Science.gov

Sample records for pancreatic stem cells

  1. [Pancreatic cancer stem cell].

    PubMed

    Hamada, Shin; Masamune, Atsushi; Shimosegawa, Tooru

    2015-05-01

    Prognosis of pancreatic cancer remains dismal due to the resistance against conventional therapies. Metastasis and massive invasion toward surrounding organs hamper radical resection. Small part of entire cancer cells reveal resistance against chemotherapy or radiotherapy, increased tumorigenicity and migratory phenotype. These cells are called as cancer stem cells, as a counter part of normal stem cells. In pancreatic cancer, several cancer stem cell markers have been identified, which enabled detailed characterization of pancreatic cancer stem cells. Recent researches clarified that conventional chemotherapy itself could increase cancer cells with stem cell-phenotype, suggesting the necessity of cancer stem cell-targeting therapy. Based on these observations, pancreatic cancer stem cell-targeting therapies have been tested, which effectively eliminated cancer stem cell fraction and attenuated cancer progression in experimental models. Clinical efficacy of these therapies need to be evaluated, and cancer stem cell-targeting therapy will contribute to improve the prognosis of pancreatic cancer.

  2. Pancreatic cancer stem cells.

    PubMed

    Zhu, Ya-Yun; Yuan, Zhou

    2015-01-01

    Studies are emerging in support of the cancer stem cells (CSCs) theory which considers that a tiny subset of cancer cells is exclusively responsible for the initiation and malignant behavior of a cancer. This cell population, also termed CSCs, possesses the capacity both to self-renew, producing progeny that have the identical tumorigenic potential, and to differentiate into the bulk of cancer cells, helping serve the formation of the tumor entities, which, altogether, build the hierarchically organized structure of a cancer. In this review, we try to articulate the complicated signaling pathways regulating the retention of the characteristics of pancreatic CSCs, and in the wake of which, we seek to offer insights into the CSCs-relevant targeted therapeutics which are, in the meantime, confronted with bigger challenges than ever.

  3. Pancreatic cancer stem cells: fact or fiction?

    PubMed

    Bhagwandin, Vikash J; Shay, Jerry W

    2009-04-01

    The terms cancer-initiating or cancer stem cells have been the subject of great interest in recent years. In this review we will use pancreatic cancer as an overall theme to draw parallels with historical findings to compare to recent reports of stem-like characteristics in pancreatic cancer. We will cover such topics as label-retaining cells (side-population), ABC transporter pumps, telomerase, quiescence, cell surface stem cell markers, and epithelial-mesenchymal transitions. Finally we will integrate the available findings into a pancreatic stem cell model that also includes metastatic disease.

  4. Pancreatic Differentiation from Murine Embryonic Stem Cells.

    PubMed

    Sakano, Daisuke; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Pluripotent stem cells are considered as a cell source for replacement therapies for pancreatic beta cells and other organs.We identified tetrabenazine (TBZ), vesicular monoamine transporter 2 (VMAT2) inhibitor as a promoter of late-stage differentiation of Pdx1-positive pancreatic progenitor cells into Ngn3-positive endocrine progenitor cells. A cell-permeable cAMP analog, dBu-cAMP promotes beta cell maturation in late stage of differentiation. The induced beta cells can secrete insulin in a glucose-dependent manner.Our protocol consists of a three -step differentiation process. ES cell recapitulate embryonic developmental processes in vitro. Therefore, the ES cell differentiation system is a useful model for the understanding of molecular mechanism of beta-cell differentiation and are useful for application for future regenerative medicine.

  5. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    SciTech Connect

    Hamada, Shin; Masamune, Atsushi; Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa; Hamada, Hirofumi; Kobune, Masayoshi; Satoh, Kennichi; Shimosegawa, Tooru

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  6. Pancreatic Cancer Stem Cells and Therapeutic Approaches.

    PubMed

    Ercan, Gulinnaz; Karlitepe, Ayfer; Ozpolat, Bulent

    2017-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest human cancers, with 1-5% 5-year survival rates (~6-month median survival duration) despite therapy; thus, PDAC represents an unmet therapeutic challenge. PDAC is the major histological subtype, comprising 90% of all pancreatic cancers. It is a highly complex and aggressive malignancy, presenting with early local invasion and metastasis, and is resistant to most therapies, all of which are believed to contribute to its extremely poor prognosis. PDAC is characterized by molecular alterations, including mutations of K-RAS (~90% of cases), TP53, transforming growth factor-β, Hedgehog, WNT and NOTCH signaling pathways. Given that cancer stem cells have a crucial role not only in tumor initiation and progression, but also in drug resistance and relapse or recurrence of various cancer types, they may be excellent targets for effective novel therapeutic approaches. Here, we reviewed recent therapeutic strategies targeting pancreatic cancer stem cells using chemotherapeutics and targeted drugs, non-coding RNAs (i.e., siRNA and miRNAs), immunotherapy, and natural compounds. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Bone marrow-derived stem cells initiate pancreatic regeneration.

    PubMed

    Hess, David; Li, Li; Martin, Matthew; Sakano, Seiji; Hill, David; Strutt, Brenda; Thyssen, Sandra; Gray, Douglas A; Bhatia, Mickie

    2003-07-01

    We show that transplantation of adult bone marrow-derived cells expressing c-kit reduces hyperglycemia in mice with streptozotocin-induced pancreatic damage. Although quantitative analysis of the pancreas revealed a low frequency of donor insulin-positive cells, these cells were not present at the onset of blood glucose reduction. Instead, the majority of transplanted cells were localized to ductal and islet structures, and their presence was accompanied by a proliferation of recipient pancreatic cells that resulted in insulin production. The capacity of transplanted bone marrow-derived stem cells to initiate endogenous pancreatic tissue regeneration represents a previously unrecognized means by which these cells can contribute to the restoration of organ function.

  8. Targeting pancreatitis blocks tumor-initiating stem cells and pancreatic cancer progression

    PubMed Central

    Madka, Venkateshwar; Brewer, Misty; Ritchie, Rebekah L.; Lightfoot, Stan; Kumar, Gaurav; Sadeghi, Michael; Patlolla, Jagan Mohan R.; Yamada, Hiroshi Y.; Cruz-Monserrate, Zobeida; May, Randal; Houchen, Courtney W.; Steele, Vernon E.; Rao, Chinthalapally V.

    2015-01-01

    Recent development of genetically engineered mouse models (GEMs) for pancreatic cancer (PC) that recapitulates human disease progression has helped to identify new strategies to delay/inhibit PC development. We first found that expression of the pancreatic tumor-initiating/cancer stem cells (CSC) marker DclK1 occurs in early stage PC and in both early and late pancreatic intraepithelial neoplasia (PanIN) and that it increases as disease progresses in GEM and also in human PC. Genome-wide next generation sequencing of pancreatic ductal adenocarcinoma (PDAC) from GEM mice revealed significantly increased DclK1 along with inflammatory genes. Genetic ablation of cyclo-oxygenase-2 (COX-2) decreased DclK1 in GEM. Induction of inflammation/pancreatitis with cerulein in GEM mice increased DclK1, and the novel dual COX/5-lipoxygenase (5-LOX) inhibitor licofelone reduced it. Dietary licofelone significantly inhibited the incidence of PDAC and carcinoma in situ with significant inhibition of pancreatic CSCs. Licofelone suppressed pancreatic tumor COX-2 and 5-LOX activities and modulated miRNAs characteristic of CSC and inflammation in correlation with PDAC inhibition. These results offer a preclinical proof of concept to target the inflammation initiation to inhibit cancer stem cells early for improving the treatment of pancreatic cancers, with immediate clinical implications for repositioning dual COX/5-LOX inhibitors in human trials for high risk patients. PMID:25906749

  9. Pancreatic cancer stem cells: new insights and perspectives.

    PubMed

    Dorado, Jorge; Lonardo, Enza; Miranda-Lorenzo, Irene; Heeschen, Christopher

    2011-08-01

    Since the identification of self-renewing cells in the hematopoietic system several decades ago, stem cells have changed the way we study biology and medicine. Solid tumors contain a distinct subpopulation of cells that have stem cell characteristics and are exclusively responsible for tumorigenicity. This discovery has led to the development of the stem cell concept of cancer, which proposes that a subpopulation of self-renewing tumor cells, also termed cancer stem cells, is responsible for tumorigenesis and metastasis. This contrasts with the stochastic model of tumor development, which holds that all tumor cells are capable of tumor initiation. Different subpopulations of cancer stem cells have been identified in pancreatic ductal adenocarcinoma, based on the use of combinations of surface markers that allow their isolation, propagation, and further characterization. Importantly, cancer stem cells are not only capable of self-renewal and differentiation, but may also confer virulence via immune system evasion and multidrug resistance, and potentially via vasculogenic mimicry and transition to migratory and metastasizing derivatives. Therapeutic targeting of this subset of cells and the pathways defining their virulence holds great promise for the development of more effective strategies for the amelioration and eradication of this most lethal form of cancer.

