Efficient local representations for three-dimensional palmprint recognition
NASA Astrophysics Data System (ADS)
Yang, Bing; Wang, Xiaohua; Yao, Jinliang; Yang, Xin; Zhu, Wenhua
2013-10-01
Palmprints have been broadly used for personal authentication because they are highly accurate and incur low cost. Most previous works have focused on two-dimensional (2-D) palmprint recognition in the past decade. Unfortunately, 2-D palmprint recognition systems lose the shape information when capturing palmprint images. Moreover, such 2-D palmprint images can be easily forged or affected by noise. Hence, three-dimensional (3-D) palmprint recognition has been regarded as a promising way to further improve the performance of palmprint recognition systems. We have developed a simple, but efficient method for 3-D palmprint recognition by using local features. We first utilize shape index representation to describe the geometry of local regions in 3-D palmprint data. Then, we extract local binary pattern and Gabor wavelet features from the shape index image. The two types of complementary features are finally fused at a score level for further improvements. The experimental results on the Hong Kong Polytechnic 3-D palmprint database, which contains 8000 samples from 400 palms, illustrate the effectiveness of the proposed method.
3D palmprint data fast acquisition and recognition
NASA Astrophysics Data System (ADS)
Wang, Xiaoxu; Huang, Shujun; Gao, Nan; Zhang, Zonghua
2014-11-01
This paper presents a fast 3D (Three-Dimension) palmprint capturing system and develops an efficient 3D palmprint feature extraction and recognition method. In order to fast acquire accurate 3D shape and texture of palmprint, a DLP projector triggers a CCD camera to realize synchronization. By generating and projecting green fringe pattern images onto the measured palm surface, 3D palmprint data are calculated from the fringe pattern images. The periodic feature vector can be derived from the calculated 3D palmprint data, so undistorted 3D biometrics is obtained. Using the obtained 3D palmprint data, feature matching test have been carried out by Gabor filter, competition rules and the mean curvature. Experimental results on capturing 3D palmprint show that the proposed acquisition method can fast get 3D shape information of palmprint. Some initial experiments on recognition show the proposed method is efficient by using 3D palmprint data.
A DFT-Based Method of Feature Extraction for Palmprint Recognition
NASA Astrophysics Data System (ADS)
Choge, H. Kipsang; Karungaru, Stephen G.; Tsuge, Satoru; Fukumi, Minoru
Over the last quarter century, research in biometric systems has developed at a breathtaking pace and what started with the focus on the fingerprint has now expanded to include face, voice, iris, and behavioral characteristics such as gait. Palmprint is one of the most recent additions, and is currently the subject of great research interest due to its inherent uniqueness, stability, user-friendliness and ease of acquisition. This paper describes an effective and procedurally simple method of palmprint feature extraction specifically for palmprint recognition, although verification experiments are also conducted. This method takes advantage of the correspondences that exist between prominent palmprint features or objects in the spatial domain with those in the frequency or Fourier domain. Multi-dimensional feature vectors are formed by extracting a GA-optimized set of points from the 2-D Fourier spectrum of the palmprint images. The feature vectors are then used for palmprint recognition, before and after dimensionality reduction via the Karhunen-Loeve Transform (KLT). Experiments performed using palmprint images from the ‘PolyU Palmprint Database’ indicate that using a compact set of DFT coefficients, combined with KLT and data preprocessing, produces a recognition accuracy of more than 98% and can provide a fast and effective technique for personal identification.
Multifeature-based high-resolution palmprint recognition.
Dai, Jifeng; Zhou, Jie
2011-05-01
Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images.
Gumaei, Abdu; Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-05-15
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang's method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used.
Hong, Danfeng; Su, Jian; Hong, Qinggen; Pan, Zhenkuan; Wang, Guodong
2014-01-01
As palmprints are captured using non-contact devices, image blur is inevitably generated because of the defocused status. This degrades the recognition performance of the system. To solve this problem, we propose a stable-feature extraction method based on a Vese–Osher (VO) decomposition model to recognize blurred palmprints effectively. A Gaussian defocus degradation model is first established to simulate image blur. With different degrees of blurring, stable features are found to exist in the image which can be investigated by analyzing the blur theoretically. Then, a VO decomposition model is used to obtain structure and texture layers of the blurred palmprint images. The structure layer is stable for different degrees of blurring (this is a theoretical conclusion that needs to be further proved via experiment). Next, an algorithm based on weighted robustness histogram of oriented gradients (WRHOG) is designed to extract the stable features from the structure layer of the blurred palmprint image. Finally, a normalized correlation coefficient is introduced to measure the similarity in the palmprint features. We also designed and performed a series of experiments to show the benefits of the proposed method. The experimental results are used to demonstrate the theoretical conclusion that the structure layer is stable for different blurring scales. The WRHOG method also proves to be an advanced and robust method of distinguishing blurred palmprints. The recognition results obtained using the proposed method and data from two palmprint databases (PolyU and Blurred–PolyU) are stable and superior in comparison to previous high-performance methods (the equal error rate is only 0.132%). In addition, the authentication time is less than 1.3 s, which is fast enough to meet real-time demands. Therefore, the proposed method is a feasible way of implementing blurred palmprint recognition. PMID:24992328
Hong, Danfeng; Su, Jian; Hong, Qinggen; Pan, Zhenkuan; Wang, Guodong
2014-01-01
As palmprints are captured using non-contact devices, image blur is inevitably generated because of the defocused status. This degrades the recognition performance of the system. To solve this problem, we propose a stable-feature extraction method based on a Vese-Osher (VO) decomposition model to recognize blurred palmprints effectively. A Gaussian defocus degradation model is first established to simulate image blur. With different degrees of blurring, stable features are found to exist in the image which can be investigated by analyzing the blur theoretically. Then, a VO decomposition model is used to obtain structure and texture layers of the blurred palmprint images. The structure layer is stable for different degrees of blurring (this is a theoretical conclusion that needs to be further proved via experiment). Next, an algorithm based on weighted robustness histogram of oriented gradients (WRHOG) is designed to extract the stable features from the structure layer of the blurred palmprint image. Finally, a normalized correlation coefficient is introduced to measure the similarity in the palmprint features. We also designed and performed a series of experiments to show the benefits of the proposed method. The experimental results are used to demonstrate the theoretical conclusion that the structure layer is stable for different blurring scales. The WRHOG method also proves to be an advanced and robust method of distinguishing blurred palmprints. The recognition results obtained using the proposed method and data from two palmprint databases (PolyU and Blurred-PolyU) are stable and superior in comparison to previous high-performance methods (the equal error rate is only 0.132%). In addition, the authentication time is less than 1.3 s, which is fast enough to meet real-time demands. Therefore, the proposed method is a feasible way of implementing blurred palmprint recognition.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images
Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-01-01
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang’s method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used. PMID:29762519
Appearance-based representative samples refining method for palmprint recognition
NASA Astrophysics Data System (ADS)
Wen, Jiajun; Chen, Yan
2012-07-01
The sparse representation can deal with the lack of sample problem due to utilizing of all the training samples. However, the discrimination ability will degrade when more training samples are used for representation. We propose a novel appearance-based palmprint recognition method. We aim to find a compromise between the discrimination ability and the lack of sample problem so as to obtain a proper representation scheme. Under the assumption that the test sample can be well represented by a linear combination of a certain number of training samples, we first select the representative training samples according to the contributions of the samples. Then we further refine the training samples by an iteration procedure, excluding the training sample with the least contribution to the test sample for each time. Experiments on PolyU multispectral palmprint database and two-dimensional and three-dimensional palmprint database show that the proposed method outperforms the conventional appearance-based palmprint recognition methods. Moreover, we also explore and find out the principle of the usage for the key parameters in the proposed algorithm, which facilitates to obtain high-recognition accuracy.
Is White Light the Best Illumination for Palmprint Recognition?
NASA Astrophysics Data System (ADS)
Guo, Zhenhua; Zhang, David; Zhang, Lei
Palmprint as a new biometric has received great research attention in the past decades. It owns many merits, such as robustness, low cost, user friendliness, and high accuracy. Most of the current palmprint recognition systems use an active light to acquire clear palmprint images. Thus, light source is a key component in the system to capture enough of discriminant information for palmprint recognition. To the best of our knowledge, white light is the most widely used light source. However, little work has been done on investigating whether white light is the best illumination for palmprint recognition. In this study, we empirically compared palmprint recognition accuracy using white light and other six different color lights. The experiments on a large database show that white light is not the optimal illumination for palmprint recognition. This finding will be useful to future palmprint recognition system design.
Competitive region orientation code for palmprint verification and identification
NASA Astrophysics Data System (ADS)
Tang, Wenliang
2015-11-01
Orientation features of the palmprint have been widely investigated in coding-based palmprint-recognition methods. Conventional orientation-based coding methods usually used discrete filters to extract the orientation feature of palmprint. However, in real operations, the orientations of the filter usually are not consistent with the lines of the palmprint. We thus propose a competitive region orientation-based coding method. Furthermore, an effective weighted balance scheme is proposed to improve the accuracy of the extracted region orientation. Compared with conventional methods, the region orientation of the palmprint extracted using the proposed method can precisely and robustly describe the orientation feature of the palmprint. Extensive experiments on the baseline PolyU and multispectral palmprint databases are performed and the results show that the proposed method achieves a promising performance in comparison to conventional state-of-the-art orientation-based coding methods in both palmprint verification and identification.
A face and palmprint recognition approach based on discriminant DCT feature extraction.
Jing, Xiao-Yuan; Zhang, David
2004-12-01
In the field of image processing and recognition, discrete cosine transform (DCT) and linear discrimination are two widely used techniques. Based on them, we present a new face and palmprint recognition approach in this paper. It first uses a two-dimensional separability judgment to select the DCT frequency bands with favorable linear separability. Then from the selected bands, it extracts the linear discriminative features by an improved Fisherface method and performs the classification by the nearest neighbor classifier. We detailedly analyze theoretical advantages of our approach in feature extraction. The experiments on face databases and palmprint database demonstrate that compared to the state-of-the-art linear discrimination methods, our approach obtains better classification performance. It can significantly improve the recognition rates for face and palmprint data and effectively reduce the dimension of feature space.
NASA Astrophysics Data System (ADS)
Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab
2017-11-01
Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.
Multispectral Palmprint Recognition Using a Quaternion Matrix
Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng
2012-01-01
Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%. PMID:22666049
Multispectral palmprint recognition using a quaternion matrix.
Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng
2012-01-01
Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%.
Combining 1D and 2D linear discriminant analysis for palmprint recognition
NASA Astrophysics Data System (ADS)
Zhang, Jian; Ji, Hongbing; Wang, Lei; Lin, Lin
2011-11-01
In this paper, a novel feature extraction method for palmprint recognition termed as Two-dimensional Combined Discriminant Analysis (2DCDA) is proposed. By connecting the adjacent rows of a image sequentially, the obtained new covariance matrices contain the useful information among local geometry structures in the image, which is eliminated by 2DLDA. In this way, 2DCDA combines LDA and 2DLDA for a promising recognition accuracy, but the number of coefficients of its projection matrix is lower than that of other two-dimensional methods. Experimental results on the CASIA palmprint database demonstrate the effectiveness of the proposed method.
An efficient classification method based on principal component and sparse representation.
Zhai, Lin; Fu, Shujun; Zhang, Caiming; Liu, Yunxian; Wang, Lu; Liu, Guohua; Yang, Mingqiang
2016-01-01
As an important application in optical imaging, palmprint recognition is interfered by many unfavorable factors. An effective fusion of blockwise bi-directional two-dimensional principal component analysis and grouping sparse classification is presented. The dimension reduction and normalizing are implemented by the blockwise bi-directional two-dimensional principal component analysis for palmprint images to extract feature matrixes, which are assembled into an overcomplete dictionary in sparse classification. A subspace orthogonal matching pursuit algorithm is designed to solve the grouping sparse representation. Finally, the classification result is gained by comparing the residual between testing and reconstructed images. Experiments are carried out on a palmprint database, and the results show that this method has better robustness against position and illumination changes of palmprint images, and can get higher rate of palmprint recognition.
Palmprint Recognition Across Different Devices.
Jia, Wei; Hu, Rong-Xiang; Gui, Jie; Zhao, Yang; Ren, Xiao-Ming
2012-01-01
In this paper, the problem of Palmprint Recognition Across Different Devices (PRADD) is investigated, which has not been well studied so far. Since there is no publicly available PRADD image database, we created a non-contact PRADD image database containing 12,000 grayscale captured from 100 subjects using three devices, i.e., one digital camera and two smart-phones. Due to the non-contact image acquisition used, rotation and scale changes between different images captured from a same palm are inevitable. We propose a robust method to calculate the palm width, which can be effectively used for scale normalization of palmprints. On this PRADD image database, we evaluate the recognition performance of three different methods, i.e., subspace learning method, correlation method, and orientation coding based method, respectively. Experiments results show that orientation coding based methods achieved promising recognition performance for PRADD.
Palmprint Recognition across Different Devices
Jia, Wei; Hu, Rong-Xiang; Gui, Jie; Zhao, Yang; Ren, Xiao-Ming
2012-01-01
In this paper, the problem of Palmprint Recognition Across Different Devices (PRADD) is investigated, which has not been well studied so far. Since there is no publicly available PRADD image database, we created a non-contact PRADD image database containing 12,000 grayscale captured from 100 subjects using three devices, i.e., one digital camera and two smart-phones. Due to the non-contact image acquisition used, rotation and scale changes between different images captured from a same palm are inevitable. We propose a robust method to calculate the palm width, which can be effectively used for scale normalization of palmprints. On this PRADD image database, we evaluate the recognition performance of three different methods, i.e., subspace learning method, correlation method, and orientation coding based method, respectively. Experiments results show that orientation coding based methods achieved promising recognition performance for PRADD. PMID:22969380
NASA Astrophysics Data System (ADS)
Chaa, Mourad; Boukezzoula, Naceur-Eddine; Attia, Abdelouahab
2017-01-01
Two types of scores extracted from two-dimensional (2-D) and three-dimensional (3-D) palmprint for personal recognition systems are merged, introducing a local image descriptor for 2-D palmprint-based recognition systems, named bank of binarized statistical image features (B-BSIF). The main idea of B-BSIF is that the extracted histograms from the binarized statistical image features (BSIF) code images (the results of applying the different BSIF descriptor size with the length 12) are concatenated into one to produce a large feature vector. 3-D palmprint contains the depth information of the palm surface. The self-quotient image (SQI) algorithm is applied for reconstructing illumination-invariant 3-D palmprint images. To extract discriminative Gabor features from SQI images, Gabor wavelets are defined and used. Indeed, the dimensionality reduction methods have shown their ability in biometrics systems. Given this, a principal component analysis (PCA)+linear discriminant analysis (LDA) technique is employed. For the matching process, the cosine Mahalanobis distance is applied. Extensive experiments were conducted on a 2-D and 3-D palmprint database with 10,400 range images from 260 individuals. Then, a comparison was made between the proposed algorithm and other existing methods in the literature. Results clearly show that the proposed framework provides a higher correct recognition rate. Furthermore, the best results were obtained by merging the score of B-BSIF descriptor with the score of the SQI+Gabor wavelets+PCA+LDA method, yielding an equal error rate of 0.00% and a recognition rate of rank-1=100.00%.
Deformed Palmprint Matching Based on Stable Regions.
Wu, Xiangqian; Zhao, Qiushi
2015-12-01
Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.
Multispectral image fusion for illumination-invariant palmprint recognition
Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied. PMID:28558064
Multispectral image fusion for illumination-invariant palmprint recognition.
Lu, Longbin; Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied.
Person identification by using 3D palmprint data
NASA Astrophysics Data System (ADS)
Bai, Xuefei; Huang, Shujun; Gao, Nan; Zhang, Zonghua
2016-11-01
Person identification based on biometrics is drawing more and more attentions in identity and information safety. This paper presents a biometric system to identify person using 3D palmprint data, including a non-contact system capturing 3D palmprint quickly and a method identifying 3D palmprint fast. In order to reduce the effect of slight shaking of palm on the data accuracy, a DLP (Digital Light Processing) projector is utilized to trigger a CCD camera based on structured-light and triangulation measurement and 3D palmprint data could be gathered within 1 second. Using the obtained database and the PolyU 3D palmprint database, feature extraction and matching method is presented based on MCI (Mean Curvature Image), Gabor filter and binary code list. Experimental results show that the proposed method can identify a person within 240 ms in the case of 4000 samples. Compared with the traditional 3D palmprint recognition methods, the proposed method has high accuracy, low EER (Equal Error Rate), small storage space, and fast identification speed.
Research on Palmprint Identification Method Based on Quantum Algorithms
Zhang, Zhanzhan
2014-01-01
Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT) is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%. PMID:25105165
A Palmprint Recognition Algorithm Using Phase-Only Correlation
NASA Astrophysics Data System (ADS)
Ito, Koichi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo
This paper presents a palmprint recognition algorithm using Phase-Only Correlation (POC). The use of phase components in 2D (two-dimensional) discrete Fourier transforms of palmprint images makes it possible to achieve highly robust image registration and matching. In the proposed algorithm, POC is used to align scaling, rotation and translation between two palmprint images, and evaluate similarity between them. Experimental evaluation using a palmprint image database clearly demonstrates efficient matching performance of the proposed algorithm.
FRIT characterized hierarchical kernel memory arrangement for multiband palmprint recognition
NASA Astrophysics Data System (ADS)
Kisku, Dakshina R.; Gupta, Phalguni; Sing, Jamuna K.
2015-10-01
In this paper, we present a hierarchical kernel associative memory (H-KAM) based computational model with Finite Ridgelet Transform (FRIT) representation for multispectral palmprint recognition. To characterize a multispectral palmprint image, the Finite Ridgelet Transform is used to achieve a very compact and distinctive representation of linear singularities while it also captures the singularities along lines and edges. The proposed system makes use of Finite Ridgelet Transform to represent multispectral palmprint image and it is then modeled by Kernel Associative Memories. Finally, the recognition scheme is thoroughly tested with a benchmarking multispectral palmprint database CASIA. For recognition purpose a Bayesian classifier is used. The experimental results exhibit robustness of the proposed system under different wavelengths of palm image.
Novel palmprint representations for palmprint recognition
NASA Astrophysics Data System (ADS)
Li, Hengjian; Dong, Jiwen; Li, Jinping; Wang, Lei
2015-02-01
In this paper, we propose a novel palmprint recognition algorithm. Firstly, the palmprint images are represented by the anisotropic filter. The filters are built on Gaussian functions along one direction, and on second derivative of Gaussian functions in the orthogonal direction. Also, this choice is motivated by the optimal joint spatial and frequency localization of the Gaussian kernel. Therefore,they can better approximate the edge or line of palmprint images. A palmprint image is processed with a bank of anisotropic filters at different scales and rotations for robust palmprint features extraction. Once these features are extracted, subspace analysis is then applied to the feature vectors for dimension reduction as well as class separability. Experimental results on a public palmprint database show that the accuracy could be improved by the proposed novel representations, compared with Gabor.
Embedded Palmprint Recognition System Using OMAP 3530
Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen
2012-01-01
We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the ccentral pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance. PMID:22438721
Embedded palmprint recognition system using OMAP 3530.
Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen
2012-01-01
We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the central pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance.
A Local DCT-II Feature Extraction Approach for Personal Identification Based on Palmprint
NASA Astrophysics Data System (ADS)
Choge, H. Kipsang; Oyama, Tadahiro; Karungaru, Stephen; Tsuge, Satoru; Fukumi, Minoru
Biometric applications based on the palmprint have recently attracted increased attention from various researchers. In this paper, a method is presented that differs from the commonly used global statistical and structural techniques by extracting and using local features instead. The middle palm area is extracted after preprocessing for rotation, position and illumination normalization. The segmented region of interest is then divided into blocks of either 8×8 or 16×16 pixels in size. The type-II Discrete Cosine Transform (DCT) is applied to transform the blocks into DCT space. A subset of coefficients that encode the low to medium frequency components is selected using the JPEG-style zigzag scanning method. Features from each block are subsequently concatenated into a compact feature vector and used in palmprint verification experiments with palmprints from the PolyU Palmprint Database. Results indicate that this approach achieves better results than many conventional transform-based methods, with an excellent recognition accuracy above 99% and an Equal Error Rate (EER) of less than 1.2% in palmprint verification.
Ordinal feature selection for iris and palmprint recognition.
Sun, Zhenan; Wang, Libin; Tan, Tieniu
2014-09-01
Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases.
Personal recognition using hand shape and texture.
Kumar, Ajay; Zhang, David
2006-08-01
This paper proposes a new bimodal biometric system using feature-level fusion of hand shape and palm texture. The proposed combination is of significance since both the palmprint and hand-shape images are proposed to be extracted from the single hand image acquired from a digital camera. Several new hand-shape features that can be used to represent the hand shape and improve the performance are investigated. The new approach for palmprint recognition using discrete cosine transform coefficients, which can be directly obtained from the camera hardware, is demonstrated. None of the prior work on hand-shape or palmprint recognition has given any attention on the critical issue of feature selection. Our experimental results demonstrate that while majority of palmprint or hand-shape features are useful in predicting the subjects identity, only a small subset of these features are necessary in practice for building an accurate model for identification. The comparison and combination of proposed features is evaluated on the diverse classification schemes; naive Bayes (normal, estimated, multinomial), decision trees (C4.5, LMT), k-NN, SVM, and FFN. Although more work remains to be done, our results to date indicate that the combination of selected hand-shape and palmprint features constitutes a promising addition to the biometrics-based personal recognition systems.
Jain, Anil K; Feng, Jianjiang
2009-06-01
The evidential value of palmprints in forensic applications is clear as about 30 percent of the latents recovered from crime scenes are from palms. While biometric systems for palmprint-based personal authentication in access control type of applications have been developed, they mostly deal with low-resolution (about 100 ppi) palmprints and only perform full-to-full palmprint matching. We propose a latent-to-full palmprint matching system that is needed in forensic applications. Our system deals with palmprints captured at 500 ppi (the current standard in forensic applications) or higher resolution and uses minutiae as features to be compatible with the methodology used by latent experts. Latent palmprint matching is a challenging problem because latent prints lifted at crime scenes are of poor image quality, cover only a small area of the palm, and have a complex background. Other difficulties include a large number of minutiae in full prints (about 10 times as many as fingerprints), and the presence of many creases in latents and full prints. A robust algorithm to reliably estimate the local ridge direction and frequency in palmprints is developed. This facilitates the extraction of ridge and minutiae features even in poor quality palmprints. A fixed-length minutia descriptor, MinutiaCode, is utilized to capture distinctive information around each minutia and an alignment-based minutiae matching algorithm is used to match two palmprints. Two sets of partial palmprints (150 live-scan partial palmprints and 100 latent palmprints) are matched to a background database of 10,200 full palmprints to test the proposed system. Despite the inherent difficulty of latent-to-full palmprint matching, rank-1 recognition rates of 78.7 and 69 percent, respectively, were achieved in searching live-scan partial palmprints and latent palmprints against the background database.
A coarse to fine minutiae-based latent palmprint matching.
Liu, Eryun; Jain, Anil K; Tian, Jie
2013-10-01
With the availability of live-scan palmprint technology, high resolution palmprint recognition has started to receive significant attention in forensics and law enforcement. In forensic applications, latent palmprints provide critical evidence as it is estimated that about 30 percent of the latents recovered at crime scenes are those of palms. Most of the available high-resolution palmprint matching algorithms essentially follow the minutiae-based fingerprint matching strategy. Considering the large number of minutiae (about 1,000 minutiae in a full palmprint compared to about 100 minutiae in a rolled fingerprint) and large area of foreground region in full palmprints, novel strategies need to be developed for efficient and robust latent palmprint matching. In this paper, a coarse to fine matching strategy based on minutiae clustering and minutiae match propagation is designed specifically for palmprint matching. To deal with the large number of minutiae, a local feature-based minutiae clustering algorithm is designed to cluster minutiae into several groups such that minutiae belonging to the same group have similar local characteristics. The coarse matching is then performed within each cluster to establish initial minutiae correspondences between two palmprints. Starting with each initial correspondence, a minutiae match propagation algorithm searches for mated minutiae in the full palmprint. The proposed palmprint matching algorithm has been evaluated on a latent-to-full palmprint database consisting of 446 latents and 12,489 background full prints. The matching results show a rank-1 identification accuracy of 79.4 percent, which is significantly higher than the 60.8 percent identification accuracy of a state-of-the-art latent palmprint matching algorithm on the same latent database. The average computation time of our algorithm for a single latent-to-full match is about 141 ms for genuine match and 50 ms for impostor match, on a Windows XP desktop system with 2.2-GHz CPU and 1.00-GB RAM. The computation time of our algorithm is an order of magnitude faster than a previously published state-of-the-art-algorithm.
Survey of Technologies for the Airport Border of the Future
2014-04-01
geometry Handwriting recognition ID cards Image classification Image enhancement Image fusion Image matching Image processing Image segmentation Iris...00 Tongue print Footstep recognition Odour recognition Retinal recognition Emotion recognition Periocular recognition Handwriting recognition Ear...recognition Palmprint recognition Hand geometry DNA matching Vein matching Ear recognition Handwriting recognition Periocular recognition Emotion
Performance Evaluation of Multimodal Multifeature Authentication System Using KNN Classification.
Rajagopal, Gayathri; Palaniswamy, Ramamoorthy
2015-01-01
This research proposes a multimodal multifeature biometric system for human recognition using two traits, that is, palmprint and iris. The purpose of this research is to analyse integration of multimodal and multifeature biometric system using feature level fusion to achieve better performance. The main aim of the proposed system is to increase the recognition accuracy using feature level fusion. The features at the feature level fusion are raw biometric data which contains rich information when compared to decision and matching score level fusion. Hence information fused at the feature level is expected to obtain improved recognition accuracy. However, information fused at feature level has the problem of curse in dimensionality; here PCA (principal component analysis) is used to diminish the dimensionality of the feature sets as they are high dimensional. The proposed multimodal results were compared with other multimodal and monomodal approaches. Out of these comparisons, the multimodal multifeature palmprint iris fusion offers significant improvements in the accuracy of the suggested multimodal biometric system. The proposed algorithm is tested using created virtual multimodal database using UPOL iris database and PolyU palmprint database.
Performance Evaluation of Multimodal Multifeature Authentication System Using KNN Classification
Rajagopal, Gayathri; Palaniswamy, Ramamoorthy
2015-01-01
This research proposes a multimodal multifeature biometric system for human recognition using two traits, that is, palmprint and iris. The purpose of this research is to analyse integration of multimodal and multifeature biometric system using feature level fusion to achieve better performance. The main aim of the proposed system is to increase the recognition accuracy using feature level fusion. The features at the feature level fusion are raw biometric data which contains rich information when compared to decision and matching score level fusion. Hence information fused at the feature level is expected to obtain improved recognition accuracy. However, information fused at feature level has the problem of curse in dimensionality; here PCA (principal component analysis) is used to diminish the dimensionality of the feature sets as they are high dimensional. The proposed multimodal results were compared with other multimodal and monomodal approaches. Out of these comparisons, the multimodal multifeature palmprint iris fusion offers significant improvements in the accuracy of the suggested multimodal biometric system. The proposed algorithm is tested using created virtual multimodal database using UPOL iris database and PolyU palmprint database. PMID:26640813
NASA Astrophysics Data System (ADS)
Poinsot, Audrey; Yang, Fan; Brost, Vincent
2011-02-01
Including multiple sources of information in personal identity recognition and verification gives the opportunity to greatly improve performance. We propose a contactless biometric system that combines two modalities: palmprint and face. Hardware implementations are proposed on the Texas Instrument Digital Signal Processor and Xilinx Field-Programmable Gate Array (FPGA) platforms. The algorithmic chain consists of a preprocessing (which includes palm extraction from hand images), Gabor feature extraction, comparison by Hamming distance, and score fusion. Fusion possibilities are discussed and tested first using a bimodal database of 130 subjects that we designed (uB database), and then two common public biometric databases (AR for face and PolyU for palmprint). High performance has been obtained for recognition and verification purpose: a recognition rate of 97.49% with AR-PolyU database and an equal error rate of 1.10% on the uB database using only two training samples per subject have been obtained. Hardware results demonstrate that preprocessing can easily be performed during the acquisition phase, and multimodal biometric recognition can be treated almost instantly (0.4 ms on FPGA). We show the feasibility of a robust and efficient multimodal hardware biometric system that offers several advantages, such as user-friendliness and flexibility.
Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization
Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu
2012-01-01
When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance. PMID:22778600
Palmprint and face multi-modal biometric recognition based on SDA-GSVD and its kernelization.
Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu
2012-01-01
When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.
NASA Astrophysics Data System (ADS)
Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad
2015-01-01
Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.
Competitive code-based fast palmprint identification using a set of cover trees
NASA Astrophysics Data System (ADS)
Yue, Feng; Zuo, Wangmeng; Zhang, David; Wang, Kuanquan
2009-06-01
A palmprint identification system recognizes a query palmprint image by searching for its nearest neighbor from among all the templates in a database. When applied on a large-scale identification system, it is often necessary to speed up the nearest-neighbor searching process. We use competitive code, which has very fast feature extraction and matching speed, for palmprint identification. To speed up the identification process, we extend the cover tree method and propose to use a set of cover trees to facilitate the fast and accurate nearest-neighbor searching. We can use the cover tree method because, as we show, the angular distance used in competitive code can be decomposed into a set of metrics. Using the Hong Kong PolyU palmprint database (version 2) and a large-scale palmprint database, our experimental results show that the proposed method searches for nearest neighbors faster than brute force searching.
Hierarchical minutiae matching for fingerprint and palmprint identification.
Chen, Fanglin; Huang, Xiaolin; Zhou, Jie
2013-12-01
Fingerprints and palmprints are the most common authentic biometrics for personal identification, especially for forensic security. Previous research have been proposed to speed up the searching process in fingerprint and palmprint identification systems, such as those based on classification or indexing, in which the deterioration of identification accuracy is hard to avert. In this paper, a novel hierarchical minutiae matching algorithm for fingerprint and palmprint identification systems is proposed. This method decomposes the matching step into several stages and rejects many false fingerprints or palmprints on different stages, thus it can save much time while preserving a high identification rate. Experimental results show that the proposed algorithm can save almost 50% searching time compared with traditional methods and illustrate its effectiveness.
Biometrics encryption combining palmprint with two-layer error correction codes
NASA Astrophysics Data System (ADS)
Li, Hengjian; Qiu, Jian; Dong, Jiwen; Feng, Guang
2017-07-01
To bridge the gap between the fuzziness of biometrics and the exactitude of cryptography, based on combining palmprint with two-layer error correction codes, a novel biometrics encryption method is proposed. Firstly, the randomly generated original keys are encoded by convolutional and cyclic two-layer coding. The first layer uses a convolution code to correct burst errors. The second layer uses cyclic code to correct random errors. Then, the palmprint features are extracted from the palmprint images. Next, they are fused together by XORing operation. The information is stored in a smart card. Finally, the original keys extraction process is the information in the smart card XOR the user's palmprint features and then decoded with convolutional and cyclic two-layer code. The experimental results and security analysis show that it can recover the original keys completely. The proposed method is more secure than a single password factor, and has higher accuracy than a single biometric factor.
A multimodal biometric authentication system based on 2D and 3D palmprint features
NASA Astrophysics Data System (ADS)
Aggithaya, Vivek K.; Zhang, David; Luo, Nan
2008-03-01
This paper presents a new personal authentication system that simultaneously exploits 2D and 3D palmprint features. Here, we aim to improve the accuracy and robustness of existing palmprint authentication systems using 3D palmprint features. The proposed system uses an active stereo technique, structured light, to capture 3D image or range data of the palm and a registered intensity image simultaneously. The surface curvature based method is employed to extract features from 3D palmprint and Gabor feature based competitive coding scheme is used for 2D representation. We individually analyze these representations and attempt to combine them with score level fusion technique. Our experiments on a database of 108 subjects achieve significant improvement in performance (Equal Error Rate) with the integration of 3D features as compared to the case when 2D palmprint features alone are employed.
Palmprint authentication using multiple classifiers
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Zhang, David
2004-08-01
This paper investigates the performance improvement for palmprint authentication using multiple classifiers. The proposed methods on personal authentication using palmprints can be divided into three categories; appearance- , line -, and texture-based. A combination of these approaches can be used to achieve higher performance. We propose to simultaneously extract palmprint features from PCA, Line detectors and Gabor-filters and combine their corresponding matching scores. This paper also investigates the comparative performance of simple combination rules and the hybrid fusion strategy to achieve performance improvement. Our experimental results on the database of 100 users demonstrate the usefulness of such approach over those based on individual classifiers.
Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images
Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong
2015-01-01
In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods. PMID:26703596
Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images.
Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong
2015-12-12
In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods.
A novel method for rotation invariant palm print image stitching
NASA Astrophysics Data System (ADS)
Rao, Shishir Paramathma; Panetta, Karen; Agaian, Sos S.
2017-05-01
Although not as popular as fingerprint biometrics, palm prints have garnered interest in scientific community for the rich amount of distinctive information available on the palm. In this paper, a novel method for touchless palm print stitching to increase the effective area is presented. The method is not only rotation invariant but also able to robustly handle many distortions of touchless systems like illumination variations, pose variations etc. The proposed method also can handle partial palmprints, which have a high chance of occurrence in a scene of crime, by stitching them together to produce a much larger-to-full size palmprint for authentication purpose. Experiment results are shown for IIT-D palmprint database, from which pseudo partial palmprints were generated by cropping and randomly rotating them. Furthermore, the quality of stitching algorithm is determined by extensive computer simulations and visual analysis of the stitched image. Experimental results also show that the stitching significantly increases the area of palm image for feature point detection and hence provides a way to increase the accuracy and reliability of detection.
The effect of image alterations on identification using palmar flexion creases.
Cook, Tom; Sutton, Raul; Buckley, Kevan
2013-11-01
Palmprints are identified using matching of minutia points, which can be time consuming for fingerprint experts and in database searches. This article analyzes the operational characteristics of a palmar flexion crease (PFC) identification software tool, using a dataset of 10 replicates of 100 palms, where the user can label and match palmar line features. Results show that 100 palmprint images modified 10 times each using rotation, translation, and additive noise, mimicking some of the characteristics found in crime scene palmar marks, can be identified with a 99.2% genuine acceptance rate and 0% false acceptance rate when labeled within 3.5 mm of the PFC. Partial palmprint images can also be identified using the same method to filter the dataset prior to traditional matching, while maintaining an effective genuine acceptance rate. The work shows that identification using PFCs can improve palmprint identification through integration with existing systems, and through dedicated palmprint identification applications. © 2013 American Academy of Forensic Sciences.
Palmprint identification using FRIT
NASA Astrophysics Data System (ADS)
Kisku, D. R.; Rattani, A.; Gupta, P.; Hwang, C. J.; Sing, J. K.
2011-06-01
This paper proposes a palmprint identification system using Finite Ridgelet Transform (FRIT) and Bayesian classifier. FRIT is applied on the ROI (region of interest), which is extracted from palmprint image, to extract a set of distinctive features from palmprint image. These features are used to classify with the help of Bayesian classifier. The proposed system has been tested on CASIA and IIT Kanpur palmprint databases. The experimental results reveal better performance compared to all well known systems.
Characterization of palmprints by wavelet signatures via directional context modeling.
Zhang, Lei; Zhang, David
2004-06-01
The palmprint is one of the most reliable physiological characteristics that can be used to distinguish between individuals. Current palmprint-based systems are more user friendly, more cost effective, and require fewer data signatures than traditional fingerprint-based identification systems. The principal lines and wrinkles captured in a low-resolution palmprint image provide more than enough information to uniquely identify an individual. This paper presents a palmprint identification scheme that characterizes a palmprint using a set of statistical signatures. The palmprint is first transformed into the wavelet domain, and the directional context of each wavelet subband is defined and computed in order to collect the predominant coefficients of its principal lines and wrinkles. A set of statistical signatures, which includes gravity center, density, spatial dispersivity and energy, is then defined to characterize the palmprint with the selected directional context values. A classification and identification scheme based on these signatures is subsequently developed. This scheme exploits the features of principal lines and prominent wrinkles sufficiently and achieves satisfactory results. Compared with the line-segments-matching or interesting-points-matching based palmprint verification schemes, the proposed scheme uses a much smaller amount of data signatures. It also provides a convenient classification strategy and more accurate identification.
A novel chaotic stream cipher and its application to palmprint template protection
NASA Astrophysics Data System (ADS)
Li, Heng-Jian; Zhang, Jia-Shu
2010-04-01
Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a coupled NDF, which is constructed in an inverse flow, can generate multiple bits at one iteration and satisfy the security requirement of cipher design. Then, the stream cipher is employed to generate cancelable competitive code palmprint biometrics for template protection. The proposed cancelable palmprint authentication system depends on two factors: the palmprint biometric and the password/token. Therefore, the system provides high-confidence and also protects the user's privacy. The experimental results of verification on the Hong Kong PolyU Palmprint Database show that the proposed approach has a large template re-issuance ability and the equal error rate can achieve 0.02%. The performance of the palmprint template protection scheme proves the good practicability and security of the proposed stream cipher.
Classification of Palmprint Using Principal Line
NASA Astrophysics Data System (ADS)
Prasad, Munaga V. N. K.; Kumar, M. K. Pramod; Sharma, Kuldeep
In this paper, a new classification scheme for palmprint is proposed. Palmprint is one of the reliable physiological characteristics that can be used to authenticate an individual. Palmprint classification provides an important indexing mechanism in a very large palmprint database. Here, the palmprint database is initially categorized into two groups, right hand group and left hand group. Then, each group is further classified based on the distance traveled by principal line i.e. Heart Line During pre processing, a rectangular Region of Interest (ROI) in which only heart line is present, is extracted. Further, ROI is divided into 6 regions and depending upon the regions in which the heart line traverses the palmprint is classified accordingly. Consequently, our scheme allows 64 categories for each group forming a total number of 128 possible categories. The technique proposed in this paper includes only 15 such categories and it classifies not more than 20.96% of the images into a single category.
Texture-based approach to palmprint retrieval for personal identification
NASA Astrophysics Data System (ADS)
Li, Wenxin; Zhang, David; Xu, Z.; You, J.
2000-12-01
This paper presents a new approach to palmprint retrieval for personal identification. Three key issues in image retrieval are considered - feature selection, similarity measures and dynamic search for the best matching of the sample in the image database. We propose a texture-based method for palmprint feature representation. The concept of texture energy is introduced to define a palm print's global and local features, which are characterized with high convergence of inner-palm similarities and good dispersion of inter-palm discrimination. The search is carried out in a layered fashion: first global features are used to guide the fast selection of a small set of similar candidates from the database from the database and then local features are used to decide the final output within the candidate set. The experimental results demonstrate the effectiveness and accuracy of the proposed method.
Texture-based approach to palmprint retrieval for personal identification
NASA Astrophysics Data System (ADS)
Li, Wenxin; Zhang, David; Xu, Z.; You, J.
2001-01-01
This paper presents a new approach to palmprint retrieval for personal identification. Three key issues in image retrieval are considered - feature selection, similarity measures and dynamic search for the best matching of the sample in the image database. We propose a texture-based method for palmprint feature representation. The concept of texture energy is introduced to define a palm print's global and local features, which are characterized with high convergence of inner-palm similarities and good dispersion of inter-palm discrimination. The search is carried out in a layered fashion: first global features are used to guide the fast selection of a small set of similar candidates from the database from the database and then local features are used to decide the final output within the candidate set. The experimental results demonstrate the effectiveness and accuracy of the proposed method.
Joint Sparse Representation for Robust Multimodal Biometrics Recognition
2012-01-01
described in III. Experimental evaluations on a comprehensive multimodal dataset and a face database have been described in section V. Finally, in...WVU Multimodal Dataset The WVU multimodal dataset is a comprehensive collection of different biometric modalities such as fingerprint, iris, palmprint ...Martnez and R. Benavente, “The AR face database ,” CVC Technical Report, June 1998. [29] U. Park and A. Jain, “Face matching and retrieval using soft
Fusion of Dependent and Independent Biometric Information Sources
2005-03-01
palmprint , DNA, ECG, signature, etc. The comparison of various biometric techniques is given in [13] and is presented in Table 1. Since, each...theory. Experimental studies on the M2VTS database [32] showed that a reduction in error rates is up to about 40%. Four combination strategies are...taken from the CEDAR benchmark database . The word recognition results were the highest (91%) among published results for handwritten words (before 2001
Joint Sparse Representation for Robust Multimodal Biometrics Recognition
2014-01-01
comprehensive multimodal dataset and a face database are described in section V. Finally, in section VI, we discuss the computational complexity of...fingerprint, iris, palmprint , hand geometry and voice from subjects of different age, gender and ethnicity as described in Table I. It is a...Taylor, “Constructing nonlinear discriminants from multiple data views,” Machine Learning and Knowl- edge Discovery in Databases , pp. 328–343, 2010
Design of Cancelable Palmprint Templates Based on Look Up Table
NASA Astrophysics Data System (ADS)
Qiu, Jian; Li, Hengjian; Dong, Jiwen
2018-03-01
A novel cancelable palmprint templates generation scheme is proposed in this paper. Firstly, the Gabor filter and chaotic matrix are used to extract palmprint features. It is then arranged into a row vector and divided into equal size blocks. These blocks are converted to corresponding decimals and mapped to look up tables, forming final cancelable palmprint features based on the selected check bits. Finally, collaborative representation based classification with regularized least square is used for classification. Experimental results on the Hong Kong PolyU Palmprint Database verify that the proposed cancelable templates can achieve very high performance and security levels. Meanwhile, it can also satisfy the needs of real-time applications.
