DM-deficient EBV-transformed B lymphoblastoid cell lines (LCLs) suggest ways of identifying humans in whom DM deficiency contributes to congenital immunodeficiency and malignancy. 67 refs., 5 figs., 1 tab.« less

  10. Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice.

    PubMed

    Ano, Satoshi; Panariti, Alice; Allard, Benoit; O'Sullivan, Michael; McGovern, Toby K; Hamamoto, Yoichiro; Ishii, Yukio; Yamamoto, Masayuki; Powell, William S; Martin, James G

    2017-01-01

    Chlorine gas (Cl 2 ) is a potent oxidant and trigger of irritant induced asthma. We explored NF-E2-related factor 2 (Nrf2)-dependent mechanisms in the asthmatic response to Cl 2 , using Nrf2-deficient mice, buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis and sulforaphane (SFN), a phytochemical regulator of Nrf2. Airway inflammation and airway hyperresponsiveness (AHR) were assessed 24 and 48h after a 5-min nose-only exposure to 100ppm Cl 2 of Nrf2-deficient and wild type Balb/C mice treated with BSO or SFN. Animals were anesthetized, paralyzed and mechanically ventilated (FlexiVent™) and challenged with aerosolized methacholine. Bronchoalveolar lavage (BAL) was performed and lung tissues were harvested for assessment of gene expression. Cl 2 exposure induced a robust AHR and an intense neutrophilic inflammation that, although similar in Nrf2-deficient mice and wild-type mice at 24h after Cl 2 exposure, were significantly greater at 48h post exposure in Nrf2-deficient mice. Lung GSH and mRNA for Nrf2-dependent phase II enzymes (NQO-1 and GPX2) were significantly lower in Nrf2-deficient than wild-type mice after Cl 2 exposure. BSO reduced GSH levels and promoted Cl 2 -induced airway inflammation in wild-type mice, but not in Nrf2-deficient mice, whereas SFN suppressed Cl 2 -induced airway inflammation in wild-type but not in Nrf2-deficient mice. AHR was not affected by either BSO or SFN at 48h post Cl 2 exposure. Nrf2-dependent phase II enzymes play a role in the resolution of airway inflammation and AHR after Cl 2 exposure. Moderate deficiency of GSH affects the magnitude of acute inflammation but not AHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Congenital factor V deficiency: comparison of the severity of clinical presentations among patients with rare bleeding disorders.

    PubMed

    Naderi, Majid; Tabibian, Shadi; Alizadeh, Shaban; Hosseini, Soudabeh; Zaker, Farhad; Bamedi, Taregh; Shamsizadeh, Morteza; Dorgalaleh, Akbar

    2015-01-01

    Factor V deficiency (FVD) is a rare bleeding disorder (RBD) mostly present in regions with a high rate of consanguinity. FVD after FXIII deficiency is the next more prevalent RBD in Sistan and Baluchistan (S&B) in southeastern Iran. The aim of this study was to evaluate the clinical manifestations and severity of bleeding diathesis in patients with FVD. This descriptive study was conducted on 23 patients with FVD in S&B province. FVD was diagnosed by clinical findings and routine laboratory tests. Bleeding diatheses were classified into three grades (I-III) depending on the severity of symptoms. The severity of bleeding episodes in our patients was compared with other RBDs. Based on residual plasma FV activity, 6 (26%), 16 (69.5%) and 1 (4.5%) patients had mild, moderate and severe factor deficiency, respectively. 24% of the patients had grade III life-threatening bleeding episodes which in comparison with FVII deficiency (17.4%) and FI deficiency (21%) had a higher incidence, and in comparison with FX deficiency (41.7%) and FXIII deficiency (63.1) had a lower incidence. Grade II and grade I bleeding diathesis were observed in 56.2 and 16.7% of the patients, respectively. FVD is the second most common type of RBD in S&B province and grade II bleeding episodes were the major bleeding presentation and observed in more than half of the patients. © 2014 S. Karger AG, Basel.

  12. Multispectral colour analysis for quantitative evaluation of pseudoisochromatic color deficiency tests

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Fomins, Sergejs

    2010-11-01

    Multispectral color analysis was used for spectral scanning of Ishihara and Rabkin color deficiency test book images. It was done using tunable liquid-crystal LC filters built in the Nuance II analyzer. Multispectral analysis keeps both, information on spatial content of tests and on spectral content. Images were taken in the range of 420-720nm with a 10nm step. We calculated retina neural activity charts taking into account cone sensitivity functions, and processed charts in order to find the visibility of latent symbols in color deficiency plates using cross-correlation technique. In such way the quantitative measure is found for each of diagnostics plate for three different color deficiency carrier types - protanopes, deutanopes and tritanopes. Multispectral color analysis allows to determine the CIE xyz color coordinates of pseudoisochromatic plate design elements and to perform statistical analysis of these data to compare the color quality of available color deficiency test books.

  13. Case 22:Type II diabetes

    USDA-ARS?s Scientific Manuscript database

    Diabetes mellitus is characterized by elevated blood glucose levels. It is composed of two types depending on the pathogenesis. Type I diabetes is characterized by insulin deficiency and usually has its onset during childhood or teenage years. This is also called ketosis-prone diabetes. Type II diab...

  14. A variant microcephalic osteodysplastic slender-bone disorder with growth hormone deficiency and a pigmentary retinopathy.

    PubMed

    Maclean, K; Ambler, G; Flaherty, M; Kozlowski, K; Adès, L C

    2002-10-01

    We present the case of a 3-year-old boy with post-natal growth failure, microcephaly, developmental delay, facial dysmorphism, an evolving pigmentary retinopathy, pituitary hypoplasia, micropenis, and growth hormone (GH) deficiency. He has a microcephalic osteodysplastic slender-bone disorder with disharmonic delayed osseous maturation, most closely resembling patients with microcephalic osteodysplastic primordial dwarfism type II (MOPD II). Intrauterine growth retardation, a universal finding in the MOPD II, was absent in our patient.

  15. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    PubMed

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  16. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana

    PubMed Central

    Nishida, Sho; Kato, Aki; Tsuzuki, Chisato; Yoshida, Junko; Mizuno, Takafumi

    2015-01-01

    Excessive accumulation of nickel (Ni) can be toxic to plants. In Arabidopsis thaliana, the Fe2+ transporter, iron (Fe)-regulated transporter1 (IRT1), mediates Fe uptake and also implicates in Ni2+ uptake at roots; however, the underlying mechanism of Ni2+ uptake and accumulation remains unelucidated. In the present study, we found that zinc (Zn) deficient conditions resulted in increased accumulation of Ni in plants, particularly in roots, in A. thaliana. In order to elucidate the underlying mechanisms of Ni uptake correlating zinc condition, we traced 63Ni isotope in response to Zn and found that (i) Zn deficiency induces short-term Ni2+ absorption and (ii) Zn2+ inhibits Ni2+ uptake, suggesting competitive uptake between Ni and Zn. Furthermore, the Zrt/Irt-like protein 3 (ZIP3)-defective mutant with an elevated Zn-deficient response exhibited higher Ni accumulation than the wild type, further supporting that the response to Zn deficiency induces Ni accumulation. Previously, expression profile study demonstrated that IRT1 expression is not inducible by Zn deficiency. In the present study, we found increased Ni accumulation in IRT1-null mutant under Zn deficiency in agar culture. These suggest that Zn deficiency induces Ni accumulation in an IRT1-independen manner. The present study revealed that Ni accumulation is inducible in response to Zn deficiency, which may be attributable to a Zn uptake transporter induced by Zn deficiency. PMID:25923075

  17. Selective Reversible Inhibition of Liver Carnitine Palmitoyl-Transferase 1 by Teglicar Reduces Gluconeogenesis and Improves Glucose Homeostasis

    PubMed Central

    Conti, Roberto; Mannucci, Edoardo; Pessotto, Pompeo; Tassoni, Emanuela; Carminati, Paolo; Giannessi, Fabio; Arduini, Arduino

    2011-01-01

    OBJECTIVE We have developed a new antihyperglycemic agent (teglicar) through the selective and reversible inhibition of the liver isoform of carnitine palmitoyl-transferase 1 (L-CPT1). RESEARCH DESIGN AND METHODS Glucose production was investigated in isolated hepatocytes and during pancreatic clamps in healthy rats. Chronic treatments on C57BL/6J, db/db, high-fat fed mice, and rats were performed to understand glucose metabolism and insulin sensitivity. RESULTS In isolated hepatocytes, teglicar concentration dependently reduced ketone bodies and glucose production up to 72 and 50%, respectively. In rats, teglicar reduced the endogenous glucose production (−62%) without affecting peripheral glucose utilization. Heart 2-[3H]deoxyglucose uptake in mice was also not affected, confirming in vivo the drug selectivity toward L-CPT1. Chronic treatment in db/db mice (50 mg/kg/bid; 45 days) reduced postabsorptive glycemia (−38%), water consumption (−31%), and fructosamine (−30%). Such antidiabetic activity was associated with an improved insulin sensitivity assessed by the insulin tolerance test. A significant 50% increase in hepatic triglyceride content (HTGC) was found, although plasma alanineaminotransferase was not altered. In addition, long-term teglicar administration to high-fat fed C57BL/6J mice normalized glycemia (−19%) and insulinemia (−53%). Long-term teglicar administration (30 days, 80 mg/kg) in healthy overnight-fasted rats slightly reduced basal glycemia (−20%, ns), reduced basal insulin levels by 60%, doubled triglycerides, and increased free-fatty acids (+53%). HTGC was markedly increased, but liver and peripheral insulin sensitivity assessed by hyperinsulinemiceuglycemic clamp were not affected. CONCLUSIONS Teglicar, in vitro and in animal models, reduces gluconeogenesis and improves glucose homeostasis, refreshing the interest in selective and reversible L-CPT1 inhibition as a potential antihyperglycemic approach. PMID:21270274

  18. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Ouest and Sud-Est departments of Haiti.

    PubMed

    von Fricken, Michael E; Weppelmann, Thomas A; Eaton, Will T; Alam, Meer T; Carter, Tamar E; Schick, Laura; Masse, Roseline; Romain, Jean R; Okech, Bernard A

    2014-07-01

    Malaria remains a significant public health issue in Haiti, with chloroquine (CQ) used almost exclusively for the treatment of uncomplicated infections. Recently, single dose primaquine (PQ) was added to the Haitian national malaria treatment policy, despite a lack of information on the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency within the population. G6PD deficient individuals who take PQ are at risk of developing drug induced hemolysis (DIH). In this first study to examine G6PD deficiency rates in Haiti, 22.8% (range 14.9%-24.7%) of participants were found to be G6PD deficient (class I, II, or III) with 2.0% (16/800) of participants having severe deficiency (class I and II). Differences in deficiency were observed by gender, with males having a much higher prevalence of severe deficiency (4.3% vs. 0.4%) compared to females. Male participants were 1.6 times more likely to be classified as deficient and 10.6 times more likely to be classified as severely deficient compared to females, as expected. Finally, 10.6% (85/800) of the participants were considered to be at risk for DIH. Males also had much higher rates than females (19.3% vs. 4.6%) with 4.9 times greater likelihood (p value 0.000) of having an activity level that could lead to DIH. These findings provide useful information to policymakers and clinicians who are responsible for the implementation of PQ to control and manage malaria in Haiti. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. [Leigh syndrome and leukodystrophy due to partial succinate dehydrogenase deficiency: regression with riboflavin].

    PubMed

    Pinard, J M; Marsac, C; Barkaoui, E; Desguerre, I; Birch-Machin, M; Reinert, P; Ponsot, G

    1999-04-01

    Succinate dehydrogenase (SDH) deficiency is rare. Clinical manifestations can appear in infancy with a marked impairment of psychomotor development with pyramidal signs and extrapyramidal rigidity. A 10-month-old boy developed severe neurological features, evoking a Leigh syndrome; magnetic resonance imaging showed features of leukodystrophy. A deficiency in the complex II respiratory chain (succinate dehydrogenase [SDH]) was shown. The course was remarkable by the regression of neurological impairment under treatment by riboflavin. The delay of psychomotor development, mainly involving language, was moderate at the age of 5 years. The relatively good prognosis of this patient, despite severe initial neurological impairment, may be due to the partial enzyme deficiency and/or riboflavin administration.

  20. Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency.

    PubMed

    Di Giovanni, S; Mirabella, M; Spinazzola, A; Crociani, P; Silvestri, G; Broccolini, A; Tonali, P; Di Mauro, S; Servidei, S

    2001-08-14

    Two brothers with myopathic coenzyme Q10 (CoQ10) deficiency responded dramatically to CoQ10 supplementation. Muscle biopsies before therapy showed ragged-red fibers, lipid storage, and complex I + III and II + III deficiency. Approximately 30% of myofibers had multiple features of apoptosis. After 8 months of treatment, excessive lipid storage resolved, CoQ10 level normalized, mitochondrial enzymes increased, and proportion of fibers with TUNEL-positive nuclei decreased to 10%. The authors conclude that muscle CoQ10 deficiency can be corrected by supplementation of CoQ10, which appears to stimulate mitochondrial proliferation and to prevent apoptosis.

  1. Diabetic retinopathy in two patients with congenital IGF-I deficiency (Laron syndrome).

    PubMed

    Laron, Zvi; Weinberger, Dov

    2004-07-01

    Animal and clinical studies have shown that excessive amounts of growth hormone or insulin-like growth factor-I (IGF-I) promote the development of diabetes and diabetic retinopathy. Forthwith, we present two patients with congenital IGF-I deficiency who developed type II diabetes and subsequently retinopathy. Eighteen adult patients with classical Laron syndrome (8 males, 10 females, aged 20-62 years) were followed by us since childhood or underwent fundus photography with a Nikon NF 505 instrument. Three had been treated in childhood with IGF-I, the rest were never treated, including the two patients reported. Two never-treated patients were diagnosed with type II diabetes (DM) at ages 39 and 41 respectively. There was no diabetes in the families. Oral treatment was followed by insulin injections. Metabolic control was not optimal and one patient developed proliferative diabetic retinopathy, necessitating laser surgery. He also has nephropathy and severe neuropathy. The other patient has background diabetic retinopathy and has developed, progressively, exudates, microaneurisms, hemorrhages and clinically significant macular edema. He also has subacute ischemic heart disease. Our findings show that congenital IGF-I deficiency, similar to excess, causes vascular complications of DM, denoting also that vascular endothelial growth factor can induce neovascularization in the presence of congenital IGF-I deficiency.

  2. Vitamin K deficiency: a case report and review of current guidelines.

    PubMed

    Marchili, Maria Rosaria; Santoro, Elisa; Marchesi, Alessandra; Bianchi, Simona; Rotondi Aufiero, Lelia; Villani, Alberto

    2018-03-14

    Vitamin K, a fat soluble vitamin, is a necessary cofactor for the activation of coagulation factors II, VII, IX, X, and protein C and S. In neonatal period, vitamin K deficiency may lead to Vitamin K Deficiency Bleeding (VKDB). We present the case of a 2 months and 20 days Caucasian male, presented for bleeding from the injections sites of vaccines. At birth oral vitamin K prophylaxis was administered. Neonatal period was normal. He was exclusively breastfed and received a daily oral supplementation with 25 μg of vitamin K. A late onset vitamin K deficiency bleeding was suspected. Intravenous Vitamin K was administered with complete recovery. Nevertheless the oral prophylaxis, our case developed a VKDB: it is necessary to revise the current guidelines in order to standardize timing and dosage in different clinical conditions.

  3. Bioinformatic Analysis of Plasma Apolipoproteins A-I and A-II Revealed Unique Features of A-I/A-II HDL Particles in Human Plasma

    PubMed Central

    Kido, Toshimi; Kurata, Hideaki; Kondo, Kazuo; Itakura, Hiroshige; Okazaki, Mitsuyo; Urata, Takeyoshi; Yokoyama, Shinji

    2016-01-01

    Plasma concentration of apoA-I, apoA-II and apoA-II-unassociated apoA-I was analyzed in 314 Japanese subjects (177 males and 137 females), including one (male) homozygote and 37 (20 males and 17 females) heterozygotes of genetic CETP deficiency. ApoA-I unassociated with apoA-II markedly and linearly increased with HDL-cholesterol, while apoA-II increased only very slightly and the ratio of apoA-II-associated apoA-I to apoA-II stayed constant at 2 in molar ratio throughout the increase of HDL-cholesterol, among the wild type and heterozygous CETP deficiency. Thus, overall HDL concentration almost exclusively depends on HDL with apoA-I without apoA-II (LpAI) while concentration of HDL containing apoA-I and apoA-II (LpAI:AII) is constant having a fixed molar ratio of 2 : 1 regardless of total HDL and apoA-I concentration. Distribution of apoA-I between LpAI and LpAI:AII is consistent with a model of statistical partitioning regardless of sex and CETP genotype. The analysis also indicated that LpA-I accommodates on average 4 apoA-I molecules and has a clearance rate indistinguishable from LpAI:AII. Independent evidence indicated LpAI:A-II has a diameter 20% smaller than LpAI, consistent with a model having two apoA-I and one apoA-II. The functional contribution of these particles is to be investigated. PMID:27526664

  4. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain.

    PubMed

    Carstensen, Andreas; Herdean, Andrei; Schmidt, Sidsel Birkelund; Sharma, Anurag; Spetea, Cornelia; Pribil, Mathias; Husted, Søren

    2018-05-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley ( Hordeum vulgare ). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b 6 f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO 2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. © 2018 American Society of Plant Biologists. All Rights Reserved.

  5. Accentuated hyperparathyroidism in type II Bartter syndrome.

    PubMed

    Landau, Daniel; Gurevich, Evgenia; Sinai-Treiman, Levana; Shalev, Hannah

    2016-07-01

    Bartter syndrome (BS) may be associated with different degrees of hypercalciuria, but marked parathyroid hormone (PTH) abnormalities have not been described. We compared clinical and laboratory data of patients with either ROMK-deficient type II BS (n = 14) or Barttin-deficient type IV BS (n = 20). Only BS-IV patients remained mildly hypokalemic in spite of a higher need for potassium supplementation. Estimated glomerular filtration rate (eGFR) was mildly decreased in only four BS-IV patients. Average PTH values were significantly higher in BS-II (160.6 ± 85.8 vs. 92.5 ± 48 pg/ml in BS-IV, p = 0.006). In both groups, there was a positive correlation between age and log(PTH). Levels of 25(OH) vitamin D were not different. Total serum calcium was lower (within normal limits) and age-related serum phosphate (Pi)-SDS was increased in BS-II (1.19 ± 0.71 vs. 0.01 ± 1.04 in BS-IV, p < 0.001). The GFR threshold for Pi reabsorption was higher in BS-II (5.63 ± 1.25 vs. 4.36 ± 0.98, p = 0.002). Spot urine calcium/creatinine ratio and nephrocalcinosis rate (100 vs. 16 %) were higher in the BS-II group. PTH, serum Pi levels, and urinary threshold for Pi reabsorption are significantly elevated in type II vs. type IV BS, suggesting a PTH resistance state. This may be a response to more severe long-standing hypercalciuria, leading to a higher rate of nephrocalcinosis in BS-II.

  6. Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency.

    PubMed

    Salviati, Leonardo; Trevisson, Eva; Rodriguez Hernandez, Maria Angeles; Casarin, Alberto; Pertegato, Vanessa; Doimo, Mara; Cassina, Matteo; Agosto, Caterina; Desbats, Maria Andrea; Sartori, Geppo; Sacconi, Sabrina; Memo, Luigi; Zuffardi, Orsetta; Artuch, Rafael; Quinzii, Catarina; Dimauro, Salvatore; Hirano, Michio; Santos-Ocaña, Carlos; Navas, Plácido

    2012-03-01

    COQ4 encodes a protein that organises the multienzyme complex for the synthesis of coenzyme Q(10) (CoQ(10)). A 3.9 Mb deletion of chromosome 9q34.13 was identified in a 3-year-old boy with mental retardation, encephalomyopathy and dysmorphic features. Because the deletion encompassed COQ4, the patient was screened for CoQ(10) deficiency. A complete molecular and biochemical characterisation of the patient's fibroblasts and of a yeast model were performed. The study found reduced COQ4 expression (48% of controls), CoQ(10) content and biosynthetic rate (44% and 43% of controls), and activities of respiratory chain complex II+III. Cells displayed a growth defect that was corrected by the addition of CoQ(10) to the culture medium. Knockdown of COQ4 in HeLa cells also resulted in a reduction of CoQ(10.) Diploid yeast haploinsufficient for COQ4 displayed similar CoQ deficiency. Haploinsufficency of other genes involved in CoQ(10) biosynthesis does not cause CoQ deficiency, underscoring the critical role of COQ4. Oral CoQ(10) supplementation resulted in a significant improvement of neuromuscular symptoms, which reappeared after supplementation was temporarily discontinued. Mutations of COQ4 should be searched for in patients with CoQ(10) deficiency and encephalomyopathy; patients with genomic rearrangements involving COQ4 should be screened for CoQ(10) deficiency, as they could benefit from supplementation.

  7. Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms.

    PubMed

    Sisó-Terraza, Patricia; Rios, Juan J; Abadía, Javier; Abadía, Anunciación; Álvarez-Fernández, Ana

    2016-01-01

    Iron (Fe) is abundant in soils but generally poorly soluble. Plants, with the exception of Graminaceae, take up Fe using an Fe(III)-chelate reductase coupled to an Fe(II) transporter. Whether or not nongraminaceous species can convert scarcely soluble Fe(III) forms into soluble Fe forms has deserved little attention so far. We have used Beta vulgaris, one among the many species whose roots secrete flavins upon Fe deficiency, to study whether or not flavins are involved in Fe acquisition. Flavins secreted by Fe-deficient plants were removed from the nutrient solution, and plants were compared with Fe-sufficient plants and Fe-deficient plants without flavin removal. Solubilization of a scarcely soluble Fe(III)-oxide was assessed in the presence or absence of flavins, NADH (nicotinamide adenine dinucleotide, reduced form) or plant roots, and an Fe(II) trapping agent. The removal of flavins from the nutrient solution aggravated the Fe deficiency-induced leaf chlorosis. Flavins were able to dissolve an Fe(III)-oxide in the presence of NADH. The addition of extracellular flavins enabled roots of Fe-deficient plants to reductively dissolve an Fe(III)-oxide. We concluded that root-secretion of flavins improves Fe nutrition in B. vulgaris. Flavins allow B. vulgaris roots to mine Fe from Fe(III)-oxides via reductive mechanisms. © 2015 CSIC New Phytologist © 2015 New Phytologist Trust.

  8. The Nature of Foot Ray Deficiency in Congenital Fibular Deficiency.

    PubMed

    Reyes, Bryan A; Birch, John G; Hootnick, David R; Cherkashin, Alex M; Samchukov, Mikhail L

    Absent lateral osseous structures in congenital fibular deficiency, including the distal femur and fibula, have led some authors to refer to the nature of foot ray deficiency as "lateral" as well. Others have suggested that the ray deficiency is in the central portion of the midfoot and forefoot.We sought to determine whether cuboid preservation and/or cuneiform deficiency in the feet of patients with congenital fibular deficiency implied that the ray deficiency is central rather than lateral in patients with congenital fibular deficiency. We identified all patients with a clinical morphologic diagnosis of congenital fibular deficiency at our institution over a 15-year period. We reviewed the records and radiographs of patients who had radiographs of the feet to allow determination of the number of metatarsals, the presence or absence of a cuboid or calcaneocuboid fusion, the number of cuneiforms present (if possible), and any other osseous abnormalities of the foot. We excluded patients with 5-rayed feet, those who had not had radiographs of the feet, or whose radiographs were not adequate to allow accurate assessment of these radiographic features. We defined the characteristic "lateral (fifth) ray present" if there was a well-developed cuboid or calcaneocuboid coalition with which the lateral-most preserved metatarsal articulated. Twenty-six patients with 28 affected feet met radiographic criteria for inclusion in the study. All affected feet had a well-developed cuboid or calcaneocuboid coalition. The lateral-most ray of 25 patients with 26 affected feet articulated with the cuboid or calcaneocuboid coalition. One patient with bilateral fibular deficiency had bilateral partially deficient cuboids, and the lateral-most metatarsal articulated with the medial remnant of the deformed cuboids. Twenty-one of 28 feet with visible cuneiforms had 2 or 1 cuneiform. Although the embryology and pathogenesis of congenital fibular deficiency remain unknown, based on the

  9. Splice site mutations in GH1 detected in previously (Genetically) undiagnosed families with congenital isolated growth hormone deficiency type II.

    PubMed

    Kempers, M J E; van der Crabben, S N; de Vroede, M; Alfen-van der Velden, J; Netea-Maier, R T; Duim, R A J; Otten, B J; Losekoot, M; Wit, J M

    2013-01-01

    Congenital isolated growth hormone deficiency (IGHD) is a rare endocrine disorder that presents with severe proportionate growth failure. Dominant (type II) IGHD is usually caused by heterozygous mutations of GH1. The presentation of newly affected family members in 3 families with dominant IGHD in whom previous genetic testing had not demonstrated a GH1 mutation or had not been performed, prompted us to identify the underlying genetic cause. GH1 was sequenced in 3 Caucasian families with a clinical autosomal dominant IGHD. All affected family members had severe growth hormone (GH) deficiency that became apparent in the first 2 years of life. GH treatment led to a marked increase in height SDS. So far, no other pituitary dysfunctions have become apparent. In the first family a novel splice site mutation in GH1 was identified (c.172-1G>C, IVS2-1G>C). In two other families a previously reported splice site mutation (c.291+1G>A, IVS3+1G>A) was found. These data show that several years after negative genetic testing it was now possible to make a genetic diagnosis in these families with a well-defined, clearly heritable, autosomal dominant IGHD. This underscores the importance of clinical and genetic follow-up in a multidisciplinary setting. It also shows that even without a positive family history, genetic testing should be considered if the phenotype is strongly suggestive for a genetic syndrome. Identification of pathogenic mutations, like these GH1 mutations, has important clinical implications for the surveillance and genetic counseling of patients and expands our knowledge on the genotype-phenotype correlation. © 2013 S. Karger AG, Basel.

  10. Effects of manganese deficiency on serum hormones and biochemical markers of bone metabolism in chicks.

    PubMed

    Zhaojun, Wang; Lin, Wang; Zhenyong, Wang; Jian, Wang; Ran, Liu

    2013-05-01

    In order to investigate the effect of manganese (Mn) deficiency on bone metabolism in chicks, ninety 1-day-old male Arbor Acre chicks were randomly divided into 3 groups and each group were given a diet having a different concentration of Mn (60 mg kg(-1), control group; 40 mg kg(-1), Mn-deficient group I; 8.7 mg kg(-1), Mn-deficient group II). The serum was collected at 42 days old. Tests were performed to evaluate the changes in the levels of PTH, CT, ALP, TrACP, HOP TNF-alpha, OC, Mn and Ca in the serum of the chicks and the results showed that the levels of CT, ALP, TrACP, HOP, and Mn decreased markedly (P < 0.05), while PTH, Ca, and TNF-alpha increased markedly (P < 0.05) due to manganese deficiency in the diet, which indicates that Mn deficiency results in disorder of bone regulatory hormones and enzymes of bone metabolism in the serum.

  11. Iodine Deficiency

    MedlinePlus

    ... public health problem globally. Approximately 40% of the world’s population remains at risk for iodine deficiency. Iodine Deficiency ... common preventable cause of intellectual disabilities in the world. Even mild iodine ... deficiency is seen in an entire population, it is best managed by ensuring that common ...

  12. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    PubMed

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  13. Pregnancy and maternal iron deficiency stimulate hepatic CRBPII expression in rats.

    PubMed

    Cottin, Sarah C; Gambling, Lorraine; Hayes, Helen E; Stevens, Valerie J; McArdle, Harry J

    2016-06-01

    Iron deficiency impairs vitamin A (VA) metabolism in the rat but the mechanisms involved are unknown and the effect during development has not been investigated. We investigated the effect of pregnancy and maternal iron deficiency on VA metabolism in the mother and fetus. 54 rats were fed either a control or iron deficient diet for 2weeks prior to mating and throughout pregnancy. Another 15 female rats followed the same diet and were used as non-pregnant controls. Maternal liver, placenta and fetal liver were collected at d21 for total VA, retinol and retinyl ester (RE) measurement and VA metabolic gene expression analysis. Iron deficiency increased maternal hepatic RE (P<.05) and total VA (P<.0001), fetal liver RE (P<.05), and decreased placenta total VA (P<.05). Pregnancy increased Cellular Retinol Binding Protein (CRBP)-II gene expression by 7 fold (P=.001), decreased VA levels (P=.0004) and VA metabolic gene expression (P<.0001) in the liver. Iron deficiency increased hepatic CRBPII expression by a further 2 fold (P=.044) and RBP4 by~20% (P=.005), increased RBPR2 and decreased CRBPII, LRAT, and TTR in fetal liver, while it had no effect on VA metabolic gene expression in the placenta. Hepatic CRBPII expression is increased by pregnancy and further increased by iron deficiency, which may play an important role in VA metabolism and homeostasis. Maternal iron deficiency also alters VA metabolism in the fetus, which is likely to have consequences for development. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Activation of liver carnitine palmitoyltransferase-1 and mitochondrial acetoacetyl-CoA thiolase is associated with elevated ketone body levels in the elasmobranch Squalus acanthias.

    PubMed

    Treberg, Jason R; Crockett, Elizabeth L; Driedzic, William R

    2006-01-01

    Elasmobranch fishes are an ancient group of vertebrates that have unusual lipid metabolism whereby storage lipids are mobilized from the liver for peripheral oxidation largely as ketone bodies rather than as nonesterified fatty acids under normal conditions. This reliance on ketones, even when feeding, implies that elasmobranchs are chronically ketogenic. Compared to specimens sampled within 2 d of capture (recently captured), spiny dogfish Squalus acanthias that were held for 16-33 d without apparent feeding displayed a 4.5-fold increase in plasma concentration of d- beta -hydroxybutyrate (from 0.71 to 3.2 mM) and were considered ketotic. Overt activity of carnitine palmitoyltransferase-1 in liver mitochondria from ketotic dogfish was characterized by an increased apparent maximal activity, a trend of increasing affinity (reduced apparent K(m); P=0.09) for l-carnitine, and desensitization to the inhibitor malonyl-CoA relative to recently captured animals. Acetoacetyl-CoA thiolase (ACoAT) activity in isolated liver mitochondria was also markedly increased in the ketotic dogfish compared to recently captured fish, whereas no difference in 3-hydroxy-3-methylglutaryl-CoA synthase activity was found between these groups, suggesting that ACoAT plays a more important role in the activation of ketogenesis in spiny dogfish than in mammals and birds.

  15. Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes.

    PubMed

    Penkowa, M; Giralt, M; Thomsen, P S; Carrasco, J; Hidalgo, J

    2001-04-01

    The role of zinc- and copper-deficient diets on the inflammatory response to traumatic brain injury (TBI) has been evaluated in adult rats. As expected, zinc deficiency decreased food intake and body weight gain, and the latter effect was higher than that observed in pair-fed rats. In noninjured brains, zinc deficiency only affected significantly lectin (increasing) and glial fibrillary acidic protein (GFAP) and Cu,Zn-superoxide dismutase (Cu,Zn-SOD) (decreasing) immunoreactivities (irs). In injured brains, a profound gliosis was observed in the area surrounding the lesion, along with severe damage to neurons as indicated by neuron specific enolase (NSE) ir, and the number of cells undergoing apoptosis (measured by TUNEL) was dramatically increased. Zinc deficiency significantly altered brain response to TBI, potentiating the microgliosis and reducing the astrogliosis, while increasing the number of apoptotic cells. Metallothioneins (MTs) are important zinc- and copper-binding proteins in the CNS, which could influence significantly the brain response to TBI because of their putative roles in metal homeostasis and antioxidant defenses. MT-I+II expression was dramatically increased by TBI, and this response was significantly blunted by zinc deficiency. The MT-III isoform was moderately increased by both TBI and zinc deficiency. TBI strongly increased oxidative stress levels, as demonstrated by malondialdehyde (MDA), protein tyrosine nitration (NITT), and nuclear factor kappaB (NF-kappaB) levels irs, all of which were potentiated by zinc deficiency. Further analysis revealed unbalanced expression of prooxidant and antioxidant proteins besides MT, since the levels of inducible nitric oxide synthase (iNOS) and Cu,Zn-SOD were increased and decreased, respectively, by zinc deficiency. All these effects were attributable to zinc deficiency, since pair-fed rats did not differ from normally fed rats. In general, copper deficiency caused a similar pattern of responses

  16. Finding the optimal dose of vitamin K1 to treat vitamin K deficiency and to avoid anaphylactoid reactions.

    PubMed

    Mi, Yan-Ni; Ping, Na-Na; Li, Bo; Xiao, Xue; Zhu, Yan-Bing; Cao, Lei; Ren, Jian-Kang; Cao, Yong-Xiao

    2017-10-01

    Vitamin K1 injection induces severe dose-related anaphylactoid reactions and overdose for the treatment of vitamin K deficiency. We aimed to find an optimal and small dose of vitamin K1 injection to treat vitamin K deficiency and avoid anaphylactoid reactions in animal. Rats were administered a vitamin K-deficient diet and gentamicin to establish vitamin K deficiency model. Behaviour tests were performed in beagle dogs to observe anaphylactoid reactions. The results showed an increased protein induced by vitamin K absence or antagonist II (PIVKA-II) levels, a prolonging of prothrombin time (PT) and activated partial thromboplastin time (APTT) and a decrease in vitamin K-dependent coagulation factor (F) II, VII, IX and X activities in the model group. In vitamin K1 0.01 mg/kg group, the liver vitamin K1 levels increased fivefold and the liver vitamin K2 levels increased to the normal amount. Coagulation markers PT, APTT, FVII and FIX activities returned to normal. Both in the 0.1 and 1.0 mg/kg vitamin K1 groups, coagulation functions completely returned to normal. Moreover, the amount of liver vitamin K1 was 40 (0.1 mg/kg) or 100 (1.0 mg/kg) times as in normal. Vitamin K2 was about 4 (0.1 mg/kg) or 5 (1.0 mg/kg) times as the normal amount. There was no obvious anaphylactoid symptom in dogs with the dose of 0.03 mg/kg, which is equivalent to the dose of 0.01 mg/kg in rats. These results demonstrated that a small dose of vitamin K1 is effective to improve vitamin K deficiency and to prevent anaphylactoid reactions, simultaneously. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  17. Rhabdomyolysis with different etiologies in childhood

    PubMed Central

    Alaygut, Demet; Torun Bayram, Meral; Kasap, Belde; Soylu, Alper; Türkmen, Mehmet; Kavukcu, Salih

    2017-01-01

    AIM To investigate different etiologies and management of the rhabdomyolysis in children. METHODS Eight pediatric rhabdomyolysis cases who applied to the Dokuz Eylul University Faculty of Medicine Department of Pediatric Nephrology with different etiologies between January 2004 and January 2012 were evaluated in terms of age, gender, admission symptoms, physical examination findings, factors provoking rhabdomyolysis, number of rhabdomyolysis attacks, laboratory results, family history and the final diagnosis received after the treatment. RESULTS Average diagnosis ages of eight cases were 129 (24-192) ± 75.5 mo and five of them were girls. All of them had applied with the complaint of muscle pain, calf pain, and dark color urination. Infection (pneumonia) and excessive physical activity were the most important provocative factors and excessive licorice consumption was observed in one case. In 5 cases, acute kidney injury was determined and two cases needed hemodialysis. As a result of the further examinations; the cases had received diagnoses of rhabdomyolysis associated with mycoplasma pneumoniae, sepsis associated rhabdomyolysis, licorice-induced hypokalemic rhabdomyolysis, carnitine palmitoyltransferase II deficiency, very long-chain acyl-CoA dehydrogenase deficiency, congenital muscular dystrophy and idiopathic paroxysmal rhabdomyolysis (Meyer-Betz syndrome). CONCLUSION It is important to distinguish the sporadic and recurrent rhabdomyolysis cases from each other. Recurrent rhabdomyolysis cases should follow up more regardful and attentive. PMID:29184760

  18. Long-acting PEGylated recombinant human growth hormone (Jintrolong) for children with growth hormone deficiency: phase II and phase III multicenter, randomized studies.

    PubMed

    Luo, Xiaoping; Hou, Ling; Liang, Li; Dong, Guanping; Shen, Shuixian; Zhao, Zhuhui; Gong, Chun Xiu; Li, Yuchuan; Du, Min-Lian; Su, Zhe; Du, Hongwei; Yan, Chaoying

    2017-08-01

    We assessed the efficacy and safety of a weekly pegylated human growth hormone (PEG-rhGH) (Jintrolong) vs daily rhGH for children with growth hormone deficiency (GHD). Phase II and III, multicenter, open-label, randomized controlled trials. 108 and 343 children with treatment-naive GHD from 6 hospitals in China were enrolled in the phase II and III studies respectively. Patients in the phase II study were randomized 1:1:1 to weekly Jintrolong (0.1 mg/kg/week PEG-rhGH complex), weekly Jintrolong (0.2 mg/kg/week PEG-rhGH complex) or daily rhGH (0.25 mg/kg/week) for 25 weeks. Patients in the phase III study were randomized in a 2:1 ratio to weekly Jintrolong (0.2 mg/kg/week) or daily rhGH (0.25 mg/kg/week) for 25 weeks. The primary endpoint for both studies was height velocity (HV) increase at the end of treatment. Other growth-related parameters, safety and compliance were also monitored. The phase II study established the preliminary efficacy, safety and recommended dose of Jintrolong PEG-rhGH. In the phase III study, we demonstrated significantly greater HV increases in patients receiving Jintrolong treatment (from 2.26 ± 0.87 cm/year to 13.41 ± 3.72 cm/year) vs daily rhGH (from 2.25 ± 0.82 cm/year to 12.55 ± 2.99 cm/year) at the end of treatment ( P  < 0.05). Additionally, significantly greater improvement in the height standard deviation scores was associated with Jintrolong throughout the treatment ( P  < 0.05). Adverse event rates and treatment compliance were comparable between the two groups. Jintrolong PEG-rhGH at a dose of 0.2 mg/kg/week for 25 weeks is effective and safe for GHD treatment and is non-inferior to daily rhGH. © 2017 The authors.

  19. Long-acting PEGylated recombinant human growth hormone (Jintrolong) for children with growth hormone deficiency: phase II and phase III multicenter, randomized studies

    PubMed Central

    Hou, Ling; Liang, Li; Dong, Guanping; Shen, Shuixian; Zhao, Zhuhui; Gong, Chun Xiu; Li, Yuchuan; Du, Min-lian; Su, Zhe; Du, Hongwei; Yan, Chaoying

    2017-01-01

    Objective We assessed the efficacy and safety of a weekly pegylated human growth hormone (PEG-rhGH) (Jintrolong) vs daily rhGH for children with growth hormone deficiency (GHD). Design Phase II and III, multicenter, open-label, randomized controlled trials. Methods 108 and 343 children with treatment-naive GHD from 6 hospitals in China were enrolled in the phase II and III studies respectively. Patients in the phase II study were randomized 1:1:1 to weekly Jintrolong (0.1 mg/kg/week PEG-rhGH complex), weekly Jintrolong (0.2 mg/kg/week PEG-rhGH complex) or daily rhGH (0.25 mg/kg/week) for 25 weeks. Patients in the phase III study were randomized in a 2:1 ratio to weekly Jintrolong (0.2 mg/kg/week) or daily rhGH (0.25 mg/kg/week) for 25 weeks. The primary endpoint for both studies was height velocity (HV) increase at the end of treatment. Other growth-related parameters, safety and compliance were also monitored. Results The phase II study established the preliminary efficacy, safety and recommended dose of Jintrolong PEG-rhGH. In the phase III study, we demonstrated significantly greater HV increases in patients receiving Jintrolong treatment (from 2.26 ± 0.87 cm/year to 13.41 ± 3.72 cm/year) vs daily rhGH (from 2.25 ± 0.82 cm/year to 12.55 ± 2.99 cm/year) at the end of treatment (P < 0.05). Additionally, significantly greater improvement in the height standard deviation scores was associated with Jintrolong throughout the treatment (P < 0.05). Adverse event rates and treatment compliance were comparable between the two groups. Conclusion Jintrolong PEG-rhGH at a dose of 0.2 mg/kg/week for 25 weeks is effective and safe for GHD treatment and is non-inferior to daily rhGH. PMID:28566441

  20. Iron deficiency in blood donors: the REDS-II Donor Iron Status Evaluation (RISE) study.

    PubMed

    Cable, Ritchard G; Glynn, Simone A; Kiss, Joseph E; Mast, Alan E; Steele, Whitney R; Murphy, Edward L; Wright, David J; Sacher, Ronald A; Gottschall, Jerry L; Tobler, Leslie H; Simon, Toby L

    2012-04-01

    Blood donors are at risk of iron deficiency. We evaluated the effects of blood donation intensity on iron and hemoglobin (Hb) in a prospective study. Four cohorts of frequent and first-time or reactivated (FT/RA) blood donors (no donation in 2 years), female and male, totaling 2425, were characterized and followed as they donated blood frequently. At enrollment and the final visit, ferritin, soluble transferrin receptor (sTfR), and Hb were determined. Models to predict iron deficiency and Hb deferral were developed. Iron depletion was defined at two levels: iron deficiency erythropoiesis (IDE) [log(sTfR/ferritin) ≥ 2.07] and absent iron stores (AIS; ferritin < 12 ng/mL). Among returning female FT and RA donors, 20 and 51% had AIS and IDE at their final visit, respectively; corresponding proportions for males were 8 and 20%. Among female frequent donors who returned, 27 and 62% had AIS and IDE, respectively, while corresponding proportions for males were 18 and 47%. Predictors of IDE and/or AIS included a higher frequency of blood donation in the past 2 years, a shorter interdonation interval, and being female and young; conversely, taking iron supplements reduced the risk of iron depletion. Predictors of Hb deferral included female sex, black race, and a shorter interdonation interval. There is a high prevalence of iron depletion in frequent blood donors. Increasing the interdonation interval would reduce the prevalence of iron depletion and Hb deferral. Alternatively, replacement with iron supplements may allow frequent donation without the adverse outcome of iron depletion. © 2011 American Association of Blood Banks.

  1. Roles of Caveolin-1 in Angiotensin II-Induced Hypertrophy and Inward Remodeling of Cerebral Pial Arterioles.

    PubMed

    Umesalma, Shaikamjad; Houwen, Frederick Keith; Baumbach, Gary L; Chan, Siu-Lung

    2016-03-01

    Angiotensin II (Ang II) is a major determinant of inward remodeling and hypertrophy in pial arterioles that may have an important role in stroke during chronic hypertension. Previously, we found that epidermal growth factor receptor is critical in Ang II-mediated hypertrophy that may involve caveolin-1 (Cav-1). In this study, we examined the effects of Cav-1 and matrix metalloproteinase-9 (MMP9) on Ang II-mediated structural changes in pial arterioles. Cav-1-deficient (Cav-1(-/-)), MMP9-deficient (MMP9(-/-)), and wild-type mice were infused with either Ang II (1000 ng/kg per minute) or saline via osmotic minipumps for 28 days (n=6-8 per group). Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of pial arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined histologically in pressurized fixed pial arterioles. Expression of Cav-1, MMP9, phosphorylated epidermal growth factor receptor, and Akt was determined by Western blotting and immunohistochemistry. Deficiency of Cav-1 or MMP9 did not affect Ang II-induced hypertension. Ang II increased the expression of Cav-1, phosphorylated epidermal growth factor receptor, and Akt in wild-type mice, which was attenuated in Cav-1(-/-) mice. Ang II-induced hypertrophy, inward remodeling, and increased MMP9 expression in pial arterioles were prevented in Cav-1(-/-) mice. Ang II-mediated increases in MMP9 expression and inward remodeling, but not hypertrophy, were prevented in MMP9(-/-) mice. In conclusion, Cav-1 is essential in Ang II-mediated inward remodeling and hypertrophy in pial arterioles. Cav-1-induced MMP9 is exclusively involved in inward remodeling, not hypertrophy. Further studies are needed to determine the role of Akt in Ang II-mediated hypertrophy. © 2016 American Heart Association, Inc.

  2. Effect of nutrient deficiencies on in vitro Th1 and Th2 cytokine response of peripheral blood mononuclear cells to Plasmodium falciparum infection

    PubMed Central

    2010-01-01

    Background An appropriate balance between pro-inflammatory and anti-inflammatory cytokines that mediate innate and adaptive immune responses is required for effective protection against human malaria and to avoid immunopathology. In malaria endemic countries, this immunological balance may be influenced by micronutrient deficiencies. Methods Peripheral blood mononuclear cells from Tanzanian preschool children were stimulated in vitro with Plasmodium falciparum-parasitized red blood cells to determine T-cell responses to malaria under different conditions of nutrient deficiencies and malaria status. Results The data obtained indicate that zinc deficiency is associated with an increase in TNF response by 37%; 95% CI: 14% to 118% and IFN-γ response by 74%; 95% CI: 24% to 297%. Magnesium deficiency, on the other hand, was associated with an increase in production of IL-13 by 80%; 95% CI: 31% to 371% and a reduction in IFN-γ production. These results reflect a shift in cytokine profile to a more type I cytokine profile and cell-cell mediated responses in zinc deficiency and a type II response in magnesium deficiency. The data also reveal a non-specific decrease in cytokine production in children due to iron deficiency anaemia that is largely associated with malaria infection status. Conclusions The pathological sequels of malaria potentially depend more on the balance between type I and type II cytokine responses than on absolute suppression of these cytokines and this balance may be influenced by a combination of micronutrient deficiencies and malaria status. PMID:20546583

  3. Interleukin-6 deficiency attenuates angiotensin II-induced cardiac pathogenesis with increased myocyte hypertrophy.

    PubMed

    Chen, Fan; Chen, Dandan; Zhang, Yubin; Jin, Liang; Zhang, Han; Wan, Miyang; Pan, Tianshu; Wang, Xiaochuan; Su, Yuheng; Xu, Yitao; Ye, Junmei

    2017-12-16

    Interleukin-6 (IL-6) signaling is critical for cardiomyocyte hypertrophy, while the role of IL-6 in the pathogenesis of myocardium hypertrophy remains controversial. To determine the essential role of IL-6 signaling for the cardiac development during AngII-induced hypertension, and to elucidate the mechanisms, wild-type (WT) and IL-6 knockout (IL-6 KO) mice were infused subcutaneously with either vehicle or AngII (1.5 μg/h/mouse) for 1 week. Immunohistological and serum studies revealed that the extents of cardiac fibrosis, inflammation and apoptosis were reduced in IL-6 KO heart during AngII-stimulation, while cardiac hypertrophy was obviously induced. To investigate the underlying mechanisms, by using myocardial tissue and neonatal cardiomyocytes, we observed that IL-6/STAT3 signaling was activated under the stimulation of AngII both in vivo and in vitro. Further investigation suggested that STAT3 activation enhances the inhibitory effect of EndoG on MEF2A and hampers cardiomyocyte hypertrophy. Our study is the first to show the important role of IL-6 in regulating cardiac pathogenesis via inflammation and apoptosis during AngII-induced hypertension. We also provide a novel link between IL-6/STAT3 and EndoG/MEF2A pathway that affects cardiac hypertrophy during AngII stimulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The role of changes in the sensitivity of hepatic mitochondrial overt carnitine palmitoyltransferase in determining the onset of the ketosis of starvation in the rat.

    PubMed Central

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The relationships between the increase in blood ketone-body concentrations and several parameters that can potentially influence the rate of hepatic fatty acid oxidation were studied during progressive starvation (up to 24 h) in the rat in order to discover whether the sensitivity of mitochondrial overt carnitine palmitoyltransferase (CPT I) to malonyl-CoA plays an important part in determining the intrahepatic potential for fatty acid oxidation during the onset of ketogenic conditions. A rapid increase in blood ketone-body concentration occurred between 12 and 16 h of starvation, several hours after the marked fall in hepatic malonyl-CoA and in serum insulin concentrations and doubling of plasma non-esterfied fatty acid (NEFA) concentration. Consequently, both the changes in hepatic malonyl-CoA and serum NEFA preceded the increase in blood ketone-body concentration by several hours. The maximal activity of CPT I increased gradually throughout the 24 h period of starvation, but the increases did not become significant before 18 h of starvation. By contrast, the sensitivity of CPT I to malonyl-CoA and the increase in blood ketone-body concentration followed an identical time course, demonstrating the central importance of this parameter in determining the ketogenic response of the liver to the onset of the starved state. PMID:8836117

  5. Iron homeostasis and its disruption in mouse lung in iron deficiency and overload.

    PubMed

    Giorgi, Gisela; D'Anna, María Cecilia; Roque, Marta Elena

    2015-10-01

    What is the central question of this study? The aim was to explore the role and hitherto unclear mechanisms of action of iron proteins in protecting the lung against the harmful effects of iron accumulation and the ability of pulmonary cells to mobilize iron in iron deficiency. What is the main finding and its importance? We show that pulmonary hepcidin appears not to modify cellular iron mobilization in the lung. We propose pathways for supplying iron to the lung in iron deficiency and for protecting the lung against iron excess in iron overload, mediated by the co-ordinated action of iron proteins, such as divalent metal transporter 1, ZRT-IRE-like-protein 14, transferrin receptor, ferritin, haemochromatosis-associated protein and ferroportin. Iron dyshomeostasis is associated with several forms of chronic lung disease, but its mechanisms of action remain to be elucidated. The aim of the present study was to determine the role of the lung in whole-animal models with iron deficiency and iron overload, studying the divalent metal transporter 1 (DMT1), ZRT-IRE-like protein 14 (ZIP14), transferrin receptor (TfR), haemochromatosis-associated protein (HFE), hepcidin, ferritin and ferroportin (FPN) expression. In each model, adult CF1 mice were divided into the following groups (six mice per group): (i) iron-overload model, iron saccharate i.p. and control group (iron adequate), 0.9% NaCl i.p.; and (ii) iron-deficiency model, induced by repeated bleeding, and control group (sham operated). Proteins were assessed by immunohistochemistry and Western blot. In control mice, DMT1 was localized in the cytoplasm of airway cells, and in iron deficiency and overload it was in the apical membrane. Divalent metal transporter 1 and TfR increased in iron deficiency, without changes in iron overload. ZRT-IRE-like protein 14 decreased in airway cells in iron deficiency and increased in iron overload. In iron deficiency, HFE and FPN were immunolocalized close to the apical membrane

  6. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain1[OPEN

    PubMed Central

    2018-01-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. PMID:29540590

  7. Obligatory Role for B Cells in the Development of Angiotensin II-Dependent Hypertension.

    PubMed

    Chan, Christopher T; Sobey, Christopher G; Lieu, Maggie; Ferens, Dorota; Kett, Michelle M; Diep, Henry; Kim, Hyun Ah; Krishnan, Shalini M; Lewis, Caitlin V; Salimova, Ekaterina; Tipping, Peter; Vinh, Antony; Samuel, Chrishan S; Peter, Karlheinz; Guzik, Tomasz J; Kyaw, Tin S; Toh, Ban-Hock; Bobik, Alexander; Drummond, Grant R

    2015-11-01

    Clinical hypertension is associated with raised serum IgG antibodies. However, whether antibodies are causative agents in hypertension remains unknown. We investigated whether hypertension in mice is associated with B-cell activation and IgG production and moreover whether B-cell/IgG deficiency affords protection against hypertension and vascular remodeling. Angiotensin II (Ang II) infusion (0.7 mg/kg per day; 28 days) was associated with (1) a 25% increase in the proportion of splenic B cells expressing the activation marker CD86, (2) an 80% increase in splenic plasma cell numbers, (3) a 500% increase in circulating IgG, and (4) marked IgG accumulation in the aortic adventitia. In B-cell-activating factor receptor-deficient (BAFF-R(-/-)) mice, which lack mature B cells, there was no evidence of Ang II-induced increases in serum IgG. Furthermore, the hypertensive response to Ang II was attenuated in BAFF-R(-/-) (Δ30±4 mm Hg) relative to wild-type (Δ41±5 mm Hg) mice, and this response was rescued by B-cell transfer. BAFF-R(-/-) mice displayed reduced IgG accumulation in the aorta, which was associated with 80% fewer aortic macrophages and a 70% reduction in transforming growth factor-β expression. BAFF-R(-/-) mice were also protected from Ang II-induced collagen deposition and aortic stiffening (assessed by pulse wave velocity analysis). Finally, like BAFF-R deficiency, pharmacological depletion of B cells with an anti-CD20 antibody attenuated Ang II-induced hypertension by ≈35%. Hence, these studies demonstrate that B cells/IgGs are crucial for the development of Ang II-induced hypertension and vessel remodeling in mice. Thus, B-cell-targeted therapies-currently used for autoimmune diseases-may hold promise as future treatments for hypertension. © 2015 American Heart Association, Inc.