  10. microRNA regulation of human pancreatic cancer stem cells

    PubMed Central

    Xu, Yi-Fan; Hannafon, Bethany N.

    2017-01-01

    microRNAs (miRNAs) are a group of small non-coding RNAs that function primarily in the post transcriptional regulation of gene expression in plants and animals. Deregulation of miRNA expression in cancer cells, including pancreatic cancer cells, is well documented, and the involvement of miRNAs in orchestrating tumor genesis and cancer progression has been recognized. This review focuses on recent reports demonstrating that miRNAs are involved in regulation of pancreatic cancer stem cells (CSCs). A number of miRNA species have been identified to be involved in regulating pancreatic CSCs, including miR-21, miR-34, miR-1246, miR-221, the miR-17-92 cluster, the miR-200 and let-7 families. Furthermore, the Notch-signaling pathway and epithelial-mesenchymal transition (EMT) process are associated with miRNA regulation of pancreatic CSCs. Given the significant contribution of CSCs to chemo-resistance and tumor progression, a better understanding of how miRNAs function in pancreatic CSCs could provide novel strategies for the development of therapeutics and diagnostics for this devastating disease. PMID:28217707

  11. mTOR plays critical roles in pancreatic cancer stem cells through specific and stemness-related functions

    NASA Astrophysics Data System (ADS)

    Matsubara, Shyuichiro; Ding, Qiang; Miyazaki, Yumi; Kuwahata, Taisaku; Tsukasa, Koichiro; Takao, Sonshin

    2013-11-01

    Pancreatic cancer is characterized by near-universal mutations in KRAS. The mammalian target of rapamycin (mTOR), which functions downstream of RAS, has divergent effects on stem cells. In the present study, we investigated the significance of the mTOR pathway in maintaining the properties of pancreatic cancer stem cells. The mTOR inhibitor, rapamycin, reduced the viability of CD133+ pancreatic cancer cells and sphere formation which is an index of self-renewal of stem-like cells, indicating that the mTOR pathway functions to maintain cancer stem-like cells. Further, rapamycin had different effects on CD133+ cells compared to cyclopamine which is an inhibitor of the Hedgehog pathway. Thus, the mTOR pathway has a distinct role although both pathways maintain pancreatic cancer stem cells. Therefore, mTOR might be a promising target to eliminate pancreatic cancer stem cells.

  12. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells.

    PubMed

    D'Amour, Kevin A; Bang, Anne G; Eliazer, Susan; Kelly, Olivia G; Agulnick, Alan D; Smart, Nora G; Moorman, Mark A; Kroon, Evert; Carpenter, Melissa K; Baetge, Emmanuel E

    2006-11-01

    Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.

  13. Pancreatic cancer stem cell markers and exosomes - the incentive push

    PubMed Central

    Heiler, Sarah; Wang, Zhe; Zöller, Margot

    2016-01-01

    Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX. PMID:27468191

  14. Stem cells as the root of pancreatic ductal adenocarcinoma

    SciTech Connect

    Balic, Anamaria; Dorado, Jorge; Alonso-Gomez, Mercedes; Heeschen, Christopher

    2012-04-01

    Emerging evidence suggests that stem cells play a crucial role not only in the generation and maintenance of different tissues, but also in the development and progression of malignancies. For the many solid cancers, it has now been shown that they harbor a distinct subpopulation of cancer cells that bear stem cell features and therefore, these cells are termed cancer stem cells (CSC) or tumor-propagating cells. CSC are exclusively tumorigenic and essential drivers for tumor progression and metastasis. Moreover, it has been shown that pancreatic ductal adenocarcinoma does not only contain one homogeneous population of CSC rather than diverse subpopulations that may have evolved during tumor progression. One of these populations is called migrating CSC and can be characterized by CXCR4 co-expression. Only these cells are capable of evading the primary tumor and traveling to distant sites such as the liver as the preferred site of metastatic spread. Clinically even more important, however, is the observation that CSC are highly resistant to chemo- and radiotherapy resulting in their relative enrichment during treatment and rapid relapse of disease. Many laboratories are now working on the further in-depth characterization of these cells, which may eventually allow for the identification of their Achilles heal and lead to novel treatment modalities for fighting this deadly disease.

  15. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    USDA-ARS?s Scientific Manuscript database

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  16. Stirred bioreactors for the expansion of adult pancreatic stem cells.

    PubMed

    Serra, Margarida; Brito, Catarina; Leite, Sofia B; Gorjup, Erwin; von Briesen, Hagen; Carrondo, Manuel J T; Alves, Paula M

    2009-01-01

    Adult pluripotent stem cells are a cellular resource representing unprecedented potential for cell therapy and tissue engineering. Complementary to this promise, there is a need for efficient bioprocesses for their large scale expansion and/or differentiation. With this goal in mind, our work focused on the development of three-dimensional (3-D) culture systems for controlled expansion of adult pancreatic stem cells (PSCs). For this purpose, two different culturing strategies were evaluated, using spinner vessels: cell aggregated cultures versus microcarrier technology. The use of microcarrier supports (Cytodex 1 and Cytodex 3) rendered expanded cell populations which retained their self-renewal ability, cell marker, and the potential to differentiate into adipocytes. This strategy surmounted the drawbacks of aggregates in culture which were demonstrably unfeasible as cells clumped together did not proliferate and lost PSC marker expression. Furthermore, the results obtained showed that although both microcarriers tested here were suitable for sustaining cell expansion, Cytodex 3 provided a better substrate for the promotion of cell adherence and growth. For the latter approach, the potential of bioreactor technology was combined with the efficient Cytodex 3 strategy under controlled environmental conditions (pH-7.2, pO2-30% and temperature-37 degrees C); cell growth was more efficient, as shown by faster doubling time, higher growth rate and higher fold increase in cell concentration, when compared to spinner cultures. This study describes a robust bioprocess for the controlled expansion of adult PSC, representing an efficient starting point for the development of novel technologies for cell therapy.

  17. Biliary tree stem cells, precursors to pancreatic committed progenitors: evidence for possible life-long pancreatic organogenesis.