Securing palmprint authentication systems using spoof detection approach
NASA Astrophysics Data System (ADS)
Kanhangad, Vivek; Kumar, Abhishek
2013-12-01
Automated human authentication using features extracted from palmprint images has been studied extensively in the literature. Primary focus of the studies thus far has been the improvement of matching performance. As more biometric systems get deployed for wide range of applications, the threat of impostor attacks on these systems is on the rise. The most common among various types of attacks is the sensor level spoof attack using fake hands created using different materials. This paper investigates an approach for securing palmprint based biometric systems against spoof attacks that use photographs of the human hand for circumventing the system. The approach is based on the analysis of local texture patterns of acquired palmprint images for extracting discriminatory features. A trained binary classifier utilizes the discriminating information to determine if the input image is of real hand or a fake one. Experimental results, using 611 palmprint images corresponding to 100 subjects in the publicly available IITD palmprint image database, show that 1) palmprint authentication systems are highly vulnerable to spoof attacks and 2) the proposed spoof detection approach is effective for discriminating between real and fake image samples. In particular, the proposed approach achieves the best classification accuracy of 97.35%.
Palmprint Based Multidimensional Fuzzy Vault Scheme
Liu, Hailun; Sun, Dongmei; Xiong, Ke; Qiu, Zhengding
2014-01-01
Fuzzy vault scheme (FVS) is one of the most popular biometric cryptosystems for biometric template protection. However, error correcting code (ECC) proposed in FVS is not appropriate to deal with real-valued biometric intraclass variances. In this paper, we propose a multidimensional fuzzy vault scheme (MDFVS) in which a general subspace error-tolerant mechanism is designed and embedded into FVS to handle intraclass variances. Palmprint is one of the most important biometrics; to protect palmprint templates; a palmprint based MDFVS implementation is also presented. Experimental results show that the proposed scheme not only can deal with intraclass variances effectively but also could maintain the accuracy and meanwhile enhance security. PMID:24892094
Palmprint verification using Lagrangian decomposition and invariant interest points
NASA Astrophysics Data System (ADS)
Gupta, P.; Rattani, A.; Kisku, D. R.; Hwang, C. J.; Sing, J. K.
2011-06-01
This paper presents a palmprint based verification system using SIFT features and Lagrangian network graph technique. We employ SIFT for feature extraction from palmprint images whereas the region of interest (ROI) which has been extracted from wide palm texture at the preprocessing stage, is considered for invariant points extraction. Finally, identity is established by finding permutation matrix for a pair of reference and probe palm graphs drawn on extracted SIFT features. Permutation matrix is used to minimize the distance between two graphs. The propsed system has been tested on CASIA and IITK palmprint databases and experimental results reveal the effectiveness and robustness of the system.
Discriminant locality preserving projections based on L1-norm maximization.
Zhong, Fujin; Zhang, Jiashu; Li, Defang
2014-11-01
Conventional discriminant locality preserving projection (DLPP) is a dimensionality reduction technique based on manifold learning, which has demonstrated good performance in pattern recognition. However, because its objective function is based on the distance criterion using L2-norm, conventional DLPP is not robust to outliers which are present in many applications. This paper proposes an effective and robust DLPP version based on L1-norm maximization, which learns a set of local optimal projection vectors by maximizing the ratio of the L1-norm-based locality preserving between-class dispersion and the L1-norm-based locality preserving within-class dispersion. The proposed method is proven to be feasible and also robust to outliers while overcoming the small sample size problem. The experimental results on artificial datasets, Binary Alphadigits dataset, FERET face dataset and PolyU palmprint dataset have demonstrated the effectiveness of the proposed method.
Modeling IrisCode and its variants as convex polyhedral cones and its security implications.
Kong, Adams Wai-Kin
2013-03-01
IrisCode, developed by Daugman, in 1993, is the most influential iris recognition algorithm. A thorough understanding of IrisCode is essential, because over 100 million persons have been enrolled by this algorithm and many biometric personal identification and template protection methods have been developed based on IrisCode. This paper indicates that a template produced by IrisCode or its variants is a convex polyhedral cone in a hyperspace. Its central ray, being a rough representation of the original biometric signal, can be computed by a simple algorithm, which can often be implemented in one Matlab command line. The central ray is an expected ray and also an optimal ray of an objective function on a group of distributions. This algorithm is derived from geometric properties of a convex polyhedral cone but does not rely on any prior knowledge (e.g., iris images). The experimental results show that biometric templates, including iris and palmprint templates, produced by different recognition methods can be matched through the central rays in their convex polyhedral cones and that templates protected by a method extended from IrisCode can be broken into. These experimental results indicate that, without a thorough security analysis, convex polyhedral cone templates cannot be assumed secure. Additionally, the simplicity of the algorithm implies that even junior hackers without knowledge of advanced image processing and biometric databases can still break into protected templates and reveal relationships among templates produced by different recognition methods.
The Potential of Using Brain Images for Authentication
Zhou, Zongtan; Shen, Hui; Hu, Dewen
2014-01-01
Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604
The potential of using brain images for authentication.
Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen
2014-01-01
Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition.
Analysis of brute-force break-ins of a palmprint authentication system.
Kong, Adams W K; Zhang, David; Kamel, Mohamed
2006-10-01
Biometric authentication systems are widely applied because they offer inherent advantages over classical knowledge-based and token-based personal-identification approaches. This has led to the development of products using palmprints as biometric traits and their use in several real applications. However, as biometric systems are vulnerable to replay, database, and brute-force attacks, such potential attacks must be analyzed before biometric systems are massively deployed in security systems. This correspondence proposes a projected multinomial distribution for studying the probability of successfully using brute-force attacks to break into a palmprint system. To validate the proposed model, we have conducted a simulation. Its results demonstrate that the proposed model can accurately estimate the probability. The proposed model indicates that it is computationally infeasible to break into the palmprint system using brute-force attacks.
A Hybrid Approach to Protect Palmprint Templates
Sun, Dongmei; Xiong, Ke; Qiu, Zhengding
2014-01-01
Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach. PMID:24982977
A hybrid approach to protect palmprint templates.
Liu, Hailun; Sun, Dongmei; Xiong, Ke; Qiu, Zhengding
2014-01-01
Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach.
Active Authentication: Beyond Passwords
2011-11-18
103m 26-Jul-07 208k 27-Dec-10 4.9m Source: www.privacyrights.org/data-breach Hackers broke into a Gannett Co database containing personal...Pattern • Knuckle Pattern • Lip Pattern • Nail bed Pattern • Nose Pattern • Oto-acoustic Emissions • Palmprint • Retina Pattern • Skin... Palmprint Knuckle Pattern Pulse Electrocardiogram Electroencephalogram Face Geometry Lip Pattern Blue may be suitable for continuous monitoring
Anti-spoofing for display and print attacks on palmprint verification systems
NASA Astrophysics Data System (ADS)
Kanhangad, Vivek; Bhilare, Shruti; Garg, Pragalbh; Singh, Pranjalya; Chaudhari, Narendra
2015-05-01
A number of approaches for personal authentication using palmprint features have been proposed in the literature, majority of which focus on improving the matching performance. However, of late, preventing potential attacks on biometric systems has become a major concern as more and more biometric systems get deployed for wide range of applications. Among various types of attacks, sensor level attack, commonly known as spoof attack, has emerged as the most common attack due to simplicity in its execution. In this paper, we present an approach for detection of display and print based spoof attacks on palmprint verifcation systems. The approach is based on the analysis of acquired hand images for estimating surface re ectance. First and higher order statistical features computed from the distributions of pixel intensities and sub-band wavelet coeefficients form the feature set. A trained binary classifier utilizes the discriminating information to determine if the acquired image is of real hand or a fake one. Experiments are performed on a publicly available hand image dataset, containing 1300 images corresponding to 230 subjects. Experimental results show that the real hand biometrics samples can be substituted by the fake digital or print copies with an alarming spoof acceptance rate as high as 79.8%. Experimental results also show that the proposed spoof detection approach is very effective for discriminating between real and fake palmprint images. The proposed approach consistently achieves over 99% average 10-fold cross validation classification accuracy in our experiments.
Direct discriminant locality preserving projection with Hammerstein polynomial expansion.
Chen, Xi; Zhang, Jiashu; Li, Defang
2012-12-01
Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.
Hierarchical content-based image retrieval by dynamic indexing and guided search
NASA Astrophysics Data System (ADS)
You, Jane; Cheung, King H.; Liu, James; Guo, Linong
2003-12-01
This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include: a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing, an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features.
Design and implementation of a contactless multiple hand feature acquisition system
NASA Astrophysics Data System (ADS)
Zhao, Qiushi; Bu, Wei; Wu, Xiangqian; Zhang, David
2012-06-01
In this work, an integrated contactless multiple hand feature acquisition system is designed. The system can capture palmprint, palm vein, and palm dorsal vein images simultaneously. Moreover, the images are captured in a contactless manner, that is, users need not to touch any part of the device when capturing. Palmprint is imaged under visible illumination while palm vein and palm dorsal vein are imaged under near infrared (NIR) illumination. The capturing is controlled by computer and the whole process is less than 1 second, which is sufficient for online biometric systems. Based on this device, this paper also implements a contactless hand-based multimodal biometric system. Palmprint, palm vein, palm dorsal vein, finger vein, and hand geometry features are extracted from the captured images. After similarity measure, the matching scores are fused using weighted sum fusion rule. Experimental results show that although the verification accuracy of each uni-modality is not as high as that of state-of-the-art, the fusion result is superior to most of the existing hand-based biometric systems. This result indicates that the proposed device is competent in the application of contactless multimodal hand-based biometrics.
Palmprint Based Verification System Using SURF Features
NASA Astrophysics Data System (ADS)
Srinivas, Badrinath G.; Gupta, Phalguni
This paper describes the design and development of a prototype of robust biometric system for verification. The system uses features extracted using Speeded Up Robust Features (SURF) operator of human hand. The hand image for features is acquired using a low cost scanner. The palmprint region extracted is robust to hand translation and rotation on the scanner. The system is tested on IITK database of 200 images and PolyU database of 7751 images. The system is found to be robust with respect to translation and rotation. It has FAR 0.02%, FRR 0.01% and accuracy of 99.98% and can be a suitable system for civilian applications and high-security environments.
On the Privacy Protection of Biometric Traits: Palmprint, Face, and Signature
NASA Astrophysics Data System (ADS)
Panigrahy, Saroj Kumar; Jena, Debasish; Korra, Sathya Babu; Jena, Sanjay Kumar
Biometrics are expected to add a new level of security to applications, as a person attempting access must prove who he or she really is by presenting a biometric to the system. The recent developments in the biometrics area have lead to smaller, faster and cheaper systems, which in turn has increased the number of possible application areas for biometric identity verification. The biometric data, being derived from human bodies (and especially when used to identify or verify those bodies) is considered personally identifiable information (PII). The collection, use and disclosure of biometric data — image or template, invokes rights on the part of an individual and obligations on the part of an organization. As biometric uses and databases grow, so do concerns that the personal data collected will not be used in reasonable and accountable ways. Privacy concerns arise when biometric data are used for secondary purposes, invoking function creep, data matching, aggregation, surveillance and profiling. Biometric data transmitted across networks and stored in various databases by others can also be stolen, copied, or otherwise misused in ways that can materially affect the individual involved. As Biometric systems are vulnerable to replay, database and brute-force attacks, such potential attacks must be analysed before they are massively deployed in security systems. Along with security, also the privacy of the users is an important factor as the constructions of lines in palmprints contain personal characteristics, from face images a person can be recognised, and fake signatures can be practised by carefully watching the signature images available in the database. We propose a cryptographic approach to encrypt the images of palmprints, faces, and signatures by an advanced Hill cipher technique for hiding the information in the images. It also provides security to these images from being attacked by above mentioned attacks. So, during the feature extraction, the encrypted images are first decrypted, then the features are extracted, and used for identification or verification.
Similarity Search in Large Collections of Biometric Data
2009-10-01
instantaneous identification of a person by converting the biometric into a digital form and then comparing it against a computerized database . They can...combined to get reliable results. Exact match in biometric collections have very little meaning and only a relative ordering of database objects with...running several indices for different aspects of the data, e.g. facial features, fingerprints and palmprints of a person, together. The system then
Yang, Jian; Zhang, David; Yang, Jing-Yu; Niu, Ben
2007-04-01
This paper develops an unsupervised discriminant projection (UDP) technique for dimensionality reduction of high-dimensional data in small sample size cases. UDP can be seen as a linear approximation of a multimanifolds-based learning framework which takes into account both the local and nonlocal quantities. UDP characterizes the local scatter as well as the nonlocal scatter, seeking to find a projection that simultaneously maximizes the nonlocal scatter and minimizes the local scatter. This characteristic makes UDP more intuitive and more powerful than the most up-to-date method, Locality Preserving Projection (LPP), which considers only the local scatter for clustering or classification tasks. The proposed method is applied to face and palm biometrics and is examined using the Yale, FERET, and AR face image databases and the PolyU palmprint database. The experimental results show that UDP consistently outperforms LPP and PCA and outperforms LDA when the training sample size per class is small. This demonstrates that UDP is a good choice for real-world biometrics applications.
Contactless and pose invariant biometric identification using hand surface.
Kanhangad, Vivek; Kumar, Ajay; Zhang, David
2011-05-01
This paper presents a novel approach for hand matching that achieves significantly improved performance even in the presence of large hand pose variations. The proposed method utilizes a 3-D digitizer to simultaneously acquire intensity and range images of the user's hand presented to the system in an arbitrary pose. The approach involves determination of the orientation of the hand in 3-D space followed by pose normalization of the acquired 3-D and 2-D hand images. Multimodal (2-D as well as 3-D) palmprint and hand geometry features, which are simultaneously extracted from the user's pose normalized textured 3-D hand, are used for matching. Individual matching scores are then combined using a new dynamic fusion strategy. Our experimental results on the database of 114 subjects with significant pose variations yielded encouraging results. Consistent (across various hand features considered) performance improvement achieved with the pose correction demonstrates the usefulness of the proposed approach for hand based biometric systems with unconstrained and contact-free imaging. The experimental results also suggest that the dynamic fusion approach employed in this work helps to achieve performance improvement of 60% (in terms of EER) over the case when matching scores are combined using the weighted sum rule.
Wang, Jian-Gang; Sung, Eric; Yau, Wei-Yun
2011-07-01
Facial age classification is an approach to classify face images into one of several predefined age groups. One of the difficulties in applying learning techniques to the age classification problem is the large amount of labeled training data required. Acquiring such training data is very costly in terms of age progress, privacy, human time, and effort. Although unlabeled face images can be obtained easily, it would be expensive to manually label them on a large scale and getting the ground truth. The frugal selection of the unlabeled data for labeling to quickly reach high classification performance with minimal labeling efforts is a challenging problem. In this paper, we present an active learning approach based on an online incremental bilateral two-dimension linear discriminant analysis (IB2DLDA) which initially learns from a small pool of labeled data and then iteratively selects the most informative samples from the unlabeled set to increasingly improve the classifier. Specifically, we propose a novel data selection criterion called the furthest nearest-neighbor (FNN) that generalizes the margin-based uncertainty to the multiclass case and which is easy to compute, so that the proposed active learning algorithm can handle a large number of classes and large data sizes efficiently. Empirical experiments on FG-NET and Morph databases together with a large unlabeled data set for age categorization problems show that the proposed approach can achieve results comparable or even outperform a conventionally trained active classifier that requires much more labeling effort. Our IB2DLDA-FNN algorithm can achieve similar results much faster than random selection and with fewer samples for age categorization. It also can achieve comparable results with active SVM but is much faster than active SVM in terms of training because kernel methods are not needed. The results on the face recognition database and palmprint/palm vein database showed that our approach can handle problems with large number of classes. Our contributions in this paper are twofold. First, we proposed the IB2DLDA-FNN, the FNN being our novel idea, as a generic on-line or active learning paradigm. Second, we showed that it can be another viable tool for active learning of facial age range classification.
A Novel Locally Linear KNN Method With Applications to Visual Recognition.
Liu, Qingfeng; Liu, Chengjun
2017-09-01
A locally linear K Nearest Neighbor (LLK) method is presented in this paper with applications to robust visual recognition. Specifically, the concept of an ideal representation is first presented, which improves upon the traditional sparse representation in many ways. The objective function based on a host of criteria for sparsity, locality, and reconstruction is then optimized to derive a novel representation, which is an approximation to the ideal representation. The novel representation is further processed by two classifiers, namely, an LLK-based classifier and a locally linear nearest mean-based classifier, for visual recognition. The proposed classifiers are shown to connect to the Bayes decision rule for minimum error. Additional new theoretical analysis is presented, such as the nonnegative constraint, the group regularization, and the computational efficiency of the proposed LLK method. New methods such as a shifted power transformation for improving reliability, a coefficients' truncating method for enhancing generalization, and an improved marginal Fisher analysis method for feature extraction are proposed to further improve visual recognition performance. Extensive experiments are implemented to evaluate the proposed LLK method for robust visual recognition. In particular, eight representative data sets are applied for assessing the performance of the LLK method for various visual recognition applications, such as action recognition, scene recognition, object recognition, and face recognition.
Image preprocessing study on KPCA-based face recognition
NASA Astrophysics Data System (ADS)
Li, Xuan; Li, Dehua
2015-12-01
Face recognition as an important biometric identification method, with its friendly, natural, convenient advantages, has obtained more and more attention. This paper intends to research a face recognition system including face detection, feature extraction and face recognition, mainly through researching on related theory and the key technology of various preprocessing methods in face detection process, using KPCA method, focuses on the different recognition results in different preprocessing methods. In this paper, we choose YCbCr color space for skin segmentation and choose integral projection for face location. We use erosion and dilation of the opening and closing operation and illumination compensation method to preprocess face images, and then use the face recognition method based on kernel principal component analysis method for analysis and research, and the experiments were carried out using the typical face database. The algorithms experiment on MATLAB platform. Experimental results show that integration of the kernel method based on PCA algorithm under certain conditions make the extracted features represent the original image information better for using nonlinear feature extraction method, which can obtain higher recognition rate. In the image preprocessing stage, we found that images under various operations may appear different results, so as to obtain different recognition rate in recognition stage. At the same time, in the process of the kernel principal component analysis, the value of the power of the polynomial function can affect the recognition result.
Design method of ARM based embedded iris recognition system
NASA Astrophysics Data System (ADS)
Wang, Yuanbo; He, Yuqing; Hou, Yushi; Liu, Ting
2008-03-01
With the advantages of non-invasiveness, uniqueness, stability and low false recognition rate, iris recognition has been successfully applied in many fields. Up to now, most of the iris recognition systems are based on PC. However, a PC is not portable and it needs more power. In this paper, we proposed an embedded iris recognition system based on ARM. Considering the requirements of iris image acquisition and recognition algorithm, we analyzed the design method of the iris image acquisition module, designed the ARM processing module and its peripherals, studied the Linux platform and the recognition algorithm based on this platform, finally actualized the design method of ARM-based iris imaging and recognition system. Experimental results show that the ARM platform we used is fast enough to run the iris recognition algorithm, and the data stream can flow smoothly between the camera and the ARM chip based on the embedded Linux system. It's an effective method of using ARM to actualize portable embedded iris recognition system.
NASA Astrophysics Data System (ADS)
Merkel, Ronny; Breuhan, Andy; Hildebrandt, Mario; Vielhauer, Claus; Bräutigam, Anja
2012-06-01
In the field of crime scene forensics, current methods of evidence collection, such as the acquisition of shoe-marks, tireimpressions, palm-prints or fingerprints are in most cases still performed in an analogue way. For example, fingerprints are captured by powdering and sticky tape lifting, ninhydrine bathing or cyanoacrylate fuming and subsequent photographing. Images of the evidence are then further processed by forensic experts. With the upcoming use of new multimedia systems for the digital capturing and processing of crime scene traces in forensics, higher resolutions can be achieved, leading to a much better quality of forensic images. Furthermore, the fast and mostly automated preprocessing of such data using digital signal processing techniques is an emerging field. Also, by the optical and non-destructive lifting of forensic evidence, traces are not destroyed and therefore can be re-captured, e.g. by creating time series of a trace, to extract its aging behavior and maybe determine the time the trace was left. However, such new methods and tools face different challenges, which need to be addressed before a practical application in the field. Based on the example of fingerprint age determination, which is an unresolved research challenge to forensic experts since decades, we evaluate the influences of different environmental conditions as well as different types of sweating and their implications to the capturing sensory, preprocessing methods and feature extraction. We use a Chromatic White Light (CWL) sensor to exemplary represent such a new optical and contactless measurement device and investigate the influence of 16 different environmental conditions, 8 different sweat types and 11 different preprocessing methods on the aging behavior of 48 fingerprint time series (2592 fingerprint scans in total). We show the challenges that arise for such new multimedia systems capturing and processing forensic evidence
Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.
Ming, Yue; Wang, Guangchao; Fan, Chunxiao
2015-01-01
With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.
Spoof Detection for Finger-Vein Recognition System Using NIR Camera.
Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung
2017-10-01
Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods.
Spoof Detection for Finger-Vein Recognition System Using NIR Camera
Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung
2017-01-01
Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods. PMID:28974031
Three-dimensional fingerprint recognition by using convolution neural network
NASA Astrophysics Data System (ADS)
Tian, Qianyu; Gao, Nan; Zhang, Zonghua
2018-01-01
With the development of science and technology and the improvement of social information, fingerprint recognition technology has become a hot research direction and been widely applied in many actual fields because of its feasibility and reliability. The traditional two-dimensional (2D) fingerprint recognition method relies on matching feature points. This method is not only time-consuming, but also lost three-dimensional (3D) information of fingerprint, with the fingerprint rotation, scaling, damage and other issues, a serious decline in robustness. To solve these problems, 3D fingerprint has been used to recognize human being. Because it is a new research field, there are still lots of challenging problems in 3D fingerprint recognition. This paper presents a new 3D fingerprint recognition method by using a convolution neural network (CNN). By combining 2D fingerprint and fingerprint depth map into CNN, and then through another CNN feature fusion, the characteristics of the fusion complete 3D fingerprint recognition after classification. This method not only can preserve 3D information of fingerprints, but also solves the problem of CNN input. Moreover, the recognition process is simpler than traditional feature point matching algorithm. 3D fingerprint recognition rate by using CNN is compared with other fingerprint recognition algorithms. The experimental results show that the proposed 3D fingerprint recognition method has good recognition rate and robustness.
Fast cat-eye effect target recognition based on saliency extraction
NASA Astrophysics Data System (ADS)
Li, Li; Ren, Jianlin; Wang, Xingbin
2015-09-01
Background complexity is a main reason that results in false detection in cat-eye target recognition. Human vision has selective attention property which can help search the salient target from complex unknown scenes quickly and precisely. In the paper, we propose a novel cat-eye effect target recognition method named Multi-channel Saliency Processing before Fusion (MSPF). This method combines traditional cat-eye target recognition with the selective characters of visual attention. Furthermore, parallel processing enables it to achieve fast recognition. Experimental results show that the proposed method performs better in accuracy, robustness and speed compared to other methods.
NASA Astrophysics Data System (ADS)
Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue
2018-04-01
The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.
Document Form and Character Recognition using SVM
NASA Astrophysics Data System (ADS)
Park, Sang-Sung; Shin, Young-Geun; Jung, Won-Kyo; Ahn, Dong-Kyu; Jang, Dong-Sik
2009-08-01
Because of development of computer and information communication, EDI (Electronic Data Interchange) has been developing. There is OCR (Optical Character Recognition) of Pattern recognition technology for EDI. OCR contributed to changing many manual in the past into automation. But for the more perfect database of document, much manual is needed for excluding unnecessary recognition. To resolve this problem, we propose document form based character recognition method in this study. Proposed method is divided into document form recognition part and character recognition part. Especially, in character recognition, change character into binarization by using SVM algorithm and extract more correct feature value.
Demographic Analysis from Biometric Data: Achievements, Challenges, and New Frontiers.
Sun, Yunlian; Zhang, Man; Sun, Zhenan; Tan, Tieniu
2018-02-01
Biometrics is the technique of automatically recognizing individuals based on their biological or behavioral characteristics. Various biometric traits have been introduced and widely investigated, including fingerprint, iris, face, voice, palmprint, gait and so forth. Apart from identity, biometric data may convey various other personal information, covering affect, age, gender, race, accent, handedness, height, weight, etc. Among these, analysis of demographics (age, gender, and race) has received tremendous attention owing to its wide real-world applications, with significant efforts devoted and great progress achieved. This survey first presents biometric demographic analysis from the standpoint of human perception, then provides a comprehensive overview of state-of-the-art advances in automated estimation from both academia and industry. Despite these advances, a number of challenging issues continue to inhibit its full potential. We second discuss these open problems, and finally provide an outlook into the future of this very active field of research by sharing some promising opportunities.
Speaker-independent phoneme recognition with a binaural auditory image model
NASA Astrophysics Data System (ADS)
Francis, Keith Ivan
1997-09-01
This dissertation presents phoneme recognition techniques based on a binaural fusion of outputs of the auditory image model and subsequent azimuth-selective phoneme recognition in a noisy environment. Background information concerning speech variations, phoneme recognition, current binaural fusion techniques and auditory modeling issues is explained. The research is constrained to sources in the frontal azimuthal plane of a simulated listener. A new method based on coincidence detection of neural activity patterns from the auditory image model of Patterson is used for azimuth-selective phoneme recognition. The method is tested in various levels of noise and the results are reported in contrast to binaural fusion methods based on various forms of correlation to demonstrate the potential of coincidence- based binaural phoneme recognition. This method overcomes smearing of fine speech detail typical of correlation based methods. Nevertheless, coincidence is able to measure similarity of left and right inputs and fuse them into useful feature vectors for phoneme recognition in noise.
Automatic face recognition in HDR imaging
NASA Astrophysics Data System (ADS)
Pereira, Manuela; Moreno, Juan-Carlos; Proença, Hugo; Pinheiro, António M. G.
2014-05-01
The gaining popularity of the new High Dynamic Range (HDR) imaging systems is raising new privacy issues caused by the methods used for visualization. HDR images require tone mapping methods for an appropriate visualization on conventional and non-expensive LDR displays. These visualization methods might result in completely different visualization raising several issues on privacy intrusion. In fact, some visualization methods result in a perceptual recognition of the individuals, while others do not even show any identity. Although perceptual recognition might be possible, a natural question that can rise is how computer based recognition will perform using tone mapping generated images? In this paper, a study where automatic face recognition using sparse representation is tested with images that result from common tone mapping operators applied to HDR images. Its ability for the face identity recognition is described. Furthermore, typical LDR images are used for the face recognition training.
Postprocessing for character recognition using pattern features and linguistic information
NASA Astrophysics Data System (ADS)
Yoshikawa, Takatoshi; Okamoto, Masayosi; Horii, Hiroshi
1993-04-01
We propose a new method of post-processing for character recognition using pattern features and linguistic information. This method corrects errors in the recognition of handwritten Japanese sentences containing Kanji characters. This post-process method is characterized by having two types of character recognition. Improving the accuracy of the character recognition rate of Japanese characters is made difficult by the large number of characters, and the existence of characters with similar patterns. Therefore, it is not practical for a character recognition system to recognize all characters in detail. First, this post-processing method generates a candidate character table by recognizing the simplest features of characters. Then, it selects words corresponding to the character from the candidate character table by referring to a word and grammar dictionary before selecting suitable words. If the correct character is included in the candidate character table, this process can correct an error, however, if the character is not included, it cannot correct an error. Therefore, if this method can presume a character does not exist in a candidate character table by using linguistic information (word and grammar dictionary). It then can verify a presumed character by character recognition using complex features. When this method is applied to an online character recognition system, the accuracy of character recognition improves 93.5% to 94.7%. This proved to be the case when it was used for the editorials of a Japanese newspaper (Asahi Shinbun).
The review and results of different methods for facial recognition
NASA Astrophysics Data System (ADS)
Le, Yifan
2017-09-01
In recent years, facial recognition draws much attention due to its wide potential applications. As a unique technology in Biometric Identification, facial recognition represents a significant improvement since it could be operated without cooperation of people under detection. Hence, facial recognition will be taken into defense system, medical detection, human behavior understanding, etc. Several theories and methods have been established to make progress in facial recognition: (1) A novel two-stage facial landmark localization method is proposed which has more accurate facial localization effect under specific database; (2) A statistical face frontalization method is proposed which outperforms state-of-the-art methods for face landmark localization; (3) It proposes a general facial landmark detection algorithm to handle images with severe occlusion and images with large head poses; (4) There are three methods proposed on Face Alignment including shape augmented regression method, pose-indexed based multi-view method and a learning based method via regressing local binary features. The aim of this paper is to analyze previous work of different aspects in facial recognition, focusing on concrete method and performance under various databases. In addition, some improvement measures and suggestions in potential applications will be put forward.
Fuzzy difference-of-Gaussian-based iris recognition method for noisy iris images
NASA Astrophysics Data System (ADS)
Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Moon, Kiyoung
2010-06-01
Iris recognition is used for information security with a high confidence level because it shows outstanding recognition accuracy by using human iris patterns with high degrees of freedom. However, iris recognition accuracy can be reduced by noisy iris images with optical and motion blurring. We propose a new iris recognition method based on the fuzzy difference-of-Gaussian (DOG) for noisy iris images. This study is novel in three ways compared to previous works: (1) The proposed method extracts iris feature values using the DOG method, which is robust to local variations of illumination and shows fine texture information, including various frequency components. (2) When determining iris binary codes, image noises that cause the quantization error of the feature values are reduced with the fuzzy membership function. (3) The optimal parameters of the DOG filter and the fuzzy membership function are determined in terms of iris recognition accuracy. Experimental results showed that the performance of the proposed method was better than that of previous methods for noisy iris images.
Support vector machine-based facial-expression recognition method combining shape and appearance
NASA Astrophysics Data System (ADS)
Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun
2010-11-01
Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.
2013-11-26
Combination with Simple Features," lEE European Workshop on Handwriting Analysis and Recognition, pp. 6/1-6, Brussels, Jul. 1994. Bock, J., et a...Document Analysis and Recognition, pp. 147-150, Oct. 1993. Starner, T., eta!., "On-Line Cursive Handwriting Recognition Using Speech Recognition Methods
Crowd motion segmentation and behavior recognition fusing streak flow and collectiveness
NASA Astrophysics Data System (ADS)
Gao, Mingliang; Jiang, Jun; Shen, Jin; Zou, Guofeng; Fu, Guixia
2018-04-01
Crowd motion segmentation and crowd behavior recognition are two hot issues in computer vision. A number of methods have been proposed to tackle these two problems. Among the methods, flow dynamics is utilized to model the crowd motion, with little consideration of collective property. Moreover, the traditional crowd behavior recognition methods treat the local feature and dynamic feature separately and overlook the interconnection of topological and dynamical heterogeneity in complex crowd processes. A crowd motion segmentation method and a crowd behavior recognition method are proposed based on streak flow and crowd collectiveness. The streak flow is adopted to reveal the dynamical property of crowd motion, and the collectiveness is incorporated to reveal the structure property. Experimental results show that the proposed methods improve the crowd motion segmentation accuracy and the crowd recognition rates compared with the state-of-the-art methods.
Deep kernel learning method for SAR image target recognition
NASA Astrophysics Data System (ADS)
Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao
2017-10-01
With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.
A real time mobile-based face recognition with fisherface methods
NASA Astrophysics Data System (ADS)
Arisandi, D.; Syahputra, M. F.; Putri, I. L.; Purnamawati, S.; Rahmat, R. F.; Sari, P. P.
2018-03-01
Face Recognition is a field research in Computer Vision that study about learning face and determine the identity of the face from a picture sent to the system. By utilizing this face recognition technology, learning process about people’s identity between students in a university will become simpler. With this technology, student won’t need to browse student directory in university’s server site and look for the person with certain face trait. To obtain this goal, face recognition application use image processing methods consist of two phase, pre-processing phase and recognition phase. In pre-processing phase, system will process input image into the best image for recognition phase. Purpose of this pre-processing phase is to reduce noise and increase signal in image. Next, to recognize face phase, we use Fisherface Methods. This methods is chosen because of its advantage that would help system of its limited data. Therefore from experiment the accuracy of face recognition using fisherface is 90%.
Method and apparatus for obtaining complete speech signals for speech recognition applications
NASA Technical Reports Server (NTRS)
Abrash, Victor (Inventor); Cesari, Federico (Inventor); Franco, Horacio (Inventor); George, Christopher (Inventor); Zheng, Jing (Inventor)
2009-01-01
The present invention relates to a method and apparatus for obtaining complete speech signals for speech recognition applications. In one embodiment, the method continuously records an audio stream comprising a sequence of frames to a circular buffer. When a user command to commence or terminate speech recognition is received, the method obtains a number of frames of the audio stream occurring before or after the user command in order to identify an augmented audio signal for speech recognition processing. In further embodiments, the method analyzes the augmented audio signal in order to locate starting and ending speech endpoints that bound at least a portion of speech to be processed for recognition. At least one of the speech endpoints is located using a Hidden Markov Model.
Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung
2017-03-16
The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body.
Post processing for offline Chinese handwritten character string recognition
NASA Astrophysics Data System (ADS)
Wang, YanWei; Ding, XiaoQing; Liu, ChangSong
2012-01-01
Offline Chinese handwritten character string recognition is one of the most important research fields in pattern recognition. Due to the free writing style, large variability in character shapes and different geometric characteristics, Chinese handwritten character string recognition is a challenging problem to deal with. However, among the current methods over-segmentation and merging method which integrates geometric information, character recognition information and contextual information, shows a promising result. It is found experimentally that a large part of errors are segmentation error and mainly occur around non-Chinese characters. In a Chinese character string, there are not only wide characters namely Chinese characters, but also narrow characters like digits and letters of the alphabet. The segmentation error is mainly caused by uniform geometric model imposed on all segmented candidate characters. To solve this problem, post processing is employed to improve recognition accuracy of narrow characters. On one hand, multi-geometric models are established for wide characters and narrow characters respectively. Under multi-geometric models narrow characters are not prone to be merged. On the other hand, top rank recognition results of candidate paths are integrated to boost final recognition of narrow characters. The post processing method is investigated on two datasets, in total 1405 handwritten address strings. The wide character recognition accuracy has been improved lightly and narrow character recognition accuracy has been increased up by 10.41% and 10.03% respectively. It indicates that the post processing method is effective to improve recognition accuracy of narrow characters.
Method and System for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor); Stubberud, Allen R. (Inventor)
2012-01-01
A method for object recognition using shape and color features of the object to be recognized. An adaptive architecture is used to recognize and adapt the shape and color features for moving objects to enable object recognition.
Tracking and recognition face in videos with incremental local sparse representation model
NASA Astrophysics Data System (ADS)
Wang, Chao; Wang, Yunhong; Zhang, Zhaoxiang
2013-10-01
This paper addresses the problem of tracking and recognizing faces via incremental local sparse representation. First a robust face tracking algorithm is proposed via employing local sparse appearance and covariance pooling method. In the following face recognition stage, with the employment of a novel template update strategy, which combines incremental subspace learning, our recognition algorithm adapts the template to appearance changes and reduces the influence of occlusion and illumination variation. This leads to a robust video-based face tracking and recognition with desirable performance. In the experiments, we test the quality of face recognition in real-world noisy videos on YouTube database, which includes 47 celebrities. Our proposed method produces a high face recognition rate at 95% of all videos. The proposed face tracking and recognition algorithms are also tested on a set of noisy videos under heavy occlusion and illumination variation. The tracking results on challenging benchmark videos demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods. In the case of the challenging dataset in which faces undergo occlusion and illumination variation, and tracking and recognition experiments under significant pose variation on the University of California, San Diego (Honda/UCSD) database, our proposed method also consistently demonstrates a high recognition rate.
Cross-domain expression recognition based on sparse coding and transfer learning
NASA Astrophysics Data System (ADS)
Yang, Yong; Zhang, Weiyi; Huang, Yong
2017-05-01
Traditional facial expression recognition methods usually assume that the training set and the test set are independent and identically distributed. However, in actual expression recognition applications, the conditions of independent and identical distribution are hardly satisfied for the training set and test set because of the difference of light, shade, race and so on. In order to solve this problem and improve the performance of expression recognition in the actual applications, a novel method based on transfer learning and sparse coding is applied to facial expression recognition. First of all, a common primitive model, that is, the dictionary is learnt. Then, based on the idea of transfer learning, the learned primitive pattern is transferred to facial expression and the corresponding feature representation is obtained by sparse coding. The experimental results in CK +, JAFFE and NVIE database shows that the transfer learning based on sparse coding method can effectively improve the expression recognition rate in the cross-domain expression recognition task and is suitable for the practical facial expression recognition applications.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Jiafeng; Zhuo, Li; Zhang, Hui; Li, Xiaoguang
2017-12-01
Color is one of the most stable attributes of vehicles and often used as a valuable cue in some important applications. Various complex environmental factors, such as illumination, weather, noise and etc., result in the visual characteristics of the vehicle color being obvious diversity. Vehicle color recognition in complex environments has been a challenging task. The state-of-the-arts methods roughly take the whole image for color recognition, but many parts of the images such as car windows; wheels and background contain no color information, which will have negative impact on the recognition accuracy. In this paper, a novel vehicle color recognition method using local vehicle-color saliency detection and dual-orientational dimensionality reduction of convolutional neural network (CNN) deep features has been proposed. The novelty of the proposed method includes two parts: (1) a local vehicle-color saliency detection method has been proposed to determine the vehicle color region of the vehicle image and exclude the influence of non-color regions on the recognition accuracy; (2) dual-orientational dimensionality reduction strategy has been designed to greatly reduce the dimensionality of deep features that are learnt from CNN, which will greatly mitigate the storage and computational burden of the subsequent processing, while improving the recognition accuracy. Furthermore, linear support vector machine is adopted as the classifier to train the dimensionality reduced features to obtain the recognition model. The experimental results on public dataset demonstrate that the proposed method can achieve superior recognition performance over the state-of-the-arts methods.
Handwritten digits recognition based on immune network
NASA Astrophysics Data System (ADS)
Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe
2011-11-01
With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.
Yang, Cheng-Huei; Luo, Ching-Hsing; Yang, Cheng-Hong; Chuang, Li-Yeh
2004-01-01
Morse code is now being harnessed for use in rehabilitation applications of augmentative-alternative communication and assistive technology, including mobility, environmental control and adapted worksite access. In this paper, Morse code is selected as a communication adaptive device for disabled persons who suffer from muscle atrophy, cerebral palsy or other severe handicaps. A stable typing rate is strictly required for Morse code to be effective as a communication tool. This restriction is a major hindrance. Therefore, a switch adaptive automatic recognition method with a high recognition rate is needed. The proposed system combines counter-propagation networks with a variable degree variable step size LMS algorithm. It is divided into five stages: space recognition, tone recognition, learning process, adaptive processing, and character recognition. Statistical analyses demonstrated that the proposed method elicited a better recognition rate in comparison to alternative methods in the literature.
Chemical Entity Recognition and Resolution to ChEBI
Grego, Tiago; Pesquita, Catia; Bastos, Hugo P.; Couto, Francisco M.
2012-01-01
Chemical entities are ubiquitous through the biomedical literature and the development of text-mining systems that can efficiently identify those entities are required. Due to the lack of available corpora and data resources, the community has focused its efforts in the development of gene and protein named entity recognition systems, but with the release of ChEBI and the availability of an annotated corpus, this task can be addressed. We developed a machine-learning-based method for chemical entity recognition and a lexical-similarity-based method for chemical entity resolution and compared them with Whatizit, a popular-dictionary-based method. Our methods outperformed the dictionary-based method in all tasks, yielding an improvement in F-measure of 20% for the entity recognition task, 2–5% for the entity-resolution task, and 15% for combined entity recognition and resolution tasks. PMID:25937941
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan
2014-09-01
In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.
Facial expression recognition based on improved local ternary pattern and stacked auto-encoder
NASA Astrophysics Data System (ADS)
Wu, Yao; Qiu, Weigen
2017-08-01
In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.