  8. The mitochondrial intermembrane loop region of rat carnitine palmitoyltransferase 1A is a major determinant of its malonyl-CoA sensitivity.

    PubMed

    Borthwick, Karen; Jackson, Vicky N; Price, Nigel T; Zammit, Victor A

    2006-11-03

    Carnitine palmitoyltransferase (CPT) 1A adopts a polytopic conformation within the mitochondrial outer membrane, having both the N- and C-terminal segments on the cytosolic aspect of the membrane and a loop region connecting the two transmembrane (TM) segments protruding into the inter membrane space. In this study we demonstrate that the loop exerts major effects on the sensitivity of the enzyme to its inhibitor, malonyl-CoA. Insertion of a 16-residue spacer between the C-terminal part of the loop sequence (i.e. between residues 100 and 101) and TM2 (which is predicted to start at residue 102) increased the sensitivity to malonyl-CoA inhibition of the resultant mutant protein by more than 10-fold. By contrast, the same insertion made between TM1 and the loop had no effects on the kinetic properties of the enzyme, indicating that effects on the catalytic C-terminal segment were specifically induced by loop-TM2 interactions. Enhanced sensitivity was also observed in all mutants in which the native TM2-loop pairing was disrupted either by making chimeras in which the loops and TM2 segments of CPT 1A and CPT 1B were exchanged or by deleting successive 9-residue segments from the loop sequence. The data suggest that the sequence spanning the loop-TM2 boundary determines the disposition of this TM in the membrane so as to alter the conformation of the C-terminal segment and thus affect its interaction with malonyl-CoA.

  9. Vitamin Deficiency Anemia

    MedlinePlus

    ... are unique to specific vitamin deficiencies. Folate-deficiency anemia risk factors include: Undergoing hemodialysis for kidney failure. ... the metabolism of folate. Vitamin B-12 deficiency anemia risk factors include: Lack of intrinsic factor. Most ...

  10. Neonatal liver failure and Leigh syndrome possibly due to CoQ-responsive OXPHOS deficiency.

    PubMed

    Leshinsky-Silver, E; Levine, A; Nissenkorn, A; Barash, V; Perach, M; Buzhaker, E; Shahmurov, M; Polak-Charcon, S; Lev, D; Lerman-Sagie, T

    2003-08-01

    CoQ transfers electrons from complexes I and II of the mitochondrial respiratory chain to complex III. There are very few reports on human CoQ deficiency. The clinical presentation is usually characterized by: epilepsy, muscle weakness, ataxia, cerebellar atrophy, migraine, myogloblinuria and developmental delay. We describe a patient who presented with neonatal liver and pancreatic insufficiency, tyrosinemia and hyperammonemia and later developed sensorineural hearing loss and Leigh syndrome. Liver biopsy revealed markedly reduced complex I+III and II+III. Addition of CoQ to the liver homogenate restored the activities, suggesting CoQ depletion. Histological staining showed prominent bridging; septal fibrosis and widening of portal spaces with prominent mixed inflammatory infiltrate, associated with interface hepatitis, bile duct proliferation with numerous bile plugs. Electron microscopy revealed a large number of mitochondria, which were altered in shape and size, widened and disordered intercristal spaces. This may be the first case of Leigh syndrome with liver and pancreas insufficiency, possibly caused by CoQ responsive oxphos deficiency.

  11. What Are Rare Clotting Factor Deficiencies?

    MedlinePlus

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  12. Adult outcomes following amputation or lengthening for fibular deficiency.

    PubMed

    Walker, Janet L; Knapp, Dwana; Minter, Christin; Boakes, Jennette L; Salazar, Juan Carlos; Sanders, James O; Lubicky, John P; Drvaric, David M; Davids, Jon R

    2009-04-01

    Fibular deficiency results in a small, unstable foot and ankle as well as a limb-length discrepancy. The purpose of this study was to assess outcomes in adults who, as children, had had amputation or limb-lengthening, commonly used treatments for fibular deficiency. Retrospective review of existing data collected since 1950 at six pediatric orthopaedic centers identified 248 patients with fibular deficiency who were twenty-one years of age or older at the time of the review. Excluding patients with other anomalies and other treatments (with the excluded group including six who had had lengthening and then amputation), we identified ninety-eight patients who had had amputation or limb-lengthening for the treatment of isolated unilateral fibular deficiency. Sixty-two patients (with thirty-six amputations and twenty-six lengthening procedures) completed several questionnaires, including one asking general demographic questions, the Beck Depression Inventory-II, the Quality of Life Questionnaire, and the American Academy of Orthopaedic Surgeons Lower Limb Questionnaire including the Short Form-36. A group of twenty-eight control subjects completed the Beck Depression Inventory-II and the Quality of Life Questionnaire. There were forty men and twenty-two women. The average age at the time of the interview was thirty-three years. There were more amputations in those with fewer rays and less fibular preservation. Lengthening resulted in more surgical procedures (6.3 compared with 2.4 in patients treated with amputation) and more days in the hospital (184 compared with sixty-three) (both p<0.0001). However, when we compared treatment outcomes we did not find differences between groups with regard to education, employment, income, public assistance or disability payments, pain or use of pain medicine, sports participation, activity restriction, comfort wearing shorts, dislike of limb appearance, or satisfaction with treatment. No patient who had been treated for fibular

  13. Genetic polymorphisms in carnitine palmitoyltransferase 1A gene are associated with variation in body composition and fasting lipid traits in Yup'ik Eskimos[S

    PubMed Central

    Lemas, Dominick J.; Wiener, Howard W.; O'Brien, Diane M.; Hopkins, Scarlett; Stanhope, Kimber L.; Havel, Peter J.; Allison, David B.; Fernandez, Jose R.; Tiwari, Hemant K.; Boyer, Bert B.

    2012-01-01

    Variants of carnitine palmitoyltransferase 1A (CPT1A), a key hepatic lipid oxidation enzyme, may influence how fatty acid oxidation contributes to obesity and metabolic outcomes. CPT1A is regulated by diet, suggesting interactions between gene variants and diet may influence outcomes. The objective of this study was to test the association of CPT1A variants with body composition and lipids, mediated by consumption of polyunsaturated fatty acids (PUFA). Obesity phenotypes and fasting lipids were measured in a cross-sectional sample of Yup'ik Eskimo individuals (n = 1141) from the Center of Alaska Native Health Research (CANHR) study. Twenty-eight tagging CPT1A SNPs were evaluated with outcomes of interest in regression models accounting for family structure. Several CPT1A polymorphisms were associated with HDL-cholesterol and obesity phenotypes. The P479L (rs80356779) variant was associated with all obesity-related traits and fasting HDL-cholesterol. Interestingly, the association of P479L with HDL-cholesterol was still significant after correcting for body mass index (BMI), percentage body fat (PBF), or waist circumference (WC). Our findings are consistent with the hypothesis that the L479 allele of the CPT1A P479L variant confers a selective advantage that is both cardioprotective (through increased HDL-cholesterol) and associated with reduced adiposity. PMID:22045927

  14. Salusin-α attenuates hepatic steatosis and atherosclerosis in high fat diet-fed low density lipoprotein receptor deficient mice.

    PubMed

    Tang, Kun; Wang, Fei; Zeng, Yi; Chen, XueMeng; Xu, XiaoLe

    2018-07-05

    Salusin-α is an endogenous bioactive peptide and likely to prevent atherosclerosis. But its protective effect against atherosclerosis in vivo remains poorly understood. The aim of the present study was to determine the potential effects of salusin-α on atherosclerosis and its associated metabolic disorders in high fat diet (HFD)-fed low density lipoprotein receptor deficient (LDLr -/- ) mice, and also explore the possible underlying mechanisms involved. Our data showed that after 12 weeks treatment, salusin-α ameliorated HFD-induced weight gain, hyperlipidemia, and serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Salusin-α suppressed HFD-induced hepatic steatosis and regulated gene expression of fatty acid synthase, acetyl coenzyme A carboxylase-α, peroxisome proliferator-activated receptor-α, camitine palmitoyltransferase-1α and CYP7A1 in liver. Salusin-α reduced atherosclerotic plaque area and macrophage foam cell formation. Salusin-α prevented hepatic and aortic inflammation as evidenced by the reduced macrophage recruitment and mRNA expression of IL-6 and TNF-α in both liver and aorta. Salusin-α also reduced hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in liver and suppressing reactive oxygen species generation and protein expressions of NADPH-oxidase (NOX) 2 and NOX4 in both liver and aorta. Our present data suggest that salusin-α could reduce hepatic steatosis and atherosclerosis via its pleiotropic effects, including amelioration of lipid profiles, regulation of some key molecules involved in lipid metabolism in liver, anti-oxidative effect and anti-inflammatory action. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Perinatal thiamine deficiency-induced spontaneous abortion and pup-killing responses in rat dams.

    PubMed

    Bâ, Abdoulaye

    2013-03-01

    The current study attempts to determine whether thiamine (B1 vitamin) deficiency and chronic alcohol-related thiamine-deficient (TD) status, disturb maternal behavior towards pups. During gestation and lactation, Wistar rat dams were exposed to the following treatments: (i) prenatal TD dams; (ii) perinatal TD dams; (iii) postnatal TD dams; (iv) 12% alcohol/water drinking mothers; (v) ad libitum control dams. Pair-feeding treatments controlled malnutrition related to thiamine deficiency; (vi) prenatal pair-fed (PF) dams; (vii) perinatal PF dams; (viii) postnatal PF dams and included also the control of alcohol consummation: (ix) PF saccharose dams. Dams were observed for gestation outcome and for apparent disorders of the maternal behavior related to the pups at parturition. From the nine experimental groups studied, only pre- and perinatal TD dams exhibited spontaneous abortion (33.36 and 41.66%, respectively) followed by pups-killing responses where, respectively, 4 dams/7 (57.14%) and 5 dams/7 (71.43%) showed disruption of maternal behavior and appearance of cannibalism towards pups which all were killed within 48 hours after parturition. Spontaneous abortion and pup-killing responses were not observed in the dams of any other experimental group, suggesting that perinatal disturbances of hormonal factors underlay these maternal disorders. Previous studies reported that thiamine deficiency-induced degeneration of dopamine neurons may be related to mouse-killing aggression in rats. The present study suggests that perinatal thiamine deficiency-induced alteration of dopaminergic neurons in maternal brain could be a trigger factor of pup-killing responses. Central dopamine and oxytocin have been strongly associated with both the onset and maintenance of maternal behavior and the regulation of maternal aggressiveness as well. Our studies suggest that estrogen control oxytocin levels in brain structures of pregnancy-terminated rats via dopamine transmission. Thiamine

  16. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema.

    PubMed

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C; Ifedigbo, Emeka; Washko, George R; Ryter, Stefan W; Choi, Augustine M K

    2012-11-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS.

  17. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema

    PubMed Central

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C.; Ifedigbo, Emeka; Washko, George R.; Ryter, Stefan W.

    2012-01-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS. PMID:22983353

  18. Association Between Severe Vitamin D Deficiency, Lung Function and Asthma Control.

    PubMed

    Beyhan-Sagmen, Seda; Baykan, Ozgur; Balcan, Baran; Ceyhan, Berrin

    2017-04-01

    To examine the relationship between severe vitamin D deficiency, asthma control, and pulmonary function in Turkish adults with asthma. One hundred six asthmatic patients underwent pulmonary function tests skin prick test, peripheral blood eosinophil counts, IgE, body mass index and vitamin D levels were determined. Patients were divided into 2 subgroups according to vitamin D levels (vitamin D level<10ng/ml and vitamin D level≥10 ng/ml). Asthma control tests were performed. The mean age of subgroup i (vitamin D level<10) was 37±10 and the mean age of subgroup ii (vitamin D level≥10ng/ml) was 34±8. Sixty-six percent of patients had severe vitamin D deficiency (vitamin D level<10 ng/ml). There was a significant trend towards lower absolute FEV 1 (L) values in patients with lower vitamin D levels (P=.001). Asthma control test scores were significantly low in the severe deficiency group than the other group (P=.02). There were a greater number of patients with uncontrolled asthma (asthma control test scores<20) in the severe vitamin D deficiency group (P=.040). Patients with severe vitamin D deficiency had a higher usage of inhaled corticosteroids than the group without severe vitamin D deficiency (P=.015). There was a significant trend towards lower absolute FEV 1 (L) (P=.005, r=.272) values in patients with lower vitamin D levels. Vitamin D levels were inversely related with body mass index (P=.046). The incidence of severe vitamin D deficiency was high in adult Turkish asthmatics. In addition, lower vitamin D levels were associated with poor asthma control and decreased pulmonary function. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension.

    PubMed

    Antunes, Tayze T; Callera, Glaucia E; He, Ying; Yogi, Alvaro; Ryazanov, Alexey G; Ryazanova, Lillia V; Zhai, Alexander; Stewart, Duncan J; Shrier, Alvin; Touyz, Rhian M

    2016-04-01

    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension

  20. PLAG1 deficiency impairs spermatogenesis and sperm motility in mice.

    PubMed

    Juma, Almas R; Grommen, Sylvia V H; O'Bryan, Moira K; O'Connor, Anne E; Merriner, D Jo; Hall, Nathan E; Doyle, Stephen R; Damdimopoulou, Pauliina E; Barriga, Daniel; Hart, Adam H; Van de Ven, Wim J M; De Groef, Bert

    2017-07-13

    Deficiency in pleomorphic adenoma gene 1 (PLAG1) leads to reduced fertility in male mice, but the mechanism by which PLAG1 contributes to reproduction is unknown. To investigate the involvement of PLAG1 in testicular function, we determined (i) the spatial distribution of PLAG1 in the testis using X-gal staining; (ii) transcriptomic consequences of PLAG1 deficiency in knock-out and heterozygous mice compared to wild-type mice using RNA-seq; and (iii) morphological and functional consequences of PLAG1 deficiency by determining testicular histology, daily sperm production and sperm motility in knock-out and wild-type mice. PLAG1 was sparsely expressed in germ cells and in Sertoli cells. Genes known to be involved in spermatogenesis were downregulated in the testes of knock-out mice, as well as Hsd17b3, which encodes a key enzyme in androgen biosynthesis. In the absence of Plag1, a number of genes involved in immune processes and epididymis-specific genes were upregulated in the testes. Finally, loss of PLAG1 resulted in significantly lowered daily sperm production, in reduced sperm motility, and in several animals, in sloughing of the germinal epithelium. Our results demonstrate that the subfertility seen in male PLAG1-deficient mice is, at least in part, the result of significantly reduced sperm output and sperm motility.

  1. Colour vision deficiency.

    PubMed

    Simunovic, M P

    2010-05-01

    Colour vision deficiency is one of the commonest disorders of vision and can be divided into congenital and acquired forms. Congenital colour vision deficiency affects as many as 8% of males and 0.5% of females--the difference in prevalence reflects the fact that the commonest forms of congenital colour vision deficiency are inherited in an X-linked recessive manner. Until relatively recently, our understanding of the pathophysiological basis of colour vision deficiency largely rested on behavioural data; however, modern molecular genetic techniques have helped to elucidate its mechanisms. The current management of congenital colour vision deficiency lies chiefly in appropriate counselling (including career counselling). Although visual aids may be of benefit to those with colour vision deficiency when performing certain tasks, the evidence suggests that they do not enable wearers to obtain normal colour discrimination. In the future, gene therapy remains a possibility, with animal models demonstrating amelioration following treatment.

  2. Resolution of Hydronephrosis in a Patient With Mucopolysaccharidosis Type II With Enzyme Replacement Therapy.

    PubMed

    Nishiyama, Kei; Imai, Takashi; Ohkubo, Kazuhiro; Sanefuji, Masafumi; Takada, Hidetoshi

    2017-03-01

    Mucopolysaccharidosis type II (MPS II) is caused by deficiency of lysosomal enzyme iduronate-2-sulfatase. Insufficient activity of the enzyme results in accumulation of glycosaminoglycans leading to progressive multisystem pathologies. MPS II is less likely to be complicated by kidney and urinary tract problems. We report a boy with MPS II, who developed left hydronephrosis. His hydronephrosis improved after starting enzyme replacement therapy. It was suggested that MPS II was closely associated with the pathogenesis of hydronephrosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Growth hormone deficiency in a patient with mitochondrial disease.

    PubMed

    Rocha, Vera; Rocha, Dalila; Santos, Helena; Sales Marques, Jorge

    2015-09-01

    Mitochondrial respiratory chain (MRC) disorders, defined as primary diseases of the oxidative phosphorylation system, are a protean group of metabolic disorders, difficult to diagnose and classify. The diagnosis is complex and requires the integration of information obtained by clinical, laboratory testing, imaging and muscle biopsy. They may be associated with endocrine disorders, including hypothyroidism, diabetes mellitus, hyperinsulinemia and growth hormone (GH) deficiency. We describe a case of five years old male with polymalformative syndrome with a systemic involvement. At 6 months of age, he was sent to metabolic consultation because of facial dysmorphy and short stature. During the investigation it was diagnosed at the boy a growth hormone deficiency and because of his multisystemic involvement, muscle biopsy was carried out and showed reduced activity of complex II (38%) of the mitochondrial respiratory chain. Currently, the boy is under GH therapy with growth in the 5th percentile and coenzime Q10. Mitochondrial biology is one of the fastest growing areas in genetics and medicine. Disturbances in mitochondrial metabolism are now known to play a role not only in rare childhood diseases, but also in many common diseases of aging. In mitochondrial disorders, short stature is a common symptom, but its underlying lesion, growth hormone deficiency, is rarely investigated.

  4. Hepatic β-Oxidation and Regulation of Carnitine Palmitoyltransferase (CPT) I in Blunt Snout Bream Megalobrama amblycephala Fed a High Fat Diet

    PubMed Central

    Lu, Kang-Le; Xu, Wei-Na; Wang, Li-Na; Zhang, Ding-Dong; Zhang, Chun-Nuan; Liu, Wen-Bin

    2014-01-01

    High-fat diets may promote growth, partly through their protein-sparing effects. However, high-fat diets often lead to excessive fat deposition, which may have a negative impact on fish such as poor growth and suppressive immune. Therefore, this study investigated the effects of a fat-rich diet on the mechanisms of fat deposition in the liver. Three-hundred blunt snout bream (Megalobrama amblycephala) juveniles (initial mass 18.00±0.05 g) were fed with one of two diets (5% or 15% fat) for 8 weeks. β-Oxidation capacity and regulation of rate-limiting enzymes were assessed. Large fat droplets were present in hepatocytes of fish fed the high-fat diet. This observation is thought to be largely owing to the reduced capacity for mitochondrial and peroxisomal β-oxidation in the livers of fish fed the high-fat diet, as well as the decreased activities of carnitine palmitoyltransferase (CPT) I and acyl-CoA oxidase (ACO), which are enzymes involved in fatty-acid metabolism. Study of CPT I kinetics showed that CPT I had a low affinity for its substrates and a low catalytic efficiency in fish fed the high-fat diet. Expression of both CPT I and ACO was significantly down-regulated in fish fed the high-fat diet. Moreover, the fatty-acid composition of the mitochondrial membrane varied between the two groups. In conclusion, the attenuated β-oxidation capacity observed in fish fed a high-fat diet is proposed to be owing to decreased activity and/or catalytic efficiency of the rate-limiting enzymes CPT I and ACO, via both genetic and non-genetic mechanisms. PMID:24676148

  5. Deficiencies of Circulating Mucosal-associated Invariant T Cells and Natural Killer T Cells in Patients with Multiple Trauma.

    PubMed

    Jo, Young Goun; Choi, Hyun Jung; Kim, Jung Chul; Cho, Young Nan; Kang, Jeong Hwa; Jin, Hye Mi; Kee, Seung Jung; Park, Yong Wook

    2017-05-01

    Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play important roles in autoimmunity, infectious diseases and cancers. However, little is known about the roles of these invariant T cells in multiple trauma. The purposes of this study were to examine MAIT and NKT cell levels in patients with multiple trauma and to investigate potential relationships between these cell levels and clinical parameters. The study cohort was composed of 14 patients with multiple trauma and 22 non-injured healthy controls (HCs). Circulating MAIT and NKT cell levels in the peripheral blood were measured by flow cytometry. The severity of injury was categorised according to the scoring systems, such as Acute Physiology and Chronic Health Evaluation (APACHE) II score, Simplified Acute Physiology Score (SAPS) II, and Injury Severity Score (ISS). Circulating MAIT and NKT cell numbers were significantly lower in multiple trauma patients than in HCs. Linear regression analysis showed that circulating MAIT cell numbers were significantly correlated with age, APACHE II, SAPS II, ISS category, hemoglobin, and platelet count. NKT cell numbers in the peripheral blood were found to be significantly correlated with APACHE II, SAPS II, and ISS category. This study shows numerical deficiencies of circulating MAIT cells and NKT cells in multiple trauma. In addition, these invariant T cell deficiencies were found to be associated with disease severity. These findings provide important information for predicting the prognosis of multiple trauma. © 2017 The Korean Academy of Medical Sciences.

  6. Regular Article Macroautophagy is Defective in Mucolipin 1-Deficient Mouse Neurons

    PubMed Central

    Curcio-Morelli, Cyntia; Charles, Florie A.; Micsenyi, Matthew C.; Cao, Yi; Venugopal, Bhuvarahamurthy; Browning, Marsha F.; Dobrenis, Kostantin; Cotman, Susan L.; Walkley, Steven U.; Slaugenhaupt, Susan A.

    2013-01-01

    Mucolipidosis Type IV is a neurodegenerative lysosomal disease clinically characterized by psychomotor retardation, visual impairment, and achlorhydria. In this study we report the development of a neuronal cell model generated from cerebrum of Mcoln1-/- embryos. Prior functional characterization of MLIV cells has been limited to fibroblast cultures gleaned from patients. The current availability of the mucolipin-1 knockout mouse model Mcoln1-/- allows the study of mucolipin1-defective neurons, which is important since the disease is characterized by severe neurological impairment. Electron microscopy studies reveal significant membranous intracytoplasmic storage bodies, which correlate with the storage morphology observed in cerebral cortex of Mcoln1-/- P7 pups and E17 embryos. The Mcoln1-/- neuronal cultures show an increase in size of LysoTracker and Lamp1 positive-vesicles. Using this neuronal model system, we show that macroautophagy is defective in mucolipin-1 deficient neurons and that LC3-II levels are significantly elevated. Treatment with rapamycin plus protease inhibitors did not increase levels of LC3-II in Mcoln1-/- neuronal cultures, indicating that the lack of mucolipin-1 affects LC3-II clearance. P62/SQSTM1 and ubiquitin levels were also increased in Mcoln1-/- neuronal cultures, suggesting an accumulation of protein aggregates and a defect in macroautophagy which could help explain the neurodegeneration observed in MLIV. This study describes, for the first time, a defect in macroautophagy in mucolipin-1 deficient neurons, which corroborates recent findings in MLIV fibroblasts and provides new insight into the neuronal pathogenesis of this disease. PMID:20600908

  7. Protein C and protein S deficiencies: similarities and differences between two brothers playing in the same game.

    PubMed

    Bereczky, Zsuzsanna; Kovács, Kitti B; Muszbek, László

    2010-12-01

    Protein C (PC) and protein S (PS) are vitamin K-dependent glycoproteins that play an important role in the regulation of blood coagulation as natural anticoagulants. PC is activated by thrombin and the resulting activated PC (APC) inactivates membrane-bound activated factor VIII and factor V. The free form of PS is an important cofactor of APC. Deficiencies in these proteins lead to an increased risk of venous thromboembolism; a few reports have also associated these deficiencies with arterial diseases. The degree of risk and the prevalence of PC and PS deficiency among patients with thrombosis and in those in the general population have been examined by several population studies with conflicting results, primarily due to methodological variability. The molecular genetic background of PC and PS deficiencies is heterogeneous. Most of the mutations cause type I deficiency (quantitative disorder). Type II deficiency (dysfunctional molecule) is diagnosed in approximately 5%-15% of cases. The diagnosis of PC and PS deficiencies is challenging; functional tests are influenced by several pre-analytical and analytical factors, and the diagnosis using molecular genetics also has special difficulties. Large gene segment deletions often remain undetected by DNA sequencing methods. The presence of the PS pseudogene makes genetic diagnosis even more complicated.

  8. PTT functional recovery in early stage II PTTD after tendon balancing and calcaneal lengthening osteotomy.

    PubMed

    Brilhault, Jean; Noël, Vincent

    2012-10-01

    The decision to offer surgery for Stage II posterior tibial tendon deficiency (PTTD) is a difficult one since orthotic treatment has been documented to be a viable alternative to surgery at this stage. Taking this into consideration we limited our treatment to bony realignment by a lengthening calcaneus Evans osteotomy and tendon balancing. The goal of the study was to clinically evaluate PTT functional recovery with this procedure. The patient population included 17 feet in 13 patients. Inclusion was limited to early Stage II PTTD flatfeet with grossly intact but deficient PTT. Deficiency was assessed by the lack of hindfoot inversion during single heel rise test. The surgical procedure included an Evans calcaneal opening wedge osteotomy with triceps surae and peroneus brevis tendon lengthening. PTT function at follow up was evaluated by an independent examiner. Evaluation was performed at an average of 4 (range, 2 to 6.3) years. One case presented postoperative subtalar pain that required subtalar fusion. Every foot could perform a single heel rise with 13 feet having active inversion of the hindfoot during elevation. The results of this study provide evidence of PTT functional recovery without augmentation in early Stage II. It challenges our understanding of early Stage II PTTD as well as the surgical guidelines recommending PTT augmentation at this specific stage.

  9. Fluorescence Lifetime Imaging of Physiological Free Cu(II) Levels in Live Cells with a Cu(II)-Selective Carbonic Anhydrase-Based Biosensor

    PubMed Central

    McCranor, Bryan J.; Szmacinski, Henryk; Zeng, Hui Hui; Stoddard, A.K.; Hurst, Tamiika; Fierke, Carol A.; Lakowicz, J.R.

    2014-01-01

    Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed. PMID:24671220

  10. CD4 T Cells and Major Histocompatibility Complex Class II Expression Influence Worm Expulsion and Increased Intestinal Muscle Contraction during Trichinella spiralis Infection

    PubMed Central

    Vallance, Bruce A.; Galeazzi, Francesca; Collins, Stephen M.; Snider, Denis P.

    1999-01-01

    Expulsion of intestinal nematode parasites and the associated increased contraction by intestinal muscle are T cell dependent, since both are attenuated in athymic rodents. The CD4 T-cell subset has been strongly associated with worm expulsion; however, the relationship between these cells, antigen presentation, and worm expulsion is not definitive and the role of these factors in intestinal muscle hypercontractility has not been defined. We infected C57BL/6, athymic, CD4-deficient, CD8α-deficient, and major histocompatibility complex class II (MHC II)-deficient (C2d) mice with Trichinella spiralis larvae. We examined intestinal worm numbers, longitudinal muscle contraction, and MHC II expression. Numerous MHC II-positive cells were identified within the muscularis externa of infected but not uninfected C57BL/6 mice. C57BL/6 and CD8α-deficient mice developed large increases in muscle contraction, expelling the parasite by day 21. Athymic and C2d mice exhibited much smaller increases in muscle contraction and delayed parasite expulsion. CD4-deficient mice exhibited intermediate levels of muscle contraction and delayed parasite expulsion. To further examine the role of MHC II and CD4 T cells, we irradiated C2d mice and reconstituted them with C57BL/6 bone marrow alone or with C57BL/6 CD4 T cells. C57BL/6 bone marrow alone did not affect muscle function or worm expulsion in recipient C2d mice. Partial CD4 T-cell reconstitution was sufficient to restore increased muscle contraction but not worm expulsion. Thus, hematopoietic MHC II expression alone is insufficient for the development of muscle hypercontractility and worm expulsion, but the addition of even small numbers of CD4 T cells was sufficient to induce intestinal muscle pathophysiology. PMID:10531271

  11. Changes in the transcriptomic profiles of maize roots in response to iron-deficiency stress.

    PubMed

    Li, Yan; Wang, Nian; Zhao, Fengtao; Song, Xuejiao; Yin, Zhaohua; Huang, Rong; Zhang, Chunqing

    2014-07-01

    Plants are often subjected to iron (Fe)-deficiency stress because of its low solubility. Plants have evolved two distinct strategies to solubilize and transport Fe to acclimate to this abiotic stress condition. Transcriptomic profiling analysis was performed using Illumina digital gene expression to understand the mechanism underlying resistance responses of roots to Fe starvation in maize, an important Strategy II plant. A total of 3,427, 4,069, 4,881, and 2,610 genes had significantly changed expression levels after Fe-deficiency treatments of 1, 2, 4 or 7 days, respectively. Genes involved in 2'-deoxymugineic acid (DMA) synthesis, secretion, and Fe(III)-DMA uptake were significantly induced. Many genes related to plant hormones, protein kinases, and protein phosphatases responded to Fe-deficiency stress, suggesting their regulatory roles in response to the Fe-deficiency stress. Functional annotation clustering analysis, using the Database for Annotation, Visualization and Integrated Discovery, revealed maize root responses to Fe starvation. This resulted in 38 functional annotation clusters: 25 for up-regulated genes, and 13 for down-regulated ones. These included genes encoding enzymes involved in the metabolism of carboxylic acids, isoprenoids and aromatic compounds, transporters, and stress response proteins. Our work provides integrated information for understanding maize response to Fe-deficiency stress.

  12. Carnitine Deficiency and Pregnancy

    PubMed Central

    de Bruyn, Anouk; Jacquemyn, Yves; Kinget, Kristof; Eyskens, François

    2015-01-01

    We present two cases of carnitine deficiency in pregnancy. In our first case, systematic screening revealed L-carnitine deficiency in the first born of an asymptomatic mother. In the course of her second pregnancy, maternal carnitine levels showed a deficiency as well. In a second case, a mother known with carnitine deficiency under supplementation was followed throughout her pregnancy. Both pregnancies had an uneventful outcome. Because carnitine deficiency can have serious complications, supplementation with carnitine is advised. This supplementation should be continued throughout pregnancy according to plasma concentrations. PMID:26113999

  13. Prevalence of vitamin D deficiency in adults presenting for bariatric surgery in Lebanon.

    PubMed

    Aridi, Hanaa Dakour; Alami, Ramzi S; Fouani, Tarek; Shamseddine, Ghassan; Tamim, Hani; Safadi, Bassem

    2016-02-01

    Vitamin D deficiency is common among obese patients presenting for bariatric surgery in Europe and North America. The prevalence of vitamin D deficiency in this patient population in Lebanon and the Middle East has not been studied. The aim of this study was to determine the rate of vitamin D deficiency in a cohort of patients presenting for bariatric surgery in Lebanon. American University of Beirut Medical Center, Beirut, Lebanon. Data was extracted from a prospective database of patients presenting for bariatric surgery at the American University of Beirut Medical Center from July 2011 until June 2014. The prevalence of vitamin D deficiency was determined using established cut-offs followed by analysis of the relationship between low vitamin D and certain patient characteristics. More than two thirds of all patients (68.9%) were vitamin D deficient (≤19.9 ng/mL), whereas 22.6% had insufficient levels (20-29.9 ng/mL) and only 8.6 % had sufficient levels (≥30 ng/mL). Vitamin D levels were inversely associated with BMI>50 kg/m(2). Low vitamin D levels were also correlated with younger age, male gender, lack of physical exercise, and nonsunny season. No association was shown between 25-hydroxyvitamin D deficiency and type 2 diabetes mellitus, cardiovascular disease, osteoarticular disease, hypertension, or depression. Vitamin D deficiency is prevalent among patients with Class II or Class III obesity presenting for bariatric surgery in Lebanon. These findings emphasize the need for careful attention when evaluating patients before bariatric surgery and the importance of providing patients with adequate supplementation. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  14. Screening for bovine leukocyte adhesion deficiency, deficiency of uridine monophosphate synthase, complex vertebral malformation, bovine citrullinaemia, and factor XI deficiency in Holstein cows reared in Turkey.

    PubMed

    Meydan, Hasan; Yildiz, Mehmet A; Agerholm, Jørgen S

    2010-10-07

    Bovine leukocyte adhesion deficiency (BLAD), deficiency of uridine monophosphate synthase (DUMPS), complex vertebral malformation (CVM), bovine citrullinaemia (BC) and factor XI deficiency (FXID) are autosomal recessive hereditary disorders, which have had significant economic impact on dairy cattle breeding worldwide. In this study, 350 Holstein cows reared in Turkey were screened for BLAD, DUMPS, CVM, BC and FXID genotypes to obtain an indication on the importance of these defects in Turkish Holsteins. Genomic DNA was obtained from blood and the amplicons of BLAD, DUMPS, CVM, BC and FXID were obtained by using PCR. PCR products were digested with TaqI, AvaI and AvaII restriction enzymes for BLAD, DUMPS, and BC, respectively. These digested products and PCR product of FXID were analyzed by agarose gel electrophoresis stained with ethidium bromide. CVM genotypes were detected by DNA sequencing. Additionally, all genotypes were confirmed by DNA sequencing to determine whether there was a mutant allele or not. Fourteen BLAD, twelve CVM and four FXID carriers were found among the 350 Holstein cows examined, while carriers of DUMPS and BC were not detected. The mutant allele frequencies were calculated as 0.02, 0.017, and 0.006 for BLAD, CVM and FXID, respectively with corresponding carrier prevalence of 4.0% (BLAD), 3.4% (CVM) and 1.2% (FXID). This study demonstrates that carriers of BLAD, CVM and FXID are present in the Turkish Holstein population, although at a low frequency. The actual number of clinical cases is unknown, but sporadic cases may appear. As artificial insemination is widely used in dairy cattle breeding, carriers of BLAD, CVM and FXID are likely present within the population of breeding sires. It is recommended to screen breeding sires for these defective genes in order to avoid an unwanted spread within the population.

  15. Screening for bovine leukocyte adhesion deficiency, deficiency of uridine monophosphate synthase, complex vertebral malformation, bovine citrullinaemia, and factor XI deficiency in Holstein cows reared in Turkey

    PubMed Central

    2010-01-01

    Background Bovine leukocyte adhesion deficiency (BLAD), deficiency of uridine monophosphate synthase (DUMPS), complex vertebral malformation (CVM), bovine citrullinaemia (BC) and factor XI deficiency (FXID) are autosomal recessive hereditary disorders, which have had significant economic impact on dairy cattle breeding worldwide. In this study, 350 Holstein cows reared in Turkey were screened for BLAD, DUMPS, CVM, BC and FXID genotypes to obtain an indication on the importance of these defects in Turkish Holsteins. Methods Genomic DNA was obtained from blood and the amplicons of BLAD, DUMPS, CVM, BC and FXID were obtained by using PCR. PCR products were digested with TaqI, AvaI and AvaII restriction enzymes for BLAD, DUMPS, and BC, respectively. These digested products and PCR product of FXID were analyzed by agarose gel electrophoresis stained with ethidium bromide. CVM genotypes were detected by DNA sequencing. Additionally, all genotypes were confirmed by DNA sequencing to determine whether there was a mutant allele or not. Results Fourteen BLAD, twelve CVM and four FXID carriers were found among the 350 Holstein cows examined, while carriers of DUMPS and BC were not detected. The mutant allele frequencies were calculated as 0.02, 0.017, and 0.006 for BLAD, CVM and FXID, respectively with corresponding carrier prevalence of 4.0% (BLAD), 3.4% (CVM) and 1.2% (FXID). Conclusion This study demonstrates that carriers of BLAD, CVM and FXID are present in the Turkish Holstein population, although at a low frequency. The actual number of clinical cases is unknown, but sporadic cases may appear. As artificial insemination is widely used in dairy cattle breeding, carriers of BLAD, CVM and FXID are likely present within the population of breeding sires. It is recommended to screen breeding sires for these defective genes in order to avoid an unwanted spread within the population. PMID:20929557

  16. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  17. Albuminuria in mice after injection of antibodies against aminopeptidase A: role of angiotensin II.

    PubMed

    Gerlofs-Nijland, M E; Assmann, K J; Dijkman, H B; Dieker, J W; van Son, J P; Mentzel, S; van Kats, J P; Danser, A H; Smithies, O; Groenen, P J; Wetzels, J F

    2001-12-01

    It has been shown that injection of combinations of anti-aminopeptidase A (APA) monoclonal antibodies (mAb) that inhibit the enzyme activity induces an acute albuminuria in mice. This albuminuria is not dependent on inflammatory cells, complement, or the coagulation system. APA is an important regulator of the renin-angiotensin system because it is involved in the degradation of angiotensin II (Ang II). This study examined the potential role of glomerular Ang II in the induction of albuminuria. The relation among renal Ang II, glomerular APAX enzyme activity, and albuminuria was examined first. Injection of the nephritogenic combinations ASD-3/37 and ASD-37/41 in BALB/c mice induced albuminuria, whereas the non-nephritogenic combination ASD-3/41 had no effect. There was no clear relation between the inhibition of glomerular APA activity and albuminuria, yet it was evident that intrarenal Ang II levels were significantly increased in albuminuric mice and not in nonalbuminuric mice. As a next step, anti-APA mAb were administered to angiotensinogen-deficient mice that do not produce Ang II, and kidney morphology and albuminuria were determined. Angiotensinogen-deficient mice also developed albuminuria upon ASD-37/41 administration. Altogether, these findings clearly demonstrate that Ang II is not required for the induction of albuminuria upon injection of enzyme-inhibiting anti-APA mAb.

  18. Calpain Inhibition Attenuates Angiotensin II-induced Abdominal Aortic Aneurysms and Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Uchida, Haruhito Adam; Ijaz, Talha; Moorleghen, Jessica J.; Howatt, Deborah A.; Balakrishnan, Anju

    2011-01-01

    Chronic infusion of angiotensin II (AngII) augments atherosclerosis and abdominal aortic aneurysm (AAAs) formation in hypercholesterolemic mice. AngII-induced AAAs are associated with medial macrophage accumulation and matrix metalloproteinase (MMP) activation. Inhibition of calpain, a calcium-activated neutral cysteine protease, by overexpression of its endogenous inhibitor, calpastatin, attenuates AngII-induced leukocyte infiltration, perivascular inflammation, and MMP activation in mice. The purpose of this study was to define whether pharmacological inhibition of calpain influences AngII-induced AAAs in hypercholesterolemic mice. Male LDL receptor −/− mice were fed a fat-enriched diet and administered with either vehicle or a calpain-specific inhibitor, BDA-410 (30 mg/kg/day) for 5 weeks. After 1 week of feeding, mice were infused with AngII (1,000 ng/kg/min) for 4 weeks. AngII-infusion profoundly increased aortic calpain protein and activity. BDA-410 administration had no effect on plasma cholesterol concentrations or AngII-increased systolic blood pressure. Calpain inhibition significantly attenuated AngII-induced AAA formation and atherosclerosis development. BDA-410 administration attenuated activation of MMP12, pro-inflammatory cytokines (IL-6, MCP-1) and macrophage infiltration into the aorta. BDA-410 administration significantly attenuated thioglycollate-elicited macrophage accumulation in the peritoneal cavity. We conclude that calpain inhibition using BDA-410 attenuated AngII-induced AAA formation and atherosclerosis development in LDL receptor −/− mice. PMID:21964156

  19. Acquired color vision deficiency.

    PubMed

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Occult progression by Apc-deficient intestinal crypts as a target for chemoprevention

    PubMed Central

    Liskay, R.Michael

    2014-01-01

    Although Apc mutation is widely considered an initiating event in colorectal cancer, little is known about the earliest stages of tumorigenesis following sporadic Apc loss. Therefore, we have utilized a novel mouse model that facilitates the sporadic inactivation of Apc via frameshift reversion of Cre in single, isolated cells and subsequently tracks the fates of Apc-deficient intestinal cells. Our results suggest that consistent with Apc being a ‘gatekeeper’, loss of Apc early in life during intestinal growth leads to adenomas or increased crypt fission, manifested by fields of mutant but otherwise normal-appearing crypts. In contrast, Apc loss occurring later in life has minimal consequences, with mutant crypts being less prone to either increased crypt fission or adenoma formation. Using the stem cell-specific Lgr5-CreER mouse, we generated different sized fields of Apc-deficient crypts via independent recombination events and found that field size correlates with progression to adenoma. To evaluate this early stage prior to adenoma formation as a therapeutic target, we examined the chemopreventive effects of sulindac on Apc-deficient occult crypt fission. We found that sulindac treatment started early in life inhibits the morphologically occult spread of Apc-deficient crypts and thus reduces adenoma numbers. Taken together these results suggest that: (i) earlier Apc loss promotes increased crypt fission, (ii) a field of Apc-deficient crypts, which can form via occult crypt fission or independent neighboring events, is an important intermediate between loss of Apc and adenoma formation and (iii) normal-appearing Apc-deficient crypts are potential unappreciated targets for cancer screening and chemoprevention. PMID:23996931

  1. Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction

    PubMed Central

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S.; Collins, Samuel L.; Horton, Maureen R.

    2017-01-01

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction. PMID:28223293

  2. Deficiency in AMPK attenuates ethanol-induced cardiac contractile dysfunction through inhibition of autophagosome formation

    PubMed Central

    Guo, Rui; Ren, Jun

    2012-01-01

    Aims Binge drinking often triggers compromised myocardial contractile function while activating AMP-activated protein kinase (AMPK). Given the role of AMPK in the initiation of autophagy through the mammalian target of rapamycin complex 1 (mTORC1) and Unc51-like kinase (ULK1), this study was designed to examine the impact of AMPK deficiency on cardiac function and the mechanism involved with a focus on autophagy following an acute ethanol challenge. Methods and results Wild-type (WT) and transgenic mice overexpressing a kinase-dead (KD) α2 isoform (K45R mutation) of AMPK were challenged with ethanol. Glucose tolerance, echocardiography, Langendorff heart and cardiomyocyte contractile function, autophagy, and autophagic signalling including AMPK, acetyl-CoA carboxylase (ACC), mTOR, the mTORC1-associated protein Raptor, and ULK1 were examined. Ethanol exposure triggered glucose intolerance and compromised cardiac contraction accompanied by increased phosphorylation of AMPK and ACC as well as autophagosome accumulation (increased LC3II and p62), the effects of which were attenuated or mitigated by AMPK deficiency or inhibition. Ethanol dampened and stimulated, respectively, the phosphorylation of mTOR and Raptor, the effects of which were abolished by AMPK deficiency. ULK1 phosphorylation at Ser757 and Ser777 was down-regulated and up-regulated, respectively, by ethanol, the effect of which was nullified by AMPK deficiency or inhibition. Moreover, the ethanol challenge enhanced LC3 puncta in H9c2 cells and promoted cardiac contractile dysfunction, and these effects were ablated by the inhibition of autophagy or AMPK. Lysosomal inhibition failed to accentuate ethanol-induced increases in LC3II and p62. Conclusion In summary, these data suggest that ethanol exposure may trigger myocardial dysfunction through a mechanism associated with AMPK-mTORC1-ULK1-mediated autophagy. PMID:22451512

  3. Iron deficiency and cognitive functions.

    PubMed

    Jáuregui-Lobera, Ignacio

    2014-01-01

    Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%-6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups.

  4. Betaine deficiency in maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerma, C.; Rich, P.J.; Ju, G.C.

    1991-04-01

    Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency. This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positivemore » and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline {r arrow} betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde.« less

  5. Iron-Deficiency Anemia (For Parents)

    MedlinePlus

    ... Videos for Educators Search English Español Iron-Deficiency Anemia KidsHealth / For Parents / Iron-Deficiency Anemia What's in ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  6. Fe deficiency induced changes in rice (Oryza sativa L.) thylakoids.

    PubMed

    Wang, Yuwen; Xu, Chao; Li, Kang; Cai, Xiaojie; Wu, Min; Chen, Guoxiang

    2017-01-01

    Iron deficiency is an important abiotic stress that limits productivity of crops all over the world. We selected a hybrid rice (Oryza sativa L.), LYPJ, which is super high-yield and widely cultured in China, to investigate changes in the components and structure of thylakoid membranes and photosynthetic performance in response to iron deficiency. Our results demonstrated that photosystem I (PSI) is the primary target for iron deficiency, while the changes in photosystem II (PSII) are important for rebuilding a balance in disrupted energy utilization and dissipation caused by differential degradation of photosynthetic components. The result of immunoblot analysis suggested that the core subunit PsaA declined drastically, while PsbA remained relatively stable. Furthermore, several organizational changes of the photosynthetic apparatus were found by BN-PAGE, including a marked decrease in the PSI core complexes, the Cytb 6 /f complex, and the trimeric form of the LHCII antenna, consistent with the observed unstacking grana. The fluorescence induction analysis indicated a descending PSII activity with energy dissipation enhanced markedly. In addition, we proposed that the crippled CO 2 assimilation could be compensated by the enhanced of phosphoenolpyruvate carboxylase (PEPC), which is suggested by the decreased ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and photosynthetic efficiency.

  7. Differential epigenetic and transcriptional response of the skeletal muscle carnitine palmitoyltransferase 1B (CPT1B) gene to lipid exposure with obesity

    PubMed Central

    Maples, Jill M.; Brault, Jeffrey J.; Witczak, Carol A.; Park, Sanghee; Hubal, Monica J.; Weber, Todd M.; Houmard, Joseph A.

    2015-01-01

    The ability to increase fatty acid oxidation (FAO) in response to dietary lipid is impaired in the skeletal muscle of obese individuals, which is associated with a failure to coordinately upregulate genes involved with FAO. While the molecular mechanisms contributing to this metabolic inflexibility are not evident, a possible candidate is carnitine palmitoyltransferase-1B (CPT1B), which is a rate-limiting step in FAO. The present study was undertaken to determine if the differential response of skeletal muscle CPT1B gene transcription to lipid between lean and severely obese subjects is linked to epigenetic modifications (DNA methylation and histone acetylation) that impact transcriptional activation. In primary human skeletal muscle cultures the expression of CPT1B was blunted in severely obese women compared with their lean counterparts in response to lipid, which was accompanied by changes in CpG methylation, H3/H4 histone acetylation, and peroxisome proliferator-activated receptor-δ and hepatocyte nuclear factor 4α transcription factor occupancy at the CPT1B promoter. Methylation of specific CpG sites in the CPT1B promoter that correlated with CPT1B transcript level blocked the binding of the transcription factor upstream stimulatory factor, suggesting a potential causal mechanism. These findings indicate that epigenetic modifications may play important roles in the regulation of CPT1B in response to a physiologically relevant lipid mixture in human skeletal muscle, a major site of fatty acid catabolism, and that differential DNA methylation may underlie the depressed expression of CPT1B in response to lipid, contributing to the metabolic inflexibility associated with severe obesity. PMID:26058865

  8. Reduction of recurrence rate of benign paroxysmal positional vertigo by treatment of severe vitamin D deficiency.

    PubMed

    Talaat, Hossam Sanyelbhaa; Kabel, Abdel-Magied Hasan; Khaliel, Lobna Hamed; Abuhadied, Ghada; El-Naga, Heba Abd El-Rehem Abo; Talaat, Ahmed Sanyelbhaa

    2016-06-01

    Several studies correlated between vitamin D deficiency and the development, and the recurrence of benign positional paroxysmal vertigo (BPPV), but none of them proved that treatment of vitamin D deficiency would reduce the recurrence rate of BPPV. This study aims to detect the effect of treatment of severe vitamin D deficiency on the recurrence rate of BPPV. The inclusion criteria of the study group were: (1) Unilateral, idiopathic, posterior canal BPPV with no history suggestive of secondary BPPV and (2) 25-hydroxyvitamin D3 level ≤10 ng/ml. All subjects enrolled in the current study underwent detailed clinical history, audiovestibular evaluation consisting of pure-tone audiometry, Immittancemetry, Videonystugmography, serum 25-hydroxyvitamin D3 assessment, and Dual-energy X-ray absorptiometry (DXA). Vitamin D therapy was prescribed for the study group. Serum 25-hydroxyvitamin D3 level was evaluated twice, on recruitment into the study group and 3 months after commencing vitamin D therapy. According to the results of the second evaluation of serum 25-hydroxyvitamin D3, the study group was subdivided into two subgroups: Subgroup (I): including 28 subjects who disclosed elevation of serum 25-hydroxyvitamin D3 level; improvement ≥10 ng/ml. Subgroup (II): including 65 patients who disclosed elevation of serum 25-hydroxyvitamin D3 levels <10 ng/ml. The study group was followed up for 18 months in order to observe the recurrence of BPPV. The differences between both study subgroups (I) & (II) regarding age, sex distribution, and bone mineral density were insignificant. The number of subjects who had recurrence of BPPV in subgroup (I) was 4 (14%) versus 28 subjects (43%) in subgroup (II). The mean values for recurrent attacks/subject in subgroups (I) & (II) were 0.18, and 0.66 attack/subject respectively; these differences between both subgroups were of high statistical significance (p<0.01). The Odds Ratio for development of recurrence of BPPV in subjects with

  9. Dry eye in vitamin D deficiency: more than an incidental association.

    PubMed

    Yildirim, Pelin; Garip, Yeşim; Karci, Ayse Aslihan; Guler, Tuba

    2016-01-01

    The aim of this article is two-fold: (i) to demonstrate the relation between vitamin D deficiency and dry eye and impaired tear function; and (ii) to investigate the possible associations among clinical parameters of hypovitaminosis D with dry eye parameters. Fifty premenopausal women with vitamin D deficiency (serum vitamin D levels < 20 ng/mL) and 48 controls were included. Participants were assessed by Schirmer's test, tear break-up time test (TBUT), ocular surface disease index (OSDI), Stanford Health Assessment Questionnaire (HAQ), fatigue severity scale (FSS), and visual analogue scale-pain (VAS-pain). Lower scores in Schirmer's test and TBUT, and higher in OSDI were detected in patients with vitamin D deficiency than in controls (P < 0.05). FSS was negatively correlated with Schirmer's test (r = -0,29; P = 0.038) and TBUT scores (r = -0,43; P = 0.002); VAS-pain was negatively correlated with TBUT scores (r = -0.32; P = 0.023). HAQ scores showed no significant correlation with dry eye parameters (P > 0.05). Vitamin D level was negatively correlated with OSDI (r = -0.49; P < 0.001), and positively with Schirmer's test (r = 0.45; P = 0.001) and TBUT scores (r = 0.30; P = 0.029). Dry eye and impaired tear function in patients with vitamin D deficiency may indicate a protective role of vitamin D in the development of dry eye, probably by enhancing tear film parameters and reducing ocular surface inflammation. Patients with vitamin D deficiency should be evaluated for dry eye syndromes. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  10. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet.