    PubMed

    Wang, Yunfang; Lanzoni, Giacomo; Carpino, Guido; Cui, Cai-Bin; Dominguez-Bendala, Juan; Wauthier, Eliane; Cardinale, Vincenzo; Oikawa, Tsunekazu; Pileggi, Antonello; Gerber, David; Furth, Mark E; Alvaro, Domenico; Gaudio, Eugenio; Inverardi, Luca; Reid, Lola M

    2013-09-01

    Peribiliary glands (PBGs) in bile duct walls, and pancreatic duct glands (PDGs) associated with pancreatic ducts, in humans of all ages, contain a continuous, ramifying network of cells in overlapping maturational lineages. We show that proximal (PBGs)-to-distal (PDGs) maturational lineages start near the duodenum with cells expressing markers of pluripotency (NANOG, OCT4, and SOX2), proliferation (Ki67), self-replication (SALL4), and early hepato-pancreatic commitment (SOX9, SOX17, PDX1, and LGR5), transitioning to PDG cells with no expression of pluripotency or self-replication markers, maintenance of pancreatic genes (PDX1), and expression of markers of pancreatic endocrine maturation (NGN3, MUC6, and insulin). Radial-axis lineages start in PBGs near the ducts' fibromuscular layers with stem cells and end at the ducts' lumens with cells devoid of stem cell traits and positive for pancreatic endocrine genes. Biliary tree-derived cells behaved as stem cells in culture under expansion conditions, culture plastic and serum-free Kubota's Medium, proliferating for months as undifferentiated cells, whereas pancreas-derived cells underwent only approximately 8-10 divisions, then partially differentiated towards an islet fate. Biliary tree-derived cells proved precursors of pancreas' committed progenitors. Both could be driven by three-dimensional conditions, islet-derived matrix components and a serum-free, hormonally defined medium for an islet fate (HDM-P), to form spheroids with ultrastructural, electrophysiological and functional characteristics of neoislets, including glucose regulatability. Implantation of these neoislets into epididymal fat pads of immunocompromised mice, chemically rendered diabetic, resulted in secretion of human C-peptide, regulatable by glucose, and able to alleviate hyperglycemia in hosts. The biliary tree-derived stem cells and their connections to pancreatic committed progenitors constitute a biological framework for life-long pancreatic

  18. SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells

    PubMed Central

    Herreros-Villanueva, M; Zhang, J-S; Koenig, A; Abel, E V; Smyrk, T C; Bamlet, W R; de Narvajas, A A-M; Gomez, T S; Simeone, D M; Bujanda, L; Billadeau, D D

    2013-01-01

    SOX2 (Sex-determining region Y (SRY)-Box2) has important functions during embryonic development and is involved in cancer stem cell (CSC) maintenance, in which it impairs cell growth and tumorigenicity. However, the function of SOX2 in pancreatic cancer cells is unclear. The objective of this study was to analyze SOX2 expression in human pancreatic tumors and determine the role of SOX2 in pancreatic cancer cells regulating CSC properties. In this report, we show that SOX2 is not expressed in normal pancreatic acinar or ductal cells. However, ectopic expression of SOX2 is observed in 19.3% of human pancreatic tumors. SOX2 knockdown in pancreatic cancer cells results in cell growth inhibition via cell cycle arrest associated with p21Cip1 and p27Kip1 induction, whereas SOX2 overexpression promotes S-phase entry and cell proliferation associated with cyclin D3 induction. SOX2 expression is associated with increased levels of the pancreatic CSC markers ALDH1, ESA and CD44. Importantly, we show that SOX2 is enriched in the ESA+/CD44+ CSC population from two different patient samples. Moreover, we show that SOX2 directly binds to the Snail, Slug and Twist promoters, leading to a loss of E-Cadherin and ZO-1 expression. Taken together, our findings show that SOX2 is aberrantly expressed in pancreatic cancer and contributes to cell proliferation and stemness/dedifferentiation through the regulation of a set of genes controlling G1/S transition and epithelial-to-mesenchymal transition (EMT) phenotype, suggesting that targeting SOX2-positive cancer cells could be a promising therapeutic strategy. PMID:23917223

  19. Genetic modification of primate amniotic fluid-derived stem cells produces pancreatic progenitor cells in vitro.

    PubMed

    Zhou, Yu; Mack, David L; Williams, J Koudy; Mirmalek-Sani, Sayed-Hadi; Moorefield, Emily; Chun, So-Young; Wang, Jun; Lorenzetti, Diego; Furth, Mark; Atala, Anthony; Soker, Shay

    2013-01-01

    Insulin therapy for type 1 diabetes does not prevent serious long-term complications including vascular disease, neuropathy, retinopathy and renal failure. Stem cells, including amniotic fluid-derived stem (AFS) cells - highly expansive, multipotent and nontumorigenic cells - could serve as an appropriate stem cell source for β-cell differentiation. In the current study we tested whether nonhuman primate (nhp)AFS cells ectopically expressing key pancreatic transcription factors were capable of differentiating into a β-cell-like cell phenotype in vitro. nhpAFS cells were obtained from Cynomolgus monkey amniotic fluid by immunomagnetic selection for a CD117 (c-kit)-positive population. RT-PCR for endodermal and pancreatic lineage-specific markers was performed on AFS cells after adenovirally transduced expression of PDX1, NGN3 and MAFA. Expression of MAFA was sufficient to induce insulin mRNA expression in nhpAFS cell lines, whereas a combination of MAFA, PDX1 and NGN3 further induced insulin expression, and also induced the expression of other important endocrine cell genes such as glucagon, NEUROD1, NKX2.2, ISL1 and PCSK2. Higher induction of these and other important pancreatic genes was achieved by growing the triply infected AFS cells in media supplemented with a combination of B27, betacellulin and nicotinamide, as well as culturing the cells on extracellular matrix-coated plates. The expression of pancreatic genes such as NEUROD1, glucagon and insulin progressively decreased with the decline of adenovirally expressed PDX1, NGN3 and MAFA. Together, these experiments suggest that forced expression of pancreatic transcription factors in primate AFS cells induces them towards the pancreatic lineage.

  20. Targeting Cancer Stem Cells and Their Niche: Current Therapeutic Implications and Challenges in Pancreatic Cancer

    PubMed Central

    Zhao, Jiangang; Li, Jiahui; Schlößer, Hans A.; Popp, Felix; Popp, Marie Christine; Alakus, Hakan; Jauch, Karl-Walter

    2017-01-01

    Cancer stem cells (CSCs) have been identified as a subpopulation of stem-like cancer cells with the ability of self-renewal and differentiation in hematological malignancies and solid tumors. Pancreatic cancer is one of the most lethal cancers worldwide. CSCs are thought to be responsible for cancer initiation, progression, metastasis, chemoresistance, and recurrence in pancreatic cancer. In this review, we summarize the characteristics of pancreatic CSCs and discuss the mechanisms involved in resistance to chemotherapy, the interactions with the niche, and the potential role in cancer immunoediting. We propose that immunotherapy targeting pancreatic CSCs, in combination with targeting the niche components, may provide a novel treatment strategy to eradicate pancreatic CSCs and hence improve outcomes in pancreatic cancer. PMID:28845161

  1. Modeling Cystic Fibrosis Using Pluripotent Stem Cell-Derived Human Pancreatic Ductal Epithelial Cells.

    PubMed

    Simsek, Senem; Zhou, Ting; Robinson, Christopher L; Tsai, Su-Yi; Crespo, Miguel; Amin, Sadaf; Lin, Xiangyi; Hon, Jane; Evans, Todd; Chen, Shuibing

    2016-05-01

    We established an efficient strategy to direct human pluripotent stem cells, including human embryonic stem cells (hESCs) and an induced pluripotent stem cell (iPSC) line derived from patients with cystic fibrosis, to differentiate into pancreatic ductal epithelial cells (PDECs). After purification, more than 98% of hESC-derived PDECs expressed functional cystic fibrosis transmembrane conductance regulator (CFTR) protein. In addition, iPSC lines were derived from a patient with CF carrying compound frameshift and mRNA splicing mutations and were differentiated to PDECs. PDECs derived from Weill Cornell cystic fibrosis (WCCF)-iPSCs showed defective expression of mature CFTR protein and impaired chloride ion channel activity, recapitulating functional defects of patients with CF at the cellular level. These studies provide a new methodology to derive pure PDECs expressing CFTR and establish a "disease in a dish" platform to identify drug candidates to rescue the pancreatic defects of patients with CF. An efficient strategy was established to direct human pluripotent stem cells, including human embryonic stem cells (hESCs) and an induced pluripotent stem cell line derived from patients with cystic fibrosis (CF-iPSCs), to differentiate into pancreatic ductal epithelial cells (PDECs). After purification, more than 98% of hESC-PDECs derived from CF-iPSCs showed defective expression of mature cystic fibrosis transmembrane conductance regulator (CFTR) protein and impaired chloride ion channel activity, recapitulating functional pancreatic defects of patients with CF at the cellular level. These studies provide a new methodology for deriving pure PDECs expressing CFTR, and they establish a "disease-in-a-dish" platform for identifying drug candidates to rescue the pancreatic defects of these patients. ©AlphaMed Press.