Weighted Feature Gaussian Kernel SVM for Emotion Recognition
Jia, Qingxuan
2016-01-01
Emotion recognition with weighted feature based on facial expression is a challenging research topic and has attracted great attention in the past few years. This paper presents a novel method, utilizing subregion recognition rate to weight kernel function. First, we divide the facial expression image into some uniform subregions and calculate corresponding recognition rate and weight. Then, we get a weighted feature Gaussian kernel function and construct a classifier based on Support Vector Machine (SVM). At last, the experimental results suggest that the approach based on weighted feature Gaussian kernel function has good performance on the correct rate in emotion recognition. The experiments on the extended Cohn-Kanade (CK+) dataset show that our method has achieved encouraging recognition results compared to the state-of-the-art methods. PMID:27807443
NASA Astrophysics Data System (ADS)
Petpairote, Chayanut; Madarasmi, Suthep; Chamnongthai, Kosin
2018-01-01
The practical identification of individuals using facial recognition techniques requires the matching of faces with specific expressions to faces from a neutral face database. A method for facial recognition under varied expressions against neutral face samples of individuals via recognition of expression warping and the use of a virtual expression-face database is proposed. In this method, facial expressions are recognized and the input expression faces are classified into facial expression groups. To aid facial recognition, the virtual expression-face database is sorted into average facial-expression shapes and by coarse- and fine-featured facial textures. Wrinkle information is also employed in classification by using a process of masking to adjust input faces to match the expression-face database. We evaluate the performance of the proposed method using the CMU multi-PIE, Cohn-Kanade, and AR expression-face databases, and we find that it provides significantly improved results in terms of face recognition accuracy compared to conventional methods and is acceptable for facial recognition under expression variation.
Sunspot drawings handwritten character recognition method based on deep learning
NASA Astrophysics Data System (ADS)
Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li
2016-05-01
High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.
Motion Imagery Processing and Exploitation (MIPE)
2013-01-01
facial recognition —i.e., the identification of a specific person.37 Object detection is often (but not always) considered a prerequisite for instance...The goal of segmentation is to distinguish objects and identify boundaries in images. Some of the earliest approaches to facial recognition involved...methods of instance recognition are at varying levels of maturity. Facial recognition methods are arguably the most mature; the technology is well
Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung
2017-01-01
The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body. PMID:28300783
Towards discrete wavelet transform-based human activity recognition
NASA Astrophysics Data System (ADS)
Khare, Manish; Jeon, Moongu
2017-06-01
Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.
Dynamic facial expression recognition based on geometric and texture features
NASA Astrophysics Data System (ADS)
Li, Ming; Wang, Zengfu
2018-04-01
Recently, dynamic facial expression recognition in videos has attracted growing attention. In this paper, we propose a novel dynamic facial expression recognition method by using geometric and texture features. In our system, the facial landmark movements and texture variations upon pairwise images are used to perform the dynamic facial expression recognition tasks. For one facial expression sequence, pairwise images are created between the first frame and each of its subsequent frames. Integration of both geometric and texture features further enhances the representation of the facial expressions. Finally, Support Vector Machine is used for facial expression recognition. Experiments conducted on the extended Cohn-Kanade database show that our proposed method can achieve a competitive performance with other methods.
Face recognition system and method using face pattern words and face pattern bytes
Zheng, Yufeng
2014-12-23
The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.
Iris recognition based on robust principal component analysis
NASA Astrophysics Data System (ADS)
Karn, Pradeep; He, Xiao Hai; Yang, Shuai; Wu, Xiao Hong
2014-11-01
Iris images acquired under different conditions often suffer from blur, occlusion due to eyelids and eyelashes, specular reflection, and other artifacts. Existing iris recognition systems do not perform well on these types of images. To overcome these problems, we propose an iris recognition method based on robust principal component analysis. The proposed method decomposes all training images into a low-rank matrix and a sparse error matrix, where the low-rank matrix is used for feature extraction. The sparsity concentration index approach is then applied to validate the recognition result. Experimental results using CASIA V4 and IIT Delhi V1iris image databases showed that the proposed method achieved competitive performances in both recognition accuracy and computational efficiency.
Exploring 3D Human Action Recognition: from Offline to Online.
Liu, Zhenyu; Li, Rui; Tan, Jianrong
2018-02-20
With the introduction of cost-effective depth sensors, a tremendous amount of research has been devoted to studying human action recognition using 3D motion data. However, most existing methods work in an offline fashion, i.e., they operate on a segmented sequence. There are a few methods specifically designed for online action recognition, which continually predicts action labels as a stream sequence proceeds. In view of this fact, we propose a question: can we draw inspirations and borrow techniques or descriptors from existing offline methods, and then apply these to online action recognition? Note that extending offline techniques or descriptors to online applications is not straightforward, since at least two problems-including real-time performance and sequence segmentation-are usually not considered in offline action recognition. In this paper, we give a positive answer to the question. To develop applicable online action recognition methods, we carefully explore feature extraction, sequence segmentation, computational costs, and classifier selection. The effectiveness of the developed methods is validated on the MSR 3D Online Action dataset and the MSR Daily Activity 3D dataset.
Exploring 3D Human Action Recognition: from Offline to Online
Li, Rui; Liu, Zhenyu; Tan, Jianrong
2018-01-01
With the introduction of cost-effective depth sensors, a tremendous amount of research has been devoted to studying human action recognition using 3D motion data. However, most existing methods work in an offline fashion, i.e., they operate on a segmented sequence. There are a few methods specifically designed for online action recognition, which continually predicts action labels as a stream sequence proceeds. In view of this fact, we propose a question: can we draw inspirations and borrow techniques or descriptors from existing offline methods, and then apply these to online action recognition? Note that extending offline techniques or descriptors to online applications is not straightforward, since at least two problems—including real-time performance and sequence segmentation—are usually not considered in offline action recognition. In this paper, we give a positive answer to the question. To develop applicable online action recognition methods, we carefully explore feature extraction, sequence segmentation, computational costs, and classifier selection. The effectiveness of the developed methods is validated on the MSR 3D Online Action dataset and the MSR Daily Activity 3D dataset. PMID:29461502
View-invariant gait recognition method by three-dimensional convolutional neural network
NASA Astrophysics Data System (ADS)
Xing, Weiwei; Li, Ying; Zhang, Shunli
2018-01-01
Gait as an important biometric feature can identify a human at a long distance. View change is one of the most challenging factors for gait recognition. To address the cross view issues in gait recognition, we propose a view-invariant gait recognition method by three-dimensional (3-D) convolutional neural network. First, 3-D convolutional neural network (3DCNN) is introduced to learn view-invariant feature, which can capture the spatial information and temporal information simultaneously on normalized silhouette sequences. Second, a network training method based on cross-domain transfer learning is proposed to solve the problem of the limited gait training samples. We choose the C3D as the basic model, which is pretrained on the Sports-1M and then fine-tune C3D model to adapt gait recognition. In the recognition stage, we use the fine-tuned model to extract gait features and use Euclidean distance to measure the similarity of gait sequences. Sufficient experiments are carried out on the CASIA-B dataset and the experimental results demonstrate that our method outperforms many other methods.
Fine-grained recognition of plants from images.
Šulc, Milan; Matas, Jiří
2017-01-01
Fine-grained recognition of plants from images is a challenging computer vision task, due to the diverse appearance and complex structure of plants, high intra-class variability and small inter-class differences. We review the state-of-the-art and discuss plant recognition tasks, from identification of plants from specific plant organs to general plant recognition "in the wild". We propose texture analysis and deep learning methods for different plant recognition tasks. The methods are evaluated and compared them to the state-of-the-art. Texture analysis is only applied to images with unambiguous segmentation (bark and leaf recognition), whereas CNNs are only applied when sufficiently large datasets are available. The results provide an insight in the complexity of different plant recognition tasks. The proposed methods outperform the state-of-the-art in leaf and bark classification and achieve very competitive results in plant recognition "in the wild". The results suggest that recognition of segmented leaves is practically a solved problem, when high volumes of training data are available. The generality and higher capacity of state-of-the-art CNNs makes them suitable for plant recognition "in the wild" where the views on plant organs or plants vary significantly and the difficulty is increased by occlusions and background clutter.
Varying face occlusion detection and iterative recovery for face recognition
NASA Astrophysics Data System (ADS)
Wang, Meng; Hu, Zhengping; Sun, Zhe; Zhao, Shuhuan; Sun, Mei
2017-05-01
In most sparse representation methods for face recognition (FR), occlusion problems were usually solved via removing the occlusion part of both query samples and training samples to perform the recognition process. This practice ignores the global feature of facial image and may lead to unsatisfactory results due to the limitation of local features. Considering the aforementioned drawback, we propose a method called varying occlusion detection and iterative recovery for FR. The main contributions of our method are as follows: (1) to detect an accurate occlusion area of facial images, an image processing and intersection-based clustering combination method is used for occlusion FR; (2) according to an accurate occlusion map, the new integrated facial images are recovered iteratively and put into a recognition process; and (3) the effectiveness on recognition accuracy of our method is verified by comparing it with three typical occlusion map detection methods. Experiments show that the proposed method has a highly accurate detection and recovery performance and that it outperforms several similar state-of-the-art methods against partial contiguous occlusion.
Utterance independent bimodal emotion recognition in spontaneous communication
NASA Astrophysics Data System (ADS)
Tao, Jianhua; Pan, Shifeng; Yang, Minghao; Li, Ya; Mu, Kaihui; Che, Jianfeng
2011-12-01
Emotion expressions sometimes are mixed with the utterance expression in spontaneous face-to-face communication, which makes difficulties for emotion recognition. This article introduces the methods of reducing the utterance influences in visual parameters for the audio-visual-based emotion recognition. The audio and visual channels are first combined under a Multistream Hidden Markov Model (MHMM). Then, the utterance reduction is finished by finding the residual between the real visual parameters and the outputs of the utterance related visual parameters. This article introduces the Fused Hidden Markov Model Inversion method which is trained in the neutral expressed audio-visual corpus to solve the problem. To reduce the computing complexity the inversion model is further simplified to a Gaussian Mixture Model (GMM) mapping. Compared with traditional bimodal emotion recognition methods (e.g., SVM, CART, Boosting), the utterance reduction method can give better results of emotion recognition. The experiments also show the effectiveness of our emotion recognition system when it was used in a live environment.
NASA Astrophysics Data System (ADS)
Dyomin, V. V.; Polovtsev, I. G.; Davydova, A. Yu.
2018-03-01
The physical principles of a method for determination of geometrical characteristics of particles and particle recognition based on the concepts of digital holography, followed by processing of the particle images reconstructed from the digital hologram, using the morphological parameter are reported. An example of application of this method for fast plankton particle recognition is given.
Research and Implementation of Tibetan Word Segmentation Based on Syllable Methods
NASA Astrophysics Data System (ADS)
Jiang, Jing; Li, Yachao; Jiang, Tao; Yu, Hongzhi
2018-03-01
Tibetan word segmentation (TWS) is an important problem in Tibetan information processing, while abbreviated word recognition is one of the key and most difficult problems in TWS. Most of the existing methods of Tibetan abbreviated word recognition are rule-based approaches, which need vocabulary support. In this paper, we propose a method based on sequence tagging model for abbreviated word recognition, and then implement in TWS systems with sequence labeling models. The experimental results show that our abbreviated word recognition method is fast and effective and can be combined easily with the segmentation model. This significantly increases the effect of the Tibetan word segmentation.
Robust keyword retrieval method for OCRed text
NASA Astrophysics Data System (ADS)
Fujii, Yusaku; Takebe, Hiroaki; Tanaka, Hiroshi; Hotta, Yoshinobu
2011-01-01
Document management systems have become important because of the growing popularity of electronic filing of documents and scanning of books, magazines, manuals, etc., through a scanner or a digital camera, for storage or reading on a PC or an electronic book. Text information acquired by optical character recognition (OCR) is usually added to the electronic documents for document retrieval. Since texts generated by OCR generally include character recognition errors, robust retrieval methods have been introduced to overcome this problem. In this paper, we propose a retrieval method that is robust against both character segmentation and recognition errors. In the proposed method, the insertion of noise characters and dropping of characters in the keyword retrieval enables robustness against character segmentation errors, and character substitution in the keyword of the recognition candidate for each character in OCR or any other character enables robustness against character recognition errors. The recall rate of the proposed method was 15% higher than that of the conventional method. However, the precision rate was 64% lower.
Facial expression recognition based on improved deep belief networks
NASA Astrophysics Data System (ADS)
Wu, Yao; Qiu, Weigen
2017-08-01
In order to improve the robustness of facial expression recognition, a method of face expression recognition based on Local Binary Pattern (LBP) combined with improved deep belief networks (DBNs) is proposed. This method uses LBP to extract the feature, and then uses the improved deep belief networks as the detector and classifier to extract the LBP feature. The combination of LBP and improved deep belief networks is realized in facial expression recognition. In the JAFFE (Japanese Female Facial Expression) database on the recognition rate has improved significantly.
Object Recognition using Feature- and Color-Based Methods
NASA Technical Reports Server (NTRS)
Duong, Tuan; Duong, Vu; Stubberud, Allen
2008-01-01
An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.
Good initialization model with constrained body structure for scene text recognition
NASA Astrophysics Data System (ADS)
Zhu, Anna; Wang, Guoyou; Dong, Yangbo
2016-09-01
Scene text recognition has gained significant attention in the computer vision community. Character detection and recognition are the promise of text recognition and affect the overall performance to a large extent. We proposed a good initialization model for scene character recognition from cropped text regions. We use constrained character's body structures with deformable part-based models to detect and recognize characters in various backgrounds. The character's body structures are achieved by an unsupervised discriminative clustering approach followed by a statistical model and a self-build minimum spanning tree model. Our method utilizes part appearance and location information, and combines character detection and recognition in cropped text region together. The evaluation results on the benchmark datasets demonstrate that our proposed scheme outperforms the state-of-the-art methods both on scene character recognition and word recognition aspects.
Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition
2017-01-01
Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user’s location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively. PMID:28817094
Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition.
Choi, Hyo-Rim; Kim, TaeYong
2017-08-17
Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user's location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively.
A multi-view face recognition system based on cascade face detector and improved Dlib
NASA Astrophysics Data System (ADS)
Zhou, Hongjun; Chen, Pei; Shen, Wei
2018-03-01
In this research, we present a framework for multi-view face detect and recognition system based on cascade face detector and improved Dlib. This method is aimed to solve the problems of low efficiency and low accuracy in multi-view face recognition, to build a multi-view face recognition system, and to discover a suitable monitoring scheme. For face detection, the cascade face detector is used to extracted the Haar-like feature from the training samples, and Haar-like feature is used to train a cascade classifier by combining Adaboost algorithm. Next, for face recognition, we proposed an improved distance model based on Dlib to improve the accuracy of multiview face recognition. Furthermore, we applied this proposed method into recognizing face images taken from different viewing directions, including horizontal view, overlooks view, and looking-up view, and researched a suitable monitoring scheme. This method works well for multi-view face recognition, and it is also simulated and tested, showing satisfactory experimental results.
Real-time traffic sign recognition based on a general purpose GPU and deep-learning.
Lim, Kwangyong; Hong, Yongwon; Choi, Yeongwoo; Byun, Hyeran
2017-01-01
We present a General Purpose Graphics Processing Unit (GPGPU) based real-time traffic sign detection and recognition method that is robust against illumination changes. There have been many approaches to traffic sign recognition in various research fields; however, previous approaches faced several limitations when under low illumination or wide variance of light conditions. To overcome these drawbacks and improve processing speeds, we propose a method that 1) is robust against illumination changes, 2) uses GPGPU-based real-time traffic sign detection, and 3) performs region detecting and recognition using a hierarchical model. This method produces stable results in low illumination environments. Both detection and hierarchical recognition are performed in real-time, and the proposed method achieves 0.97 F1-score on our collective dataset, which uses the Vienna convention traffic rules (Germany and South Korea).
Visual cluster analysis and pattern recognition methods
Osbourn, Gordon Cecil; Martinez, Rubel Francisco
2001-01-01
A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.
Effectiveness of feature and classifier algorithms in character recognition systems
NASA Astrophysics Data System (ADS)
Wilson, Charles L.
1993-04-01
At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.
Method of synthesized phase objects for pattern recognition with rotation invariance
NASA Astrophysics Data System (ADS)
Ostroukh, Alexander P.; Butok, Alexander M.; Shvets, Rostislav A.; Yezhov, Pavel V.; Kim, Jin-Tae; Kuzmenko, Alexander V.
2015-11-01
We present a development of the method of synthesized phase objects (SPO-method) [1] for the rotation-invariant pattern recognition. For the standard method of recognition and the SPO-method, the comparison of the parameters of correlation signals for a number of amplitude objects is executed at the realization of a rotation in an optical-digital correlator with the joint Fourier transformation. It is shown that not only the invariance relative to a rotation at a realization of the joint correlation for synthesized phase objects (SP-objects) but also the main advantage of the method of SP-objects over the reference one such as the unified δ-like recognition signal with the largest possible signal-to-noise ratio independent of the type of an object are attained.
Background feature descriptor for offline handwritten numeral recognition
NASA Astrophysics Data System (ADS)
Ming, Delie; Wang, Hao; Tian, Tian; Jie, Feiran; Lei, Bo
2011-11-01
This paper puts forward an offline handwritten numeral recognition method based on background structural descriptor (sixteen-value numerical background expression). Through encoding the background pixels in the image according to a certain rule, 16 different eigenvalues were generated, which reflected the background condition of every digit, then reflected the structural features of the digits. Through pattern language description of images by these features, automatic segmentation of overlapping digits and numeral recognition can be realized. This method is characterized by great deformation resistant ability, high recognition speed and easy realization. Finally, the experimental results and conclusions are presented. The experimental results of recognizing datasets from various practical application fields reflect that with this method, a good recognition effect can be achieved.
Sub-pattern based multi-manifold discriminant analysis for face recognition
NASA Astrophysics Data System (ADS)
Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen
2018-04-01
In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.
Offline Arabic handwriting recognition: a survey.
Lorigo, Liana M; Govindaraju, Venu
2006-05-01
The automatic recognition of text on scanned images has enabled many applications such as searching for words in large volumes of documents, automatic sorting of postal mail, and convenient editing of previously printed documents. The domain of handwriting in the Arabic script presents unique technical challenges and has been addressed more recently than other domains. Many different methods have been proposed and applied to various types of images. This paper provides a comprehensive review of these methods. It is the first survey to focus on Arabic handwriting recognition and the first Arabic character recognition survey to provide recognition rates and descriptions of test data for the approaches discussed. It includes background on the field, discussion of the methods, and future research directions.
Face Recognition Using Local Quantized Patterns and Gabor Filters
NASA Astrophysics Data System (ADS)
Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.
2015-05-01
The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.
A Modified Sparse Representation Method for Facial Expression Recognition.
Wang, Wei; Xu, LiHong
2016-01-01
In this paper, we carry on research on a facial expression recognition method, which is based on modified sparse representation recognition (MSRR) method. On the first stage, we use Haar-like+LPP to extract feature and reduce dimension. On the second stage, we adopt LC-K-SVD (Label Consistent K-SVD) method to train the dictionary, instead of adopting directly the dictionary from samples, and add block dictionary training into the training process. On the third stage, stOMP (stagewise orthogonal matching pursuit) method is used to speed up the convergence of OMP (orthogonal matching pursuit). Besides, a dynamic regularization factor is added to iteration process to suppress noises and enhance accuracy. We verify the proposed method from the aspect of training samples, dimension, feature extraction and dimension reduction methods and noises in self-built database and Japan's JAFFE and CMU's CK database. Further, we compare this sparse method with classic SVM and RVM and analyze the recognition effect and time efficiency. The result of simulation experiment has shown that the coefficient of MSRR method contains classifying information, which is capable of improving the computing speed and achieving a satisfying recognition result.
A Modified Sparse Representation Method for Facial Expression Recognition
Wang, Wei; Xu, LiHong
2016-01-01
In this paper, we carry on research on a facial expression recognition method, which is based on modified sparse representation recognition (MSRR) method. On the first stage, we use Haar-like+LPP to extract feature and reduce dimension. On the second stage, we adopt LC-K-SVD (Label Consistent K-SVD) method to train the dictionary, instead of adopting directly the dictionary from samples, and add block dictionary training into the training process. On the third stage, stOMP (stagewise orthogonal matching pursuit) method is used to speed up the convergence of OMP (orthogonal matching pursuit). Besides, a dynamic regularization factor is added to iteration process to suppress noises and enhance accuracy. We verify the proposed method from the aspect of training samples, dimension, feature extraction and dimension reduction methods and noises in self-built database and Japan's JAFFE and CMU's CK database. Further, we compare this sparse method with classic SVM and RVM and analyze the recognition effect and time efficiency. The result of simulation experiment has shown that the coefficient of MSRR method contains classifying information, which is capable of improving the computing speed and achieving a satisfying recognition result. PMID:26880878
Visual cluster analysis and pattern recognition template and methods
Osbourn, Gordon Cecil; Martinez, Rubel Francisco
1999-01-01
A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.
Speech emotion recognition methods: A literature review
NASA Astrophysics Data System (ADS)
Basharirad, Babak; Moradhaseli, Mohammadreza
2017-10-01
Recently, attention of the emotional speech signals research has been boosted in human machine interfaces due to availability of high computation capability. There are many systems proposed in the literature to identify the emotional state through speech. Selection of suitable feature sets, design of a proper classifications methods and prepare an appropriate dataset are the main key issues of speech emotion recognition systems. This paper critically analyzed the current available approaches of speech emotion recognition methods based on the three evaluating parameters (feature set, classification of features, accurately usage). In addition, this paper also evaluates the performance and limitations of available methods. Furthermore, it highlights the current promising direction for improvement of speech emotion recognition systems.
A study of speech emotion recognition based on hybrid algorithm
NASA Astrophysics Data System (ADS)
Zhu, Ju-xia; Zhang, Chao; Lv, Zhao; Rao, Yao-quan; Wu, Xiao-pei
2011-10-01
To effectively improve the recognition accuracy of the speech emotion recognition system, a hybrid algorithm which combines Continuous Hidden Markov Model (CHMM), All-Class-in-One Neural Network (ACON) and Support Vector Machine (SVM) is proposed. In SVM and ACON methods, some global statistics are used as emotional features, while in CHMM method, instantaneous features are employed. The recognition rate by the proposed method is 92.25%, with the rejection rate to be 0.78%. Furthermore, it obtains the relative increasing of 8.53%, 4.69% and 0.78% compared with ACON, CHMM and SVM methods respectively. The experiment result confirms the efficiency of distinguishing anger, happiness, neutral and sadness emotional states.
Real-time traffic sign recognition based on a general purpose GPU and deep-learning
Hong, Yongwon; Choi, Yeongwoo; Byun, Hyeran
2017-01-01
We present a General Purpose Graphics Processing Unit (GPGPU) based real-time traffic sign detection and recognition method that is robust against illumination changes. There have been many approaches to traffic sign recognition in various research fields; however, previous approaches faced several limitations when under low illumination or wide variance of light conditions. To overcome these drawbacks and improve processing speeds, we propose a method that 1) is robust against illumination changes, 2) uses GPGPU-based real-time traffic sign detection, and 3) performs region detecting and recognition using a hierarchical model. This method produces stable results in low illumination environments. Both detection and hierarchical recognition are performed in real-time, and the proposed method achieves 0.97 F1-score on our collective dataset, which uses the Vienna convention traffic rules (Germany and South Korea). PMID:28264011
Finger vein recognition based on finger crease location
NASA Astrophysics Data System (ADS)
Lu, Zhiying; Ding, Shumeng; Yin, Jing
2016-07-01
Finger vein recognition technology has significant advantages over other methods in terms of accuracy, uniqueness, and stability, and it has wide promising applications in the field of biometric recognition. We propose using finger creases to locate and extract an object region. Then we use linear fitting to overcome the problem of finger rotation in the plane. The method of modular adaptive histogram equalization (MAHE) is presented to enhance image contrast and reduce computational cost. To extract the finger vein features, we use a fusion method, which can obtain clear and distinguishable vein patterns under different conditions. We used the Hausdorff average distance algorithm to examine the recognition performance of the system. The experimental results demonstrate that MAHE can better balance the recognition accuracy and the expenditure of time compared with three other methods. Our resulting equal error rate throughout the total procedure was 3.268% in a database of 153 finger vein images.
NASA Astrophysics Data System (ADS)
Nikitaev, V. G.
2017-01-01
The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.
Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor
Nguyen, Dat Tien; Baek, Na Rae; Pham, Tuyen Danh; Park, Kang Ryoung
2018-01-01
Among biometric recognition systems such as fingerprint, finger-vein, or face, the iris recognition system has proven to be effective for achieving a high recognition accuracy and security level. However, several recent studies have indicated that an iris recognition system can be fooled by using presentation attack images that are recaptured using high-quality printed images or by contact lenses with printed iris patterns. As a result, this potential threat can reduce the security level of an iris recognition system. In this study, we propose a new presentation attack detection (PAD) method for an iris recognition system (iPAD) using a near infrared light (NIR) camera image. To detect presentation attack images, we first localized the iris region of the input iris image using circular edge detection (CED). Based on the result of iris localization, we extracted the image features using deep learning-based and handcrafted-based methods. The input iris images were then classified into real and presentation attack categories using support vector machines (SVM). Through extensive experiments with two public datasets, we show that our proposed method effectively solves the iris recognition presentation attack detection problem and produces detection accuracy superior to previous studies. PMID:29695113
Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor.
Nguyen, Dat Tien; Baek, Na Rae; Pham, Tuyen Danh; Park, Kang Ryoung
2018-04-24
Among biometric recognition systems such as fingerprint, finger-vein, or face, the iris recognition system has proven to be effective for achieving a high recognition accuracy and security level. However, several recent studies have indicated that an iris recognition system can be fooled by using presentation attack images that are recaptured using high-quality printed images or by contact lenses with printed iris patterns. As a result, this potential threat can reduce the security level of an iris recognition system. In this study, we propose a new presentation attack detection (PAD) method for an iris recognition system (iPAD) using a near infrared light (NIR) camera image. To detect presentation attack images, we first localized the iris region of the input iris image using circular edge detection (CED). Based on the result of iris localization, we extracted the image features using deep learning-based and handcrafted-based methods. The input iris images were then classified into real and presentation attack categories using support vector machines (SVM). Through extensive experiments with two public datasets, we show that our proposed method effectively solves the iris recognition presentation attack detection problem and produces detection accuracy superior to previous studies.
Nguyen, Dat Tien; Park, Kang Ryoung
2016-07-21
With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.
Nguyen, Dat Tien; Park, Kang Ryoung
2016-01-01
With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images. PMID:27455264
Swartz, R. Andrew
2013-01-01
This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136
Processing Electromyographic Signals to Recognize Words
NASA Technical Reports Server (NTRS)
Jorgensen, C. C.; Lee, D. D.
2009-01-01
A recently invented speech-recognition method applies to words that are articulated by means of the tongue and throat muscles but are otherwise not voiced or, at most, are spoken sotto voce. This method could satisfy a need for speech recognition under circumstances in which normal audible speech is difficult, poses a hazard, is disturbing to listeners, or compromises privacy. The method could also be used to augment traditional speech recognition by providing an additional source of information about articulator activity. The method can be characterized as intermediate between (1) conventional speech recognition through processing of voice sounds and (2) a method, not yet developed, of processing electroencephalographic signals to extract unspoken words directly from thoughts. This method involves computational processing of digitized electromyographic (EMG) signals from muscle innervation acquired by surface electrodes under a subject's chin near the tongue and on the side of the subject s throat near the larynx. After preprocessing, digitization, and feature extraction, EMG signals are processed by a neural-network pattern classifier, implemented in software, that performs the bulk of the recognition task as described.
Visual cluster analysis and pattern recognition template and methods
Osbourn, G.C.; Martinez, R.F.
1999-05-04
A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.
Object recognition of ladar with support vector machine
NASA Astrophysics Data System (ADS)
Sun, Jian-Feng; Li, Qi; Wang, Qi
2005-01-01
Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.
Secondary iris recognition method based on local energy-orientation feature
NASA Astrophysics Data System (ADS)
Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing
2015-01-01
This paper proposes a secondary iris recognition based on local features. The application of the energy-orientation feature (EOF) by two-dimensional Gabor filter to the extraction of the iris goes before the first recognition by the threshold of similarity, which sets the whole iris database into two categories-a correctly recognized class and a class to be recognized. Therefore, the former are accepted and the latter are transformed by histogram to achieve an energy-orientation histogram feature (EOHF), which is followed by a second recognition with the chi-square distance. The experiment has proved that the proposed method, because of its higher correct recognition rate, could be designated as the most efficient and effective among its companion studies in iris recognition algorithms.
Multimodal biometric method that combines veins, prints, and shape of a finger
NASA Astrophysics Data System (ADS)
Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Kim, Jeong Nyeo
2011-01-01
Multimodal biometrics provides high recognition accuracy and population coverage by using various biometric features. A single finger contains finger veins, fingerprints, and finger geometry features; by using multimodal biometrics, information on these multiple features can be simultaneously obtained in a short time and their fusion can outperform the use of a single feature. This paper proposes a new finger recognition method based on the score-level fusion of finger veins, fingerprints, and finger geometry features. This research is novel in the following four ways. First, the performances of the finger-vein and fingerprint recognition are improved by using a method based on a local derivative pattern. Second, the accuracy of the finger geometry recognition is greatly increased by combining a Fourier descriptor with principal component analysis. Third, a fuzzy score normalization method is introduced; its performance is better than the conventional Z-score normalization method. Fourth, finger-vein, fingerprint, and finger geometry recognitions are combined by using three support vector machines and a weighted SUM rule. Experimental results showed that the equal error rate of the proposed method was 0.254%, which was lower than those of the other methods.
Waveguide-type optical circuits for recognition of optical 8QAM-coded label
NASA Astrophysics Data System (ADS)
Surenkhorol, Tumendemberel; Kishikawa, Hiroki; Goto, Nobuo; Gonchigsumlaa, Khishigjargal
2017-10-01
Optical signal processing is expected to be applied in network nodes. In photonic routers, label recognition is one of the important functions. We have studied different kinds of label recognition methods so far for on-off keying, binary phase-shift keying, quadrature phase-shift keying, and 16 quadrature amplitude modulation-coded labels. We propose a method based on waveguide circuits to recognize an optical eight quadrature amplitude modulation (8QAM)-coded label by simple passive optical signal processing. The recognition of the proposed method is theoretically analyzed and numerically simulated by the finite difference beam propagation method. The noise tolerance is discussed, and bit-error rate against optical signal-to-noise ratio is evaluated. The scalability of the proposed method is also discussed theoretically for two-symbol length 8QAM-coded labels.
Enhanced iris recognition method based on multi-unit iris images
NASA Astrophysics Data System (ADS)
Shin, Kwang Yong; Kim, Yeong Gon; Park, Kang Ryoung
2013-04-01
For the purpose of biometric person identification, iris recognition uses the unique characteristics of the patterns of the iris; that is, the eye region between the pupil and the sclera. When obtaining an iris image, the iris's image is frequently rotated because of the user's head roll toward the left or right shoulder. As the rotation of the iris image leads to circular shifting of the iris features, the accuracy of iris recognition is degraded. To solve this problem, conventional iris recognition methods use shifting of the iris feature codes to perform the matching. However, this increases the computational complexity and level of false acceptance error. To solve these problems, we propose a novel iris recognition method based on multi-unit iris images. Our method is novel in the following five ways compared with previous methods. First, to detect both eyes, we use Adaboost and a rapid eye detector (RED) based on the iris shape feature and integral imaging. Both eyes are detected using RED in the approximate candidate region that consists of the binocular region, which is determined by the Adaboost detector. Second, we classify the detected eyes into the left and right eyes, because the iris patterns in the left and right eyes in the same person are different, and they are therefore considered as different classes. We can improve the accuracy of iris recognition using this pre-classification of the left and right eyes. Third, by measuring the angle of head roll using the two center positions of the left and right pupils, detected by two circular edge detectors, we obtain the information of the iris rotation angle. Fourth, in order to reduce the error and processing time of iris recognition, adaptive bit-shifting based on the measured iris rotation angle is used in feature matching. Fifth, the recognition accuracy is enhanced by the score fusion of the left and right irises. Experimental results on the iris open database of low-resolution images showed that the averaged equal error rate of iris recognition using the proposed method was 4.3006%, which is lower than that of other methods.
Handwritten digits recognition using HMM and PSO based on storks
NASA Astrophysics Data System (ADS)
Yan, Liao; Jia, Zhenhong; Yang, Jie; Pang, Shaoning
2010-07-01
A new method for handwritten digits recognition based on hidden markov model (HMM) and particle swarm optimization (PSO) is proposed. This method defined 24 strokes with the sense of directional, to make up for the shortage that is sensitive in choice of stating point in traditional methods, but also reduce the ambiguity caused by shakes. Make use of excellent global convergence of PSO; improving the probability of finding the optimum and avoiding local infinitesimal obviously. Experimental results demonstrate that compared with the traditional methods, the proposed method can make most of the recognition rate of handwritten digits improved.
Online graphic symbol recognition using neural network and ARG matching
NASA Astrophysics Data System (ADS)
Yang, Bing; Li, Changhua; Xie, Weixing
2001-09-01
This paper proposes a novel method for on-line recognition of line-based graphic symbol. The input strokes are usually warped into a cursive form due to the sundry drawing style, and classifying them is very difficult. To deal with this, an ART-2 neural network is used to classify the input strokes. It has the advantages of high recognition rate, less recognition time and forming classes in a self-organized manner. The symbol recognition is achieved by an Attribute Relational Graph (ARG) matching algorithm. The ARG is very efficient for representing complex objects, but computation cost is very high. To over come this, we suggest a fast graph matching algorithm using symbol structure information. The experimental results show that the proposed method is effective for recognition of symbols with hierarchical structure.
Finger vein verification system based on sparse representation.
Xin, Yang; Liu, Zhi; Zhang, Haixia; Zhang, Hong
2012-09-01
Finger vein verification is a promising biometric pattern for personal identification in terms of security and convenience. The recognition performance of this technology heavily relies on the quality of finger vein images and on the recognition algorithm. To achieve efficient recognition performance, a special finger vein imaging device is developed, and a finger vein recognition method based on sparse representation is proposed. The motivation for the proposed method is that finger vein images exhibit a sparse property. In the proposed system, the regions of interest (ROIs) in the finger vein images are segmented and enhanced. Sparse representation and sparsity preserving projection on ROIs are performed to obtain the features. Finally, the features are measured for recognition. An equal error rate of 0.017% was achieved based on the finger vein image database, which contains images that were captured by using the near-IR imaging device that was developed in this study. The experimental results demonstrate that the proposed method is faster and more robust than previous methods.
Critical object recognition in millimeter-wave images with robustness to rotation and scale.
Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi
2017-06-01
Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.
Transfer Learning with Convolutional Neural Networks for SAR Ship Recognition
NASA Astrophysics Data System (ADS)
Zhang, Di; Liu, Jia; Heng, Wang; Ren, Kaijun; Song, Junqiang
2018-03-01
Ship recognition is the backbone of marine surveillance systems. Recent deep learning methods, e.g. Convolutional Neural Networks (CNNs), have shown high performance for optical images. Learning CNNs, however, requires a number of annotated samples to estimate numerous model parameters, which prevents its application to Synthetic Aperture Radar (SAR) images due to the limited annotated training samples. Transfer learning has been a promising technique for applications with limited data. To this end, a novel SAR ship recognition method based on CNNs with transfer learning has been developed. In this work, we firstly start with a CNNs model that has been trained in advance on Moving and Stationary Target Acquisition and Recognition (MSTAR) database. Next, based on the knowledge gained from this image recognition task, we fine-tune the CNNs on a new task to recognize three types of ships in the OpenSARShip database. The experimental results show that our proposed approach can obviously increase the recognition rate comparing with the result of merely applying CNNs. In addition, compared to existing methods, the proposed method proves to be very competitive and can learn discriminative features directly from training data instead of requiring pre-specification or pre-selection manually.
Infrared face recognition based on LBP histogram and KW feature selection
NASA Astrophysics Data System (ADS)
Xie, Zhihua
2014-07-01
The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).
Zhang, Zelun; Poslad, Stefan
2013-11-01
Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals.
Bilevel Model-Based Discriminative Dictionary Learning for Recognition.
Zhou, Pan; Zhang, Chao; Lin, Zhouchen
2017-03-01
Most supervised dictionary learning methods optimize the combinations of reconstruction error, sparsity prior, and discriminative terms. Thus, the learnt dictionaries may not be optimal for recognition tasks. Also, the sparse codes learning models in the training and the testing phases are inconsistent. Besides, without utilizing the intrinsic data structure, many dictionary learning methods only employ the l 0 or l 1 norm to encode each datum independently, limiting the performance of the learnt dictionaries. We present a novel bilevel model-based discriminative dictionary learning method for recognition tasks. The upper level directly minimizes the classification error, while the lower level uses the sparsity term and the Laplacian term to characterize the intrinsic data structure. The lower level is subordinate to the upper level. Therefore, our model achieves an overall optimality for recognition in that the learnt dictionary is directly tailored for recognition. Moreover, the sparse codes learning models in the training and the testing phases can be the same. We further propose a novel method to solve our bilevel optimization problem. It first replaces the lower level with its Karush-Kuhn-Tucker conditions and then applies the alternating direction method of multipliers to solve the equivalent problem. Extensive experiments demonstrate the effectiveness and robustness of our method.
Chinese Herbal Medicine Image Recognition and Retrieval by Convolutional Neural Network
Sun, Xin; Qian, Huinan
2016-01-01
Chinese herbal medicine image recognition and retrieval have great potential of practical applications. Several previous studies have focused on the recognition with hand-crafted image features, but there are two limitations in them. Firstly, most of these hand-crafted features are low-level image representation, which is easily affected by noise and background. Secondly, the medicine images are very clean without any backgrounds, which makes it difficult to use in practical applications. Therefore, designing high-level image representation for recognition and retrieval in real world medicine images is facing a great challenge. Inspired by the recent progress of deep learning in computer vision, we realize that deep learning methods may provide robust medicine image representation. In this paper, we propose to use the Convolutional Neural Network (CNN) for Chinese herbal medicine image recognition and retrieval. For the recognition problem, we use the softmax loss to optimize the recognition network; then for the retrieval problem, we fine-tune the recognition network by adding a triplet loss to search for the most similar medicine images. To evaluate our method, we construct a public database of herbal medicine images with cluttered backgrounds, which has in total 5523 images with 95 popular Chinese medicine categories. Experimental results show that our method can achieve the average recognition precision of 71% and the average retrieval precision of 53% over all the 95 medicine categories, which are quite promising given the fact that the real world images have multiple pieces of occluded herbal and cluttered backgrounds. Besides, our proposed method achieves the state-of-the-art performance by improving previous studies with a large margin. PMID:27258404
Address entry while driving: speech recognition versus a touch-screen keyboard.
Tsimhoni, Omer; Smith, Daniel; Green, Paul
2004-01-01
A driving simulator experiment was conducted to determine the effects of entering addresses into a navigation system during driving. Participants drove on roads of varying visual demand while entering addresses. Three address entry methods were explored: word-based speech recognition, character-based speech recognition, and typing on a touch-screen keyboard. For each method, vehicle control and task measures, glance timing, and subjective ratings were examined. During driving, word-based speech recognition yielded the shortest total task time (15.3 s), followed by character-based speech recognition (41.0 s) and touch-screen keyboard (86.0 s). The standard deviation of lateral position when performing keyboard entry (0.21 m) was 60% higher than that for all other address entry methods (0.13 m). Degradation of vehicle control associated with address entry using a touch screen suggests that the use of speech recognition is favorable. Speech recognition systems with visual feedback, however, even with excellent accuracy, are not without performance consequences. Applications of this research include the design of in-vehicle navigation systems as well as other systems requiring significant driver input, such as E-mail, the Internet, and text messaging.
Super-resolution method for face recognition using nonlinear mappings on coherent features.
Huang, Hua; He, Huiting
2011-01-01
Low-resolution (LR) of face images significantly decreases the performance of face recognition. To address this problem, we present a super-resolution method that uses nonlinear mappings to infer coherent features that favor higher recognition of the nearest neighbor (NN) classifiers for recognition of single LR face image. Canonical correlation analysis is applied to establish the coherent subspaces between the principal component analysis (PCA) based features of high-resolution (HR) and LR face images. Then, a nonlinear mapping between HR/LR features can be built by radial basis functions (RBFs) with lower regression errors in the coherent feature space than in the PCA feature space. Thus, we can compute super-resolved coherent features corresponding to an input LR image according to the trained RBF model efficiently and accurately. And, face identity can be obtained by feeding these super-resolved features to a simple NN classifier. Extensive experiments on the Facial Recognition Technology, University of Manchester Institute of Science and Technology, and Olivetti Research Laboratory databases show that the proposed method outperforms the state-of-the-art face recognition algorithms for single LR image in terms of both recognition rate and robustness to facial variations of pose and expression.
Peer-to-Peer Recognition of Learning in Open Education
ERIC Educational Resources Information Center
Schmidt, Jan Philipp; Geith, Christine; Haklev, Stian; Thierstein, Joel
2009-01-01
Recognition in education is the acknowledgment of learning achievements. Accreditation is certification of such recognition by an institution, an organization, a government, a community, etc. There are a number of assessment methods by which learning can be evaluated (exam, practicum, etc.) for the purpose of recognition and accreditation, and…
Face recognition based on matching of local features on 3D dynamic range sequences
NASA Astrophysics Data System (ADS)
Echeagaray-Patrón, B. A.; Kober, Vitaly
2016-09-01
3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.