    PubMed

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas; Chapman, Karen E

    2017-02-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched 'Western' diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae Our results demonstrate that (i) genetic effects on host-microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. © 2017 The authors.

  11. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet

    PubMed Central

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas

    2016-01-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched ‘Western’ diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae. Our results demonstrate that (i) genetic effects on host–microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. PMID:27885053

  12. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    PubMed

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography-tandem mass spectrometry. Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased by >8-fold. Our findings provide strong

  13. Deficiency of the Chemotactic Factor Inactivator in Human Sera with α1-Antitrypsin Deficiency

    PubMed Central

    Ward, Peter A.; Talamo, Richard C.

    1973-01-01

    As revealed by appropriate fractionation procedures, human serum deficient in α1-antitrypsin (α1-AT) is also deficient in the naturally occurring chemotactic factor inactivator. These serum donors had severe pulmonary emphysema. Serum from patients with clinically similar pulmonary disease, but with presence of α1-AT in the serum, showed no such deficiency of the chemotactic factor inactivator. When normal human serum and α1-AT-deficient human sera are chemotactically activated by incubation with immune precipitates, substantially more chemotactic activity is generated in α1-AT-deficient serum. These data indicate that in α1-AT-deficient serum there is an imbalance in the generation and control of chemotactic factors. It is suggested that the theory regarding development of pulmonary emphysema in patients lacking the α1-antitrypsin in their serum should be modified to take into account a deficiency of the chemotactic factor inactivator. PMID:4683887

  14. A search for the primary abnormality in adult-onset type II citrullinemia.

    PubMed

    Kobayashi, K; Shaheen, N; Kumashiro, R; Tanikawa, K; O'Brien, W E; Beaudet, A L; Saheki, T

    1993-11-01

    Deficiency of argininosuccinate synthetase (ASS) causes citrullinemia in human beings. Type II citrullinemia is found in most patients with adult-onset citrullinemia in Japan, and ASS deficiency is found specifically in the liver. Previous studies have shown that the decrease of hepatic ASS activity is caused by a decrease in enzyme protein with normal kinetic properties and that there were no apparent abnormalities in the amount, translational activity, and gross structure of hepatic ASS mRNA. In the present work, we show by sequencing analysis that there was no mutation in the ASS mRNA from two patients with type II citrullinemia. We also report RFLP analysis of a consanguineous family with type II citrullinemia, by using three DNA polymorphisms located within the ASS gene locus. In spite of having consanguineous parents, the patient was not a homozygous haplotype for the ASS gene. The RFLP analysis of 16 affected patients from consanguineous parents showed that 5 of 16 patients had the heterozygous pattern for one of the three DNA probes and that the frequency of the heterozygous haplotype was not different from the control frequency. These results suggest that the primary defect of type II citrullinemia is not within the ASS gene locus.

  15. Thin-plate spline analysis of craniofacial growth in Class I and Class II subjects.

    PubMed

    Franchi, Lorenzo; Baccetti, Tiziano; Stahl, Franka; McNamara, James A

    2007-07-01

    To compare the craniofacial growth characteristics of untreated subjects with Class II division 1 malocclusion with those of subjects with normal (Class I) occlusion from the prepubertal through the postpubertal stages of development. The Class II division 1 sample consisted of 17 subjects (11 boys and six girls). The Class I sample also consisted of 17 subjects (13 boys and four girls). Three craniofacial regions (cranial base, maxilla, and mandible) were analyzed on the lateral cephalograms of the subjects in both groups by means of thin-plate spline analysis at T1 (prepubertal) and T2 (postpubertal). Both cross-sectional and longitudinal comparisons were performed on both size and shape differences between the two groups. The results showed an increased cranial base angulation as a morphological feature of Class II malocclusion at the prepubertal developmental phase. Maxillary changes in either shape or size were not significant. Subjects with Class II malocclusion exhibited a significant deficiency in the size of the mandible at the completion of active craniofacial growth as compared with Class I subjects. A significant deficiency in the size of the mandible became apparent in Class II subjects during the circumpubertal period and it was still present at the completion of active craniofacial growth.

  16. Comparison of Maxilla Mandibular Transverse Ratios With Class II Anteroposterior Discrepancies

    DTIC Science & Technology

    2014-03-20

    the structure points has shown to be at best unreliable (Jacobson 1995). “2D landmarks may be hindered by rotational, geometric , and head positioning...deficiency in Class II and Class III malocclusions: a cephalometric and morphometric study on postero‐ anterior films. Orthodontics & Craniofacial

  17. Subclinical vitamin D deficiency is increased in adolescent girls who wear concealing clothing.

    PubMed

    Hatun, Sukru; Islam, Omer; Cizmecioglu, Filiz; Kara, Bulent; Babaoglu, Kadir; Berk, Fatma; Gökalp, Ayse Sevim

    2005-02-01

    Vitamin D deficiency continues to be a worldwide problem, especially in developing countries. The aim of this study was to investigate potential risk factors for vitamin D deficiency. Girls (n = 89) aged 13 to 17 y were enrolled in the study. Study subjects were stratified into 3 groups: Group I included girls living in a suburban area; Group II girls lived in an urban area, and Group III girls lived in an urban area and wore concealing clothes for religious reasons. At the end of winter (in April) serum 25-hydroxyvitamin D [25(OH)D] levels were measured and dietary data were collected using questionnaires. Vitamin D deficiency was defined as a serum 25(OH)D concentration < 25 nmol/L, and insufficiency as a 25(OH)D concentration between 25 and 50 nmol/L. The lumbar and femur neck bone mineral densities (BMD) were measured using dual X-ray absorptiometry (DEXA). Overall, 39 girls (43.8%) had vitamin D insufficiency and 19 (21.3%) had vitamin D deficiency. In group III (wearing covered dress) the serum 25(OH)D concentrations (28.13 +/- 12.53 nmol/L) were significantly lower than in the other 2 groups, and within this group, 50% of girls were vitamin D deficient. The lumbar and femur neck BMD of girls with lower 25(OH)D levels did not differ from those with adequate vitamin D levels. We conclude that vitamin D deficiency is an important problem in Turkish adolescent girls, especially in those who follow a religious dress code; therefore, vitamin D supplementation appears to be necessary for adolescent girls.

  18. Toward reassessing data-deficient species.

    PubMed

    Bland, Lucie M; Bielby, Jon; Kearney, Stephen; Orme, C David L; Watson, James E M; Collen, Ben

    2017-06-01

    One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data-deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data-deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data-deficient assessments. To develop this, we reviewed 2879 data-deficient assessments in 6 animal groups and identified 8 main justifications for assigning data-deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data-deficient species slipping unnoticed toward extinction. © 2016 Society for Conservation Biology.

  19. Effects of zinc deficiency on the vallate papillae and taste buds in rats.

    PubMed

    Chou, H C; Chien, C L; Huang, H L; Lu, K S

    2001-05-01

    Zinc deficiency is associated with multiple clinical complications, including taste disturbance, anorexia, growth retardation, skin changes, and hypogonadism. We investigated the zinc-deficiency-induced morphologic changes in the vallate taste buds of weanling and young adult male Wistar rats. A total of 24 weanling and 30 young adult rats were used. Each age group was further divided into a control group fed a zinc-adequate (50 ppm) diet, a zinc-deficient (< 1 ppm) diet group, and a zinc-adequate pair-fed group who were fed the same amount of food as that taken by the zinc-deficient group. Weanling rats were fed for 4 weeks and young adult rats were fed for 6 weeks. The morphometry and morphologic changes of vallate taste buds were analyzed using light and transmission electron microscopy. Light microscopy revealed no significant difference in papilla size and morphology among the various groups. In both weanling and young adult rats in the zinc-deficient diet and pair-fed groups, the number of taste buds per papilla (per animal) and the average profile area of the taste bud were significantly smaller than those of the corresponding controls (p < 0.05). Ultrastructural changes were seen only in the taste buds of weanling rats fed the zinc-deficient diet, with derangement of the architecture of the taste bud and widening of the intercellular space between taste bud cells. The proportion of type I taste bud cells in the taste buds of weanling rats fed the zinc-deficient diet decreased from 59% to 39%, and that of type II taste bud cells decreased from 25% to 12%. No obvious changes in the ultrastructure of type III taste bud cells were observed. The main effects of zinc deficiency in weanling and young adult rats and in adequate diet pair-fed rats were changes in the number and size of taste buds, and fine structure changes in the taste bud cells, especially during the accelerated growth stage after weaning.

  20. Quantitative Proteomic Analysis Reveals Populus cathayana Females Are More Sensitive and Respond More Sophisticatedly to Iron Deficiency than Males.

    PubMed

    Zhang, Sheng; Zhang, Yunxiang; Cao, Yanchun; Lei, Yanbao; Jiang, Hao

    2016-03-04

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder to nitrogen and phosphorus deficiencies, but little is known about the sex-specific differences in responses to iron deficiency. In this study, the effects of iron deficiency on the morphology, physiology, and proteome of P. cathayana males and females were investigated. The results showed that iron deficiency (25 days) significantly decreased height growth, photosynthetic rate, chlorophyll content, and tissue iron concentration in both sexes. A comparison between the sexes indicated that iron-deficient males had less height inhibition and photosynthesis system II or chloroplast ultrastructural damage than iron-deficient females. iTRAQ-based quantitative proteomic analysis revealed that 144 and 68 proteins were decreased in abundance (e.g., proteins involved in photosynthesis, carbohydrate and energy metabolism, and gene expression regulation) and 78 and 39 proteins were increased in abundance (e.g., proteins involved in amino acid metabolism and stress response) according to the criterion of ratio ≥1.5 in females and males, respectively. A comparison between the sexes indicated that iron-deficient females exhibited a greater change in the proteins involved in photosynthesis, carbon and energy metabolism, the redox system, and stress responsive proteins. This study reveals females are more sensitive and have a more sophisticated response to iron deficiency compared with males and provides new insights into differential sexual responses to nutrient deficiency.

  1. Laser initiation of Fe(II) complexes of 4-nitro-pyrazolyl substituted tetrazine ligands

    DOE PAGES

    Myers, Thomas Winfield; Brown, Kathryn Elizabeth; Chavez, David E.; ...

    2017-02-01

    Here, the synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIRmore » light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. More specifically, the complexes required lower densities (0.9 g/cm 3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm 3).« less

  2. Magnesium deficiency results in damage of nitrogen and carbon cross-talk of maize and improvement by cerium addition.

    PubMed

    Zhao, Haiquan; Zhou, Qiuping; Zhou, Min; Li, Chunxiao; Gong, Xiaolan; Liu, Chao; Qu, Chunxiang; Si, Wenhui; Hong, Fashui

    2012-07-01

    Magnesium (Mg) deficiency has been reported to affect plant photosynthesis and growth, and cerium (Ce) was considered to be able to improve plant growth. However, the mechanisms of Mg deficiency and Ce on plant growth remain poorly understood. The main aim of this work is to identify whether or not Mg deprivation affects the interdependent nitrogen and carbon assimilations in the maize leaves and whether or not Ce modulates the assimilations in the maize leaves under Mg deficiency. Maize plants were cultivated in Hoagland’s solution. They were subjected to Mg deficiency and to cerium chloride administration in the Mg-present Hoagland’s media and Mg-deficient Hoagland’s media.After 2 weeks,we measured chlorophyll (Chl) a fluorescence and the activities of nitrate reductase (NR), sucrose-phosphate synthase(SPS), and phosphoenolpyruvate carboxylase (PEPCase)in metabolic checkpoints coordinating primary nitrogen and carbon assimilations in the maize leaves. The results showed that Mg deficiency significantly inhibited plant growth and decreased the activities of NR, SPS, and PEPCase and the synthesis of Chl and protein. Mg deprivation in maize also significantly decreased the oxygen evolution, electron transport,and efficiency of photochemical energy conversion by photosystem II (PSII). However, Ce addition may promote nitrogen and carbon assimilations, increase PSII activities,and improve maize growth under Mg deficiency. Moreover,our findings would help promote usage of Mg or Ce fertilizers in maize production.

  3. Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat.

    PubMed

    Ciriello, John; Moreau, Jason M; McCoy, Aaron; Jones, Douglas L

    2016-07-28

    Intermittent hypoxia (IH) is a major pathophysiological consequence of obstructive sleep apnea. Recently, it has been shown that IH results in changes in body energy balance, leptin secretion and concomitant alterations in arcuate nucleus (ARC). In this study, the role of leptin on these changes was investigated in leptin-deficient rats exposed to IH or normoxic control conditions. Body weights, consumatory and locomotor behaviours, and protein signaling in ARC were assessed immediately after IH exposure. Compared to normoxia, IH altered body weight, food intake, locomotor pattern, and the plasma concentration of leptin and angiotensin II in the wild-type rat. However, these changes were not observed in the leptin-deficient rat. Within ARC of wild-type animals, IH increased phosphorylated signal transducer and activator of transcription 3 and pro-opiomelanocortin protein expression, but not in the leptin-deficient rat. The long-form leptin receptor protein expression was not altered following IH in either rat strain. These data suggest that leptin is involved in mediating the alterations to body energy balance and ARC activity following IH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Experimental Copper Deficiency, Chromium Deficiency and Additional Molybdenum Supplementation in Goats – Pathological Findings

    PubMed Central

    Aupperle, H; Schoon, HA; Frank, A

    2001-01-01

    Secondary copper (Cu) deficiency, chromium (Cr) deficiency and molybdenosis (Mo) has been suggested to cause the "mysterious" moose disease in the southwest of Sweden. The present experiment was performed on goats to investigate the clinical, chemical, and pathological alterations after 20 months feeding of a semi-synthetic diet deficient in Cu and Cr. Four groups were included in the study: control group (n = 4), Cu-deficient group (group 1, n = 4), Cr-deficient group (group 2, n = 2) and Cu+Cr-deficient group (group 3, n = 3). Group 3 was additionally supplemented with tetrathiomolybdate during the last 2 months of the experiment. Main histopathological findings in groups 1 and 3 were the lesions in the liver, characterised by a severe active fibrosis, bile duct proliferation, haemosiderosis and mild necroses. Additionally, degenerative alterations of the exocrine pancreas were prominent in groups 1 and 3. Lesions in group 3 were more pronounced than in group 1. In group 3, the skin showed an atrophic dermatosis, while in group 2 a crusty dermatitis caused by Candida spp. was observed. This study shows that liver, pancreas and skin are mainly affected by a long term deficiency of copper and the findings are complicated by molybdenum application while chromium deficiency produced no histomorphological effects in our study. PMID:11887391

  5. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

    PubMed

    Woodman, Andrew G; Mah, Richard; Keddie, Danae; Noble, Ronan M N; Panahi, Sareh; Gragasin, Ferrante S; Lemieux, Hélène; Bourque, Stephane L

    2018-06-01

    Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

  6. Kefir improves fatty liver syndrome by inhibiting the lipogenesis pathway in leptin-deficient ob/ob knockout mice.

    PubMed

    Chen, H-L; Tung, Y-T; Tsai, C-L; Lai, C-W; Lai, Z-L; Tsai, H-C; Lin, Y-L; Wang, C-H; Chen, C-M

    2014-09-01

    Fatty liver disease is commonly associated with obesity, insulin resistance and diabetes. Severe fatty liver is sometimes accompanied by steatohepatitis and may lead to the development of hepatocellular carcinoma. At present, there is no effective treatment for non-alcoholic fatty liver disease (NAFLD); thus, recent investigations have focused on developing effective therapeutics to treat this condition. This study aimed to evaluate the effects of kefir on the hepatic lipid metabolism of ob/ob mice, which are commonly used to model fatty liver disease. In this study, we used leptin receptor-deficient ob/ob mice as an animal disease model of NAFLD. Six-week-old ob/ob mice were orally administered the dairy product kefir (140 mg kg(-1) of body weight (BW) per day) for 4 weeks. The data demonstrated that kefir improved fatty liver syndrome on BW, energy expenditure and basal metabolic rate by inhibiting serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) activities (P<0.05) and by decreasing the triglyceride (TG) and total cholesterol (TC) contents of the liver (P<0.05). Oral kefir administration also significantly reduced the macrovesicular fat quantity in liver tissue. In addition, kefir markedly decreased the expression of the genes sterol regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) (P<0.05) but not the expression of peroxisome proliferator-activated receptor α (PPARα) or hepatic carnitine palmitoyltransferase-1α (CPT1α) in the livers of ob/ob mice. On the basis of these results, we conclude that kefir improves NAFLD on BW, energy expenditure and basal metabolic rate by inhibiting the lipogenesis pathway and that kefir may have the potential for clinical application to the prevention or treatment of NAFLD.

  7. Chromospheric Activity in Population II Giants

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2004-01-01

    One of the mysteries of Population II giants is that they still show chromospheric emission despite their great age. The global dynamo which was active during their main-sequence lifetimes is expected to become extremely weak through magnetic rotational braking. The nature of the observed emission is not understood; although acoustic shock waves might provide the heating, acoustic waves are not predicted to drive the observed mass loss - which in turn requires the dissipation of magneto-hydrodynamic waves. This program was designed to search for the faint stellar H Ly beta emission wings and the fluorescent Fe II and H2 emission from one of the brightest, metal poor, Population II stars. These FUSE diagnostics, when combined with existing UV and optical spectra, help determine the major radiative cooling channels for the chromosphere. This observation was to complement that previously planned for the mildly metal deficient giant alpha Boo (K2 III). However, alpha Boo has yet to be observed with FUSE.

  8. Genome scan of clot lysis time and its association with thrombosis in a protein C deficient kindred

    PubMed Central

    Meltzer, M.E.; Hasstedt, S.J.; Vossen, C.Y.; Callas, P.W.; de Groot, Ph.G.; Rosendaal, F.R.; Lisman, T.; Bovill, E.G.

    2011-01-01

    Summary Background Previously we found increased clot lysis time (CLT), as measured with a plasma-based assay, to increase the risk of venous thrombosis in two population-based case-control studies. Genes influencing CLT are yet unknown. Objectives and Patients/Methods We tested CLT as risk factor for venous thrombosis in Kindred Vermont II (n=346), a pedigree suffering from a high thrombosis risk, partially attributable to a type I protein C deficiency. Furthermore we tested for quantitative trait loci (QTL) for CLT using variance component linkage analysis. Results Protein C deficient family members had shorter CLT than non-deficient members (median CLT 67 versus 75 minutes). One standard deviation increase in CLT increased risk of venous thrombosis 2.4-fold in non-deficient family members. Protein C deficiency without elevated CLT increased risk 6.9-fold. Combining both risk factors yielded a 27.8-fold increased risk. Heritability of CLT was 42-52%. We found suggestive evidence of linkage on chromosome 11 (62 cM), partly explained by the prothrombin 20210A mutation, and on chromosome 13 (52 cM). Thrombin Activatable Fibrinolysis Inhibitor genotypes did not explain the variation in CLT. Conclusion Hypofibrinolysis appears to increase thrombosis risk in this family especially in combination with protein C deficiency. Protein C deficiency is associated with short CLT. CLT is partly genetically regulated. Suggestive QTL were found on chromosome 11 and 13. PMID:21575129

  9. Vitamin A deficiency, iron deficiency, and anemia among preschool children in the Republic of the Marshall Islands.

    PubMed

    Palafox, Neal A; Gamble, Mary V; Dancheck, Barbara; Ricks, Michelle O; Briand, Kennar; Semba, Richard D

    2003-05-01

    We investigated the co-occurrence of vitamin A deficiency, iron deficiency, and anemia among young children in the Republic of the Marshall Islands. Hemoglobin, serum retinol, and serum ferritin were assessed in the Republic of the Marshall Islands Vitamin A Deficiency Study, a community-based survey that involved 919 children ages 1 to 5 y. The proportion of children with vitamin A deficiency (serum retinol concentrations < 0.70 microM/L) was 59.9%. The prevalences of anemia (hemoglobin < 110 g/L), iron deficiency (serum ferritin < 12 microg/L), and iron deficiency anemia (iron deficiency and anemia) were 36.4%, 53.5%, and 23.8%, respectively. The proportion of children who had co-occurrence of vitamin A and iron deficiencies was 33.2%. The mean ages of children with and without vitamin A deficiency were 3.2 +/- 1.4 and 2.9 +/- 1.5 y, respectively (P = 0.01), and the mean ages of those with and without iron deficiency were 2.7 +/- 1.3 and 3.5 +/- 1.4 y, respectively (P < 0.0001). Children in the Republic of the Marshall Islands, ages 1 to 5 y, are at high risk of anemia, vitamin A deficiency, and iron deficiency, and one-third of these children had the co-occurrence of vitamin A and iron deficiencies. Further investigation is needed to identify risk factors and evaluate interventions to address vitamin A and iron deficiencies among children.

  10. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency.

    PubMed

    Cerbone, Manuela; Dattani, Mehul T

    2017-12-01

    Growth hormone deficiency (GHD) can present at any time of life from the neonatal period to adulthood, as a result of congenital or acquired insults. It can present as an isolated problem (IGHD) or in combination with other pituitary hormone deficiencies (CPHD). Pituitary deficits can evolve at any time from GHD diagnosis. The number, severity and timing of occurrence of additional endocrinopathies are highly variable. The risk of progression from IGHD to CPHD in children varies depending on the etiology (idiopathic vs organic). The highest risk is displayed by children with abnormalities in the Hypothalamo-Pituitary (H-P) region. Heterogeneous data have been reported on the type and timing of onset of additional pituitary hormone deficits, with TSH deficiency being most frequent and Diabetes Insipidus the least frequent additional deficit in the majority, but not all, of the studies. ACTH deficiency may gradually evolve at any time during follow-up in children or adults with childhood onset IGHD, particularly (but not only) in presence of H-P abnormalities and/or TSH deficiency. Hence there is a need in these patients for lifelong monitoring for ACTH deficiency. GH treatment unmasks central hypothyroidism mainly in patients with organic GHD, but all patients starting GH should have their thyroid function monitored closely. Main risk factors for development of CPHD include organic etiology, H-P abnormalities (in particular pituitary stalk abnormalities, empty sella and ectopic posterior pituitary), midline brain (corpus callosum) and optic nerves abnormalities, genetic defects and longer duration of follow-up. The current available evidence supports longstanding recommendations for the need, in all patients diagnosed with IGHD, of a careful and indefinite follow-up for additional pituitary hormone deficiencies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. In HepG2 Cells, Coexisting Carnitine Deficiency Masks Important Indicators of Marginal Biotin Deficiency123

    PubMed Central

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    Background: A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. Objective: In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. Methods: We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography–tandem mass spectrometry. Results: Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased

  12. A case of mitochondrial encephalomyopathy associated with a muscle coenzyme Q10 deficiency.

    PubMed

    Boitier, E; Degoul, F; Desguerre, I; Charpentier, C; François, D; Ponsot, G; Diry, M; Rustin, P; Marsac, C

    1998-01-01

    We report severe coenzyme Q10 deficiency of muscle in a 4-year-old boy presenting with progressive muscle weakness, seizures, cerebellar syndrome, and a raised cerebro-spinal fluid lactate concentration. State-3 respiratory rates of muscle mitochondria with glutamate, pyruvate, palmitoylcarnitine, and succinate as respiratory substrates were markedly reduced, whereas ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine were oxidized normally. The activities of complexes I, II, III and IV of the electron transport chain were normal, but the activities of complexes I+III and II+III, both systems requiring coenzyme Q10 as an electron carrier, were dramatically decreased. These results suggested a defect in the mitochondrial coenzyme Q10 content. This was confirmed by the direct assessment of coenzyme Q10 level by high-performance liquid chromatography in patient's muscle homogenate and isolated mitochondria, revealing levels of 16% and 6% of the control values, respectively. We did not find any impairment of the respiratory chain either in a lymphoblastoid cell line or in skin cultured fibroblasts from the patient, suggesting that the coenzyme Q10 depletion was tissue-specific. This is a new case of a muscle deficiency of mitochondrial coenzyme Q in a patient suffering from an encephalomyopathy.

  13. Multiple Acyl-CoA Dehydrogenation Deficiency (Glutaric Aciduria Type II) with a Novel Mutation of Electron Transfer Flavoprotein-Dehydrogenase in a Cat.

    PubMed

    Wakitani, Shoichi; Torisu, Shidow; Yoshino, Taiki; Hattanda, Kazuhisa; Yamato, Osamu; Tasaki, Ryuji; Fujita, Haruo; Nishino, Koichiro

    2014-01-01

    Multiple acyl-CoA dehydrogenation deficiency (MADD; also known as glutaric aciduria type II) is a human autosomal recessive disease classified as one of the mitochondrial fatty-acid oxidation disorders. MADD is caused by a defect in the electron transfer flavoprotein (ETF) or ETF dehydrogenase (ETFDH) molecule, but as yet, inherited MADD has not been reported in animals. Here we present the first report of MADD in a cat. The affected animal presented with symptoms characteristic of MADD including hypoglycemia, hyperammonemia, vomiting, diagnostic organic aciduria, and accumulation of medium- and long-chain fatty acids in plasma. Treatment with riboflavin and L-carnitine ameliorated the symptoms. To detect the gene mutation responsible for MADD in this case, we determined the complete cDNA sequences of feline ETFα, ETFβ, and ETFDH. Finally, we identified the feline patient-specific mutation, c.692T>G (p.F231C) in ETFDH. The affected animal only carries mutant alleles of ETFDH. p.F231 in feline ETFDH is completely conserved in eukaryotes, and is located on the apical surface of ETFDH, receiving electrons from ETF. This study thus identified the mutation strongly suspected to have been the cause of MADD in this cat.

  14. Nrf2 target genes are induced under marginal selenium-deficiency

    PubMed Central

    Müller, Mike; Banning, Antje; Brigelius-Flohé, Regina

    2010-01-01

    A suboptimal selenium supply appears to prevail in Europe. The current study, therefore, was focused on the changes in gene expression under a suboptimal selenium intake. Previous microarray analyses in the colon of mice fed either a selenium-adequate or a moderately deficient diet revealed a change in genes of several pathways. Severe selenium-deficiency has been found previously to influence Nrf2-regulated genes of the adaptive response. Since the previous pathway analyses were done with a program not searching for Nrf2 target genes, respective genes were manually selected and confirmed by qPCR. qPCR revealed an induction of phase II (Nqo1, Gsts, Sult1b1 and Ugt1a6) and antioxidant enzymes (Hmox1, Mt2, Prdx1, Srxn1, Sod1 and Gclc) under the selenium-poor diet, which is considered to compensate for the loss of selenoproteins. The strongest effects were observed in the duodenum where preferentially genes for antioxidant enzymes were up-regulated. These also include the mRNA of the selenoproteins TrxR1 and GPx2 that would enable their immediate translation upon selenium refeeding. The down-regulation of Gsk3β in moderate selenium-deficiency observed in the previous paper provides a possible explanation for the activation of the Nrf2 pathway, because inhibition of GSK3β results in the nuclear accumulation of Nrf2. PMID:21189866

  15. TrxR2 deficiencies promote chondrogenic differentiation and induce apoptosis of chondrocytes through mitochondrial reactive oxygen species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jidong; Xu, Jing; Fei, Yao

    Thioredoxin reductase 2 (TrxR2) is a selenium (Se) containing protein. Se deficiency is associated with an endemic osteoarthropathy characterized by impaired cartilage formation. It is unclear whether TrxR2 have roles in cartilage function. We examined the effects of TrxR2 on chondrogenic ATDC5 cells through shRNA-mediated gene silencing of TrxR2. We demonstrated TrxR2 deficiencies could enhance chondrogenic differentiation and apoptosis of ATDC5 cells. TrxR2 deficiencies increased accumulation of cartilage glycosaminoglycans (GAGs) and mineralization. TrxR2 deficiencies also stimulated expression of extracellular (ECM) gene including Collagen II and Aggrecan. The enhanced chondrogenic properties were further confirmed by activation of Akt signaling which aremore » required for chondrogenesis. In addition, TrxR2 deficiencies promoted chondrocyte proliferation through acceleration of cell cycle progression by increase in both S and G2/M phase cell distribution accompanied with induction of parathyroid hormone-related protein (PTHrP). Moreover, TrxR2 deficiencies induced chondrocyte death via apoptosis and increased cell sensitivity to exogenous oxidative stress. Furthermore, TrxR2 deficiencies induced emission of mitochondrial reactive oxygen species (ROS) without alteration of mitochondrial membrane potential and intracellular ATP content. Finally, treatment of TrxR2 deficiency cells with N-acetylcysteine (NAC) inhibited mitochondrial ROS production and chondrocyte apoptosis. NAC also prevented chondrogenic differentiation of TrxR2 deficiency cells by suppression of ECM gene expression, GAGs accumulation and mineralization, as well as attenuation of Akt signaling. Thus, TrxR2-mediated mitochondrial integrity is indispensable for chondrogenic differentiation of ATDC5 cells. TrxR2 deficiency-induced impaired proliferation and death of chondrocytes may be the pathological mechanism of the osteoarthropathy due to Se deficiency. Notably, this study also uncover the

  16. Glucose-6-phosphate dehydrogenase deficiency and malaria: cytochemical detection of heterozygous G6PD deficiency in women.

    PubMed

    Peters, Anna L; Van Noorden, Cornelis J F

    2009-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a X-chromosomally transmitted disorder of the erythrocyte that affects 400 million people worldwide. Diagnosis of heterozygously-deficient women is complicated: as a result of lyonization, these women have a normal and a G6PD-deficient population of erythrocytes. The cytochemical assay is the only reliable assay to discriminate between heterozygously-deficient women and non-deficient women or homozygously-deficient women. G6PD deficiency is mainly found in areas where malaria is or has been endemic. In these areas, malaria is treated with drugs that can cause (severe) hemolysis in G6PD-deficient individuals. A cheap and reliable test is necessary for diagnosing the deficiency to prevent hemolytic disorders when treating malaria. In this review, it is concluded that the use of two different tests for diagnosing men and women is the ideal approach to detect G6PD deficiency. The fluorescent spot test is inexpensive and easy to perform but only reliable for discriminating hemizygous G6PD-deficient men from non-deficient men. For women, the cytochemical assay is recommended. However, this assay is more expensive and difficult to perform and should be simplified into a kit for use in developing countries.

  17. Hypophosphatemic Rickets with Hypercalciuria due to Mutation in SLC34A3/NaPi-IIc can be Masked by Vitamin D Deficiency and can be Associated with Renal Calcifications

    PubMed Central

    Kremke, B.; Bergwitz, C.; Ahrens, W.; Schütt, S.; Schumacher, M.; Wagner, V.; Holterhus, P.-M.; Jüppner, H.; Hiort, O.

    2015-01-01

    Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by mutations in SLC34A3, the gene encoding the renal sodium-phosphate co-transporter NaPi-IIc. Despite increased urinary calcium excretion, HHRH is typically not associated with kidney stones prior to treatment. However, here we describe two sisters, who displayed nephrolithiasis or nephrocalcinosis upon presentation. The index patient, II-4, presented with short stature, bone pain, and knee X-rays suggestive of mild rickets at age 8.5 years. Laboratory evaluation showed hypophosphatemia, elevated 1,25(OH) 2 vitamin D levels, and hypercalciuria, later also developing vitamin D deficiency. Her sister, II-6, had a low normal serum phosphorous level, biochemically vitamin D deficiency and no evidence for osteomalacia, but had undergone left nephro-ureterectomy at age 17 because of ureteral stricture secondary to renal calculi. Nucleotide sequence analysis of DNA from II-4 and II-6 revealed a homozygous missense mutation c.586G>A (p.G196R) in SLC34A3/NaPi-IIc. Ultrasonographic examinations prior to treatment showed grade I nephrocalcinosis for II-4, while II-6 had grade I-II nephrocalcinosis in her remaining kidney. Four siblings and the mother were heterozygous carriers of the mutation, but showed no biochemical abnormalities. With oral phosphate supplements, hypophosphatemia and hypercalciuria improved in both homozygous individuals. Renal calcifications that are presumably due to increased urinary calcium excretion can be the presenting finding in homozygous carriers of G196R in SLC34A3/NaPi-IIc, and some or all laboratory features of HHRH may be masked by vitamin D deficiency. PMID:18523928

  18. Hypophosphatemic rickets with hypercalciuria due to mutation in SLC34A3/NaPi-IIc can be masked by vitamin D deficiency and can be associated with renal calcifications.

    PubMed

    Kremke, B; Bergwitz, C; Ahrens, W; Schütt, S; Schumacher, M; Wagner, V; Holterhus, P-M; Jüppner, H; Hiort, O

    2009-02-01

    Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by mutations in SLC34A3, the gene encoding the renal sodium-phosphate co-transporter NaPi-IIc. Despite increased urinary calcium excretion, HHRH is typically not associated with kidney stones prior to treatment. However, here we describe two sisters, who displayed nephrolithiasis or nephrocalcinosis upon presentation. The index patient, II-4, presented with short stature, bone pain, and knee X-rays suggestive of mild rickets at age 8.5 years. Laboratory evaluation showed hypophosphatemia, elevated 1,25(OH) (2) vitamin D levels, and hypercalciuria, later also developing vitamin D deficiency. Her sister, II-6, had a low normal serum phosphorous level, biochemically vitamin D deficiency and no evidence for osteomalacia, but had undergone left nephro-ureterectomy at age 17 because of ureteral stricture secondary to renal calculi. Nucleotide sequence analysis of DNA from II-4 and II-6 revealed a homozygous missense mutation c.586G>A (p.G196R) in SLC34A3/NaPi-IIc. Ultrasonographic examinations prior to treatment showed grade I nephrocalcinosis for II-4, while II-6 had grade I-II nephrocalcinosis in her remaining kidney. Four siblings and the mother were heterozygous carriers of the mutation, but showed no biochemical abnormalities. With oral phosphate supplements, hypophosphatemia and hypercalciuria improved in both homozygous individuals. Renal calcifications that are presumably due to increased urinary calcium excretion can be the presenting finding in homozygous carriers of G196R in SLC34A3/NaPi-IIc, and some or all laboratory features of HHRH may be masked by vitamin D deficiency.

  19. Inositol 1,4,5-trisphosphate receptor type II (InsP3R-II) is reduced in obese mice, but metabolic homeostasis is preserved in mice lacking InsP3R-II

    PubMed Central

    Feriod, Colleen N.; Nguyen, Lily; Jurczak, Michael J.; Kruglov, Emma A.; Nathanson, Michael H.; Shulman, Gerald I.; Bennett, Anton M.

    2014-01-01

    Inositol 1,4,5-trisphosphate receptor type II (InsP3R-II) is the most prevalent isoform of the InsP3R in hepatocytes and is concentrated under the canalicular membrane, where it plays an important role in bile secretion. We hypothesized that altered calcium (Ca2+) signaling may be involved in metabolic dysfunction, as InsP3R-mediated Ca2+ signals have been implicated in the regulation of hepatic glucose homeostasis. Here, we find that InsP3R-II, but not InsP3R-I, is reduced in the livers of obese mice. In our investigation of the functional consequences of InsP3R-II deficiency, we found that organic anion secretion at the canalicular membrane and Ca2+ signals were impaired. However, mice lacking InsP3R-II showed no deficits in energy balance, glucose production, glucose tolerance, or susceptibility to hepatic steatosis. Thus, our results suggest that reduced InsP3R-II expression is not sufficient to account for any disruptions in metabolic homeostasis that are observed in mouse models of obesity. We conclude that metabolic homeostasis is maintained independently of InsP3R-II. Loss of InsP3R-II does impair secretion of bile components; therefore, we suggest that conditions of obesity would lead to a decrease in this Ca2+-sensitive process. PMID:25315698

  20. Iron deficiency anemia

    MedlinePlus

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  1. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.

    PubMed

    Zanin, Laura; Venuti, Silvia; Zamboni, Anita; Varanini, Zeno; Tomasi, Nicola; Pinton, Roberto

    2017-02-13

    Under limited iron (Fe) availability maize, a Strategy II plant, improves Fe acquisition through the release of phytosiderophores (PS) into the rhizosphere and the subsequent uptake of Fe-PS complexes into root cells. Occurrence of Strategy-I-like components and interactions with phosphorous (P) nutrition has been hypothesized based on molecular and physiological studies in grasses. In this report transcriptomic analysis (NimbleGen microarray) of Fe deficiency response revealed that maize roots modulated the expression levels of 724 genes (508 up- and 216 down-regulated, respectively). As expected, roots of Fe-deficient maize plants overexpressed genes involved in the synthesis and release of 2'-deoxymugineic acid (the main PS released by maize roots). A strong modulation of genes involved in regulatory aspects, Fe translocation, root morphological modification, primary metabolic pathways and hormonal metabolism was induced by the nutritional stress. Genes encoding transporters for Fe 2+ (ZmNRAMP1) and P (ZmPHT1;7 and ZmPHO1) were also up-regulated under Fe deficiency. Fe-deficient maize plants accumulated higher amounts of P than the Fe-sufficient ones, both in roots and shoots. The supply of 1 μM 59 Fe, as soluble (Fe-Citrate and Fe-PS) or sparingly soluble (Ferrihydrite) sources to deficient plants, caused a rapid down-regulation of genes coding for PS and Fe(III)-PS transport, as well as of ZmNRAMP1 and ZmPHT1;7. Levels of 32 P absorption essentially followed the rates of 59 Fe uptake in Fe-deficient plants during Fe resupply, suggesting that P accumulation might be regulated by Fe uptake in maize plants. The transcriptional response to Fe-deficiency in maize roots confirmed the modulation of known genes involved in the Strategy II and revealed the presence of Strategy I components usually described in dicots. Moreover, data here presented provide evidence of a close relationship between two essential nutrients for plants, Fe and P, and highlight a key role

  2. High-resolution spectra of stars in globular clusters. VI - Oxygen-deficient red giant stars in M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.A.; Wallerstein, G.; Oke, J.B.

    From high-resolution, high signal-to-noise spectra, abundances of carbon, nitrogen, and oxygen and the C-12/C-13 ratio for five red giants in M13, including star II-67, which has previously been reported to be deficient in oxygen have been determined. Three of the five stars exhibit substantial oxygen deficiencies; O/Fe values range from +0.5 to less than about 0.3. The sum of the CNO nuclides is the same for all stars, which is interpreted as evidence that mixing of CNO-cycled material into the envelope is the cause of the variations in oxygen abundance. 41 refs.

  3. Economic impact of routine opt-out antenatal human immune deficiency virus screening: A systematic review.

    PubMed

    Ibekwe, Everistus; Haigh, Carol; Duncan, Fiona; Fatoye, Francis

    2017-12-01

    reporting format would facilitate comparison between studies and generalisability of economic evaluations. (i) Healthcare decision-makers should understand that routine antenatal screening for human immune deficiency virus is both cost-effective and cost saving. (ii) Addressing late identification of prenatal human immune deficiency virus is crucial to reducing mother-to-child transmission at minimal healthcare spending. © 2017 John Wiley & Sons Ltd.

  4. Intrauterine Zn Deficiency Favors Thyrotropin-Releasing Hormone-Increasing Effects on Thyrotropin Serum Levels and Induces Subclinical Hypothyroidism in Weaned Rats.

    PubMed

    Alcántara-Alonso, Viridiana; Alvarez-Salas, Elena; Matamoros-Trejo, Gilberto; de Gortari, Patricia

    2017-10-18

    Individuals who consume a diet deficient in zinc (Zn-deficient) develop alterations in hypothalamic-pituitary-thyroid axis function, i.e., a low metabolic rate and cold insensitivity. Although those disturbances are related to primary hypothyroidism, intrauterine or postnatal Zn-deficient adults have an increased thyrotropin (TSH) concentration, but unchanged thyroid hormone (TH) levels and decreased body weight. This does not support the view that the hypothyroidism develops due to a low Zn intake. In addition, intrauterine or postnatal Zn-deficiency in weaned and adult rats reduces the activity of pyroglutamyl aminopeptidase II (PPII) in the medial-basal hypothalamus (MBH). PPII is an enzyme that degrades thyrotropin-releasing hormone (TRH). This hypothalamic peptide stimulates its receptor in adenohypophysis, thereby increasing TSH release. We analyzed whether earlier low TH is responsible for the high TSH levels reported in adults, or if TRH release is enhanced by Zn deficiency at weaning. Dams were fed a 2 ppm Zn-deficient diet in the period from one week prior to gestation and up to three weeks after delivery. We found a high release of hypothalamic TRH, which along with reduced MBH PPII activity, increased TSH levels in Zn-deficient pups independently of changes in TH concentration. We found that primary hypothyroidism did not develop in intrauterine Zn-deficient weaned rats and we confirmed that metal deficiency enhances TSH levels since early-life, favoring subclinical hypothyroidism development which remains into adulthood.

  5. Inactivation and deficiency of core proteins of photosystems I and II caused by genetical phylloquinone and plastoquinone deficiency but retained lamellar structure in a T-DNA mutant of Arabidopsis.

    PubMed

    Shimada, Hiroshi; Ohno, Ryoichi; Shibata, Masaru; Ikegami, Isamu; Onai, Kiyoshi; Ohto, Masa-aki; Takamiya, Ken-ichiro

    2005-02-01

    Phylloquinone, a substituted 1,4-naphthoquinone with an 18-carbon-saturated phytyl tail, functions as a bound one-electron carrier cofactor at the A1 site of photosystem I (PSI). A Feldmann tag line mutant, no. 2755 (designated as abc4 hereafter), showed pale-green young leaves and white old leaves. The mutated nuclear gene encoded 1,4-dihydroxy-2-naphtoic acid phytyltransferase, an enzyme of phylloquinone biosynthesis, and high-performance liquid chromatography analysis revealed that the abc4 mutant contained no phylloquinone, and only about 3% plastoquinone. Photooxidation of P700 of PSI in the abc4 mutant was not observed, and reduced-versus-oxidized difference spectroscopy indicated that the abc4 mutant had no P700. The maximum quantum yield of photosystem II (PSII) in the abc4 mutant was much decreased, and the electron transfer from PSII to PSI in the abc4 mutant did not occur. For the pale-green leaves of the abc4 mutant plant, the ultrastructure of the chloroplasts was almost the same as that of the wild-type plant. However, the chloroplasts in the albino leaves of the mutant were smaller and had a lot of grana thylakoids and few stroma thylakoids. The amounts of PSI and PSII core subunits in the abc4 mutant were significantly decreased compared with those in the wild type. These results suggested that a deficiency of phylloquinone in PSI caused the abolishment of PSI and a partial defect of PSII due to a significant decrease of plastoquinone, but did not influence the ultrastructure of the chloroplasts in young leaves.

  6. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus.

    PubMed

    Tran, Phu V; Kennedy, Bruce C; Lien, Yu-Chin; Simmons, Rebecca A; Georgieff, Michael K

    2015-02-15

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. Copyright © 2015 the American Physiological Society.

  7. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus

    PubMed Central

    Kennedy, Bruce C.; Lien, Yu-Chin; Simmons, Rebecca A.; Georgieff, Michael K.

    2014-01-01

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. PMID:25519736

  8. Estrogen Receptor α Deficiency Modulates TLR Ligand-Mediated PDC-TREM Expression in Plasmacytoid Dendritic Cells in Lupus-Prone Mice.

    PubMed

    Scott, Jennifer L; Cunningham, Melissa A; Naga, Osama S; Wirth, Jena R; Eudaly, Jackie G; Gilkeson, Gary S

    2015-12-15

    Female lupus-prone NZM2410 estrogen receptor α (ERα)-deficient mice are protected from renal disease and have prolonged survival compared with wild-type littermates; however, the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I IFN drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in predisease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus-prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHC class II(+) pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα-deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of TLR-mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in predisease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupuslike disease. Copyright © 2015 by The American Association of Immunologists, Inc.

  9. Pyruvate dehydrogenase deficiency and epilepsy.

    PubMed

    Prasad, Chitra; Rupar, Tony; Prasad, Asuri N

    2011-11-01

    The pyruvate dehydrogenase complex (PDHc) is a mitochondrial matrix multienzyme complex that provides the link between glycolysis and the tricarboxylic acid (TCA) cycle by catalyzing the conversion of pyruvate into acetyl-CoA. PDHc deficiency is one of the commoner metabolic disorders of lactic acidosis presenting with neurological phenotypes that vary with age and gender. In this mini-review, we postulate mechanisms of epilepsy in the setting of PDHc deficiency using two illustrative cases (one with pyruvate dehydrogenase complex E1-alpha polypeptide (PDHA1) deficiency and the second one with pyruvate dehydrogenase complex E1-beta subunit (PDHB) deficiency (a rare subtype of PDHc deficiency)) and a selected review of published case series. PDHc plays a critical role in the pathway of carbohydrate metabolism and energy production. In severe deficiency states the resulting energy deficit impacts on brain development in utero resulting in structural brain anomalies and epilepsy. Milder deficiency states present with variable manifestations that include cognitive delay, ataxia, and seizures. Epileptogenesis in PDHc deficiency is linked to energy failure, development of structural brain anomalies and abnormal neurotransmitter metabolism. The use of the ketogenic diet bypasses the metabolic block, by providing a direct source of acetyl-CoA, leading to amelioration of some symptoms. Genetic counseling is essential as PDHA1 deficiency (commonest defect) is X-linked although females can be affected due to unfavorable lyonization, while PDHB and PDH phosphatase (PDP) deficiencies (much rarer defects) are of autosomal recessive inheritance. Research is in progress for looking into animal models to better understand pathogenesis and management of this challenging disorder. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  10. Prevalence of micronutrient deficiency based on results obtained from the national pilot program on control of micronutrient malnutrition.

    PubMed

    Chakravarty, Indira; Sinha, R K

    2002-05-01

    Micronutrient deficiency is a serious public health concern in most developing countries. In India, iron deficiency, vitamin A deficiency, and iodine deficiency disorder are of greatest public health significance. In addition, subclinical zinc deficiency, flourosis, and fluoride-deficient dental caries are important areas of concern. The National Pilot Program on Control of Micronutrient Malnutrition was launched in 1995 to address these problems and the Department of Biochemistry and Nutrition of the All India Institute of Hygiene and Public Health (Calcutta) was entrusted to coordinate its activities. The program presently covers one northeastern and four eastern states, namely Assam, Bihar (Jharkhand), Orissa, West Bengal, and Tripura. Baseline analyses were conducted on demographic situation, food and nutrient intake pattern, nutritional deficiency diseases (e.g., iron deficiency anemia), iodine deficiency disorder, and vitamin A deficiency. It was observed that except for cereals, the diet was deficient in all other food groups. Nutrient intake (i.e., energy, protein, vitamins, and minerals) was also deficient in almost the entire state. Anthropometric indices (e.g., weight-for-age and height-for-age data) indicated that large percentages of <5-year-old and 6-14-year-old children were in grade II or III malnutrition. Mean dietary zinc intakes in all the surveyed districts were much lower than the RDA. Large percentages of salt samples had iodine levels less than 15 ppm. The point prevalence of anemia in various age groups was found to be high. Bitot's spot was mainly noted in the age group of 6-71 months. Nightblindness was noted in young children as well as the children 24-71 months old. High prevalence of nightblindness in pregnant women is a point of concern. Actions needed to control micronutrient deficiencies include: intervention strategies, extensive nutrition and health education through innovative IEC materials to support problem-specific programs

  11. A search for the primary abnormality in adult-onset type II citrullinemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Keiko; Shaheen, Nazma; Saheki, Takeyori

    1993-11-01

    Deficiency of argininosuccinate synthetase (ASS) causes citrullinemia in human beings. Type II citrullinemia is found in most patients with adult-onset citrullinemia in Japan, and ASS deficiency is found specifically in the liver. Previous studies have shown that the decrease of hepatic ASS activity is caused by a decrease in enzyme protein with normal kinetic properties and that there were no apparent abnormalities in the amount, translational activity, and gross structure of hepatic ASS mRNA. In the present work, the authors show by sequencing analysis that there was no mutation in the ASS mRNA from two patients with type II citrullinemia.more » The authors also report RFLP analysis of a consanguineous family with type II citrullinemia, by using three DNA polymorphisms located within the ASS gene locus. In spite of having consanguineous parents, the patient was not a homozygous haplotype for the ASS gene. The RFLP analysis of 16 affected patients from consanguineous parents showed that 5 of 16 patients had the heterozygous pattern for one of the three DNA probes and that the frequency of the heterozygous haplotype was not different from the control frequency. These results suggest that the primary defect of type II citrullinemia is not within the ASS gene locus. 29 refs., 1 fig., 3 tabs.« less

  12. Aversive and non-aversive memory impairment in the mucopolysaccharidosis II mouse model.

    PubMed

    Azambuja, Amanda Stapenhorst; Correa, Lilian; Gabiatti, Bernardo Pappi; Martins, Giselle Renata; de Oliveira Franco, Álvaro; Ribeiro, Maria Flávia Marques; Baldo, Guilherme

    2018-02-01

    Hunter syndrome (MPS II, OMIM 309900) is a lysosomal storage disorder due to deficient iduronate sulphatase activity. Patients present multiple cognitive alterations, and the aim of this work was to verify if MPS II mice also present some progressive cognitive alterations. For that, MPS II mice from 2 to 6 months of age were submitted to repeated open field and inhibitory avoidance tests to evaluate memory parameters. MPS II mice presented impaired memory at 6 months evaluated by open field test. They also performed poorly in the inhibitory avoidance test from 4 months. We conclude that MPS II mice develop cognitive alterations as the disease progresses. These tests can be used in the future to study the efficacy of therapeutic approaches in the central nervous system.