  2. Genetic Modification of Primate Amniotic Fluid-derived Stem Cells Produces Pancreatic Progenitor Cells in vitro

    PubMed Central

    Zhou, Yu; Mack, David L.; Williams, J Koudy; Mirmalek-Sani, Sayed-Hadi; Moorefield, Emily; Chun, So-Young; Wang, Jun; Lorenzetti, Diego; Furth, Mark; Atala, Anthony; Soker, Shay

    2013-01-01

    Insulin therapy for Type 1 diabetes (T1D) does not prevent serious long-term complications including vascular disease, neuropathy, retinopathy and renal failure. Stem cells, including amniotic fluid-derived stem (AFS) cells--highly expansive, multipotent, and non-tumorigenic cells--could serve as an appropriate stem cell source for β-cell differentiation. In the current study we tested whether nonhuman primate (nhp) AFS cells ectopically expressing key pancreatic transcription factors were capable of differentiating into a beta-like cell phenotype in vitro. NHPAFS cells were obtained from Cynomolgus monkey amniotic fluid by immunomagnetic selection for a CD117 (c-kit) positive population. RT-PCR for endodermal and pancreatic lineage-specific markers was performed on AFS cells after adenovirally transduced expression of PDX1, NGN3 and MAFA. Expression of MAFA was sufficient to induce insulin mRNA expression in nhpAFS cell lines, whereas a combination of MAFA, PDX1 and NGN3further induced insulin expression, as well as induced the expression of other important endocrine cell genes such as glucagon, NEUROD1, NKX2.2, ISL1 and PCSK2. Higher induction of these and other important pancreatic genes was achieved by growing the triply infected AFS cells in media supplemented with a combination of B27, betacellulin and nicotinamide, as well as culturing the cells on extra-cellular matrix coated plates. The expression of pancreatic genes such as NEUROD1, glucagon and insulin progressively decreased with the decline of adenovirally-expressed PDX1, NGN3 and MAFA. Together, these experiments suggest that forced expression of pancreatic transcription factors in primate AFS cells induces them towards the pancreatic lineage. PMID:23306211

  3. Concise Review: Pancreatic Cancer and Bone Marrow-Derived Stem Cells.

    PubMed

    Błogowski, Wojciech; Bodnarczuk, Tomasz; Starzyńska, Teresa

    2016-07-01

    Pancreatic adenocarcinoma remains one of the most challenging diseases of modern gastroenterology, and, even though considerable effort has been put into understanding its pathogenesis, the exact molecular mechanisms underlying the development and/or systemic progression of this malignancy still remain unclear. Recently, much attention has been paid to the potential role of bone marrow-derived stem cells (BMSCs) in this malignancy. Hence, herein, we comprehensively review the most recent discoveries and current achievements and concepts in this field. Specifically, we discuss the significance of identifying pancreatic cancer stem cells and novel therapeutic approaches involving molecular interference of their metabolism. We also describe advances in the current understanding of the biochemical and molecular mechanisms responsible for BMSC mobilization during pancreatic cancer development and systemic spread. Finally, we summarize experimental, translational, and/or clinical evidence regarding the contribution of bone marrow-derived mesenchymal stem cells, endothelial progenitor cells, hematopoietic stem/progenitor cells, and pancreatic stellate cells in pancreatic cancer development/progression. We also present their potential therapeutic value for the treatment of this deadly malignancy in humans. Different bone marrow-derived stem cell populations contribute to the development and/or progression of pancreatic cancer, and they might also be a promising "weapon" that can be used for anticancer treatments in humans. Even though the exact role of these stem cells in pancreatic cancer development and/or progression in humans still remains unclear, this concept continues to drive a completely novel scientific avenue in pancreatic cancer research and gives rise to innovative ideas regarding novel therapeutic modalities that can be safely offered to patients. ©AlphaMed Press.

  4. Human omentum fat-derived mesenchymal stem cells transdifferentiates into pancreatic islet-like cluster.

    PubMed

    Dhanasekaran, M; Indumathi, S; Harikrishnan, R; Mishra, Rashmi; Lissa, R P; Rajkumar, J S; Sudarsanam, D

    2013-10-01

    Current protocols of islet cell transplantation for the treatment of diabetes mellitus have been hampered by islet availability and allograft rejection. Although bone marrow and subcutaneous adipose tissue stem cells feature their tissue repair efficacy, applicability of stem cells from various sources is being researched to develop a promising therapy for diabetes mellitus. Although omentum fat has emerged as an innovative source of stem cells, the dearth of researches confirming its transdifferentiation potential limits its applicability as a regenerative tool in diabetic therapy. Thus, this work is a maiden attempt to explore the colossal potency of omentum fat-derived stem cells on its lucrative differentiation ability. The plasticity of omentum fat stem cells was substantiated by transdifferentiation into pancreatic islet-like clusters, which was confirmed by dithizone staining and immunocytochemistry for insulin. It was also confirmed by the expression of pancreatic endocrine markers nestin and pancreatic duodenal homeobox 1 (Pdx 1) using Fluorescence-activated cell sorting (FACS), neurogenic 3, islet-1 transcription factor, paired box gene 4, Pdx 1 and insulin using quantitative real-time polymerase chain reaction and through insulin secretion assay. This study revealed the in vitro differentiation potency of omentum fat stem cells into pancreatic islet-like clusters. However, further research pursuits exploring its in vivo endocrine efficacy would make omentum fat stem cells a superior source for β-cell replacement therapy.

  5. Leptin Level in Patients with Type 2 Diabetes Mellitus after Fetal Pancreatic Stem Cell Transplant.

    PubMed

    Ulyanova, Olga; Taubaldieva, Zhannat; Tuganbekova, Saltanat; Saparbayev, Samat; Kim, Natalya; Trimova, Rakhat; Kozina, Larissa; Shaimardanova, Galiya

    2016-11-01

    We aimed to determine leptin level in patients with type 2 diabetes mellitus after fetal pancreatic stem cell transplant. We examined 14 patients (aged 43-63 years old) with type 2 diabetes mellitus, which we subsequently divided into 2 groups and examined. Group 1 comprised 8 patients who received fetal pancreatic stem cell transplant (cells were 16-18 wk gestation) performed by intravenous infusion; group 2 comprised 6 patients in the control group who were on hypoglycemic tablet therapy or insulin therapy. The quantity of fetal stem cells infused was 5 to 6 × 106. We analyzed leptin and C-peptide levels in patients both before and 3 months after the fetal pancreatic stem cell transplant procedure. In patients with type 2 diabetes mellitus, fetal pancreatic stem cell transplant led to a significant increase in leptin levels, from 11.01 ng/mL to 16.29 ng/mL, after 3 months (P < .05). Leptin level increase significantly within 3 months after fetal pancreatic stem cell transplant in patients with type 2 diabetes mellitus.

  6. A new PDAC mouse model originated from iPSCs-converted pancreatic cancer stem cells (CSCcm)

    PubMed Central

    Calle, Anna Sanchez; Nair, Neha; Oo, Aung KoKo; Prieto-Vila, Marta; Koga, Megumi; Khayrani, Apriliana Cahya; Hussein, Maram; Hurley, Laura; Vaidyanath, Arun; Seno, Akimasa; Iwasaki, Yoshiaki; Calle, Malu; Kasai, Tomonari; Seno, Masaharu

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the most representative form of pancreatic cancers. PDAC solid tumours are constituted of heterogeneous populations of cells including cancer stem cells (CSCs), differentiated cancer cells, desmoplastic stroma and immune cells. The identification and consequent isolation of pancreatic CSCs facilitated the generation of genetically engineered murine models. Nonetheless, the current models may not be representative for the spontaneous tumour occurrence. In the present study, we show the generation of a novel pancreatic iPSC-converted cancer stem cell lines (CSCcm) as a cutting-edge model for the study of PDAC. The CSCcm lines were achieved only by the influence of pancreatic cancer cell lines conditioned medium and were not subjected to any genetic manipulation. The xenografts tumours from CSCcm lines displayed histopathological features of ADM, PanIN and PDAC lesions. Further molecular characterization from RNA-sequencing analysis highlighted primary culture cell lines (1st CSCcm) as potential candidates to represent the pancreatic CSCs and indicated the establishment of the pancreatic cancer molecular pattern in their subsequent progenies 2nd CSCcm and 3rd CSCcm. In addition, preliminary RNA-seq SNPs analysis showed that the distinct CSCcm lines did not harbour single point mutations for the oncogene Kras codon 12 or 13. Therefore, PDAC-CSCcm model may provide new insights about the actual occurrence of the pancreatic cancer leading to develop different approaches to target CSCs and abrogate the progression of this fatidic disease. PMID:28042501