Face recognition using slow feature analysis and contourlet transform
NASA Astrophysics Data System (ADS)
Wang, Yuehao; Peng, Lingling; Zhe, Fuchuan
2018-04-01
In this paper we propose a novel face recognition approach based on slow feature analysis (SFA) in contourlet transform domain. This method firstly use contourlet transform to decompose the face image into low frequency and high frequency part, and then takes technological advantages of slow feature analysis for facial feature extraction. We named the new method combining the slow feature analysis and contourlet transform as CT-SFA. The experimental results on international standard face database demonstrate that the new face recognition method is effective and competitive.
An Interactive Image Segmentation Method in Hand Gesture Recognition
Chen, Disi; Li, Gongfa; Sun, Ying; Kong, Jianyi; Jiang, Guozhang; Tang, Heng; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-01-01
In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy. PMID:28134818
Finger Vein Recognition Based on Local Directional Code
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-01-01
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-01-01
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-03-20
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.
Finger vein recognition based on local directional code.
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-11-05
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.
Emotion recognition based on multiple order features using fractional Fourier transform
NASA Astrophysics Data System (ADS)
Ren, Bo; Liu, Deyin; Qi, Lin
2017-07-01
In order to deal with the insufficiency of recently algorithms based on Two Dimensions Fractional Fourier Transform (2D-FrFT), this paper proposes a multiple order features based method for emotion recognition. Most existing methods utilize the feature of single order or a couple of orders of 2D-FrFT. However, different orders of 2D-FrFT have different contributions on the feature extraction of emotion recognition. Combination of these features can enhance the performance of an emotion recognition system. The proposed approach obtains numerous features that extracted in different orders of 2D-FrFT in the directions of x-axis and y-axis, and uses the statistical magnitudes as the final feature vectors for recognition. The Support Vector Machine (SVM) is utilized for the classification and RML Emotion database and Cohn-Kanade (CK) database are used for the experiment. The experimental results demonstrate the effectiveness of the proposed method.
Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors
Hong, Hyung Gil; Lee, Min Beom; Park, Kang Ryoung
2017-01-01
Conventional finger-vein recognition systems perform recognition based on the finger-vein lines extracted from the input images or image enhancement, and texture feature extraction from the finger-vein images. In these cases, however, the inaccurate detection of finger-vein lines lowers the recognition accuracy. In the case of texture feature extraction, the developer must experimentally decide on a form of the optimal filter for extraction considering the characteristics of the image database. To address this problem, this research proposes a finger-vein recognition method that is robust to various database types and environmental changes based on the convolutional neural network (CNN). In the experiments using the two finger-vein databases constructed in this research and the SDUMLA-HMT finger-vein database, which is an open database, the method proposed in this research showed a better performance compared to the conventional methods. PMID:28587269
Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors.
Hong, Hyung Gil; Lee, Min Beom; Park, Kang Ryoung
2017-06-06
Conventional finger-vein recognition systems perform recognition based on the finger-vein lines extracted from the input images or image enhancement, and texture feature extraction from the finger-vein images. In these cases, however, the inaccurate detection of finger-vein lines lowers the recognition accuracy. In the case of texture feature extraction, the developer must experimentally decide on a form of the optimal filter for extraction considering the characteristics of the image database. To address this problem, this research proposes a finger-vein recognition method that is robust to various database types and environmental changes based on the convolutional neural network (CNN). In the experiments using the two finger-vein databases constructed in this research and the SDUMLA-HMT finger-vein database, which is an open database, the method proposed in this research showed a better performance compared to the conventional methods.
Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition.
Peng, Min; Wang, Chongyang; Chen, Tong; Liu, Guangyuan; Fu, Xiaolan
2017-01-01
Facial micro-expression is a brief involuntary facial movement and can reveal the genuine emotion that people try to conceal. Traditional methods of spontaneous micro-expression recognition rely excessively on sophisticated hand-crafted feature design and the recognition rate is not high enough for its practical application. In this paper, we proposed a Dual Temporal Scale Convolutional Neural Network (DTSCNN) for spontaneous micro-expressions recognition. The DTSCNN is a two-stream network. Different of stream of DTSCNN is used to adapt to different frame rate of micro-expression video clips. Each stream of DSTCNN consists of independent shallow network for avoiding the overfitting problem. Meanwhile, we fed the networks with optical-flow sequences to ensure that the shallow networks can further acquire higher-level features. Experimental results on spontaneous micro-expression databases (CASME I/II) showed that our method can achieve a recognition rate almost 10% higher than what some state-of-the-art method can achieve.
Automatic concept extraction from spoken medical reports.
Happe, André; Pouliquen, Bruno; Burgun, Anita; Cuggia, Marc; Le Beux, Pierre
2003-07-01
The objective of this project is to investigate methods whereby a combination of speech recognition and automated indexing methods substitute for current transcription and indexing practices. We based our study on existing speech recognition software programs and on NOMINDEX, a tool that extracts MeSH concepts from medical text in natural language and that is mainly based on a French medical lexicon and on the UMLS. For each document, the process consists of three steps: (1) dictation and digital audio recording, (2) speech recognition, (3) automatic indexing. The evaluation consisted of a comparison between the set of concepts extracted by NOMINDEX after the speech recognition phase and the set of keywords manually extracted from the initial document. The method was evaluated on a set of 28 patient discharge summaries extracted from the MENELAS corpus in French, corresponding to in-patients admitted for coronarography. The overall precision was 73% and the overall recall was 90%. Indexing errors were mainly due to word sense ambiguity and abbreviations. A specific issue was the fact that the standard French translation of MeSH terms lacks diacritics. A preliminary evaluation of speech recognition tools showed that the rate of accurate recognition was higher than 98%. Only 3% of the indexing errors were generated by inadequate speech recognition. We discuss several areas to focus on to improve this prototype. However, the very low rate of indexing errors due to speech recognition errors highlights the potential benefits of combining speech recognition techniques and automatic indexing.
A hierarchical classification method for finger knuckle print recognition
NASA Astrophysics Data System (ADS)
Kong, Tao; Yang, Gongping; Yang, Lu
2014-12-01
Finger knuckle print has recently been seen as an effective biometric technique. In this paper, we propose a hierarchical classification method for finger knuckle print recognition, which is rooted in traditional score-level fusion methods. In the proposed method, we firstly take Gabor feature as the basic feature for finger knuckle print recognition and then a new decision rule is defined based on the predefined threshold. Finally, the minor feature speeded-up robust feature is conducted for these users, who cannot be recognized by the basic feature. Extensive experiments are performed to evaluate the proposed method, and experimental results show that it can achieve a promising performance.
Elastic Face, An Anatomy-Based Biometrics Beyond Visible Cue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V; Zhang, Y; Kundu, S J
2004-03-29
This paper describes a face recognition method that is designed based on the consideration of anatomical and biomechanical characteristics of facial tissues. Elastic strain pattern inferred from face expression can reveal an individual's biometric signature associated with the underlying anatomical structure, and thus has the potential for face recognition. A method based on the continuum mechanics in finite element formulation is employed to compute the strain pattern. Experiments show very promising results. The proposed method is quite different from other face recognition methods and both its advantages and limitations, as well as future research for improvement are discussed.
Ground target recognition using rectangle estimation.
Grönwall, Christina; Gustafsson, Fredrik; Millnert, Mille
2006-11-01
We propose a ground target recognition method based on 3-D laser radar data. The method handles general 3-D scattered data. It is based on the fact that man-made objects of complex shape can be decomposed to a set of rectangles. The ground target recognition method consists of four steps; 3-D size and orientation estimation, target segmentation into parts of approximately rectangular shape, identification of segments that represent the target's functional/main parts, and target matching with CAD models. The core in this approach is rectangle estimation. The performance of the rectangle estimation method is evaluated statistically using Monte Carlo simulations. A case study on tank recognition is shown, where 3-D data from four fundamentally different types of laser radar systems are used. Although the approach is tested on rather few examples, we believe that the approach is promising.
Line-based logo recognition through a web-camera
NASA Astrophysics Data System (ADS)
Chen, Xiaolu; Wang, Yangsheng; Feng, Xuetao
2007-11-01
Logo recognition has gained much development in the document retrieval and shape analysis domain. As human computer interaction becomes more and more popular, the logo recognition through a web-camera is a promising technology in view of application. But for practical application, the study of logo recognition in real scene is much more difficult than the work in clear scene. To cope with the need, we make some improvements on conventional method. First, moment information is used to calculate the test image's orientation angle, which is used to normalize the test image. Second, the main structure of the test image, which is represented by lines patterns, is acquired and modified Hausdorff distance is employed to match the image and each of the existing templates. The proposed method, which is invariant to scale and rotation, gives good result and can work at real-time. The main contribution of this paper is that some improvements are introduced into the exiting recognition framework which performs much better than the original one. Besides, we have built a highly successful logo recognition system using our improved method.
Finger vein recognition based on personalized weight maps.
Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu
2013-09-10
Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.
Finger Vein Recognition Based on Personalized Weight Maps
Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu
2013-01-01
Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556
An Analysis of Biometric Technology as an Enabler to Information Assurance
2005-03-01
29 Facial Recognition ................................................................................................ 30...al., 2003) Facial Recognition Facial recognition systems are gaining momentum as of late. The reason for this is that facial recognition systems...the traffic camera on the street corner, video technology is everywhere. There are a couple of different methods currently being used for facial
Bayesian Analysis of Recognition Memory: The Case of the List-Length Effect
ERIC Educational Resources Information Center
Dennis, Simon; Lee, Michael D.; Kinnell, Angela
2008-01-01
Recognition memory experiments are an important source of empirical constraints for theories of memory. Unfortunately, standard methods for analyzing recognition memory data have problems that are often severe enough to prevent clear answers being obtained. A key example is whether longer lists lead to poorer recognition performance. The presence…
Prosody and Spoken Word Recognition in Early and Late Spanish-English Bilingual Individuals
ERIC Educational Resources Information Center
Boutsen, Frank R.; Dvorak, Justin D.; Deweber, Derick D.
2017-01-01
Purpose: This study was conducted to compare the influence of word properties on gated single-word recognition in monolingual and bilingual individuals under conditions of native and nonnative accent and to determine whether word-form prosody facilitates recognition in bilingual individuals. Method: Word recognition was assessed in monolingual and…
Real-Time Hand Posture Recognition Using a Range Camera
NASA Astrophysics Data System (ADS)
Lahamy, Herve
The basic goal of human computer interaction is to improve the interaction between users and computers by making computers more usable and receptive to the user's needs. Within this context, the use of hand postures in replacement of traditional devices such as keyboards, mice and joysticks is being explored by many researchers. The goal is to interpret human postures via mathematical algorithms. Hand posture recognition has gained popularity in recent years, and could become the future tool for humans to interact with computers or virtual environments. An exhaustive description of the frequently used methods available in literature for hand posture recognition is provided. It focuses on the different types of sensors and data used, the segmentation and tracking methods, the features used to represent the hand postures as well as the classifiers considered in the recognition process. Those methods are usually presented as highly robust with a recognition rate close to 100%. However, a couple of critical points necessary for a successful real-time hand posture recognition system require major improvement. Those points include the features used to represent the hand segment, the number of postures simultaneously recognizable, the invariance of the features with respect to rotation, translation and scale and also the behavior of the classifiers against non-perfect hand segments for example segments including part of the arm or missing part of the palm. A 3D time-of-flight camera named SR4000 has been chosen to develop a new methodology because of its capability to provide in real-time and at high frame rate 3D information on the scene imaged. This sensor has been described and evaluated for its capability for capturing in real-time a moving hand. A new recognition method that uses the 3D information provided by the range camera to recognize hand postures has been proposed. The different steps of this methodology including the segmentation, the tracking, the hand modeling and finally the recognition process have been described and evaluated extensively. In addition, the performance of this method has been analyzed against several existing hand posture recognition techniques found in literature. The proposed system is able to recognize with an overall recognition rate of 98% and in real-time 18 out the 33 postures of the American sign language alphabet. This recognition is translation, rotation and scale invariant.
Applying Affect Recognition in Serious Games: The PlayMancer Project
NASA Astrophysics Data System (ADS)
Ben Moussa, Maher; Magnenat-Thalmann, Nadia
This paper presents an overview and the state-of-art in the applications of 'affect' recognition in serious games for the support of patients in behavioral and mental disorder treatments and chronic pain rehabilitation, within the framework of the European project PlayMancer. Three key technologies are discussed relating to facial affect recognition, fusion of different affect recognition methods, and the application of affect recognition in serious games.
Method of determining the necessary number of observations for video stream documents recognition
NASA Astrophysics Data System (ADS)
Arlazarov, Vladimir V.; Bulatov, Konstantin; Manzhikov, Temudzhin; Slavin, Oleg; Janiszewski, Igor
2018-04-01
This paper discusses a task of document recognition on a sequence of video frames. In order to optimize the processing speed an estimation is performed of stability of recognition results obtained from several video frames. Considering identity document (Russian internal passport) recognition on a mobile device it is shown that significant decrease is possible of the number of observations necessary for obtaining precise recognition result.
Finger Vein Recognition Based on a Personalized Best Bit Map
Yang, Gongping; Xi, Xiaoming; Yin, Yilong
2012-01-01
Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735
Finger vein recognition based on a personalized best bit map.
Yang, Gongping; Xi, Xiaoming; Yin, Yilong
2012-01-01
Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.
Multi-resolution analysis for ear recognition using wavelet features
NASA Astrophysics Data System (ADS)
Shoaib, M.; Basit, A.; Faye, I.
2016-11-01
Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.
Haack, Lauren M; Meza, Jocelyn; Jiang, Yuanyuan; Araujo, Eva Jimenez; Pfiffner, Linda
2018-05-16
ADHD problem recognition serves as the first step of help seeking for ethnic minority families, such as Latinos, who underutilize ADHD services. The current mixed-method study explores underlying factors influencing recognition of ADHD problems in a sample of 159 school-aged youth. Parent-teacher informant discrepancy results suggest that parent ethnicity, problem domain, and child age influence ADHD problem recognition. Emerging themes from semi-structured qualitative interviews/focus groups conducted with eighteen Spanish-speaking Latino parents receiving school-based services for attention and behavior concerns support a range of recognized ADHD problems, beliefs about causes, and reactions to ADHD identification. Findings provide recommendations for reducing disparities in ADHD problem recognition and subsequent help seeking.
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.
Application of image recognition-based automatic hyphae detection in fungal keratitis.
Wu, Xuelian; Tao, Yuan; Qiu, Qingchen; Wu, Xinyi
2018-03-01
The purpose of this study is to evaluate the accuracy of two methods in diagnosis of fungal keratitis, whereby one method is automatic hyphae detection based on images recognition and the other method is corneal smear. We evaluate the sensitivity and specificity of the method in diagnosis of fungal keratitis, which is automatic hyphae detection based on image recognition. We analyze the consistency of clinical symptoms and the density of hyphae, and perform quantification using the method of automatic hyphae detection based on image recognition. In our study, 56 cases with fungal keratitis (just single eye) and 23 cases with bacterial keratitis were included. All cases underwent the routine inspection of slit lamp biomicroscopy, corneal smear examination, microorganism culture and the assessment of in vivo confocal microscopy images before starting medical treatment. Then, we recognize the hyphae images of in vivo confocal microscopy by using automatic hyphae detection based on image recognition to evaluate its sensitivity and specificity and compare with the method of corneal smear. The next step is to use the index of density to assess the severity of infection, and then find the correlation with the patients' clinical symptoms and evaluate consistency between them. The accuracy of this technology was superior to corneal smear examination (p < 0.05). The sensitivity of the technology of automatic hyphae detection of image recognition was 89.29%, and the specificity was 95.65%. The area under the ROC curve was 0.946. The correlation coefficient between the grading of the severity in the fungal keratitis by the automatic hyphae detection based on image recognition and the clinical grading is 0.87. The technology of automatic hyphae detection based on image recognition was with high sensitivity and specificity, able to identify fungal keratitis, which is better than the method of corneal smear examination. This technology has the advantages when compared with the conventional artificial identification of confocal microscope corneal images, of being accurate, stable and does not rely on human expertise. It was the most useful to the medical experts who are not familiar with fungal keratitis. The technology of automatic hyphae detection based on image recognition can quantify the hyphae density and grade this property. Being noninvasive, it can provide an evaluation criterion to fungal keratitis in a timely, accurate, objective and quantitative manner.
Recognition and defect detection of dot-matrix text via variation-model based learning
NASA Astrophysics Data System (ADS)
Ohyama, Wataru; Suzuki, Koushi; Wakabayashi, Tetsushi
2017-03-01
An algorithm for recognition and defect detection of dot-matrix text printed on products is proposed. Extraction and recognition of dot-matrix text contains several difficulties, which are not involved in standard camera-based OCR, that the appearance of dot-matrix characters is corrupted and broken by illumination, complex texture in the background and other standard characters printed on product packages. We propose a dot-matrix text extraction and recognition method which does not require any user interaction. The method employs detected location of corner points and classification score. The result of evaluation experiment using 250 images shows that recall and precision of extraction are 78.60% and 76.03%, respectively. Recognition accuracy of correctly extracted characters is 94.43%. Detecting printing defect of dot-matrix text is also important in the production scene to avoid illegal productions. We also propose a detection method for printing defect of dot-matrix characters. The method constructs a feature vector of which elements are classification scores of each character class and employs support vector machine to classify four types of printing defect. The detection accuracy of the proposed method is 96.68 %.
Text recognition and correction for automated data collection by mobile devices
NASA Astrophysics Data System (ADS)
Ozarslan, Suleyman; Eren, P. Erhan
2014-03-01
Participatory sensing is an approach which allows mobile devices such as mobile phones to be used for data collection, analysis and sharing processes by individuals. Data collection is the first and most important part of a participatory sensing system, but it is time consuming for the participants. In this paper, we discuss automatic data collection approaches for reducing the time required for collection, and increasing the amount of collected data. In this context, we explore automated text recognition on images of store receipts which are captured by mobile phone cameras, and the correction of the recognized text. Accordingly, our first goal is to evaluate the performance of the Optical Character Recognition (OCR) method with respect to data collection from store receipt images. Images captured by mobile phones exhibit some typical problems, and common image processing methods cannot handle some of them. Consequently, the second goal is to address these types of problems through our proposed Knowledge Based Correction (KBC) method used in support of the OCR, and also to evaluate the KBC method with respect to the improvement on the accurate recognition rate. Results of the experiments show that the KBC method improves the accurate data recognition rate noticeably.
Online Farsi digit recognition using their upper half structure
NASA Astrophysics Data System (ADS)
Ghods, Vahid; Sohrabi, Mohammad Karim
2015-03-01
In this paper, we investigated the efficiency of upper half Farsi numerical digit structure. In other words, half of data (upper half of the digit shapes) was exploited for the recognition of Farsi numerical digits. This method can be used for both offline and online recognition. Half of data is more effective in speed process, data transfer and in this application accuracy. Hidden Markov model (HMM) was used to classify online Farsi digits. Evaluation was performed by TMU dataset. This dataset contains more than 1200 samples of online handwritten Farsi digits. The proposed method yielded more accuracy in recognition rate.
A method of object recognition for single pixel imaging
NASA Astrophysics Data System (ADS)
Li, Boxuan; Zhang, Wenwen
2018-01-01
Computational ghost imaging(CGI), utilizing a single-pixel detector, has been extensively used in many fields. However, in order to achieve a high-quality reconstructed image, a large number of iterations are needed, which limits the flexibility of using CGI in practical situations, especially in the field of object recognition. In this paper, we purpose a method utilizing the feature matching to identify the number objects. In the given system, approximately 90% of accuracy of recognition rates can be achieved, which provides a new idea for the application of single pixel imaging in the field of object recognition
Noisy Ocular Recognition Based on Three Convolutional Neural Networks.
Lee, Min Beom; Hong, Hyung Gil; Park, Kang Ryoung
2017-12-17
In recent years, the iris recognition system has been gaining increasing acceptance for applications such as access control and smartphone security. When the images of the iris are obtained under unconstrained conditions, an issue of undermined quality is caused by optical and motion blur, off-angle view (the user's eyes looking somewhere else, not into the front of the camera), specular reflection (SR) and other factors. Such noisy iris images increase intra-individual variations and, as a result, reduce the accuracy of iris recognition. A typical iris recognition system requires a near-infrared (NIR) illuminator along with an NIR camera, which are larger and more expensive than fingerprint recognition equipment. Hence, many studies have proposed methods of using iris images captured by a visible light camera without the need for an additional illuminator. In this research, we propose a new recognition method for noisy iris and ocular images by using one iris and two periocular regions, based on three convolutional neural networks (CNNs). Experiments were conducted by using the noisy iris challenge evaluation-part II (NICE.II) training dataset (selected from the university of Beira iris (UBIRIS).v2 database), mobile iris challenge evaluation (MICHE) database, and institute of automation of Chinese academy of sciences (CASIA)-Iris-Distance database. As a result, the method proposed by this study outperformed previous methods.
Domain Regeneration for Cross-Database Micro-Expression Recognition
NASA Astrophysics Data System (ADS)
Zong, Yuan; Zheng, Wenming; Huang, Xiaohua; Shi, Jingang; Cui, Zhen; Zhao, Guoying
2018-05-01
In this paper, we investigate the cross-database micro-expression recognition problem, where the training and testing samples are from two different micro-expression databases. Under this setting, the training and testing samples would have different feature distributions and hence the performance of most existing micro-expression recognition methods may decrease greatly. To solve this problem, we propose a simple yet effective method called Target Sample Re-Generator (TSRG) in this paper. By using TSRG, we are able to re-generate the samples from target micro-expression database and the re-generated target samples would share same or similar feature distributions with the original source samples. For this reason, we can then use the classifier learned based on the labeled source samples to accurately predict the micro-expression categories of the unlabeled target samples. To evaluate the performance of the proposed TSRG method, extensive cross-database micro-expression recognition experiments designed based on SMIC and CASME II databases are conducted. Compared with recent state-of-the-art cross-database emotion recognition methods, the proposed TSRG achieves more promising results.
The Complex Action Recognition via the Correlated Topic Model
Tu, Hong-bin; Xia, Li-min; Wang, Zheng-wu
2014-01-01
Human complex action recognition is an important research area of the action recognition. Among various obstacles to human complex action recognition, one of the most challenging is to deal with self-occlusion, where one body part occludes another one. This paper presents a new method of human complex action recognition, which is based on optical flow and correlated topic model (CTM). Firstly, the Markov random field was used to represent the occlusion relationship between human body parts in terms of an occlusion state variable. Secondly, the structure from motion (SFM) is used for reconstructing the missing data of point trajectories. Then, we can extract the key frame based on motion feature from optical flow and the ratios of the width and height are extracted by the human silhouette. Finally, we use the topic model of correlated topic model (CTM) to classify action. Experiments were performed on the KTH, Weizmann, and UIUC action dataset to test and evaluate the proposed method. The compared experiment results showed that the proposed method was more effective than compared methods. PMID:24574920
Near infrared and visible face recognition based on decision fusion of LBP and DCT features
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan
2018-03-01
Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In order to extract the discriminative complementary features between near infrared and visible images, in this paper, we proposed a novel near infrared and visible face fusion recognition algorithm based on DCT and LBP features. Firstly, the effective features in near-infrared face image are extracted by the low frequency part of DCT coefficients and the partition histograms of LBP operator. Secondly, the LBP features of visible-light face image are extracted to compensate for the lacking detail features of the near-infrared face image. Then, the LBP features of visible-light face image, the DCT and LBP features of near-infrared face image are sent to each classifier for labeling. Finally, decision level fusion strategy is used to obtain the final recognition result. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. The experiment results show that the proposed method extracts the complementary features of near-infrared and visible face images and improves the robustness of unconstrained face recognition. Especially for the circumstance of small training samples, the recognition rate of proposed method can reach 96.13%, which has improved significantly than 92.75 % of the method based on statistical feature fusion.
NASA Astrophysics Data System (ADS)
Wan, Qianwen; Panetta, Karen; Agaian, Sos
2017-05-01
Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.
SSVEP recognition using common feature analysis in brain-computer interface.
Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2015-04-15
Canonical correlation analysis (CCA) has been successfully applied to steady-state visual evoked potential (SSVEP) recognition for brain-computer interface (BCI) application. Although the CCA method outperforms the traditional power spectral density analysis through multi-channel detection, it requires additionally pre-constructed reference signals of sine-cosine waves. It is likely to encounter overfitting in using a short time window since the reference signals include no features from training data. We consider that a group of electroencephalogram (EEG) data trials recorded at a certain stimulus frequency on a same subject should share some common features that may bear the real SSVEP characteristics. This study therefore proposes a common feature analysis (CFA)-based method to exploit the latent common features as natural reference signals in using correlation analysis for SSVEP recognition. Good performance of the CFA method for SSVEP recognition is validated with EEG data recorded from ten healthy subjects, in contrast to CCA and a multiway extension of CCA (MCCA). Experimental results indicate that the CFA method significantly outperformed the CCA and the MCCA methods for SSVEP recognition in using a short time window (i.e., less than 1s). The superiority of the proposed CFA method suggests it is promising for the development of a real-time SSVEP-based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Zelun; Poslad, Stefan
2013-01-01
Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals. PMID:24189333
Item-method directed forgetting: Effects at retrieval?
Taylor, Tracy L; Cutmore, Laura; Pries, Lotta
2018-02-01
In an item-method directed forgetting paradigm, words are presented one at a time, each followed by an instruction to Remember or Forget; a directed forgetting effect is measured as better subsequent memory for Remember words than Forget words. The dominant view is that the directed forgetting effect arises during encoding due to selective rehearsal of Remember over Forget items. In three experiments we attempted to falsify a strong view that directed forgetting effects in recognition are due only to encoding mechanisms when an item method is used. Across 3 experiments we tested for retrieval-based processes by colour-coding the recognition test items. Black colour provided no information; green colour cued a potential Remember item; and, red colour cued a potential Forget item. Recognition cues were mixed within-blocks in Experiment 1 and between-blocks in Experiments 2 and 3; Experiment 3 added explicit feedback on the accuracy of the recognition decision. Although overall recognition improved with cuing when explicit test performance feedback was added in Experiment 3, in no case was the magnitude of the directed forgetting effect influenced by recognition cueing. Our results argue against a role for retrieval-based strategies that limit recognition of Forget items at test and posit a role for encoding intentions only. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Annett, John
An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…
Quadcopter Control Using Speech Recognition
NASA Astrophysics Data System (ADS)
Malik, H.; Darma, S.; Soekirno, S.
2018-04-01
This research reported a comparison from a success rate of speech recognition systems that used two types of databases they were existing databases and new databases, that were implemented into quadcopter as motion control. Speech recognition system was using Mel frequency cepstral coefficient method (MFCC) as feature extraction that was trained using recursive neural network method (RNN). MFCC method was one of the feature extraction methods that most used for speech recognition. This method has a success rate of 80% - 95%. Existing database was used to measure the success rate of RNN method. The new database was created using Indonesian language and then the success rate was compared with results from an existing database. Sound input from the microphone was processed on a DSP module with MFCC method to get the characteristic values. Then, the characteristic values were trained using the RNN which result was a command. The command became a control input to the single board computer (SBC) which result was the movement of the quadcopter. On SBC, we used robot operating system (ROS) as the kernel (Operating System).
Fast and accurate face recognition based on image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
Emotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain.
Zhuang, Ning; Zeng, Ying; Tong, Li; Zhang, Chi; Zhang, Hanming; Yan, Bin
2017-01-01
This paper introduces a method for feature extraction and emotion recognition based on empirical mode decomposition (EMD). By using EMD, EEG signals are decomposed into Intrinsic Mode Functions (IMFs) automatically. Multidimensional information of IMF is utilized as features, the first difference of time series, the first difference of phase, and the normalized energy. The performance of the proposed method is verified on a publicly available emotional database. The results show that the three features are effective for emotion recognition. The role of each IMF is inquired and we find that high frequency component IMF1 has significant effect on different emotional states detection. The informative electrodes based on EMD strategy are analyzed. In addition, the classification accuracy of the proposed method is compared with several classical techniques, including fractal dimension (FD), sample entropy, differential entropy, and discrete wavelet transform (DWT). Experiment results on DEAP datasets demonstrate that our method can improve emotion recognition performance.
A Possibility Study on Gender Recognition Method Using Near Infrared Ray Scanning Spectrophotometer
NASA Astrophysics Data System (ADS)
Nishino, Satoshi; Ohshima, Kenji
Male and female recognition is necessary to make security stronger and when various statistics on the visitor are taken in commercial facilities and so on. The conventional method of male and female recognition is currently determined by using the person's appearance, the person's dress and in such cases, the way of walking, the foot pressure, the hair type. But, these characteristics can be intentionally changed by human intervention or design. The proposed method gets a difference in the male's and female's characteristics by taking absorbance characteristic of the fat distribution of the person's cheek by near infrared ray scanning spectrophotometer. This is a male and female recognition based on the new concept idea which this is used for. Consequently, this can be used to recognize a male from a female even if a male turns himself into the female intentionally (and vice versa), because this method involves biometrics authentication.
NASA Astrophysics Data System (ADS)
Timchenko, Leonid; Yarovyi, Andrii; Kokriatskaya, Nataliya; Nakonechna, Svitlana; Abramenko, Ludmila; Ławicki, Tomasz; Popiel, Piotr; Yesmakhanova, Laura
2016-09-01
The paper presents a method of parallel-hierarchical transformations for rapid recognition of dynamic images using GPU technology. Direct parallel-hierarchical transformations based on cluster CPU-and GPU-oriented hardware platform. Mathematic models of training of the parallel hierarchical (PH) network for the transformation are developed, as well as a training method of the PH network for recognition of dynamic images. This research is most topical for problems on organizing high-performance computations of super large arrays of information designed to implement multi-stage sensing and processing as well as compaction and recognition of data in the informational structures and computer devices. This method has such advantages as high performance through the use of recent advances in parallelization, possibility to work with images of ultra dimension, ease of scaling in case of changing the number of nodes in the cluster, auto scan of local network to detect compute nodes.
Image object recognition based on the Zernike moment and neural networks
NASA Astrophysics Data System (ADS)
Wan, Jianwei; Wang, Ling; Huang, Fukan; Zhou, Liangzhu
1998-03-01
This paper first give a comprehensive discussion about the concept of artificial neural network its research methods and the relations with information processing. On the basis of such a discussion, we expound the mathematical similarity of artificial neural network and information processing. Then, the paper presents a new method of image recognition based on invariant features and neural network by using image Zernike transform. The method not only has the invariant properties for rotation, shift and scale of image object, but also has good fault tolerance and robustness. Meanwhile, it is also compared with statistical classifier and invariant moments recognition method.
Gender Recognition Method Using Near Infrared Ray Spectral Characteristics of Narrow Band
NASA Astrophysics Data System (ADS)
Nishino, Satoshi
Male and female recognition is necessary to make security stronger and when various statistics on the visitor are taken in commercial facilities and so on. The conventional method of male and female recognition is currently determined by using the person's dress and in such cases, the way of walking, the foot pressure, the hair type. But, these characteristics can be intentionally changed by human intervention or design. The proposed method obtains a difference in the male's and female's characteristics by taking absorbance characteristics of the fat distribution of the person's cheek by near infrared ray scanning spectrophotometer. This is a male and female recognition based on the new concept idea which this is used for. Consequently, this can be used to recognize a male from a female even if a male turns himself into the female intentionally (and vice versa), because this method involves biometrics authentication. Therefore, the proposed method will be applied to the security system.
Advertisement recognition using mode voting acoustic fingerprint
NASA Astrophysics Data System (ADS)
Fahmi, Reza; Abedi Firouzjaee, Hosein; Janalizadeh Choobbasti, Ali; Mortazavi Najafabadi, S. H. E.; Safavi, Saeid
2017-12-01
Emergence of media outlets and public relations tools such as TV, radio and the Internet since the 20th century provided the companies with a good platform for advertising their goods and services. Advertisement recognition is an important task that can help companies measure the efficiency of their advertising campaigns in the market and make it possible to compare their performance with competitors in order to get better business insights. Advertisement recognition is usually performed manually with help of human labor or is done through automated methods that are mainly based on heuristics features, these methods usually lack abilities such as scalability, being able to be generalized and be used in different situations. In this paper, we present an automated method for advertisement recognition based on audio processing method that could make this process fairly simple and eliminate the human factor out of the equation. This method has ultimately been used in Miras information technology in order to monitor 56 TV channels to detect all ad video clips broadcast over some networks.
Intelligent form removal with character stroke preservation
NASA Astrophysics Data System (ADS)
Garris, Michael D.
1996-03-01
A new technique for intelligent form removal has been developed along with a new method for evaluating its impact on optical character recognition (OCR). All the dominant lines in the image are automatically detected using the Hough line transform and intelligently erased while simultaneously preserving overlapping character strokes by computing line width statistics and keying off of certain visual cues. This new method of form removal operates on loosely defined zones with no image deskewing. Any field in which the writer is provided a horizontal line to enter a response can be processed by this method. Several examples of processed fields are provided, including a comparison of results between the new method and a commercially available forms removal package. Even if this new form removal method did not improve character recognition accuracy, it is still a significant improvement to the technology because the requirement of a priori knowledge of the form's geometric details has been greatly reduced. This relaxes the recognition system's dependence on rigid form design, printing, and reproduction by automatically detecting and removing some of the physical structures (lines) on the form. Using the National Institute of Standards and Technology (NIST) public domain form-based handprint recognition system, the technique was tested on a large number of fields containing randomly ordered handprinted lowercase alphabets, as these letters (especially those with descenders) frequently touch and extend through the line along which they are written. Preserving character strokes improves overall lowercase recognition performance by 3%, which is a net improvement, but a single performance number like this doesn't communicate how the recognition process was really influenced. There is expected to be trade- offs with the introduction of any new technique into a complex recognition system. To understand both the improvements and the trade-offs, a new analysis was designed to compare the statistical distributions of individual confusion pairs between two systems. As OCR technology continues to improve, sophisticated analyses like this are necessary to reduce the errors remaining in complex recognition problems.
2.5D multi-view gait recognition based on point cloud registration.
Tang, Jin; Luo, Jian; Tjahjadi, Tardi; Gao, Yan
2014-03-28
This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM.
Body-Based Gender Recognition Using Images from Visible and Thermal Cameras
Nguyen, Dat Tien; Park, Kang Ryoung
2016-01-01
Gender information has many useful applications in computer vision systems, such as surveillance systems, counting the number of males and females in a shopping mall, accessing control systems in restricted areas, or any human-computer interaction system. In most previous studies, researchers attempted to recognize gender by using visible light images of the human face or body. However, shadow, illumination, and time of day greatly affect the performance of these methods. To overcome this problem, we propose a new gender recognition method based on the combination of visible light and thermal camera images of the human body. Experimental results, through various kinds of feature extraction and fusion methods, show that our approach is efficient for gender recognition through a comparison of recognition rates with conventional systems. PMID:26828487
Body-Based Gender Recognition Using Images from Visible and Thermal Cameras.
Nguyen, Dat Tien; Park, Kang Ryoung
2016-01-27
Gender information has many useful applications in computer vision systems, such as surveillance systems, counting the number of males and females in a shopping mall, accessing control systems in restricted areas, or any human-computer interaction system. In most previous studies, researchers attempted to recognize gender by using visible light images of the human face or body. However, shadow, illumination, and time of day greatly affect the performance of these methods. To overcome this problem, we propose a new gender recognition method based on the combination of visible light and thermal camera images of the human body. Experimental results, through various kinds of feature extraction and fusion methods, show that our approach is efficient for gender recognition through a comparison of recognition rates with conventional systems.
Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition
Peng, Min; Wang, Chongyang; Chen, Tong; Liu, Guangyuan; Fu, Xiaolan
2017-01-01
Facial micro-expression is a brief involuntary facial movement and can reveal the genuine emotion that people try to conceal. Traditional methods of spontaneous micro-expression recognition rely excessively on sophisticated hand-crafted feature design and the recognition rate is not high enough for its practical application. In this paper, we proposed a Dual Temporal Scale Convolutional Neural Network (DTSCNN) for spontaneous micro-expressions recognition. The DTSCNN is a two-stream network. Different of stream of DTSCNN is used to adapt to different frame rate of micro-expression video clips. Each stream of DSTCNN consists of independent shallow network for avoiding the overfitting problem. Meanwhile, we fed the networks with optical-flow sequences to ensure that the shallow networks can further acquire higher-level features. Experimental results on spontaneous micro-expression databases (CASME I/II) showed that our method can achieve a recognition rate almost 10% higher than what some state-of-the-art method can achieve. PMID:29081753
Pose-Invariant Face Recognition via RGB-D Images.
Sang, Gaoli; Li, Jing; Zhao, Qijun
2016-01-01
Three-dimensional (3D) face models can intrinsically handle large pose face recognition problem. In this paper, we propose a novel pose-invariant face recognition method via RGB-D images. By employing depth, our method is able to handle self-occlusion and deformation, both of which are challenging problems in two-dimensional (2D) face recognition. Texture images in the gallery can be rendered to the same view as the probe via depth. Meanwhile, depth is also used for similarity measure via frontalization and symmetric filling. Finally, both texture and depth contribute to the final identity estimation. Experiments on Bosphorus, CurtinFaces, Eurecom, and Kiwi databases demonstrate that the additional depth information has improved the performance of face recognition with large pose variations and under even more challenging conditions.
Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems.
Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar
2015-07-23
The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other.
Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems
Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar
2015-01-01
The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other. PMID:26213932
General tensor discriminant analysis and gabor features for gait recognition.
Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J
2007-10-01
The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine state of the art classification methods in gait recognition.
Robotic CCD microscope for enhanced crystal recognition
Segelke, Brent W.; Toppani, Dominique
2007-11-06
A robotic CCD microscope and procedures to automate crystal recognition. The robotic CCD microscope and procedures enables more accurate crystal recognition, leading to fewer false negative and fewer false positives, and enable detection of smaller crystals compared to other methods available today.
Significance of parametric spectral ratio methods in detection and recognition of whispered speech
NASA Astrophysics Data System (ADS)
Mathur, Arpit; Reddy, Shankar M.; Hegde, Rajesh M.
2012-12-01
In this article the significance of a new parametric spectral ratio method that can be used to detect whispered speech segments within normally phonated speech is described. Adaptation methods based on the maximum likelihood linear regression (MLLR) are then used to realize a mismatched train-test style speech recognition system. This proposed parametric spectral ratio method computes a ratio spectrum of the linear prediction (LP) and the minimum variance distortion-less response (MVDR) methods. The smoothed ratio spectrum is then used to detect whispered segments of speech within neutral speech segments effectively. The proposed LP-MVDR ratio method exhibits robustness at different SNRs as indicated by the whisper diarization experiments conducted on the CHAINS and the cell phone whispered speech corpus. The proposed method also performs reasonably better than the conventional methods for whisper detection. In order to integrate the proposed whisper detection method into a conventional speech recognition engine with minimal changes, adaptation methods based on the MLLR are used herein. The hidden Markov models corresponding to neutral mode speech are adapted to the whispered mode speech data in the whispered regions as detected by the proposed ratio method. The performance of this method is first evaluated on whispered speech data from the CHAINS corpus. The second set of experiments are conducted on the cell phone corpus of whispered speech. This corpus is collected using a set up that is used commercially for handling public transactions. The proposed whisper speech recognition system exhibits reasonably better performance when compared to several conventional methods. The results shown indicate the possibility of a whispered speech recognition system for cell phone based transactions.
The Role of Active Exploration of 3D Face Stimuli on Recognition Memory of Facial Information
ERIC Educational Resources Information Center
Liu, Chang Hong; Ward, James; Markall, Helena
2007-01-01
Research on face recognition has mainly relied on methods in which observers are relatively passive viewers of face stimuli. This study investigated whether active exploration of three-dimensional (3D) face stimuli could facilitate recognition memory. A standard recognition task and a sequential matching task were employed in a yoked design.…
NASA Astrophysics Data System (ADS)
Buryi, E. V.
1998-05-01
The main problems in the synthesis of an object recognition system, based on the principles of operation of neuron networks, are considered. Advantages are demonstrated of a hierarchical structure of the recognition algorithm. The use of reading of the amplitude spectrum of signals as information tags is justified and a method is developed for determination of the dimensionality of the tag space. Methods are suggested for ensuring the stability of object recognition in the optical range. It is concluded that it should be possible to recognise perspectives of complex objects.
Research on Attribute Reduction in Hoisting Motor State Recognition of Quayside Container Crane
NASA Astrophysics Data System (ADS)
Li, F.; Tang, G.; Hu, X.
2017-07-01
In view of too many attributes in hoisting motor state recognition of quayside container crane. Attribute reduction method based on discernibility matrix is introduced to attribute reduction of lifting motor state information table. A method of attribute reduction based on the combination of rough set and genetic algorithm is proposed to deal with the hoisting motor state decision table. Under the condition that the information system's decision-making ability is unchanged, the redundant attribute is deleted. Which reduces the complexity and computation of the recognition process of the hoisting motor. It is possible to realize the fast state recognition.
The effects of list-method directed forgetting on recognition memory.
Benjamin, Aaron S
2006-10-01
It is an almost universally accepted claim that the list-method procedure of inducing directed forgetting does not affect recognition. However, previous studies have omitted a critical comparison in reaching this conclusion. This article reports evidence that recognition of material learned after cue presentation is superior for conditions in which the material that preceded cue presentation was designated as to-be-forgotten. Because the absence of an effect of directed-forgetting instructions on recognition is the linchpin of the theoretical claim that retrieval inhibition and not selective rehearsal underlies that effect, the present results call into question the need to postulate a role for inhibition in directed forgetting.