  13. The Adaptor Protein SAP Regulates Type II NKT Cell Development, Cytokine Production and Cytotoxicity Against Lymphoma1

    PubMed Central

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L.; Stein, Paul L.; Wang, Chyung-Ru

    2014-01-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule-associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT cell TCR transgenic mouse model (24αβTg), we demonstrated that CD1d-expressing hematopoietic cells but not thymic epithelial cells meditate efficient selection of type II NKT cells. Further, we showed that SAP regulates type II NKT cell development by controlling Egr2 and PLZF expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IRF4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. PMID:25236978

  14. Betaine Deficiency in Maize 1

    PubMed Central

    Lerma, Claudia; Rich, Patrick J.; Ju, Grace C.; Yang, Wen-Ju; Hanson, Andrew D.; Rhodes, David

    1991-01-01

    Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency (D Rhodes, PJ Rich [1988] Plant Physiol 88: 102-108). This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positive and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline → betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde. PMID:16668098

  15. Anemia, Iron Deficiency and Iodine Deficiency among Nepalese School Children.

    PubMed

    Khatiwada, Saroj; Lamsal, Madhab; Gelal, Basanta; Gautam, Sharad; Nepal, Ashwini Kumar; Brodie, David; Baral, Nirmal

    2016-07-01

    To assess iodine and iron nutritional status among Nepalese school children. A cross-sectional, community based study was conducted in the two districts, Ilam (hilly region) and Udayapur (plain region) of eastern Nepal. A total of 759 school children aged 6-13 y from different schools within the study areas were randomly enrolled. A total of 759 urine samples and 316 blood samples were collected. Blood hemoglobin level, serum iron, total iron binding capacity and urinary iodine concentration was measured. Percentage of transferrin saturation was calculated using serum iron and total iron binding capacity values. The mean level of hemoglobin, serum iron, total iron binding capacity, transferrin saturation and median urinary iodine excretion were 12.29 ± 1.85 g/dl, 70.45 ± 34.46 μg/dl, 386.48 ± 62.48 μg/dl, 19.94 ± 12.07 % and 274.67 μg/L respectively. Anemia, iron deficiency and iodine deficiency (urinary iodine excretion <100 μg/L) were present in 34.5 %, 43.4 % and 12.6 % children respectively. Insufficient urinary iodine excretion (urinary iodine excretion <100 μg/L) was common in anemic and iron deficient children. Iron deficiency and anemia are common in Nepalese children, whereas, iodine nutrition is more than adequate. Low urinary iodine excretion was common in iron deficiency and anemia.

  16. Genome scan of clot lysis time and its association with thrombosis in a protein C-deficient kindred.

    PubMed

    Meltzer, M E; Hasstedt, S J; Vossen, C Y; Callas, P W; DE Groot, Ph G; Rosendaal, F R; Lisman, T; Bovill, E G

    2011-07-01

     Previously, we found increased clot-lysis time (CLT), as measured with a plasma-based assay, to increase the risk of venous thrombosis in two population-based case-control studies. The genes influencing CLT are as yet unknown.  We tested CLT as risk factor for venous thrombosis in Kindred Vermont II (n = 346), a pedigree suffering from a high thrombosis risk, partially attributable to a type I protein C deficiency. Furthermore, we tested for quantitative trait loci (QTLs) for CLT, using variance component linkage analysis.  Protein C-deficient family members had shorter CLTs than non-deficient members (median CLT 67 min vs. 75 min). One standard deviation increase in CLT increased the risk of venous thrombosis 2.4-fold in non-deficient family members. Protein C deficiency without elevated CLT increased the risk 6.9-fold. Combining both risk factors yielded a 27.8-fold increased risk. The heritability of CLT was 42-52%. We found suggestive evidence of linkage on chromosome 11 (62 cM), partly explained by the prothrombin 20210A mutation, and on chromosome 13 (52 cM). Thrombin-activatable fibrinolysis inhibitor genotypes did not explain the variation in CLT. Hypofibrinolysis appears to increase thrombosis risk in this family, especially in combination with protein C deficiency. Protein C deficiency is associated with short CLT. CLT is partly genetically regulated. Suggestive QTLs were found on chromosomes 11 and 13. © 2011 International Society on Thrombosis and Haemostasis.

  17. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis

    PubMed Central

    Bueno, Marta; Lai, Yen-Chun; Romero, Yair; Brands, Judith; St. Croix, Claudette M.; Kamga, Christelle; Corey, Catherine; Herazo-Maya, Jose D.; Sembrat, John; Lee, Janet S.; Duncan, Steve R.; Rojas, Mauricio; Shiva, Sruti; Chu, Charleen T.; Mora, Ana L.

    2014-01-01

    Although aging is a known risk factor for idiopathic pulmonary fibrosis (IPF), the pathogenic mechanisms that underlie the effects of advancing age remain largely unexplained. Some age-related neurodegenerative diseases have an etiology that is related to mitochondrial dysfunction. Here, we found that alveolar type II cells (AECIIs) in the lungs of IPF patients exhibit marked accumulation of dysmorphic and dysfunctional mitochondria. These mitochondrial abnormalities in AECIIs of IPF lungs were associated with upregulation of ER stress markers and were recapitulated in normal mice with advancing age in response to stimulation of ER stress. We found that impaired mitochondria in IPF and aging lungs were associated with low expression of PTEN-induced putative kinase 1 (PINK1). Knockdown of PINK1 expression in lung epithelial cells resulted in mitochondria depolarization and expression of profibrotic factors. Moreover, young PINK1-deficient mice developed similarly dysmorphic, dysfunctional mitochondria in the AECIIs and were vulnerable to apoptosis and development of lung fibrosis. Our data indicate that PINK1 deficiency results in swollen, dysfunctional mitochondria and defective mitophagy, and promotes fibrosis in the aging lung. PMID:25562319

  18. Eliminating Iodine Deficiency in China: Achievements, Challenges and Global Implications

    PubMed Central

    Sun, Dianjun; Codling, Karen; Chang, Suying; Zhang, Shubin; Shen, Hongmei; Su, Xiaohui; Chen, Zupei; Scherpbier, Robert W.; Yan, Jun

    2017-01-01

    The prevention of iodine deficiency through salt iodization has been recognized as a global success story, and China stands at the forefront of this achievement with one of the most successful programs in the world. High level political commitment, national mandatory legislation, a state-managed edible salt industry and a complex and highly sophisticated surveillance system have facilitated the success of the program. Challenges have arisen however, including: (i) concern that adequate iodine status in pregnant women cannot be achieved without causing above adequate iodine intakes in children; (ii) declining iodine intake as a result of reductions in salt consumption and increased consumption of processed foods, which may not be made with iodized salt; (iii) the existence of areas with high iodine content in the water; and (iv) declines in household use of iodized salt due to concerns about excess iodine intake and thyroid disease. This article reviews the achievements and challenges of the Chinese Iodine Deficiency Disorders (IDD) Elimination Program and reflects on lessons learned and implications for other national salt iodization programs. PMID:28379180

  19. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements.

    PubMed

    Kalaji, Hazem M; Oukarroum, Abdallah; Alexandrov, Vladimir; Kouzmanova, Margarita; Brestic, Marian; Zivcak, Marek; Samborska, Izabela A; Cetner, Magdalena D; Allakhverdiev, Suleyman I; Goltsev, Vasilij

    2014-08-01

    The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. [Iron deficiency and pica].

    PubMed

    Muñoz, J A; Marcos, J; Risueño, C E; de Cos, C; López, R; Capote, F J; Martín, M V; Gil, J L

    1998-02-01

    To study the relationship between pica and iron-lack anaemia in a series of iron-deficiency patients in order to establish the pathogenesis of such relationship. Four-hundred and thirty-three patients were analysed. Pica was studied by introducing certain diet queries into the clinical history. All patients received oral iron and were periodically controlled with the usual clinico-haematological procedures. Pica was present in 23 patients (5.3%). Eight nourishing (namely, coffee grains, almonds, chocolate, ice, lettuce, carrots, sunflower seeds and bread) and 2 non-nourishing (clay and paper) substances were involved. A second episode of pica appeared in 9 cases upon relapsing of iron deficiency. Both anaemia and pica were cured by etiologic and substitutive therapy in all instances. No clear correlation was found with either socio-economic status or pathogenetic causes of iron deficiency and pica, and no haematological differences were seen between patients with pica and those without this alteration. (1) The pathogenesis of pica is unclear, although it appears unrelated to the degree of iron deficiency. (2) According to the findings in this series, pica seems a consequence of iron deficiency rather than its cause. (3) Adequate therapy can cure both conditions, although pica may reappear upon relapse of iron deficiency.

  1. Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice.

    PubMed

    Bashir, Khurram; Ishimaru, Yasuhiro; Itai, Reiko Nakanishi; Senoura, Takeshi; Takahashi, Michiko; An, Gynheung; Oikawa, Takaya; Ueda, Minoru; Sato, Aiko; Uozumi, Nobuyuki; Nakanishi, Hiromi; Nishizawa, Naoko K

    2015-05-01

    The molecular mechanism of iron (Fe) uptake and transport in plants are well-characterized; however, many components of Fe homeostasis remain unclear. We cloned iron-deficiency-regulated oligopeptide transporter 7 (OsOPT7) from rice. OsOPT7 localized to the plasma membrane and did not transport Fe(III)-DMA or Fe(II)-NA and GSH in Xenopus laevis oocytes. Furthermore OsOPT7 did not complement the growth of yeast fet3fet4 mutant. OsOPT7 was specifically upregulated in response to Fe-deficiency. Promoter GUS analysis revealed that OsOPT7 expresses in root tips, root vascular tissue and shoots as well as during seed development. Microarray analysis of OsOPT7 knockout 1 (opt7-1) revealed the upregulation of Fe-deficiency-responsive genes in plants grown under Fe-sufficient conditions, despite the high Fe and ferritin concentrations in shoot tissue indicating that Fe may not be available for physiological functions. Plants overexpressing OsOPT7 do not exhibit any phenotype and do not accumulate more Fe compared to wild type plants. These results indicate that OsOPT7 may be involved in Fe transport in rice.

  2. [Appropriateness of colonoscopy indications according to the new EPAGE II criteria].

    PubMed

    Carrión, Silvia; Marín, Ingrid; Lorenzo-Zúñiga, Vicente; Moreno De Vega, Vicente; Boix, Jaume

    2010-01-01

    The appropriateness criteria for colonoscopy developed by a European expert panel (EPAGE), published in 1999, were revised this year (EPAGE II), but have not yet been evaluated. (1) To analyze colonoscopies performed at our hospital, and (2) to evaluate the appropriateness of the new EPAGE II criteria. We retrospectively analyzed 700 colonoscopies (48% males, mean age 58 years). Forty-five colonoscopies (6.4%) were excluded for insufficient bowel preparation or elective indication. EPAGE II criteria classified colonoscopies as "appropriate", "inappropriate" and "uncertain". Ninety-four percent (n=655) of colonoscopies were evaluated. The most frequent indication for colonoscopy (19%) was screening of colorectal cancer (CRC). Seventy percent of colonoscopies were "appropriate", and 18% were "inappropriate", with significant differences according to where the request was made. The most inappropriate indication was postpolypectomy follow-up, due to shorter follow-up intervals. An endoscopic diagnosis was made in 315 patients (48%), with a finding of significant lesions in 25% (n=167; CCR, adenomas, inflammatory bowel disease, angiodysplasia and benign stricture). The indications most frequently associated with relevant findings were screening of CRC (17.3%) and postpolypectomy follow-up (16.7%) but this association was non-significant. Only iron-deficiency anemia was significantly associated with CRC (p<0.0001). Eighteen percent of requests for colonoscopy were inappropriate and 12% provided incomplete information. The indication most strongly associated with a diagnosis of CRC was iron-deficiency anemia. The EPAGE II criteria showed a significant correlation with an endoscopic diagnosis of CRC.

  3. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis.

    PubMed

    Li, Huiyan; Peng, Xuan; Wang, Yating; Cao, Shirong; Xiong, Liping; Fan, Jinjin; Wang, Yihan; Zhuang, Shougang; Yu, Xueqing; Mao, Haiping

    2016-09-01

    Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.

  4. [Effect of Acaí (Euterpe oleracea) on biological expression characteristics of deficiency-heat and deficiency-cold rats].

    PubMed

    Wang, Lin-Yuan; Zhang, Jian-Jun; Wang, Chun; Zhu, Ying-Li; Wang, Zi-Chen; He, Cheng; Qu, Yan; Wang, Sha

    2016-10-01

    To study the effects of Acaí on biological expression characteristics in rats with deficiency-heat and deficiency-cold syndromes, SD rats were divided into blank group, deficiency-heat model group, deficiency-heat+Phellodendri Chinensis Cortex group, deficiency-heat+Acaí high dose and low dose groups, deficiency-cold model group, deficiency-cold+Cinnamomi Cortex group, deficiency-cold+Acaí high dose and low dose groups. The rats were treated with intramuscular injection of hydrocortisone (20 mg•kg⁻¹) or dexamethasone sodium phosphate (0.35 mg•kg⁻¹) for 21 days to set up deficiency-heat model and deficiency-cold models. The levels of cAMP, cGMP, T3, T4 and rT3 were detected by radioimmunoassay. The levels of TP, UA, TC, TG and ALB were detected by colorimetry. The level of cAMP, cAMP/cGMP in serum were reduced in Acaí high dose group (P<0.05, P<0.001). The levels of T3, T4 and rT3 were significantly reduced in the Acaí high dose group (P<0.01, P<0.001, P<0.05). The levels of TP, UA, TC, TG and ALB were significantly reduced in the Acaí high dose group (P<0.001, P<0.05, P<0.05, P<0.05, P<0.01). However, Acaí had no obvious effects on deficiency-cold models. Acaí showed the same effect with Phellodendri Chinensis Cortex in adjusting the levels of deficiency-heat rats; but unlike Cinnamomi Cortex, Acaí showed no obvious effects in adjusting the levels of deficiency-cold rats. Copyright© by the Chinese Pharmaceutical Association.

  5. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma.

    PubMed

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru

    2014-12-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    G6PD deficiency; Hemolytic anemia due to G6PD deficiency; Anemia - hemolytic due to G6PD deficiency ... Gallagher PG. Hemolytic anemias. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 161. Janz ...

  8. HET LRS2 Observations of Halpha in Old Hydrogen-deficient Supernovae

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig Craig; Pooley, David A.; Vinko, Jozsef; Szalai, Tamas; Marion, Howie H.; Sand, David J.; McQueen, Phillip; Silverman, Jeffrey M.

    2017-06-01

    For 3 years, we have been using narrow-band filters with the DIAFI imager on the HJS 2.7 m telescope to search for evidence that hydrogen-deficient supernovae undergo delayed collision with previously ejected circumstellar material and associated excitation of Halpha (see abstract by Pooley et al.). A powerful method to determine whether detected Halpha flux is from an HII region or a supernova is to obtain spectra; broad lines (> 1000 km/s) will be a certain indicator of a supernova. We have observed about 20 events that ranged in age from about 1000 days to nearly 80 years for which we have detected Halpha in the vicinity of the supernova. So far, only SN 2014C showed the broad H that is concrete evidence of ongoing circumstellar interaction. One interesting aspect revealed by the spectra is that we often pick up the two [N II] lines that typically accompany H in H II regions. Our spectra of SN 2008ha did not show these [N II] lines. The absence of the [N II] lines might be a clue to circumstellar interaction in conditions where the shock had slowed to a point where the H is not detectably broadened.

  9. Isolated autosomal dominant growth hormone deficiency: an evolving pituitary deficit? A multicenter follow-up study.

    PubMed

    Mullis, Primus E; Robinson, Iain C A F; Salemi, Souzan; Eblé, Andrée; Besson, Amélie; Vuissoz, Jean-Marc; Deladoey, Johnny; Simon, Dominique; Czernichow, Paul; Binder, Gerhard

    2005-04-01

    Four distinct familial types of isolated GH deficiency have been described so far, of which type II is the autosomal dominant inherited form. It is mainly caused by mutations within the first 6 bp of intervening sequence 3. However, other splice site and missense mutations have been reported. Based on in vitro experiments and transgenic animal data, there is strong evidence that there is a wide variability in phenotype in terms of the severity of GH deficiency. Therefore, we studied a total of 57 subjects belonging to 19 families suffering from different splice site as well as missense mutations within the GH-1 gene. The subjects presenting with a splice site mutation within the first 2 bp of intervening sequence 3 (5'IVS +1/+2 bp) leading to a skipping of exon 3 were found to be more likely to present in the follow-up with other pituitary hormone deficiencies. In addition, although the patients with missense mutations have previously been reported to be less affected, a number of patients presenting with the P89L missense GH form, showed some pituitary hormone impairment. The development of multiple hormonal deficiencies is not age dependent, and there is a clear variability in onset, severity, and progression, even within the same families. The message of clinical importance from these studies is that the pituitary endocrine status of all such patients should continue to be monitored closely over the years because further hormonal deficiencies may evolve with time.

  10. Genetic risk factors associated with lipid-lowering drug-induced myopathies.

    PubMed

    Vladutiu, Georgirene D; Simmons, Zachary; Isackson, Paul J; Tarnopolsky, Mark; Peltier, Wendy L; Barboi, Alexandru C; Sripathi, Naganand; Wortmann, Robert L; Phillips, Paul S

    2006-08-01

    Lipid-lowering drugs produce myopathic side effects in up to 7% of treated patients, with severe rhabdomyolysis occurring in as many as 0.5%. Underlying metabolic muscle diseases have not been evaluated extensively. In a cross-sectional study of 136 patients with drug-induced myopathies, we report a higher prevalence of underlying metabolic muscle diseases than expected in the general population. Control groups included 116 patients on therapy with no myopathic symptoms, 100 asymptomatic individuals from the general population never exposed to statins, and 106 patients with non-statin-induced myopathies. Of 110 patients who underwent mutation testing, 10% were heterozygous or homozygous for mutations causing three metabolic myopathies, compared to 3% testing positive among asymptomatic patients on therapy (P = 0.04). The actual number of mutant alleles found in the test group patients was increased fourfold over the control group (P < 0.0001) due to an increased presence of mutation homozygotes. The number of carriers for carnitine palmitoyltransferase II deficiency and for McArdle disease was increased 13- and 20-fold, respectively, over expected general population frequencies. Homozygotes for myoadenylate deaminase deficiency were increased 3.25-fold with no increase in carrier status. In 52% of muscle biopsies from patients, significant biochemical abnormalities were found in mitochondrial or fatty acid metabolism, with 31% having multiple defects. Variable persistent symptoms occurred in 68% of patients despite cessation of therapy. The effect of statins on energy metabolism combined with a genetic susceptibility to triggering of muscle symptoms may account for myopathic outcomes in certain high-risk groups.

  11. Polychlorinated biphenyl 77 augments angiotensin II-induced atherosclerosis and abdominal aortic aneurysms in male apolipoprotein E deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenescu, Violeta; Arsenescu, Razvan; Parulkar, Madhura

    2011-11-15

    Infusion of angiotensin II (AngII) to hyperlipidemic mice augments atherosclerosis and causes formation of abdominal aortic aneurysms (AAAs). Each of these AngII-induced vascular pathologies exhibit pronounced inflammation. Previous studies demonstrated that coplanar polychlorinated biphenyls (PCBs) promote inflammation in endothelial cells and adipocytes, two cell types implicated in AngII-induced vascular pathologies. The purpose of this study was to test the hypothesis that administration of PCB77 to male apolipoprotein E (ApoE) -/- mice promotes AngII-induced atherosclerosis and AAA formation. Male ApoE-/- mice were administered vehicle or PCB77 (49 mg/kg, i.p.) during week 1 and 4 (2 divided doses/week) of AngII infusion. Bodymore » weights and total serum cholesterol concentrations were not influenced by administration of PCB77. Systolic blood pressure was increased in AngII-infused mice administered PCB77 compared to vehicle (156 {+-} 6 vs 137 {+-} 5 mmHg, respectively). The percentage of aortic arch covered by atherosclerotic lesions was increased in AngII-infused mice administered PCB77 compared to vehicle (2.0 {+-} 0.4 vs 0.9 {+-} 0.1%, respectively). Lumen diameters of abdominal aortas determined by in vivo ultrasound and external diameters of excised suprarenal aortas were increased in AngII-infused mice administered PCB77 compared to vehicle. In addition, AAA incidence increased from 47 to 85% in AngII-infused mice administered PCB77. Adipose tissue in close proximity to AAAs from mice administered PCB77 exhibited increased mRNA abundance of proinflammatory cytokines and elevated expression of components of the renin-angiotensin system (angiotensinogen, angiotensin type 1a receptor (AT1aR)). These results demonstrate that PCB77 augments AngII-induced atherosclerosis and AAA formation. -- Highlights: Black-Right-Pointing-Pointer Polychlorinated biphenyl 77 (PCB77) promotes AngII-induced hypertension. Black-Right-Pointing-Pointer PCB77 augments AngII

  12. Glucose-6-phosphate dehydrogenase deficiency in Tunisia: molecular data and phenotype-genotype association.

    PubMed

    Laouini, N; Bibi, A; Ammar, H; Kazdaghli, K; Ouali, F; Othmani, R; Amdouni, S; Haloui, S; Sahli, C A; Jouini, L; Hadj Fredj, S; Siala, H; Ben Romdhane, N; Toumi, N E; Fattoum, S; Messsaoud, T

    2013-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. In this study, we aimed to perform a molecular investigation of G6PD deficiency in Tunisia and to associate clinical manifestations and the degree of deficiency with the genotype. A total of 161 Tunisian subjects of both sexes were screened by spectrophotometric assay for enzyme activity. Out of these, 54 unrelated subjects were selected for screening of the most frequent mutations in Tunisia by PCR/RFLP, followed by size-based separation of double-stranded fragments under non-denaturing conditions on a denaturing high performance liquid chromatography system. Of the 56 altered chromosomes examined, 75 % had the GdA(-) mutation, 14.28 % showed the GdB(-) mutation and no mutations were identified in 10.72 % of cases. Hemizygous males with GdA(-) mutation were mostly of class III, while those with GdB(-) mutation were mainly of class II. The principal clinical manifestation encountered was favism. Acute hemolytic crises induced by drugs or infections and neonatal jaundice were also noted. Less severe clinical features such as low back pain were present in heterozygous females and in one homozygous female. Asymptomatic individuals were in majority heterozygote females and strangely one hemizygous male. The spectrum of mutations seems to be homogeneous and similar to that of Mediterranean countries; nevertheless 10.72 % of cases remain with undetermined mutation thus suggesting a potential heterogeneity of the deficiency at the molecular level. On the other hand, we note a better association of the molecular defects with the severity of the deficiency than with clinical manifestations.

  13. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  14. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa)

    PubMed Central

    Wang, Baolan; Wei, Haifang; Xue, Zhen

    2017-01-01

    Background and aims Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. Methods To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant (eui1) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI. Key Results Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA1 and GA4, the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. Conclusions The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation. PMID:28065924

  15. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity.

    PubMed

    Jellusova, Julia; Wellmann, Ute; Amann, Kerstin; Winkler, Thomas H; Nitschke, Lars

    2010-04-01

    CD22 and Siglec-G are inhibitory coreceptors for BCR-mediated signaling. Although CD22-deficient mice show increased calcium signaling in their conventional B2 cells and a quite normal B cell maturation, Siglec-G-deficient mice have increased calcium mobilization just in B1 cells and show a large expansion of the B1 cell population. Neither CD22-deficient, nor Siglec-G-deficient mice on a pure C57BL/6 or BALB/c background, respectively, develop autoimmunity. Using Siglec-G x CD22 double-deficient mice, we addressed whether Siglec-G and CD22 have redundant functions. Siglec-G x CD22 double-deficient mice show elevated calcium responses in both B1 cells and B2 cells, increased serum IgM levels and an enlarged population of B1 cells. The enlargement of B1 cell numbers is even higher than in Siglecg(-/-) mice. This expansion seems to happen at the expense of B2 cells, which are reduced in absolute cell numbers, but show an activated phenotype. Furthermore, Siglec-G x CD22 double-deficient mice show a diminished immune response to both thymus-dependent and thymus-independent type II Ags. In contrast, B cells from Siglec-G x CD22 double-deficient mice exhibit a hyperproliferative response to stimulation with several TLR ligands. Aged Siglec-G x CD22 double-deficient mice spontaneously develop anti-DNA and antinuclear autoantibodies. These resulted in a moderate form of immune complex glomerulonephritis. These results show that Siglec-G and CD22 have partly compensatory functions and together are crucial in maintaining the B cell tolerance.

  16. Intraoperative device closure of atrial septal defects with inferior vena cava rim deficiency: a safe alternative to surgical repair.

    PubMed

    Chen, Qiang; Chen, Liang-Wan; Cao, Hua; Zhang, Gui-Can; Chen, Dao-Zhong; Zhang, Hui

    2011-03-01

    Our objective was to evaluate the safety and feasibility of intraoperative device closure of atrial septal defects with inferior vena cava rim deficiency. From January 2005 to December 2008, we enrolled 65 patients who had a secundum atrial septal defect with inferior vena cava rim deficiency closure in our institution. Patients were divided into 2 groups: 35 patients in group I underwent intraoperative device closure with a right lateral minithoracotomy and 30 in group II underwent open cardiac repair with a right lateral thoracotomy and cardiopulmonary bypass. Intraoperative device closure involved a minimal intercostal incision that was performed after full evaluation of the atrial septal defect by transthoracic echocardiography and the insertion of the device through the delivery sheath to occlude the atrial septal defect. The procedure was successful in all patients. In group I, the diameter of the atrial septal defect ranged from 30 to 44 mm (mean, 35.3 ± 3.9 mm), and the size of the implanted occluder ranged from 34 to 48 mm (mean, 40 ± 2.1 mm). The total occlusion rate was 82.9% immediately after the operation, 97.1% at 3 months, and 100% at 12 and 24 months of follow-up. In group II, all patients had successful closure. A follow-up period of 12 to 24 months was obtained in both groups. During the follow-up, there was no recurrence, thrombosis, or device failure. In our comparative studies, group II had significantly longer operative time, intensive care unit stay, and hospital stay than group I (P < .001). The cost of group I was less than that of group II (20,450.9 ± 840.8 RMB vs 25,884.9 ± 701.8; P < .001). Intraoperative device closure of atrial septal defects with inferior vena cava rim deficiency is a safe and feasible technique. It has the advantages of cost savings, cosmetic results, and less trauma than surgical closure. Early and midterm results are encouraging. Crown Copyright © 2011. Published by Mosby, Inc. All rights reserved.

  17. Molecular characterization of FXI deficiency.

    PubMed

    Berber, Ergul

    2011-02-01

    Factor XI (FXI) deficiency is a rare autosomal bleeding disease associated with genetic defects in the FXI gene. It is a heterogeneous disorder with variable tendency in bleeding and variable causative FXI gene mutations. It is characterized as a cross-reacting material-negative (CRM-) FXI deficiency due to decreased FXI levels or cross-reacting material-positive (CRM+) FXI deficiency due to impaired FXI function. Increasing number of mutations has been reported in FXI mutation database, and most of the mutations are affecting serine protease (SP) domain of the protein. Functional characterization for the mutations helps to better understand the molecular basis of FXI deficiency. Prevalence of the disease is higher in certain populations such as Ashkenazi Jews. The purpose of this review is to give an overview of the molecular basis of congenital FXI deficiency.

  18. Manganese Deficiency Leads to Genotype-Specific Changes in Fluorescence Induction Kinetics and State Transitions1[C][OA

    PubMed Central

    Husted, Søren; Laursen, Kristian H.; Hebbern, Christopher A.; Schmidt, Sidsel B.; Pedas, Pai; Haldrup, Anna; Jensen, Poul E.

    2009-01-01

    Barley (Hordeum vulgare) genotypes display a marked difference in their ability to tolerate growth at low manganese (Mn) concentrations, a phenomenon designated as differential Mn efficiency. Induction of Mn deficiency in two genotypes differing in Mn efficiency led to a decline in the quantum yield efficiency for both, although faster in the Mn-inefficient genotype. Leaf tissue and thylakoid Mn concentrations were reduced under Mn deficiency, but no difference between genotypes was observed and no visual Mn deficiency symptoms were developed. Analysis of the fluorescence induction kinetics revealed that in addition to the usual O-J-I-P steps, clear K and D steps were developed in the Mn-inefficient genotype under Mn deficiency. These marked changes indicated damages to photosystem II (PSII). This was further substantiated by state transition measurements, indicating that the ability of plants to redistribute excitation energy was reduced. The percentage change in state transitions for control plants with normal Mn supply of both genotypes was 9% to 11%. However, in Mn-deficient leaves of the Mn-inefficient genotypes, state transitions were reduced to less than 1%, whereas no change was observed for the Mn-efficient genotypes. Immunoblotting and the chlorophyll a/b ratio confirmed that Mn deficiency in general resulted in a significant reduction in abundance of PSII reaction centers relative to the peripheral antenna. In addition, PSII appeared to be significantly more affected by Mn limitation than PSI. However, the striking genotypic differences observed in Mn-deficient plants, when analyzing state transitions and fluorescence induction kinetics, could not be correlated with specific changes in photosystem proteins. Thus, there is no simple linkage between protein expression and the differential reduction in state transition and fluorescence induction kinetics observed for the genotypes under Mn deficiency. PMID:19369593

  19. Nitric oxide signaling is involved in the response to iron deficiency in the woody plant Malus xiaojinensis.

    PubMed

    Zhai, Longmei; Xiao, Dashuang; Sun, Chaohua; Wu, Ting; Han, Zhenhai; Zhang, Xinzhong; Xu, Xuefeng; Wang, Yi

    2016-12-01

    To cope with iron (Fe) deficiency, plants have evolved a wide range of adaptive responses from changes in morphology to altered physiological responses. Recent studies have demonstrated that nitric oxide (NO) is involved in the Fe-deficiency response through hormonal signaling pathways. Here, we report that NO plays a significant role in Malus xiaojinensis, an Fe-efficient woody plant. Fe deficiency triggered significant accumulation of NO in the root system, predominantly in the outer cortical and epidermal cells of the elongation zone. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) completely arrested Fe deficiency-induced root hair formation, blocked the increase in root ferric-chelate reductase activity and in root H + excretion, further reduced the active iron content in young leaves and roots, and prevented the upregulation of the critical Fe-related genes, FIT, MxFRO2-like, and MxIRT1. These conditions were restored under Fe deficiency by treatment with the NO donor, sodium nitroprusside (SNP). Additionally, chlorophyll content and relative expression levels of the genes chlorophyll a deoxygenase (MxCAO) and polyamine oxidase (MxPAO) were not changed significantly following Fe deficiency for 6 d; however, SNP treatment increased MxHEMA gene expression. Interestingly, the Fv/Fm ratio, the maximum quantum yield of photosystem II (PSII), decreased significantly following cPTIO treatment. We observed more severe chlorosis under Fe deficiency with cPTIO treatment for 9 d. These results strongly suggest that NO mediates a range of responses to Fe deficiency in M. xiaojinensis, from morphological changes to the regulation of physiological processes and gene expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Dexmedetomidine-based intravenous anesthesia of a pediatric patient with glucose-6-phosphate dehydrogenase (G6PD) deficiency: A case report.

    PubMed

    Takahashi, Nanae; Ogawa, Takashi; Wajima, Zen'ichiro; Omi, Akibumi

    2017-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect, resulting in deficits in nicotinamide adenine dinucleotide phosphate production, an important intracellular antioxidant enzyme. G6PD-deficient subjects present with a susceptibility of erythrocytes to oxidative stress and hemolysis, and should avoid drugs or stressors that have oxidative actions. Dexmedetomidine is an anesthetic agent with antioxidant actions. A 5-year-old boy with G6PD deficiency. The patient was diagnosed with G6PD deficiency at birth. His red blood cell levels were indicating Class II G6PD activity by the World Health Organization (WHO) classification, but had no history of hemolytic anemia. Because of the patient's anxiety and hyperactivity prior to an operation for upper labial frenum resection, we performed perioperative management using intravenous sedation with dexmedetomidine, which provides upper airway patency and has an antioxidant action. There was no abnormal breathing observed during anesthesia, and arousal was smooth with stable hemodynamics. The patient had no symptoms of hemolytic anemia up to 1 week postsurgery. Antioxidant sedatives such as dexmedetomidine may be useful for reducing the risk of hemolysis after surgery in infant G6PD deficiency cases.

  1. Frequency of malaria and glucose-6-phosphate dehydrogenase deficiency in Tajikistan.

    PubMed

    Rebholz, Cornelia E; Michel, Anette J; Maselli, Daniel A; Saipphudin, Karimov; Wyss, Kaspar

    2006-06-16

    During the Soviet era, malaria was close to eradication in Tajikistan. Since the early 1990s, the disease has been on the rise and has become endemic in large areas of southern and western Tajikistan. The standard national treatment for Plasmodium vivax is based on primaquine. This entails the risk of severe haemolysis for patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Seasonal and geographical distribution patterns as well as G6PD deficiency frequency were analysed with a view to improve understanding of the current malaria situation in Tajikistan. Spatial and seasonal distribution was analysed, applying a risk model that included key environmental factors such as temperature and the availability of mosquito breeding sites. The frequency of G6PD deficiency was studied at the health service level, including a cross-sectional sample of 382 adult men. Analysis revealed high rates of malaria transmission in most districts of the southern province of Khatlon, as well as in some zones in the northern province of Sughd. Three categories of risk areas were identified: (i) zones at relatively high malaria risk with high current incidence rates, where malaria control and prevention measures should be taken at all stages of the transmission cycle; (ii) zones at relatively high malaria risk with low current incidence rates, where malaria prevention measures are recommended; and (iii) zones at intermediate or low malaria risk with low current incidence rates where no particular measures appear necessary. The average prevalence of G6PD deficiency was 2.1% with apparent differences between ethnic groups and geographical regions. The study clearly indicates that malaria is a serious health issue in specific regions of Tajikistan. Transmission is mainly determined by temperature. Consequently, locations at lower altitude are more malaria-prone. G6PD deficiency frequency is too moderate to require fundamental changes in standard national treatment of cases of P

  2. Chronic transgenerational vitamin B12 deficiency of severe and moderate magnitudes modulates adiposity-probable underlying mechanisms.

    PubMed

    Ghosh, Shampa; Sinha, Jitendra Kumar; Muralikrishna, Bojanapalli; Putcha, Uday Kumar; Raghunath, Manchala

    2017-05-06

    We have demonstrated previously that severe but not moderate vitamin B12 deficiency altered body composition and induced adiposity in female C57BL/6 mice. This study aims to elucidate the effects of chronic transgenerational dietary vitamin B12 restriction on body composition and various biochemical parameters in the F1 generation offspring of our mouse models of severe and moderate vitamin B12 deficiency established earlier. Female weanling C57BL/6 mice received, ad libitum, for 4 weeks a (i) control diet, (ii) vitamin B12-restricted diet with pectin as dietary fiber (severely deficient diet), or (iii) vitamin B12-restricted diet with cellulose as dietary fiber (moderately deficient diet) and then mated with control males. The offspring of control and severely deficient dams continued on the respective diets of their mothers. Few moderately deficient dams were rehabilitated to control diet from parturition and their pups were weaned to control diet. Also, some offspring born to moderately B12 deficient dams were weaned to control diet, while others continued on the same diet as their mothers. Various parameters were determined in the F1 offspring after 12 and 36 weeks of feeding. The results indicate that both severe and moderate maternal vitamin B12 restrictions were associated with accelerated catch-up growth, increased body fat percentage, visceral adiposity, dyslipidemia, fasting hyperglycemia and insulin resistance in the F1 offspring. Inflammation, increased glucocorticoid and oxidative stress and poor antioxidant defence probably underlie these adverse effects. Rehabilitation from parturition but not weaning was beneficial in delaying the onset of the adverse outcomes in the offspring. © 2016 BioFactors, 43(3):400-414, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  3. Vitamin E Inhibits Abdominal Aortic Aneurysm Formation in Angiotensin II–Infused Apolipoprotein E–Deficient Mice

    PubMed Central

    Gavrila, Dan; Li, Wei Gen; McCormick, Michael L.; Thomas, Manesh; Daugherty, Alan; Cassis, Lisa A.; Miller, Francis J.; Oberley, Larry W.; Dellsperger, Kevin C.; Weintraub, Neal L.

    2014-01-01

    Background Abdominal aortic aneurysms (AAAs) in humans are associated with locally increased oxidative stress and activity of NADPH oxidase. We investigated the hypothesis that vitamin E, an antioxidant with documented efficacy in mice, can attenuate AAA formation during angiotensin II (Ang II) infusion in apolipoprotein E–deficient mice. Methods and Results Six-month-old male apolipoprotein E–deficient mice were infused with Ang II at 1000 ng/kg per minute for 4 weeks via osmotic minipumps while consuming either a regular diet or a diet enriched with vitamin E (2 IU/g of diet). After 4 weeks, abdominal aortic weight and maximal diameter were determined, and aortic tissues were sectioned and examined using biochemical and histological techniques. Vitamin E attenuated formation of AAA, decreasing maximal aortic diameter by 24% and abdominal aortic weight by 34% (P<0.05, respectively). Importantly, animals treated with vitamin E showed a 44% reduction in the combined end point of fatal+nonfatal aortic rupture (P<0.05). Vitamin E also decreased aortic 8-isoprostane content (a marker of oxidative stress) and reduced both aortic macrophage infiltration and osteopontin expression (P<0.05, respectively). Vitamin E treatment had no significant effect on the extent of aortic root atherosclerosis, activation of matrix metalloproteinases 2 or 9, serum lipid profile, or systolic blood pressure. Conclusions Vitamin E ameliorates AAAs and reduces the combined end point of fatal+nonfatal aortic rupture in this animal model. These findings are consistent with the concept that oxidative stress plays a pivotal role in Ang II–driven AAA formation in hyperlipidemic mice. PMID:15933246

  4. Selective IgA Deficiency

    MedlinePlus

    ... immunoglobulins. Videos: Choosing Wisely » Selective IgA Deficiency Treatment & Management The underlying cause for Selective IgA Deficiency is ... the Evidence » Practice Parameter for the Diagnosis and Management of Primary Immunodefiency » 2017 Non-CME Recordings » Vaccination ...

  5. Combined vitamin C and vitamin E deficiency worsens early atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Babaev, Vladimir R; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F; May, James M

    2010-09-01

    To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis (an inflammatory condition associated with oxidative stress), 4 combinations of vitamin supplementation (low C/low E, low C/high E, high C/low E, and high C/high E) were studied in atherosclerosis-prone apolipoprotein E-deficient mice also unable to synthesize their own vitamin C (gulonolactone oxidase(-/-)); and to evaluate the effect of a more severe depletion of vitamin C alone in a second experiment using gulonolactone oxidase(-/-) mice carrying the hemizygous deletion of SVCT2 (the vitamin C transporter). After 8 weeks of a high-fat diet (16% lard and 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2- to 3-fold in male mice, although only plaque macrophage content was increased in female mice. A more severe deficiency of vitamin C in gulonolactone oxidase(-/-) mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apolipoprotein E(-/-) mice compared with littermates receiving a diet replete in vitamin C, again most clearly in males. Combined deficiencies of vitamins E and C are required to worsen early atherosclerosis in an apolipoprotein E-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete.

  6. Genetics Home Reference: factor V deficiency

    MedlinePlus

    ... Twitter Home Health Conditions Factor V deficiency Factor V deficiency Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Factor V deficiency is a rare bleeding disorder. The signs ...

  7. Genetics Home Reference: protein C deficiency

    MedlinePlus

    ... Twitter Home Health Conditions Protein C deficiency Protein C deficiency Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Protein C deficiency is a disorder that increases the risk ...

  8. Genetics Home Reference: factor X deficiency

    MedlinePlus

    ... Twitter Home Health Conditions Factor X deficiency Factor X deficiency Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Factor X deficiency is a rare bleeding disorder that varies ...

  9. Genetics Home Reference: factor VII deficiency

    MedlinePlus

    ... Facebook Twitter Home Health Conditions Factor VII deficiency Factor VII deficiency Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Factor VII deficiency is a rare bleeding disorder that varies ...

  10. Fetal and neonatal iron deficiency but not copper deficiency increases vascular complexity in the developing rat brain

    PubMed Central

    Bastian, Thomas W.; Santarriaga, Stephanie; Nguyen, Thu An; Prohaska, Joseph R.; Georgieff, Michael K.; Anderson, Grant W.

    2015-01-01

    Objectives Anemia caused by nutritional deficiencies, such as iron and copper deficiencies, is a global health problem. Iron and copper deficiencies have their most profound effect on the developing fetus/infant, leading to brain development deficits and poor cognitive outcomes. Tissue iron depletion or chronic anemia can induce cellular hypoxic signaling. In mice, chronic hypoxia induces a compensatory increase in brain blood vessel outgrowth. We hypothesized that developmental anemia, due to iron or copper deficiencies, induces angiogenesis/vasculogenesis in the neonatal brain. Methods To test our hypothesis, three independent experiments were performed where pregnant rats were fed iron- or copper-deficient diets from gestational day 2 through mid-lactation. Effects on the neonatal brain vasculature were determined using qPCR to assess mRNA levels of angiogenesis/vasculogenesis-associated genes and GLUT1 immunohistochemistry (IHC) to assess brain blood vessel density and complexity. Results Iron deficiency, but not copper deficiency, increased mRNA expression of brain endothelial cell- and angiogenesis/vasculogenesis-associated genes (i.e. Glut1, Vwf, Vegfa, Ang2, Cxcl12, and Flk1) in the neonatal brain, suggesting increased cerebrovascular density. Iron deficiency also increased hippocampal and cerebral cortical blood vessel branching by 62% and 78%, respectively. Discussion This study demonstrates increased blood vessel complexity in the neonatal iron-deficient brain, which is likely due to elevated angiogenic/vasculogenic signaling. At least initially, this is probably an adaptive response to maintain metabolic substrate homeostasis in the developing iron-deficient brain. However, this may also contribute to long-term neurodevelopmental deficits. PMID:26177275

  11. Characterization and cloning of tripeptidyl peptidase II from the fruit fly, Drosophila melanogaster.

    PubMed

    Renn, S C; Tomkinson, B; Taghert, P H

    1998-07-24

    We describe the characterization, cloning, and genetic analysis of tripeptidyl peptidase II (TPP II) from Drosophila melanogaster. Mammalian TPP II removes N-terminal tripeptides, has wide distribution, and has been identified as the cholecystokinin-degrading peptidase in rat brain. Size exclusion and ion exchange chromatography produced a 70-fold purification of dTPP II activity from Drosophila tissue extracts. The substrate specificity and the inhibitor sensitivity of dTPP II is comparable to that of the human enzyme. In particular, dTPP II is sensitive to butabindide, a specific inhibitor of the rat cholecystokinin-inactivating activity. We isolated a 4309-base pair dTPP II cDNA which predicts a 1354-amino acid protein. The deduced human and Drosophila TPP II proteins display 38% overall identity. The catalytic triad, its spacing, and the sequences that surround it are highly conserved; the C-terminal end of dTPP II contains a 100-amino acid insert not found in the mammalian proteins. Recombinant dTPP II displays the predicted activity following expression in HEK cells. TPP II maps to cytological position 49F4-7; animals deficient for this interval show reduced TPP II activity.

  12. Autoimmune gastritis presenting as iron deficiency anemia in childhood.

    PubMed

    Gonçalves, Cristina; Oliveira, Maria Emília; Palha, Ana M; Ferrão, Anabela; Morais, Anabela; Lopes, Ana Isabel

    2014-11-14

    To characterize clinical, laboratorial, and histological profile of pediatric autoimmune gastritis in the setting of unexplained iron deficiency anemia investigation. A descriptive, observational study including pediatric patients with a diagnosis of autoimmune gastritis (positive parietal cell antibody and gastric corpus atrophy) established in a 6 year period (2006-2011) in the setting of refractory iron deficiency anemia (refractoriness to oral iron therapy for at least 6 mo and requirement for intravenous iron therapy) investigation, after exclusion of other potentially contributing causes of anemia. Helicobacter pylori (H. pylori) infection and anti-secretory therapy were also excluded. Data were retrospectively collected from clinical files, including: demographic data (age, gender, and ethnic background), past medical history, gastrointestinal symptoms, familial history, laboratorial evaluation (Hb, serum ferritin, serum gastrin, pepsinogen I/ pepsinogen II, B12 vitamin, intrinsic factor autoantibodies, thyroid autoantibodies, and anti-transglutaminase antibodies), and endoscopic and histological findings (HE, Periodic Acid-Schiff/Alcian blue, gastrin, chromogranin A and immunochemistry analysis for CD3, CD20 and CD68). Descriptive statistical analysis was performed (mean, median, and standard deviation). We report a case-series concerning 3 girls and 2 boys with a mean age of 13.6 ± 2.8 years (3 Caucasian and 2 African). One girl had type I diabetes. Familial history was positive in 4/5 cases, respectively for autoimmune thyroiditis (2/5), sarcoidosis (1/5) and multiple myeloma (1/5). Laboratorial evaluation on admission included: Hb: 9.5 ± 0.7 g/dL; serum ferritin: 4.0 ± 0.9 ng/mL; serum gastrin: 393 ± 286 pg/mL; low pepsinogen I/ pepsinogen II ratio in 1/5 patients; normal vitamin B12 levels (analyzed in 3 patients). Endoscopy findings included: duodenal nodularity (2/5) and gastric fold softening (2/5), and histological evaluation showed

  13. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1.

    PubMed

    Hinrichsen, Inga; Ernst, Benjamin Philipp; Nuber, Franziska; Passmann, Sandra; Schäfer, Dieter; Steinke, Verena; Friedrichs, Nicolaus; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-24

    Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be related to SPTAN1.

  14. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1

    PubMed Central

    2014-01-01

    Introduction Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Methods Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. Results MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. Conclusions These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be

  15. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin

    PubMed Central

    Velarde, Michael C.; Flynn, James M.; Day, Nicholas U.; Melov, Simon; Campisi, Judith

    2012-01-01

    Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypes in vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo. PMID:22278880

  16. Prevalence of vitamin deficiencies on admission: relationship to hospital mortality in critically ill patients.

    PubMed

    Corcoran, T B; O'Neill, M A; Webb, S A R; Ho, K M

    2009-03-01

    Vitamin deficiency is believed to be common in critical illness. Water soluble and antioxidant vitamins are those most frequently used for supplementation in these patients. There are no data to confirm the prevalence of vitamin deficiencies in high-risk emergently admitted intensive care patients, nor their association with hospital mortality. One hundred and twenty-nine consecutive, critically ill patients who were emergently admitted to intensive care were enrolled in this prospective observational cohort study. Patient data including diagnosis, source of admission and severity of illness scores were prospectively collected. Within the first 48 hours of admission, concentrations of C-reactive protein, Vitamins A, E, B1, B12 and folate were measured on arterial blood. Multivariate stepwise logistic regression modelling was performed to examine the association of vitamin concentrations with hospital mortality. Fifty-five patients (43%) had a biochemical deficiency of one of the five vitamins on admission to the intensive care unit. A total of 18 patients died (14%) during their hospital stay (15 of those in the intensive care unit). Moderate correlations with C-reactive protein concentrations were demonstrated for Vitamins B12, A and E (Spearman's r = 0.309, -0.541 and -0.299, P = 0.001, 0.001 and 0.007 respectively). Hospital mortality was significantly associated with age, APACHE II score, admission and maximum Sequential Organ Failure Assessment scores and admission source in the univariate analyses. Multivariate analysis did not demonstrate an association between biochemical deficiency and mortality. Biochemical deficiencies of water-soluble and antioxidant vitamins are common on admission in unplanned or emergency admissions to the intensive care unit, but we could not demonstrate an independent association with hospital mortality.

  17. Phenotype-genotype correlations in congenital isolated growth hormone deficiency (IGHD).

    PubMed

    Alatzoglou, Kyriaki S; Dattani, Mehul T

    2012-01-01

    Isolated growth hormone deficiency (IGHD) may be congenital, often due to genetic mutations, or acquired as a result of other factors such as cranial irradiation. The commonest genes implicated in its genetic etiology are those encoding growth hormone (GH1) and the receptor for GH-releasing hormone (GHRHR). Rarely, IGHD may be caused by mutations in transcription factors (HESX1, SOX3, OTX2) or be the first presentation before the development of other pituitary hormone deficiencies. IGHD has been classified in four genetic forms (type IA, IB, II and III). Despite the increasing number of genes implicated in the etiology of IGHD, mutations in known genes account only for a small percentage of cases; therefore, other as yet unidentified factors may be implicated in its etiology. Although there is no strict genotype/phenotype correlation in patients with IGHD, there are some emerging patterns that may guide us towards a genetic diagnosis of the condition. There is increasing understanding that the phenotype of patients with IGHD is highly variable and sometimes even evolving, dictating the need for long term follow-up in these cases.

  18. Clinical significance of enzymatic deficiencies in the gastrointestinal tract with particular reference to lactase deficiency.

    PubMed

    Rossi, E; Lentze, M J

    1984-12-01

    The study of deficiencies of small intestinal brush-border hydrolases increased our knowledge about the specific functions of hydrolases in the digestion of smaller molecules on the microvillus surface of the absorptive cells. The sucrase-isomaltase (SI) complex has been shown to be synthesized as a precursor (pro-sucrase-isomaltase) which is then incorporated into the membrane. The hydrophobic N-terminal end of the molecule is anchored in the lipid bilayer. In SI deficiency the molecular base of the disease is still not clear. Absence of SI activity could be due to complete lack of precursor synthesis or to structural changes within the N-terminal end of the SI-complex. Deficiencies of peptide hydrolases have not been reported with the exception of enteropeptidase (EP). Here a congenital deficiency of the enzyme was observed as the primary defect in enzyme synthesis within the enterocytes and as a secondary defect due to exocrine pancreatic insufficiency. In contrast to the primary EP deficiency, the activity of EP can be restored in the cases of exocrine pancreatic insufficiency by treatment with pancreatic extracts. Primary lactase deficiency exists in various forms. Besides congenital lactase deficiency, the late onset or adult type of lactase deficiency has been observed. The latter occurs in many different ethnic groups around the world. Here, using gel electrophoresis and immunoelectrophoresis, the lack of enzyme activity could be shown to be a primary defect in enzyme protein synthesis. In man and in the rat, two different lactases have been identified. In contrast to adult lactase, fetal lactase contains sialic acid at the end of carbohydrate side chains.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Combined Vitamin C and Vitamin E Deficiency Worsens Early Atherosclerosis in ApoE-Deficient Mice

    PubMed Central

    Babaev, Vladimir R.; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F.; May, James M.

    2010-01-01

    Objective Atherosclerosis is an inflammatory condition associated with oxidative stress, but controversy persists regarding whether antioxidants such as vitamins C and E are preventative. To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis, four combinations of vitamin supplementation (Low C/Low E, Low C/High E, High C/Low E, High C/High E) were studied in atherosclerosis-prone apolipoprotein E (apoE)-deficient mice also unable to synthesize their own vitamin C (gulo−/−). The effect of a more severe depletion of vitamin C alone was evaluated in a second experiment using gulo−/− mice carrying the hemizygous deletion of SVCT2, the vitamin C transporter. Methods and Results After 8 weeks on a high-fat diet (16% lard, 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2-3-fold in males, although only plaque macrophage content was increased in females. A more severe deficiency of vitamin C in gulo−/− mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apoE−/− mice compared to littermates on a diet replete in vitamin C, again most clearly in males. Conclusion Combined vitamin E and C deficiencies are required to worsen early atherosclerosis in an apoE-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete. PMID:20558818

  20. What Is Combined Deficiency of Vitamin K-Dependent Clotting Factors?

    MedlinePlus

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  1. Thiamine Deficiency Complex Workshop final report: November 6-7, 2008, Ann Arbor, MI

    USGS Publications Warehouse

    Honeyfield, Dale C.; Tillitt, Donald E.; Riley, Stephen C.