  7. The Role of miRNAs in the Regulation of Pancreatic Cancer Stem Cells

    PubMed Central

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Palma, Giuseppe; del Vecchio, Vitale; Falco, Michela; Palaia, Raffaele; Albino, Vittorio; Piccirillo, Mauro; Amore, Alfonso; Petrillo, Antonella; Granata, Vincenza; Izzo, Francesco

    2016-01-01

    Pancreatic ductal adenocarcinoma is currently one of the deadliest cancers with low overall survival rate. This disease leads to an aggressive local invasion and early metastases and is poorly responsive to treatment with chemotherapy or chemoradiotherapy. Several studies have shown that pancreatic cancer stem cells (PCSCs) play different roles in the regulation of drug resistance and recurrence in pancreatic cancer. MicroRNA (miRNA), a class of newly emerging small noncoding RNAs, is involved in the modulation of several biological activities ranging from invasion to metastases development, as well as drug resistance of pancreatic cancer. In this review, we synthesize the latest findings on the role of miRNAs in regulating different biological properties of pancreatic cancer stem cells. PMID:27006664

  8. The Notch Pathway Is Important in Maintaining the Cancer Stem Cell Population in Pancreatic Cancer

    PubMed Central

    Abel, Ethan V.; Kim, Edward J.; Wu, Jingjiang; Hynes, Mark; Bednar, Filip; Proctor, Erica; Wang, Lidong; Dziubinski, Michele L.; Simeone, Diane M.

    2014-01-01

    Background Pancreatic cancer stem cells (CSCs) represent a small subpopulation of pancreatic cancer cells that have the capacity to initiate and propagate tumor formation. However, the mechanisms by which pancreatic CSCs are maintained are not well understood or characterized. Methods Expression of Notch receptors, ligands, and Notch signaling target genes was quantitated in the CSC and non-CSC populations from 8 primary human pancreatic xenografts. A gamma secretase inhibitor (GSI) that inhibits the Notch pathway and a shRNA targeting the Notch target gene Hes1 were used to assess the role of the Notch pathway in CSC population maintenance and pancreatic tumor growth. Results Notch pathway components were found to be upregulated in pancreatic CSCs. Inhibition of the Notch pathway using either a gamma secretase inhibitor or Hes1 shRNA in pancreatic cancer cells reduced the percentage of CSCs and tumorsphere formation. Conversely, activation of the Notch pathway with an exogenous Notch peptide ligand increased the percentage of CSCs as well as tumorsphere formation. In vivo treatment of orthotopic pancreatic tumors in NOD/SCID mice with GSI blocked tumor growth and reduced the CSC population. Conclusion The Notch signaling pathway is important in maintaining the pancreatic CSC population and is a potential therapeutic target in pancreatic cancer. PMID:24647545

  9. The DNA aptamer binds stemness-enriched cancer cells in pancreatic cancer.

    PubMed

    Kim, Yoon-Jin; Lee, Hee Seung; Jung, Dawoon E; Kim, Jeong Mi; Song, Si Young

    2017-04-01

    Pancreatic cancer remains one of the most common and lethal cancers. Most patients (80%) present with inoperable advanced pancreatic cancer at initial diagnosis, and their early diagnosis is a significant unmet challenge. Recent studies indicate that cancer, including pancreatic cancer, is initiated and propagated by cancer stem cells (CSCs). CSCs are responsible not only for the pathogenesis of cancer but also for the heterogeneity, malignant degree, anticancer therapy resistance, and recurrence of tumors. Therefore, the identification of CSCs may be a crucial stepping stone for overcoming this disastrous pancreatic cancer. Here, we investigated pancreatic CSC-associated aptamers as a novel tool for diagnosis and therapeutic agents. Aptamers that bind to stemness-enriched cancer cells in pancreatic cancer were developed by modified Cell-SELEX method. Positive selection was performed by the sphere cells generated by pancreatic cancer cell line, HPAC, and then the aptamer pool was negatively selected by pancreatic normal cell line, HPDE. Aptamers 1 and 146 showing high specificity upon the KD values with 22.18 and 22.62 nM were selected. These 2 aptamers were validated by binding to HPAC sphere cells and to HPDE cells, and both aptamers showed specificity to HPAC sphere cells only. Aptamer-positive cells showed high expression levels of CSC-associated genes compared with the aptamer-negative cells by FACS analysis. The colocalization of CD44, CD24, ESA, and CD133 was also observed in the aptamer-positive cells by confocal microscopy. In the present study, these 2 pancreatic CSC-associated aptamers may be potential candidates for novel diagnostic markers, CSC-targeting drug delivery, or circulating tumor cell detection.

  10. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    PubMed Central

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  11. Inhibition of hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance.

    PubMed

    Huang, Feng-Ting; Zhuan-Sun, Yong-Xun; Zhuang, Yan-Yan; Wei, Shu-Li; Tang, Jian; Chen, Wen-Bo; Zhang, Shi-Neng

    2012-11-01

    Pancreatic cancer stem cells play a crucial role in tumorigenesis and chemoresistance. The Hedgehog signaling pathway is a key regulator in pancreatic tumorigenesis and drug resistance. To identify pancreatic cancer stem cells, tumorspheres derived from the PANC-1 pancreatic cancer cell line were cultured under a floating-culture system. PANC-1 tumorspheres possessed properties of self-renewal, differentiation, higher tumorigenesis and chemoresistance. It was observed that Hedgehog pathway is active in PANC-1 tumorspheres as shown by expression of hedgehog components Smo, Gil 1 and Gli 2, detected by quantitative RT-PCR and western blotting. After cyclopamine-mediated blockade of hedgehog, a decrease in proliferation of PANC-1 tumorspheres and G0/G1 transition were observed, as well as a decreased expression of Bmi-1 in PANC-1 tumorspheres. Cyclopamine reversed chemoresistance to gemcitabine, resulting in decreased expression of ABCG2 in PANC-1 tumorspheres. Taken together, our data indicate that PANC-1 tumorspheres have 'stemness' potential, and hedgehog signaling pathway plays an important role in the regulation of self-renewal and reversal of chemoresistance in cancer stem cells in pancreatic adenocarcinoma.

  12. Characterization of pancreatic stem cells derived from adult human pancreas ducts by fluorescence activated cell sorting

    PubMed Central

    Lin, Han-Tso; Chiou, Shih-Hwa; Kao, Chung-Lan; Shyr, Yi-Ming; Hsu, Chien-Jen; Tarng, Yih-Wen; Ho, Larry L-T; Kwok, Ching-Fai; Ku, Hung-Hai

    2006-01-01

    AIM: To isolate putative pancreatic stem cells (PSCs) from human adult tissues of pancreas duct using serum-free, conditioned medium. The characterization of surface phenotype of these PSCs was analyzed by flow cytometry. The potential for pancreatic lineage and the capability of β-cell differentiation in these PSCs were evaluated as well. METHODS: By using serum-free medium supplemented with essential growth factors, we attempted to isolate the putative PSCs which has been reported to express nestin and pdx-1. The Matrigel™ was employed to evaluate the differential capacity of isolated cells. Dithizone staining, insulin content/secretion measurement, and immunohistochemistry staining were used to monitor the differentiation. Fluorescence activated cell sorting (FACS) was used to detect the phenotypic markers of putative PSCs. RESULTS: A monolayer of spindle-like cells was cultivated. The putative PSCs expressed pdx-1 and nestin. They were also able to differentiate into insulin-, glucagon-, and somatostatin-positive cells. The spectrum of phenotypic markers in PSCs was investigated; a similarity was revealed when using human bone marrow-derived stem cells as the comparative experiment, such as CD29, CD44, CD49, CD50, CD51, CD62E, PDGFR-α, CD73 (SH2), CD81, CD105(SH3). CONCLUSION: In this study, we successfully isolated PSCs from adult human pancreatic duct by using serum-free medium. These PSCs not only expressed nestin and pdx-1 but also exhibited markers attributable to mesenchymal stem cells. Although work is needed to elucidate the role of these cells, the application of these PSCs might be therapeutic strategies for diabetes mellitus. PMID:16874866