Toward End-to-End Face Recognition Through Alignment Learning
NASA Astrophysics Data System (ADS)
Zhong, Yuanyi; Chen, Jiansheng; Huang, Bo
2017-08-01
Plenty of effective methods have been proposed for face recognition during the past decade. Although these methods differ essentially in many aspects, a common practice of them is to specifically align the facial area based on the prior knowledge of human face structure before feature extraction. In most systems, the face alignment module is implemented independently. This has actually caused difficulties in the designing and training of end-to-end face recognition models. In this paper we study the possibility of alignment learning in end-to-end face recognition, in which neither prior knowledge on facial landmarks nor artificially defined geometric transformations are required. Specifically, spatial transformer layers are inserted in front of the feature extraction layers in a Convolutional Neural Network (CNN) for face recognition. Only human identity clues are used for driving the neural network to automatically learn the most suitable geometric transformation and the most appropriate facial area for the recognition task. To ensure reproducibility, our model is trained purely on the publicly available CASIA-WebFace dataset, and is tested on the Labeled Face in the Wild (LFW) dataset. We have achieved a verification accuracy of 99.08\\% which is comparable to state-of-the-art single model based methods.
Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization
Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali
2014-01-01
Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584
Multi-font printed Mongolian document recognition system
NASA Astrophysics Data System (ADS)
Peng, Liangrui; Liu, Changsong; Ding, Xiaoqing; Wang, Hua; Jin, Jianming
2009-01-01
Mongolian is one of the major ethnic languages in China. Large amount of Mongolian printed documents need to be digitized in digital library and various applications. Traditional Mongolian script has unique writing style and multi-font-type variations, which bring challenges to Mongolian OCR research. As traditional Mongolian script has some characteristics, for example, one character may be part of another character, we define the character set for recognition according to the segmented components, and the components are combined into characters by rule-based post-processing module. For character recognition, a method based on visual directional feature and multi-level classifiers is presented. For character segmentation, a scheme is used to find the segmentation point by analyzing the properties of projection and connected components. As Mongolian has different font-types which are categorized into two major groups, the parameter of segmentation is adjusted for each group. A font-type classification method for the two font-type group is introduced. For recognition of Mongolian text mixed with Chinese and English, language identification and relevant character recognition kernels are integrated. Experiments show that the presented methods are effective. The text recognition rate is 96.9% on the test samples from practical documents with multi-font-types and mixed scripts.
Fluorescent Molecular Rotor-in-Paraffin Waxes for Thermometry and Biometric Identification.
Jin, Young-Jae; Dogra, Rubal; Cheong, In Woo; Kwak, Giseop
2015-07-08
Novel thermoresponsive sensor systems consisting of a molecular rotor (MR) and paraffin wax (PW) were developed for various thermometric and biometric identification applications. Polydiphenylacetylenes (PDPAs) coupled with long alkyl chains were used as MRs, and PWs of hydrocarbons having 16-20 carbons were utilized as phase-change materials. The PDPAs were successfully dissolved in the molten PWs and did not act as an impurity that prevents phase transition of the PWs. These PDPA-in-PW hybrids had almost the same enthalpies and phase-transition temperatures as the corresponding pure PWs. The hybrids exhibited highly reversible fluorescence (FL) changes at the critical temperatures during phase transition of the PWs. These hybrids were impregnated into common filter paper in the molten state by absorption or were encapsulated into urea resin to enhance their mechanical integrity and cyclic stability during repeated use. The wax papers could be utilized in highly advanced applications including FL image writing/erasing, an array-type thermo-indicator, and fingerprint/palmprint identification. The present findings should facilitate the development of novel fluorescent sensor systems for biometric identification and are potentially applicable for biological and biomedical thermometry.
Continuous Human Action Recognition Using Depth-MHI-HOG and a Spotter Model
Eum, Hyukmin; Yoon, Changyong; Lee, Heejin; Park, Mignon
2015-01-01
In this paper, we propose a new method for spotting and recognizing continuous human actions using a vision sensor. The method is comprised of depth-MHI-HOG (DMH), action modeling, action spotting, and recognition. First, to effectively separate the foreground from background, we propose a method called DMH. It includes a standard structure for segmenting images and extracting features by using depth information, MHI, and HOG. Second, action modeling is performed to model various actions using extracted features. The modeling of actions is performed by creating sequences of actions through k-means clustering; these sequences constitute HMM input. Third, a method of action spotting is proposed to filter meaningless actions from continuous actions and to identify precise start and end points of actions. By employing the spotter model, the proposed method improves action recognition performance. Finally, the proposed method recognizes actions based on start and end points. We evaluate recognition performance by employing the proposed method to obtain and compare probabilities by applying input sequences in action models and the spotter model. Through various experiments, we demonstrate that the proposed method is efficient for recognizing continuous human actions in real environments. PMID:25742172
A Comparison of Two Flashcard Drill Methods Targeting Word Recognition
ERIC Educational Resources Information Center
Volpe, Robert J.; Mule, Christina M.; Briesch, Amy M.; Joseph, Laurice M.; Burns, Matthew K.
2011-01-01
Traditional drill and practice (TD) and incremental rehearsal (IR) are two flashcard drill instructional methods previously noted to improve word recognition. The current study sought to compare the effectiveness and efficiency of these two methods, as assessed by next day retention assessments, under 2 conditions (i.e., opportunities to respond…
A star recognition method based on the Adaptive Ant Colony algorithm for star sensors.
Quan, Wei; Fang, Jiancheng
2010-01-01
A new star recognition method based on the Adaptive Ant Colony (AAC) algorithm has been developed to increase the star recognition speed and success rate for star sensors. This method draws circles, with the center of each one being a bright star point and the radius being a special angular distance, and uses the parallel processing ability of the AAC algorithm to calculate the angular distance of any pair of star points in the circle. The angular distance of two star points in the circle is solved as the path of the AAC algorithm, and the path optimization feature of the AAC is employed to search for the optimal (shortest) path in the circle. This optimal path is used to recognize the stellar map and enhance the recognition success rate and speed. The experimental results show that when the position error is about 50″, the identification success rate of this method is 98% while the Delaunay identification method is only 94%. The identification time of this method is up to 50 ms.
Jonnagaddala, Jitendra; Jue, Toni Rose; Chang, Nai-Wen; Dai, Hong-Jie
2016-01-01
The rapidly increasing biomedical literature calls for the need of an automatic approach in the recognition and normalization of disease mentions in order to increase the precision and effectivity of disease based information retrieval. A variety of methods have been proposed to deal with the problem of disease named entity recognition and normalization. Among all the proposed methods, conditional random fields (CRFs) and dictionary lookup method are widely used for named entity recognition and normalization respectively. We herein developed a CRF-based model to allow automated recognition of disease mentions, and studied the effect of various techniques in improving the normalization results based on the dictionary lookup approach. The dataset from the BioCreative V CDR track was used to report the performance of the developed normalization methods and compare with other existing dictionary lookup based normalization methods. The best configuration achieved an F-measure of 0.77 for the disease normalization, which outperformed the best dictionary lookup based baseline method studied in this work by an F-measure of 0.13. Database URL: https://github.com/TCRNBioinformatics/DiseaseExtract PMID:27504009
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2014 CFR
2014-07-01
... operational limitations; (vi) Methods of conducting audits, inspection and control and monitoring techniques... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition...) Techniques used to circumvent security measures; (xii) Methods of physical screening and non-intrusive...
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2013 CFR
2013-07-01
... operational limitations; (vi) Methods of conducting audits, inspection and control and monitoring techniques... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition...) Techniques used to circumvent security measures; (xii) Methods of physical screening and non-intrusive...
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2012 CFR
2012-07-01
... operational limitations; (vi) Methods of conducting audits, inspection and control and monitoring techniques... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition...) Techniques used to circumvent security measures; (xii) Methods of physical screening and non-intrusive...
Jatobá, Luciana C; Grossmann, Ulrich; Kunze, Chistophe; Ottenbacher, Jörg; Stork, Wilhelm
2008-01-01
There are various applications of physical activity monitoring for medical purposes, such as therapeutic rehabilitation, fitness enhancement or the use of physical activity as context information for evaluation of other vital data. Physical activity can be estimated using acceleration sensor-systems fixed on a person's body. By means of pattern recognition methods, it is possible to identify with certain accuracy which movement is being performed. This work presents a comparison of different methods for recognition of daily-life activities, which will serve as basis for the development of an online activity monitoring system.
Heuristic algorithm for optical character recognition of Arabic script
NASA Astrophysics Data System (ADS)
Yarman-Vural, Fatos T.; Atici, A.
1996-02-01
In this paper, a heuristic method is developed for segmentation, feature extraction and recognition of the Arabic script. The study is part of a large project for the transcription of the documents in Ottoman Archives. A geometrical and topological feature analysis method is developed for segmentation and feature extraction stages. Chain code transformation is applied to main strokes of the characters which are then classified by the hidden Markov model (HMM) in the recognition stage. Experimental results indicate that the performance of the proposed method is impressive, provided that the thinning process does not yield spurious branches.
Implementation study of wearable sensors for activity recognition systems.
Rezaie, Hamed; Ghassemian, Mona
2015-08-01
This Letter investigates and reports on a number of activity recognition methods for a wearable sensor system. The authors apply three methods for data transmission, namely 'stream-based', 'feature-based' and 'threshold-based' scenarios to study the accuracy against energy efficiency of transmission and processing power that affects the mote's battery lifetime. They also report on the impact of variation of sampling frequency and data transmission rate on energy consumption of motes for each method. This study leads us to propose a cross-layer optimisation of an activity recognition system for provisioning acceptable levels of accuracy and energy efficiency.
Noisy Ocular Recognition Based on Three Convolutional Neural Networks
Lee, Min Beom; Hong, Hyung Gil; Park, Kang Ryoung
2017-01-01
In recent years, the iris recognition system has been gaining increasing acceptance for applications such as access control and smartphone security. When the images of the iris are obtained under unconstrained conditions, an issue of undermined quality is caused by optical and motion blur, off-angle view (the user’s eyes looking somewhere else, not into the front of the camera), specular reflection (SR) and other factors. Such noisy iris images increase intra-individual variations and, as a result, reduce the accuracy of iris recognition. A typical iris recognition system requires a near-infrared (NIR) illuminator along with an NIR camera, which are larger and more expensive than fingerprint recognition equipment. Hence, many studies have proposed methods of using iris images captured by a visible light camera without the need for an additional illuminator. In this research, we propose a new recognition method for noisy iris and ocular images by using one iris and two periocular regions, based on three convolutional neural networks (CNNs). Experiments were conducted by using the noisy iris challenge evaluation-part II (NICE.II) training dataset (selected from the university of Beira iris (UBIRIS).v2 database), mobile iris challenge evaluation (MICHE) database, and institute of automation of Chinese academy of sciences (CASIA)-Iris-Distance database. As a result, the method proposed by this study outperformed previous methods. PMID:29258217
NASA Astrophysics Data System (ADS)
Trokielewicz, Mateusz; Bartuzi, Ewelina; Michowska, Katarzyna; Andrzejewska, Antonina; Selegrat, Monika
2015-09-01
In the age of modern, hyperconnected society that increasingly relies on mobile devices and solutions, implementing a reliable and accurate biometric system employing iris recognition presents new challenges. Typical biometric systems employing iris analysis require expensive and complicated hardware. We therefore explore an alternative way using visible spectrum iris imaging. This paper aims at answering several questions related to applying iris biometrics for images obtained in the visible spectrum using smartphone camera. Can irides be successfully and effortlessly imaged using a smartphone's built-in camera? Can existing iris recognition methods perform well when presented with such images? The main advantage of using near-infrared (NIR) illumination in dedicated iris recognition cameras is good performance almost independent of the iris color and pigmentation. Are the images obtained from smartphone's camera of sufficient quality even for the dark irides? We present experiments incorporating simple image preprocessing to find the best visibility of iris texture, followed by a performance study to assess whether iris recognition methods originally aimed at NIR iris images perform well with visible light images. To our best knowledge this is the first comprehensive analysis of iris recognition performance using a database of high-quality images collected in visible light using the smartphones flashlight together with the application of commercial off-the-shelf (COTS) iris recognition methods.
Deep Learning Methods for Underwater Target Feature Extraction and Recognition
Peng, Yuan; Qiu, Mengran; Shi, Jianfei; Liu, Liangliang
2018-01-01
The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved. PMID:29780407
Transfer learning for bimodal biometrics recognition
NASA Astrophysics Data System (ADS)
Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao
2013-10-01
Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.
2.5D Multi-View Gait Recognition Based on Point Cloud Registration
Tang, Jin; Luo, Jian; Tjahjadi, Tardi; Gao, Yan
2014-01-01
This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM. PMID:24686727
Emotion-independent face recognition
NASA Astrophysics Data System (ADS)
De Silva, Liyanage C.; Esther, Kho G. P.
2000-12-01
Current face recognition techniques tend to work well when recognizing faces under small variations in lighting, facial expression and pose, but deteriorate under more extreme conditions. In this paper, a face recognition system to recognize faces of known individuals, despite variations in facial expression due to different emotions, is developed. The eigenface approach is used for feature extraction. Classification methods include Euclidean distance, back propagation neural network and generalized regression neural network. These methods yield 100% recognition accuracy when the training database is representative, containing one image representing the peak expression for each emotion of each person apart from the neutral expression. The feature vectors used for comparison in the Euclidean distance method and for training the neural network must be all the feature vectors of the training set. These results are obtained for a face database consisting of only four persons.
Posture recognition based on fuzzy logic for home monitoring of the elderly.
Brulin, Damien; Benezeth, Yannick; Courtial, Estelle
2012-09-01
We propose in this paper a computer vision-based posture recognition method for home monitoring of the elderly. The proposed system performs human detection prior to the posture analysis; posture recognition is performed only on a human silhouette. The human detection approach has been designed to be robust to different environmental stimuli. Thus, posture is analyzed with simple and efficient features that are not designed to manage constraints related to the environment but only designed to describe human silhouettes. The posture recognition method, based on fuzzy logic, identifies four static postures and is robust to variation in the distance between the camera and the person, and to the person's morphology. With an accuracy of 74.29% of satisfactory posture recognition, this approach can detect emergency situations such as a fall within a health smart home.
Speech recognition for embedded automatic positioner for laparoscope
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Yin, Qingyun; Wang, Yi; Yu, Daoyin
2014-07-01
In this paper a novel speech recognition methodology based on Hidden Markov Model (HMM) is proposed for embedded Automatic Positioner for Laparoscope (APL), which includes a fixed point ARM processor as the core. The APL system is designed to assist the doctor in laparoscopic surgery, by implementing the specific doctor's vocal control to the laparoscope. Real-time respond to the voice commands asks for more efficient speech recognition algorithm for the APL. In order to reduce computation cost without significant loss in recognition accuracy, both arithmetic and algorithmic optimizations are applied in the method presented. First, depending on arithmetic optimizations most, a fixed point frontend for speech feature analysis is built according to the ARM processor's character. Then the fast likelihood computation algorithm is used to reduce computational complexity of the HMM-based recognition algorithm. The experimental results show that, the method shortens the recognition time within 0.5s, while the accuracy higher than 99%, demonstrating its ability to achieve real-time vocal control to the APL.
Implementation of age and gender recognition system for intelligent digital signage
NASA Astrophysics Data System (ADS)
Lee, Sang-Heon; Sohn, Myoung-Kyu; Kim, Hyunduk
2015-12-01
Intelligent digital signage systems transmit customized advertising and information by analyzing users and customers, unlike existing system that presented advertising in the form of broadcast without regard to type of customers. Currently, development of intelligent digital signage system has been pushed forward vigorously. In this study, we designed a system capable of analyzing gender and age of customers based on image obtained from camera, although there are many different methods for analyzing customers. We conducted age and gender recognition experiments using public database. The age/gender recognition experiments were performed through histogram matching method by extracting Local binary patterns (LBP) features after facial area on input image was normalized. The results of experiment showed that gender recognition rate was as high as approximately 97% on average. Age recognition was conducted based on categorization into 5 age classes. Age recognition rates for women and men were about 67% and 68%, respectively when that conducted separately for different gender.
Hsieh, Sheng-Hsun; Li, Yung-Hui; Tien, Chung-Hao; Chang, Chin-Chen
2016-12-01
Iris recognition has gained increasing popularity over the last few decades; however, the stand-off distance in a conventional iris recognition system is too short, which limits its application. In this paper, we propose a novel hardware-software hybrid method to increase the stand-off distance in an iris recognition system. When designing the system hardware, we use an optimized wavefront coding technique to extend the depth of field. To compensate for the blurring of the image caused by wavefront coding, on the software side, the proposed system uses a local patch-based super-resolution method to restore the blurred image to its clear version. The collaborative effect of the new hardware design and software post-processing showed great potential in our experiment. The experimental results showed that such improvement cannot be achieved by using a hardware-or software-only design. The proposed system can increase the capture volume of a conventional iris recognition system by three times and maintain the system's high recognition rate.
Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung Y; Kim, Tae-Seong
2010-09-01
Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.
Infrared vehicle recognition using unsupervised feature learning based on K-feature
NASA Astrophysics Data System (ADS)
Lin, Jin; Tan, Yihua; Xia, Haijiao; Tian, Jinwen
2018-02-01
Subject to the complex battlefield environment, it is difficult to establish a complete knowledge base in practical application of vehicle recognition algorithms. The infrared vehicle recognition is always difficult and challenging, which plays an important role in remote sensing. In this paper we propose a new unsupervised feature learning method based on K-feature to recognize vehicle in infrared images. First, we use the target detection algorithm which is based on the saliency to detect the initial image. Then, the unsupervised feature learning based on K-feature, which is generated by Kmeans clustering algorithm that extracted features by learning a visual dictionary from a large number of samples without label, is calculated to suppress the false alarm and improve the accuracy. Finally, the vehicle target recognition image is finished by some post-processing. Large numbers of experiments demonstrate that the proposed method has satisfy recognition effectiveness and robustness for vehicle recognition in infrared images under complex backgrounds, and it also improve the reliability of it.
NASA Astrophysics Data System (ADS)
Hagita, Norihiro; Sawaki, Minako
1995-03-01
Most conventional methods in character recognition extract geometrical features such as stroke direction, connectivity of strokes, etc., and compare them with reference patterns in a stored dictionary. Unfortunately, geometrical features are easily degraded by blurs, stains and the graphical background designs used in Japanese newspaper headlines. This noise must be removed before recognition commences, but no preprocessing method is completely accurate. This paper proposes a method for recognizing degraded characters and characters printed on graphical background designs. This method is based on the binary image feature method and uses binary images as features. A new similarity measure, called the complementary similarity measure, is used as a discriminant function. It compares the similarity and dissimilarity of binary patterns with reference dictionary patterns. Experiments are conducted using the standard character database ETL-2 which consists of machine-printed Kanji, Hiragana, Katakana, alphanumeric, an special characters. The results show that this method is much more robust against noise than the conventional geometrical feature method. It also achieves high recognition rates of over 92% for characters with textured foregrounds, over 98% for characters with textured backgrounds, over 98% for outline fonts, and over 99% for reverse contrast characters.
[Surface electromyography signal classification using gray system theory].
Xie, Hongbo; Ma, Congbin; Wang, Zhizhong; Huang, Hai
2004-12-01
A new method based on gray correlation was introduced to improve the identification rate in artificial limb. The electromyography (EMG) signal was first transformed into time-frequency domain by wavelet transform. Singular value decomposition (SVD) was then used to extract feature vector from the wavelet coefficient for pattern recognition. The decision was made according to the maximum gray correlation coefficient. Compared with neural network recognition, this robust method has an almost equivalent recognition rate but much lower computation costs and less training samples.
Speech-Enabled Interfaces for Travel Information Systems with Large Grammars
NASA Astrophysics Data System (ADS)
Zhao, Baoli; Allen, Tony; Bargiela, Andrzej
This paper introduces three grammar-segmentation methods capable of handling the large grammar issues associated with producing a real-time speech-enabled VXML bus travel application for London. Large grammars tend to produce relatively slow recognition interfaces and this work shows how this limitation can be successfully addressed. Comparative experimental results show that the novel last-word recognition based grammar segmentation method described here achieves an optimal balance between recognition rate, speed of processing and naturalness of interaction.
Vehicle license plate recognition based on geometry restraints and multi-feature decision
NASA Astrophysics Data System (ADS)
Wu, Jianwei; Wang, Zongyue
2005-10-01
Vehicle license plate (VLP) recognition is of great importance to many traffic applications. Though researchers have paid much attention to VLP recognition there has not been a fully operational VLP recognition system yet for many reasons. This paper discusses a valid and practical method for vehicle license plate recognition based on geometry restraints and multi-feature decision including statistical and structural features. In general, the VLP recognition includes the following steps: the location of VLP, character segmentation, and character recognition. This paper discusses the three steps in detail. The characters of VLP are always declining caused by many factors, which makes it more difficult to recognize the characters of VLP, therefore geometry restraints such as the general ratio of length and width, the adjacent edges being perpendicular are used for incline correction. Image Moment has been proved to be invariant to translation, rotation and scaling therefore image moment is used as one feature for character recognition. Stroke is the basic element for writing and hence taking it as a feature is helpful to character recognition. Finally we take the image moment, the strokes and the numbers of each stroke for each character image and some other structural features and statistical features as the multi-feature to match each character image with sample character images so that each character image can be recognized by BP neural net. The proposed method combines statistical and structural features for VLP recognition, and the result shows its validity and efficiency.
View-Invariant Gait Recognition Through Genetic Template Segmentation
NASA Astrophysics Data System (ADS)
Isaac, Ebenezer R. H. P.; Elias, Susan; Rajagopalan, Srinivasan; Easwarakumar, K. S.
2017-08-01
Template-based model-free approach provides by far the most successful solution to the gait recognition problem in literature. Recent work discusses how isolating the head and leg portion of the template increase the performance of a gait recognition system making it robust against covariates like clothing and carrying conditions. However, most involve a manual definition of the boundaries. The method we propose, the genetic template segmentation (GTS), employs the genetic algorithm to automate the boundary selection process. This method was tested on the GEI, GEnI and AEI templates. GEI seems to exhibit the best result when segmented with our approach. Experimental results depict that our approach significantly outperforms the existing implementations of view-invariant gait recognition.
Exploring Techniques for Vision Based Human Activity Recognition: Methods, Systems, and Evaluation
Xu, Xin; Tang, Jinshan; Zhang, Xiaolong; Liu, Xiaoming; Zhang, Hong; Qiu, Yimin
2013-01-01
With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activities, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation of the performance of human activity recognition. PMID:23353144
Finger tips detection for two handed gesture recognition
NASA Astrophysics Data System (ADS)
Bhuyan, M. K.; Kar, Mithun Kumar; Neog, Debanga Raj
2011-10-01
In this paper, a novel algorithm is proposed for fingertips detection in view of two-handed static hand pose recognition. In our method, finger tips of both hands are detected after detecting hand regions by skin color-based segmentation. At first, the face is removed in the image by using Haar classifier and subsequently, the regions corresponding to the gesturing hands are isolated by a region labeling technique. Next, the key geometric features characterizing gesturing hands are extracted for two hands. Finally, for all possible/allowable finger movements, a probabilistic model is developed for pose recognition. Proposed method can be employed in a variety of applications like sign language recognition and human-robot-interactions etc.
Extraction and fusion of spectral parameters for face recognition
NASA Astrophysics Data System (ADS)
Boisier, B.; Billiot, B.; Abdessalem, Z.; Gouton, P.; Hardeberg, J. Y.
2011-03-01
Many methods have been developed in image processing for face recognition, especially in recent years with the increase of biometric technologies. However, most of these techniques are used on grayscale images acquired in the visible range of the electromagnetic spectrum. The aims of our study are to improve existing tools and to develop new methods for face recognition. The techniques used take advantage of the different spectral ranges, the visible, optical infrared and thermal infrared, by either combining them or analyzing them separately in order to extract the most appropriate information for face recognition. We also verify the consistency of several keypoints extraction techniques in the Near Infrared (NIR) and in the Visible Spectrum.
Hierarchical ensemble of global and local classifiers for face recognition.
Su, Yu; Shan, Shiguang; Chen, Xilin; Gao, Wen
2009-08-01
In the literature of psychophysics and neurophysiology, many studies have shown that both global and local features are crucial for face representation and recognition. This paper proposes a novel face recognition method which exploits both global and local discriminative features. In this method, global features are extracted from the whole face images by keeping the low-frequency coefficients of Fourier transform, which we believe encodes the holistic facial information, such as facial contour. For local feature extraction, Gabor wavelets are exploited considering their biological relevance. After that, Fisher's linear discriminant (FLD) is separately applied to the global Fourier features and each local patch of Gabor features. Thus, multiple FLD classifiers are obtained, each embodying different facial evidences for face recognition. Finally, all these classifiers are combined to form a hierarchical ensemble classifier. We evaluate the proposed method using two large-scale face databases: FERET and FRGC version 2.0. Experiments show that the results of our method are impressively better than the best known results with the same evaluation protocol.
Huo, Guanying
2017-01-01
As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614
Formal implementation of a performance evaluation model for the face recognition system.
Shin, Yong-Nyuo; Kim, Jason; Lee, Yong-Jun; Shin, Woochang; Choi, Jin-Young
2008-01-01
Due to usability features, practical applications, and its lack of intrusiveness, face recognition technology, based on information, derived from individuals' facial features, has been attracting considerable attention recently. Reported recognition rates of commercialized face recognition systems cannot be admitted as official recognition rates, as they are based on assumptions that are beneficial to the specific system and face database. Therefore, performance evaluation methods and tools are necessary to objectively measure the accuracy and performance of any face recognition system. In this paper, we propose and formalize a performance evaluation model for the biometric recognition system, implementing an evaluation tool for face recognition systems based on the proposed model. Furthermore, we performed evaluations objectively by providing guidelines for the design and implementation of a performance evaluation system, formalizing the performance test process.
1992-12-23
predominance of structural models of recognition, of which a recent example is the Recognition By Components (RBC) theory ( Biederman , 1987 ). Structural...related to recent statistical theory (Huber, 1985; Friedman, 1987 ) and is derived from a biologically motivated computational theory (Bienenstock et...dimensional object recognition (Intrator and Gold, 1991). The method is related to recent statistical theory (Huber, 1985; Friedman, 1987 ) and is derived
Farsham, Aida; Abbaslou, Tahereh; Bidaki, Reza; Bozorg, Bonnie
2017-01-01
Objective: No research has been conducted on facial emotional recognition on patients with borderline personality disorder (BPD) and schizotypal personality disorder (SPD). The present study aimed at comparing facial emotion recognition in these patients with the general population. The neurocognitive processing of emotions can show the pathologic style of these 2 disorders. Method: Twenty BPD patients, 16 SPD patients, and 20 healthy individuals were selected by available sampling method. Structural Clinical Interview for Axis II, Millon Personality Inventory, Beck Depression Inventory and Facial Emotional Recognition Test was were conducted for all participants. Discussion: The results of one way ANOVA and Scheffe’s post hoc test analysis revealed significant differences in neuropsychology assessment of facial emotional recognition between BPD and SPD patients with normal group (p = 0/001). A significant difference was found in emotion recognition of fear between the 2 groups of BPD and normal population (p = 0/008). A significant difference was observed between SPD patients and control group in emotion recognition of wonder (p = 0/04(. The obtained results indicated a deficit in negative emotion recognition, especially disgust emotion, thus, it can be concluded that these patients have the same neurocognitive profile in the emotion domain. PMID:28659980
Iddamalgoda, Lahiru; Das, Partha S; Aponso, Achala; Sundararajan, Vijayaraghava S; Suravajhala, Prashanth; Valadi, Jayaraman K
2016-01-01
Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited diseases and deliberate the need of binary classification- and scoring-based prioritization methods in determining causal variants. While we discuss the pros and cons associated with these methods known, we argue that the gene prioritization methods and the protein interaction (PPI) methods in conjunction with the K nearest neighbors' could be used in accurately categorizing the genetic factors in disease causation.
Object recognition in images via a factor graph model
NASA Astrophysics Data System (ADS)
He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu
2018-04-01
Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.
A computerized recognition system for the home-based physiotherapy exercises using an RGBD camera.
Ar, Ilktan; Akgul, Yusuf Sinan
2014-11-01
Computerized recognition of the home based physiotherapy exercises has many benefits and it has attracted considerable interest among the computer vision community. However, most methods in the literature view this task as a special case of motion recognition. In contrast, we propose to employ the three main components of a physiotherapy exercise (the motion patterns, the stance knowledge, and the exercise object) as different recognition tasks and embed them separately into the recognition system. The low level information about each component is gathered using machine learning methods. Then, we use a generative Bayesian network to recognize the exercise types by combining the information from these sources at an abstract level, which takes the advantage of domain knowledge for a more robust system. Finally, a novel postprocessing step is employed to estimate the exercise repetitions counts. The performance evaluation of the system is conducted with a new dataset which contains RGB (red, green, and blue) and depth videos of home-based exercise sessions for commonly applied shoulder and knee exercises. The proposed system works without any body-part segmentation, bodypart tracking, joint detection, and temporal segmentation methods. In the end, favorable exercise recognition rates and encouraging results on the estimation of repetition counts are obtained.
Video-based face recognition via convolutional neural networks
NASA Astrophysics Data System (ADS)
Bao, Tianlong; Ding, Chunhui; Karmoshi, Saleem; Zhu, Ming
2017-06-01
Face recognition has been widely studied recently while video-based face recognition still remains a challenging task because of the low quality and large intra-class variation of video captured face images. In this paper, we focus on two scenarios of video-based face recognition: 1)Still-to-Video(S2V) face recognition, i.e., querying a still face image against a gallery of video sequences; 2)Video-to-Still(V2S) face recognition, in contrast to S2V scenario. A novel method was proposed in this paper to transfer still and video face images to an Euclidean space by a carefully designed convolutional neural network, then Euclidean metrics are used to measure the distance between still and video images. Identities of still and video images that group as pairs are used as supervision. In the training stage, a joint loss function that measures the Euclidean distance between the predicted features of training pairs and expanding vectors of still images is optimized to minimize the intra-class variation while the inter-class variation is guaranteed due to the large margin of still images. Transferred features are finally learned via the designed convolutional neural network. Experiments are performed on COX face dataset. Experimental results show that our method achieves reliable performance compared with other state-of-the-art methods.
Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo
2015-01-01
Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes. PMID:25714094
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.
2003-01-01
A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.
Implementation study of wearable sensors for activity recognition systems
Ghassemian, Mona
2015-01-01
This Letter investigates and reports on a number of activity recognition methods for a wearable sensor system. The authors apply three methods for data transmission, namely ‘stream-based’, ‘feature-based’ and ‘threshold-based’ scenarios to study the accuracy against energy efficiency of transmission and processing power that affects the mote's battery lifetime. They also report on the impact of variation of sampling frequency and data transmission rate on energy consumption of motes for each method. This study leads us to propose a cross-layer optimisation of an activity recognition system for provisioning acceptable levels of accuracy and energy efficiency. PMID:26609413
10 CFR 431.19 - Department of Energy recognition of accreditation bodies.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Department of Energy recognition of accreditation bodies. 431.19 Section 431.19 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.19 Department of Energy recognition of accreditation bodies. (a...
10 CFR 431.19 - Department of Energy recognition of accreditation bodies.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Department of Energy recognition of accreditation bodies. 431.19 Section 431.19 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.19 Department of Energy recognition of accreditation bodies. (a...
10 CFR 431.19 - Department of Energy recognition of accreditation bodies.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Department of Energy recognition of accreditation bodies. 431.19 Section 431.19 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.19 Department of Energy recognition of accreditation bodies. (a...
10 CFR 431.19 - Department of Energy recognition of accreditation bodies.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Department of Energy recognition of accreditation bodies. 431.19 Section 431.19 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.19 Department of Energy recognition of accreditation bodies. (a...
10 CFR 431.19 - Department of Energy recognition of accreditation bodies.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Department of Energy recognition of accreditation bodies. 431.19 Section 431.19 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.19 Department of Energy recognition of accreditation bodies. (a...
Terrain type recognition using ERTS-1 MSS images
NASA Technical Reports Server (NTRS)
Gramenopoulos, N.
1973-01-01
For the automatic recognition of earth resources from ERTS-1 digital tapes, both multispectral and spatial pattern recognition techniques are important. Recognition of terrain types is based on spatial signatures that become evident by processing small portions of an image through selected algorithms. An investigation of spatial signatures that are applicable to ERTS-1 MSS images is described. Artifacts in the spatial signatures seem to be related to the multispectral scanner. A method for suppressing such artifacts is presented. Finally, results of terrain type recognition for one ERTS-1 image are presented.
CNN based approach for activity recognition using a wrist-worn accelerometer.
Panwar, Madhuri; Dyuthi, S Ram; Chandra Prakash, K; Biswas, Dwaipayan; Acharyya, Amit; Maharatna, Koushik; Gautam, Arvind; Naik, Ganesh R
2017-07-01
In recent years, significant advancements have taken place in human activity recognition using various machine learning approaches. However, feature engineering have dominated conventional methods involving the difficult process of optimal feature selection. This problem has been mitigated by using a novel methodology based on deep learning framework which automatically extracts the useful features and reduces the computational cost. As a proof of concept, we have attempted to design a generalized model for recognition of three fundamental movements of the human forearm performed in daily life where data is collected from four different subjects using a single wrist worn accelerometer sensor. The validation of the proposed model is done with different pre-processing and noisy data condition which is evaluated using three possible methods. The results show that our proposed methodology achieves an average recognition rate of 99.8% as opposed to conventional methods based on K-means clustering, linear discriminant analysis and support vector machine.
Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition
NASA Technical Reports Server (NTRS)
Huntsberger, Terry
2011-01-01
The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.
NASA Astrophysics Data System (ADS)
Maskeliunas, Rytis; Rudzionis, Vytautas
2011-06-01
In recent years various commercial speech recognizers have become available. These recognizers provide the possibility to develop applications incorporating various speech recognition techniques easily and quickly. All of these commercial recognizers are typically targeted to widely spoken languages having large market potential; however, it may be possible to adapt available commercial recognizers for use in environments where less widely spoken languages are used. Since most commercial recognition engines are closed systems the single avenue for the adaptation is to try set ways for the selection of proper phonetic transcription methods between the two languages. This paper deals with the methods to find the phonetic transcriptions for Lithuanian voice commands to be recognized using English speech engines. The experimental evaluation showed that it is possible to find phonetic transcriptions that will enable the recognition of Lithuanian voice commands with recognition accuracy of over 90%.
Intelligent fault recognition strategy based on adaptive optimized multiple centers
NASA Astrophysics Data System (ADS)
Zheng, Bo; Li, Yan-Feng; Huang, Hong-Zhong
2018-06-01
For the recognition principle based optimized single center, one important issue is that the data with nonlinear separatrix cannot be recognized accurately. In order to solve this problem, a novel recognition strategy based on adaptive optimized multiple centers is proposed in this paper. This strategy recognizes the data sets with nonlinear separatrix by the multiple centers. Meanwhile, the priority levels are introduced into the multi-objective optimization, including recognition accuracy, the quantity of optimized centers, and distance relationship. According to the characteristics of various data, the priority levels are adjusted to ensure the quantity of optimized centers adaptively and to keep the original accuracy. The proposed method is compared with other methods, including support vector machine (SVM), neural network, and Bayesian classifier. The results demonstrate that the proposed strategy has the same or even better recognition ability on different distribution characteristics of data.
Enhanced facial texture illumination normalization for face recognition.
Luo, Yong; Guan, Ye-Peng
2015-08-01
An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.
Target recognition for ladar range image using slice image
NASA Astrophysics Data System (ADS)
Xia, Wenze; Han, Shaokun; Wang, Liang
2015-12-01
A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.
Chinese character recognition based on Gabor feature extraction and CNN
NASA Astrophysics Data System (ADS)
Xiong, Yudian; Lu, Tongwei; Jiang, Yongyuan
2018-03-01
As an important application in the field of text line recognition and office automation, Chinese character recognition has become an important subject of pattern recognition. However, due to the large number of Chinese characters and the complexity of its structure, there is a great difficulty in the Chinese character recognition. In order to solve this problem, this paper proposes a method of printed Chinese character recognition based on Gabor feature extraction and Convolution Neural Network(CNN). The main steps are preprocessing, feature extraction, training classification. First, the gray-scale Chinese character image is binarized and normalized to reduce the redundancy of the image data. Second, each image is convoluted with Gabor filter with different orientations, and the feature map of the eight orientations of Chinese characters is extracted. Third, the feature map through Gabor filters and the original image are convoluted with learning kernels, and the results of the convolution is the input of pooling layer. Finally, the feature vector is used to classify and recognition. In addition, the generalization capacity of the network is improved by Dropout technology. The experimental results show that this method can effectively extract the characteristics of Chinese characters and recognize Chinese characters.
Jonnagaddala, Jitendra; Jue, Toni Rose; Chang, Nai-Wen; Dai, Hong-Jie
2016-01-01
The rapidly increasing biomedical literature calls for the need of an automatic approach in the recognition and normalization of disease mentions in order to increase the precision and effectivity of disease based information retrieval. A variety of methods have been proposed to deal with the problem of disease named entity recognition and normalization. Among all the proposed methods, conditional random fields (CRFs) and dictionary lookup method are widely used for named entity recognition and normalization respectively. We herein developed a CRF-based model to allow automated recognition of disease mentions, and studied the effect of various techniques in improving the normalization results based on the dictionary lookup approach. The dataset from the BioCreative V CDR track was used to report the performance of the developed normalization methods and compare with other existing dictionary lookup based normalization methods. The best configuration achieved an F-measure of 0.77 for the disease normalization, which outperformed the best dictionary lookup based baseline method studied in this work by an F-measure of 0.13.Database URL: https://github.com/TCRNBioinformatics/DiseaseExtract. © The Author(s) 2016. Published by Oxford University Press.
Event Recognition Based on Deep Learning in Chinese Texts
Zhang, Yajun; Liu, Zongtian; Zhou, Wen
2016-01-01
Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%. PMID:27501231
A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database.
Huang, Zhiwu; Shan, Shiguang; Wang, Ruiping; Zhang, Haihong; Lao, Shihong; Kuerban, Alifu; Chen, Xilin
2015-12-01
Face recognition with still face images has been widely studied, while the research on video-based face recognition is inadequate relatively, especially in terms of benchmark datasets and comparisons. Real-world video-based face recognition applications require techniques for three distinct scenarios: 1) Videoto-Still (V2S); 2) Still-to-Video (S2V); and 3) Video-to-Video (V2V), respectively, taking video or still image as query or target. To the best of our knowledge, few datasets and evaluation protocols have benchmarked for all the three scenarios. In order to facilitate the study of this specific topic, this paper contributes a benchmarking and comparative study based on a newly collected still/video face database, named COX(1) Face DB. Specifically, we make three contributions. First, we collect and release a largescale still/video face database to simulate video surveillance with three different video-based face recognition scenarios (i.e., V2S, S2V, and V2V). Second, for benchmarking the three scenarios designed on our database, we review and experimentally compare a number of existing set-based methods. Third, we further propose a novel Point-to-Set Correlation Learning (PSCL) method, and experimentally show that it can be used as a promising baseline method for V2S/S2V face recognition on COX Face DB. Extensive experimental results clearly demonstrate that video-based face recognition needs more efforts, and our COX Face DB is a good benchmark database for evaluation.
Event Recognition Based on Deep Learning in Chinese Texts.
Zhang, Yajun; Liu, Zongtian; Zhou, Wen
2016-01-01
Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.
NASA Astrophysics Data System (ADS)
Yan, Fengxia; Udupa, Jayaram K.; Tong, Yubing; Xu, Guoping; Odhner, Dewey; Torigian, Drew A.
2018-03-01
The recently developed body-wide Automatic Anatomy Recognition (AAR) methodology depends on fuzzy modeling of individual objects, hierarchically arranging objects, constructing an anatomy ensemble of these models, and a dichotomous object recognition-delineation process. The parent-to-offspring spatial relationship in the object hierarchy is crucial in the AAR method. We have found this relationship to be quite complex, and as such any improvement in capturing this relationship information in the anatomy model will improve the process of recognition itself. Currently, the method encodes this relationship based on the layout of the geometric centers of the objects. Motivated by the concept of virtual landmarks (VLs), this paper presents a new one-shot AAR recognition method that utilizes the VLs to learn object relationships by training a neural network to predict the pose and the VLs of an offspring object given the VLs of the parent object in the hierarchy. We set up two neural networks for each parent-offspring object pair in a body region, one for predicting the VLs and another for predicting the pose parameters. The VL-based learning/prediction method is evaluated on two object hierarchies involving 14 objects. We utilize 54 computed tomography (CT) image data sets of head and neck cancer patients and the associated object contours drawn by dosimetrists for routine radiation therapy treatment planning. The VL neural network method is found to yield more accurate object localization than the currently used simple AAR method.