    2008-01-01

    evaluated. The biological role of thiaminase I, associated with thiamine deficiency, remains to be determined whereas thiaminase II has been reported to be part of a salvage pathway leading to thiamine synthesis. The use of gene array technology and 3-dimensional histology is adding new understanding to the affects of thiamine deficiency. Research is needed to determine the thiamine status of species feeding on dreissenids, the environmental sources of thiaminase and the biological role of thiaminase I.

  2. Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity.

    PubMed

    Morrow, Ryan M; Picard, Martin; Derbeneva, Olga; Leipzig, Jeremy; McManus, Meagan J; Gouspillou, Gilles; Barbat-Artigas, Sébastien; Dos Santos, Carlos; Hepple, Russell T; Murdock, Deborah G; Wallace, Douglas C

    2017-03-07

    Diabetes is associated with impaired glucose metabolism in the presence of excess insulin. Glucose and fatty acids provide reducing equivalents to mitochondria to generate energy, and studies have reported mitochondrial dysfunction in type II diabetes patients. If mitochondrial dysfunction can cause diabetes, then we hypothesized that increased mitochondrial metabolism should render animals resistant to diabetes. This was confirmed in mice in which the heart-muscle-brain adenine nucleotide translocator isoform 1 (ANT1) was inactivated. ANT1-deficient animals are insulin-hypersensitive, glucose-tolerant, and resistant to high fat diet (HFD)-induced toxicity. In ANT1-deficient skeletal muscle, mitochondrial gene expression is induced in association with the hyperproliferation of mitochondria. The ANT1-deficient muscle mitochondria produce excess reactive oxygen species (ROS) and are partially uncoupled. Hence, the muscle respiration under nonphosphorylating conditions is increased. Muscle transcriptome analysis revealed the induction of mitochondrial biogenesis, down-regulation of diabetes-related genes, and increased expression of the genes encoding the myokines FGF21 and GDF15. However, FGF21 was not elevated in serum, and FGF21 and UCP1 mRNAs were not induced in liver or brown adipose tissue (BAT). Hence, increased oxidation of dietary-reducing equivalents by elevated muscle mitochondrial respiration appears to be the mechanism by which ANT1-deficient mice prevent diabetes, demonstrating that the rate of mitochondrial oxidation of calories is important in the etiology of metabolic disease.

  3. Anaemia, iron deficiency and iron deficiency anaemia among blood donors in Port Harcourt, Nigeria.

    PubMed

    Jeremiah, Zaccheaus Awortu; Koate, Baribefe Banavule

    2010-04-01

    There is paucity of information on the effect of blood donation on iron stores in Port Harcourt, Nigeria. The present study was, therefore, designed to assess, using a combination of haemoglobin and iron status parameters, the development of anaemia and prevalence of iron deficiency anaemia in this area of Nigeria. Three hundred and forty-eight unselected consecutive whole blood donors, comprising 96 regular donors, 156 relatives of patients and 96 voluntary donors, constituted the study population. Three haematological parameters (haemoglobin, packed cell volume, and mean cell haemoglobin concentration) and four biochemical iron parameters (serum ferritin, serum iron, total iron binding capacity and transferrin saturation) were assessed using standard colorimetric and ELISA techniques. The prevalence of anaemia alone (haemoglobin <11.0 g/dL) was 13.7%. The prevalence of isolated iron deficiency (serum ferritin <12 ng/mL) was 20.6% while that of iron-deficiency anaemia (haemoglobin <11.0 g/dL + serum ferritin <12.0 ng/mL) was 12.0%. Among the three categories of the donors, the regular donors were found to be most adversely affected as shown by the reduction in mean values of both haematological and biochemical iron parameters. Interestingly, anaemia, iron deficiency and iron-deficiency anaemia were present almost exclusively among regular blood donors, all of whom were over 35 years old. Anaemia, iron deficiency and iron-deficiency anaemia are highly prevalent among blood donors in Port Harcourt, Nigeria. It will be necessary to review the screening tests for the selection of blood donors and also include serum ferritin measurement for the routine assessment of blood donors, especially among regular blood donors.

  4. 1-Deoxysphingolipids Encountered Exogenously and Made de Novo: Dangerous Mysteries inside an Enigma*

    PubMed Central

    Duan, Jingjing; Merrill, Alfred H.

    2015-01-01

    The traditional backbones of mammalian sphingolipids are 2-amino, 1,3-diols made by serine palmitoyltransferase (SPT). Many organisms additionally produce non-traditional, cytotoxic 1-deoxysphingoid bases and, surprisingly, mammalian SPT biosynthesizes some of them, too (e.g. 1-deoxysphinganine from l-alanine). These are rapidly N-acylated to 1-deoxy-“ceramides” with very uncommon biophysical properties. The functions of 1-deoxysphingolipids are not known, but they are certainly dangerous as contributors to sensory and autonomic neuropathies when elevated by inherited SPT mutations, and they are noticeable in diabetes, non-alcoholic steatohepatitis, serine deficiencies, and other diseases. As components of food as well as endogenously produced, these substances are mysteries within an enigma. PMID:25947379

  5. Protease-Activated Receptor-2 Deficiency Attenuates Atherosclerotic Lesion Progression and Instability in Apolipoprotein E-Deficient Mice

    PubMed Central

    Zuo, Pengfei; Zuo, Zhi; Zheng, Yueyue; Wang, Xin; Zhou, Qianxing; Chen, Long; Ma, Genshan

    2017-01-01

    Inflammatory mechanisms are involved in the process of atherosclerotic plaque formation and rupture. Accumulating evidence suggests that protease-activated receptor (PAR)-2 contributes to the pathophysiology of chronic inflammation on the vasculature. To directly examine the role of PAR-2 in atherosclerosis, we generated apolipoprotein E/PAR-2 double-deficient mice. Mice were fed with high-fat diet for 12 weeks starting at ages of 6 weeks. PAR-2 deficiency attenuated atherosclerotic lesion progression with reduced total lesion area, reduced percentage of stenosis and reduced total necrotic core area. PAR-2 deficiency increased fibrous cap thickness and collagen content of plaque. Moreover, PAR-2 deficiency decreased smooth muscle cell content, macrophage accumulation, matrix metallopeptidase-9 expression and neovascularization in plaque. Relative quantitative PCR assay using thoracic aorta revealed that PAR-2 deficiency reduced mRNA expression of inflammatory molecules, such as vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. In vitro experiment, we found that PAR-2 deficiency reduced mRNA expression of interferon-γ, interleukin-6, TNF-α and MCP-1 in macrophage under unstimulated and lipopolysaccharide-stimulated conditions. These results suggest that PAR-2 deficiency attenuates the progression and instability of atherosclerotic plaque. PMID:28959204

  6. Iron deficiency and iron deficiency anaemia in women.

    PubMed

    Percy, Laura; Mansour, Diana; Fraser, Ian

    2017-04-01

    Iron deficiency (ID) is the most common micronutrient deficiency worldwide with >20% of women experiencing it during their reproductive lives. Hepcidin, a peptide hormone mostly produced by the liver, controls the absorption and regulation of iron. Understanding iron metabolism is pivotal in the successful management of ID and iron deficiency anaemia (IDA) using oral preparations, parenteral iron or blood transfusion. Oral preparations vary in their iron content and can result in gastrointestinal side effects. Parenteral iron is indicated when there are compliance/tolerance issues with oral iron, comorbidities which may affect absorption or ongoing iron losses that exceed absorptive capacity. It may also be the preferred option when rapid iron repletion is required to prevent physiological decompensation or given preoperatively for non-deferrable surgery. As gynaecologists, we focus on managing women's heavy menstrual bleeding (HMB) and assume that primary care clinicians are treating the associated ID/IDA. We now need to take the lead in diagnosing, managing and initiating treatment for ID/IDA and treating HMB simultaneously. This dual management will significantly improve their quality of life. In this chapter we will summarise the importance of iron in cellular functioning, describe how to diagnose ID/IDA and help clinicians choose between the available treatment options. Copyright © 2016. Published by Elsevier Ltd.

  7. Photosystem II Functionality in Barley Responds Dynamically to Changes in Leaf Manganese Status

    PubMed Central

    Schmidt, Sidsel B.; Powikrowska, Marta; Krogholm, Ken S.; Naumann-Busch, Bianca; Schjoerring, Jan K.; Husted, Søren; Jensen, Poul E.; Pedas, Pai R.

    2016-01-01

    A catalytic manganese (Mn) cluster is required for the oxidation of water in the oxygen-evolving complex (OEC) of photosystem II (PSII) in plants. Despite this essential role of Mn in generating the electrons driving photosynthesis, limited information is available on how Mn deficiency affects PSII functionality. We have here used parameters derived from measurements of fluorescence induction kinetics (OJIP transients), non-photochemical quenching (NPQ) and PSII subunit composition to investigate how latent Mn deficiency changes the photochemistry in two barley genotypes differing in Mn efficiency. Mn deficiency caused dramatic reductions in the quantum yield of PSII and led to the appearance of two new inflection points, the K step and the D dip, in the OJIP fluorescence transients, indicating severe damage to the OEC. In addition, Mn deficiency decreased the ability to induce NPQ in the light, rendering the plants incapable of dissipating excess energy in a controlled way. Thus, the Mn deficient plants became severely affected in their ability to recover from high light-induced photoinhibition, especially under strong Mn deficiency. Interestingly, the Mn-efficient genotype was able to maintain a higher NPQ than the Mn-inefficient genotype when exposed to mild Mn deficiency. However, during severe Mn deficiency, there were no differences between the two genotypes, suggesting a general loss of the ability to disassemble and repair PSII. The pronounced defects of PSII activity were supported by a dramatic decrease in the abundance of the OEC protein subunits, PsbP and PsbQ in response to Mn deficiency for both genotypes. We conclude that regulation of photosynthetic performance by means of maintaining and inducing NPQ mechanisms contribute to genotypic differences in the Mn efficiency of barley genotypes growing under conditions with mild Mn deficiency. PMID:27933084

  8. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Yuhui; Huang, Jiawei; Gu, Ying

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MTmore » −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after

  9. MENTAL DEFICIENCY. SECOND EDITION.

    ERIC Educational Resources Information Center

    HILLIARD, L.T.; KIRMAN, BRIAN H.

    REVISED TO INCLUDE LEGISLATIVE AND ADMINISTRATIVE PROCEDURES NEW IN BRITAIN SINCE THE 1957 EDITION, THE TEXT INCLUDES RECENT ADVANCES IN ETIOLOGY, PATHOLOGY, AND TREATMENT OF MENTAL DEFICIENCY. CONSIDERATION OF THE BACKGROUND OF MENTAL DEFICIENCY INCLUDES HISTORICAL AND LEGAL ASPECTS, THE SOCIAL BACKGROUND OF MENTAL DEFECT, PRENATAL CAUSES OF…

  10. Zinc: physiology, deficiency, and parenteral nutrition.

    PubMed

    Livingstone, Callum

    2015-06-01

    The essential trace element zinc (Zn) has a large number of physiologic roles, in particular being required for growth and functioning of the immune system. Adaptive mechanisms enable the body to maintain normal total body Zn status over a wide range of intakes, but deficiency can occur because of reduced absorption or increased gastrointestinal losses. Deficiency impairs physiologic processes, leading to clinical consequences that include failure to thrive, skin rash, and impaired wound healing. Mild deficiency that is not clinically overt may still cause nonspecific consequences, such as susceptibility to infection and poor growth. The plasma Zn concentration has poor sensitivity and specificity as a test of deficiency. Consequently, diagnosis of deficiency requires a combination of clinical assessment and biochemical tests. Patients receiving parenteral nutrition (PN) are susceptible to Zn deficiency and its consequences. Nutrition support teams should have a strategy for assessing Zn status and optimizing this by appropriate supplementation. Nutrition guidelines recommend generous Zn provision from the start of PN. This review covers the physiology of Zn, the consequences of its deficiency, and the assessment of its status, before discussing its role in PN. © 2015 American Society for Parenteral and Enteral Nutrition.

  11. Iron and Vitamin C Co-Supplementation Increased Serum Vitamin C Without Adverse Effect on Zinc Level in Iron Deficient Female Youth

    PubMed Central

    Khoshfetrat, Mohammad Reza; Mortazavi, Sima; Neyestani, Tirang; Mahmoodi, Mohammad Reza; Zerafati-Shoae, Nahid; Mohammadi-Nasrabadi, Fatemeh

    2014-01-01

    Background: Iron supplementation can decrease the absorption of zinc and influence other antioxidants levels such as vitamin C. This study aimed to investigate the effect of iron supplements alone and in combination with vitamin C on zinc and vitamin C status in iron deficient female students. Methods: In a double-blind randomized clinical trail, 60 iron deficient students were selected from 289 volunteers residing in dormitory. After matching, subjects were randomly assigned into two groups: Group I (50 mg elemental iron supplements) and Group II (50 mg elemental iron + 500 mg ascorbic acid). Serum ferritin, iron, serum zinc, and plasma vitamin C concentrations were measured by using enzyme-linked immunosorbent assay, spectrophotometer, atomic absorption spectrometer, and colorimeter, respectively after 6 and 12 weeks supplementation. Student's t-test and repeated measures analysis of variance were applied to analyze the data using SPSS software. Results: Serum zinc levels had no significant differences between 2 groups at the baseline; however, its concentration decreased from 80.9 ± 4.2-68.9 ± 2.7 μg/dl to 81.2 ± 4.5-66.1 ± 2.9 μg/dl (P < 0.001) in Groups I and II, respectively after 6 weeks of supplementation. Continuous supplementation increased serum zinc concentration to baseline levels (79.0 ± 2.9 μg/dl; P < 0.01) in Group I and 70.5 ± 3.1 μg/dl in Group II following 12 weeks of supplementation. Plasma vitamin C increased from 3 ± 0/1-3.3 ± 0.2 mg/dl to 2.7 ± 0. 1-4.2 ± 0.2 mg/dl (P < 0.01) in Groups I and II, respectively. At the end of study, plasma vitamin C significantly increased from 3.3 ± 0.3-4.7 ± 0.3 (P < 0.01) to 4.2 ± 0.2-7.1 ± 0.2 (P < 0.001) in Groups I and II, respectively. Conclusions: Iron supplementation with and without vitamin C led to reduction in serum Zn in iron-deficient female students after 6 weeks. However, the decreasing trend stops after repletion of iron stores and Zn levels returned to the approximately

  12. No consequences of dietary n-3 polyunsaturated fatty acid deficiency on the severity of scopolamine-induced dry eye.

    PubMed

    Viau, Sabrina; Pasquis, Bruno; Maire, Marie-Annick; Fourgeux, Cynthia; Grégoire, Stéphane; Acar, Niyazi; Bretillon, Lionel; Creuzot-Garcher, Catherine P; Joffre, Corinne

    2011-04-01

    Epidemiological studies suggest that dietary n-3 polyunsaturated fatty acids (PUFAs) may protect against dry eye. This study aimed to evaluate whether a dietary deficiency in n-3 PUFAs may increase the severity of the pathology in a scopolamine-induced model of dry eye in the rat. Lewis rats of three consecutive generations were bred under a balanced diet or a diet deprived of n-3 PUFAs. Dry eye was experimentally induced by continuous scopolamine delivery in female animals from the third generation of both groups. After 10 days of treatment, the clinical signs of ocular dryness were evaluated in vivo using fluorescein staining. MHC II and the rat mucin rMuc5AC were immunostained on ocular sphere cryosections. The transcript levels of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were quantified in the exorbital lacrimal glands (LG) and in the conjunctiva using reverse transcription followed by polymerase chain reaction. Lipids were extracted from the exorbital LG for fatty acid analysis of the phospholipids using gas chromatography. When compared to control animals, the scopolamine treatment induced an increase in the cornea fluorescein staining score (from 0.5 ± 0.0 to 2.5 ± 1.0 arbitrary units (AU) for the balanced diet and from 1.2 ± 0.8 to 2.6 ± 0.5 AU for the n-3 PUFA-deficient diet); a decrease in rMuc5AC immunostaining in the conjunctival epithelium (-34% for the balanced diet and -23% for the n-3 PUFA-deficient diet); an increase in the LG transcript levels of TNF-α for the balanced diet and of TNF-α and IFN-γ for the deficient diet; an increase in the conjunctival transcript levels of IL-1β and IL-6 for the deficient diet; an increase in arachidonic acid (AA) and in the ∆5-desaturase index (ratio of AA to dihomo-gamma-linolenic acid) in the exorbital LG for both diets. When compared to the balanced diet, the n-3 PUFA-deficient diet induced an increase in the LG transcript levels

  13. [Prevalence of iron deficiency].

    PubMed

    Dupont, C

    2017-05-01

    Studies of prévalence in iron deficiency separate iron depletion (defined as decreased blood ferritin) and iron deficiency anemia (defined as blood decrease in both ferritin and hemoglobin). In Europe, most studies are outdated. Prevalence of iron depletion varies from 7 to 18 % and 24 to 36% in toddlers and adolescents, respectively. Prevalence of iron deficiency anemia varies from 2 to 8.5% and 7 to 10% in toddlers and adolescents. In French speaking African countries, Demography Health Surveys show that 80% of children aged 0 to 2 years are anemic, severely for 5 to 9% of them. © 2017 Elsevier Masson SAS. Tous droits réservés.

  14. A comparison between the observed and predicted Fe II spectrum in different plasmas

    NASA Astrophysics Data System (ADS)

    Johansson, S.

    This paper gives a survey of the spectral distribution of emission lines of Fe II, predicted from a single atomic model. The observed differences between the recorded and the predicted spectrum are discussed in terms of deficiencies of the model and interactions within the emitting plasma. A number of illustrative examples of unexpected features with applications to astrophysics are given. Selective population, due to charge transfer and resonant photo excitation, is elucidated. The future need of more laboratory data for Fe II as regards energy levels and line classification is also discussed.

  15. Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites.

    PubMed

    Mina, John G; Thye, Julie K; Alqaisi, Amjed Q I; Bird, Louise E; Dods, Robert H; Grøftehauge, Morten K; Mosely, Jackie A; Pratt, Steven; Shams-Eldin, Hosam; Schwarz, Ralph T; Pohl, Ehmke; Denny, Paul W

    2017-07-21

    Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Dynamic Changes of IsiA-Containing Complexes during Long-Term Iron Deficiency in Synechocystis sp. PCC 6803.

    PubMed

    Ma, Fei; Zhang, Xin; Zhu, Xi; Li, Tianpei; Zhan, Jiao; Chen, Hui; He, Chenliu; Wang, Qiang

    2017-01-09

    Iron stress-induced protein A (IsiA), a major chlorophyll-binding protein in the thylakoid membrane, is significantly induced under iron deficiency conditions. Using immunoblot analysis and 77 K fluorescence spectroscopy combined with sucrose gradient fractionation, we monitored dynamic changes of IsiA-containing complexes in Synechocystis sp. PCC 6803 during exposure to long-term iron deficiency. Within 3 days of exposure to iron deficiency conditions, the initially induced free IsiA proteins preferentially conjugated to PS I trimer to form IsiA 18 -PS I trimers, which serve as light energy collectors for efficiently transmitting energy to PS I. With prolonged iron deficiency, IsiA proteins assembled either into IsiA aggregates or into two other types of IsiA-PS I supercomplexes, namely IsiA-PS I high fluorescence supercomplex (IHFS) and IsiA-PS I low fluorescence supercomplex (ILFS). Further analysis revealed a role for IsiA as an energy dissipater in the IHFS and as an energy collector in the ILFS. The trimeric structure of PS I mediated by PsaL was found to be indispensable for the formation of IHFS/ILFS. Dynamic changes in IsiA-containing complexes in cyanobacteria during long-term iron deficiency may represent an adaptation to iron limitation stress for flexible light energy distribution, which balances electron transfer between PS I and PS II, thus minimizing photooxidative damage. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  17. Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency.

    PubMed

    Todkar, Abhijeet; Picard, Nicolas; Loffing-Cueni, Dominique; Sorensen, Mads V; Mihailova, Marija; Nesterov, Viatcheslav; Makhanova, Natalia; Korbmacher, Christoph; Wagner, Carsten A; Loffing, Johannes

    2015-02-01

    Aldosterone-independent mechanisms may contribute to K(+) homeostasis. We studied aldosterone synthase knockout (AS(-/-)) mice to define renal control mechanisms of K(+) homeostasis in complete aldosterone deficiency. AS(-/-) mice were normokalemic and tolerated a physiologic dietary K(+) load (2% K(+), 2 days) without signs of illness, except some degree of polyuria. With supraphysiologic K(+) intake (5% K(+)), AS(-/-) mice decompensated and became hyperkalemic. High-K(+) diets induced upregulation of the renal outer medullary K(+) channel in AS(-/-) mice, whereas upregulation of the epithelial sodium channel (ENaC) sufficient to increase the electrochemical driving force for K(+) excretion was detected only with a 2% K(+) diet. Phosphorylation of the thiazide-sensitive NaCl cotransporter was consistently lower in AS(-/-) mice than in AS(+/+) mice and was downregulated in mice of both genotypes in response to increased K(+) intake. Inhibition of the angiotensin II type 1 receptor reduced renal creatinine clearance and apical ENaC localization, and caused severe hyperkalemia in AS(-/-) mice. In contrast with the kidney, the distal colon of AS(-/-) mice did not respond to dietary K(+) loading, as indicated by Ussing-type chamber experiments. Thus, renal adaptation to a physiologic, but not supraphysiologic, K(+) load can be achieved in aldosterone deficiency by aldosterone-independent activation of the renal outer medullary K(+) channel and ENaC, to which angiotensin II may contribute. Enhanced urinary flow and reduced activity of the thiazide-sensitive NaCl cotransporter may support renal adaptation by activation of flow-dependent K(+) secretion and increased intratubular availability of Na(+) that can be reabsorbed in exchange for K(+) secreted. Copyright © 2015 by the American Society of Nephrology.

  18. Leigh Syndrome with Nephropathy and CoQ10 Deficiency Due to decaprenyl diphosphate synthase subunit 2 (PDSS2) Mutations

    PubMed Central

    López, Luis Carlos ; Schuelke, Markus ; Quinzii, Catarina M. ; Kanki, Tomotake ; Rodenburg, Richard J. T. ; Naini, Ali ; DiMauro, Salvatore ; Hirano, Michio 

    2006-01-01

    Coenzyme Q10 (CoQ10) is a vital lipophilic molecule that transfers electrons from mitochondrial respiratory chain complexes I and II to complex III. Deficiency of CoQ10 has been associated with diverse clinical phenotypes, but, in most patients, the molecular cause is unknown. The first defect in a CoQ10 biosynthetic gene, COQ2, was identified in a child with encephalomyopathy and nephrotic syndrome and in a younger sibling with only nephropathy. Here, we describe an infant with severe Leigh syndrome, nephrotic syndrome, and CoQ10 deficiency in muscle and fibroblasts and compound heterozygous mutations in the PDSS2 gene, which encodes a subunit of decaprenyl diphosphate synthase, the first enzyme of the CoQ10 biosynthetic pathway. Biochemical assays with radiolabeled substrates indicated a severe defect in decaprenyl diphosphate synthase in the patient’s fibroblasts. This is the first description of pathogenic mutations in PDSS2 and confirms the molecular and clinical heterogeneity of primary CoQ10 deficiency. PMID:17186472

  19. Glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Cappellini, M D; Fiorelli, G

    2008-01-05

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect, being present in more than 400 million people worldwide. The global distribution of this disorder is remarkably similar to that of malaria, lending support to the so-called malaria protection hypothesis. G6PD deficiency is an X-linked, hereditary genetic defect due to mutations in the G6PD gene, which cause functional variants with many biochemical and clinical phenotypes. About 140 mutations have been described: most are single base changes, leading to aminoacid substitutions. The most frequent clinical manifestations of G6PD deficiency are neonatal jaundice, and acute haemolytic anaemia, which is usually triggered by an exogenous agent. Some G6PD variants cause chronic haemolysis, leading to congenital non-spherocytic haemolytic anaemia. The most effective management of G6PD deficiency is to prevent haemolysis by avoiding oxidative stress. Screening programmes for the disorder are undertaken, depending on the prevalence of G6PD deficiency in a particular community.

  20. Vitamin D/dietary calcium deficiency rickets and pseudo-vitamin D deficiency rickets

    PubMed Central

    Glorieux, Francis H; Pettifor, John M

    2014-01-01

    This review describes the pathogenesis, clinical presentation and biochemical perturbations found in privational (nutritional) rickets and pseudo-vitamin D deficiency rickets (PDDR), an autosomal recessive condition with loss of function mutations in CYP27B1. It may seem strange to combine a discussion on privational rickets and PDDR as a single topic, but privational rickets and PDDR present with similar clinical signs and symptoms and with similar perturbations in bone and mineral metabolism. Of interest is the characteristic lack of features of rickets at birth in infants with PDDR, a finding which has also been reported in infants born to vitamin D-deficient mothers. This highlights the independence of the fetus and neonate from the need for vitamin D to maintain calcium homeostasis during this period. The variable roles of vitamin D deficiency and dietary calcium deficiency in the pathogenesis of privational rickets are discussed and the associated alterations in vitamin D metabolism highlighted. Although PDDR is a rare autosomal recessive disorder, results of long-term follow-up are now available on the effect of treatment with calcitriol, and these are discussed. Areas of uncertainty, such as should affected mothers breastfeed their infants, are emphasized. PMID:24818008

  1. Heart Failure and the Iron Deficiency.

    PubMed

    Beedkar, Amey; Parikh, Rohan; Deshmukh, Pradeep

    2017-11-01

    Iron deficiency anemia is a significant problem worldwide and more so in developing countries, like India. The prevention and treatment of iron deficiency is a major public health goal in India It is now well recognized that iron deficiency has detrimental effects in patients with coronary artery disease, heart failure, and pulmonary hypertension, and possibly in patients undergoing cardiac surgery. Around one-third of all patients with HF, and around one-half of patients with pulmonary hypertension, are affected by iron deficiency.1. © Journal of the Association of Physicians of India 2011.

  2. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice.

    PubMed

    Quinzii, Catarina M; Garone, Caterina; Emmanuele, Valentina; Tadesse, Saba; Krishna, Sindu; Dorado, Beatriz; Hirano, Michio

    2013-02-01

    Primary human CoQ(10) deficiencies are clinically heterogeneous diseases caused by mutations in PDSS2 and other genes required for CoQ(10) biosynthesis. Our in vitro studies of PDSS2 mutant fibroblasts, with <20% CoQ(10) of control cells, revealed reduced activity of CoQ(10)-dependent complex II+III and ATP synthesis, without amplification of reactive oxygen species (ROS), markers of oxidative damage, or antioxidant defenses. In contrast, COQ2 and ADCK3 mutant fibroblasts, with 30-50% CoQ(10) of controls, showed milder bioenergetic defects but significantly increased ROS and oxidation of lipids and proteins. We hypothesized that absence of oxidative stress markers and cell death in PDSS2 mutant fibroblasts were due to the extreme severity of CoQ(10) deficiency. Here, we have investigated in vivo effects of Pdss2 deficiency in affected and unaffected organs of CBA/Pdss2(kd/kd) mice at presymptomatic, phenotypic-onset, and end-stages of the disease. Although Pdss2 mutant mice manifest widespread CoQ(9) deficiency and mitochondrial respiratory chain abnormalities, only affected organs show increased ROS production, oxidative stress, mitochondrial DNA depletion, and reduced citrate synthase activity, an index of mitochondrial mass. Our data indicate that kidney-specific loss of mitochondria triggered by oxidative stress may be the cause of renal failure in Pdss2(kd/kd) mice.

  3. Molecular study of electron transfer flavoprotein alpha-subunit deficiency in two Japanese children with different phenotypes of glutaric acidemia type II.

    PubMed

    Purevjav, E; Kimura, M; Takusa, Y; Ohura, T; Tsuchiya, M; Hara, N; Fukao, T; Yamaguchi, S

    2002-09-01

    Electron transfer flavoprotein is a mitochondrial matrix protein composed of alpha- and beta-subunits (ETF alpha and ETF beta, respectively). This protein transfers electrons between several mitochondrial dehydrogenases and the main respiratory chain via ETF dehydrogenase (ETF-DH). Defects in ETF or ETF-DH cause glutaric acidemias type II (GAII). We investigated the molecular basis of ETF alpha deficiency in two Japanese children with different clinical phenotypes using expression study. Patient 1 had the severe form of GAII, a compound heterozygote of two mutations: 799G to A (alpha G267R) and nonsense 7C to T (alpha R3X). Patient 2 had the mild form and carried two heterozygous mutations: 764G to T (alpha G255V) and 478delG (frameshift). Both patients had one each of missense mutations in one allele; the others were either nonsense or truncated. Restriction enzyme digestion assay using genomic DNAs from 100 healthy Japanese revealed that these mutations were all novel. No signal for ETF alpha was detected by immunoblotting in cases of missense mutants, while wild-type cDNA resulted in expression of ETF alpha protein. Transfection with wild-type ETF alpha cDNA into cultured cells from both patients elevated incorporation of radioisotope-labelled fatty acids. These four mutations were pathogenic for GAII and missense mutations, alpha G255V and alpha G267R were considered anecdotal for mild and severe forms, respectively.

  4. Isolated sulfite oxidase deficiency.

    PubMed

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  5. [Vitamin D deficiency and morbimortality in critically ill paediatric patients].

    PubMed

    García-Soler, Patricia; Morales-Martínez, Antonio; Rosa-Camacho, Vanessa; Lillo-Muñoz, Juan Antonio; Milano-Manso, Guillermo

    2017-08-01

    To determine the prevalence and risks factors of vitamin D deficiency, as well as its relationship with morbidity and mortality in a PICU. An observational prospective study in a tertiary children's University Hospital PICU conducted in two phases: i: cohorts study, and ii: prevalence study. The study included 340 critically ill children with ages comprising 6 months to 16 years old. Chronic kidney disease, known parathyroid disorders, and vitamin D supplementation. Total 25-hydroxyvitamin D [25(OH)D] was measured in the first 48hours of admission to a PICU. Parathormone, calcium, phosphate, blood gases, blood count, C-reactive protein, and procalcitonin were also analysed. A record was also made of demographic features, characteristics of the episode, and complications during the PICU stay. The overall prevalence rate of vitamin D deficiency was 43.8%, with a mean of 22.28 (95% CI 21.15-23.41) ng/ml. Patients with vitamin D deficiency were older (61 vs 47 months, P=.039), had parents with a higher level of academic studies (36.5% vs 20%, P=.016), were admitted more often in winter and spring, had a higher PRISM-III (6.8 vs 5.1, P=.037), a longer PICU stay (3 vs 2 days, P=.001), and higher morbidity (61.1% vs 30.4%, P<001) than the patients with sufficient levels of 25(OH)D. Patients who died had lower levels of 25(OH)D (14±8.81ng/ml versus 22.53±10.53ng/ml, P=.012). Adjusted OR for morbidity was 5.44 (95%CI; 2.5-11.6). Vitamin D deficiency is frequent in critically ill children, and it is related to both morbidity and mortality, although it remains unclear whether it is a causal relationship or it is simply a marker of severity in different clinical situations. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Dietary deficiency of vitamin A among rural children: A community-based survey using a food-frequency questionnaire.

    PubMed

    Suri, Shivali; Kumar, Dinesh; Das, Ranjan

    2017-01-01

    Overt vitamin A deficiency has been controlled in most parts of India, but prevalence of subclinical deficiency may still be high, which may enhance susceptibility to infections, reduce growth potential and also lead to higher mortality. We aimed to: (i) assess the consumption pattern of vitamin A-rich foods in children 1-5 years of age in rural Jammu; and (ii) estimate the dietary deficiency of vitamin A leading to risk of subclinical vitamin A deficiency in cluster- villages of the study area. In 2011, we conducted a survey of 750 children by selecting 50 from each of the 1 5 clusters. The Helen Keller International's Food-Frequency Questionnaire (HKI-FFQ) modified to the local context was used to assess past week's intake for 28 food-items, including vitamin A-rich foods. The study revealed that plant sources such as amaranth, carrots, etc. and animal sources such as eggs and butter were the major sources of vitamin A in the study population. Consumption of amaranth (2.7 days/week) and carrots (1.7 days/week) was moderate but that of animal foods rich in vitamin A was low to negligible (1.1 day/week for eggs and 0.2 day/week for liver and fish combined). The majority (80%) of the cluster-villages manifested inadequate intake of vitamin A-rich foods, thereby making subclinical vitamin A deficiency a public health problem for the whole area. Faulty diets, improper breastfeeding practices, low coverage of vitamin A supplementation and high prevalence of undernutrition could be related to the observed subclinical deficiency. Dietary diversification by including both plant and animal sources of vitamin A in adequate amounts along with improved breastfeeding, better implementation of mega-dose vitamin A supplementation and minimizing undernutrition may help in lowering subclinical vitamin A deficiency. The HKI-FFQ may be used as a proxy indicator of vitamin A intake/status for identifying pockets at risk of subclinical vitamin A deficiency in resource

  7. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).

    PubMed

    Wang, Baolan; Wei, Haifang; Xue, Zhen; Zhang, Wen-Hao

    2017-04-01

    Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant ( eui1 ) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI . Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA 1 and GA 4 , the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Genetics Home Reference: fumarase deficiency

    MedlinePlus

    ... C, Knape M, Zierz S, Gellerich FN. Molecular and biochemical investigations in fumarase deficiency. Mol Genet Metab. 2006 ... Y, Toulhoat H, de Lonlay P. Clinical and biochemical heterogeneity associated with fumarase deficiency. Hum Mutat. 2011 ...

  9. Switch from type II to I Fas/CD95 death signaling upon in vitro culturing of primary hepatocytes

    PubMed Central

    Walter, Dorothée; Schmich, Kathrin; Vogel, Sandra; Pick, Robert; Kaufmann, Thomas; Hochmuth, Florian Christoph; Haber, Angelika; Neubert, Karin; McNelly, Sabine; von Weizsäcker, Fritz; Merfort, Irmgard; Maurer, Ulrich; Strasser, Andreas; Borner, Christoph

    2010-01-01

    Fas/CD95-induced apoptosis of hepatocytes in vivo proceeds through the so-called type II pathway, requiring the pro-apoptotic BH3-only Bcl-2 family member Bid for mitochondrial death signaling. Consequently, Bid-deficient mice are protected from anti-Fas antibody injection induced fatal hepatitis. Here we report the unexpected finding that freshly isolated mouse hepatocytes, cultured on collagen or Matrigel™, become independent of Bid for Fas-induced apoptosis, thereby switching death signaling from type II to type I. In such in vitro cultures, FasL activates caspase-3 without Bid cleavage, Bax/Bak activation or cytochrome c release, and neither Bid ablation nor Bcl-2 overexpression is protective. The type II to type I switch depends on extracellular matrix adhesion, as primary hepatocytes in suspension die in a Bid-dependent manner. Moreover, the switch is specific for FasL-induced apoptosis as collagen-plated Bid-deficient hepatocytes are protected from TNFα/ActD-induced apoptosis. Conclusion Our data suggest a selective crosstalk between extracellular matrix and Fas-mediated signaling which favours mitochondria-independent type I apoptosis induction. PMID:19003879

  10. Transgenic Petunia with the Iron(III)-Phytosiderophore Transporter Gene Acquires Tolerance to Iron Deficiency in Alkaline Environments

    PubMed Central

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2′-deoxymugineic acid complex, free 2′-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2′-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to

  11. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    PubMed

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse

  12. Lymphocytic response to tumour and deficient DNA mismatch repair identify subtypes of stage II/III colorectal cancer associated with patient outcomes.

    PubMed

    Williams, David S; Mouradov, Dmitri; Jorissen, Robert N; Newman, Marsali R; Amini, Elham; Nickless, David K; Teague, Julie A; Fang, Catherine G; Palmieri, Michelle; Parsons, Marie J; Sakthianandeswaren, Anuratha; Li, Shan; Ward, Robyn L; Hawkins, Nicholas J; Faragher, Ian; Jones, Ian T; Gibbs, Peter; Sieber, Oliver M

    2018-01-30

    Tumour-infiltrating lymphocyte (TIL) response and deficient DNA mismatch repair (dMMR) are determinants of prognosis in colorectal cancer. Although highly correlated, evidence suggests that these are independent predictors of outcome. However, the prognostic significance of combined TIL/MMR classification and how this compares to the major genomic and transcriptomic subtypes remain unclear. A prospective cohort of 1265 patients with stage II/III cancer was examined for TIL/MMR status and BRAF / KRAS mutations. Consensus molecular subtype (CMS) status was determined for 142 cases. Associations with 5-year disease-free survival (DFS) were evaluated and validated in an independent cohort of 602 patients. Tumours were categorised into four subtypes based on TIL and MMR status: TIL-low/proficient-MMR (pMMR) (61.3% of cases), TIL-high/pMMR (14.8%), TIL-low/dMMR (8.6%) and TIL-high/dMMR (15.2%). Compared with TIL-high/dMMR tumours with the most favourable prognosis, both TIL-low/dMMR (HR=3.53; 95% CI=1.88 to 6.64; P multivariate <0.001) and TIL-low/pMMR tumours (HR=2.67; 95% CI=1.47 to 4.84; P multivariate =0.001) showed poor DFS. Outcomes of patients with TIL-low/dMMR and TIL-low/pMMR tumours were similar. TIL-high/pMMR tumours showed intermediate survival rates. These findings were validated in an independent cohort. TIL/MMR status was a more significant predictor of prognosis than National Comprehensive Cancer Network high-risk features and was a superior predictor of prognosis compared with genomic (dMMR, pMMR/ BRAF wt / KRAS wt , pMMR/ BRAF mut / KRAS wt , pMMR/ BRAF wt / KRAS mut ) and transcriptomic (CMS 1-4) subtypes. TIL/MMR classification identified subtypes of stage II/III colorectal cancer associated with different outcomes. Although dMMR status is generally considered a marker of good prognosis, we found this to be dependent on the presence of TILs. Prognostication based on TIL/MMR subtypes was superior compared with histopathological, genomic and

  13. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice

    PubMed Central

    Vida, Margarita; Gavito, Ana Luisa; Pavón, Francisco Javier; Bautista, Dolores; Serrano, Antonia; Suarez, Juan; Arrabal, Sergio; Decara, Juan; Romero-Cuevas, Miguel; Rodríguez de Fonseca, Fernando; Baixeras, Elena

    2015-01-01

    ABSTRACT Interleukin-6 (IL-6) has emerged as an important mediator of fatty acid metabolism with paradoxical effects in the liver. Administration of IL-6 has been reported to confer protection against steatosis, but plasma and tissue IL-6 concentrations are elevated in chronic liver diseases, including fatty liver diseases associated with obesity and alcoholic ingestion. In this study, we further investigated the role of IL-6 on steatosis induced through a high-fat diet (HFD) in wild-type (WT) and IL-6-deficient (IL-6−/−) mice. Additionally, HFD-fed IL-6−/− mice were also chronically treated with recombinant IL-6 (rIL-6). Obesity in WT mice fed a HFD associated with elevated serum IL-6 levels, fatty liver, upregulation of carnitine palmitoyltransferase 1 (CPT1) and signal transducer and activator of transcription-3 (STAT3), increased AMP kinase phosphorylation (p-AMPK), and downregulation of the hepatic lipogenic enzymes fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD1). The HFD-fed IL-6−/− mice showed severe steatosis, no changes in CPT1 levels or AMPK activity, no increase in STAT3 amounts, inactivated STAT3, and marked downregulation of the expression of acetyl-CoA carboxylase (ACCα/β), FAS and SCD1. The IL-6 chronic replacement in HFD-fed IL-6−/− mice restored hepatic STAT3 and AMPK activation but also increased the expression of the lipogenic enzymes ACCα/β, FAS and SCD1. Furthermore, rIL-6 administration was associated with aggravated steatosis and elevated fat content in the liver. We conclude that, in the context of HFD-induced obesity, the administration of rIL-6 might contribute to the aggravation of fatty liver disease through increasing lipogenesis. PMID:26035386

  14. Iron deficiency--facts and fallacies.

    PubMed

    Oski, F A

    1985-04-01

    Iron deficiency occurs in all strata of society, is primarily a result of postnatal feeding practices and not due to congenital deficiencies of iron, can be prevented by appropriate dietary guidance, and, when present, produces important nonhematologic manifestations.

  15. Only severe malocclusion correlates with mastication deficiency.

    PubMed

    Bourdiol, Pierre; Soulier-Peigue, Delphine; Lachaze, Pauline; Nicolas, Emmanuel; Woda, Alain; Hennequin, Martine

    2017-03-01

    The relation between level of dentofacial deformity and extent of masticatory deficiency was studied. Three groups of human young adults were formed: (i) subjects needing orthodontics plus orthognathic surgery (SevDFD, n=18), (ii) subjects needing orthodontic treatment only (ModDFD, n=12), and (iii) subjects needing no treatment (NoDFD, n=12). For mastication tests, carrot boluses were collected at the deglutition time. Bolus particle size range was expressed as d50 value, which was compared with the Masticatory Normative Indicator (MNI). Index of treatment need (IOTN), global oral health assessment index (GOHAI) and chewing kinematic characteristics were also recorded. We used a general linear model univariate procedure followed by a Student-Newman-Keuls test. All the SevDFD subjects showed impaired mastication with MNI above the normal limit (d50 mean=7.23mm). All the ModDFD subjects but one were below this limit (d50 mean=2.54mm), and so could adapt to a low level of masticatory impairment as also indicated by kinematics. IOTN indicated a treatment need for ModDFD (3.7±0.5) and SevDFD (4.3±0.6) groups, while GOHAI values were unsatisfactory only for SevDFD (42.6±9.2 vs. 55.3±1.9). Our findings emphasize the need for an objective evaluation of masticatory function to discern truly deficient mastication from mild impairment allowing satisfactory adaptation of the function. However, malocclusions are known to worsen with time justifying thus their corrections as early as possible. Copyright © 2016. Published by Elsevier Ltd.

  16. IS THE POST-AGB STAR SAO 40039 MILDLY HYDROGEN-DEFICIENT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, S. Sumangala; Pandey, Gajendra; Giridhar, Sunetra

    2011-08-10

    We have conducted an LTE abundance analysis for SAO 40039, a warm post-AGB star whose spectrum is known to show surprisingly strong He I lines for its effective temperature and has been suspected of being H-deficient and He-rich. High-resolution optical spectra are analyzed using a family of model atmospheres with different He/H ratios. Atmospheric parameters are estimated from the ionization equilibrium set by neutral and singly ionized species of Fe and Mg, the excitation of Fe I and Fe II lines, and the wings of the Paschen lines. On the assumption that the He I lines are of photospheric andmore » not chromospheric origin, a He/H ratio of approximately unity is found by imposing the condition that the adopted He/H ratio of the model atmosphere must equal the ratio derived from the observed He I triplet lines at 5876, 4471, and 4713 A, and singlet lines at 4922 and 5015 A. Using the model with the best-fitting atmospheric parameters for this He/H ratio, SAO 40039 is confirmed to exhibit mild dust-gas depletion, i.e., the star has an atmosphere deficient in elements of high condensation temperature. The star appears to be moderately metal-deficient with [Fe/H] = -0.4 dex. But the star's intrinsic metallicity as estimated from Na, S, and Zn, elements of a low condensation temperature, is [Fe/H]{sub o} {approx_equal} -0.2 ([Fe/H]{sub o} refers to the star's intrinsic metallicity). The star is enriched in N and perhaps O as well, changes reflecting the star's AGB past and the event that led to He enrichment.« less

  17. [Causes of iron deficiency in children].

    PubMed

    Olives, J-P

    2017-05-01

    Iron deficiency and iron deficiency anemia are common conditions worldwide affecting especially children. In developing countries, iron deficiency is caused by poor iron intake and parasitic infection. Poor iron intake linked to inadequate diets, low iron intestinal absorption, chronic blood losses and increased requirements are common causes in high-income countries. © 2017 Elsevier Masson SAS. Tous droits réservés.

  18. NAD(P)H: Quinone Oxidoreductase 1 Deficiency Conjoint with Marginal Vitamin C Deficiency Causes Cigarette Smoke Induced Myelodysplastic Syndromes

    PubMed Central

    Das, Archita; Dey, Neekkan; Ghosh, Arunava; Das, Tanusree; Chatterjee, Indu B.

    2011-01-01

    Background The etiology of myelodysplastic syndromes (MDS) is largely unknown. Exposure to cigarette smoke (CS) is reported to be associated with MDS risk. There is inconsistent evidence that deficiency of NAD(P)H-quinone: oxidoreductase 1 (NQO1) increases the risk of MDS. Earlier we had shown that CS induces toxicity only in marginal vitamin C-deficient guinea pigs but not in vitamin C-sufficient ones. We therefore considered that NQO1 deficiency along with marginal vitamin C deficiency might produce MDS in CS-exposed guinea pigs. Methodology and Principal Findings Here we show that CS exposure for 21 days produces MDS in guinea pigs having deficiency of NQO1 (fed 3 mg dicoumarol/day) conjoint with marginal vitamin C deficiency (fed 0.5 mg vitamin C/day). As evidenced by morphology, histology and cytogenetics, MDS produced in the guinea pigs falls in the category of refractory cytopenia with unilineage dysplasia (RCUD): refractory anemia; refractory thrombocytopenia that is associated with ring sideroblasts, micromegakaryocytes, myeloid hyperplasia and aneuploidy. MDS is accompanied by increased CD34(+) cells and oxidative stress as shown by the formation of protein carbonyls and 8-oxodeoxyguanosine. Apoptosis precedes MDS but disappears later with marked decrease in the p53 protein. MDS produced in the guinea pigs are irreversible. MDS and all the aforesaid pathophysiological events do not occur in vitamin C-sufficient guinea pigs. However, after the onset of MDS vitamin C becomes ineffective. Conclusions and Significance CS exposure causes MDS in guinea pigs having deficiency of NQO1 conjoint with marginal vitamin C deficiency. The syndromes are not produced in singular deficiency of NQO1 or marginal vitamin C deficiency. Our results suggest that human smokers having NQO1 deficiency combined with marginal vitamin C deficiency are likely to be at high risk for developing MDS and that intake of a moderately large dose of vitamin C would prevent MDS. PMID:21655231

  19. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle.

    PubMed

    Lefort, Natalie; Glancy, Brian; Bowen, Benjamin; Willis, Wayne T; Bailowitz, Zachary; De Filippis, Elena A; Brophy, Colleen; Meyer, Christian; Højlund, Kurt; Yi, Zhengping; Mandarino, Lawrence J

    2010-10-01

    The contribution of mitochondrial dysfunction to skeletal muscle insulin resistance remains elusive. Comparative proteomics are being applied to generate new hypotheses in human biology and were applied here to isolated mitochondria to identify novel changes in mitochondrial protein abundance present in insulin-resistant muscle. Mitochondria were isolated from vastus lateralis muscle from lean and insulin-sensitive individuals and from obese and insulin-resistant individuals who were otherwise healthy. Respiration and reactive oxygen species (ROS) production rates were measured in vitro. Relative abundances of proteins detected by mass spectrometry were determined using a normalized spectral abundance factor method. NADH- and FADH(2)-linked maximal respiration rates were similar between lean and obese individuals. Rates of pyruvate and palmitoyl-DL-carnitine (both including malate) ROS production were significantly higher in obesity. Mitochondria from obese individuals maintained higher (more negative) extramitochondrial ATP free energy at low metabolic flux, suggesting that stronger mitochondrial thermodynamic driving forces may underlie the higher ROS production. Tandem mass spectrometry identified protein abundance differences per mitochondrial mass in insulin resistance, including lower abundance of complex I subunits and enzymes involved in the oxidation of branched-chain amino acids (BCAA) and fatty acids (e.g., carnitine palmitoyltransferase 1B). We provide data suggesting normal oxidative capacity of mitochondria in insulin-resistant skeletal muscle in parallel with high rates of ROS production. Furthermore, we show specific abundance differences in proteins involved in fat and BCAA oxidation that might contribute to the accumulation of lipid and BCAA frequently associated with the pathogenesis of insulin resistance.

  20. αII Spectrin Forms a Periodic Cytoskeleton at the Axon Initial Segment and Is Required for Nervous System Function.

    PubMed

    Huang, Claire Yu-Mei; Zhang, Chuansheng; Ho, Tammy Szu-Yu; Oses-Prieto, Juan; Burlingame, Alma L; Lalonde, Joshua; Noebels, Jeffrey L; Leterrier, Christophe; Rasband, Matthew N

    2017-11-22

    Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse β subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and βIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1 f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all β spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system. SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with βIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology. Copyright © 2017 the authors 0270-6474/17/3711311-12$15.00/0.

  1. Inherited selective intestinal cobalamin malabsorption and cobalamin deficiency in dogs.

    PubMed

    Fyfe, J C; Giger, U; Hall, C A; Jezyk, P F; Klumpp, S A; Levine, J S; Patterson, D F

    1991-01-01

    Inherited selective intestinal malabsorption of cobalamin (Cbl) was observed in a family of giant schnauzer dogs. Family studies and breeding experiments demonstrated simple autosomal recessive inheritance of this disease. Affected puppies exhibited chronic inappetence and failure to thrive beginning between 6 and 12 wk of age. Neutropenia with hypersegmentation, anemia with anisocytosis and poikilocytosis, and megaloblastic changes of the bone marrow were present. Serum Cbl concentrations were low, and methylmalonic aciduria and homocysteinemia were present. Parenteral, but not oral, cyanocobalamin administration rapidly eliminated all signs of Cbl deficiency except for low serum Cbl concentrations. Cbl malabsorption in affected dogs was documented by oral administration of [57Co]cyanocobalamin with or without simultaneous oral administration of intrinsic factor or normal dog gastric juice. Quantitation and function studies of intrinsic factor and transcobalamin-II from affected dogs revealed no abnormality. Other gastrointestinal functions and ileal morphology were normal, indicating a selective defect of Cbl absorption at the level of the ileal enterocyte. Immunoelectron microscopy of ileal biopsies showed that the receptor for intrinsic factor-Cbl complex was absent from the apical brush border microvillus pits of affected dogs. This canine disorder resembles inherited selective intestinal Cbl malabsorption (Imerslund-Gräsbeck syndrome) in humans, and is a spontaneously occurring animal model of early onset Cbl deficiency.

  2. Iron chelated cyclic peptide, ferrichrysin, for oral treatment of iron deficiency: solution properties and efficacy in anemic rats.

    PubMed

    Suzuki, Sachiko; Fukuda, Katsuharu; Irie, Motoko; Hata, Yoji

    2007-01-01

    Ferrichrysin (Fcy), which is produced by Aspergillus oryzae and is present in foods used for human consumption, belongs to a group of hydroxamate siderophore ferric iron chelators. Fcy (100 mg/mL) dissolves completely at both pH 2.0 and 7.0, being very stable at a wide range of pH, high temperatures and pressures, with little reactivity to dietary iron absorption inhibitors, phytic acid, tannic acid, and catechin. We studied the effect of Fcy in male Sprague-Dawley rats with iron-deficiency anemia, which were separated into three different dietary groups (n=5) and supplementing diets as follows: (i) ferric citrate, (ii) heme iron concentrate, and (iii) Fcy (35 mg Fe/kg diet) for three weeks. Fcy exhibited the same beneficial effect in improving iron deficiency anemia as ferric citrate, being significantly greater than the effect of heme iron. The iron concentration of liver in the Fcy group was 35% greater than that in the ferric citrate group. These findings indicate that Fcy could be an efficient oral iron supplement to prevent or treat iron deficiency.