  13. Ski modulate the characteristics of pancreatic cancer stem cells via regulating sonic hedgehog signaling pathway.

    PubMed

    Song, Libin; Chen, Xiangyuan; Gao, Song; Zhang, Chenyue; Qu, Chao; Wang, Peng; Liu, Luming

    2016-10-12

    Evidence from in vitro and in vivo studies shows that Ski may act as both a tumor proliferation-promoting factor and a metastatic suppressor in human pancreatic cancer and also may be a therapeutic target of integrative therapies. At present, pancreatic cancer stem cells (CSCs) are responsible for tumor recurrence accompanied by resistance to conventional therapies. Sonic hedgehog (Shh) signaling pathway is found to be aberrantly activated in CSCs. The objectives of this study were to investigate the role of Ski in modulating pancreatic CSCs and to examine the molecular mechanisms involved in pancreatic cancer treatment both in vivo and in vitro. In in vitro study, the results showed that enhanced Ski expression could increase the expression of pluripotency maintaining markers, such as CD24, CD44, Sox-2, and Oct-4, and also components of Shh signaling pathway, such as Shh, Ptch-1, Smo, Gli-1, and Gli-2, whereas depletion of Ski to the contrary. Then, we investigated the underlying mechanism and found that inhibiting Gli-2 expression by short interfering RNA (siRNA) can decrease the effects of Ski on the maintenance of pancreatic CSCs, indicating that Ski mediates the pluripotency of pancreatic CSCs mainly through Shh pathway. The conclusion is that Ski may be an important factor in maintaining the stemness of pancreatic CSCs through modulating Shh pathway.

  14. Recent Advances and Prospects in the Differentiation of Pancreatic Cells From Human Embryonic Stem Cells

    PubMed Central

    Mfopou, Josué Kunjom; Chen, Bing; Sui, Lina; Sermon, Karen; Bouwens, Luc

    2010-01-01

    Recent studies with human embryonic stem (hES) cells have established new protocols for substantial generation of pancreatic progenitors from definitive endoderm. These findings add to the efficient derivation of definitive endoderm, which is controlled by Wnt and Nodal pathways, and delineate a step forward in the quest for alternative β-cell sources. It also indicates that critical refining of the available strategies might help define a universal protocol for pancreatic differentiation applicable to several cell lines, therefore offering the possibility for transplantation of immune-matched or patient-specific hES–derived β-cells. We appraise here the fundamental role that bone morphogenetic protein, fibroblast growth factor, and retinoid signaling play during pancreas development, and describe a fundamental emergence of their combination in recent studies that generated pancreatic cells from hES cells. We finally enumerate some prospects that might improve further differentiation of the progenitor cells into functional β-cells needed in diabetes cell therapy. PMID:20805383

  15. Construction of functional pancreatic artificial islet tissue composed of fibroblast-modified polylactic- co-glycolic acid membrane and pancreatic stem cells.

    PubMed

    Liu, Liping; Tan, Jing; Li, Baoyuan; Xie, Qian; Sun, Junwen; Pu, Hongli; Zhang, Li

    2017-09-01

    Objective To improve the biocompatibility between polylactic- co-glycolic acid membrane and pancreatic stem cells, rat fibroblasts were used to modify the polylactic- co-glycolic acid membrane. Meanwhile, we constructed artificial islet tissue by compound culturing the pancreatic stem cells and the fibroblast-modified polylactic- co-glycolic acid membrane and explored the function of artificial islets in diabetic nude mice. Methods Pancreatic stem cells were cultured on the fibroblast-modified polylactic- co-glycolic acid membrane in dulbecco's modified eagle medium containing activin-A, β-catenin, and exendin-4. The differentiated pancreatic stem cells combined with modified polylactic- co-glycolic acid membrane were implanted subcutaneously in diabetic nude mice. The function of artificial islet tissue was explored by detecting blood levels of glucose and insulin in diabetic nude mice. Moreover, the proliferation and differentiation of pancreatic stem cells on modified polylactic- co-glycolic acid membrane as well as the changes on the tissue structure of artificial islets were investigated by immunofluorescence and haematoxylin and eosin staining. Results The pancreatic stem cells differentiated into islet-like cells and secreted insulin when cultured on fibroblast-modified polylactic- co-glycolic acid membrane. Furthermore, when the artificial islet tissues were implanted into diabetic nude mice, the pancreatic stem cells combined with polylactic- co-glycolic acid membrane modified by fibroblasts proliferated, differentiated, and secreted insulin to reduce blood glucose levels in diabetic nude mice. Conclusion Pancreatic stem cells can be induced to differentiate into islet-like cells in vitro. In vivo, the artificial islet tissue can effectively regulate the blood glucose level in nude mice within a short period. However, as time increased, the structure of the artificial islets was destroyed due to the erosion of blood cells that resulted in the gradual

  16. Cancer stem cells: Involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics

    PubMed Central

    Tanase, Cristiana Pistol; Neagu, Ana Iulia; Necula, Laura Georgiana; Mambet, Cristina; Enciu, Ana-Maria; Calenic, Bogdan; Cruceru, Maria Linda; Albulescu, Radu

    2014-01-01

    Pancreatic cancer is one of the most aggressive and lethal malignancies. Despite remarkable progress in understanding pancreatic carcinogenesis at the molecular level, as well as progress in new therapeutic approaches, pancreatic cancer remains a disease with a dismal prognosis. Among the mechanisms responsible for drug resistance, the most relevant are changes in individual genes or signaling pathways and the presence of highly resistant cancer stem cells (CSCs). In pancreatic cancer, CSCs represent 0.2%-0.8% of pancreatic cancer cells and are considered to be responsible for tumor growth, invasion, metastasis and recurrence. CSCs have been extensively studied as of late to identify specific surface markers to ensure reliable sorting and for signaling pathways identified to play a pivotal role in CSC self-renewal. Involvement of CSCs in pancreatic cancer pathogenesis has also highlighted these cells as the preferential targets for therapy. The present review is an update of the results in two main fields of research in pancreatic cancer, pathogenesis and therapy, focused on the narrow perspective of CSCs. PMID:25152582

  17. Cancer stem cells: involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics.

    PubMed

    Tanase, Cristiana Pistol; Neagu, Ana Iulia; Necula, Laura Georgiana; Mambet, Cristina; Enciu, Ana-Maria; Calenic, Bogdan; Cruceru, Maria Linda; Albulescu, Radu

    2014-08-21

    Pancreatic cancer is one of the most aggressive and lethal malignancies. Despite remarkable progress in understanding pancreatic carcinogenesis at the molecular level, as well as progress in new therapeutic approaches, pancreatic cancer remains a disease with a dismal prognosis. Among the mechanisms responsible for drug resistance, the most relevant are changes in individual genes or signaling pathways and the presence of highly resistant cancer stem cells (CSCs). In pancreatic cancer, CSCs represent 0.2%-0.8% of pancreatic cancer cells and are considered to be responsible for tumor growth, invasion, metastasis and recurrence. CSCs have been extensively studied as of late to identify specific surface markers to ensure reliable sorting and for signaling pathways identified to play a pivotal role in CSC self-renewal. Involvement of CSCs in pancreatic cancer pathogenesis has also highlighted these cells as the preferential targets for therapy. The present review is an update of the results in two main fields of research in pancreatic cancer, pathogenesis and therapy, focused on the narrow perspective of CSCs.