Computer Vision for Artificially Intelligent Robotic Systems
NASA Astrophysics Data System (ADS)
Ma, Chialo; Ma, Yung-Lung
1987-04-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
NASA Astrophysics Data System (ADS)
Ma, Yung-Lung; Ma, Chialo
1987-03-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
Pose Invariant Face Recognition Based on Hybrid Dominant Frequency Features
NASA Astrophysics Data System (ADS)
Wijaya, I. Gede Pasek Suta; Uchimura, Keiichi; Hu, Zhencheng
Face recognition is one of the most active research areas in pattern recognition, not only because the face is a human biometric characteristics of human being but also because there are many potential applications of the face recognition which range from human-computer interactions to authentication, security, and surveillance. This paper presents an approach to pose invariant human face image recognition. The proposed scheme is based on the analysis of discrete cosine transforms (DCT) and discrete wavelet transforms (DWT) of face images. From both the DCT and DWT domain coefficients, which describe the facial information, we build compact and meaningful features vector, using simple statistical measures and quantization. This feature vector is called as the hybrid dominant frequency features. Then, we apply a combination of the L2 and Lq metric to classify the hybrid dominant frequency features to a person's class. The aim of the proposed system is to overcome the high memory space requirement, the high computational load, and the retraining problems of previous methods. The proposed system is tested using several face databases and the experimental results are compared to a well-known Eigenface method. The proposed method shows good performance, robustness, stability, and accuracy without requiring geometrical normalization. Furthermore, the purposed method has low computational cost, requires little memory space, and can overcome retraining problem.
Ear recognition from one sample per person.
Chen, Long; Mu, Zhichun; Zhang, Baoqing; Zhang, Yi
2015-01-01
Biometrics has the advantages of efficiency and convenience in identity authentication. As one of the most promising biometric-based methods, ear recognition has received broad attention and research. Previous studies have achieved remarkable performance with multiple samples per person (MSPP) in the gallery. However, most conventional methods are insufficient when there is only one sample per person (OSPP) available in the gallery. To solve the OSPP problem by maximizing the use of a single sample, this paper proposes a hybrid multi-keypoint descriptor sparse representation-based classification (MKD-SRC) ear recognition approach based on 2D and 3D information. Because most 3D sensors capture 3D data accessorizing the corresponding 2D data, it is sensible to use both types of information. First, the ear region is extracted from the profile. Second, keypoints are detected and described for both the 2D texture image and 3D range image. Then, the hybrid MKD-SRC algorithm is used to complete the recognition with only OSPP in the gallery. Experimental results on a benchmark dataset have demonstrated the feasibility and effectiveness of the proposed method in resolving the OSPP problem. A Rank-one recognition rate of 96.4% is achieved for a gallery of 415 subjects, and the time involved in the computation is satisfactory compared to conventional methods.
Component-based target recognition inspired by human vision
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Agyepong, Kwabena
2009-05-01
In contrast with machine vision, human can recognize an object from complex background with great flexibility. For example, given the task of finding and circling all cars (no further information) in a picture, you may build a virtual image in mind from the task (or target) description before looking at the picture. Specifically, the virtual car image may be composed of the key components such as driver cabin and wheels. In this paper, we propose a component-based target recognition method by simulating the human recognition process. The component templates (equivalent to the virtual image in mind) of the target (car) are manually decomposed from the target feature image. Meanwhile, the edges of the testing image can be extracted by using a difference of Gaussian (DOG) model that simulates the spatiotemporal response in visual process. A phase correlation matching algorithm is then applied to match the templates with the testing edge image. If all key component templates are matched with the examining object, then this object is recognized as the target. Besides the recognition accuracy, we will also investigate if this method works with part targets (half cars). In our experiments, several natural pictures taken on streets were used to test the proposed method. The preliminary results show that the component-based recognition method is very promising.
Learning to recognize rat social behavior: Novel dataset and cross-dataset application.
Lorbach, Malte; Kyriakou, Elisavet I; Poppe, Ronald; van Dam, Elsbeth A; Noldus, Lucas P J J; Veltkamp, Remco C
2018-04-15
Social behavior is an important aspect of rodent models. Automated measuring tools that make use of video analysis and machine learning are an increasingly attractive alternative to manual annotation. Because machine learning-based methods need to be trained, it is important that they are validated using data from different experiment settings. To develop and validate automated measuring tools, there is a need for annotated rodent interaction datasets. Currently, the availability of such datasets is limited to two mouse datasets. We introduce the first, publicly available rat social interaction dataset, RatSI. We demonstrate the practical value of the novel dataset by using it as the training set for a rat interaction recognition method. We show that behavior variations induced by the experiment setting can lead to reduced performance, which illustrates the importance of cross-dataset validation. Consequently, we add a simple adaptation step to our method and improve the recognition performance. Most existing methods are trained and evaluated in one experimental setting, which limits the predictive power of the evaluation to that particular setting. We demonstrate that cross-dataset experiments provide more insight in the performance of classifiers. With our novel, public dataset we encourage the development and validation of automated recognition methods. We are convinced that cross-dataset validation enhances our understanding of rodent interactions and facilitates the development of more sophisticated recognition methods. Combining them with adaptation techniques may enable us to apply automated recognition methods to a variety of animals and experiment settings. Copyright © 2017 Elsevier B.V. All rights reserved.
Automatic anatomy recognition via multiobject oriented active shape models.
Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A
2010-12-01
This paper studies the feasibility of developing an automatic anatomy recognition (AAR) system in clinical radiology and demonstrates its operation on clinical 2D images. The anatomy recognition method described here consists of two main components: (a) multiobject generalization of OASM and (b) object recognition strategies. The OASM algorithm is generalized to multiple objects by including a model for each object and assigning a cost structure specific to each object in the spirit of live wire. The delineation of multiobject boundaries is done in MOASM via a three level dynamic programming algorithm, wherein the first level is at pixel level which aims to find optimal oriented boundary segments between successive landmarks, the second level is at landmark level which aims to find optimal location for the landmarks, and the third level is at the object level which aims to find optimal arrangement of object boundaries over all objects. The object recognition strategy attempts to find that pose vector (consisting of translation, rotation, and scale component) for the multiobject model that yields the smallest total boundary cost for all objects. The delineation and recognition accuracies were evaluated separately utilizing routine clinical chest CT, abdominal CT, and foot MRI data sets. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF and FPVF). The recognition accuracy was assessed (1) in terms of the size of the space of the pose vectors for the model assembly that yielded high delineation accuracy, (2) as a function of the number of objects and objects' distribution and size in the model, (3) in terms of the interdependence between delineation and recognition, and (4) in terms of the closeness of the optimum recognition result to the global optimum. When multiple objects are included in the model, the delineation accuracy in terms of TPVF can be improved to 97%-98% with a low FPVF of 0.1%-0.2%. Typically, a recognition accuracy of > or = 90% yielded a TPVF > or = 95% and FPVF < or = 0.5%. Over the three data sets and over all tested objects, in 97% of the cases, the optimal solutions found by the proposed method constituted the true global optimum. The experimental results showed the feasibility and efficacy of the proposed automatic anatomy recognition system. Increasing the number of objects in the model can significantly improve both recognition and delineation accuracy. More spread out arrangement of objects in the model can lead to improved recognition and delineation accuracy. Including larger objects in the model also improved recognition and delineation. The proposed method almost always finds globally optimum solutions.
Practical vision based degraded text recognition system
NASA Astrophysics Data System (ADS)
Mohammad, Khader; Agaian, Sos; Saleh, Hani
2011-02-01
Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published techniques. The system successfully produced impressive OCR accuracies (90% -to- 93%) using customized systems generated by our development framework in two industrial OCR applications: water bottle label text recognition and concrete slab plate text recognition. The system was also trained for the Arabic language alphabet, and demonstrated extremely high recognition accuracy (99%) for Arabic license name plate text recognition with processing times of 10 seconds. The accuracy and run times of the system were compared to conventional and many states of art methods, the proposed system shows excellent results.
NASA Astrophysics Data System (ADS)
Qu, Hongquan; Yuan, Shijiao; Wang, Yanping; Yang, Dan
2018-04-01
To improve the recognition performance of optical fiber prewarning system (OFPS), this study proposed a hierarchical recognition algorithm (HRA). Compared with traditional methods, which employ only a complex algorithm that includes multiple extracted features and complex classifiers to increase the recognition rate with a considerable decrease in recognition speed, HRA takes advantage of the continuity of intrusion events, thereby creating a staged recognition flow inspired by stress reaction. HRA is expected to achieve high-level recognition accuracy with less time consumption. First, this work analyzed the continuity of intrusion events and then presented the algorithm based on the mechanism of stress reaction. Finally, it verified the time consumption through theoretical analysis and experiments, and the recognition accuracy was obtained through experiments. Experiment results show that the processing speed of HRA is 3.3 times faster than that of a traditional complicated algorithm and has a similar recognition rate of 98%. The study is of great significance to fast intrusion event recognition in OFPS.
Xie, Shan Juan; Lu, Yu; Yoon, Sook; Yang, Jucheng; Park, Dong Sun
2015-01-01
Finger vein recognition has been considered one of the most promising biometrics for personal authentication. However, the capacities and percentages of finger tissues (e.g., bone, muscle, ligament, water, fat, etc.) vary person by person. This usually causes poor quality of finger vein images, therefore degrading the performance of finger vein recognition systems (FVRSs). In this paper, the intrinsic factors of finger tissue causing poor quality of finger vein images are analyzed, and an intensity variation (IV) normalization method using guided filter based single scale retinex (GFSSR) is proposed for finger vein image enhancement. The experimental results on two public datasets demonstrate the effectiveness of the proposed method in enhancing the image quality and finger vein recognition accuracy. PMID:26184226
Xie, Shan Juan; Lu, Yu; Yoon, Sook; Yang, Jucheng; Park, Dong Sun
2015-07-14
Finger vein recognition has been considered one of the most promising biometrics for personal authentication. However, the capacities and percentages of finger tissues (e.g., bone, muscle, ligament, water, fat, etc.) vary person by person. This usually causes poor quality of finger vein images, therefore degrading the performance of finger vein recognition systems (FVRSs). In this paper, the intrinsic factors of finger tissue causing poor quality of finger vein images are analyzed, and an intensity variation (IV) normalization method using guided filter based single scale retinex (GFSSR) is proposed for finger vein image enhancement. The experimental results on two public datasets demonstrate the effectiveness of the proposed method in enhancing the image quality and finger vein recognition accuracy.
Face recognition algorithm using extended vector quantization histogram features.
Yan, Yan; Lee, Feifei; Wu, Xueqian; Chen, Qiu
2018-01-01
In this paper, we propose a face recognition algorithm based on a combination of vector quantization (VQ) and Markov stationary features (MSF). The VQ algorithm has been shown to be an effective method for generating features; it extracts a codevector histogram as a facial feature representation for face recognition. Still, the VQ histogram features are unable to convey spatial structural information, which to some extent limits their usefulness in discrimination. To alleviate this limitation of VQ histograms, we utilize Markov stationary features (MSF) to extend the VQ histogram-based features so as to add spatial structural information. We demonstrate the effectiveness of our proposed algorithm by achieving recognition results superior to those of several state-of-the-art methods on publicly available face databases.
Body-Earth Mover's Distance: A Matching-Based Approach for Sleep Posture Recognition.
Xu, Xiaowei; Lin, Feng; Wang, Aosen; Hu, Yu; Huang, Ming-Chun; Xu, Wenyao
2016-10-01
Sleep posture is a key component in sleep quality assessment and pressure ulcer prevention. Currently, body pressure analysis has been a popular method for sleep posture recognition. In this paper, a matching-based approach, Body-Earth Mover's Distance (BEMD), for sleep posture recognition is proposed. BEMD treats pressure images as weighted 2D shapes, and combines EMD and Euclidean distance for similarity measure. Compared with existing work, sleep posture recognition is achieved with posture similarity rather than multiple features for specific postures. A pilot study is performed with 14 persons for six different postures. The experimental results show that the proposed BEMD can achieve 91.21% accuracy, which outperforms the previous method with an improvement of 8.01%.
Comparative study of methods for recognition of an unknown person's action from a video sequence
NASA Astrophysics Data System (ADS)
Hori, Takayuki; Ohya, Jun; Kurumisawa, Jun
2009-02-01
This paper proposes a Tensor Decomposition Based method that can recognize an unknown person's action from a video sequence, where the unknown person is not included in the database (tensor) used for the recognition. The tensor consists of persons, actions and time-series image features. For the observed unknown person's action, one of the actions stored in the tensor is assumed. Using the motion signature obtained from the assumption, the unknown person's actions are synthesized. The actions of one of the persons in the tensor are replaced by the synthesized actions. Then, the core tensor for the replaced tensor is computed. This process is repeated for the actions and persons. For each iteration, the difference between the replaced and original core tensors is computed. The assumption that gives the minimal difference is the action recognition result. For the time-series image features to be stored in the tensor and to be extracted from the observed video sequence, the human body silhouette's contour shape based feature is used. To show the validity of our proposed method, our proposed method is experimentally compared with Nearest Neighbor rule and Principal Component analysis based method. Experiments using 33 persons' seven kinds of action show that our proposed method achieves better recognition accuracies for the seven actions than the other methods.
Application of an auditory model to speech recognition.
Cohen, J R
1989-06-01
Some aspects of auditory processing are incorporated in a front end for the IBM speech-recognition system [F. Jelinek, "Continuous speech recognition by statistical methods," Proc. IEEE 64 (4), 532-556 (1976)]. This new process includes adaptation, loudness scaling, and mel warping. Tests show that the design is an improvement over previous algorithms.
ERIC Educational Resources Information Center
Smith, Kimberly G.; Fogerty, Daniel
2015-01-01
Purpose: This study evaluated the extent to which partial spoken or written information facilitates sentence recognition under degraded unimodal and multimodal conditions. Method: Twenty young adults with typical hearing completed sentence recognition tasks in unimodal and multimodal conditions across 3 proportions of preservation. In the unimodal…
Han, Xu; Kim, Jung-jae; Kwoh, Chee Keong
2016-01-01
Biomedical text mining may target various kinds of valuable information embedded in the literature, but a critical obstacle to the extension of the mining targets is the cost of manual construction of labeled data, which are required for state-of-the-art supervised learning systems. Active learning is to choose the most informative documents for the supervised learning in order to reduce the amount of required manual annotations. Previous works of active learning, however, focused on the tasks of entity recognition and protein-protein interactions, but not on event extraction tasks for multiple event types. They also did not consider the evidence of event participants, which might be a clue for the presence of events in unlabeled documents. Moreover, the confidence scores of events produced by event extraction systems are not reliable for ranking documents in terms of informativity for supervised learning. We here propose a novel committee-based active learning method that supports multi-event extraction tasks and employs a new statistical method for informativity estimation instead of using the confidence scores from event extraction systems. Our method is based on a committee of two systems as follows: We first employ an event extraction system to filter potential false negatives among unlabeled documents, from which the system does not extract any event. We then develop a statistical method to rank the potential false negatives of unlabeled documents 1) by using a language model that measures the probabilities of the expression of multiple events in documents and 2) by using a named entity recognition system that locates the named entities that can be event arguments (e.g. proteins). The proposed method further deals with unknown words in test data by using word similarity measures. We also apply our active learning method for the task of named entity recognition. We evaluate the proposed method against the BioNLP Shared Tasks datasets, and show that our method can achieve better performance than such previous methods as entropy and Gibbs error based methods and a conventional committee-based method. We also show that the incorporation of named entity recognition into the active learning for event extraction and the unknown word handling further improve the active learning method. In addition, the adaptation of the active learning method into named entity recognition tasks also improves the document selection for manual annotation of named entities.
Localization and recognition of traffic signs for automated vehicle control systems
NASA Astrophysics Data System (ADS)
Zadeh, Mahmoud M.; Kasvand, T.; Suen, Ching Y.
1998-01-01
We present a computer vision system for detection and recognition of traffic signs. Such systems are required to assist drivers and for guidance and control of autonomous vehicles on roads and city streets. For experiments we use sequences of digitized photographs and off-line analysis. The system contains four stages. First, region segmentation based on color pixel classification called SRSM. SRSM limits the search to regions of interest in the scene. Second, we use edge tracing to find parts of outer edges of signs which are circular or straight, corresponding to the geometrical shapes of traffic signs. The third step is geometrical analysis of the outer edge and preliminary recognition of each candidate region, which may be a potential traffic sign. The final step in recognition uses color combinations within each region and model matching. This system maybe used for recognition of other types of objects, provided that the geometrical shape and color content remain reasonably constant. The method is reliable, easy to implement, and fast, This differs form the road signs recognition method in the PROMETEUS. The overall structure of the approach is sketched.
Multi-layer sparse representation for weighted LBP-patches based facial expression recognition.
Jia, Qi; Gao, Xinkai; Guo, He; Luo, Zhongxuan; Wang, Yi
2015-03-19
In this paper, a novel facial expression recognition method based on sparse representation is proposed. Most contemporary facial expression recognition systems suffer from limited ability to handle image nuisances such as low resolution and noise. Especially for low intensity expression, most of the existing training methods have quite low recognition rates. Motivated by sparse representation, the problem can be solved by finding sparse coefficients of the test image by the whole training set. Deriving an effective facial representation from original face images is a vital step for successful facial expression recognition. We evaluate facial representation based on weighted local binary patterns, and Fisher separation criterion is used to calculate the weighs of patches. A multi-layer sparse representation framework is proposed for multi-intensity facial expression recognition, especially for low-intensity expressions and noisy expressions in reality, which is a critical problem but seldom addressed in the existing works. To this end, several experiments based on low-resolution and multi-intensity expressions are carried out. Promising results on publicly available databases demonstrate the potential of the proposed approach.
NASA Astrophysics Data System (ADS)
Nilsson, Thomy H.
2001-09-01
The psychophysical method of limits was used to measure the distance at which observers could distinguish military vehicles photographed in natural landscapes. Obtained from the TNO-TM Search_2 dataset, these pictures either were rear-projected 35-mm slides or were presented on a computer monitor. Based on the rationale that more difficult vehicle targets would require more visual pathways for recognition, difficult of acquisition was defined in terms of the relative retinal area required for recognition. Relative retinal area was derived from the inverse square of the recognition distance of a particular vehicle relative to the distance of the vehicle that could be seen furthest away. Results are compared with data on the time required to find the vehicles in these pictures. These comparison indicate recognition distance thresholds can be a suitable means of defining standards for the effectiveness of vital graphic information; and the two methods are complementary with respect to distinguishing different degrees of acquisition difficulty, and together may provide a means to measure the total information processing required for recognition.
Research on application of LADAR in ground vehicle recognition
NASA Astrophysics Data System (ADS)
Lan, Jinhui; Shen, Zhuoxun
2009-11-01
For the requirement of many practical applications in the field of military, the research of 3D target recognition is active. The representation that captures the salient attributes of a 3D target independent of the viewing angle will be especially useful to the automatic 3D target recognition system. This paper presents a new approach of image generation based on Laser Detection and Ranging (LADAR) data. Range image of target is obtained by transformation of point cloud. In order to extract features of different ground vehicle targets and to recognize targets, zernike moment properties of typical ground vehicle targets are researched in this paper. A technique of support vector machine is applied to the classification and recognition of target. The new method of image generation and feature representation has been applied to the outdoor experiments. Through outdoor experiments, it can be proven that the method of image generation is stability, the moments are effective to be used as features for recognition, and the LADAR can be applied to the field of 3D target recognition.
ERIC Educational Resources Information Center
Rodgers, Joseph Lee; Rodgers, Jacci L.
2011-01-01
We propose, develop, and evaluate the black ink-red ink (BIRI) method of testing. This approach uses two different methods within the same test administration setting, one that matches recognition learning and the other that matches recall learning. Students purposively define their own tradeoff between the two approaches. Evaluation of the method…
New methods of subcooled water recognition in dew point hygrometers
NASA Astrophysics Data System (ADS)
Weremczuk, Jerzy; Jachowicz, Ryszard
2001-08-01
Two new methods of sub-cooled water recognition in dew point hygrometers are presented in this paper. The first one- impedance method use a new semiconductor mirror in which the dew point detector, the thermometer and the heaters were integrated all together. The second one an optical method based on a multi-section optical detector is discussed in the report. Experimental results of both methods are shown. New types of dew pont hydrometers of ability to recognized sub-cooled water were proposed.
Recent progress in invariant pattern recognition
NASA Astrophysics Data System (ADS)
Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar
1996-12-01
We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.
The A2iA French handwriting recognition system at the Rimes-ICDAR2011 competition
NASA Astrophysics Data System (ADS)
Menasri, Farès; Louradour, Jérôme; Bianne-Bernard, Anne-Laure; Kermorvant, Christopher
2012-01-01
This paper describes the system for the recognition of French handwriting submitted by A2iA to the competition organized at ICDAR2011 using the Rimes database. This system is composed of several recognizers based on three different recognition technologies, combined using a novel combination method. A framework multi-word recognition based on weighted finite state transducers is presented, using an explicit word segmentation, a combination of isolated word recognizers and a language model. The system was tested both for isolated word recognition and for multi-word line recognition and submitted to the RIMES-ICDAR2011 competition. This system outperformed all previously proposed systems on these tasks.
Container-code recognition system based on computer vision and deep neural networks
NASA Astrophysics Data System (ADS)
Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao
2018-04-01
Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.
Research on pre-processing of QR Code
NASA Astrophysics Data System (ADS)
Sun, Haixing; Xia, Haojie; Dong, Ning
2013-10-01
QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.
Off-lexicon online Arabic handwriting recognition using neural network
NASA Astrophysics Data System (ADS)
Yahia, Hamdi; Chaabouni, Aymen; Boubaker, Houcine; Alimi, Adel M.
2017-03-01
This paper highlights a new method for online Arabic handwriting recognition based on graphemes segmentation. The main contribution of our work is to explore the utility of Beta-elliptic model in segmentation and features extraction for online handwriting recognition. Indeed, our method consists in decomposing the input signal into continuous part called graphemes based on Beta-Elliptical model, and classify them according to their position in the pseudo-word. The segmented graphemes are then described by the combination of geometric features and trajectory shape modeling. The efficiency of the considered features has been evaluated using feed forward neural network classifier. Experimental results using the benchmarking ADAB Database show the performance of the proposed method.
Cat-eye effect target recognition with single-pixel detectors
NASA Astrophysics Data System (ADS)
Jian, Weijian; Li, Li; Zhang, Xiaoyue
2015-12-01
A prototype of cat-eye effect target recognition with single-pixel detectors is proposed. Based on the framework of compressive sensing, it is possible to recognize cat-eye effect targets by projecting a series of known random patterns and measuring the backscattered light with three single-pixel detectors in different locations. The prototype only requires simpler, less expensive detectors and extends well beyond the visible spectrum. The simulations are accomplished to evaluate the feasibility of the proposed prototype. We compared our results to that obtained from conventional cat-eye effect target recognition methods using area array sensor. The experimental results show that this method is feasible and superior to the conventional method in dynamic and complicated backgrounds.
Statistical assessment of speech system performance
NASA Technical Reports Server (NTRS)
Moshier, Stephen L.
1977-01-01
Methods for the normalization of performance tests results of speech recognition systems are presented. Technological accomplishments in speech recognition systems, as well as planned research activities are described.
Gender recognition from unconstrained and articulated human body.
Wu, Qin; Guo, Guodong
2014-01-01
Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.
Gender Recognition from Unconstrained and Articulated Human Body
Wu, Qin; Guo, Guodong
2014-01-01
Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition. PMID:24977203
A Review on Human Activity Recognition Using Vision-Based Method.
Zhang, Shugang; Wei, Zhiqiang; Nie, Jie; Huang, Lei; Wang, Shuang; Li, Zhen
2017-01-01
Human activity recognition (HAR) aims to recognize activities from a series of observations on the actions of subjects and the environmental conditions. The vision-based HAR research is the basis of many applications including video surveillance, health care, and human-computer interaction (HCI). This review highlights the advances of state-of-the-art activity recognition approaches, especially for the activity representation and classification methods. For the representation methods, we sort out a chronological research trajectory from global representations to local representations, and recent depth-based representations. For the classification methods, we conform to the categorization of template-based methods, discriminative models, and generative models and review several prevalent methods. Next, representative and available datasets are introduced. Aiming to provide an overview of those methods and a convenient way of comparing them, we classify existing literatures with a detailed taxonomy including representation and classification methods, as well as the datasets they used. Finally, we investigate the directions for future research.
A Review on Human Activity Recognition Using Vision-Based Method
Nie, Jie
2017-01-01
Human activity recognition (HAR) aims to recognize activities from a series of observations on the actions of subjects and the environmental conditions. The vision-based HAR research is the basis of many applications including video surveillance, health care, and human-computer interaction (HCI). This review highlights the advances of state-of-the-art activity recognition approaches, especially for the activity representation and classification methods. For the representation methods, we sort out a chronological research trajectory from global representations to local representations, and recent depth-based representations. For the classification methods, we conform to the categorization of template-based methods, discriminative models, and generative models and review several prevalent methods. Next, representative and available datasets are introduced. Aiming to provide an overview of those methods and a convenient way of comparing them, we classify existing literatures with a detailed taxonomy including representation and classification methods, as well as the datasets they used. Finally, we investigate the directions for future research. PMID:29065585
A sensor and video based ontology for activity recognition in smart environments.
Mitchell, D; Morrow, Philip J; Nugent, Chris D
2014-01-01
Activity recognition is used in a wide range of applications including healthcare and security. In a smart environment activity recognition can be used to monitor and support the activities of a user. There have been a range of methods used in activity recognition including sensor-based approaches, vision-based approaches and ontological approaches. This paper presents a novel approach to activity recognition in a smart home environment which combines sensor and video data through an ontological framework. The ontology describes the relationships and interactions between activities, the user, objects, sensors and video data.
[The present state and progress of researches on gait recognition].
Xue, Zhaojun; Jin, Jingna; Ming, Dong; Wan, Baikun
2008-10-01
Recognition by gait is a new field for the biometric recognition technology. Its aim is to recognize people and detect physiological, pathological and mental characters by their walk style. The use of gait as a biometric for human identification is promising. The technique of gait recognition, as an attractive research area of biomedical information detection, attracts more and more attention. In this paper is introduced a survey of the basic theory, existing gait recognition methods and potential prospects. The latest progress and key factors of research difficulties are analyzed, and future researches are envisaged.
Character recognition from trajectory by recurrent spiking neural networks.
Jiangrong Shen; Kang Lin; Yueming Wang; Gang Pan
2017-07-01
Spiking neural networks are biologically plausible and power-efficient on neuromorphic hardware, while recurrent neural networks have been proven to be efficient on time series data. However, how to use the recurrent property to improve the performance of spiking neural networks is still a problem. This paper proposes a recurrent spiking neural network for character recognition using trajectories. In the network, a new encoding method is designed, in which varying time ranges of input streams are used in different recurrent layers. This is able to improve the generalization ability of our model compared with general encoding methods. The experiments are conducted on four groups of the character data set from University of Edinburgh. The results show that our method can achieve a higher average recognition accuracy than existing methods.
Fifty years of progress in speech and speaker recognition
NASA Astrophysics Data System (ADS)
Furui, Sadaoki
2004-10-01
Speech and speaker recognition technology has made very significant progress in the past 50 years. The progress can be summarized by the following changes: (1) from template matching to corpus-base statistical modeling, e.g., HMM and n-grams, (2) from filter bank/spectral resonance to Cepstral features (Cepstrum + DCepstrum + DDCepstrum), (3) from heuristic time-normalization to DTW/DP matching, (4) from gdistanceh-based to likelihood-based methods, (5) from maximum likelihood to discriminative approach, e.g., MCE/GPD and MMI, (6) from isolated word to continuous speech recognition, (7) from small vocabulary to large vocabulary recognition, (8) from context-independent units to context-dependent units for recognition, (9) from clean speech to noisy/telephone speech recognition, (10) from single speaker to speaker-independent/adaptive recognition, (11) from monologue to dialogue/conversation recognition, (12) from read speech to spontaneous speech recognition, (13) from recognition to understanding, (14) from single-modality (audio signal only) to multi-modal (audio/visual) speech recognition, (15) from hardware recognizer to software recognizer, and (16) from no commercial application to many practical commercial applications. Most of these advances have taken place in both the fields of speech recognition and speaker recognition. The majority of technological changes have been directed toward the purpose of increasing robustness of recognition, including many other additional important techniques not noted above.
Face recognition via sparse representation of SIFT feature on hexagonal-sampling image
NASA Astrophysics Data System (ADS)
Zhang, Daming; Zhang, Xueyong; Li, Lu; Liu, Huayong
2018-04-01
This paper investigates a face recognition approach based on Scale Invariant Feature Transform (SIFT) feature and sparse representation. The approach takes advantage of SIFT which is local feature other than holistic feature in classical Sparse Representation based Classification (SRC) algorithm and possesses strong robustness to expression, pose and illumination variations. Since hexagonal image has more inherit merits than square image to make recognition process more efficient, we extract SIFT keypoint in hexagonal-sampling image. Instead of matching SIFT feature, firstly the sparse representation of each SIFT keypoint is given according the constructed dictionary; secondly these sparse vectors are quantized according dictionary; finally each face image is represented by a histogram and these so-called Bag-of-Words vectors are classified by SVM. Due to use of local feature, the proposed method achieves better result even when the number of training sample is small. In the experiments, the proposed method gave higher face recognition rather than other methods in ORL and Yale B face databases; also, the effectiveness of the hexagonal-sampling in the proposed method is verified.
An improved finger-vein recognition algorithm based on template matching
NASA Astrophysics Data System (ADS)
Liu, Yueyue; Di, Si; Jin, Jian; Huang, Daoping
2016-10-01
Finger-vein recognition has became the most popular biometric identify methods. The investigation on the recognition algorithms always is the key point in this field. So far, there are many applicable algorithms have been developed. However, there are still some problems in practice, such as the variance of the finger position which may lead to the image distortion and shifting; during the identification process, some matching parameters determined according to experience may also reduce the adaptability of algorithm. Focus on above mentioned problems, this paper proposes an improved finger-vein recognition algorithm based on template matching. In order to enhance the robustness of the algorithm for the image distortion, the least squares error method is adopted to correct the oblique finger. During the feature extraction, local adaptive threshold method is adopted. As regard as the matching scores, we optimized the translation preferences as well as matching distance between the input images and register images on the basis of Naoto Miura algorithm. Experimental results indicate that the proposed method can improve the robustness effectively under the finger shifting and rotation conditions.
Statistical Evaluation of Biometric Evidence in Forensic Automatic Speaker Recognition
NASA Astrophysics Data System (ADS)
Drygajlo, Andrzej
Forensic speaker recognition is the process of determining if a specific individual (suspected speaker) is the source of a questioned voice recording (trace). This paper aims at presenting forensic automatic speaker recognition (FASR) methods that provide a coherent way of quantifying and presenting recorded voice as biometric evidence. In such methods, the biometric evidence consists of the quantified degree of similarity between speaker-dependent features extracted from the trace and speaker-dependent features extracted from recorded speech of a suspect. The interpretation of recorded voice as evidence in the forensic context presents particular challenges, including within-speaker (within-source) variability and between-speakers (between-sources) variability. Consequently, FASR methods must provide a statistical evaluation which gives the court an indication of the strength of the evidence given the estimated within-source and between-sources variabilities. This paper reports on the first ENFSI evaluation campaign through a fake case, organized by the Netherlands Forensic Institute (NFI), as an example, where an automatic method using the Gaussian mixture models (GMMs) and the Bayesian interpretation (BI) framework were implemented for the forensic speaker recognition task.
Jaccard distance based weighted sparse representation for coarse-to-fine plant species recognition.
Zhang, Shanwen; Wu, Xiaowei; You, Zhuhong
2017-01-01
Leaf based plant species recognition plays an important role in ecological protection, however its application to large and modern leaf databases has been a long-standing obstacle due to the computational cost and feasibility. Recognizing such limitations, we propose a Jaccard distance based sparse representation (JDSR) method which adopts a two-stage, coarse to fine strategy for plant species recognition. In the first stage, we use the Jaccard distance between the test sample and each training sample to coarsely determine the candidate classes of the test sample. The second stage includes a Jaccard distance based weighted sparse representation based classification(WSRC), which aims to approximately represent the test sample in the training space, and classify it by the approximation residuals. Since the training model of our JDSR method involves much fewer but more informative representatives, this method is expected to overcome the limitation of high computational and memory costs in traditional sparse representation based classification. Comparative experimental results on a public leaf image database demonstrate that the proposed method outperforms other existing feature extraction and SRC based plant recognition methods in terms of both accuracy and computational speed.
Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses
Kim, Hyun Seok; Park, Kwang Suk
2017-01-01
Most of the retinal prostheses use a head-fixed camera and a video processing unit. Some studies proposed various image processing methods to improve visual perception for patients. However, previous studies only focused on using spatial information. The present study proposes a spatiotemporal pixelization method mimicking fixational eye movements to generate stimulation images for artificial retina arrays by combining spatial and temporal information. Input images were sampled with a resolution that was four times higher than the number of pixel arrays. We subsampled this image and generated four different phosphene images. We then evaluated the recognition scores of characters by sequentially presenting phosphene images with varying pixel array sizes (6 × 6, 8 × 8 and 10 × 10) and stimulus frame rates (10 Hz, 15 Hz, 20 Hz, 30 Hz, and 60 Hz). The proposed method showed the highest recognition score at a stimulus frame rate of approximately 20 Hz. The method also significantly improved the recognition score for complex characters. This method provides a new way to increase practical resolution over restricted spatial resolution by merging the higher resolution image into high-frame time slots. PMID:29073735
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Barstow, Del R; Karakaya, Mahmut
Iris recognition has been proven to be an accurate and reliable biometric. However, the recognition of non-ideal iris images such as off angle images is still an unsolved problem. We propose a new biometric targeted eye model and a method to reconstruct the off-axis eye to its frontal view allowing for recognition using existing methods and algorithms. This allows for existing enterprise level algorithms and approaches to be largely unmodified by using our work as a pre-processor to improve performance. In addition, we describe the `Limbus effect' and its importance for an accurate segmentation of off-axis irides. Our method usesmore » an anatomically accurate human eye model and ray-tracing techniques to compute a transformation function, which reconstructs the iris to its frontal, non-refracted state. Then, the same eye model is used to render a frontal view of the reconstructed iris. The proposed method is fully described and results from synthetic data are shown to establish an upper limit on performance improvement and establish the importance of the proposed approach over traditional linear elliptical unwrapping methods. Our results with synthetic data demonstrate the ability to perform an accurate iris recognition with an image taken as much as 70 degrees off-axis.« less
Iris Recognition Using Feature Extraction of Box Counting Fractal Dimension
NASA Astrophysics Data System (ADS)
Khotimah, C.; Juniati, D.
2018-01-01
Biometrics is a science that is now growing rapidly. Iris recognition is a biometric modality which captures a photo of the eye pattern. The markings of the iris are distinctive that it has been proposed to use as a means of identification, instead of fingerprints. Iris recognition was chosen for identification in this research because every human has a special feature that each individual is different and the iris is protected by the cornea so that it will have a fixed shape. This iris recognition consists of three step: pre-processing of data, feature extraction, and feature matching. Hough transformation is used in the process of pre-processing to locate the iris area and Daugman’s rubber sheet model to normalize the iris data set into rectangular blocks. To find the characteristics of the iris, it was used box counting method to get the fractal dimension value of the iris. Tests carried out by used k-fold cross method with k = 5. In each test used 10 different grade K of K-Nearest Neighbor (KNN). The result of iris recognition was obtained with the best accuracy was 92,63 % for K = 3 value on K-Nearest Neighbor (KNN) method.
Wang, Chenglin; Tang, Yunchao; Zou, Xiangjun; Luo, Lufeng; Chen, Xiong
2017-01-01
Recognition and matching of litchi fruits are critical steps for litchi harvesting robots to successfully grasp litchi. However, due to the randomness of litchi growth, such as clustered growth with uncertain number of fruits and random occlusion by leaves, branches and other fruits, the recognition and matching of the fruit become a challenge. Therefore, this study firstly defined mature litchi fruit as three clustered categories. Then an approach for recognition and matching of clustered mature litchi fruit was developed based on litchi color images acquired by binocular charge-coupled device (CCD) color cameras. The approach mainly included three steps: (1) calibration of binocular color cameras and litchi image acquisition; (2) segmentation of litchi fruits using four kinds of supervised classifiers, and recognition of the pre-defined categories of clustered litchi fruit using a pixel threshold method; and (3) matching the recognized clustered fruit using a geometric center-based matching method. The experimental results showed that the proposed recognition method could be robust against the influences of varying illumination and occlusion conditions, and precisely recognize clustered litchi fruit. In the tested 432 clustered litchi fruits, the highest and lowest average recognition rates were 94.17% and 92.00% under sunny back-lighting and partial occlusion, and sunny front-lighting and non-occlusion conditions, respectively. From 50 pairs of tested images, the highest and lowest matching success rates were 97.37% and 91.96% under sunny back-lighting and non-occlusion, and sunny front-lighting and partial occlusion conditions, respectively. PMID:29112177
Action recognition in depth video from RGB perspective: A knowledge transfer manner
NASA Astrophysics Data System (ADS)
Chen, Jun; Xiao, Yang; Cao, Zhiguo; Fang, Zhiwen
2018-03-01
Different video modal for human action recognition has becoming a highly promising trend in the video analysis. In this paper, we propose a method for human action recognition from RGB video to Depth video using domain adaptation, where we use learned feature from RGB videos to do action recognition for depth videos. More specifically, we make three steps for solving this problem in this paper. First, different from image, video is more complex as it has both spatial and temporal information, in order to better encode this information, dynamic image method is used to represent each RGB or Depth video to one image, based on this, most methods for extracting feature in image can be used in video. Secondly, as video can be represented as image, so standard CNN model can be used for training and testing for videos, beside, CNN model can be also used for feature extracting as its powerful feature expressing ability. Thirdly, as RGB videos and Depth videos are belong to two different domains, in order to make two different feature domains has more similarity, domain adaptation is firstly used for solving this problem between RGB and Depth video, based on this, the learned feature from RGB video model can be directly used for Depth video classification. We evaluate the proposed method on one complex RGB-D action dataset (NTU RGB-D), and our method can have more than 2% accuracy improvement using domain adaptation from RGB to Depth action recognition.
Forecasting of hourly load by pattern recognition in a small area power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehdashti-Shahrokh, A.
1982-01-01
An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less
A Survey on Banknote Recognition Methods by Various Sensors
Lee, Ji Woo; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung
2017-01-01
Despite a decrease in the use of currency due to the recent growth in the use of electronic financial transactions, real money transactions remain very important in the global market. While performing transactions with real money, touching and counting notes by hand, is still a common practice in daily life, various types of automated machines, such as ATMs and banknote counters, are essential for large-scale and safe transactions. This paper presents studies that have been conducted in four major areas of research (banknote recognition, counterfeit banknote detection, serial number recognition, and fitness classification) in the accurate banknote recognition field by various sensors in such automated machines, and describes the advantages and drawbacks of the methods presented in those studies. While to a limited extent some surveys have been presented in previous studies in the areas of banknote recognition or counterfeit banknote recognition, this paper is the first of its kind to review all four areas. Techniques used in each of the four areas recognize banknote information (denomination, serial number, authenticity, and physical condition) based on image or sensor data, and are actually applied to banknote processing machines across the world. This study also describes the technological challenges faced by such banknote recognition techniques and presents future directions of research to overcome them. PMID:28208733
Molecular recognition by gold, silver and copper nanoparticles
Tauran, Yannick; Brioude, Arnaud; Coleman, Anthony W; Rhimi, Moez; Kim, Beonjoom
2013-01-01
The intrinsic physical properties of the noble metal nanoparticles, which are highly sensitive to the nature of their local molecular environment, make such systems ideal for the detection of molecular recognition events. The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles. In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization. A brief discussion of the three common methods of functionalization: Electrostatic adsorption; Chemisorption; Affinity-based coordination is given. In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition. In the main section the various types of capping agents for molecular recognition; nucleic acid coatings, protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications. Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition. For the proteins the recognition properties of antibodies form the core of the section. With respect to the supramolecular systems the cyclodextrins, calix[n]arenes, dendrimers, crown ethers and the cucurbitales are treated in depth. Finally a short section deals with the possible toxicity of the nanoparticles, a concern in public health. PMID:23977421
Speech Recognition and Cognitive Skills in Bimodal Cochlear Implant Users
ERIC Educational Resources Information Center
Hua, Håkan; Johansson, Björn; Magnusson, Lennart; Lyxell, Björn; Ellis, Rachel J.
2017-01-01
Purpose: To examine the relation between speech recognition and cognitive skills in bimodal cochlear implant (CI) and hearing aid users. Method: Seventeen bimodal CI users (28-74 years) were recruited to the study. Speech recognition tests were carried out in quiet and in noise. The cognitive tests employed included the Reading Span Test and the…
Feature Selection on Hyperspectral Data for Dismount Skin Analysis
2014-03-27
19 2.4.1 Melanosome Estimation . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.2 Facial Recognition using...require compliant interaction in order to establish their identification. Previously, traditional facial recognition systems have been enhanced by HSI by...calculated as a fundamental method to differentiate between people [38]. In addition, the area of facial recognition has benefited from the rich spectral
Measuring the Speed of Newborn Object Recognition in Controlled Visual Worlds
ERIC Educational Resources Information Center
Wood, Justin N.; Wood, Samantha M. W.