  3. Novel recessive mutations in COQ4 cause severe infantile cardiomyopathy and encephalopathy associated with CoQ10 deficiency.

    PubMed

    Sondheimer, Neal; Hewson, Stacy; Cameron, Jessie M; Somers, Gino R; Broadbent, Jane Dunning; Ziosi, Marcello; Quinzii, Catarina Maria; Naini, Ali B

    2017-09-01

    Coenzyme Q 10 (CoQ 10 ) or ubiquinone is one of the two electron carriers in the mitochondrial respiratory chain which has an essential role in the process of oxidative phosphorylation. Defects in CoQ 10 synthesis are usually associated with the impaired function of CoQ 10 -dependent complexes I, II and III. The recessively transmitted CoQ 10 deficiency has been associated with a number of phenotypically and genetically heterogeneous groups of disorders manifesting at variable age of onset. The infantile, multisystemic presentation is usually caused by mutations in genes directly involved in CoQ 10 biosynthesis. To date, mutations in COQ1 ( PDSS1 and PDSS2 ), COQ2 , COQ4 , COQ6 , COQ7 , COQ8A / ADCK3 , COQ8B/ADCK4 , and COQ9 genes have been identified in patients with primary form of CoQ 10 deficiency. Here we report novel mutations in the COQ4 gene, which were identified in an infant with profound mitochondrial disease presenting with perinatal seizures, hypertrophic cardiomyopathy and severe muscle CoQ 10 deficiency.

  4. Diagnosing oceanic nutrient deficiency

    PubMed Central

    2016-01-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical–chemical–biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035255

  5. Diagnosing oceanic nutrient deficiency

    NASA Astrophysics Data System (ADS)

    Moore, C. Mark

    2016-11-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  6. Treatment of Iron Deficiency in Women

    PubMed Central

    Breymann, C.; Römer, T.; Dudenhausen, J. W.

    2013-01-01

    Iron deficiency with and without anaemia is a common cause of morbidity, particularly in women. Iron deficiency is generally the result of an imbalance between iron loss and iron absorption. In women with symptoms suspicious for iron deficiency, it is important to confirm or exclude the suspicion using proper tests. The use of serum ferritin levels is considered the gold standard for diagnosis. Although the ideal ferritin levels are not unknown the current consent is that levels < 40 ng/ml indicate iron deficiency, which needs to be treated in symptomatic patients. However, symptoms can already occur at ferritin levels of < 100 ng/ml and treatment must be adapted to the individual patient. Iron supplementation is only indicated in symptomatic patients diagnosed with iron deficiency whose quality of life is affected. It is important to treat iron deficiency together with its causes or risk factors. For example, blood loss from hypermenorrhea should be reduced. Women also need to receive information about the benefits of an iron-rich diet. If oral treatment with iron supplements is ineffective, parenteral iron administration is recommended. PMID:26633902

  7. High Prevalence of Vitamin D Deficiency in Cambodian Women: A Common Deficiency in a Sunny Country

    PubMed Central

    Smith, Geoffry; Wimalawansa, Sunil J.; Laillou, Arnaud; Sophonneary, Prak; Un, Samoeurn; Hong, Rathavuth; Poirot, Etienne; Kuong, Khov; Chamnan, Chhoun; De los Reyes, Francisco N.; Wieringa, Frank T.

    2016-01-01

    Recent studies have shown that in spite of being generally close to the equator; vitamin D deficiency is common in South East Asian countries. In order to quantify micronutrient status for women and children in Cambodia; a nationally-representative survey was conducted in 2014 linked to the Cambodian Demographic Health Survey. The countrywide median of 25(OH)D was, respectively, 64.9 and 91.1 nmol/L for mothers and children. Based on The Endocrine Society cutoffs (>50<75 nmol/L = insufficiency; ≤50 nmol/L = deficiency); 64.6% of mothers and 34.8% of their children had plasma vitamin D concentrations indicating insufficiency or deficiency. For deficiency alone, 29% of the mothers were found to be vitamin D deficient, but only 13.4% of children. Children who live in urban areas had a 43% higher rate of vitamin D insufficiency versus those who live in rural areas (OR; 1.434; 95% CI: 1.007; 2.041). However, such differences were not observed in their mothers. The high prevalence of vitamin D deficiency is likely in part due to lifestyle choices, including sun avoidance, increasingly predominant indoor work, and covered transport. These survey findings support the need for a broader national Cambodian study incorporating testing of adult men, adolescents and the elderly, and encompassing other parameters such as skeletal health. However, the data presented in this study already show significant deficiencies which need to be addressed and we discuss the benefit of establishing nationally-mandated food fortification programs to enhance the intake of vitamin D. PMID:27187456

  8. Minimum Selenium Requirements Increase When Repleting Second-Generation Selenium-Deficient Rats but Are Not Further Altered by Vitamin E Deficiency.

    PubMed

    Sunde, Roger A; Thompson, Kevin M; Fritsche, Kevin L; Evenson, Jacqueline K

    2017-05-01

    Second-generation selenium-deficient weanling rats fed graded levels of dietary Se were used (a) to study the impact of initial Se deficiency on dietary Se requirements; (b) to determine if further decreases in selenoperoxidase expression, especially glutathione peroxidase 4 (Gpx4), affect growth or gross disease; and (c) to examine the impact of vitamin E deficiency on biochemical and molecular biomarkers of Se status. Rats were fed a vitamin E-deficient and Se-deficient crystalline amino acid diet (3 ng Se/g diet) or that diet supplemented with 100 μg/g all-rac-α-tocopheryl acetate and/or 0, 0.02, 0.05, 0.075, 0.1, or 0.2 μg Se/g diet as Na 2 SeO 3 for 28 days. Se-supplemented rats grew 6.91 g/day as compared to 2.17 and 3.87 g/day for vitamin E-deficient/Se-deficient and vitamin E-supplemented/Se-deficient groups, respectively. In Se-deficient rats, liver Se, plasma Gpx3, red blood cell Gpx1, liver Gpx1 and Gpx4 activities, and liver Gpx1 mRNA levels decreased to <1, <1, 21, 1.6, 49, and 11 %, respectively, of levels in rats fed 0.2 μg Se/g diet. For all biomarkers, ANOVA indicated significant effects of dietary Se, but no significant effects of vitamin E or vitamin E × Se interaction, showing that vitamin E deficiency, even in severely Se-deficient rat pups, does not result in compensatory changes in these biochemical and molecular biomarkers of selenoprotein expression. Se requirements determined in this study, however, were >50 % higher than in previous studies that started with Se-adequate rats, demonstrating that dietary Se requirements determined using initially Se-deficient animals can result in overestimation of Se requirements.

  9. A Novel Apolipoprotein C-II Mimetic Peptide That Activates Lipoprotein Lipase and Decreases Serum Triglycerides in Apolipoprotein E–Knockout Mice

    PubMed Central

    Sakurai, Toshihiro; Sakurai-Ikuta, Akiko; Sviridov, Denis; Freeman, Lita; Ahsan, Lusana; Remaley, Alan T.

    2015-01-01

    Apolipoprotein A-I (apoA-I) mimetic peptides are currently being developed as possible new agents for the treatment of cardiovascular disease based on their ability to promote cholesterol efflux and their other beneficial antiatherogenic properties. Many of these peptides, however, have been reported to cause transient hypertriglyceridemia due to inhibition of lipolysis by lipoprotein lipase (LPL). We describe a novel bihelical amphipathic peptide (C-II-a) that contains an amphipathic helix (18A) for binding to lipoproteins and stimulating cholesterol efflux as well as a motif based on the last helix of apolipoprotein C-II (apoC-II) that activates lipolysis by LPL. The C-II-a peptide promoted cholesterol efflux from ATP-binding cassette transporter ABCA1-transfected BHK cells similar to apoA-I mimetic peptides. Furthermore, it was shown in vitro to be comparable to the full-length apoC-II protein in activating lipolysis by LPL. When added to serum from a patient with apoC-II deficiency, it restored normal levels of LPL-induced lipolysis and also enhanced lipolysis in serum from patients with type IV and V hypertriglyceridemia. Intravenous injection of C-II-a (30 mg/kg) in apolipoprotein E–knockout mice resulted in a significant reduction of plasma cholesterol and triglycerides of 38 ± 6% and 85 ± 7%, respectively, at 4 hours. When coinjected with the 5A peptide (60 mg/kg), the C-II-a (30 mg/kg) peptide was found to completely block the hypertriglyceridemic effect of the 5A peptide in C57Bl/6 mice. In summary, C-II-a is a novel peptide based on apoC-II, which promotes cholesterol efflux and lipolysis and may therefore be useful for the treatment of apoC-II deficiency and other forms of hypertriglyceridemia. PMID:25395590

  10. eNOS Deficiency Predisposes Podocytes to Injury in Diabetes

    PubMed Central

    Yuen, Darren A.; Stead, Bailey E.; Zhang, Yanling; White, Kathryn E.; Kabir, M. Golam; Thai, Kerri; Advani, Suzanne L.; Connelly, Kim A.; Takano, Tomoko; Zhu, Lei; Cox, Alison J.; Kelly, Darren J.; Gibson, Ian W.; Takahashi, Takamune; Harris, Raymond C.

    2012-01-01

    Endothelial nitric oxide synthase (eNOS) deficiency may contribute to the pathogenesis of diabetic nephropathy in both experimental models and humans, but the underlying mechanism is not fully understood. Here, we studied two common sequelae of endothelial dysfunction in diabetes: glomerular capillary growth and effects on neighboring podocytes. Streptozotocin-induced diabetes increased glomerular capillary volume in both C57BL/6 and eNOS−/− mice. Inhibiting the vascular endothelial growth factor receptor attenuated albuminuria in diabetic C57BL/6 mice but not in diabetic eNOS−/− mice, even though it inhibited glomerular capillary enlargement in both. In eNOS−/− mice, an acute podocytopathy and heavy albuminuria occurred as early as 2 weeks after inducing diabetes, but treatment with either captopril or losartan prevented these effects. In vitro, serum derived from diabetic eNOS−/− mice augmented actin filament rearrangement in cultured podocytes. Furthermore, conditioned medium derived from eNOS−/− glomerular endothelial cells exposed to both high glucose and angiotensin II activated podocyte RhoA. Taken together, these results suggest that the combined effects of eNOS deficiency and hyperglycemia contribute to podocyte injury, highlighting the importance of communication between endothelial cells and podocytes in diabetes. Identifying mediators of this communication may lead to the future development of therapies targeting endothelial dysfunction in albuminuric individuals with diabetes. PMID:22997257

  11. Derivatization of bichromic cyclometalated Ru(II) complexes with hydrophobic substituents.

    PubMed

    Robson, Kiyoshi C D; Koivisto, Bryan D; Berlinguette, Curtis P

    2012-02-06

    The syntheses and physical properties of cyclometalated Ru(II) complexes containing a triphenylamine (TPA) unit bearing aliphatic groups are reported. Each member of the series consists of an octahedral Ru(II) center coordinated by a tridentate polypyridyl ligand and a tridentate cyclometalating ligand. One of the chelating ligands contains electron-deficient methyl ester groups, while a TPA unit is attached to the central ring of the adjacent chelating ligand through a thiophene bridge. This study builds on our previous work (Inorg. Chem. 2011, 50, 6019-6028; Inorg. Chem. 2011, 50, 5494-5508) by (i) outlining a synthetic protocol for installing aliphatic groups on the TPA substituents, (ii) examining the role that terminal -O-hexyl and -S-hexyl groups situated on the TPA have on the electrochemical properties, and (iii) demonstrating the potential benefit of installing the TPA on the neutral chelating ligand rather than the anionic chelating ligand. The results reported herein provide important synthetic advances for our broader goal of developing bis-tridentate cyclometalated Ru(II) complexes for light-harvesting applications.

  12. Autism and Folate Deficiency

    DTIC Science & Technology

    2010-05-01

    social interaction that remains to be characterized more fully. Conclusion Ablation of genes in the folate pathway may result in abnormal adult...W81XWH-09-1-0246 TITLE: Autism and Folate Deficiency PRINCIPAL INVESTIGATOR: Richard H. Finnell, Ph.D...5a. CONTRACT NUMBER W81XWH-09-1-0246 Autism and Folate Deficiency 5b. GRANT NUMBER AR080064-Concept Award 5c. PROGRAM ELEMENT NUMBER

  13. Three new mutations account for the prevalence of glucose 6 phosphate deshydrogenase (G6PD) deficiency in Tunisia.

    PubMed

    Bendaoud, B; Hosni, I; Mosbahi, I; Hafsia, R; Prehu, C; Abbes, S

    2013-04-01

    A previous study on G6PD deficiency carried out on Tunisian population, led to the finding of seven different mutations with the prevalence of G6PD A- variant. This present study reports 23 new unrelated deficient subjects studied at the molecular level to determine the mutation that causes G6PD deficiency. Using PCR-SSCP of coding regions followed by direct sequencing of abnormal pattern, three new mutations were detected. Two of them are polymorphic intronic mutations. The first is IVS-V 655C-->C/T, found in four female subjects with mild deficiency of class III variant. The second is IVS-VIII 43 G-->A, found in three male subjects with mild deficiency of class III variant. The third mutation is in the exon region so that it changes the primary structure of the molecule. It is cited for the first time and named G6PD Tunisia. This variant affects the exon 7 of the gene at genomic position 15435 G→T. Its cDNA position is 93 G→G/T, it changes arg 246 to leu. This mutation was found in one heterozygote female with deficiency of class II who have had hemolytic anemia due to ingestion of fava beans. Finally, G6PD Med variant, reported before in three cases, was also found in five other cases (four heterozygote females and one male hemizygote). These findings first enlarge the spectre of mutations to be ten variant mutations, characterizing the Tunisian population and also contribute with hemoglobin gene research in our laboratory to trace the whole genetic map of Tunisian population. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Carnitine Palmitoyltransferase 1B 531K Allele Carriers Sustain a Higher Respiratory Quotient after Aerobic Exercise, but β3-Adrenoceptor 64R Allele Does Not Affect Lipolysis: A Human Model

    PubMed Central

    Gómez-Gómez, Eduardo; Ríos-Martínez, Martín Efrén; Castro-Rodríguez, Elena Margarita; Del-Toro-Equíhua, Mario; Ramírez-Flores, Mario; Delgado-Enciso, Ivan; Pérez-Huitimea, Ana Lilia; Baltazar-Rodríguez, Luz Margarita; Velasco-Pineda, Gilberto; Muñiz-Murguía, Jesús

    2014-01-01

    Carnitine palmitoyltransferase IB (CPT1B) and adrenoceptor beta-3 (ADRB3) are critical regulators of fat metabolism. CPT1B transports free acyl groups into mitochondria for oxidation, and ADRB3 triggers lipolysis in adipocytes, and their respective polymorphisms E531K and W64R have been identified as indicators of obesity in population studies. It is therefore important to understand the effects of these mutations on ADRB3 and CPT1B function in adipose and skeletal muscle tissue, respectively. This study aimed to analyze the rate of lipolysis of plasma indicators (glycerol, free fatty acids, and beta hydroxybutyrate) and fat oxidation (through the non-protein respiratory quotient). These parameters were measured in 37 participants during 30 min of aerobic exercise at approximately 62% of maximal oxygen uptake, followed by 30 min of recovery. During recovery, mean respiratory quotient values were higher in K allele carriers than in non-carriers, indicating low post-exercise fatty acid oxidation rates. No significant differences in lipolysis or lipid oxidation were observed between R and W allele carriers of ADRB3 at any time during the aerobic load. The substitution of glutamic acid at position 531 by lysine in the CPT1B protein decreases the mitochondrial beta-oxidation pathway, which increases the non-protein respiratory quotient value during recovery from exercise. This may contribute to weight gain or reduced weight-loss following exercise. PMID:24905907

  15. 30 CFR 57.8527 - Oxygen-deficiency testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen-deficiency testing. 57.8527 Section 57... Underground Only § 57.8527 Oxygen-deficiency testing. Flame safety lamps or other suitable devices shall be used to test for acute oxygen deficiency. ...

  16. 30 CFR 57.8527 - Oxygen-deficiency testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen-deficiency testing. 57.8527 Section 57... Underground Only § 57.8527 Oxygen-deficiency testing. Flame safety lamps or other suitable devices shall be used to test for acute oxygen deficiency. ...

  17. 30 CFR 57.8527 - Oxygen-deficiency testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen-deficiency testing. 57.8527 Section 57... Underground Only § 57.8527 Oxygen-deficiency testing. Flame safety lamps or other suitable devices shall be used to test for acute oxygen deficiency. ...

  18. 30 CFR 57.8527 - Oxygen-deficiency testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Oxygen-deficiency testing. 57.8527 Section 57... Underground Only § 57.8527 Oxygen-deficiency testing. Flame safety lamps or other suitable devices shall be used to test for acute oxygen deficiency. ...

  19. 30 CFR 57.8527 - Oxygen-deficiency testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen-deficiency testing. 57.8527 Section 57... Underground Only § 57.8527 Oxygen-deficiency testing. Flame safety lamps or other suitable devices shall be used to test for acute oxygen deficiency. ...

  20. Pro-hormone Secretogranin II Regulates Dense Core Secretory Granule Biogenesis in Catecholaminergic Cells*

    PubMed Central

    Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L.; Mahata, Sushil K.; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J.; O'Connor, Daniel T.; Taupenot, Laurent

    2010-01-01

    Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H+-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network. PMID:20061385

  1. Pro-hormone secretogranin II regulates dense core secretory granule biogenesis in catecholaminergic cells.

    PubMed

    Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L; Mahata, Sushil K; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J; O'Connor, Daniel T; Taupenot, Laurent

    2010-03-26

    Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H(+)-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network.

  2. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats.

    PubMed

    Mendes Garrido Abregú, Facundo; Gobetto, María Natalia; Juriol, Lorena Vanesa; Caniffi, Carolina; Elesgaray, Rosana; Tomat, Analía Lorena; Arranz, Cristina

    2018-06-01

    Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Pembrolizumab, Capecitabine, and Radiation Therapy in Treating Patients With Mismatch-Repair Deficient and Epstein-Barr Virus Positive Gastric Cancer

    ClinicalTrials.gov

    2017-11-15

    Epstein-Barr Virus Positive; Gastric Adenocarcinoma; Mismatch Repair Protein Deficiency; Stage IB Gastric Cancer AJCC v7; Stage II Gastric Cancer AJCC v7; Stage IIA Gastric Cancer AJCC v7; Stage IIB Gastric Cancer AJCC v7; Stage III Gastric Cancer AJCC v7; Stage IIIA Gastric Cancer AJCC v7; Stage IIIB Gastric Cancer AJCC v7; Stage IIIC Gastric Cancer AJCC v7

  4. The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies?

    PubMed

    Hertoghe, T

    2005-12-01

    In the human body, the productions, levels and cell receptors of most hormones progressively decline with age, gradually putting the body into various states of endocrine deficiency. The circadian cycles of these hormones also change, sometimes profoundly, with time. In aging individuals, the well-balanced endocrine system can fall into a chaotic condition with losses, phase-advancements, phase delays, unpredictable irregularities of nycthemeral hormone cycles, in particular in very old or sick individuals. The desynchronization makes hormone activities peak at the wrong times and become inefficient, and in certain cases health threatening. The occurrence of multiple hormone deficits and spilling through desynchronization may constitute the major causes of human senescence, and they are treatable causes. Several arguments can be put forward to support the view that senescence is mainly a multiple hormone deficiency syndrome: First, many if not most of the signs, symptoms and diseases (including cardiovascular diseases, cancer, obesity, diabetes, osteoporosis, dementia) of senescence are similar to physical consequences of hormone deficiencies and may be caused by hormone deficiencies. Second, most of the presumed causes of senescence such as excessive free radical formation, glycation, cross-linking of proteins, imbalanced apoptosis system, accumulation of waste products, failure of repair systems, deficient immune system, may be caused or favored by hormone deficiencies. Even genetic causes such as limits to cell proliferation (such as the Hayflick limit of cell division), poor gene polymorphisms, premature telomere shortening and activation of possible genetic "dead programs" may have links with hormone deficiencies, being either the consequence, the cause, or the major favoring factor of hormone deficiencies. Third, well-dosed and -balanced hormone supplements may slow down or stop the progression of signs, symptoms, or diseases of senescence and may often

  5. Comparing acquired angioedema with hereditary angioedema (types I/II): findings from the Icatibant Outcome Survey.

    PubMed

    Longhurst, H J; Zanichelli, A; Caballero, T; Bouillet, L; Aberer, W; Maurer, M; Fain, O; Fabien, V; Andresen, I

    2017-04-01

    Icatibant is used to treat acute hereditary angioedema with C1 inhibitor deficiency types I/II (C1-INH-HAE types I/II) and has shown promise in angioedema due to acquired C1 inhibitor deficiency (C1-INH-AAE). Data from the Icatibant Outcome Survey (IOS) were analysed to evaluate the effectiveness of icatibant in the treatment of patients with C1-INH-AAE and compare disease characteristics with those with C1-INH-HAE types I/II. Key medical history (including prior occurrence of attacks) was recorded upon IOS enrolment. Thereafter, data were recorded retrospectively at approximately 6-month intervals during patient follow-up visits. In the icatibant-treated population, 16 patients with C1-INH-AAE had 287 attacks and 415 patients with C1-INH-HAE types I/II had 2245 attacks. Patients with C1-INH-AAE versus C1-INH-HAE types I/II were more often male (69 versus 42%; P = 0·035) and had a significantly later mean (95% confidence interval) age of symptom onset [57·9 (51·33-64·53) versus 14·0 (12·70-15·26) years]. Time from symptom onset to diagnosis was significantly shorter in patients with C1-INH-AAE versus C1-INH-HAE types I/II (mean 12·3 months versus 118·1 months; P = 0·006). Patients with C1-INH-AAE showed a trend for higher occurrence of attacks involving the face (35 versus 21% of attacks; P = 0·064). Overall, angioedema attacks were more severe in patients with C1-INH-HAE types I/II versus C1-INH-AAE (61 versus 40% of attacks were classified as severe to very severe; P < 0·001). Median total attack duration was 5·0 h and 9·0 h for patients with C1-INH-AAE versus C1-INH-HAE types I/II, respectively. © 2016 British Society for Immunology.

  6. Hematopoietic studies in vitamin A deficiency.

    PubMed

    Hodges, R E; Sauberlich, H E; Canham, J E; Wallace, D L; Rucker, R B; Mejia, L A; Mohanram, M

    1978-05-01

    Recent studies of experimental vitamin A deficiency in man led the authors to conclude that anemia may result from lack of vitamin A. A review of numerous nutrition surveys in underdeveloped countries enhanced the suspicion that deficiency of vitamin A does contribute to the prevalence of anemia. Preliminary studies of vitamin A-deficient rats confirmed previous observations that anemia may result from lack of this vitamin. The livers of these animals had very low concentrations of vitamin A but normal or increased concentrations of iron. The finding of anemia is in contrast with other reports that vitamin A deficiency may cause elevated values for hemoglobin and hematocrit. The authors suggest that loss of taste and smell as a result of deficiency may account for refusal of experimental animals to eat and drink enough to prevent inanitation and dehydration. The resulting hemoconcentration may mask the true hematological picture, which is one of anemia.

  7. Thiamin deficiency in people with obesity.

    PubMed

    Kerns, Jennifer C; Arundel, Cherinne; Chawla, Lakhmir S

    2015-03-01

    Although obesity has been viewed traditionally as a disease of excess nutrition, evidence suggests that it may also be a disease of malnutrition. Specifically, thiamin deficiency was found in 15.5-29% of obese patients seeking bariatric surgery. It can present with vague signs and symptoms and is often overlooked in patients without alcohol use disorders. This review explores the relatively new discovery of high rates of thiamin deficiency in certain populations of people with obesity, including the effects of thiamin deficiency and potential underlying mechanisms of deficiency in people with obesity. The 2 observational studies that examined the prevalence in preoperative bariatric surgery patients and gaps in our current knowledge (including the prevalence of thiamin deficiency in the general obese population and whether the current RDA for thiamin meets the metabolic needs of overweight or obese adults) are reviewed. Suggestions for future areas of research are included. © 2015 American Society for Nutrition.

  8. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.

    PubMed Central

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The Flux Control Coefficients of mitochondrial outer membrane carnitine palmitoyltransferase (CPT I) with respect to the overall rates of beta-oxidation, ketogenesis and tricarboxylic acid cycle activity were measured in hepatocytes isolated from rats in different metabolic states (fed, 24 h-starved, starved-refed and starved/insulin-treated). These conditions were chosen because there is controversy as to whether, when significant control ceases to be exerted by CPT I over the rate of fatty oxidation [Moir and Zammit (1994) Trends Biochem. Sci. 19, 313-317], this is transferred to one or more steps proximal to acylcarnitine synthesis (e.g. decreased delivery of fatty acids to the liver) or to the reaction catalysed by mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase [Hegardt (1995) Biochem. Soc. Trans. 23, 486-490]. Therefore isolated hepatocytes were used in the present study to exclude the involvement of changes in the rate of delivery of non-esterified fatty acids (NEFA) to the liver, such as occur in vivo, and to ascertain whether, under conditions of constant supply of NEFA, CPT I retains control over the relevant fluxes of fatty acid oxidation to ketones and carbon dioxide, or whether control is transferred to another (intrahepatocytic) site. The results clearly show that the Flux Control Coefficients of CPT I with respect to overall beta-oxidation and ketogenesis are very high under all conditions investigated, indicating that control is not lost to another intrahepatic site during the metabolic transitions studied. The control of CPT I over tricarboxylic acid cycle activity was always very low. The significance of these findings for the integration of fatty acid and carbohydrate metabolism in the liver is discussed. PMID:8760364

  9. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    PubMed

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  10. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  11. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  12. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  13. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  14. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  15. Arginase-1 deficiency.

    PubMed

    Sin, Yuan Yan; Baron, Garrett; Schulze, Andreas; Funk, Colin D

    2015-12-01

    Arginase-1 (ARG1) deficiency is a rare autosomal recessive disorder that affects the liver-based urea cycle, leading to impaired ureagenesis. This genetic disorder is caused by 40+ mutations found fairly uniformly spread throughout the ARG1 gene, resulting in partial or complete loss of enzyme function, which catalyzes the hydrolysis of arginine to ornithine and urea. ARG1-deficient patients exhibit hyperargininemia with spastic paraparesis, progressive neurological and intellectual impairment, persistent growth retardation, and infrequent episodes of hyperammonemia, a clinical pattern that differs strikingly from other urea cycle disorders. This review briefly highlights the current understanding of the etiology and pathophysiology of ARG1 deficiency derived from clinical case reports and therapeutic strategies stretching over several decades and reports on several exciting new developments regarding the pathophysiology of the disorder using ARG1 global and inducible knockout mouse models. Gene transfer studies in these mice are revealing potential therapeutic options that can be exploited in the future. However, caution is advised in extrapolating results since the lethal disease phenotype in mice is much more severe than in humans indicating that the mouse models may not precisely recapitulate human disease etiology. Finally, some of the functions and implications of ARG1 in non-urea cycle activities are considered. Lingering questions and future areas to be addressed relating to the clinical manifestations of ARG1 deficiency in liver and brain are also presented. Hopefully, this review will spark invigorated research efforts that lead to treatments with better clinical outcomes.

  16. Folate deficiency

    MedlinePlus

    ... as phenytoin, sulfasalazine, or trimethoprim-sulfamethoxazole) Eating an unhealthy diet that does not include enough fruits and vegetables Kidney dialysis Symptoms Folic acid deficiency may cause: Fatigue, irritability, or diarrhea Poor growth Smooth and ...

  17. An αII Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration.

    PubMed

    Huang, Claire Yu-Mei; Zhang, Chuansheng; Zollinger, Daniel R; Leterrier, Christophe; Rasband, Matthew N

    2017-11-22

    Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with βIV and βII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1 f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K + channels. We show that the density of nodal βIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1 f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier. SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in

  18. Relationship of vitamin A deficiency, iron deficiency, and inflammation to anemia among preschool children in the Republic of the Marshall Islands.

    PubMed

    Gamble, M V; Palafox, N A; Dancheck, B; Ricks, M O; Briand, K; Semba, R D

    2004-10-01

    Although vitamin A deficiency, iron deficiency, and inflammation may contribute to anemia, their relative contribution to anemia has not been well characterized in preschool children in developing countries. To characterize the contributions of vitamin A and iron deficiencies and inflammation to anemia among preschool children in the Republic of the Marshall Islands. A community-based survey, the Republic of the Marshall Islands Vitamin A Deficiency Study, was conducted among 919 preschool children. The relationship of vitamin A and iron status and markers of inflammation, tumor necrosis factor-alpha, alpha1-acid glycoprotein, and interleukin-10, to anemia were studied in a subsample of 367 children. Among the 367 children, the prevalence of anemia was 42.5%. The prevalence of severe vitamin A deficiency (serum vitamin A < 0.35 micromol/l) and iron deficiency (serum ferritin < 12 microg/dl) were 10.9 and 51.7%, respectively. The respective prevalence of iron deficiency anemia (hemoglobin < 110 g/l and iron deficiency), anemia with inflammation (anemia with TNF-alpha > 2 pg/ml and/or AGP > 1000 mg/l), and severe vitamin A deficiency combined with anemia was 26.7, 35.6, and 7.6%. In multivariate linear regression models that adjusted for age, sex, and inflammation, both iron deficiency (odds ratio (OR) 1.74, 95% confidence interval (CI) 1.08-2.83, P = 0.023) and severe vitamin A deficiency (OR 4.85, 95% CI 2.14-10.9, P < 0.0001) were significantly associated with anemia. Both iron and vitamin A deficiencies were independent risk factors for anemia, but inflammation was not a significant risk factor for anemia among these preschool children.

  19. Growth hormone deficiency: an update.

    PubMed

    Audí, L; Fernández-Cancio, M; Camats, N; Carrascosa, A

    2013-03-01

    Growth hormone (GH) deficiency (GHD) in humans manifests differently according to the individual developmental stage (early after birth, during childhood, at puberty or in adulthood), the cause or mechanism (genetic, acquired or idiopathic), deficiency intensity and whether it is the only pituitary-affected hormone or is combined with that of other pituitary hormones or forms part of a complex syndrome. Growing knowledge of the genetic basis of GH deficiency continues to provide us with useful information to further characterise mutation types and mechanisms for previously described and new candidate genes. Despite these advances, a high proportion of GH deficiencies with no recognisable acquired basis continue to be labelled as idiopathic, although less frequently when they are congenital and/or familial. The clinical and biochemical diagnoses continue to be a conundrum despite efforts to harmonise biochemical assays for GH and IGF-1 analysis, probably because the diagnosis based on the so-called GH secretion stimulation tests will prove to be of limited usefulness for predicting therapy indications.

  20. Management of Iron Deficiency Anemia

    PubMed Central

    Jimenez, Kristine; Kulnigg-Dabsch, Stefanie

    2015-01-01

    Anemia affects one-fourth of the world’s population, and iron deficiency is the predominant cause. Anemia is associated with chronic fatigue, impaired cognitive function, and diminished well-being. Patients with iron deficiency anemia of unknown etiology are frequently referred to a gastroenterologist because in the majority of cases the condition has a gastrointestinal origin. Proper management improves quality of life, alleviates the symptoms of iron deficiency, and reduces the need for blood transfusions. Treatment options include oral and intravenous iron therapy; however, the efficacy of oral iron is limited in certain gastrointestinal conditions, such as inflammatory bowel disease, celiac disease, and autoimmune gastritis. This article provides a critical summary of the diagnosis and treatment of iron deficiency anemia. In addition, it includes a management algorithm that can help the clinician determine which patients are in need of further gastrointestinal evaluation. This facilitates the identification and treatment of the underlying condition and avoids the unnecessary use of invasive methods and their associated risks. PMID:27099596

  1. [A neonate with anaemia of prematurity: zinc protoporphyrin identifies iron deficiency anaemia without iron deficiency].

    PubMed

    van der Feen, Diederik E; van Hillegersberg, Jacqueline L A M; Schippers, Johannes A

    2015-01-01

    Anaemia is a common problem in premature infants and is generally easy to treat with iron supplementation. If the anaemia persists despite appropriate correction of deficiencies, more extensive evaluation is required. We describe a case of a premature male infant with a production-deficient anaemia without metabolic deficiencies, eventually identified as anaemia of prematurity. This type of anaemia is commonly diagnosed but its highly variable and complex aetiology and phenotype are often poorly understood. A probable explanation for the anaemia of prematurity in this case was a transient iron incorporation defect, identifiable by high levels of zinc protoporphyrin.

  2. 1-Deoxysphingolipids Encountered Exogenously and Made de Novo: Dangerous Mysteries inside an Enigma.

    PubMed

    Duan, Jingjing; Merrill, Alfred H

    2015-06-19

    The traditional backbones of mammalian sphingolipids are 2-amino, 1,3-diols made by serine palmitoyltransferase (SPT). Many organisms additionally produce non-traditional, cytotoxic 1-deoxysphingoid bases and, surprisingly, mammalian SPT biosynthesizes some of them, too (e.g. 1-deoxysphinganine from L-alanine). These are rapidly N-acylated to 1-deoxy-"ceramides" with very uncommon biophysical properties. The functions of 1-deoxysphingolipids are not known, but they are certainly dangerous as contributors to sensory and autonomic neuropathies when elevated by inherited SPT mutations, and they are noticeable in diabetes, non-alcoholic steatohepatitis, serine deficiencies, and other diseases. As components of food as well as endogenously produced, these substances are mysteries within an enigma. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Iron deficiency: new insights into diagnosis and treatment.

    PubMed

    Camaschella, Clara

    2015-01-01

    Iron deficiency and iron deficiency anemia are common conditions worldwide affecting especially children and young women. In developing countries, iron deficiency is caused by poor iron intake and/or parasitic infection, whereas vegetarian dietary choices, poor iron absorption, and chronic blood loss are common causes in high-income countries. Erythropoiesis stimulating agents can result in functional iron deficiency for erythropoiesis even when stores are iron-replete. Diagnosis of iron deficiency is straightforward, except when it occurs in the context of inflammatory disorders. Oral iron salts correct absolute iron deficiency in most patients, because low hepcidin levels facilitate iron absorption. Unfortunately frequent side effects limit oral iron efficacy. Intravenous iron is increasingly utilized, because currently available preparations allow rapid normalization of total body iron even with a single infusion and are effective also in functional iron deficiency and in iron deficiency associated with inflammatory disorders. The evidence is accumulating that these preparations are safe and effective. However, long-term safety issues of high doses of iron need to be further explored. © 2015 by The American Society of Hematology. All rights reserved.

  4. The effect of ozone on the yellowing process of magnesium-deficient clonal Norway spruce grown under defined conditions.

    PubMed

    Siefermann-Harms, Dorothea; Payer, Hans Dieter; Schramel, Peter; Lütz, Cornelius

    2005-02-01

    During two vegetation periods, young clonal spruce trees (Picea abies (L.) Karst.) with sufficient and poor magnesium (Mg) supply were exposed in the environmental chambers of the GSF phytotron to three levels of ozone (daily means: 18-22, 88-130, and 135-190 microg m(-3); 10% reduction at night). Previous year's needles were examined at 4-week intervals with respect to their contents of Mg, Ca, K, Mn, N, P, and chlorophyll (Chl), various parameters of Chl fluorescence, and the stability of the isolated light-harvesting Chl-a/b-protein complex LHC II. The needles of the two nutrition variants contained more than 0.53 or less than 0.27mg Mg g(-1) needle dry matter, respectively. The ratio of variable to maximal Chl-a fluorescence of the dark-adapted needles, Fv/Fm, and the photoinhibitory quenching of Fv after light treatment, SVi.v, were affected by the Mg content of the needles rather than the ozone levels. Changes of the Chl content and the behavior of the LHC II allowed differentiating between a slow process of needle yellowing occurring under Mg deficiency only, and a rapid process of needle yellowing occurring under the combined action of Mg deficiency and ozone pollution. Only the rapid yellowing process was accompanied by destabilization of the LHC II, and the degree of destabilization was correlated with the ozone concentration present in the days before sampling. The results are consistent with observations obtained at a research site in the Central Black Forest (J Plant Physiol 161 (2004) 423).

  5. 33 CFR 72.01-30 - Temporary deficiencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Temporary deficiencies. 72.01-30 Section 72.01-30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-30 Temporary deficiencies. Temporary deficiencies...

  6. 33 CFR 72.01-30 - Temporary deficiencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Temporary deficiencies. 72.01-30 Section 72.01-30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-30 Temporary deficiencies. Temporary deficiencies...

  7. SOX9 expression predicts relapse of stage II colon cancer patients.

    PubMed

    Marcker Espersen, Maiken Lise; Linnemann, Dorte; Christensen, Ib Jarle; Alamili, Mahdi; Troelsen, Jesper T; Høgdall, Estrid

    2016-06-01

    The aim of this study was to investigate if the protein expression of sex-determining region y-box 9 (SOX9) in primary tumors could predict relapse of stage II colon cancer patients. One hundred forty-four patients with stage II primary colon cancer were retrospectively enrolled in the study. SOX9 expression was evaluated by immunohistochemistry, and mismatch repair status was assessed by both immunohistochemistry and promoter hypermethylation assay. High SOX9 expression at the invasive front was significantly associated with lower risk of relapse when including the SOX9 expression as a continuous variable (from low to high expression) in univariate (hazard ratio [HR], 0.73; 95% confidence interval [CI], 0.56-0.94; P = .01) and multivariate Cox proportional hazards analyses (HR, 0.75; 95% CI, 0.58-0.96; P = .02), adjusting for mismatch repair deficiency and histopathologic risk factors. Conversely, low SOX9 expression at the invasive front was significantly associated with high risk of relapse, when including SOX9 expression as a dichotomous variable, in univariate (HR, 2.32; 95% CI, 1.14-4.69; P = .02) and multivariate analyses (HR, 2.32; 95% CI, 1.14-4.69; P = .02), adjusting for histopathologic risk factors and mismatch repair deficiency. In conclusion, high levels of SOX9 of primary stage II colon tumors predict low risk of relapse, whereas low levels of SOX9 predict high risk of relapse. SOX9 may have an important value as a biomarker when evaluating risk of relapse for personalized treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Iron deficiency and new insights into therapy.

    PubMed

    Low, Michael Sy; Grigoriadis, George

    2017-07-17

    Iron deficiency and iron deficiency anaemia remain prevalent in Australia. The groups at highest risk are pre-menopausal women, socially disadvantaged people and those of Indigenous background. Diagnosing iron deficiency using a full blood examination and iron studies can be difficult and can be further complicated by concomitant inflammation. Results of iron studies should always be interpreted as an overall picture rather than focusing on individual parameters. In difficult clinical scenarios, soluble transferrin receptor assays can be useful. Management of iron deficiency involves identification and treatment of the cause of iron deficiency, as well as effective iron replacement. Clinicians should always take a detailed history and perform a comprehensive physical examination of a patient with iron deficiency. Patients should be monitored even if a likely cause of iron deficiency is identified. Patients who fail to respond to iron replacement or maintain iron status should be referred for further investigation, including endoscopy to exclude internal bleeding. Both enteral and parenteral iron are effective at replacing iron. For most adult patients, we recommend trialling daily oral iron (30-100 mg of elemental iron) as the first-line therapy. Safety and efficacy of intravenous iron infusions have improved with the availability of a newer formulation, ferric carboxymaltose. Patients who fail to respond to oral iron replacement can be safely managed with intravenous iron. Blood transfusion for iron deficiency anaemia should be reserved for life-threatening situations and should always be followed by appropriate iron replacement.

  9. [Strategies to control vitamin A deficiency].

    PubMed

    Traoré, L; Banou, A A; Sacko, D; Malvy, D; Schémann, J F

    1998-01-01

    Vitamin A deficiency is a major public health problem in the countries of the Sahel. It causes xerophthalmia and high rates of child mortality and it occurs mostly in underdeveloped regions. People of all ages may suffer from vitamin A deficiency but it is a particular problem in pre-school-age children. Each year, about 250,000 children throughout the world become blind due to vitamin A deficiency. Measles, pneumonia and diarrhea reduce the child's reserves of retinol and increase the dietary requirement for vitamin A. Improvement of social conditions is a radical approach to preventing vitamin A deficiency. Three strategies are currently in use: horticultural activities and health education; fortification of food products; distribution of high-dose vitamin A capsules.

  10. TopBP1 deficiency impairs V(D)J recombination during lymphocyte development

    PubMed Central

    Kim, Jieun; Kyu Lee, Sung; Jeon, Yoon; Kim, Yehyun; Lee, Changjin; Ho Jeon, Sung; Shim, Jaegal; Kim, In-Hoo; Hong, Seokmann; Kim, Nayoung; Lee, Ho; Seong, Rho Hyun

    2014-01-01

    TopBP1 was initially identified as a topoisomerase II-β-binding protein and it plays roles in DNA replication and repair. We found that TopBP1 is expressed at high levels in lymphoid tissues and is essential for early lymphocyte development. Specific abrogation of TopBP1 expression resulted in transitional blocks during early lymphocyte development. These defects were, in major part, due to aberrant V(D)J rearrangements in pro-B cells, double-negative and double-positive thymocytes. We also show that TopBP1 was located at sites of V(D)J rearrangement. In TopBP1-deficient cells, γ-H2AX foci were found to be increased. In addition, greater amount of γ-H2AX product was precipitated from the regions where TopBP1 was localized than from controls, indicating that TopBP1 deficiency results in inefficient DNA double-strand break repair. The developmental defects were rescued by introducing functional TCR αβ transgenes. Our data demonstrate a novel role for TopBP1 as a crucial factor in V(D)J rearrangement during the development of B, T and iNKT cells. PMID:24442639

  11. Iodine deficiency disorders: contemporary scientific issues.

    PubMed

    Maberly, G F

    1994-08-01

    Iodine deficiency is the leading cause of preventable intellectual impairment and is associated with a spectrum of neurologic and developmental pathology. More than one billion people are at risk. The developing fetus, newborn, and young child are the most susceptible to the effects of an iodine-deficient diet. If intervention is not initiated in a timely fashion, the pathophysiologic abnormalities become resistant to treatment and permanent intellectual, neurologic, and somatic deficits result. The technology of iodine deficiency intervention is well established. Iodized salt, the preferred method, is easy to produce, administer in physiologic doses, and is cost effective. The distribution of iodized salt and social marketing are key to a successful iodine deficiency elimination program. In remote regions, iodized oil is a useful interim intervention. However, it is clear that technology is not enough. Any national effort to eliminate iodine deficiency must extend far beyond the Ministry of Health. The program will require the full participation of a range of national government ministries and agencies and the full support and participation of local or regional governments.

  12. Iron Deficiency in Autism and Asperger Syndrome.

    ERIC Educational Resources Information Center

    Latif, A.; Heinz, P.; Cook, R.

    2002-01-01

    Retrospective analysis of the full blood count and, when available, serum ferritin measurements of 96 children (52 with autism and 44 with Asperger syndrome) found six autistic children had iron deficiency and 12 of the 23 autistic children with serum ferritin measures were iron deficient. Far fewer Asperger children were iron deficient. Results…

  13. Differing patterns of genetic instability in mice deficient in the mismatch repair genes Pms2, Mlh1, Msh2, Msh3 and Msh6.

    PubMed

    Hegan, Denise Campisi; Narayanan, Latha; Jirik, Frank R; Edelmann, Winfried; Liskay, R Michael; Glazer, Peter M

    2006-12-01

    Defects in genes associated with DNA mismatch repair (MMR) have been linked to hereditary colon cancer. Because the MMR pathway includes multiple factors with both overlapping and divergent functions, we sought to compare the impact of deficiencies in each of several MMR genes on genetic instability using a collection of knock-out mouse models. We investigated mutation frequencies and patterns in MMR-deficient mice using two transgenic reporter genes, supFG1 and cII, in the context of mice deficient for Pms2, Mlh1, Msh2, Msh3 or Msh6 or both Msh2 and Msh3 or both Msh3 and Msh6. We found that the mean mutation frequencies of all of the MMR-deficient mice were significantly higher than the mean mutation frequencies of wild-type mice. Mlh1-deficient mice and Msh2-deficient mice had the highest mutation frequencies in a comparison of the single nullizygous mice. Of all the mice studied, mice nullizygous for both Msh2 and Msh3 and those nullizygous for both Msh3 and Msh6 displayed the greatest overall increases in mutation frequencies compared with wild-type mice. Sequence analysis of the mutated reporter genes revealed significant differences between the individual groups of MMR-deficient mice. Taken together, our results further characterize the functions of the MMR factors in mutation avoidance and provide in vivo correlation to biochemical models of the MMR pathway.

  14. Switch from type II to I Fas/CD95 death signaling on in vitro culturing of primary hepatocytes.

    PubMed

    Walter, Dorothée; Schmich, Kathrin; Vogel, Sandra; Pick, Robert; Kaufmann, Thomas; Hochmuth, Florian Christoph; Haber, Angelika; Neubert, Karin; McNelly, Sabine; von Weizsäcker, Fritz; Merfort, Irmgard; Maurer, Ulrich; Strasser, Andreas; Borner, Christoph

    2008-12-01

    Fas/CD95-induced apoptosis of hepatocytes in vivo proceeds through the so-called type II pathway, requiring the proapoptotic BH3-only Bcl-2 family member Bid for mitochondrial death signaling. Consequently, Bid-deficient mice are protected from anti-Fas antibody injection induced fatal hepatitis. We report the unexpected finding that freshly isolated mouse hepatocytes, cultured on collagen or Matrigel, become independent of Bid for Fas-induced apoptosis, thereby switching death signaling from type II to type I. In such in vitro cultures, Fas ligand (FasL) activates caspase-3 without Bid cleavage, Bax/Bak activation or cytochrome c release, and neither Bid ablation nor Bcl-2 overexpression is protective. The type II to type I switch depends on extracellular matrix adhesion, as primary hepatocytes in suspension die in a Bid-dependent manner. Moreover, the switch is specific for FasL-induced apoptosis as collagen-plated Bid-deficient hepatocytes are protected from tumor necrosis factor alpha/actinomycin D (TNFalpha/ActD)-induced apoptosis. Our data suggest a selective crosstalk between extracellular matrix and Fas-mediated signaling that favors mitochondria-independent type I apoptosis induction.

  15. Genetics Home Reference: leukocyte adhesion deficiency type 1

    MedlinePlus

    ... adhesion deficiency type 1 Leukocyte adhesion deficiency type 1 Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Leukocyte adhesion deficiency type 1 is a ...

  16. Japanese family with congenital factor VII deficiency.

    PubMed

    Sakakibara, Kanae; Okayama, Yoshiki; Fukushima, Kenji; Kaji, Shunsaku; Muraoka, Michiko; Arao, Yujiro; Shimada, Akira

    2015-10-01

    Congenital factor VII (FVII) deficiency is a rare bleeding disorder with autosomal recessive inheritance. The present female patient was diagnosed with congenital FVII deficiency because of low hepaplastin test (HPT), although vitamin K was given. Heterozygous p.A191T mutation was detected in the peripheral blood, and the same mutation was also found in the mother and sister. To the best of our knowledge, this is the fourth reported case of p.A191T mutation of FVII in the literature and the first to be reported in Japan. FVII coagulation activity (FVII:C) in asymptomatic heterozygous carriers is mildly reduced. Therefore, some patients may not be accurately diagnosed with congenital FVII deficiency. In infants with low HPT without vitamin K deficiency, congenital FVII deficiency should be considered. © 2015 Japan Pediatric Society.

  17. Evidence for a link between sphingolipid metabolism and expression of CD1d and MHC-class II: monocytes from Gaucher disease patients as a model.

    PubMed

    Balreira, Andrea; Lacerda, Lúcia; Miranda, Clara Sá; Arosa, Fernando A

    2005-06-01

    Gaucher disease (GD) is an autosomal recessive inherited defect of the lysosomal enzyme glucocerebrosidase (GluCerase) that leads to glucosylceramide (GluCer) accumulation. We previously demonstrated the existence of imbalances in certain lymphocyte populations in GD patients. We now show that GluCerase-deficient monocytes from GD patients or monocytes from healthy subjects treated with conduritol-B-epoxide (CBE), an irreversible inhibitor of GluCerase activity, display high levels of surface expression of the lipid-binding molecule CD1d. GluCerase-deficient monocytes from GD patients also showed increased surface expression of major histocompatibility complex (MHC)-class II, but not of other lysosomal trafficking molecules, such as CD63 and MHC-class I. However, CD1d and MHC-class II mRNA levels were not increased. GluCerase-deficient monocytes from GD patients undergoing enzyme replacement therapy also exhibited increased levels of CD1d and MHC-class II and imbalances in the percentage of CD4+, CD8+, and Valpha24+ T cells. Interestingly, follow-up studies revealed that enzyme replacement therapy induced a decrease in MHC-class II expression and partial correction of the CD4+ T cell imbalances. These results reveal a new link between sphingolipid accumulation in monocytes and the expression of certain MHC molecules that may result in imbalances of regulatory T cell subsets. These immunological anomalies may contribute to the clinical heterogeneity in GD patients.

  18. Behavioral impairments in animal models for zinc deficiency

    PubMed Central

    Hagmeyer, Simone; Haderspeck, Jasmin Carmen; Grabrucker, Andreas Martin

    2015-01-01

    Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies. PMID:25610379

  19. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    PubMed

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  20. 7 CFR 1434.21 - Loan deficiency payments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS FOR HONEY § 1434.21 Loan deficiency payments. (a) Loan deficiency payments shall be available for 2008 through 2012 crop honey. (b) In order to be eligible to receive loan deficiency payment for a crop of honey, the producer must: (1) Comply with all of the program requirements to be eligible to obtain...

  1. 7 CFR 1434.21 - Loan deficiency payments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS FOR HONEY § 1434.21 Loan deficiency payments. (a) Loan deficiency payments shall be available for 2008 through 2012 crop honey. (b) In order to be eligible to receive loan deficiency payment for a crop of honey, the producer must: (1) Comply with all of the program requirements to be eligible to obtain...

  2. Neurological Disease associated with Folate Deficiency

    PubMed Central

    Reynolds, E. H.; Rothfeld, P.; Pincus, Jonathen H.

    1973-01-01

    In a general medical hospital population the neurological status of 24 patients with severe folate deficiency was compared with that of a control group of 21 patients with normal serum folate. A significant increase of organic brain syndrome and pyramidal tract damage was found in the folate-deficient group. These findings were independent of the degree of anaemia or the presence of alcoholism. These data are consistent with the view that severe folate deficiency may cause neurological deficits. PMID:4703098

  3. Genetics Home Reference: holocarboxylase synthetase deficiency

    MedlinePlus

    ... holocarboxylase synthetase deficiency Orphanet: Multiple carboxylase deficiency Screening, Technology, and Research in Genetics Virginia Department of Health (PDF) Patient Support and Advocacy Resources (3 links) Children Living with Inherited Metabolic Diseases Organic Acidemia Association ...

  4. Genetics Home Reference: beta-ketothiolase deficiency

    MedlinePlus

    ... Beta Ketothiolase Deficiency Orphanet: Beta-ketothiolase deficiency Screening, Technology And Research in Genetics Virginia Department of Health (PDF) Patient Support and Advocacy Resources (2 links) Children Living with Inherited Metabolic Diseases Organic Acidemia Association ...