  18. FTIR Spectroscopic and Molecular Analysis during Differentiation of Pluripotent Stem Cells to Pancreatic Cells

    PubMed Central

    Mata-Miranda, Monica Maribel; Sanchez-Monroy, Virginia; Delgado-Macuil, Raul Jacobo; Perez-Ishiwara, David Guillermo

    2016-01-01

    Some of the greatest challenges in stem cells (SCs) biology and regenerative medicine are differentiation control of SCs and ensuring the purity of differentiated cells. In this work, we differentiated mouse pluripotent stem cells (mPSCs) toward pancreatic cells characterizing this differentiation process by molecular and spectroscopic technics. Both mPSCs and Differentiated Pancreatic Cells (DPCs) were subjected to a genetic, phenotypic, and biochemical analysis by real-time quantitative PCR (RT-qPCR), immunocytochemistry, and Fourier Transform Infrared (FTIR) spectroscopy. Cultured mPCSs expressed pluripotent genes and proteins (Nanog and SOX2). DPCs expressed endodermal genes (SOX17 and Pdx1) at day 11, an inductor gene of embryonic pancreas development (Pdx1) at day 17 and pancreas genes and proteins (Insulin and Glucagon) at day 21 of differentiation. Likewise, FTIR spectra of mPSCs and DPCs at different maturation stages (11, 17, and 21 days) were obtained and showed absorption bands related with different types of biomolecules. These FTIR spectra exhibited significant spectral changes agreeing with the differentiation process, particularly in proteins and nucleic acids bands. In conclusion, the obtained DPCs passed through the chronological stages of embryonic pancreas development and FTIR spectra provide a new biophysical parameter based on molecular markers indicating the differentiation process of mPSCs to specialized cells. PMID:27651798

  19. FTIR Spectroscopic and Molecular Analysis during Differentiation of Pluripotent Stem Cells to Pancreatic Cells.

    PubMed

    Vazquez-Zapien, Gustavo Jesus; Mata-Miranda, Monica Maribel; Sanchez-Monroy, Virginia; Delgado-Macuil, Raul Jacobo; Perez-Ishiwara, David Guillermo; Rojas-Lopez, Marlon

    2016-01-01

    Some of the greatest challenges in stem cells (SCs) biology and regenerative medicine are differentiation control of SCs and ensuring the purity of differentiated cells. In this work, we differentiated mouse pluripotent stem cells (mPSCs) toward pancreatic cells characterizing this differentiation process by molecular and spectroscopic technics. Both mPSCs and Differentiated Pancreatic Cells (DPCs) were subjected to a genetic, phenotypic, and biochemical analysis by real-time quantitative PCR (RT-qPCR), immunocytochemistry, and Fourier Transform Infrared (FTIR) spectroscopy. Cultured mPCSs expressed pluripotent genes and proteins (Nanog and SOX2). DPCs expressed endodermal genes (SOX17 and Pdx1) at day 11, an inductor gene of embryonic pancreas development (Pdx1) at day 17 and pancreas genes and proteins (Insulin and Glucagon) at day 21 of differentiation. Likewise, FTIR spectra of mPSCs and DPCs at different maturation stages (11, 17, and 21 days) were obtained and showed absorption bands related with different types of biomolecules. These FTIR spectra exhibited significant spectral changes agreeing with the differentiation process, particularly in proteins and nucleic acids bands. In conclusion, the obtained DPCs passed through the chronological stages of embryonic pancreas development and FTIR spectra provide a new biophysical parameter based on molecular markers indicating the differentiation process of mPSCs to specialized cells.

  20. Hedgehog Signaling Antagonist GDC-0449 (Vismodegib) Inhibits Pancreatic Cancer Stem Cell Characteristics: Molecular Mechanisms

    PubMed Central

    Singh, Brahma N.; Fu, Junsheng; Srivastava, Rakesh K.; Shankar, Sharmila

    2011-01-01

    Background Recent evidence from in vitro and in vivo studies has demonstrated that aberrant reactivation of the Sonic Hedgehog (SHH) signaling pathway regulates genes that promote cellular proliferation in various human cancer stem cells (CSCs). Therefore, the chemotherapeutic agents that inhibit activation of Gli transcription factors have emerged as promising novel therapeutic drugs for pancreatic cancer. GDC-0449 (Vismodegib), orally administrable molecule belonging to the 2-arylpyridine class, inhibits SHH signaling pathway by blocking the activities of Smoothened. The objectives of this study were to examine the molecular mechanisms by which GDC-0449 regulates human pancreatic CSC characteristics in vitro. Methodology/Principal Findings GDC-0499 inhibited cell viability and induced apoptosis in three pancreatic cancer cell lines and pancreatic CSCs. This inhibitor also suppressed cell viability, Gli-DNA binding and transcriptional activities, and induced apoptosis through caspase-3 activation and PARP cleavage in pancreatic CSCs. GDC-0449-induced apoptosis in CSCs showed increased Fas expression and decreased expression of PDGFRα. Furthermore, Bcl-2 was down-regulated whereas TRAIL-R1/DR4 and TRAIL-R2/DR5 expression was increased following the treatment of CSCs with GDC-0449. Suppression of both Gli1 plus Gli2 by shRNA mimicked the changes in cell viability, spheroid formation, apoptosis and gene expression observed in GDC-0449-treated pancreatic CSCs. Thus, activated Gli genes repress DRs and Fas expressions, up-regulate the expressions of Bcl-2 and PDGFRα and facilitate cell survival. Conclusions/Significance These data suggest that GDC-0499 can be used for the management of pancreatic cancer by targeting pancreatic CSCs. PMID:22087285

  1. Polycomb group protein expression during differentiation of human embryonic stem cells into pancreatic lineage in vitro.

    PubMed

    Pethe, Prasad; Nagvenkar, Punam; Bhartiya, Deepa

    2014-05-24

    Polycomb Group (PcG) proteins are chromatin modifiers involved in early embryonic development as well as in proliferation of adult stem cells and cancer cells. PcG proteins form large repressive complexes termed Polycomb Repressive Complexes (PRCs) of which PRC1 and PRC2 are well studied. Differentiation of human Embryonic Stem (hES) cells into insulin producing cells has been achieved to limited extent, but several aspects of differentiation remain unexplored. The PcG protein dynamics in human embryonic stem (hES) cells during differentiation into pancreatic lineage has not yet been reported. In the present study, the expression of RING1A, RING1B, BMI1, CBX2, SUZ12, EZH2, EED and JARID2 during differentiation of hES cells towards pancreatic lineage was examined. In-house derived hES cell line KIND1 was used to study expression of PcG protein upon spontaneous and directed differentiation towards pancreatic lineage. qRT-PCR analysis showed expression of gene transcripts for various lineages in spontaneously differentiated KIND1 cells, but no differentiation into pancreatic lineage was observed. Directed differentiation induced KIND1 cells grown under feeder-free conditions to transition from definitive endoderm (Day 4), primitive gut tube stage (Day 8) and pancreatic progenitors (Day 12-Day 16) as evident from expression of SOX17, PDX1 and SOX9 by qRT-PCR and Western blotting. In spontaneously differentiating KIND1 cells, RING1A and SUZ12 were upregulated at day 15, while other PcG transcripts were downregulated. qRT-PCR analysis showed transcripts of RING1B, BMI1, SUZ12, EZH2 and EED were upregulated, while RING1A and CBX2 expression remained low and JARID2 was downregulated during directed differentiation of KIND1 cells. Upregulation of BMI1, EZH2 and SUZ12 during differentiation into pancreatic lineage was also confirmed by Western blotting. Histone modifications such as H3K27 trimethylation and monoubiquitinylation of H2AK119 increased during differentiation

  2. Neural cells play an inhibitory role in pancreatic differentiation of pluripotent stem cells.

    PubMed

    Nakashima, Ryutaro; Morooka, Mayu; Shiraki, Nobuaki; Sakano, Daisuke; Ogaki, Soichiro; Kume, Kazuhiko; Kume, Shoen

    2015-12-01

    Pancreatic endocrine β-cells derived from embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have received attention as screening systems for therapeutic drugs and as the basis for cell-based therapies. Here, we used a 12-day β-cell differentiation protocol for mouse ES cells and obtained several hit compounds that promoted β-cell differentiation. One of these compounds, mycophenolic acid (MPA), effectively promoted ES cell differentiation with a concomitant reduction of neuronal cells. The existence of neural cell-derived inhibitory humoral factors for β-cell differentiation was suggested using a co-culture system. Based on gene array analysis, we focused on the Wnt/β-catenin pathway and showed that the Wnt pathway inhibitor reversed MPA-induced β-cell differentiation. Wnt pathway activation promoted β-cell differentiation also in human iPS cells. Our results showed that Wnt signaling activation positively regulates β-cell differentiation, and represent a downstream target of the neural inhibitory factor.