2017-01-01
How long does it take for a newborn to recognize an object? Adults can recognize objects rapidly, but measuring object recognition speed in newborns has not previously been possible. Here we introduce an automated controlled-rearing method for measuring the speed of newborn object recognition in controlled visual worlds. We raised newborn chicks…
Ponce, Hiram; Martínez-Villaseñor, María de Lourdes; Miralles-Pechuán, Luis
2016-07-05
Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods.
Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing
2015-01-01
A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.
Fuzzy based finger vein recognition with rotation invariant feature matching
NASA Astrophysics Data System (ADS)
Ezhilmaran, D.; Joseph, Rose Bindu
2017-11-01
Finger vein recognition is a promising biometric with commercial applications which is explored widely in the recent years. In this paper, a finger vein recognition system is proposed using rotation invariant feature descriptors for matching after enhancing the finger vein images with an interval type-2 fuzzy method. SIFT features are extracted and matched using a matching score based on Euclidian distance. Rotation invariance of the proposed method is verified in the experiment and the results are compared with SURF matching and minutiae matching. It is seen that rotation invariance is verified and the poor quality issues are solved efficiently with the designed system of finger vein recognition during the analysis. The experiments underlines the robustness and reliability of the interval type-2 fuzzy enhancement and SIFT feature matching.
Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
Chowdhury, Alok Kumar; Tjondronegoro, Dian; Chandran, Vinod; Trost, Stewart G
2017-09-01
To investigate whether the use of ensemble learning algorithms improve physical activity recognition accuracy compared to the single classifier algorithms, and to compare the classification accuracy achieved by three conventional ensemble machine learning methods (bagging, boosting, random forest) and a custom ensemble model comprising four algorithms commonly used for activity recognition (binary decision tree, k nearest neighbor, support vector machine, and neural network). The study used three independent data sets that included wrist-worn accelerometer data. For each data set, a four-step classification framework consisting of data preprocessing, feature extraction, normalization and feature selection, and classifier training and testing was implemented. For the custom ensemble, decisions from the single classifiers were aggregated using three decision fusion methods: weighted majority vote, naïve Bayes combination, and behavior knowledge space combination. Classifiers were cross-validated using leave-one subject out cross-validation and compared on the basis of average F1 scores. In all three data sets, ensemble learning methods consistently outperformed the individual classifiers. Among the conventional ensemble methods, random forest models provided consistently high activity recognition; however, the custom ensemble model using weighted majority voting demonstrated the highest classification accuracy in two of the three data sets. Combining multiple individual classifiers using conventional or custom ensemble learning methods can improve activity recognition accuracy from wrist-worn accelerometer data.
Improved word recognition for observers with age-related maculopathies using compensation filters
NASA Technical Reports Server (NTRS)
Lawton, Teri B.
1988-01-01
A method for improving word recognition for people with age-related maculopathies, which cause a loss of central vision, is discussed. It is found that the use of individualized compensation filters based on an person's normalized contrast sensitivity function can improve word recognition for people with age-related maculopathies. It is shown that 27-70 pct more magnification is needed for unfiltered words compared to filtered words. The improvement in word recognition is positively correlated with the severity of vision loss.
Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition
NASA Astrophysics Data System (ADS)
Popko, E. A.; Weinstein, I. A.
2016-08-01
Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.
Lúcio, Patrícia S.; Salum, Giovanni; Swardfager, Walter; Mari, Jair de Jesus; Pan, Pedro M.; Bressan, Rodrigo A.; Gadelha, Ary; Rohde, Luis A.; Cogo-Moreira, Hugo
2017-01-01
Although studies have consistently demonstrated that children with attention-deficit/hyperactivity disorder (ADHD) perform significantly lower than controls on word recognition and spelling tests, such studies rely on the assumption that those groups are comparable in these measures. This study investigates comparability of word recognition and spelling tests based on diagnostic status for ADHD through measurement invariance methods. The participants (n = 1,935; 47% female; 11% ADHD) were children aged 6–15 with normal IQ (≥70). Measurement invariance was investigated through Confirmatory Factor Analysis and Multiple Indicators Multiple Causes models. Measurement invariance was attested in both methods, demonstrating the direct comparability of the groups. Children with ADHD were 0.51 SD lower in word recognition and 0.33 SD lower in spelling tests than controls. Results suggest that differences in performance on word recognition and spelling tests are related to true mean differences based on ADHD diagnostic status. Implications for clinical practice and research are discussed. PMID:29118733
Lúcio, Patrícia S; Salum, Giovanni; Swardfager, Walter; Mari, Jair de Jesus; Pan, Pedro M; Bressan, Rodrigo A; Gadelha, Ary; Rohde, Luis A; Cogo-Moreira, Hugo
2017-01-01
Although studies have consistently demonstrated that children with attention-deficit/hyperactivity disorder (ADHD) perform significantly lower than controls on word recognition and spelling tests, such studies rely on the assumption that those groups are comparable in these measures. This study investigates comparability of word recognition and spelling tests based on diagnostic status for ADHD through measurement invariance methods. The participants ( n = 1,935; 47% female; 11% ADHD) were children aged 6-15 with normal IQ (≥70). Measurement invariance was investigated through Confirmatory Factor Analysis and Multiple Indicators Multiple Causes models. Measurement invariance was attested in both methods, demonstrating the direct comparability of the groups. Children with ADHD were 0.51 SD lower in word recognition and 0.33 SD lower in spelling tests than controls. Results suggest that differences in performance on word recognition and spelling tests are related to true mean differences based on ADHD diagnostic status. Implications for clinical practice and research are discussed.
An application of viola jones method for face recognition for absence process efficiency
NASA Astrophysics Data System (ADS)
Rizki Damanik, Rudolfo; Sitanggang, Delima; Pasaribu, Hendra; Siagian, Hendrik; Gulo, Frisman
2018-04-01
Absence was a list of documents that the company used to record the attendance time of each employee. The most common problem in a fingerprint machine is the identification of a slow sensor or a sensor not recognizing a finger. The employees late to work because they get difficulties at fingerprint system, they need about 3 – 5 minutes to absence when the condition of finger is wet or not fit. To overcome this problem, this research tried to utilize facial recognition for attendance process. The method used for facial recognition was Viola Jones. Through the processing phase of the RGB face image was converted into a histogram equalization face image for the next stage of recognition. The result of this research was the absence process could be done less than 1 second with a maximum slope of ± 700 and a distance of 20-200 cm. After implement facial recognition the process of absence is more efficient, just take less 1 minute to absence.
Robust Indoor Human Activity Recognition Using Wireless Signals.
Wang, Yi; Jiang, Xinli; Cao, Rongyu; Wang, Xiyang
2015-07-15
Wireless signals-based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP) and access points (AP). First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions' CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO) signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM) based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.
NASA Astrophysics Data System (ADS)
Xing, Y. F.; Wang, Y. S.; Shi, L.; Guo, H.; Chen, H.
2016-01-01
According to the human perceptional characteristics, a method combined by the optimal wavelet-packet transform and artificial neural network, so-called OWPT-ANN model, for psychoacoustical recognition is presented. Comparisons of time-frequency analysis methods are performed, and an OWPT with 21 critical bands is designed for feature extraction of a sound, as is a three-layer back-propagation ANN for sound quality (SQ) recognition. Focusing on the loudness and sharpness, the OWPT-ANN model is applied on vehicle noises under different working conditions. Experimental verifications show that the OWPT can effectively transfer a sound into a time-varying energy pattern as that in the human auditory system. The errors of loudness and sharpness of vehicle noise from the OWPT-ANN are all less than 5%, which suggest a good accuracy of the OWPT-ANN model in SQ recognition. The proposed methodology might be regarded as a promising technique for signal processing in the human-hearing related fields in engineering.
Autonomous learning in gesture recognition by using lobe component analysis
NASA Astrophysics Data System (ADS)
Lu, Jian; Weng, Juyang
2007-02-01
Gesture recognition is a new human-machine interface method implemented by pattern recognition(PR).In order to assure robot safety when gesture is used in robot control, it is required to implement the interface reliably and accurately. Similar with other PR applications, 1) feature selection (or model establishment) and 2) training from samples, affect the performance of gesture recognition largely. For 1), a simple model with 6 feature points at shoulders, elbows, and hands, is established. The gestures to be recognized are restricted to still arm gestures, and the movement of arms is not considered. These restrictions are to reduce the misrecognition, but are not so unreasonable. For 2), a new biological network method, called lobe component analysis(LCA), is used in unsupervised learning. Lobe components, corresponding to high-concentrations in probability of the neuronal input, are orientation selective cells follow Hebbian rule and lateral inhibition. Due to the advantage of LCA method for balanced learning between global and local features, large amount of samples can be used in learning efficiently.
Palm vein recognition based on directional empirical mode decomposition
NASA Astrophysics Data System (ADS)
Lee, Jen-Chun; Chang, Chien-Ping; Chen, Wei-Kuei
2014-04-01
Directional empirical mode decomposition (DEMD) has recently been proposed to make empirical mode decomposition suitable for the processing of texture analysis. Using DEMD, samples are decomposed into a series of images, referred to as two-dimensional intrinsic mode functions (2-D IMFs), from finer to large scale. A DEMD-based 2 linear discriminant analysis (LDA) for palm vein recognition is proposed. The proposed method progresses through three steps: (i) a set of 2-D IMF features of various scale and orientation are extracted using DEMD, (ii) the 2LDA method is then applied to reduce the dimensionality of the feature space in both the row and column directions, and (iii) the nearest neighbor classifier is used for classification. We also propose two strategies for using the set of 2-D IMF features: ensemble DEMD vein representation (EDVR) and multichannel DEMD vein representation (MDVR). In experiments using palm vein databases, the proposed MDVR-based 2LDA method achieved recognition accuracy of 99.73%, thereby demonstrating its feasibility for palm vein recognition.
Improved dense trajectories for action recognition based on random projection and Fisher vectors
NASA Astrophysics Data System (ADS)
Ai, Shihui; Lu, Tongwei; Xiong, Yudian
2018-03-01
As an important application of intelligent monitoring system, the action recognition in video has become a very important research area of computer vision. In order to improve the accuracy rate of the action recognition in video with improved dense trajectories, one advanced vector method is introduced. Improved dense trajectories combine Fisher Vector with Random Projection. The method realizes the reduction of the characteristic trajectory though projecting the high-dimensional trajectory descriptor into the low-dimensional subspace based on defining and analyzing Gaussian mixture model by Random Projection. And a GMM-FV hybrid model is introduced to encode the trajectory feature vector and reduce dimension. The computational complexity is reduced by Random Projection which can drop Fisher coding vector. Finally, a Linear SVM is used to classifier to predict labels. We tested the algorithm in UCF101 dataset and KTH dataset. Compared with existed some others algorithm, the result showed that the method not only reduce the computational complexity but also improved the accuracy of action recognition.
Integrated Low-Rank-Based Discriminative Feature Learning for Recognition.
Zhou, Pan; Lin, Zhouchen; Zhang, Chao
2016-05-01
Feature learning plays a central role in pattern recognition. In recent years, many representation-based feature learning methods have been proposed and have achieved great success in many applications. However, these methods perform feature learning and subsequent classification in two separate steps, which may not be optimal for recognition tasks. In this paper, we present a supervised low-rank-based approach for learning discriminative features. By integrating latent low-rank representation (LatLRR) with a ridge regression-based classifier, our approach combines feature learning with classification, so that the regulated classification error is minimized. In this way, the extracted features are more discriminative for the recognition tasks. Our approach benefits from a recent discovery on the closed-form solutions to noiseless LatLRR. When there is noise, a robust Principal Component Analysis (PCA)-based denoising step can be added as preprocessing. When the scale of a problem is large, we utilize a fast randomized algorithm to speed up the computation of robust PCA. Extensive experimental results demonstrate the effectiveness and robustness of our method.
Combining point context and dynamic time warping for online gesture recognition
NASA Astrophysics Data System (ADS)
Mao, Xia; Li, Chen
2017-05-01
Previous gesture recognition methods usually focused on recognizing gestures after the entire gesture sequences were obtained. However, in many practical applications, a system has to identify gestures before they end to give instant feedback. We present an online gesture recognition approach that can realize early recognition of unfinished gestures with low latency. First, a curvature buffer-based point context (CBPC) descriptor is proposed to extract the shape feature of a gesture trajectory. The CBPC descriptor is a complete descriptor with a simple computation, and thus has its superiority in online scenarios. Then, we introduce an online windowed dynamic time warping algorithm to realize online matching between the ongoing gesture and the template gestures. In the algorithm, computational complexity is effectively decreased by adding a sliding window to the accumulative distance matrix. Lastly, the experiments are conducted on the Australian sign language data set and the Kinect hand gesture (KHG) data set. Results show that the proposed method outperforms other state-of-the-art methods especially when gesture information is incomplete.
2016-01-01
Objective: Memory deficits in patients with frontal lobe lesions are most apparent on free recall tasks that require the selection, initiation, and implementation of retrieval strategies. The effect of frontal lesions on recognition memory performance is less clear with some studies reporting recognition memory impairments but others not. The majority of these studies do not directly compare recall and recognition within the same group of frontal patients, assessing only recall or recognition memory performance. Other studies that do compare recall and recognition in the same frontal group do not consider recall or recognition tests that are comparable for difficulty. Recognition memory impairments may not be reported because recognition memory tasks are less demanding. Method: This study aimed to investigate recall and recognition impairments in the same group of 47 frontal patients and 78 healthy controls. The Doors and People Test was administered as a neuropsychological test of memory as it assesses both verbal and visual recall and recognition using subtests that are matched for difficulty. Results: Significant verbal and visual recall and recognition impairments were found in the frontal patients. Conclusion: These results demonstrate that when frontal patients are assessed on recall and recognition memory tests of comparable difficulty, memory impairments are found on both types of episodic memory test. PMID:26752123
Thermodynamic Modeling of Donor Splice Site Recognition in pre-mRNA
NASA Astrophysics Data System (ADS)
Aalberts, Daniel P.; Garland, Jeffrey A.
2004-03-01
When eukaryotic genes are edited by the spliceosome, the first step in intron recognition is the binding of a U1 snRNA with the donor (5') splice site. We model this interaction thermodynamically to identify splice sites. Applied to a set of 65 annotated genes, our Finding with Binding method achieves a significant separation between real and false sites. Analyzing binding patterns allows us to discard a large number of decoy sites. Our results improve statistics-based methods for donor site recognition, demonstrating the promise of physical modeling to find functional elements in the genome.
Thermodynamic modeling of donor splice site recognition in pre-mRNA
NASA Astrophysics Data System (ADS)
Garland, Jeffrey A.; Aalberts, Daniel P.
2004-04-01
When eukaryotic genes are edited by the spliceosome, the first step in intron recognition is the binding of a U1 small nuclear RNA with the donor ( 5' ) splice site. We model this interaction thermodynamically to identify splice sites. Applied to a set of 65 annotated genes, our “finding with binding” method achieves a significant separation between real and false sites. Analyzing binding patterns allows us to discard a large number of decoy sites. Our results improve statistics-based methods for donor site recognition, demonstrating the promise of physical modeling to find functional elements in the genome.
The biometric-based module of smart grid system
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Ermoshkina, A.
2015-10-01
Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.
Target recognition based on convolutional neural network
NASA Astrophysics Data System (ADS)
Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian
2017-11-01
One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.
Cross spectral, active and passive approach to face recognition for improved performance
NASA Astrophysics Data System (ADS)
Grudzien, A.; Kowalski, M.; Szustakowski, M.
2017-08-01
Biometrics is a technique for automatic recognition of a person based on physiological or behavior characteristics. Since the characteristics used are unique, biometrics can create a direct link between a person and identity, based on variety of characteristics. The human face is one of the most important biometric modalities for automatic authentication. The most popular method of face recognition which relies on processing of visual information seems to be imperfect. Thermal infrared imagery may be a promising alternative or complement to visible range imaging due to its several reasons. This paper presents an approach of combining both methods.
Development of a sonar-based object recognition system
NASA Astrophysics Data System (ADS)
Ecemis, Mustafa Ihsan
2001-02-01
Sonars are used extensively in mobile robotics for obstacle detection, ranging and avoidance. However, these range-finding applications do not exploit the full range of information carried in sonar echoes. In addition, mobile robots need robust object recognition systems. Therefore, a simple and robust object recognition system using ultrasonic sensors may have a wide range of applications in robotics. This dissertation develops and analyzes an object recognition system that uses ultrasonic sensors of the type commonly found on mobile robots. Three principal experiments are used to test the sonar recognition system: object recognition at various distances, object recognition during unconstrained motion, and softness discrimination. The hardware setup, consisting of an inexpensive Polaroid sonar and a data acquisition board, is described first. The software for ultrasound signal generation, echo detection, data collection, and data processing is then presented. Next, the dissertation describes two methods to extract information from the echoes, one in the frequency domain and the other in the time domain. The system uses the fuzzy ARTMAP neural network to recognize objects on the basis of the information content of their echoes. In order to demonstrate that the performance of the system does not depend on the specific classification method being used, the K- Nearest Neighbors (KNN) Algorithm is also implemented. KNN yields a test accuracy similar to fuzzy ARTMAP in all experiments. Finally, the dissertation describes a method for extracting features from the envelope function in order to reduce the dimension of the input vector used by the classifiers. Decreasing the size of the input vectors reduces the memory requirements of the system and makes it run faster. It is shown that this method does not affect the performance of the system dramatically and is more appropriate for some tasks. The results of these experiments demonstrate that sonar can be used to develop a low-cost, low-computation system for real-time object recognition tasks on mobile robots. This system differs from all previous approaches in that it is relatively simple, robust, fast, and inexpensive.
ERIC Educational Resources Information Center
Janssen, David Rainsford
This study investigated alternate methods of letter discrimination pretraining and word recognition training in young children. Seventy kindergarten children were trained to recognize eight printed words in a vocabulary list by a mixed-list paired-associate method. Four of the stimulus words had visual response choices (pictures) and four had…
Summary of tracking and identification methods
NASA Astrophysics Data System (ADS)
Blasch, Erik; Yang, Chun; Kadar, Ivan
2014-06-01
Over the last two decades, many solutions have arisen to combine target tracking estimation with classification methods. Target tracking includes developments from linear to non-linear and Gaussian to non-Gaussian processing. Pattern recognition includes detection, classification, recognition, and identification methods. Integrating tracking and pattern recognition has resulted in numerous approaches and this paper seeks to organize the various approaches. We discuss the terminology so as to have a common framework for various standards such as the NATO STANAG 4162 - Identification Data Combining Process. In a use case, we provide a comparative example highlighting that location information (as an example) with additional mission objectives from geographical, human, social, cultural, and behavioral modeling is needed to determine identification as classification alone does not allow determining identification or intent.
Sorted Index Numbers for Privacy Preserving Face Recognition
NASA Astrophysics Data System (ADS)
Wang, Yongjin; Hatzinakos, Dimitrios
2009-12-01
This paper presents a novel approach for changeable and privacy preserving face recognition. We first introduce a new method of biometric matching using the sorted index numbers (SINs) of feature vectors. Since it is impossible to recover any of the exact values of the original features, the transformation from original features to the SIN vectors is noninvertible. To address the irrevocable nature of biometric signals whilst obtaining stronger privacy protection, a random projection-based method is employed in conjunction with the SIN approach to generate changeable and privacy preserving biometric templates. The effectiveness of the proposed method is demonstrated on a large generic data set, which contains images from several well-known face databases. Extensive experimentation shows that the proposed solution may improve the recognition accuracy.
Optical Fourier diffractometry applied to degraded bone structure recognition
NASA Astrophysics Data System (ADS)
Galas, Jacek; Godwod, Krzysztof; Szawdyn, Jacek; Sawicki, Andrzej
1993-09-01
Image processing and recognition methods are useful in many fields. This paper presents the hybrid optical and digital method applied to recognition of pathological changes in bones involved by metabolic bone diseases. The trabecular bone structure, registered by x ray on the photographic film, is analyzed in the new type of computer controlled diffractometer. The set of image parameters, extracted from diffractogram, is evaluated by statistical analysis. The synthetic image descriptors in discriminant space, constructed on the base of 3 training groups of images (control, osteoporosis, and osteomalacia groups) by discriminant analysis, allow us to recognize bone samples with degraded bone structure and to recognize the disease. About 89% of the images were classified correctly. This method after optimization process will be verified in medical investigations.
A novel iris patterns matching algorithm of weighted polar frequency correlation
NASA Astrophysics Data System (ADS)
Zhao, Weijie; Jiang, Linhua
2014-11-01
Iris recognition is recognized as one of the most accurate techniques for biometric authentication. In this paper, we present a novel correlation method - Weighted Polar Frequency Correlation(WPFC) - to match and evaluate two iris images, actually it can also be used for evaluating the similarity of any two images. The WPFC method is a novel matching and evaluating method for iris image matching, which is complete different from the conventional methods. For instance, the classical John Daugman's method of iris recognition uses 2D Gabor wavelets to extract features of iris image into a compact bit stream, and then matching two bit streams with hamming distance. Our new method is based on the correlation in the polar coordinate system in frequency domain with regulated weights. The new method is motivated by the observation that the pattern of iris that contains far more information for recognition is fine structure at high frequency other than the gross shapes of iris images. Therefore, we transform iris images into frequency domain and set different weights to frequencies. Then calculate the correlation of two iris images in frequency domain. We evaluate the iris images by summing the discrete correlation values with regulated weights, comparing the value with preset threshold to tell whether these two iris images are captured from the same person or not. Experiments are carried out on both CASIA database and self-obtained images. The results show that our method is functional and reliable. Our method provides a new prospect for iris recognition system.
Biometric recognition via texture features of eye movement trajectories in a visual searching task.
Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei; Zhang, Chenggang
2018-01-01
Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers' temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases.
Biometric recognition via texture features of eye movement trajectories in a visual searching task
Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei
2018-01-01
Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers’ temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases. PMID:29617383
Joint sparse representation for robust multimodal biometrics recognition.
Shekhar, Sumit; Patel, Vishal M; Nasrabadi, Nasser M; Chellappa, Rama
2014-01-01
Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.
Character Recognition Method by Time-Frequency Analyses Using Writing Pressure
NASA Astrophysics Data System (ADS)
Watanabe, Tatsuhito; Katsura, Seiichiro
With the development of information and communication technology, personal verification becomes more and more important. In the future ubiquitous society, the development of terminals handling personal information requires the personal verification technology. The signature is one of the personal verification methods; however, the number of characters is limited in the case of the signature and therefore false signature is used easily. Thus, personal identification is difficult from handwriting. This paper proposes a “haptic pen” that extracts the writing pressure, and shows a character recognition method by time-frequency analyses. Although the figures of characters written by different amanuenses are similar, the differences appear in the time-frequency domain. As a result, it is possible to use the proposed character recognition for personal identification more exactly. The experimental results showed the viability of the proposed method.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Editor)
1988-01-01
The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.
Consistency of response and image recognition, pulmonary nodules
Liu, M A Q; Galvan, E; Bassett, R; Murphy, W A; Matamoros, A; Marom, E M
2014-01-01
Objective: To investigate the effect of recognition of a previously encountered radiograph on consistency of response in localized pulmonary nodules. Methods: 13 radiologists interpreted 40 radiographs each to locate pulmonary nodules. A few days later, they again interpreted 40 radiographs. Half of the images in the second set were new. We asked the radiologists whether each image had been in the first set. We used Fisher's exact test and Kruskal–Wallis test to evaluate the correlation between recognition of an image and consistency in its interpretation. We evaluated the data using all possible recognition levels—definitely, probably or possibly included vs definitely, probably or possibly not included by collapsing the recognition levels into two and by eliminating the “possibly included” and “possibly not included” scores. Results: With all but one of six methods of looking at the data, there was no significant correlation between consistency in interpretation and recognition of the image. When the possibly included and possibly not included scores were eliminated, there was a borderline statistical significance (p = 0.04) with slightly greater consistency in interpretation of recognized than that of non-recognized images. Conclusion: We found no convincing evidence that radiologists' recognition of images in an observer performance study affects their interpretation on a second encounter. Advances in knowledge: Conscious recognition of chest radiographs did not result in a greater degree of consistency in the tested interpretation than that in the interpretation of images that were not recognized. PMID:24697724
Emotion Recognition in Fathers and Mothers at High-Risk for Child Physical Abuse
ERIC Educational Resources Information Center
Asla, Nagore; de Paul, Joaquin; Perez-Albeniz, Alicia
2011-01-01
Objective: The present study was designed to determine whether parents at high risk for physical child abuse, in comparison with parents at low risk, show deficits in emotion recognition, as well as to examine the moderator effect of gender and stress on the relationship between risk for physical child abuse and emotion recognition. Methods: Based…
Employment Research Method for Early Recognition of Skills Needs
ERIC Educational Resources Information Center
Spottl, Georg; Windelband, Lars
2006-01-01
Given that the early recognition procedures used to date focus on trends and the scenario technique and are less concerned with the design of VET, a research-based employment research early recognition tool was developed as part of the "EarlyBird" Leonardo Project, by means of which it is possible to identify changes at shop-floor level. What was…
NASA Astrophysics Data System (ADS)
Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.
2014-03-01
This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.
Indonesian Sign Language Number Recognition using SIFT Algorithm
NASA Astrophysics Data System (ADS)
Mahfudi, Isa; Sarosa, Moechammad; Andrie Asmara, Rosa; Azrino Gustalika, M.
2018-04-01
Indonesian sign language (ISL) is generally used for deaf individuals and poor people communication in communicating. They use sign language as their primary language which consists of 2 types of action: sign and finger spelling. However, not all people understand their sign language so that this becomes a problem for them to communicate with normal people. this problem also becomes a factor they are isolated feel from the social life. It needs a solution that can help them to be able to interacting with normal people. Many research that offers a variety of methods in solving the problem of sign language recognition based on image processing. SIFT (Scale Invariant Feature Transform) algorithm is one of the methods that can be used to identify an object. SIFT is claimed very resistant to scaling, rotation, illumination and noise. Using SIFT algorithm for Indonesian sign language recognition number result rate recognition to 82% with the use of a total of 100 samples image dataset consisting 50 sample for training data and 50 sample images for testing data. Change threshold value get affect the result of the recognition. The best value threshold is 0.45 with rate recognition of 94%.
Wavelet Types Comparison for Extracting Iris Feature Based on Energy Compaction
NASA Astrophysics Data System (ADS)
Rizal Isnanto, R.
2015-06-01
Human iris has a very unique pattern which is possible to be used as a biometric recognition. To identify texture in an image, texture analysis method can be used. One of method is wavelet that extract the image feature based on energy. Wavelet transforms used are Haar, Daubechies, Coiflets, Symlets, and Biorthogonal. In the research, iris recognition based on five mentioned wavelets was done and then comparison analysis was conducted for which some conclusions taken. Some steps have to be done in the research. First, the iris image is segmented from eye image then enhanced with histogram equalization. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Comparison analysis is done based on recognition rate percentage with two samples stored in database for reference images. After finding the recognition rate, some tests are conducted using Energy Compaction for all five types of wavelets above. As the result, the highest recognition rate is achieved using Haar, whereas for coefficients cutting for C(i) < 0.1, Haar wavelet has a highest percentage, therefore the retention rate or significan coefficient retained for Haaris lower than other wavelet types (db5, coif3, sym4, and bior2.4)
The software peculiarities of pattern recognition in track detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starkov, N.
The different kinds of nuclear track recognition algorithms are represented. Several complicated samples of use them in physical experiments are considered. The some processing methods of complicated images are described.
Optical character recognition with feature extraction and associative memory matrix
NASA Astrophysics Data System (ADS)
Sasaki, Osami; Shibahara, Akihito; Suzuki, Takamasa
1998-06-01
A method is proposed in which handwritten characters are recognized using feature extraction and an associative memory matrix. In feature extraction, simple processes such as shifting and superimposing patterns are executed. A memory matrix is generated with singular value decomposition and by modifying small singular values. The method is optically implemented with two liquid crystal displays. Experimental results for the recognition of 25 handwritten alphabet characters clearly shows the effectiveness of the method.
A study of multibiometric traits of identical twins
NASA Astrophysics Data System (ADS)
Sun, Zhenan; Paulino, Alessandra A.; Feng, Jianjiang; Chai, Zhenhua; Tan, Tieniu; Jain, Anil K.
2010-04-01
The increase in twin births has created a requirement for biometric systems to accurately determine the identity of a person who has an identical twin. The discriminability of some of the identical twin biometric traits, such as fingerprints, iris, and palmprints, is supported by anatomy and the formation process of the biometric characteristic, which state they are different even in identical twins due to a number of random factors during the gestation period. For the first time, we collected multiple biometric traits (fingerprint, face, and iris) of 66 families of twins, and we performed unimodal and multimodal matching experiments to assess the ability of biometric systems in distinguishing identical twins. Our experiments show that unimodal finger biometric systems can distinguish two different persons who are not identical twins better than they can distinguish identical twins; this difference is much larger in the face biometric system and it is not significant in the iris biometric system. Multimodal biometric systems that combine different units of the same biometric modality (e.g. multiple fingerprints or left and right irises.) show the best performance among all the unimodal and multimodal biometric systems, achieving an almost perfect separation between genuine and impostor distributions.
Recognition method of construction conflict based on driver's eye movement.
Xu, Yi; Li, Shiwu; Gao, Song; Tan, Derong; Guo, Dong; Wang, Yuqiong
2018-04-01
Drivers eye movement data in simulated construction conflicts at different speeds were collected and analyzed to find the relationship between the drivers' eye movement and the construction conflict. On the basis of the relationship between the drivers' eye movement and the construction conflict, the peak point of wavelet processed pupil diameter, the first point on the left side of the peak point and the first blink point after the peak point are selected as key points for locating construction conflict periods. On the basis of the key points and the GSA, a construction conflict recognition method so called the CCFRM is proposed. And the construction conflict recognition speed and location accuracy of the CCFRM are verified. The good performance of the CCFRM verified the feasibility of proposed key points in construction conflict recognition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cherry recognition in natural environment based on the vision of picking robot
NASA Astrophysics Data System (ADS)
Zhang, Qirong; Chen, Shanxiong; Yu, Tingzhong; Wang, Yan
2017-04-01
In order to realize the automatic recognition of cherry in the natural environment, this paper designed a robot vision system recognition method. The first step of this method is to pre-process the cherry image by median filtering. The second step is to identify the colour of the cherry through the 0.9R-G colour difference formula, and then use the Otsu algorithm for threshold segmentation. The third step is to remove noise by using the area threshold. The fourth step is to remove the holes in the cherry image by morphological closed and open operation. The fifth step is to obtain the centroid and contour of cherry by using the smallest external rectangular and the Hough transform. Through this recognition process, we can successfully identify 96% of the cherry without blocking and adhesion.
A robust probabilistic collaborative representation based classification for multimodal biometrics
NASA Astrophysics Data System (ADS)
Zhang, Jing; Liu, Huanxi; Ding, Derui; Xiao, Jianli
2018-04-01
Most of the traditional biometric recognition systems perform recognition with a single biometric indicator. These systems have suffered noisy data, interclass variations, unacceptable error rates, forged identity, and so on. Due to these inherent problems, it is not valid that many researchers attempt to enhance the performance of unimodal biometric systems with single features. Thus, multimodal biometrics is investigated to reduce some of these defects. This paper proposes a new multimodal biometric recognition approach by fused faces and fingerprints. For more recognizable features, the proposed method extracts block local binary pattern features for all modalities, and then combines them into a single framework. For better classification, it employs the robust probabilistic collaborative representation based classifier to recognize individuals. Experimental results indicate that the proposed method has improved the recognition accuracy compared to the unimodal biometrics.
Automatic Facial Expression Recognition and Operator Functional State
NASA Technical Reports Server (NTRS)
Blanson, Nina
2012-01-01
The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions
Automatic Facial Expression Recognition and Operator Functional State
NASA Technical Reports Server (NTRS)
Blanson, Nina
2011-01-01
The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions.
Robust kernel collaborative representation for face recognition
NASA Astrophysics Data System (ADS)
Huang, Wei; Wang, Xiaohui; Ma, Yanbo; Jiang, Yuzheng; Zhu, Yinghui; Jin, Zhong
2015-05-01
One of the greatest challenges of representation-based face recognition is that the training samples are usually insufficient. In other words, the training set usually does not include enough samples to show varieties of high-dimensional face images caused by illuminations, facial expressions, and postures. When the test sample is significantly different from the training samples of the same subject, the recognition performance will be sharply reduced. We propose a robust kernel collaborative representation based on virtual samples for face recognition. We think that the virtual training set conveys some reasonable and possible variations of the original training samples. Hence, we design a new object function to more closely match the representation coefficients generated from the original and virtual training sets. In order to further improve the robustness, we implement the corresponding representation-based face recognition in kernel space. It is noteworthy that any kind of virtual training samples can be used in our method. We use noised face images to obtain virtual face samples. The noise can be approximately viewed as a reflection of the varieties of illuminations, facial expressions, and postures. Our work is a simple and feasible way to obtain virtual face samples to impose Gaussian noise (and other types of noise) specifically to the original training samples to obtain possible variations of the original samples. Experimental results on the FERET, Georgia Tech, and ORL face databases show that the proposed method is more robust than two state-of-the-art face recognition methods, such as CRC and Kernel CRC.
NASA Astrophysics Data System (ADS)
Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus
2017-05-01
For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high-definition video exploitation.
Fast traffic sign recognition with a rotation invariant binary pattern based feature.
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-19
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.
Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-01
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217
Transfer Learning for Activity Recognition: A Survey
Cook, Diane; Feuz, Kyle D.; Krishnan, Narayanan C.
2013-01-01
Many intelligent systems that focus on the needs of a human require information about the activities being performed by the human. At the core of this capability is activity recognition, which is a challenging and well-researched problem. Activity recognition algorithms require substantial amounts of labeled training data yet need to perform well under very diverse circumstances. As a result, researchers have been designing methods to identify and utilize subtle connections between activity recognition datasets, or to perform transfer-based activity recognition. In this paper we survey the literature to highlight recent advances in transfer learning for activity recognition. We characterize existing approaches to transfer-based activity recognition by sensor modality, by differences between source and target environments, by data availability, and by type of information that is transferred. Finally, we present some grand challenges for the community to consider as this field is further developed. PMID:24039326
Zhang, Yanjun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong
2016-02-01
Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively.
Unvoiced Speech Recognition Using Tissue-Conductive Acoustic Sensor
NASA Astrophysics Data System (ADS)
Heracleous, Panikos; Kaino, Tomomi; Saruwatari, Hiroshi; Shikano, Kiyohiro
2006-12-01
We present the use of stethoscope and silicon NAM (nonaudible murmur) microphones in automatic speech recognition. NAM microphones are special acoustic sensors, which are attached behind the talker's ear and can capture not only normal (audible) speech, but also very quietly uttered speech (nonaudible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech transform, etc.) for sound-impaired people. Using adaptation techniques and a small amount of training data, we achieved for a 20 k dictation task a[InlineEquation not available: see fulltext.] word accuracy for nonaudible murmur recognition in a clean environment. In this paper, we also investigate nonaudible murmur recognition in noisy environments and the effect of the Lombard reflex on nonaudible murmur recognition. We also propose three methods to integrate audible speech and nonaudible murmur recognition using a stethoscope NAM microphone with very promising results.
HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Jian; Wang, Tong
2017-09-01
Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.
Deep Recurrent Neural Networks for Human Activity Recognition
Murad, Abdulmajid
2017-01-01
Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs. PMID:29113103
Deep Recurrent Neural Networks for Human Activity Recognition.
Murad, Abdulmajid; Pyun, Jae-Young
2017-11-06
Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.
Histogram equalization with Bayesian estimation for noise robust speech recognition.
Suh, Youngjoo; Kim, Hoirin
2018-02-01
The histogram equalization approach is an efficient feature normalization technique for noise robust automatic speech recognition. However, it suffers from performance degradation when some fundamental conditions are not satisfied in the test environment. To remedy these limitations of the original histogram equalization methods, class-based histogram equalization approach has been proposed. Although this approach showed substantial performance improvement under noise environments, it still suffers from performance degradation due to the overfitting problem when test data are insufficient. To address this issue, the proposed histogram equalization technique employs the Bayesian estimation method in the test cumulative distribution function estimation. It was reported in a previous study conducted on the Aurora-4 task that the proposed approach provided substantial performance gains in speech recognition systems based on the acoustic modeling of the Gaussian mixture model-hidden Markov model. In this work, the proposed approach was examined in speech recognition systems with deep neural network-hidden Markov model (DNN-HMM), the current mainstream speech recognition approach where it also showed meaningful performance improvement over the conventional maximum likelihood estimation-based method. The fusion of the proposed features with the mel-frequency cepstral coefficients provided additional performance gains in DNN-HMM systems, which otherwise suffer from performance degradation in the clean test condition.
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-22
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-01-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
NASA Astrophysics Data System (ADS)
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
A novel deep learning algorithm for incomplete face recognition: Low-rank-recovery network.
Zhao, Jianwei; Lv, Yongbiao; Zhou, Zhenghua; Cao, Feilong
2017-10-01
There have been a lot of methods to address the recognition of complete face images. However, in real applications, the images to be recognized are usually incomplete, and it is more difficult to realize such a recognition. In this paper, a novel convolution neural network frame, named a low-rank-recovery network (LRRNet), is proposed to conquer the difficulty effectively inspired by matrix completion and deep learning techniques. The proposed LRRNet first recovers the incomplete face images via an approach of matrix completion with the truncated nuclear norm regularization solution, and then extracts some low-rank parts of the recovered images as the filters. With these filters, some important features are obtained by means of the binaryzation and histogram algorithms. Finally, these features are classified with the classical support vector machines (SVMs). The proposed LRRNet method has high face recognition rate for the heavily corrupted images, especially for the images in the large databases. The proposed LRRNet performs well and efficiently for the images with heavily corrupted, especially in the case of large databases. Extensive experiments on several benchmark databases demonstrate that the proposed LRRNet performs better than some other excellent robust face recognition methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Face recognition by applying wavelet subband representation and kernel associative memory.
Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam
2004-01-01
In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.
Seamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors
Augustyniak, Piotr; Smoleń, Magdalena; Mikrut, Zbigniew; Kańtoch, Eliasz
2014-01-01
This paper presents a multimodal system for seamless surveillance of elderly people in their living environment. The system uses simultaneously a wearable sensor network for each individual and premise-embedded sensors specific for each environment. The paper demonstrates the benefits of using complementary information from two types of mobility sensors: visual flow-based image analysis and an accelerometer-based wearable network. The paper provides results for indoor recognition of several elementary poses and outdoor recognition of complex movements. Instead of complete system description, particular attention was drawn to a polar histogram-based method of visual pose recognition, complementary use and synchronization of the data from wearable and premise-embedded networks and an automatic danger detection algorithm driven by two premise- and subject-related databases. The novelty of our approach also consists in feeding the databases with real-life recordings from the subject, and in using the dynamic time-warping algorithm for measurements of distance between actions represented as elementary poses in behavioral records. The main results of testing our method include: 95.5% accuracy of elementary pose recognition by the video system, 96.7% accuracy of elementary pose recognition by the accelerometer-based system, 98.9% accuracy of elementary pose recognition by the combined accelerometer and video-based system, and 80% accuracy of complex outdoor activity recognition by the accelerometer-based wearable system. PMID:24787640
NASA Astrophysics Data System (ADS)
Kayasith, Prakasith; Theeramunkong, Thanaruk
It is a tedious and subjective task to measure severity of a dysarthria by manually evaluating his/her speech using available standard assessment methods based on human perception. This paper presents an automated approach to assess speech quality of a dysarthric speaker with cerebral palsy. With the consideration of two complementary factors, speech consistency and speech distinction, a speech quality indicator called speech clarity index (Ψ) is proposed as a measure of the speaker's ability to produce consistent speech signal for a certain word and distinguished speech signal for different words. As an application, it can be used to assess speech quality and forecast speech recognition rate of speech made by an individual dysarthric speaker before actual exhaustive implementation of an automatic speech recognition system for the speaker. The effectiveness of Ψ as a speech recognition rate predictor is evaluated by rank-order inconsistency, correlation coefficient, and root-mean-square of difference. The evaluations had been done by comparing its predicted recognition rates with ones predicted by the standard methods called the articulatory and intelligibility tests based on the two recognition systems (HMM and ANN). The results show that Ψ is a promising indicator for predicting recognition rate of dysarthric speech. All experiments had been done on speech corpus composed of speech data from eight normal speakers and eight dysarthric speakers.
Zhang, Yifan; Gao, Xunzhang; Peng, Xuan; Ye, Jiaqi; Li, Xiang
2018-05-16
The High Resolution Range Profile (HRRP) recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.