  5. Genetics Home Reference: familial glucocorticoid deficiency

    MedlinePlus

    ... familial glucocorticoid deficiency type 1 lead to defective trafficking of the receptor to the cell surface. J ... short stature, and natural killer cell deficiency in humans. J Clin Invest. 2012 Mar;122(3):814- ...

  6. [Complement deficiencies and meningococcal disease in The Netherlands].

    PubMed

    Swart, A G; Fijen, C A; te Bulte, M T; Daha, M R; Dankert, J; Kuijper, E J

    1993-06-05

    To determine the prevalence of complement system deficiencies in patients who have survived a Neisseria meningitidis infection. Retrospective. Reference laboratory for bacterial meningitis of the University of Amsterdam and the National Institute of Public Health and Environmental Protection. Out of the files of the laboratory 187 patients who had experienced a meningococcal infection in the Netherlands between 1959-1990 were selected in two groups according to the infecting bacterial strain: 97 patients with a serogroup X, Y, Z, W135, 29E, or non-groupable strains and 90 patients with an infection due to serogroup A or C. The patients were asked for their cooperation by their family doctor and one of us visited the patients at home to take blood samples. The complement activity was studied with a haemolysis in gel test and with an assay of haemolytic activity in free solution. Complement deficiency was present in 18% of the 187 patients who had experienced a meningococcal infection. The highest prevalence was found in patients older than 10 years who had developed infections due to serogroups X, Y, W135, or non-groupable strains (45%). Of the patients with a serogroup A or C infection, 3% had an complement deficiency. Of the complement deficiencies, 42% concerned a component of the alternative pathway, 12% a deficiency of C3, and 46% a component of the terminal route. The most commonly found deficiencies were properdin deficiency (39%) and C8 deficiency (18%). 30% of the complement deficient patients reported other family members having experienced meningitis. Recurrent meningitis was only observed in patients with terminal route deficiencies. We recommend that patients with a meningococcal infection due to serogroups X, Y, W135 or non-groupable strains should be screened for complement deficiency.

  7. A randomized clinical trial of the efficacy of single versus double-daily dose of oral iron for prevention of iron deficiency anemia in women with twin gestations.

    PubMed

    Ali, Mohammed K; Abbas, Ahmed M; Abdelmagied, Ahmed M; Mohammed, Ghada E; Abdalmageed, Osama S

    2017-12-01

    The study aims to assess the efficacy of single versus double-daily oral iron dose on prevention of iron deficiency anemia in women with twin gestations. A randomized controlled trial (NCT02858505) conducted at Woman's Health Hospital, Assiut, Egypt, between August 2015 and June 2016 included 120 non-anemic pregnant women with twin gestations in the first trimester. Women were randomly assigned to either group I (27 mg elemental iron) or group II (54 mg elemental iron) daily starting from 12 weeks of pregnancy till 36 weeks. The primary outcomes included the mean level of hemoglobin, hematocrit and serum ferritin at 36 weeks' gestation. Both iron doses maintained the mean hemoglobin and hematocrit within the normal level from 12 weeks to 36 weeks (p = 0.378 and p = 0.244, respectively). However, the mean serum ferritin level was higher in group II than group I (p = 0.000) at 36 weeks' gestation. Moreover, women in group II reported more side effects than group I at 36 weeks' gestation. Doubling the prophylactic iron dose is comparable to single dose in the prevention of iron deficiency anemia among women with twin gestations with more side effects.

  8. Iron deficiency beyond erythropoiesis: should we be concerned?

    PubMed

    Musallam, Khaled M; Taher, Ali T

    2018-01-01

    To consider the key implications of iron deficiency for biochemical and physiological functions beyond erythropoiesis. PubMed was searched for relevant journal articles published up to August 2017. Anemia is the most well-recognized consequence of persisting iron deficiency, but various other unfavorable consequences can develop either before or concurrently with anemia. Mitochondrial function can be profoundly disturbed since iron is a cofactor for heme-containing enzymes and non-heme iron-containing enzymes in the mitochondrial electron transport chain. Biosynthesis of heme and iron-sulfur clusters in the mitochondria is inhibited, disrupting synthesis of compounds such as hemoglobin, myoglobin, cytochromes and nitric oxide synthase. The physiological consequences include fatigue, lethargy, and dyspnea; conversely, iron repletion in iron-deficient individuals has been shown to improve exercise capacity. The myocardium, with its high energy demands, is particularly at risk from the effects of iron deficiency. Randomized trials have found striking improvements in disease severity in anemic but also non-anemic chronic heart failure patients with iron deficiency after iron therapy. In vitro and pre-clinical studies have demonstrated that iron is required by numerous enzymes involved in DNA replication and repair, and for normal cell cycle regulation. Iron is also critical for immune cell growth, proliferation, and differentiation, and for specific cell-mediated effector pathways. Observational studies have shown that iron-deficient individuals have defective immune function, particularly T-cell immunity, but more evidence is required. Pre-clinical models have demonstrated abnormal myelogenesis, brain cell metabolism, neurotransmission, and hippocampal formation in iron-deficient neonates and young animals. In humans, iron deficiency anemia is associated with poorer cognitive and motor skills. However, the impact of iron deficiency without anemia is less clear. The

  9. Genetics Home Reference: inherited thyroxine-binding globulin deficiency

    MedlinePlus

    ... Health Conditions Inherited thyroxine-binding globulin deficiency Inherited thyroxine-binding globulin deficiency Printable PDF Open All Close ... to view the expand/collapse boxes. Description Inherited thyroxine-binding globulin deficiency is a genetic condition that ...

  10. Flu Vaccine Guidance for Patients with Immune Deficiency

    MedlinePlus

    ... Vaccine Guidance for Patients with Immune Deficiency Share | Flu Vaccine Guidance for Patients with Immune Deficiency This ... is the best tool for prevention of the flu, should patients with immune deficiency be given the ...

  11. Respiratory chain complex II as general sensor for apoptosis.

    PubMed

    Grimm, Stefan

    2013-05-01

    I review here the evidence that complex II of the respiratory chain (RC) constitutes a general sensor for apoptosis induction. This concept emerged from work on neurodegenerative diseases and from recent data on metabolic alterations in cancer cells affecting the RC and in particular on mutations of complex II subunits. It is also supported by experiments with many anticancer compounds that compared the apoptosis sensitivities of complex II-deficient versus WT cells. These results are explained by the mechanistic understanding of how complex II mediates the diverse range of apoptosis signals. This protein aggregate is specifically activated for apoptosis by pH change as a common and early feature of dying cells. This leads to the dissociation of its SDHA and SDHB subunits from the remaining membrane-anchored subunits and the consequent block of it enzymatic SQR activity, while its SDH activity, which is contained in the SDHA/SDHB subcomplex, remains intact. The uncontrolled SDH activity then generates excessive amounts of reactive oxygen species for the demise of the cell. Future studies on these mitochondrial processes will help refine this model, unravel the contribution of mutations in complex II subunits as the cause of degenerative neurological diseases and tumorigenesis, and aid in discovering novel interference options. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Management of hereditary antithrombin deficiency in pregnancy.

    PubMed

    James, Andra H; Bates, Shannon M; Bauer, Kenneth A; Branch, Ware; Mann, Kenneth; Paidas, Michael; Silverman, Neil; Konkle, Barbara A

    2017-09-01

    Antithrombin (AT) deficiency is a high-risk thrombophilia and a rare condition. Despite full anticoagulation during pregnancy and the postpartum period, women with AT deficiency may still be vulnerable to developing venous thromboembolism (VTE), including fatal events. There is limited guidance on the management of AT deficiency in pregnancy, including the role of AT concentrates. Following a comprehensive review of the state of the art with respect to recommendations and guidelines, our expert panel in maternal-fetal medicine, hematology and basic science reached consensus on key issues in the recognition and management of AT deficiency in pregnancy. This paper summarizes the state of the art and summarizes what we believe are best practices with special emphasis on a multidisciplinary approach involving obstetrics and hematology in the care of women with AT deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Hoynowski, S. M.; Woods, K. M.; Armstrong, J. W.; Beharka, A. A.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines.

  14. Tocopherol-deficient rice plants display increased sensitivity to photooxidative stress.

    PubMed

    Chen, Defu; Chen, Haiwei; Zhang, Luhua; Shi, Xiaoli; Chen, Xiwen

    2014-06-01

    Tocopherols are lipophilic antioxidants that are synthesized exclusively in photosynthetic organisms. Despite extensive in vivo characterization of tocopherol functions in plants, their functions in the monocot model plant, rice, remain to be determined. In this study, transgenic rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) activity were generated. Silencing of HPT and TC resulted in up to a 98 % reduction in foliar tocopherol content relative to the control plants, which was also confirmed by transcript level analysis. When grown under normal conditions, HPT and TC transgenics showed no distinctive phenotype relative to the control plants, except a slight reduction in plant height and a slight decrease in the first leaf length. However, when exposed to high light at low temperatures, HPT and TC transgenics had a significantly higher leaf yellowing index than the control plants. The tocopherol-deficient plants decreased their total individual chlorophyll levels, their chlorophyll a/b ratio, and the maximum photochemical efficiency of photosystem II, whereas increased lipid peroxidation levels relative to the control plants. Tocopherol deficiency had no effect on ascorbate biosynthesis, but induced glutathione, antheraxanthin, and particularly zeaxanthin biosynthesis for compensation under stressful conditions. However, despite these compensation mechanisms, HPT and TC transgenics still exhibited altered phenotypes under high light at low temperatures. Therefore, it is suggested that tocopherols cannot be replaced and play an indispensable role in photoprotection in rice.

  15. Iodine deficiency and thyroid disorders.

    PubMed

    Zimmermann, Michael B; Boelaert, Kristien

    2015-04-01

    Iodine deficiency early in life impairs cognition and growth, but iodine status is also a key determinant of thyroid disorders in adults. Severe iodine deficiency causes goitre and hypothyroidism because, despite an increase in thyroid activity to maximise iodine uptake and recycling in this setting, iodine concentrations are still too low to enable production of thyroid hormone. In mild-to-moderate iodine deficiency, increased thyroid activity can compensate for low iodine intake and maintain euthyroidism in most individuals, but at a price: chronic thyroid stimulation results in an increase in the prevalence of toxic nodular goitre and hyperthyroidism in populations. This high prevalence of nodular autonomy usually results in a further increase in the prevalence of hyperthyroidism if iodine intake is subsequently increased by salt iodisation. However, this increase is transient because iodine sufficiency normalises thyroid activity which, in the long term, reduces nodular autonomy. Increased iodine intake in an iodine-deficient population is associated with a small increase in the prevalence of subclinical hypothyroidism and thyroid autoimmunity; whether these increases are also transient is unclear. Variations in population iodine intake do not affect risk for Graves' disease or thyroid cancer, but correction of iodine deficiency might shift thyroid cancer subtypes toward less malignant forms. Thus, optimisation of population iodine intake is an important component of preventive health care to reduce the prevalence of thyroid disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Endothelial Cell Tetrahydrobiopterin Modulates Sensitivity to Ang (Angiotensin) II-Induced Vascular Remodeling, Blood Pressure, and Abdominal Aortic Aneurysm.

    PubMed

    Chuaiphichai, Surawee; Rashbrook, Victoria S; Hale, Ashley B; Trelfa, Lucy; Patel, Jyoti; McNeill, Eileen; Lygate, Craig A; Channon, Keith M; Douglas, Gillian

    2018-07-01

    GTPCH (GTP cyclohydrolase 1, encoded by Gch1 ) is required for the synthesis of tetrahydrobiopterin; a critical regulator of endothelial NO synthase function. We have previously shown that mice with selective loss of Gch1 in endothelial cells have mild vascular dysfunction, but the consequences of endothelial cell tetrahydrobiopterin deficiency in vascular disease pathogenesis are unknown. We investigated the pathological consequence of Ang (angiotensin) II infusion in endothelial cell Gch1 deficient ( Gch1 fl/fl Tie2cre) mice. Ang II (0.4 mg/kg per day, delivered by osmotic minipump) caused a significant decrease in circulating tetrahydrobiopterin levels in Gch1 fl/fl Tie2cre mice and a significant increase in the Nω-nitro-L-arginine methyl ester inhabitable production of H 2 O 2 in the aorta. Chronic treatment with this subpressor dose of Ang II resulted in a significant increase in blood pressure only in Gch1 fl/fl Tie2cre mice. This finding was mirrored with acute administration of Ang II, where increased sensitivity to Ang II was observed at both pressor and subpressor doses. Chronic Ang II infusion in Gch1 fl/fl Tie2ce mice resulted in vascular dysfunction in resistance mesenteric arteries with an enhanced constrictor and decreased dilator response and medial hypertrophy. Altered vascular remodeling was also observed in the aorta with an increase in the incidence of abdominal aortic aneurysm formation in Gch1 fl/fl Tie2ce mice. These findings indicate a specific requirement for endothelial cell tetrahydrobiopterin in modulating the hemodynamic and structural changes induced by Ang II, through modulation of blood pressure, structural changes in resistance vessels, and aneurysm formation in the aorta. © 2018 The Authors.

  17. Neonatal screening for glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Pao, Mritunjay; Kulkarni, Anjali; Gupta, Vidya; Kaul, Sushma; Balan, Saroja

    2005-10-01

    This study was carried out to detect the incidence of erythrocytic Glucose-6 -Phosphate dehydrogenase (G-6-PD) deficiency, to compare the incidence of hyperbilirubinemia in G-6-PD deficient neonates as compared to G-6-PD normal neonates and to asses the usefulness of neonatal screening for G-6-PD deficiency. In a retrospective hospital based study 2,479 male and female neonates consecutively born at Indraprastha Apollo hospital between July 1998 to June 2003 who were screened for G-6-PD levels were evaluated for the incidence of G-6-PD deficiency. Incidence of G-6-PD deficiency was found to be 2.0%. Incidence in males was 283% and female was 1.05%. The incidence of hyperbilirubinemia was found to be 32% in G-6-PD deficient neonates which was significantly higher than the incidence of hyperbilirubinemia in neonates with normal G-6-PD, which was 12.3% (P< 0.001). Our data suggests that neonatal screening for G-6-PD deficiency is a useful test for preventing and early treatment of complications associated with it.

  18. Serum thymulin in human zinc deficiency.

    PubMed Central

    Prasad, A S; Meftah, S; Abdallah, J; Kaplan, J; Brewer, G J; Bach, J F; Dardenne, M

    1988-01-01

    The activity of thymulin (a thymic hormone) is dependent on the presence of zinc in the molecule. We assayed serum thymulin activity in three models of mildly zinc-deficient (ZD) human subjects before and after zinc supplementation: (a) two human volunteers in whom a specific and mild zinc deficiency was induced by dietary means; (b) six mildly ZD adult sickle cell anemia (SCA) subjects; and (c) six mildly ZD adult non-SCA subjects. Their plasma zinc levels were normal and they showed no overt clinical manifestations of zinc deficiency. The diagnosis of mild zinc deficiency was based on the assay of zinc in lymphocytes, granulocytes, and platelets. Serum thymulin activity was decreased as a result of mild zinc deficiency and was corrected by in vivo and in vitro zinc supplementation, suggesting that this parameter was a sensitive indicator of zinc deficiency in humans. An increase in T101-, sIg-cells, decrease in T4+/T8+ ratio, and decreased IL 2 activity were observed in the experimental human model during the zinc depletion phase, all of which were corrected after repletion with zinc. Similar changes in lymphocyte subpopulation, correctable with zinc supplementation, were also observed in mildly ZD SCA subjects. Inasmuch as thymulin is known to induce intra- and extrathymic T cell differentiation, our studies provide a possible mechanism for the role of zinc on T cell functions. Images PMID:3262625

  19. P450 oxidoreductase deficiency: a disorder of steroidogenesis with multiple clinical manifestations.

    PubMed

    Miller, Walter L

    2012-10-23

    Cytochrome P450 enzymes catalyze the biosynthesis of steroid hormones and metabolize drugs. There are seven human type I P450 enzymes in mitochondria and 50 type II enzymes in endoplasmic reticulum. Type II enzymes, including both drug-metabolizing and some steroidogenic enzymes, require electron donation from a two-flavin protein, P450 oxidoreductase (POR). Although knockout of the POR gene causes embryonic lethality in mice, we discovered human POR deficiency as a disorder of steroidogenesis associated with the Antley-Bixler skeletal malformation syndrome and found mild POR mutations in phenotypically normal adults with infertility. Assay results of mutant forms of POR using the traditional but nonphysiologic assay (reduction of cytochrome c) did not correlate with patient phenotypes; assays based on the 17,20 lyase activity of P450c17 (CYP17) correlated with clinical phenotypes. The POR sequence in 842 normal individuals revealed many polymorphisms; amino acid sequence variant A503V is encoded by ~28% of human alleles. POR A503V has about 60% of wild-type activity in assays with CYP17, CYP2D6, and CYP3A4, but nearly wild-type activity with P450c21, CYP1A2, and CYP2C19. Activity of a particular POR variant with one P450 enzyme will not predict its activity with another P450 enzyme: Each POR-P450 combination must be studied individually. Human POR transcription, initiated from an untranslated exon, is regulated by Smad3/4, thyroid receptors, and the transcription factor AP-2. A promoter polymorphism reduces transcription to 60% in liver cells and to 35% in adrenal cells. POR deficiency is a newly described disorder of steroidogenesis, and POR variants may account for some genetic variation in drug metabolism.

  20. [Biological diagnosis of iron deficiency in children].

    PubMed

    Thuret, I

    2017-05-01

    Measurement of serum ferritin (SF) is currently the laboratory test recommended for diagnosing iron deficiency. In the absence of an associated disease, a low SF value is an early and highly specific indicator of iron deficiency. The WHO criteria proposed to define depleted storage iron are 12μg/L for children under 5 years and 15μg/L for those over 5 years. A higher threshold of 30μg/L is used in the presence of infection or inflammation. Iron deficiency anemia, with typical low mean corpuscular volume and mean corpuscular hemoglobin, is only present at the end stage of iron deficiency. Other diagnostic tests for iron deficiency including iron parameters (low serum iron, increased total iron-binding capacity, low transferrin saturation) and erythrocyte traits (low mean corpuscular volume, increased zinc protoporphyrin) provide little additional diagnostic value over SF. In children, serum soluble transferrin receptor (sTfR) has been reported to be a sensitive indicator of iron deficiency and is relatively unaffected by inflammation. On the other hand, sTfR is directly related to extent of erythroid activity and not commonly used in clinical practice. In population surveys, approaches based on combinations of markers have been explored to improve the specificity and sensitivity of diagnostic. In addition to Hb value determination, a combination of parameters (among transferrin saturation, zinc protoporphyrin, mean corpuscular volume or serum ferritin) was generally used to assess iron deficiency. More recently sTfR/ ferritin index were evaluated, sTfR in conjunction with SF allowing to better distinguishing iron deficiency from inflammatory anemia. Also, hepcidin measurements appeared an interesting marker for diagnosing iron deficiency and identifying individuals in need of iron supplementation in populations where inflammatory or infectious diseases are frequently encountered. Reticulocyte Hb content (CHr) determination is an early parameter of iron deficiency

  1. Iron deficiency thrombocytopenia: a case report.

    PubMed

    Shah, Binay Kumar; Shah, Tara

    2011-01-01

    To describe a rare case of thrombocytopenia secondary to iron deficiency. A 34-year-old woman presented with severe microcytic hypochromic anemia and thrombocytopenia. Her ferritin was 1 ng/dl. A diagnosis of iron deficiency anemia and thrombocytopenia was made and the patient was treated with packed red blood cell transfusion and intravenous iron. Thrombocytopenia rapidly improved to normal. This case showed that iron deficiency should be considered as a cause of thrombocytopenia in the appropriate setting after ruling out common causes. Copyright © 2011 S. Karger AG, Basel.

  2. Factor X deficiency

    MedlinePlus

    ... disorders: coagulation factor deficiencies. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. ... Florida Cancer Specialists & Research Institute, Wellington, FL. Review provided by ...

  3. Factor VII deficiency

    MedlinePlus

    ... disorders: coagulation factor deficiencies. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. ... Florida Cancer Specialists & Research Institute, Wellington, FL. Review provided by ...

  4. Characterization of elastase-deficient clinical isolates of Pseudomonas aeruginosa.

    PubMed Central

    Hamood, A N; Griswold, J; Colmer, J

    1996-01-01

    Elastase production in Pseudomonas aeruginosa is regulated by the lasR, lasI, rhlR, and rhlI genes. Recently, we have analyzed several clinical isolates of P. aeruginosa for the production of elastase and other extracellular virulence factors. Four of these isolates (CIT1, CIW5, CIW7, and CIW8) produced no elastolytic activity. We have characterized these isolates with respect to their elastase-deficient phenotype. Elastase was detected by immunoblotting experiments using elastase-specific antiserum. We also determined the presence of IasB and IasR mRNAs by Northern (RNA) blot hybridization experiments using lasB and lasR internal probes, respectively. None of the four elastase-deficient strains produced either the elastase protein or the lasB mRNA. Complementation experiments (using plasmids carrying either the lasB or the lasR gene) were conducted to determine if the isolates carry defective lasB or lasR genes. The presence of either a lasB or a lasR plasmid in CIW7 and CIW8 resulted in the production of very low levels of elastase and lasB mRNA. Neither elastase nor lasB mRNA was detected in CIT1 and CIW5 carrying the lasB plasmid. The presence of the lasR plasmid in CIT1 and CIW5 resulted in the production of lasB mRNA and elastase protein in CIW5 only. All elastase-deficient strains produced detectable levels of lasR mRNA which were enhanced in the presence of the lasR plasmid. The Pseudomonas autoinducer (which is encoded by lasI) was also produced by all strains. CIT1 produced both hemolysin and alkaline protease but was defective in pyocyanin production. These results suggest that (i) CIT1 may contain a defect in a lasB-regulatory gene, (ii) CIW5 carries a defect within lasR, and (iii) the defect in isolates CIW7 and CIW8 affects the efficiency of lasB transcription. PMID:8757847

  5. Progranulin Deficiency Reduces CDK4/6/pRb Activation and Survival of Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    de la Encarnación, Ana; Alquézar, Carolina; Esteras, Noemí; Martín-Requero, Ángeles

    2015-12-01

    Null mutations in GRN are associated with frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). However, the influence of progranulin (PGRN) deficiency in neurodegeneration is largely unknown. In neuroblastoma cells, silencing of GRN gene causes significantly reduced cell survival after serum withdrawal. The following observations suggest that alterations of the CDK4/6/retinoblastoma protein (pRb) pathway, secondary to changes in PI3K/Akt and ERK1/2 activation induced by PGRN deficiency, are involved in the control of serum deprivation-induced apoptosis: (i) inhibiting CDK4/6 levels or their associated kinase activity by sodium butyrate or PD332991 sensitized control SH-SY5Y cells to serum deprivation-induced apoptosis without affecting survival of PGRN-deficient cells; (ii) CDK4/6/pRb seems to be downstream of the PI3K/Akt and ERK1/2 signaling pathways since their specific inhibitors, LY294002 and PD98059, were able to decrease CDK6-associated kinase activity and induce death of control SH-SY5Y cells; (iii) PGRN-deficient cells show reduced stimulation of PI3K/Akt, ERK1/2, and CDK4/6 activities compared with control cells in the absence of serum; and (iv) supplementation of recombinant human PGRN was able to rescue survival of PGRN-deficient cells. These observations highlight the important role of PGRN-mediated stimulation of the PI3K/Akt-ERK1/2/CDK4/6/pRb pathway in determining the cell fate survival/death under serum deprivation.

  6. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Clinical efficacy of gene-modified stem cells in adenosine deaminase-deficient immunodeficiency.

    PubMed

    Shaw, Kit L; Garabedian, Elizabeth; Mishra, Suparna; Barman, Provaboti; Davila, Alejandra; Carbonaro, Denise; Shupien, Sally; Silvin, Christopher; Geiger, Sabine; Nowicki, Barbara; Smogorzewska, E Monika; Brown, Berkley; Wang, Xiaoyan; de Oliveira, Satiro; Choi, Yeong; Ikeda, Alan; Terrazas, Dayna; Fu, Pei-Yu; Yu, Allen; Fernandez, Beatriz Campo; Cooper, Aaron R; Engel, Barbara; Podsakoff, Greg; Balamurugan, Arumugam; Anderson, Stacie; Muul, Linda; Jagadeesh, G Jayashree; Kapoor, Neena; Tse, John; Moore, Theodore B; Purdy, Ken; Rishi, Radha; Mohan, Kathey; Skoda-Smith, Suzanne; Buchbinder, David; Abraham, Roshini S; Scharenberg, Andrew; Yang, Otto O; Cornetta, Kenneth; Gjertson, David; Hershfield, Michael; Sokolic, Rob; Candotti, Fabio; Kohn, Donald B

    2017-05-01

    Autologous hematopoietic stem cell transplantation (HSCT) of gene-modified cells is an alternative to enzyme replacement therapy (ERT) and allogeneic HSCT that has shown clinical benefit for adenosine deaminase-deficient (ADA-deficient) SCID when combined with reduced intensity conditioning (RIC) and ERT cessation. Clinical safety and therapeutic efficacy were evaluated in a phase II study. Ten subjects with confirmed ADA-deficient SCID and no available matched sibling or family donor were enrolled between 2009 and 2012 and received transplantation with autologous hematopoietic CD34+ cells that were modified with the human ADA cDNA (MND-ADA) γ-retroviral vector after conditioning with busulfan (90 mg/m2) and ERT cessation. Subjects were followed from 33 to 84 months at the time of data analysis. Safety of the procedure was assessed by recording the number of adverse events. Efficacy was assessed by measuring engraftment of gene-modified hematopoietic stem/progenitor cells, ADA gene expression, and immune reconstitution. With the exception of the oldest subject (15 years old at enrollment), all subjects remained off ERT with normalized peripheral blood mononuclear cell (PBMC) ADA activity, improved lymphocyte numbers, and normal proliferative responses to mitogens. Three of nine subjects were able to discontinue intravenous immunoglobulin replacement therapy. The MND-ADA vector was persistently detected in PBMCs (vector copy number [VCN] = 0.1-2.6) and granulocytes (VCN = 0.01-0.3) through the most recent visits at the time of this writing. No patient has developed a leukoproliferative disorder or other vector-related clinical complication since transplant. These results demonstrate clinical therapeutic efficacy from gene therapy for ADA-deficient SCID, with an excellent clinical safety profile. ClinicalTrials.gov NCT00794508. Food and Drug Administration Office of Orphan Product Development award, RO1 FD003005; NHLBI awards, PO1 HL73104 and Z01 HG000122; UCLA

  8. Clinical efficacy of gene-modified stem cells in adenosine deaminase–deficient immunodeficiency

    PubMed Central

    Shaw, Kit L.; Garabedian, Elizabeth; Mishra, Suparna; Barman, Provaboti; Davila, Alejandra; Carbonaro, Denise; Shupien, Sally; Silvin, Christopher; Geiger, Sabine; Nowicki, Barbara; Smogorzewska, E. Monika; Brown, Berkley; Wang, Xiaoyan; de Oliveira, Satiro; Choi, Yeong; Ikeda, Alan; Terrazas, Dayna; Fu, Pei-Yu; Yu, Allen; Fernandez, Beatriz Campo; Cooper, Aaron R.; Engel, Barbara; Podsakoff, Greg; Balamurugan, Arumugam; Anderson, Stacie; Muul, Linda; Jagadeesh, G. Jayashree; Kapoor, Neena; Tse, John; Moore, Theodore B.; Purdy, Ken; Rishi, Radha; Mohan, Kathey; Skoda-Smith, Suzanne; Buchbinder, David; Abraham, Roshini S.; Scharenberg, Andrew; Yang, Otto O.; Cornetta, Kenneth; Gjertson, David; Hershfield, Michael; Sokolic, Rob; Candotti, Fabio

    2017-01-01

    BACKGROUND. Autologous hematopoietic stem cell transplantation (HSCT) of gene-modified cells is an alternative to enzyme replacement therapy (ERT) and allogeneic HSCT that has shown clinical benefit for adenosine deaminase–deficient (ADA-deficient) SCID when combined with reduced intensity conditioning (RIC) and ERT cessation. Clinical safety and therapeutic efficacy were evaluated in a phase II study. METHODS. Ten subjects with confirmed ADA-deficient SCID and no available matched sibling or family donor were enrolled between 2009 and 2012 and received transplantation with autologous hematopoietic CD34+ cells that were modified with the human ADA cDNA (MND-ADA) γ-retroviral vector after conditioning with busulfan (90 mg/m2) and ERT cessation. Subjects were followed from 33 to 84 months at the time of data analysis. Safety of the procedure was assessed by recording the number of adverse events. Efficacy was assessed by measuring engraftment of gene-modified hematopoietic stem/progenitor cells, ADA gene expression, and immune reconstitution. RESULTS. With the exception of the oldest subject (15 years old at enrollment), all subjects remained off ERT with normalized peripheral blood mononuclear cell (PBMC) ADA activity, improved lymphocyte numbers, and normal proliferative responses to mitogens. Three of nine subjects were able to discontinue intravenous immunoglobulin replacement therapy. The MND-ADA vector was persistently detected in PBMCs (vector copy number [VCN] = 0.1–2.6) and granulocytes (VCN = 0.01–0.3) through the most recent visits at the time of this writing. No patient has developed a leukoproliferative disorder or other vector-related clinical complication since transplant. CONCLUSION. These results demonstrate clinical therapeutic efficacy from gene therapy for ADA-deficient SCID, with an excellent clinical safety profile. TRIAL REGISTRATION. ClinicalTrials.gov NCT00794508. FUNDING. Food and Drug Administration Office of Orphan Product

  9. Cardiomyocyte hypertrophy induced by Endonuclease G deficiency requires reactive oxygen radicals accumulation and is inhibitable by the micropeptide humanin.

    PubMed

    Blasco, Natividad; Cámara, Yolanda; Núñez, Estefanía; Beà, Aida; Barés, Gisel; Forné, Carles; Ruíz-Meana, Marisol; Girón, Cristina; Barba, Ignasi; García-Arumí, Elena; García-Dorado, David; Vázquez, Jesús; Martí, Ramon; Llovera, Marta; Sanchis, Daniel

    2018-06-01

    The endonuclease G gene (Endog), which codes for a mitochondrial nuclease, was identified as a determinant of cardiac hypertrophy. How ENDOG controls cardiomyocyte growth is still unknown. Thus, we aimed at finding the link between ENDOG activity and cardiomyocyte growth. Endog deficiency induced reactive oxygen species (ROS) accumulation and abnormal growth in neonatal rodent cardiomyocytes, altering the AKT-GSK3β and Class-II histone deacethylases (HDAC) signal transduction pathways. These effects were blocked by ROS scavengers. Lack of ENDOG reduced mitochondrial DNA (mtDNA) replication independently of ROS accumulation. Because mtDNA encodes several subunits of the mitochondrial electron transport chain, whose activity is an important source of cellular ROS, we investigated whether Endog deficiency compromised the expression and activity of the respiratory chain complexes but found no changes in these parameters nor in ATP content. MtDNA also codes for humanin, a micropeptide with possible metabolic functions. Nanomolar concentrations of synthetic humanin restored normal ROS levels and cell size in Endog-deficient cardiomyocytes. These results support the involvement of redox signaling in the control of cardiomyocyte growth by ENDOG and suggest a pathway relating mtDNA content to the regulation of cell growth probably involving humanin, which prevents reactive oxygen radicals accumulation and hypertrophy induced by Endog deficiency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Obesity and iron deficiency: a quantitative meta-analysis.

    PubMed

    Zhao, L; Zhang, X; Shen, Y; Fang, X; Wang, Y; Wang, F

    2015-12-01

    Hypoferraemia (i.e. iron deficiency) was initially reported among obese individuals several decades ago; however, whether obesity and iron deficiency are correlated remains unclear. Here, we evaluated the putative association between obesity and iron deficiency by assessing the concentration of haematological iron markers and the risks associated with iron deficiency in both obese (including overweight) subjects and non-overweight participants. We performed a systematic search in the databases PubMed and Embase for relevant research articles published through December 2014. A total of 26 cross-sectional and case-control studies were analysed, comprising 13,393 overweight/obese individuals and 26,621 non-overweight participants. Weighted or standardized mean differences of blood iron markers and odds ratio (OR) of iron deficiency were compared between the overweight/obese participants and the non-overweight participants using a random-effects model. Compared with the non-overweight participants, the overweight/obese participants had lower serum iron concentrations (weighted mean difference [WMD]: -8.37 μg dL(-1) ; 95% confidence interval [CI]: -11.38 to -5.36 μg dL(-1) ) and lower transferrin saturation percentages (WMD: 2.34%, 95% CI: -3.29% to -1.40%). Consistent with this finding, the overweight/obese participants had a significantly increased risk of iron deficiency (OR: 1.31; 95% CI: 1.01-1.68). Moreover, subgroup analyses revealed that the method used to diagnose iron deficiency can have a critical effect on the results of the association test; specifically, we found a significant correlation between iron deficiency and obesity in studies without a ferritin-based diagnosis, but not in studies that used a ferritin-based diagnosis. Based upon these findings, we concluded that obesity is significantly associated with iron deficiency, and we recommend early monitoring and treatment of iron deficiency in overweight and obese individuals. Future

  11. Veganism as a cause of iodine deficient hypothyroidism.

    PubMed

    Yeliosof, Olga; Silverman, Lawrence A

    2018-01-26

    Iodine deficiency is the most common cause of acquired hypothyroidism worldwide. Although uncommon in the Western world, the incidence of iodine deficiency may be rising due to the increased use of restrictive diets. We present a 23-month-old boy diagnosed with iodine deficiency hypothyroidism, induced by a vegan diet. This case highlights the risk for iodine deficiency in children on a vegan diet after discontinuation of breast/formula feeding that could lead to acquired hypothyroidism.

  12. Dissociative phenomena in congenital monocular elevation deficiency.

    PubMed

    Olson, R J; Scott, W E

    1998-04-01

    Monocular elevation deficiency is characterized by unilateral limitation of elevation in both adduction and abduction and is usually present at birth. Dissociative phenomena such as dissociated vertical deviation are well recognized in association with conditions such as congenital esotropia but much less so in association with conditions such as congenital monocular elevation deficiency. All 129 patients given the diagnosis of monocular elevation deficiency or double elevator palsy in the Pediatric Ophthalmology and Strabismus Clinic at the University of Iowa Hospitals and Clinics between 1971 and 1995 were reviewed. After those with history of trauma, myasthenia gravis, thyroid eye disease, orbital lesions, Brown syndrome, or monocular elevation deficiency with acquired onset were excluded, 31 patients with congenital monocular elevation deficiency remained for retrospective study. First diagnosed at median age 2.6 years (although all were noted by parents at less than 6 months of age) with mean follow-up of 5.0 years (up to 15.5 years), 9 of 31 (29%) developed dissociated vertical deviation in the eye with monocular elevation deficiency, all of whom had undergone strabismus surgery 0 to 9.7 years previously (mean 3.5 years). Those who developed dissociated vertical deviation were generally younger, were followed up longer, and had more accompanying horizontal strabismus than did those who did not develop dissociated vertical deviation. The results did not reach significance. The current study demonstrates that dissociated vertical deviation occurs in association with monocular elevation deficiency.

  13. 12 CFR 204.6 - Charges for reserve deficiencies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (a) Deficiencies in a depository institution's required reserve balance, after application of the... authorized to assess charges for deficiencies in required reserves at a rate of 1 percentage point per year... involved, permit a depository institution to eliminate deficiencies in its required reserve balance by...

  14. [Small airway diseases and immune deficiency].

    PubMed

    Burgel, P-R; Bergeron, A; Knoop, C; Dusser, D

    2016-02-01

    Innate or acquired immune deficiency may show respiratory manifestations, often characterized by small airway involvement. The purpose of this article is to provide an overview of small airway disease across the major causes of immune deficiency. In patients with common variable immune deficiency, recurrent lower airway infections may lead to bronchiolitis and bronchiectasis. Follicular and/or granulomatous bronchiolitis of unknown origin may also occur. Bronchiolitis obliterans is the leading cause of death after the first year in patients with lung transplantation. Bronchiolitis obliterans also occurs in patients with allogeneic haematopoietic stem cell transplantation, especially in the context of systemic graft-versus-host disease. Small airway diseases have different clinical expression and pathophysiology across various causes of immune deficiency. A better understanding of small airways disease pathogenesis in these settings may lead to the development of novel targeted therapies. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  15. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle.

    PubMed

    Krag, Thomas O; Ruiz-Ruiz, Cristina; Vissing, John

    2017-08-01

    Glycogen storage disease (GSD) type XV is a rare disease caused by mutations in the GYG1 gene that codes for the core molecule of muscle glycogen, glycogenin 1. Nonetheless, glycogen is present in muscles of glycogenin 1-deficient patients, suggesting an alternative for glycogen buildup. A likely candidate is glycogenin 2, an isoform expressed in the liver and heart but not in healthy skeletal muscle. We wanted to investigate the formation of glycogen and changes in glycogen metabolism in patients with GSD type XV. Two patients with mutations in the GYG1 gene were investigated for histopathology, ultrastructure, and expression of proteins involved in glycogen synthesis and metabolism. Apart from occurrence of polyglucosan (PG) bodies in few fibers, glycogen appeared normal in most cells, and the concentration was normal in patients with GSD type XV. We found that glycogenin 1 was absent, but glycogenin 2 was present in the patients, whereas the opposite was the case in healthy controls. Electron microscopy revealed that glycogen was present between and not inside myofibrils in type II fibers, compromising the ultrastructure of these fibers, and only type I fibers contained PG bodies. We also found significant changes to the expression levels of several enzymes directly involved in glycogen and glucose metabolism. To our knowledge, this is the first report demonstrating expression of glycogenin 2 in glycogenin 1-deficient patients, suggesting that glycogenin 2 rescues the formation of glycogen in patients with glycogenin 1 deficiency. Copyright © 2017 Endocrine Society

  16. Coenzyme Q10 deficiencies in neuromuscular diseases.

    PubMed

    Artuch, Rafael; Salviati, Leonardo; Jackson, Sandra; Hirano, Michio; Navas, Plácido

    2009-01-01

    Coenzyme Q (CoQ) is an essential component of the respiratory chain but also participates in other mitochondrial functions such as regulation of the transition pore and uncoupling proteins. Furthermore, this compound is a specific substrate for enzymes of the fatty acids beta-oxidation pathway and pyrimidine nucleotide biosynthesis. Furthermore, CoQ is an antioxidant that acts in all cellular membranes and lipoproteins. A complex of at least ten nuclear (COQ) genes encoded proteins synthesizes CoQ but its regulation is unknown. Since 1989, a growing number of patients with multisystemic mitochondrial disorders and neuromuscular disorders showing deficiencies of CoQ have been identified. CoQ deficiency caused by mutation(s) in any of the COQ genes is designated primary deficiency. Other patients have displayed other genetic defects independent on the CoQ biosynthesis pathway, and are considered to have secondary deficiencies. This review updates the clinical and molecular aspects of both types of CoQ deficiencies and proposes new approaches to understanding their molecular bases.

  17. [Glucose-6-phosphate dehydrogenase deficiency in Japan].

    PubMed

    Kanno, Hitoshi; Ogura, Hiromi

    2015-07-01

    In the past 10 years, we have diagnosed congenital hemolytic anemia in 294 patients, approximately 33% of whom were found to have glucose-6-phosphate dehydrogenase (G6PD) deficiency. It is becoming more common for Japanese to marry people of other ethnic origins, such that G6PD deficiency is becoming more prevalent in Japan. Japanese G6PD deficiency tends to be diagnosed in the neonatal period due to severe jaundice, while G6PD-deficient patients with foreign ancestors tend to be diagnosed at the onset of an acute hemolytic crisis before the age of six. It is difficult to predict the clinical course of each patient by G6PD activity, reduced glutathione content, or the presence/absence of severe neonatal jaundice. We propose that both neonatal G6PD screening and systematic analyses of G6PD gene mutations may be useful for personalized management of patients with G6PD-deficient hemolytic anemia.

  18. 'A disease that makes criminals': encephalitis lethargica (EL) in children, mental deficiency, and the 1927 Mental Deficiency Act.

    PubMed

    Ruiz, Violeta

    2015-03-01

    Encephalitis lethargica (EL) was an epidemic that spread throughout Europe and North America during the 1920s. Although it could affect both children and adults alike, there were a strange series of chronic symptoms that exclusively affected its younger victims: behavioural disorders which could include criminal propensities. In Britain, which had passed the Mental Deficiency Act in 1913, the concept of mental deficiency was well understood when EL appeared. However, EL defied some of the basic precepts of mental deficiency to such an extent that amendments were made to the Mental Deficiency Act in 1927. I examine how clinicians approached the sequelae of EL in children during the 1920s, and how their work and the social problem that these children posed eventually led to changes in the legal definition of mental deficiency. EL serves as an example of how diseases are not only framed by the society they emerge in, but can also help to frame and change existing concepts within that same society. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Iron deficiency and anemia in heart failure.

    PubMed

    Çavuşoğlu, Yüksel; Altay, Hakan; Çetiner, Mustafa; Güvenç, Tolga Sinan; Temizhan, Ahmet; Ural, Dilek; Yeşilbursa, Dilek; Yıldırım, Nesligül; Yılmaz, Mehmet Birhan

    2017-03-01

    Heart failure is an important community health problem. Prevalence and incidence of heart failure have continued to rise over the years. Despite recent advances in heart failure therapy, prognosis is still poor, rehospitalization rate is very high, and quality of life is worse. Co-morbidities in heart failure have negative impact on clinical course of the disease, further impair prognosis, and add difficulties to treatment of clinical picture. Therefore, successful management of co-morbidities is strongly recommended in addition to conventional therapy for heart failure. One of the most common co-morbidities in heart failure is presence of iron deficiency and anemia. Current evidence suggests that iron deficiency and anemia are more prevalent in patients with heart failure and reduced ejection fraction, as well as those with heart failure and preserved ejection fraction. Moreover, iron deficiency and anemia are referred to as independent predictors for poor prognosis in heart failure. There is strong relationship between iron deficiency or anemia and severity of clinical status of heart failure. Over the last two decades, many clinical investigations have been conducted on clinical effectiveness of treatment of iron deficiency or anemia with oral iron, intravenous iron, and erythropoietin therapies. Studies with oral iron and erythropoietin therapies did not provide any clinical benefit and, in fact, these therapies have been shown to be associated with increase in adverse clinical outcomes. However, clinical trials in patients with iron deficiency in the presence or absence of anemia have demonstrated considerable clinical benefits of intravenous iron therapy, and based on these positive outcomes, iron deficiency has become target of therapy in management of heart failure. The present report assesses current approaches to iron deficiency and anemia in heart failure in light of recent evidence.

  20. Cloning of the nptII gene of Escherichia coli and construction of a recombinant strain harboring functional recA and nptII antibiotic resistance.

    PubMed

    Ghanem, S

    2011-01-01

    In an attempt to clone the ORF of the nptII gene of Escherichia coli K12 (ATCC 10798), two degenerate primers were designed based on the nptII sequence of its Tn5 transposon. The nptII ORF was placed under the control of the E. coli hybrid trc promoter, in the pKK388-1 vector, transformed into E. coli DH5α ΔrecA (recombinant, deficient strain). Transferred cells were tested for ampicillin, tetracycline, kanamycin, neomycin, geneticin, paromomycin, penicillin, and UV resistance. The neomycin phosphotransferase gene of E. coli was cloned successfully and conferred kanamycin, neomycin, geneticin, and paromomycin resistance to recombinant DH5α; this did not inhibit insertion of additional antibiotic resistance against ampicillin and tetracycline, meaning the trc promoter can express two different genes carried by two different plasmids harbored in the same cell. This resistance conferral process could be considered as an emulation of horizontal gene transfer occurring in nature and would be a useful tool for understanding mechanisms of evolution of multidrug-resistant strains.

  1. Comparing acquired angioedema with hereditary angioedema (types I/II): findings from the Icatibant Outcome Survey

    PubMed Central

    Zanichelli, A.; Caballero, T.; Bouillet, L.; Aberer, W.; Maurer, M.; Fain, O.; Fabien, V.; Andresen, I.

    2017-01-01

    Summary Icatibant is used to treat acute hereditary angioedema with C1 inhibitor deficiency types I/II (C1‐INH‐HAE types I/II) and has shown promise in angioedema due to acquired C1 inhibitor deficiency (C1‐INH‐AAE). Data from the Icatibant Outcome Survey (IOS) were analysed to evaluate the effectiveness of icatibant in the treatment of patients with C1‐INH‐AAE and compare disease characteristics with those with C1‐INH‐HAE types I/II. Key medical history (including prior occurrence of attacks) was recorded upon IOS enrolment. Thereafter, data were recorded retrospectively at approximately 6‐month intervals during patient follow‐up visits. In the icatibant‐treated population, 16 patients with C1‐INH‐AAE had 287 attacks and 415 patients with C1‐INH‐HAE types I/II had 2245 attacks. Patients with C1‐INH‐AAE versus C1‐INH‐HAE types I/II were more often male (69 versus 42%; P = 0·035) and had a significantly later mean (95% confidence interval) age of symptom onset [57·9 (51·33–64·53) versus 14·0 (12·70–15·26) years]. Time from symptom onset to diagnosis was significantly shorter in patients with C1‐INH‐AAE versus C1‐INH‐HAE types I/II (mean 12·3 months versus 118·1 months; P = 0·006). Patients with C1‐INH‐AAE showed a trend for higher occurrence of attacks involving the face (35 versus 21% of attacks; P = 0·064). Overall, angioedema attacks were more severe in patients with C1‐INH‐HAE types I/II versus C1‐INH‐AAE (61 versus 40% of attacks were classified as severe to very severe; P < 0·001). Median total attack duration was 5·0 h and 9·0 h for patients with C1‐INH‐AAE versus C1‐INH‐HAE types I/II, respectively. PMID:27936514

  2. Spectra of normal and nutrient-deficient maize leaves

    NASA Technical Reports Server (NTRS)

    Al-Abbas, A. H.; Barr, R.; Hall, J. D.; Crane, F. L.; Baumgardner, M. F.

    1973-01-01

    Reflectance, transmittance and absorptance spectra of normal and six types of nutrient-deficient (N, P, K, S, Mg, and Ca) maize (Zea mays L.) leaves were analyzed at 30 selected wavelengths from 500 to 2600 nm. The analysis of variance showed significant differences in reflectance, transmittance and absorptance in the visible wavelengths among leaf numbers 3, 4, and 5, among the seven treatments, and among the interactions of leaf number and treatments. In the infrared wavelengths only treatments produced significant differences. The chlorophyll content of leaves was reduced in all nutrient-deficient treatments. Percent moisture was increased in S-, Mg-, and N-deficiencies. Polynomial regression analysis of leaf thickness and leaf moisture content showed that these two variables were significantly and directly related. Leaves from the P- and Ca-deficient plants absorbed less energy in the near infrared than the normal plants; S-, Mg-, K-, and N-deficient leaves absorbed more than the normal. Both S- and N-deficient leaves had higher temperatues than normal maize leaves.

  3. Isolated Cortisol Deficiency: A Rare Cause of Neonatal Cholestasis

    PubMed Central

    Al-Hussaini, Abdulrahman; Almutairi, Awatif; Mursi, Alaaddin; Alghofely, Mohammed; Asery, Ali

    2012-01-01

    For decades, congenital panhypopituitarism has been recognized to cause infantile cholestasis. However, the identity of the hormone whose deficiency causes such derangement of the liver is not clear. Here, we report four cases of isolated severe cortisol deficiency presenting with neonatal cholestasis and hypoglycemia, of whom two had familial primary glucocorticoid deficiency and the other two had isolated adrenocorticotropin deficiency. The resolution of cholestasis by hydrocortisone replacement therapy suggests a causal relationship between cortisol deficiency and the development of neonatal cholestasis. In conclusion, the presentation of a young infant with cholestasis and hypoglycemia should alert pediatricians to the possibility of cortisol deficiency and prompt investigation of adrenal function should be undertaken. PMID:23006463

  4. Nutrition and hair: deficiencies and supplements.

    PubMed

    Finner, Andreas M

    2013-01-01

    Hair follicle cells have a high turnover. A caloric deprivation or deficiency of several components, such as proteins, minerals, essential fatty acids, and vitamins, caused by inborn errors or reduced uptake, can lead to structural abnormalities, pigmentation changes, or hair loss, although exact data are often lacking. The diagnosis is established through a careful history, clinical examination of hair loss activity, and hair quality and confirmed through targeted laboratory tests. Examples of genetic hair disorders caused by reduced nutritional components are zinc deficiency in acrodermatitis enteropathica and copper deficiency in Menkes kinky hair syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Screening for iron deficiency and iron deficiency anaemia in pregnancy: a structured review and gap analysis against UK national screening criteria.

    PubMed

    Rukuni, Ruramayi; Knight, Marian; Murphy, Michael F; Roberts, David; Stanworth, Simon J

    2015-10-20

    Iron deficiency anaemia is a common problem in pregnancy despite national recommendations and guidelines for treatment. The aim of this study was to appraise the evidence against the UK National Screening Committee (UKNSC) criteria as to whether a national screening programme could reduce the prevalence of iron deficiency anaemia and/or iron deficiency in pregnancy and improve maternal and fetal outcomes. Search strategies were developed for the Cochrane library, Medline and Embase to identify evidence relevant to UK National Screening Committee (UKNSC) appraisal criteria which cover the natural history of iron deficiency and iron deficiency anaemia, the tests for screening, clinical management and evidence of cost effectiveness. Many studies evaluated haematological outcomes of anaemia, but few analysed clinical consequences. Haemoglobin and ferritin appeared the most suitable screening tests, although future options may follow recent advances in understanding iron homeostasis. The clinical consequences of iron deficiency without anaemia are unknown. Oral and intravenous iron are effective in improving haemoglobin and iron parameters. There have been no trials or economic evaluations of a national screening programme for iron deficiency anaemia in pregnancy. Iron deficiency in pregnancy remains an important problem although effective tests and treatment exist. A national screening programme could be of value for early detection and intervention. However, high quality studies are required to confirm whether this would reduce maternal and infant morbidity and be cost effective.

  6. Critical role of the tumor suppressor tuberous sclerosis complex 1 in dendritic cell activation of CD4 T cells by promoting MHC class II expression via IRF4 and CIITA.