False match elimination for face recognition based on SIFT algorithm
NASA Astrophysics Data System (ADS)
Gu, Xuyuan; Shi, Ping; Shao, Meide
2011-06-01
The SIFT (Scale Invariant Feature Transform) is a well known algorithm used to detect and describe local features in images. It is invariant to image scale, rotation and robust to the noise and illumination. In this paper, a novel method used for face recognition based on SIFT is proposed, which combines the optimization of SIFT, mutual matching and Progressive Sample Consensus (PROSAC) together and can eliminate the false matches of face recognition effectively. Experiments on ORL face database show that many false matches can be eliminated and better recognition rate is achieved.
Facial recognition in education system
NASA Astrophysics Data System (ADS)
Krithika, L. B.; Venkatesh, K.; Rathore, S.; Kumar, M. Harish
2017-11-01
Human beings exploit emotions comprehensively for conveying messages and their resolution. Emotion detection and face recognition can provide an interface between the individuals and technologies. The most successful applications of recognition analysis are recognition of faces. Many different techniques have been used to recognize the facial expressions and emotion detection handle varying poses. In this paper, we approach an efficient method to recognize the facial expressions to track face points and distances. This can automatically identify observer face movements and face expression in image. This can capture different aspects of emotion and facial expressions.
Gait recognition based on integral outline
NASA Astrophysics Data System (ADS)
Ming, Guan; Fang, Lv
2017-02-01
Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.
Development of precursors recognition methods in vector signals
NASA Astrophysics Data System (ADS)
Kapralov, V. G.; Elagin, V. V.; Kaveeva, E. G.; Stankevich, L. A.; Dremin, M. M.; Krylov, S. V.; Borovov, A. E.; Harfush, H. A.; Sedov, K. S.
2017-10-01
Precursor recognition methods in vector signals of plasma diagnostics are presented. Their requirements and possible options for their development are considered. In particular, the variants of using symbolic regression for building a plasma disruption prediction system are discussed. The initial data preparation using correlation analysis and symbolic regression is discussed. Special attention is paid to the possibility of using algorithms in real time.
Multilingual Phoneme Models for Rapid Speech Processing System Development
2006-09-01
processes are used to develop an Arabic speech recognition system starting from monolingual English models, In- ternational Phonetic Association (IPA...clusters. It was found that multilingual bootstrapping methods out- perform monolingual English bootstrapping methods on the Arabic evaluation data initially...International Phonetic Alphabet . . . . . . . . . 7 2.3.2 Multilingual vs. Monolingual Speech Recognition 7 2.3.3 Data-Driven Approaches
Su, Ruiliang; Chen, Xiang; Cao, Shuai; Zhang, Xu
2016-01-14
Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chinese sign language subwords using recordings from a pair of portable devices worn on both arms consisting of accelerometers (ACC) and surface electromyography (sEMG) sensors. The experimental results demonstrated the validity of the proposed random forest-based method for recognition of Chinese sign language (CSL) subwords. With the proposed method, 98.25% average accuracy was obtained for the classification of a list of 121 frequently used CSL subwords. Moreover, the random forests method demonstrated a superior performance in resisting the impact of bad training samples. When the proportion of bad samples in the training set reached 50%, the recognition error rate of the random forest-based method was only 10.67%, while that of a single decision tree adopted in our previous work was almost 27.5%. Our study offers a practical way of realizing a robust and wearable EMG-ACC-based SLR systems.
Multiclassifier information fusion methods for microarray pattern recognition
NASA Astrophysics Data System (ADS)
Braun, Jerome J.; Glina, Yan; Judson, Nicholas; Herzig-Marx, Rachel
2004-04-01
This paper addresses automatic recognition of microarray patterns, a capability that could have a major significance for medical diagnostics, enabling development of diagnostic tools for automatic discrimination of specific diseases. The paper presents multiclassifier information fusion methods for microarray pattern recognition. The input space partitioning approach based on fitness measures that constitute an a-priori gauging of classification efficacy for each subspace is investigated. Methods for generation of fitness measures, generation of input subspaces and their use in the multiclassifier fusion architecture are presented. In particular, two-level quantification of fitness that accounts for the quality of each subspace as well as the quality of individual neighborhoods within the subspace is described. Individual-subspace classifiers are Support Vector Machine based. The decision fusion stage fuses the information from mulitple SVMs along with the multi-level fitness information. Final decision fusion stage techniques, including weighted fusion as well as Dempster-Shafer theory based fusion are investigated. It should be noted that while the above methods are discussed in the context of microarray pattern recognition, they are applicable to a broader range of discrimination problems, in particular to problems involving a large number of information sources irreducible to a low-dimensional feature space.
Clustered Multi-Task Learning for Automatic Radar Target Recognition
Li, Cong; Bao, Weimin; Xu, Luping; Zhang, Hua
2017-01-01
Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms. PMID:28953267
A robust recognition and accurate locating method for circular coded diagonal target
NASA Astrophysics Data System (ADS)
Bao, Yunna; Shang, Yang; Sun, Xiaoliang; Zhou, Jiexin
2017-10-01
As a category of special control points which can be automatically identified, artificial coded targets have been widely developed in the field of computer vision, photogrammetry, augmented reality, etc. In this paper, a new circular coded target designed by RockeTech technology Corp. Ltd is analyzed and studied, which is called circular coded diagonal target (CCDT). A novel detection and recognition method with good robustness is proposed in the paper, and implemented on Visual Studio. In this algorithm, firstly, the ellipse features of the center circle are used for rough positioning. Then, according to the characteristics of the center diagonal target, a circular frequency filter is designed to choose the correct center circle and eliminates non-target noise. The precise positioning of the coded target is done by the correlation coefficient fitting extreme value method. Finally, the coded target recognition is achieved by decoding the binary sequence in the outer ring of the extracted target. To test the proposed algorithm, this paper has carried out simulation experiments and real experiments. The results show that the CCDT recognition and accurate locating method proposed in this paper can robustly recognize and accurately locate the targets in complex and noisy background.
SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.
Xu, Wenxuan; Zhang, Li; Lu, Yaping
2016-06-01
The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
Using eye movements as an index of implicit face recognition in autism spectrum disorder.
Hedley, Darren; Young, Robyn; Brewer, Neil
2012-10-01
Individuals with an autism spectrum disorder (ASD) typically show impairment on face recognition tasks. Performance has usually been assessed using overt, explicit recognition tasks. Here, a complementary method involving eye tracking was used to examine implicit face recognition in participants with ASD and in an intelligence quotient-matched non-ASD control group. Differences in eye movement indices between target and foil faces were used as an indicator of implicit face recognition. Explicit face recognition was assessed using old-new discrimination and reaction time measures. Stimuli were faces of studied (target) or unfamiliar (foil) persons. Target images at test were either identical to the images presented at study or altered by changing the lighting, pose, or by masking with visual noise. Participants with ASD performed worse than controls on the explicit recognition task. Eye movement-based measures, however, indicated that implicit recognition may not be affected to the same degree as explicit recognition. Autism Res 2012, 5: 363-379. © 2012 International Society for Autism Research, Wiley Periodicals, Inc. © 2012 International Society for Autism Research, Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Lima, Licínio C.; Guimarães, Paula
2016-01-01
This paper focuses on recognition of prior learning as part of a national policy based on European Union guidelines for lifelong learning, and it explains how recognition of prior learning has been perceived since it was implemented in Portugal in 2000. Data discussed are the result of a mixed method research project that surveyed adult learners,…
2010-02-01
1995. 3. B. Kamgar-Parsi and B. Kamgar-Parsi, Methods of facial recognition , US Patent pending, 2007. 4. www.frvt.org/FRGC/ Homepage of the Facial Recognition Grand Challenge project. Last accessed 4 February 2010. c 2010 SPIE
NASA Astrophysics Data System (ADS)
Ogiela, Marek R.; Tadeusiewicz, Ryszard
2000-04-01
This paper presents and discusses possibilities of application of selected algorithms belonging to the group of syntactic methods of patten recognition used to analyze and extract features of shapes and to diagnose morphological lesions seen on selected medical images. This method is particularly useful for specialist morphological analysis of shapes of selected organs of abdominal cavity conducted to diagnose disease symptoms occurring in the main pancreatic ducts, upper segments of ureters and renal pelvis. Analysis of the correct morphology of these organs is possible with the application of the sequential and tree method belonging to the group of syntactic methods of pattern recognition. The objective of this analysis is to support early diagnosis of disease lesions, mainly characteristic for carcinoma and pancreatitis, based on examinations of ERCP images and a diagnosis of morphological lesions in ureters as well as renal pelvis based on an analysis of urograms. In the analysis of ERCP images the main objective is to recognize morphological lesions in pancreas ducts characteristic for carcinoma and chronic pancreatitis, while in the case of kidney radiogram analysis the aim is to diagnose local irregularities of ureter lumen and to examine the morphology of renal pelvis and renal calyxes. Diagnosing the above mentioned lesion has been conducted with the use of syntactic methods of pattern recognition, in particular the languages of description of features of shapes and context-free sequential attributed grammars. These methods allow to recognize and describe in a very efficient way the aforementioned lesions on images obtained as a result of initial image processing of width diagrams of the examined structures. Additionally, in order to support the analysis of the correct structure of renal pelvis a method using the tree grammar for syntactic pattern recognition to define its correct morphological shapes has been presented.
[Analysis on origin and evolution of mumps].
Zhao, Yan
2004-10-01
There was a preliminary recognition on mumps during the Qin-Han to Sui-Tang dynasty, laying a foundation for the scholastic development on this topic in later generations. The title of this disease was identified in Song-Jin-Yuan dynasty with gradual deepening on its principle-method-formula-medication system, a great progress of recognition as compared with the previous ages. In the Ming-Qing dynasty, the recognition became even more systematic, with certain breakthrough in the system of principle-method-formula-medication. In modern age, the experiences were inherited and developed to integrate to modern biomedicine, so that the theory and clinical practice become even more perfect.
NASA Astrophysics Data System (ADS)
Falcoff, Daniel E.; Canali, Luis R.
1999-08-01
This work present one method aimed to individualization and recognition of vial signs in route and city. It is based fundamentally on the identification by means of color and form of the vial sing, located in the border of the route or street in city, and then recognition. To do so the obtained RGB image is processed, carrying out diverse filtrates in the sequence of input image, or intensifying the colors of the same ones otherwise, recognizing their silhouette and then segmenting the sign and comparing the symbology of them with the previously stored and classified database.
A new method of edge detection for object recognition
Maddox, Brian G.; Rhew, Benjamin
2004-01-01
Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.
Shaffer, Franklin D.
2013-03-12
The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.
Adaptation of hidden Markov models for recognizing speech of reduced frame rate.
Lee, Lee-Min; Jean, Fu-Rong
2013-12-01
The frame rate of the observation sequence in distributed speech recognition applications may be reduced to suit a resource-limited front-end device. In order to use models trained using full-frame-rate data in the recognition of reduced frame-rate (RFR) data, we propose a method for adapting the transition probabilities of hidden Markov models (HMMs) to match the frame rate of the observation. Experiments on the recognition of clean and noisy connected digits are conducted to evaluate the proposed method. Experimental results show that the proposed method can effectively compensate for the frame-rate mismatch between the training and the test data. Using our adapted model to recognize the RFR speech data, one can significantly reduce the computation time and achieve the same level of accuracy as that of a method, which restores the frame rate using data interpolation.
NASA Astrophysics Data System (ADS)
Kozoderov, V. V.; Kondranin, T. V.; Dmitriev, E. V.
2017-12-01
The basic model for the recognition of natural and anthropogenic objects using their spectral and textural features is described in the problem of hyperspectral air-borne and space-borne imagery processing. The model is based on improvements of the Bayesian classifier that is a computational procedure of statistical decision making in machine-learning methods of pattern recognition. The principal component method is implemented to decompose the hyperspectral measurements on the basis of empirical orthogonal functions. Application examples are shown of various modifications of the Bayesian classifier and Support Vector Machine method. Examples are provided of comparing these classifiers and a metrical classifier that operates on finding the minimal Euclidean distance between different points and sets in the multidimensional feature space. A comparison is also carried out with the " K-weighted neighbors" method that is close to the nonparametric Bayesian classifier.
Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
NASA Astrophysics Data System (ADS)
Yao, Ruigen; Pakzad, Shamim N.
2012-08-01
Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.
Random-Profiles-Based 3D Face Recognition System
Joongrock, Kim; Sunjin, Yu; Sangyoun, Lee
2014-01-01
In this paper, a noble nonintrusive three-dimensional (3D) face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D) face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation. PMID:24691101
Speaker recognition with temporal cues in acoustic and electric hearing
NASA Astrophysics Data System (ADS)
Vongphoe, Michael; Zeng, Fan-Gang
2005-08-01
Natural spoken language processing includes not only speech recognition but also identification of the speaker's gender, age, emotional, and social status. Our purpose in this study is to evaluate whether temporal cues are sufficient to support both speech and speaker recognition. Ten cochlear-implant and six normal-hearing subjects were presented with vowel tokens spoken by three men, three women, two boys, and two girls. In one condition, the subject was asked to recognize the vowel. In the other condition, the subject was asked to identify the speaker. Extensive training was provided for the speaker recognition task. Normal-hearing subjects achieved nearly perfect performance in both tasks. Cochlear-implant subjects achieved good performance in vowel recognition but poor performance in speaker recognition. The level of the cochlear implant performance was functionally equivalent to normal performance with eight spectral bands for vowel recognition but only to one band for speaker recognition. These results show a disassociation between speech and speaker recognition with primarily temporal cues, highlighting the limitation of current speech processing strategies in cochlear implants. Several methods, including explicit encoding of fundamental frequency and frequency modulation, are proposed to improve speaker recognition for current cochlear implant users.
Fast neuromimetic object recognition using FPGA outperforms GPU implementations.
Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph
2013-08-01
Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.
Online and unsupervised face recognition for continuous video stream
NASA Astrophysics Data System (ADS)
Huo, Hongwen; Feng, Jufu
2009-10-01
We present a novel online face recognition approach for video stream in this paper. Our method includes two stages: pre-training and online training. In the pre-training phase, our method observes interactions, collects batches of input data, and attempts to estimate their distributions (Box-Cox transformation is adopted here to normalize rough estimates). In the online training phase, our method incrementally improves classifiers' knowledge of the face space and updates it continuously with incremental eigenspace analysis. The performance achieved by our method shows its great potential in video stream processing.
Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki
2014-03-01
Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.
Shamim, Mohammad Tabrez Anwar; Anwaruddin, Mohammad; Nagarajaram, H A
2007-12-15
Fold recognition is a key step in the protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. This can be attributed to insufficient exploitation of fold discriminatory features. We have developed a new method for protein fold recognition using structural information of amino acid residues and amino acid residue pairs. Since protein fold recognition can be treated as a protein fold classification problem, we have developed a Support Vector Machine (SVM) based classifier approach that uses secondary structural state and solvent accessibility state frequencies of amino acids and amino acid pairs as feature vectors. Among the individual properties examined secondary structural state frequencies of amino acids gave an overall accuracy of 65.2% for fold discrimination, which is better than the accuracy by any method reported so far in the literature. Combination of secondary structural state frequencies with solvent accessibility state frequencies of amino acids and amino acid pairs further improved the fold discrimination accuracy to more than 70%, which is approximately 8% higher than the best available method. In this study we have also tested, for the first time, an all-together multi-class method known as Crammer and Singer method for protein fold classification. Our studies reveal that the three multi-class classification methods, namely one versus all, one versus one and Crammer and Singer method, yield similar predictions. Dataset and stand-alone program are available upon request.
NASA Astrophysics Data System (ADS)
Xu, Jiayuan; Yu, Chengtao; Bo, Bin; Xue, Yu; Xu, Changfu; Chaminda, P. R. Dushantha; Hu, Chengbo; Peng, Kai
2018-03-01
The automatic recognition of the high voltage isolation switch by remote video monitoring is an effective means to ensure the safety of the personnel and the equipment. The existing methods mainly include two ways: improving monitoring accuracy and adopting target detection technology through equipment transformation. Such a method is often applied to specific scenarios, with limited application scope and high cost. To solve this problem, a high voltage isolation switch state recognition method based on background difference and iterative search is proposed in this paper. The initial position of the switch is detected in real time through the background difference method. When the switch starts to open and close, the target tracking algorithm is used to track the motion trajectory of the switch. The opening and closing state of the switch is determined according to the angle variation of the switch tracking point and the center line. The effectiveness of the method is verified by experiments on different switched video frames of switching states. Compared with the traditional methods, this method is more robust and effective.
Simple thermal to thermal face verification method based on local texture descriptors
NASA Astrophysics Data System (ADS)
Grudzien, A.; Palka, Norbert; Kowalski, M.
2017-08-01
Biometrics is a science that studies and analyzes physical structure of a human body and behaviour of people. Biometrics found many applications ranging from border control systems, forensics systems for criminal investigations to systems for access control. Unique identifiers, also referred to as modalities are used to distinguish individuals. One of the most common and natural human identifiers is a face. As a result of decades of investigations, face recognition achieved high level of maturity, however recognition in visible spectrum is still challenging due to illumination aspects or new ways of spoofing. One of the alternatives is recognition of face in different parts of light spectrum, e.g. in infrared spectrum. Thermal infrared offer new possibilities for human recognition due to its specific properties as well as mature equipment. In this paper we present the scheme of subject's verification methodology by using facial images in thermal range. The study is focused on the local feature extraction methods and on the similarity metrics. We present comparison of two local texture-based descriptors for thermal 1-to-1 face recognition.
Classifier dependent feature preprocessing methods
NASA Astrophysics Data System (ADS)
Rodriguez, Benjamin M., II; Peterson, Gilbert L.
2008-04-01
In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.
Continuous Chinese sign language recognition with CNN-LSTM
NASA Astrophysics Data System (ADS)
Yang, Su; Zhu, Qing
2017-07-01
The goal of sign language recognition (SLR) is to translate the sign language into text, and provide a convenient tool for the communication between the deaf-mute and the ordinary. In this paper, we formulate an appropriate model based on convolutional neural network (CNN) combined with Long Short-Term Memory (LSTM) network, in order to accomplish the continuous recognition work. With the strong ability of CNN, the information of pictures captured from Chinese sign language (CSL) videos can be learned and transformed into vector. Since the video can be regarded as an ordered sequence of frames, LSTM model is employed to connect with the fully-connected layer of CNN. As a recurrent neural network (RNN), it is suitable for sequence learning tasks with the capability of recognizing patterns defined by temporal distance. Compared with traditional RNN, LSTM has performed better on storing and accessing information. We evaluate this method on our self-built dataset including 40 daily vocabularies. The experimental results show that the recognition method with CNN-LSTM can achieve a high recognition rate with small training sets, which will meet the needs of real-time SLR system.
Dealing with the Effects of Sensor Displacement in Wearable Activity Recognition
Banos, Oresti; Toth, Mate Attila; Damas, Miguel; Pomares, Hector; Rojas, Ignacio
2014-01-01
Most wearable activity recognition systems assume a predefined sensor deployment that remains unchanged during runtime. However, this assumption does not reflect real-life conditions. During the normal use of such systems, users may place the sensors in a position different from the predefined sensor placement. Also, sensors may move from their original location to a different one, due to a loose attachment. Activity recognition systems trained on activity patterns characteristic of a given sensor deployment may likely fail due to sensor displacements. In this work, we innovatively explore the effects of sensor displacement induced by both the intentional misplacement of sensors and self-placement by the user. The effects of sensor displacement are analyzed for standard activity recognition techniques, as well as for an alternate robust sensor fusion method proposed in a previous work. While classical recognition models show little tolerance to sensor displacement, the proposed method is proven to have notable capabilities to assimilate the changes introduced in the sensor position due to self-placement and provides considerable improvements for large misplacements. PMID:24915181
3D automatic anatomy recognition based on iterative graph-cut-ASM
NASA Astrophysics Data System (ADS)
Chen, Xinjian; Udupa, Jayaram K.; Bagci, Ulas; Alavi, Abass; Torigian, Drew A.
2010-02-01
We call the computerized assistive process of recognizing, delineating, and quantifying organs and tissue regions in medical imaging, occurring automatically during clinical image interpretation, automatic anatomy recognition (AAR). The AAR system we are developing includes five main parts: model building, object recognition, object delineation, pathology detection, and organ system quantification. In this paper, we focus on the delineation part. For the modeling part, we employ the active shape model (ASM) strategy. For recognition and delineation, we integrate several hybrid strategies of combining purely image based methods with ASM. In this paper, an iterative Graph-Cut ASM (IGCASM) method is proposed for object delineation. An algorithm called GC-ASM was presented at this symposium last year for object delineation in 2D images which attempted to combine synergistically ASM and GC. Here, we extend this method to 3D medical image delineation. The IGCASM method effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. We propose a new GC cost function, which effectively integrates the specific image information with the ASM shape model information. The proposed methods are tested on a clinical abdominal CT data set. The preliminary results show that: (a) it is feasible to explicitly bring prior 3D statistical shape information into the GC framework; (b) the 3D IGCASM delineation method improves on ASM and GC and can provide practical operational time on clinical images.
Emotion Analysis of Telephone Complaints from Customer Based on Affective Computing.
Gong, Shuangping; Dai, Yonghui; Ji, Jun; Wang, Jinzhao; Sun, Hai
2015-01-01
Customer complaint has been the important feedback for modern enterprises to improve their product and service quality as well as the customer's loyalty. As one of the commonly used manners in customer complaint, telephone communication carries rich emotional information of speeches, which provides valuable resources for perceiving the customer's satisfaction and studying the complaint handling skills. This paper studies the characteristics of telephone complaint speeches and proposes an analysis method based on affective computing technology, which can recognize the dynamic changes of customer emotions from the conversations between the service staff and the customer. The recognition process includes speaker recognition, emotional feature parameter extraction, and dynamic emotion recognition. Experimental results show that this method is effective and can reach high recognition rates of happy and angry states. It has been successfully applied to the operation quality and service administration in telecom and Internet service company.
Characteristics of speaking style and implications for speech recognition.
Shinozaki, Takahiro; Ostendorf, Mari; Atlas, Les
2009-09-01
Differences in speaking style are associated with more or less spectral variability, as well as different modulation characteristics. The greater variation in some styles (e.g., spontaneous speech and infant-directed speech) poses challenges for recognition but possibly also opportunities for learning more robust models, as evidenced by prior work and motivated by child language acquisition studies. In order to investigate this possibility, this work proposes a new method for characterizing speaking style (the modulation spectrum), examines spontaneous, read, adult-directed, and infant-directed styles in this space, and conducts pilot experiments in style detection and sampling for improved speech recognizer training. Speaking style classification is improved by using the modulation spectrum in combination with standard pitch and energy variation. Speech recognition experiments on a small vocabulary conversational speech recognition task show that sampling methods for training with a small amount of data benefit from the new features.
Lee, Jong-Seok; Park, Cheol Hoon
2010-08-01
We propose a novel stochastic optimization algorithm, hybrid simulated annealing (SA), to train hidden Markov models (HMMs) for visual speech recognition. In our algorithm, SA is combined with a local optimization operator that substitutes a better solution for the current one to improve the convergence speed and the quality of solutions. We mathematically prove that the sequence of the objective values converges in probability to the global optimum in the algorithm. The algorithm is applied to train HMMs that are used as visual speech recognizers. While the popular training method of HMMs, the expectation-maximization algorithm, achieves only local optima in the parameter space, the proposed method can perform global optimization of the parameters of HMMs and thereby obtain solutions yielding improved recognition performance. The superiority of the proposed algorithm to the conventional ones is demonstrated via isolated word recognition experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillis, D.R.
A computer-based simulation with an artificial intelligence component and discovery learning was investigated as a method to formulate training needs for new or unfamiliar technologies. Specifically, the study examined if this simulation method would provide for the recognition of applications and knowledge/skills which would be the basis for establishing training needs. The study also examined the effect of field-dependence/independence on recognition of applications and knowledge/skills. A pretest-posttest control group experimental design involving fifty-eight college students from an industrial technology program was used. The study concluded that the simulation was effective in developing recognition of applications and the knowledge/skills for amore » new or unfamiliar technology. And, the simulation's effectiveness for providing this recognition was not limited by an individual's field-dependence/independence.« less
Ma, Xue-Qin; Li, Guo-Shan; Fu, Xue-Yan; Ma, Jing-Zu
2011-03-01
To investigate CD molecular recognition technology applied in active constituents extracted and isolated from traditional Chinese medicine--Aconitum pendulum. The inclusion constant and form probability of the inclusion complex of Aconitum pendulum with p-CD was calculated by UV spectra method. The active constituents of Aconitum pendulum were extracted and isolated by molecular recognition technology. The inclusion complex was identified by UV. The chemical constituents of Aconitum pendulum and inclusion complex was determined by HPLC. The analgesic effects of inclusion complex was investigated by experiment of intraperitoneal injection of acetic acid in rats. The inclusion complex was identified and confirmed by UV spectra method, the chemical components of inclusion complex were simple, and the content of active constituents increased significantly, the analgesic effects of inclusion complex was well. The molecular recognition technology can be used for extracting and isolating active constituents of Aconitum pendulum, and the effects are obvious.
Multi-frame knowledge based text enhancement for mobile phone captured videos
NASA Astrophysics Data System (ADS)
Ozarslan, Suleyman; Eren, P. Erhan
2014-02-01
In this study, we explore automated text recognition and enhancement using mobile phone captured videos of store receipts. We propose a method which includes Optical Character Resolution (OCR) enhanced by our proposed Row Based Multiple Frame Integration (RB-MFI), and Knowledge Based Correction (KBC) algorithms. In this method, first, the trained OCR engine is used for recognition; then, the RB-MFI algorithm is applied to the output of the OCR. The RB-MFI algorithm determines and combines the most accurate rows of the text outputs extracted by using OCR from multiple frames of the video. After RB-MFI, KBC algorithm is applied to these rows to correct erroneous characters. Results of the experiments show that the proposed video-based approach which includes the RB-MFI and the KBC algorithm increases the word character recognition rate to 95%, and the character recognition rate to 98%.
Identification and location of catenary insulator in complex background based on machine vision
NASA Astrophysics Data System (ADS)
Yao, Xiaotong; Pan, Yingli; Liu, Li; Cheng, Xiao
2018-04-01
It is an important premise to locate insulator precisely for fault detection. Current location algorithms for insulator under catenary checking images are not accurate, a target recognition and localization method based on binocular vision combined with SURF features is proposed. First of all, because of the location of the insulator in complex environment, using SURF features to achieve the coarse positioning of target recognition; then Using binocular vision principle to calculate the 3D coordinates of the object which has been coarsely located, realization of target object recognition and fine location; Finally, Finally, the key is to preserve the 3D coordinate of the object's center of mass, transfer to the inspection robot to control the detection position of the robot. Experimental results demonstrate that the proposed method has better recognition efficiency and accuracy, can successfully identify the target and has a define application value.
Fuzzy support vector machines for adaptive Morse code recognition.
Yang, Cheng-Hong; Jin, Li-Cheng; Chuang, Li-Yeh
2006-11-01
Morse code is now being harnessed for use in rehabilitation applications of augmentative-alternative communication and assistive technology, facilitating mobility, environmental control and adapted worksite access. In this paper, Morse code is selected as a communication adaptive device for persons who suffer from muscle atrophy, cerebral palsy or other severe handicaps. A stable typing rate is strictly required for Morse code to be effective as a communication tool. Therefore, an adaptive automatic recognition method with a high recognition rate is needed. The proposed system uses both fuzzy support vector machines and the variable-degree variable-step-size least-mean-square algorithm to achieve these objectives. We apply fuzzy memberships to each point, and provide different contributions to the decision learning function for support vector machines. Statistical analyses demonstrated that the proposed method elicited a higher recognition rate than other algorithms in the literature.
Emotion Analysis of Telephone Complaints from Customer Based on Affective Computing
Gong, Shuangping; Ji, Jun; Wang, Jinzhao; Sun, Hai
2015-01-01
Customer complaint has been the important feedback for modern enterprises to improve their product and service quality as well as the customer's loyalty. As one of the commonly used manners in customer complaint, telephone communication carries rich emotional information of speeches, which provides valuable resources for perceiving the customer's satisfaction and studying the complaint handling skills. This paper studies the characteristics of telephone complaint speeches and proposes an analysis method based on affective computing technology, which can recognize the dynamic changes of customer emotions from the conversations between the service staff and the customer. The recognition process includes speaker recognition, emotional feature parameter extraction, and dynamic emotion recognition. Experimental results show that this method is effective and can reach high recognition rates of happy and angry states. It has been successfully applied to the operation quality and service administration in telecom and Internet service company. PMID:26633967
Tuberculosis disease diagnosis using artificial immune recognition system.
Shamshirband, Shahaboddin; Hessam, Somayeh; Javidnia, Hossein; Amiribesheli, Mohsen; Vahdat, Shaghayegh; Petković, Dalibor; Gani, Abdullah; Kiah, Miss Laiha Mat
2014-01-01
There is a high risk of tuberculosis (TB) disease diagnosis among conventional methods. This study is aimed at diagnosing TB using hybrid machine learning approaches. Patient epicrisis reports obtained from the Pasteur Laboratory in the north of Iran were used. All 175 samples have twenty features. The features are classified based on incorporating a fuzzy logic controller and artificial immune recognition system. The features are normalized through a fuzzy rule based on a labeling system. The labeled features are categorized into normal and tuberculosis classes using the Artificial Immune Recognition Algorithm. Overall, the highest classification accuracy reached was for the 0.8 learning rate (α) values. The artificial immune recognition system (AIRS) classification approaches using fuzzy logic also yielded better diagnosis results in terms of detection accuracy compared to other empirical methods. Classification accuracy was 99.14%, sensitivity 87.00%, and specificity 86.12%.
Feature Selection for Nonstationary Data: Application to Human Recognition Using Medical Biometrics.
Komeili, Majid; Louis, Wael; Armanfard, Narges; Hatzinakos, Dimitrios
2018-05-01
Electrocardiogram (ECG) and transient evoked otoacoustic emission (TEOAE) are among the physiological signals that have attracted significant interest in biometric community due to their inherent robustness to replay and falsification attacks. However, they are time-dependent signals and this makes them hard to deal with in across-session human recognition scenario where only one session is available for enrollment. This paper presents a novel feature selection method to address this issue. It is based on an auxiliary dataset with multiple sessions where it selects a subset of features that are more persistent across different sessions. It uses local information in terms of sample margins while enforcing an across-session measure. This makes it a perfect fit for aforementioned biometric recognition problem. Comprehensive experiments on ECG and TEOAE variability due to time lapse and body posture are done. Performance of the proposed method is compared against seven state-of-the-art feature selection algorithms as well as another six approaches in the area of ECG and TEOAE biometric recognition. Experimental results demonstrate that the proposed method performs noticeably better than other algorithms.
Clustering-Based Ensemble Learning for Activity Recognition in Smart Homes
Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli
2014-01-01
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks. PMID:25014095
Clustering-based ensemble learning for activity recognition in smart homes.
Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli
2014-07-10
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-01-01
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824
Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning
2012-01-01
In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate. PMID:22368464
Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning
2012-01-01
In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.
Pilot study on the feasibility of a computerized speech recognition charting system.
Feldman, C A; Stevens, D
1990-08-01
The objective of this study was to determine the feasibility of developing and using a voice recognition computerized charting system to record dental clinical examination data. More specifically, the study was designed to analyze the time and error differential between the traditional examiner/recorder method (ASSISTANT) and computerized voice recognition method (VOICE). DMFS examinations were performed twice on 20 patients using the traditional ASSISTANT and the VOICE charting system. A statistically significant difference was found when comparing the mean ASSISTANT time of 2.69 min to the VOICE time of 3.72 min (P less than 0.001). No statistically significant difference was found when comparing the mean ASSISTANT recording errors of 0.1 to VOICE recording errors of 0.6 (P = 0.059). 90% of the patients indicated they felt comfortable with the dentist talking to a computer and only 5% of the sample indicated they opposed VOICE. Results from this pilot study indicate that a charting system utilizing voice recognition technology could be considered a viable alternative to traditional examiner/recorder methods of clinical charting.
Contini, Erika W; Wardle, Susan G; Carlson, Thomas A
2017-10-01
Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-06-13
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).
Sparse representation based SAR vehicle recognition along with aspect angle.
Xing, Xiangwei; Ji, Kefeng; Zou, Huanxin; Sun, Jixiang
2014-01-01
As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC) has attracted much attention in synthetic aperture radar (SAR) automatic target recognition (ATR) recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA), in which the correlation between the vehicle's aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA) feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle's aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.
NASA Astrophysics Data System (ADS)
You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.
2013-01-01
Pointers (arrows and symbols) are frequently used in biomedical images to highlight specific image regions of interest (ROIs) that are mentioned in figure captions and/or text discussion. Detection of pointers is the first step toward extracting relevant visual features from ROIs and combining them with textual descriptions for a multimodal (text and image) biomedical article retrieval system. Recently we developed a pointer recognition algorithm based on an edge-based pointer segmentation method, and subsequently reported improvements made on our initial approach involving the use of Active Shape Models (ASM) for pointer recognition and region growing-based method for pointer segmentation. These methods contributed to improving the recall of pointer recognition but not much to the precision. The method discussed in this article is our recent effort to improve the precision rate. Evaluation performed on two datasets and compared with other pointer segmentation methods show significantly improved precision and the highest F1 score.
Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong
2016-01-20
In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.
NASA Astrophysics Data System (ADS)
Li, Yung-Hui; Zheng, Bo-Ren; Ji, Dai-Yan; Tien, Chung-Hao; Liu, Po-Tsun
2014-09-01
Cross sensor iris matching may seriously degrade the recognition performance because of the sensor mis-match problem of iris images between the enrollment and test stage. In this paper, we propose two novel patch-based heterogeneous dictionary learning method to attack this problem. The first method applies the latest sparse representation theory while the second method tries to learn the correspondence relationship through PCA in heterogeneous patch space. Both methods learn the basic atoms in iris textures across different image sensors and build connections between them. After such connections are built, at test stage, it is possible to hallucinate (synthesize) iris images across different sensors. By matching training images with hallucinated images, the recognition rate can be successfully enhanced. The experimental results showed the satisfied results both visually and in terms of recognition rate. Experimenting with an iris database consisting of 3015 images, we show that the EER is decreased 39.4% relatively by the proposed method.
[Analysis of the stability and adaptability of near infrared spectra qualitative analysis model].
Cao, Wu; Li, Wei-jun; Wang, Ping; Zhang, Li-ping
2014-06-01
The stability and adaptability of model of near infrared spectra qualitative analysis were studied. Method of separate modeling can significantly improve the stability and adaptability of model; but its ability of improving adaptability of model is limited. Method of joint modeling can not only improve the adaptability of the model, but also the stability of model, at the same time, compared to separate modeling, the method can shorten the modeling time, reduce the modeling workload; extend the term of validity of model, and improve the modeling efficiency. The experiment of model adaptability shows that, the correct recognition rate of separate modeling method is relatively low, which can not meet the requirements of application, and joint modeling method can reach the correct recognition rate of 90%, and significantly enhances the recognition effect. The experiment of model stability shows that, the identification results of model by joint modeling are better than the model by separate modeling, and has good application value.
A method of vehicle license plate recognition based on PCANet and compressive sensing
NASA Astrophysics Data System (ADS)
Ye, Xianyi; Min, Feng
2018-03-01
The manual feature extraction of the traditional method for vehicle license plates has no good robustness to change in diversity. And the high feature dimension that is extracted with Principal Component Analysis Network (PCANet) leads to low classification efficiency. For solving these problems, a method of vehicle license plate recognition based on PCANet and compressive sensing is proposed. First, PCANet is used to extract the feature from the images of characters. And then, the sparse measurement matrix which is a very sparse matrix and consistent with Restricted Isometry Property (RIP) condition of the compressed sensing is used to reduce the dimensions of extracted features. Finally, the Support Vector Machine (SVM) is used to train and recognize the features whose dimension has been reduced. Experimental results demonstrate that the proposed method has better performance than Convolutional Neural Network (CNN) in the recognition and time. Compared with no compression sensing, the proposed method has lower feature dimension for the increase of efficiency.
Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung
2018-01-01
Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases. PMID:29495417
Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung
2018-02-26
Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases.
ERIC Educational Resources Information Center
Aydin, Abdullah; Biyikli, Filiz
2017-01-01
This research aims to compare the effects of Jigsaw technique from the cooperative learning methods and traditional learning method on laboratory material recognition and usage skills of students in General Physics Lab-I Course. This study was conducted with 63 students who took general physics laboratory-I course in the department of science…
Longcamp, Marieke; Zerbato-Poudou, Marie-Thérèse; Velay, Jean-Luc
2005-05-01
A large body of data supports the view that movement plays a crucial role in letter representation and suggests that handwriting contributes to the visual recognition of letters. If so, changing the motor conditions while children are learning to write by using a method based on typing instead of handwriting should affect their subsequent letter recognition performances. In order to test this hypothesis, we trained two groups of 38 children (aged 3-5 years) to copy letters of the alphabet either by hand or by typing them. After three weeks of learning, we ran two recognition tests, one week apart, to compare the letter recognition performances of the two groups. The results showed that in the older children, the handwriting training gave rise to a better letter recognition than the typing training.
Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei
2014-09-01
In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Affect Recognition in Adults with Attention-Deficit/Hyperactivity Disorder
Miller, Meghan; Hanford, Russell B.; Fassbender, Catherine; Duke, Marshall; Schweitzer, Julie B.
2014-01-01
Objective This study compared affect recognition abilities between adults with and without Attention-Deficit/Hyperactivity Disorder (ADHD). Method The sample included 51 participants (34 men, 17 women) divided into 3 groups: ADHD-Combined Type (ADHD-C; n = 17), ADHD-Predominantly Inattentive Type (ADHD-I; n = 16), and controls (n = 18). The mean age was 34 years. Affect recognition abilities were assessed by the Diagnostic Analysis of Nonverbal Accuracy (DANVA). Results Analyses of Variance showed that the ADHD-I group made more fearful emotion errors relative to the control group. Inattentive symptoms were positively correlated while hyperactive-impulsive symptoms were negatively correlated with affect recognition errors. Conclusion These results suggest that affect recognition abilities may be impaired in adults with ADHD and that affect recognition abilities are more adversely affected by inattentive than hyperactive-impulsive symptoms. PMID:20555036
ERIC Educational Resources Information Center
Gelfand, Stanley A.; Gelfand, Jessica T.
2012-01-01
Method: Complete psychometric functions for phoneme and word recognition scores at 8 signal-to-noise ratios from -15 dB to 20 dB were generated for the first 10, 20, and 25, as well as all 50, three-word presentations of the Tri-Word or Computer Assisted Speech Recognition Assessment (CASRA) Test (Gelfand, 1998) based on the results of 12…
Pattern recognition neural-net by spatial mapping of biology visual field
NASA Astrophysics Data System (ADS)
Lin, Xin; Mori, Masahiko
2000-05-01
The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.
Feature-Based Methods for Landmine Detection with Ground Penetrating Radar
2012-09-27
of abstraction without having to resort to assumptions about the events. DS fusion was applied to handwriting recognition [67], decision making [68...has been applied to landmine detection [80], and (in a different way) to handwriting recognition [46], and fusion of social choices (voting...applications to handwriting recognition, IEEE Transactions on Systems, Man and Cybernetics 22 (3) (1992) 418–435. [68] M. Beynon, D. Cosker, A.D. Marshall
Command Recognition of Robot with Low Dimension Whole-Body Haptic Sensor
NASA Astrophysics Data System (ADS)
Ito, Tatsuya; Tsuji, Toshiaki
The authors have developed “haptic armor”, a whole-body haptic sensor that has an ability to estimate contact position. Although it is developed for safety assurance of robots in human environment, it can also be used as an interface. This paper proposes a command recognition method based on finger trace information. This paper also discusses some technical issues for improving recognition accuracy of this system.
NASA Astrophysics Data System (ADS)
Kuznetsov, Michael V.
2006-05-01
For reliable teamwork of various systems of automatic telecommunication including transferring systems of optical communication networks it is necessary authentic recognition of signals for one- or two-frequency service signal system. The analysis of time parameters of an accepted signal allows increasing reliability of detection and recognition of the service signal system on a background of speech.
Real-Time Reconfigurable Adaptive Speech Recognition Command and Control Apparatus and Method
NASA Technical Reports Server (NTRS)
Salazar, George A. (Inventor); Haynes, Dena S. (Inventor); Sommers, Marc J. (Inventor)
1998-01-01
An adaptive speech recognition and control system and method for controlling various mechanisms and systems in response to spoken instructions and in which spoken commands are effective to direct the system into appropriate memory nodes, and to respective appropriate memory templates corresponding to the voiced command is discussed. Spoken commands from any of a group of operators for which the system is trained may be identified, and voice templates are updated as required in response to changes in pronunciation and voice characteristics over time of any of the operators for which the system is trained. Provisions are made for both near-real-time retraining of the system with respect to individual terms which are determined not be positively identified, and for an overall system training and updating process in which recognition of each command and vocabulary term is checked, and in which the memory templates are retrained if necessary for respective commands or vocabulary terms with respect to an operator currently using the system. In one embodiment, the system includes input circuitry connected to a microphone and including signal processing and control sections for sensing the level of vocabulary recognition over a given period and, if recognition performance falls below a given level, processing audio-derived signals for enhancing recognition performance of the system.