    PubMed

    Pan, Hongjie; O'Brien, Thomas F; Wright, Gabriela; Yang, Jialong; Shin, Jinwook; Wright, Kenneth L; Zhong, Xiao-Ping

    2013-07-15

    Dendritic cell (DC) maturation is characterized by upregulation of cell-surface MHC class II (MHC-II) and costimulatory molecules, and production of a variety of cytokines that can shape both innate and adaptive immunity. Paradoxically, transcription of the MHC-II genes, as well as its activator, CIITA, is rapidly silenced during DC maturation. The mechanisms that control CIITA/MHC-II expression and silencing have not been fully understood. We report in this article that the tumor suppressor tuberous sclerosis complex 1 (TSC1) is a critical regulator of DC function for both innate and adaptive immunity. Its deficiency in DCs results in increased mammalian target of rapamycin (mTOR) complex 1 but decreased mTORC2 signaling, altered cytokine production, impaired CIITA/MHC-II expression, and defective Ag presentation to CD4 T cells after TLR4 stimulation. We demonstrate further that IFN regulatory factor 4 can directly bind to CIITA promoters, and decreased IFN regulatory factor 4 expression is partially responsible for decreased CIITA/MHC-II expression in TSC1-deficient DCs. Moreover, we identify that CIITA/MHC-II silencing during DC maturation requires mTOR complex 1 activity. Together, our data reveal unexpected roles of TSC1/mTOR that control multifaceted functions of DCs.

  7. Smad4 Deficiency in Smooth Muscle Cells Initiates the Formation of Aortic Aneurysm.

    PubMed

    Zhang, Peng; Hou, Siyuan; Chen, Jicheng; Zhang, Jishuai; Lin, Fuyu; Ju, Renjie; Cheng, Xuan; Ma, Xiaowei; Song, Yao; Zhang, Youyi; Zhu, Minsheng; Du, Jie; Lan, Yu; Yang, Xiao

    2016-02-05

    Aortic aneurysm is a life-threatening cardiovascular disorder caused by the predisposition for dissection and rupture. Genetic studies have proved the involvement of the transforming growth factor-β (TGF-β) pathway in aortic aneurysm. Smad4 is the central mediator of the canonical TGF-β signaling pathway. However, the exact role of Smad4 in smooth muscle cells (SMCs) leading to the pathogenesis of aortic aneurysms is largely unknown. To determine the role of smooth muscle Smad4 in the pathogenesis of aortic aneurysms. Conditional gene knockout strategy combined with histology and expression analysis showed that Smad4 or TGF-β receptor type II deficiency in SMCs led to the occurrence of aortic aneurysms along with an upregulation of cathepsin S and matrix metallopeptidase-12, which are proteases essential for elastin degradation. We further demonstrated a previously unknown downregulation of matrix metallopeptidase-12 by TGF-β in the aortic SMCs, which is largely abrogated in the absence of Smad4. Chemotactic assay and pharmacologic treatment demonstrated that Smad4-deficient SMCs directly triggered aortic wall inflammation via the excessive production of chemokines to recruit macrophages. Monocyte/macrophage depletion or blocking selective chemokine axis largely abrogated the progression of aortic aneurysm caused by Smad4 deficiency in SMCs. The findings reveal that Smad4-dependent TGF-β signaling in SMCs protects against aortic aneurysm formation and dissection. The data also suggest important implications for novel therapeutic strategies to limit the progression of the aneurysm resulting from TGF-β signaling loss-of-function mutations. © 2015 American Heart Association, Inc.

  8. Effect of the anti-neoplastic drug doxorubicin on XPD-mutated DNA repair-deficient human cells.

    PubMed

    Saffi, Jenifer; Agnoletto, Mateus H; Guecheva, Temenouga N; Batista, Luís F Z; Carvalho, Helotonio; Henriques, João A P; Stary, Anne; Menck, Carlos F M; Sarasin, Alain

    2010-01-02

    Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair (NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of gammaH2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase IIalpha with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions. Copyright (c) 2009

  9. Deficient Circumferential Growth Is the Primary Determinant of Aortic Obstruction Attributable to Partial Elastin Deficiency.

    PubMed

    Jiao, Yang; Li, Guangxin; Korneva, Arina; Caulk, Alexander W; Qin, Lingfeng; Bersi, Matthew R; Li, Qingle; Li, Wei; Mecham, Robert P; Humphrey, Jay D; Tellides, George

    2017-05-01

    Williams syndrome is characterized by obstructive aortopathy attributable to heterozygous loss of ELN , the gene encoding elastin. Lesions are thought to result primarily from excessive smooth muscle cell (SMC) proliferation and consequent medial expansion, although an initially smaller caliber and increased stiffness of the aorta may contribute to luminal narrowing. The relative contributions of such abnormalities to the obstructive phenotype had not been defined. We quantified determinants of luminal stenosis in thoracic aortas of Eln -/- mice incompletely rescued by human ELN . Moderate obstruction was largely because of deficient circumferential growth, most prominently of ascending segments, despite increased axial growth. Medial thickening was evident in these smaller diameter elastin-deficient aortas, with medial area similar to that of larger diameter control aortas. There was no difference in cross-sectional SMC number between mutant and wild-type genotypes at multiple stages of postnatal development. Decreased elastin content was associated with medial fibrosis and reduced aortic distensibility because of increased structural stiffness but preserved material stiffness. Elastin-deficient SMCs exhibited greater contractile-to-proliferative phenotypic modulation in vitro than in vivo. We confirmed increased medial collagen without evidence of increased medial area or SMC number in a small ascending aorta with thickened media of a Williams syndrome subject. Deficient circumferential growth is the predominant mechanism for moderate obstructive aortic disease resulting from partial elastin deficiency. Our findings suggest that diverse aortic manifestations in Williams syndrome result from graded elastin content, and SMC hyperplasia causing medial expansion requires additional elastin loss superimposed on ELN haploinsufficiency. © 2017 American Heart Association, Inc.

  10. Omapatrilat, a dual angiotensin-converting enzyme and neutral endopeptidase inhibitor, prevents fatty streak deposit in apolipoprotein E-deficient mice.

    PubMed

    Arnal, J F; Castano, C; Maupas, E; Mugniot, A; Darblade, B; Gourdy, P; Michel, J B; Bayard, F

    2001-04-01

    Angiotensin-converting enzyme (ACE) is mainly responsible for converting angiotensin I (AI) to angiotensin II (AII), and ACE inhibitors prevent atherosclerosis in animal models. Neutral endopeptidase 24.11 (NEP) degrades substance P, kinins and atrial natriuretic peptide (ANP), and aortic wall NEP activity was found to be increased in atherosclerosis. In the present study, we have evaluated the effect of candoxatril, a NEP inhibitor, and of omapatrilat, a dual ACE and NEP inhibitor, on the development of fatty streak in apolipoprotein E (apoE)-deficient mice. Groups of ten male apoE-deficient mice were given either placebo, candoxatril 50 mg/kg per day, or omapatrilat 10, or 100 mg/kg per day for 4 months. None of the treatments influenced body weight, serum total or HDL-cholesterol. Compared with the placebo, candoxatril did not protect the mice from fatty streak deposit. In contrast, omapatrilat dose dependently inhibited the constitution of fatty streak in apoE-deficient mice. The precise advantages of the dual ACE and NEP inhibition versus the inhibition of only ACE should now be considered in the prevention of atherosclerosis as well as in the occurrence of its complications.

  11. Monocyte esterase deficiency in malignant neoplasia.

    PubMed Central

    Markey, G M; McCormick, J A; Morris, T C; Alexander, H D; Nolan, L; Morgan, L M; Reynolds, M E; Edgar, S; Bell, A L; McCaigue, M D

    1990-01-01

    A survey of the incidence of monocyte esterase deficiency in 4000 inpatients (including 808 with malignant neoplastic disease) and 474 normal controls was performed using an automated esterase method. A highly significant excess of patients with malignant disease and the deficiency was evident when compared with normal controls or all other patients. Within the group of patients with malignant disease the demonstrable excess occurred in B chronic lymphocytic leukaemia, non-Hodgkin's and Hodgkin's lymphoma, and carcinoma of the gastrointestinal tract. There was also a significant excess of patients with the deficiency attending the renal unit, both among patients who had had renal transplants and those who had not. A familial incidence of monocyte esterase deficiency was found in 19 (35%) of first degree relatives of those patients in whom family studies were done. It is suggested that the reason for the increased prevalence of the anomaly in these disorders might be that the diminution of esterase activity has a role in their development. PMID:2341564

  12. Congenital deficiency of alpha feto-protein.

    PubMed

    Sharony, Reuven; Zadik, Idit; Parvari, Ruti

    2004-10-01

    Alpha-fetoprotein (AFP) is the main fetus serum glycoprotein with a very low concentration in the adult. AFP deficiency is a rare phenomenon. We studied two families with congenital AFP deficiency and searched for mutations in the AFP gene. We identified one mutation of 2 base deletion in exon 8, in both families, that leads to the congenital deficiency of AFP. The mutation nt930-931delCT (T294fs25X) creates a frameshift after codon 294 that leads to a stop codon after 24 amino acids, thus truncating the normal length of AFP of 609 amino acids. All the affected children were found to be homozygous for the mutation as was one of the fathers. The affected individuals were asymptomatic and presented normal development. This first identification of a mutation in the AFP gene demonstrates for the first time that deficiency of AFP is compatible with human normal fetal development and further reproduction in males.

  13. Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy.

    PubMed

    Benz, Peter M; Merkel, Carla J; Offner, Kristin; Abeßer, Marco; Ullrich, Melanie; Fischer, Tobias; Bayer, Barbara; Wagner, Helga; Gambaryan, Stepan; Ursitti, Jeanine A; Adham, Ibrahim M; Linke, Wolfgang A; Feller, Stephan M; Fleming, Ingrid; Renné, Thomas; Frantz, Stefan; Unger, Andreas; Schuh, Kai

    2013-08-12

    In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities.

  14. Dietary selenium deficiency as well as excess supplementation induces multiple defects in mouse epididymal spermatozoa: understanding the role of selenium in male fertility.

    PubMed

    Shalini, Sonia; Bansal, M P

    2008-08-01

    Selenium (Se) is essential for male fertility. The present study was carried out to observe the defects associated with Se deficiency as well as excess Se supplementation by analyzing the sperm ultrastructure and chromatin organization. Different Se status mice were generated viz. Se deficient (group I), Se adequate (group II) and Se excess (group III) by feeding the respective diets for a period of 4 (group Ia, IIa and IIIa) and 8 weeks (group Ib, IIb and IIIb). Reduction in sperm concentration, motility and percentage fertility was observed in Se deficient and Se excess groups. Electron microscopy revealed mitochondrial swelling and gaps between adjacent mitochondria in mice fed Se-deficient diet for 4 weeks. At 8 weeks, several abnormalities such as loose contact of the mitochondrial helix with the plasma membrane, loss of mitochondria, retention of cytoplasmic droplet, fracturing of outer dense fibres and presence of both the midpiece and the principal piece cross-sections in a common plasma membrane were observed. In Se excess group, the predominant defect was the frequent presence of equidistant, cross-sectioned midpieces of the tail embedded in a common cytoplasm. These defects are indicative of loss of sperm motility. Spermatozoa from Se-deficient mice had incompletely condensed chromatin and indicated an increase in occurrence of DNA strand breaks. The animals fed Se excess diet also indicated increase in DNA breaks but this was significantly less than the deficient diet fed groups. Our study reveals the defects associated with Se deficiency that result in loss of reproductive ability and also reflects its possible harmful effects on spermatozoa after prolonged consumption at supranutritional level.

  15. Genetics Home Reference: carnitine-acylcarnitine translocase deficiency

    MedlinePlus

    ... translocase deficiency Orphanet: Carnitine-acylcarnitine translocase deficiency Screening, Technology, and Research in Genetics Patient Support and Advocacy Resources (3 links) Children Living with Inherited Metabolic Diseases (CLIMB) FOD (Fatty ...

  16. 7 CFR 1427.23 - Cotton loan deficiency payments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton loan deficiency payments. 1427.23 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Nonrecourse Cotton Loan and Loan Deficiency Payments § 1427.23 Cotton loan deficiency payments. (a) In order to be eligible to receive such...

  17. 7 CFR 1427.23 - Cotton loan deficiency payments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Cotton loan deficiency payments. 1427.23 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Nonrecourse Cotton Loan and Loan Deficiency Payments § 1427.23 Cotton loan deficiency payments. (a) In order to be eligible to receive such...

  18. 7 CFR 1427.23 - Cotton loan deficiency payments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Cotton loan deficiency payments. 1427.23 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Nonrecourse Cotton Loan and Loan Deficiency Payments § 1427.23 Cotton loan deficiency payments. (a) In order to be eligible to receive such...

  19. 7 CFR 1427.23 - Cotton loan deficiency payments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Cotton loan deficiency payments. 1427.23 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Nonrecourse Cotton Loan and Loan Deficiency Payments § 1427.23 Cotton loan deficiency payments. (a) In order to be eligible to receive such...

  20. 7 CFR 1427.23 - Cotton loan deficiency payments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Cotton loan deficiency payments. 1427.23 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Nonrecourse Cotton Loan and Loan Deficiency Payments § 1427.23 Cotton loan deficiency payments. (a) In order to be eligible to receive such...

  1. A Caenorhabditis elegans RNA polymerase II gene, ama-1 IV, and nearby essential genes.

    PubMed

    Rogalski, T M; Riddle, D L

    1988-01-01

    The amanitin-binding subunit of RNA polymerase II in Caenorhabditis elegans is encoded by the ama-1 gene, located approximately 0.05 map unit to the right of dpy-13 IV. Using the amanitin-resistant ama-1(m118) strain as a parent, we have isolated amanitin-sensitive mutants that carry recessive-lethal ama-1 alleles. Of the six ethyl methanesulfonate-induced mutants examined, two are arrested late in embryogenesis. One of these is a large deficiency, mDf9, but the second may be a novel point mutation. The four other mutants are hypomorphs, and presumably produce altered RNA polymerase II enzymes with some residual function. Two of these mutants develop into sterile adults at 20 degrees but are arrested as larvae at 25 degrees, and two others are fertile at 20 degrees and sterile at 25 degrees. Temperature-shift experiments performed with the adult sterile mutant, ama-1(m118m238ts), have revealed a temperature-sensitive period that begins late in gonadogenesis and is centered around the initiation of egg-laying. Postembryonic development at 25 degrees is slowed by 30%. By contrast, the amanitin-resistant allele of ama-1 has very little effect on developmental rate or fertility. We have identified 15 essential genes in an interval of 4.5 map units surrounding ama-1, as well as four gamma-ray-induced deficiencies and two duplications that include the ama-1 gene. The larger duplication, mDp1, may include the entire left arm of chromosome IV, and it recombines with the normal homologue at a low frequency. The smallest deficiency, mDf10, complements all but three identified genes: let-278, dpy-13 and ama-1, which define an interval of only 0.1 map unit. The terminal phenotype of mDf10 homozygotes is developmental arrest during the first larval stage, suggesting that there is sufficient maternal RNA polymerase II to complete embryonic development.

  2. Glucose-6-Phosphate Dehydrogenase Deficiency in Nigerian Children

    PubMed Central

    Williams, Olatundun; Gbadero, Daniel; Edowhorhu, Grace; Brearley, Ann; Slusher, Tina; Lund, Troy C.

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females) aged 1 month to 15 years. The mean age was 7.4±3.2 years. Children of Yoruba ethnicity made up the largest group (77.5%) followed by those Igbo descent (10.6%) and those of Igede (10.2%) and Tiv (1.8%) ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females). Yoruba children had a higher prevalence (16.9%) than Igede (10.5%), Igbo (10.1%) and Tiv (5.0%) children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p = 0.0500). The odds for Igede and Tiv children were not significantly different from Yoruba children (p = 0.7528 and 0.9789 respectively). Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p = 0.0351). In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection. PMID:23874768

  3. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    PubMed

    Williams, Olatundun; Gbadero, Daniel; Edowhorhu, Grace; Brearley, Ann; Slusher, Tina; Lund, Troy C

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females) aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5%) followed by those Igbo descent (10.6%) and those of Igede (10.2%) and Tiv (1.8%) ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females). Yoruba children had a higher prevalence (16.9%) than Igede (10.5%), Igbo (10.1%) and Tiv (5.0%) children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500). The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively). Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351). In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  4. The Evidence-Based Evaluation of Iron Deficiency Anemia.

    PubMed

    Hempel, Eliana V; Bollard, Edward R

    2016-09-01

    Anemia is a prevalent disease with multiple possible etiologies and resultant complications. Iron deficiency anemia is a common cause of anemia and is typically due to insufficient intake, poor absorption, or overt or occult blood loss. Distinguishing iron deficiency from other causes of anemia is integral to initiating the appropriate treatment. In addition, identifying the underlying cause of iron deficiency is also necessary to help guide management of these patients. We review the key components to an evidence-based, cost-conscious evaluation of suspected iron deficiency anemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Genetics Home Reference: phosphoglycerate mutase deficiency

    MedlinePlus

    ... PubMed Tsujino S, Shanske S, Sakoda S, Fenichel G, DiMauro S. The molecular genetic basis of muscle phosphoglycerate mutase (PGAM) deficiency. Am ... PubMed Central Tsujino S, Shanske S, Sakoda S, Toscano A, DiMauro S. Molecular genetic studies in muscle phosphoglycerate mutase (PGAM-M) deficiency. ...

  6. 30 CFR 57.5015 - Oxygen deficiency.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen deficiency. 57.5015 Section 57.5015..., Physical Agents, and Diesel Particulate Matter Air Quality-Underground Only § 57.5015 Oxygen deficiency. Air in all active workings shall contain at least 19.5 volume percent oxygen. Radiation—Underground...

  7. 30 CFR 57.5015 - Oxygen deficiency.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen deficiency. 57.5015 Section 57.5015..., Physical Agents, and Diesel Particulate Matter Air Quality-Underground Only § 57.5015 Oxygen deficiency. Air in all active workings shall contain at least 19.5 volume percent oxygen. Radiation—Underground...

  8. 30 CFR 57.5015 - Oxygen deficiency.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen deficiency. 57.5015 Section 57.5015..., Physical Agents, and Diesel Particulate Matter Air Quality-Underground Only § 57.5015 Oxygen deficiency. Air in all active workings shall contain at least 19.5 volume percent oxygen. Radiation—Underground...

  9. 30 CFR 57.5015 - Oxygen deficiency.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen deficiency. 57.5015 Section 57.5015..., Physical Agents, and Diesel Particulate Matter Air Quality-Underground Only § 57.5015 Oxygen deficiency. Air in all active workings shall contain at least 19.5 volume percent oxygen. Radiation—Underground...

  10. 30 CFR 57.5015 - Oxygen deficiency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Oxygen deficiency. 57.5015 Section 57.5015..., Physical Agents, and Diesel Particulate Matter Air Quality-Underground Only § 57.5015 Oxygen deficiency. Air in all active workings shall contain at least 19.5 volume percent oxygen. Radiation—Underground...

  11. Vitamin D deficiency in early pregnancy.

    PubMed

    Flood-Nichols, Shannon K; Tinnemore, Deborah; Huang, Raywin R; Napolitano, Peter G; Ippolito, Danielle L

    2015-01-01

    Vitamin D deficiency is a common problem in reproductive-aged women in the United States. The effect of vitamin D deficiency in pregnancy is unknown, but has been associated with adverse pregnancy outcomes. The objective of this study was to analyze the relationship between vitamin D deficiency in the first trimester and subsequent clinical outcomes. This is a retrospective cohort study. Plasma was collected in the first trimester from 310 nulliparous women with singleton gestations without significant medical problems. Competitive enzymatic vitamin D assays were performed on banked plasma specimens and pregnancy outcomes were collected after delivery. Logistic regression was performed on patients stratified by plasma vitamin D concentration and the following combined clinical outcomes: preeclampsia, preterm delivery, intrauterine growth restriction, gestational diabetes, and spontaneous abortion. Vitamin D concentrations were obtained from 235 patients (mean age 24.3 years, range 18-40 years). Seventy percent of our study population was vitamin D insufficient with a serum concentration less than 30 ng/mL (mean serum concentration 27.6 ng/mL, range 13-71.6 ng/mL). Logistic regression was performed adjusting for age, race, body mass index, tobacco use, and time of year. Adverse pregnancy outcomes included preeclampsia, growth restriction, preterm delivery, gestational diabetes, and spontaneous abortion. There was no association between vitamin D deficiency and composite adverse pregnancy outcomes with an adjusted odds ratio of 1.01 (p value 0.738, 95% confidence intervals 0.961-1.057). Vitamin D deficiency did not associate with adverse pregnancy outcomes in this study population. However, the high percentage of affected individuals highlights the prevalence of vitamin D deficiency in young, reproductive-aged women.

  12. Epidemiology of SHOX deficiency.

    PubMed

    Nicolosi, A; Caruso-Nicoletti, M

    2010-06-01

    Deletion of short stature homeobox-containing (SHOX) gene, in the pseudoautosomal region (PAR1) of X and Y chromosomes, is an important cause of short stature. Homozygous loss of SHOX results in the more severe Langer mesomelic dysplasia, while SHOX haploinsufficiency cause a wide spectrum of short stature phenotypes, including patients with Turner syndrome, Leri Weill dyschondrosteosis (LWD), and idiopathic short stature (ISS). In Turner syndrome, haploinsufficiency of SHOX gene, as well as short stature, are present in 100%; nevertheless, SHOX deficiency accounts for only two-thirds of Turner patients' short stature. In LWD the prevalence of SHOX gene anomalies varies from 56% to 100%. This wide range might be due to different factors such as selection criteria of patients, sample size, and method used for screening SHOX mutations. The real challenge is to establish the prevalence of SHOX deficiency in ISS children given that published studies have reported this association with a very broad frequency range varying from 1.5% to 15%. An important variable in these studies is represented by the method used for screening SHOX mutations and sometimes by differences in patient selection. Short stature is present by definition in 3 out of 100 subjects; if we consider a frequency of SHOX defects of 3% among ISS, we should expect a population prevalence of 1 in 1000. This prevalence would be higher than that of GH deficiency (1:3,500) and of Turner syndrome (1:2,500 females), suggesting that SHOX deficiency could be one of the most frequent monogenetic causes of short stature.

  13. [Osteomalacia and vitamin D deficiency].

    PubMed

    Rader, C P; Corsten, N; Rolf, O

    2015-09-01

    Vitamin D and calcium deficiency has a higher incidence in the orthopedic-trauma surgery patient population than generally supposed. In the long term this can result in osteomalacia, a form of altered bone mineralization in adults, in which the cartilaginous, non-calcified osteoid does not mature to hard bone. The current value of vitamin D and its importance for bones and other body cells are demonstrated. The causes of vitamin D deficiency are insufficient sunlight exposure, a lack of vitamin D3 and calcium, malabsorption, and rare alterations of VDR signaling and phosphate metabolism. The main symptoms are bone pain, fatigue fractures, muscular cramps, muscle pain, and gait disorders, with an increased incidence of falls in the elderly. Osteopathies induced by pharmaceuticals, tumors, rheumatism or osteoporosis have to be considered as the main differential diagnoses. In addition to the recording of symptoms and medical imaging, the diagnosis of osteomalacia should be ensured by laboratory parameters. Adequate treatment consists of the high-dose intake of vitamin D3 and the replacement of phosphate if deficient. Vitamin D is one of the important hormone-like vitamins and is required in all human cells. Deficiency of vitamin D has far-reaching consequences not only for bone, but also for other organ systems.

  14. Iron deficiency anemia and megaloblastic anemia in obese patients.

    PubMed

    Arshad, Mahmoud; Jaberian, Sara; Pazouki, Abdolreza; Riazi, Sajedeh; Rangraz, Maryam Aghababa; Mokhber, Somayyeh

    2017-03-01

    The association between obesity and different types of anemia remained uncertain. The present study aimed to assess the relation between obesity parameters and the occurrence of iron deficiency anemia and also megaloblastic anemia among Iranian population. This cross-sectional study was performed on 1252 patients with morbid obesity that randomly selected from all patients referred to Clinic of obesity at Rasoul-e-Akram Hospital in 2014. The morbid obesity was defined according to the guideline as body mass index (BMI) equal to or higher than 40 kg/m2. Various laboratory parameters including serum levels of hemoglobin, iron, ferritin, folic acid, and vitamin B12 were assessed using the standard laboratory techniques. BMI was adversely associated with serum vitamin B12, but not associated with other hematologic parameters. The overall prevalence of iron deficiency anemia was 9.8%. The prevalence of iron deficiency anemia was independent to patients' age and also to body mass index. The prevalence of vitamin B12 deficiency was totally 20.9%. According to the multivariable logistic regression model, no association was revealed between BMI and the occurrence of iron deficiency anemia adjusting gender and age. A similar regression model showed that higher BMI could predict occurrence of vitamin B12 deficiency in morbid obese patients. Although iron deficiency is a common finding among obese patients, vitamin B12 deficiency is more frequent so about one-fifth of these patients suffer vitamin B12 deficiency. In fact, the exacerbation of obesity can result in exacerbation of vitamin B12 deficiency.

  15. Hypopituitarism: growth hormone and corticotropin deficiency.

    PubMed

    Capatina, Cristina; Wass, John A H

    2015-03-01

    This article presents an overview of adult growth hormone deficiency (AGHD) and corticotropin deficiency (central adrenal failure, CAI). Both conditions can result from various ailments affecting the hypothalamus or pituitary gland (most frequently a tumor in the area or its treatment). Clinical manifestations are subtle in AGHD but potentially life-threatening in CAI. The diagnosis needs dynamic testing in most cases. Treatment of AGHD is recommended in patients with documented severe deficiency, and treatment of CAI is mandatory in all cases. Despite significant progress in replacement hormonal therapy, more physiologic treatments and more reliable indicators of treatment adequacy are still needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging.

    PubMed

    Tarantini, Stefano; Tucsek, Zsuzsanna; Valcarcel-Ares, M Noa; Toth, Peter; Gautam, Tripti; Giles, Cory B; Ballabh, Praveen; Wei, Jeanne Y; Wren, Jonathan D; Ashpole, Nicole M; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2016-08-01

    Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f  + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased

  17. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Thyroid disorders in mild iodine deficiency.

    PubMed

    Laurberg, P; Nøhr, S B; Pedersen, K M; Hreidarsson, A B; Andersen, S; Bülow Pedersen, I; Knudsen, N; Perrild, H; Jørgensen, T; Ovesen, L

    2000-11-01

    Comparative epidemiologic studies in areas with low and high iodine intake and controlled studies of iodine supplementation have demonstrated that the major consequence of mild-to-moderate iodine deficiency for the health of the population is an extraordinarily high occurrence of hyperthyroidism in elderly subjects, especially women, with risk of cardiac arrhythmias, osteoporosis, and muscle wasting. The hyperthyroidism is caused by autonomous nodular growth and function of the thyroid gland and it is accompanied by a high frequency of goiter. Pregnant women and small children are not immediately endangered but the consequences of severe iodine deficiency for brain development are grave and a considerable safety margin is advisable. Moreover, a shift toward less malignant types of thyroid cancer and a lower radiation dose to the thyroid in case of nuclear fallout support that mild-to-moderate iodine deficiency should be corrected. However, there is evidence that a high iodine intake may be associated with more autoimmune hypothyroidism, and that Graves' disease may manifest at a younger age and be more difficult to treat. Hence, the iodine intake should be brought to a level at which iodine deficiency disorders are avoided but not higher. Iodine supplementation programs should aim at relatively uniform iodine intake, avoiding deficient or excessive iodine intake in subpopulations. To adopt such a strategy, surveillance programs are needed.

  19. Factor V deficiency

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000550.htm Factor V deficiency To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  20. Micronutrient deficiencies and gender: social and economic costs.

    PubMed

    Darnton-Hill, Ian; Webb, Patrick; Harvey, Philip W J; Hunt, Joseph M; Dalmiya, Nita; Chopra, Mickey; Ball, Madeleine J; Bloem, Martin W; de Benoist, Bruno

    2005-05-01

    Vitamin and mineral deficiencies adversely affect a third of the world's people. Consequently, a series of global goals and a serious amount of donor and national resources have been directed at such micronutrient deficiencies. Drawing on the extensive experience of the authors in a variety of institutional settings, the article used a computer search of the published scientific literature of the topic, supplemented by reports and published and unpublished work from the various agencies. In examining the effect of sex on the economic and social costs of micronutrient deficiencies, the paper found that: (1) micronutrient deficiencies affect global health outcomes; (2) micronutrient deficiencies incur substantial economic costs; (3) health and nutrition outcomes are affected by sex; (4) micronutrient deficiencies are affected by sex, but this is often culturally specific; and finally, (5) the social and economic costs of micronutrient deficiencies, with particular reference to women and female adolescents and children, are likely to be considerable but are not well quantified. Given the potential impact on reducing infant and child mortality, reducing maternal mortality, and enhancing neuro-intellectual development and growth, the right of women and children to adequate food and nutrition should more explicitly reflect their special requirements in terms of micronutrients. The positive impact of alleviating micronutrient malnutrition on physical activity, education and productivity, and hence on national economies suggests that there is also an urgent need for increased effort to demonstrate the cost of these deficiencies, as well as the benefits of addressing them, especially compared with other health and nutrition interventions.

  1. FUSE Cycle 3 Program CO22: Chromospheric Activity in Population II Giants

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2004-01-01

    One of the mysteries of Population II giants is that they still show chromospheric emission despite their great age. The global dynamo which was active during their main-sequence lifetimes is expected to become extremely weak through magnetic rotational braking. The nature of the observed emission is not understood; although acoustic shock waves might provide the heating, acoustic waves are not predicted to drive the observed mass loss - which in turn requires the dissipation of magneto-hydrodynamic waves. This program was designed to search for the faint stellar H Ly(beta) emission wings and the fluorescent Fe II and H2 emission from one of the brightest, metal poor, Population II stars. These FUSE diagnostics, when combined with existing UV and optical spectra, help determine the major radiative cooling channels for the chromosphere. This observation was to complement that previously planned for the mildly metal deficient giant alpha Boo (K2 III). However, a Boo has yet to be observed with FUSE.

  2. Overexpression of inducible nitric oxide synthase and cyclooxygenase-2 in rat zinc-deficient lung: Involvement of a NF-kappaB dependent pathway.

    PubMed

    Gomez, Nidia N; Davicino, Roberto C; Biaggio, Veronica S; Bianco, German A; Alvarez, Silvina M; Fischer, Patricia; Masnatta, Lucas; Rabinovich, Gabriel A; Gimenez, María S

    2006-02-01

    Reactive oxygen and nitrogen species have been implicated in the pathogenesis of pulmonary diseases. The goal of this study was to measure the response of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 enzymes (COX-2) in lung with moderate zinc deficiency. Adult male Wistar rats were divided into two groups receiving (1) a zinc-deficient diet (ZD) or (2) a zinc-adequate control diet. After 2 months of treatment, the zinc-deficient group showed a significant pulmonary edema. This was associated to a reduction of protein thiols and to a significant increase of metallothionein and glutathione disulfide levels. In addition, a higher serum and lung NO production in ZD group was positively related to the higher activity and expression of iNOS and COX-2 found in lungs. Western blot analysis revealed increased IkappaBalpha degradation, an indicator of NF-kappaB activation in ZD lungs. Anatomopathologic analysis of ZD lungs showed an increase of connective tissue fibers with an influx of polymorphonuclear cells. These cells and type II cells from the alveoli showed specific immunohistochemical signals for iNOS. The conclusion is that, during the development of zinc-deficiency, iNOS activity increases in lung and contributes to lung injury. Zinc deficiency implications must be taken into account to design therapies and public health interventions involving targeted zinc supplementation for high-risk subjects or certain diseases, such as asthma.

  3. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    ... view the expand/collapse boxes. Description Adenosine monophosphate (AMP) deaminase deficiency is a condition that can affect ... for movement ( skeletal muscles ). In many affected individuals, AMP deaminase deficiency does not cause any symptoms. People ...

  4. Genetics Home Reference: mitochondrial complex III deficiency

    MedlinePlus

    ... DNA packaged in chromosomes within the cell nucleus (nuclear DNA). It is not clear why the severity ... deficiency Genetic Testing Registry: Mitochondrial complex III deficiency, nuclear type 2 Genetic Testing Registry: Mitochondrial complex III ...

  5. Genetics Home Reference: mitochondrial trifunctional protein deficiency

    MedlinePlus

    ... protein deficiency Orphanet: Mitochondrial trifunctional protein deficiency Screening, Technology, and Research in Genetics Virginia Department of Health (PDF) Patient Support and Advocacy Resources (4 links) Children Living with Inherited Metabolic Diseases (CLIMB) Children's Mitochondrial ...

  6. The story of DNase II: a stifled death-wish leads to self-harm.

    PubMed

    Crow, Yanick J

    2010-09-01

    DNase II is an endonuclease which plays a fundamental role in the degradation of DNA from both apoptotic cells, and nuclei extruded from red blood cells during erythropoiesis: important tasks, considering that everyday 10(8)-10(9) cells undergo apoptosis, and 10(11) red blood cells are produced in the adult human. The DNase II-null mouse demonstrates embryonic lethality due to type I interferon-mediated erythroid precursor cell death triggered by undegraded nucleic acids. However, the mechanisms leading to such cytotoxicity are poorly understood. A study in the current issue of the European Journal of Immunology investigates the role of the death ligand TRAIL in this process. Although TRAIL is shown to be dispensable for the interferon-induced apoptosis of erythroid cells in DNAse II(-/-) embryos, the authors have developed a useful strategy for further exploring this question in future studies. Interestingly, earlier studies by the same group showed that crossing the DNase II-null mouse with a mouse deficient for the type I interferon receptor can rescue the lethal anaemia observed in the DNase II-null embryos, but only at the cost of developing autoimmunity.

  7. Myoadenylate deaminase deficiency, hypertrophic cardiomyopathy and gigantism syndrome.

    PubMed

    Skyllouriotis, M L; Marx, M; Bittner, R E; Skyllouriotis, P; Gross, M; Wimmer, M

    1997-07-01

    We report a 20-year-old man with gigantism syndrome, hypertrophic cardiomyopathy, muscle weakness, exercise intolerance, and severe psychomotor retardation since childhood. Histochemical and biochemical analysis of skeletal muscle biopsy revealed myoadenylate deaminase deficiency; molecular genetic analysis confirmed the diagnosis of primary (inherited) myoadenylate deaminase deficiency. Plasma, urine, and muscle carnitine concentrations were reduced. L-Carnitine treatment led to gradual improvement in exercise tolerance and cognitive performance; plasma and tissue carnitine levels returned to normal, and echocardiographic evidence of left ventricular hypertrophy disappeared. The combination of inherited myoadenylate deaminase deficiency, gigantism syndrome and carnitine deficiency has not previously been described.

  8. Neural mechanisms in nitric-oxide-deficient hypertension

    NASA Technical Reports Server (NTRS)

    Sander, M.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    Nitric oxide is hypothesized to be an inhibitory modulator of central sympathetic nervous outflow, and deficient neuronal nitric oxide production to cause sympathetic overactivity, which then contributes to nitric-oxide-deficient hypertension. The biochemical and neuroanatomical basis for this concept revolves around nitric oxide modulation of glutamatergic neurotransmission within brainstem vasomotor centers. The functional consequence of neuronal nitric oxide in blood pressure regulation is, however, marked by an apparent conflict in the literature. On one hand, conscious animal studies using sympathetic blockade suggest a significant role for neuronal nitric oxide deficiency in the development of nitric-oxide-deficient hypertension, and on the other hand, there is evidence against such a role derived from 'knock-out' mice lacking nitric-oxide synthase 1, the major source of neuronal nitric oxide.

  9. Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology.

    PubMed

    Stockler, Sylvia; Schutz, Peter W; Salomons, Gajja S

    2007-01-01

    Cerebral creatine deficiency syndromes (CCDSs) are a group of inborn errors of creatine metabolism comprising two autosomal recessive disorders that affect the biosynthesis of creatine--i.e. arginine:glycine amidinotransferase deficiency (AGAT; MIM 602360) and guanidinoacetate methyltransferase deficiency (GAMT; MIM 601240)--and an X-linked defect that affects the creatine transporter, SLC6A8 deficiency (SLC6A8; MIM 300036). The biochemical hallmarks of these disorders include cerebral creatine deficiency as detected in vivo by 1H magnetic resonance spectroscopy (MRS) of the brain, and specific disturbances in metabolites of creatine metabolism in body fluids. In urine and plasma, abnormal guanidinoacetic acid (GAA) levels are found in AGAT deficiency (reduced GAA) and in GAMT deficiency (increased GAA). In urine of males with SLC6A8 deficiency, an increased creatine/creatinine ratio is detected. The common clinical presentation in CCDS includes mental retardation, expressive speech and language delay, autistic like behaviour and epilepsy. Treatment of the creatine biosynthesis defects has yielded clinical improvement, while for creatine transporter deficiency, successful treatment strategies still need to be discovered. CCDSs may be responsible for a considerable fraction of children and adults affected with mental retardation of unknown etiology. Thus, screening for this group of disorders should be included in the differential diagnosis of this population. In this review, also the importance of CCDSs for the unravelling of the (patho)physiology of cerebral creatine metabolism is discussed.

  10. Cited1 Deficiency Suppresses Intestinal Tumorigenesis

    PubMed Central

    Young, Madeleine; Poetz, Oliver; Parry, Lee; Jenkins, John R.; Williams, Geraint T.; Dunwoodie, Sally L.; Watson, Alastair; Clarke, Alan R.

    2013-01-01

    Conditional deletion of Apc in the murine intestine alters crypt-villus architecture and function. This process is accompanied by multiple changes in gene expression, including upregulation of Cited1, whose role in colorectal carcinogenesis is unknown. Here we explore the relevance of Cited1 to intestinal tumorigenesis. We crossed Cited1 null mice with ApcMin/+ and AhCre+Apcfl/fl mice and determined the impact of Cited1 deficiency on tumour growth/initiation including tumour multiplicity, cell proliferation, apoptosis and the transcriptome. We show that Cited1 is up-regulated in both human and murine tumours, and that constitutive deficiency of Cited1 increases survival in ApcMin/+ mice from 230.5 to 515 days. However, paradoxically, Cited1 deficiency accentuated nearly all aspects of the immediate phenotype 4 days after conditional deletion of Apc, including an increase in cell death and enhanced perturbation of differentiation, including of the stem cell compartment. Transcriptome analysis revealed multiple pathway changes, including p53, PI3K and Wnt. The activation of Wnt through Cited1 deficiency correlated with increased transcription of β-catenin and increased levels of dephosphorylated β-catenin. Hence, immediately following deletion of Apc, Cited1 normally restrains the Wnt pathway at the level of β-catenin. Thus deficiency of Cited1 leads to hyper-activation of Wnt signaling and an exaggerated Wnt phenotype including elevated cell death. Cited1 deficiency decreases intestinal tumourigenesis in ApcMin/+ mice and impacts upon a number of oncogenic signaling pathways, including Wnt. This restraint imposed by Cited1 is consistent with a requirement for Cited1 to constrain Wnt activity to a level commensurate with optimal adenoma formation and maintenance, and provides one mechanism for tumour repression in the absence of Cited1. PMID:23935526

  11. Vitamin D Deficiency in Early Pregnancy

    PubMed Central

    Flood-Nichols, Shannon K.; Tinnemore, Deborah; Huang, Raywin R.; Napolitano, Peter G.; Ippolito, Danielle L.

    2015-01-01

    Objective Vitamin D deficiency is a common problem in reproductive-aged women in the United States. The effect of vitamin D deficiency in pregnancy is unknown, but has been associated with adverse pregnancy outcomes. The objective of this study was to analyze the relationship between vitamin D deficiency in the first trimester and subsequent clinical outcomes. Study Design This is a retrospective cohort study. Plasma was collected in the first trimester from 310 nulliparous women with singleton gestations without significant medical problems. Competitive enzymatic vitamin D assays were performed on banked plasma specimens and pregnancy outcomes were collected after delivery. Logistic regression was performed on patients stratified by plasma vitamin D concentration and the following combined clinical outcomes: preeclampsia, preterm delivery, intrauterine growth restriction, gestational diabetes, and spontaneous abortion. Results Vitamin D concentrations were obtained from 235 patients (mean age 24.3 years, range 18-40 years). Seventy percent of our study population was vitamin D insufficient with a serum concentration less than 30 ng/mL (mean serum concentration 27.6 ng/mL, range 13-71.6 ng/mL). Logistic regression was performed adjusting for age, race, body mass index, tobacco use, and time of year. Adverse pregnancy outcomes included preeclampsia, growth restriction, preterm delivery, gestational diabetes, and spontaneous abortion. There was no association between vitamin D deficiency and composite adverse pregnancy outcomes with an adjusted odds ratio of 1.01 (p value 0.738, 95% confidence intervals 0.961-1.057). Conclusion Vitamin D deficiency did not associate with adverse pregnancy outcomes in this study population. However, the high percentage of affected individuals highlights the prevalence of vitamin D deficiency in young, reproductive-aged women. PMID:25898021

  12. [Effect of AÇaí (Euterpe oleracea) on lipid metabolism, immune substances and endocrine hormone in rats with deficiency-heat and deficiency-cold syndrome].

    PubMed

    Wang, Zi-Chen; Zhang, Jian-Jun; Zhu, Ying-Li; Qu, Yan; Fei, Wen-Ting; Wang, Sha; Wang, Jing-Xia; Wang, Lin-Yuan

    2017-07-01

    To study the effects of AÇaí(Euterpe oleracea) on lipid metabolism, immune substances and endocrine hormone level in rats with deficiency-heat and deficiency-cold syndrome. SD rats were divided into blank control group, deficiency-heat model group, deficiency-heat & Phellodendri Cortex group, deficiency-heat & AÇaí high dose and low dose groups, deficiency-cold model group, deficiency-cold & Cinnamomi Cortex group, deficiency-cold & AÇaí high dose and low dose groups. The rats received intramuscular injection of dexamethasone sodium phosphate (0.35 mg) or hydrocortisone sodium succinate (20 mg) for 21 days to set up deficiency-heat models and deficiency-cold models. Then the changes in fatmetabolism levels (FFA, LPL, HL) and immune indexes (IgG, IgM, C3 and C4) were detected by colorimeter; and the levels of endocrine hormone indexes (CORT, E2 and T) were detected by radioimmunoassay. The levels of FFA, LPL and HL in serum were reduced (P<0.01 or P<0.001); levels of IgG, IgM and C3 in serum were increased (P<0.05 or P<0.001); level of CORT in serum was increased (P<0.05) and the level of E2, E2/T in serum were reduced in the AÇaí high dose group (P<0.05). The effect of high dose AÇaí on fat metabolism was not obvious in deficiency-cold models, but the levels of IgG, IgM, C3 and CORT in serum were increased (P<0.05 or P<0.001). AÇaí was showed the same effect trend with Phellodendri Cortex in adjusting the levels of deficiency-heat rats; but unlike Cinnamomi Cortex, AÇaí was showed no obvious effect in adjusting the levels of deficiency-cold rats. In this experiment, homogeneous comparison and heterogeneous disproof were used to verify the cold nature of Çaí. Copyright© by the Chinese Pharmaceutical Association.

  13. Cerebral creatine deficiencies: a group of treatable intellectual developmental disorders.

    PubMed

    Stockler-Ipsiroglu, Sylvia; van Karnebeek, Clara D M

    2014-07-01

    Currently there are 91 treatable inborn errors of metabolism that cause intellectual developmental disorders. Cerebral creatine deficiencies (CDD) comprise three of these: arginine: glycine amidinotransferase [AGAT], guanidinoacetate methyltransferase [GAMT], and X-linked creatine transporter deficiency [SLC6A8]. Intellectual developmental disorder and cerebral creatine deficiency are the hallmarks of CDD. Additional clinical features include prominent speech delay, autism, epilepsy, extrapyramidal movement disorders, and signal changes in the globus pallidus. Patients with GAMT deficiency exhibit the most severe clinical spectrum. Myopathy is a distinct feature in AGAT deficiency. Guanidinoacetate (GAA) is the immediate product in the creatine biosynthetic pathway. Low GAA concentrations in urine, plasma, and cerebrospinal fluid are characteristic diagnostic markers for AGAT deficiency, while high GAA concentrations are characteristic markers for GAMT deficiency. An elevated ratio of urinary creatine /creatinine excretion serves as a diagnostic marker in males with SLC6A8 deficiency. Treatment strategies include oral supplementation of high-dose creatine-monohydrate for all three CDD. Guanidinoacetate-reducing strategies (high-dose ornithine, arginine-restricted diet) are additionally employed in GAMT deficiency. Supplementation of substrates for intracerebral creatine synthesis (arginine, glycine) has been used additionally to treat SLC6A8 deficiency. Early recognition and treatment improves outcomes. Normal outcomes in neonatally ascertained siblings from index families with AGAT and GAMT deficiency suggest a potential benefit of newborn screening for these disorders. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci.

    PubMed

    Mills, D A; McKay, L L; Dunny, G M

    1996-06-01

    Analysis of a region involved in the conjugative transfer of the lactococcal conjugative element pRS01 has revealed a bacteria] group II intron. Splicing of this lactococcal intron (designated Ll.ltrB) in vivo resulted in the ligation of two exon messages (ltrBE1 and ltrBE2) which encoded a putative conjugative relaxase essential for the transfer of pRS01. Like many group II introns, the Ll.ltrB intron possessed an open reading frame (ltrA) with homology to reverse transcriptases. Remarkably, sequence analysis of ltrA suggested a greater similarity to open reading frames encoded by eukaryotic mitochondrial group II introns than to those identified to date from other bacteria. Several insertional mutations within ltrA resulted in plasmids exhibiting a conjugative transfer-deficient phenotype. These results provide the first direct evidence for splicing of a prokaryotic group II intron in vivo and suggest that conjugative transfer is a mechanism for group II intron dissemination in bacteria.

  15. [Vitamin B12 deficiency: what's new?].

    PubMed

    Braillard, O; Casini, A; Samii, K; Rufenacht, P; Junod, Perron N

    2012-09-26

    Vitamin B12 screening is only recommended among symptomatic patients or in those with risk factors. The main cause of vitamin B12 deficiency is the food cobalamin malabsorption syndrom. Holotranscobalamin is a more reliable marker than cyanocobalamin to confirm vitamin B12 deficiency, but it has not been validated yet in complex situations. An autoimmune gastritis must be excluded in the absence of risk factors but in the presence of a probable deficiency. Oral substitution treatment is effective but requires excellent therapeutic compliance and close follow-up to monitor the response to treatment. It has not yet been studied among patients suffering from severe symptoms, inflammatory bowel disease and ileal resection.

  16. Water oxidation chemistry of photosystem II.

    PubMed Central

    Vrettos, John S; Brudvig, Gary W

    2002-01-01

    The O(2)-evolving complex of photosystem II catalyses the light-driven four-electron oxidation of water to dioxygen in photosynthesis. In this article, the steps leading to photosynthetic O(2) evolution are discussed. Emphasis is given to the proton-coupled electron-transfer steps involved in oxidation of the manganese cluster by oxidized tyrosine Z (Y(*)(Z)), the function of Ca(2+) and the mechanism by which water is activated for formation of an O-O bond. Based on a consideration of the biophysical studies of photosystem II and inorganic manganese model chemistry, a mechanism for photosynthetic O(2) evolution is presented in which the O-O bond-forming step occurs via nucleophilic attack on an electron-deficient Mn(V)=O species by a calcium-bound water molecule. The proposed mechanism includes specific roles for the tetranuclear manganese cluster, calcium, chloride, Y(Z) and His190 of the D1 polypeptide. Recent studies of the ion selectivity of the calcium site in the O(2)-evolving complex and of a functional inorganic manganese model system that test key aspects of this mechanism are also discussed. PMID:12437878

  17. Dentoskeletal and Soft Tissue Effects in the Treatment of Class II Malocclusion with Klammt's Elastic Open Activator.

    PubMed

    Inamassu-Lemes, Sheila Marques; Fuziy, Acácio; Costa, André Luiz Ferreira; Carvalho, Paulo Eduardo Guedes; Nahás-Scocate, Ana Carla Raphaelli

    2016-01-01

    The purpose of this study was to evaluate the dentoskeletal and soft tissue effects resulting from treatment with Klammt's elastic open activator (EOA) functional orthopedic appliance in patients with Class II malocclusion characterized by mandibular deficiency. Teleradiographs were evaluated in the lateral aspect of the initial (T1) and final (T2) orthopedic phases for 16 patients with Class II, Division 1 malocclusion. The age range was from 9 to 11.2 years, with a mean age of 9.9 years. The cephalometric points were demarcated, and cephalometric measurements were obtained by the same investigator to avoid interobserver variability. The EOA promoted increased lower anterior facial height (LAFH), increased effective mandibular length, clockwise rotation of the mandible, retrusion and verticalization of the upper incisors, proclination and protrusion of the lower incisors, extrusion of the upper molars, mesial movement of the lower molars and anterior projection of the lower lip. Skeletal changes characterized by an increase in mandibular length and dentoalveolar changes with an emphasis on the verticalization and retrusion of the upper incisors, proclination of the lower incisors and mesial positioning of the lower molars were key to improving the occlusal relationship and esthetic facial factors. The EOA is well indicated in patients with Class II malocclusion due to mandibular deficiency with increased overbite, proclined upper incisors and verticalized lower incisors.

  18. The Meniscus-Deficient Knee

    PubMed Central

    Rao, Allison J.; Erickson, Brandon J.; Cvetanovich, Gregory L.; Yanke, Adam B.; Bach, Bernard R.; Cole, Brian J.

    2015-01-01

    Meniscal tears are the most common knee injury, and partial meniscectomies are the most common orthopaedic surgical procedure. The injured meniscus has an impaired ability to distribute load and resist tibial translation. Partial or complete loss of the meniscus promotes early development of chondromalacia and osteoarthritis. The primary goal of treatment for meniscus-deficient knees is to provide symptomatic relief, ideally to delay advanced joint space narrowing, and ultimately, joint replacement. Surgical treatments, including meniscal allograft transplantation (MAT), high tibial osteotomy (HTO), and distal femoral osteotomy (DFO), are options that attempt to decrease the loads on the articular cartilage of the meniscus-deficient compartment by replacing meniscal tissue or altering joint alignment. Clinical and biomechanical studies have reported promising outcomes for MAT, HTO, and DFO in the postmeniscectomized knee. These procedures can be performed alone or in conjunction with ligament reconstruction or chondral procedures (reparative, restorative, or reconstructive) to optimize stability and longevity of the knee. Complications can include fracture, nonunion, patella baja, compartment syndrome, infection, and deep venous thrombosis. MAT, HTO, and DFO are effective options for young patients suffering from pain and functional limitations secondary to meniscal deficiency. PMID:26779547

  19. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata)

    PubMed Central

    Azizi, Sheida; Nematollahi, Mohammad Ali; Mojazi Amiri, Bagher; Vélez, Emilio J.; Lutfi, Esmail; Navarro, Isabel; Capilla, Encarnación; Gutiérrez, Joaquim

    2016-01-01

    Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA) to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs). This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs), MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates the importance of

  20. Simulating Colour Vision Deficiency from a Spectral Image.

    PubMed

    Shrestha, Raju

    2016-01-01

    People with colour vision deficiency (CVD) have difficulty seeing full colour contrast and can miss some of the features in a scene. As a part of universal design, researcher have been working on how to modify and enhance the colour of images in order to make them see the scene with good contrast. For this, it is important to know how the original colour image is seen by different individuals with CVD. This paper proposes a methodology to simulate accurate colour deficient images from a spectral image using cone sensitivity of different cases of deficiency. As the method enables generation of accurate colour deficient image, the methodology is believed to help better understand the limitations of colour vision deficiency and that in turn leads to the design and development of more effective imaging technologies for better and wider accessibility in the context of universal design.