  3. Isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma

    PubMed Central

    Huang, Peng; Wang, Chun-You; Gou, Shan-Miao; Wu, He-Shui; Liu, Tao; Xiong, Jiang-Xin

    2008-01-01

    AIM: To explore the method of isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma cell line PANC-1. METHODS: The PANC-1 cells were cultured in Dulbecco modified eagle medium F12 (1:1 volume) (DMEM-F12) supplemented with 20% fetal bovine serum (FBS). Subpopulation cells with properties of tumor stem cells were isolated from pancreatic adenocarcinoma cell line PANC-1 according to the cell surface markers CD44 and CD24 by flow cytometry. The proliferative capability of these cells in vitro were estimated by 3-[4,5-dimehyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) method. And the tumor growth of different subpopulation cells which were injected into the hypodermisof right and left armpit of nude mice was studied, and expression of CD44 and CD24 of the CD44+CD24+ cell-formed nodules and PANC-1 cells were detected by avidin-biotin-peroxidase complex (ABC) immunohistochemical staining. RESULTS: The 5.1%-17.5% of sorted PANC-1 cells expressed the cell surface marker CD44, 57.8% -70.1% expressed CD24, only 2.1%-3.5% of cells were CD44+ CD24+. Compared with CD44-CD24- cells, CD44+CD24+ cells had a lower growth rate in vitro. Implantation of 104 CD44-CD24- cells in nude mice showed no evident tumor growth at wk 12. In contrast, large tumors were found in nude mice implanted with 103 CD44+CD24+ cells at wk 4 (2/8), a 20-fold increase in tumorigenic potential (P < 0.05 or P < 0.01). There was no obvious histological difference between the cells of the CD44+CD24+ cell-formed nodules and PANC-1 cells. CONCLUSION: CD44 and CD24 may be used as the cell surface markers for isolation of pancreatic cancer stem cells from pancreatic adenocarcinoma cell line PANC-1. Subpopulation cells CD44+CD24+ have properties of tumor stem cells. Because cancer stem cells are thought to be responsible for tumor initiation and its recurrence after an initial response to chemotherapy, it may be a very promising target for new drug development. PMID

  4. Quinomycin A targets Notch signaling pathway in pancreatic cancer stem cells.

    PubMed

    Ponnurangam, Sivapriya; Dandawate, Prasad R; Dhar, Animesh; Tawfik, Ossama W; Parab, Rajashri R; Mishra, Prabhu Dutt; Ranadive, Prafull; Sharma, Rajiv; Mahajan, Girish; Umar, Shahid; Weir, Scott J; Sugumar, Aravind; Jensen, Roy A; Padhye, Subhash B; Balakrishnan, Arun; Anant, Shrikant; Subramaniam, Dharmalingam

    2016-01-19

    Cancer stem cells (CSCs) appear to explain many aspects of the neoplastic evolution of tumors and likely account for enhanced therapeutic resistance following treatment. Dysregulated Notch signaling, which affects CSCs plays an important role in pancreatic cancer progression. We have determined the ability of Quinomycin to inhibit CSCs and the Notch signaling pathway. Quinomycin treatment resulted in significant inhibition of proliferation and colony formation in pancreatic cancer cell lines, but not in normal pancreatic epithelial cells. Moreover, Quinomycin affected pancreatosphere formation. The compound also decreased the expression of CSC marker proteins DCLK1, CD44, CD24 and EPCAM. In addition, flow cytometry studies demonstrated that Quinomycin reduced the number of DCLK1+ cells. Furthermore, levels of Notch 1-4 receptors, their ligands Jagged1, Jagged2, DLL1, DLL3, DLL4 and the downstream target protein Hes-1 were reduced. The γ-secretase complex proteins, Presenilin 1, Nicastrin, Pen2, and APH-1, required for Notch activation also exhibited decreased expression. Ectopic expression of the Notch Intracellular Domain (NICD) partially rescued the cells from Quinomycin mediated growth suppression. To determine the effect of Quinomycin on tumor growth in vivo, nude mice carrying tumor xenografts were administered Quinomycin intraperitoneally every day for 21 days. Treatment with the compound significantly inhibited tumor xenograft growth, coupled with significant reduction in the expression of CSC markers and Notch signaling proteins. Together, these data suggest that Quinomycin is a potent inhibitor of pancreatic cancer that targets the stem cells by inhibiting Notch signaling proteins.

  5. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands.

    PubMed

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2015-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.

  6. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands

    PubMed Central

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2016-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1+ pancreatic progenitors, much less is known about the transition toward Ngn3+ pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments. PMID:26834702

  7. Hypothyroidism Impairs Human Stem Cell-Derived Pancreatic Progenitor Cell Maturation in Mice.

    PubMed

    Bruin, Jennifer E; Saber, Nelly; O'Dwyer, Shannon; Fox, Jessica K; Mojibian, Majid; Arora, Payal; Rezania, Alireza; Kieffer, Timothy J

    2016-05-01

    Pancreatic progenitors derived from human embryonic stem cells (hESCs) are a potential source of transplantable cells for treating diabetes and are currently being tested in clinical trials. Yet, how the milieu of pancreatic progenitor cells, including exposure to different factors after transplant, may influence their maturation remains unclear. Here, we examined the effect of thyroid dysregulation on the development of hESC-derived progenitor cells in vivo. Hypothyroidism was generated in SCID-beige mice using an iodine-deficient diet containing 0.15% propyl-2-thiouracil, and hyperthyroidism was generated by addition of L-thyroxine (T4) to drinking water. All mice received macroencapsulated hESC-derived progenitor cells, and thyroid dysfunction was maintained for the duration of the study ("chronic") or for 4 weeks posttransplant ("acute"). Acute hyperthyroidism did not affect graft function, but acute hypothyroidism transiently impaired human C-peptide secretion at 16 weeks posttransplant. Chronic hypothyroidism resulted in severely blunted basal human C-peptide secretion, impaired glucose-stimulated insulin secretion, and elevated plasma glucagon levels. Grafts from chronic hypothyroid mice contained fewer β-cells, heterogenous MAFA expression, and increased glucagon(+) and ghrelin(+) cells compared to grafts from euthyroid mice. Taken together, these data suggest that long-term thyroid hormone deficiency may drive the differentiation of human pancreatic progenitor cells toward α- and ε-cell lineages at the expense of β-cell formation. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    PubMed

    Rodova, Mariana; Fu, Junsheng; Watkins, Dara Nall; Srivastava, Rakesh K; Shankar, Sharmila

    2012-01-01

    Dysregulation of the sonic hedgehog (Shh) signaling pathway has been associated with cancer stem cells (CSC) and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN), an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4) as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway. Thus

  9. Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy.

    PubMed

    Li, Doudou; Fu, Zhiqiang; Chen, Ruiwan; Zhao, Xiaohui; Zhou, Yu; Zeng, Bing; Yu, Min; Zhou, Quanbo; Lin, Qing; Gao, Wenchao; Ye, Huilin; Zhou, Jiajia; Li, Zhihua; Liu, Yimin; Chen, Rufu

    2015-10-13

    Pancreatic ductal adenocarcinoma (PDAC) cells utilize a novel non-canonical pathway of glutamine metabolism that is essential for tumor growth and redox balance. Inhibition of this metabolic pathway in PDAC can potentially synergize with therapies that increase intracellular reactive oxygen species (ROS) such as radiation. Here, we evaluated the dependence of pancreatic cancer stem cells (PCSCs) on this non-canonical glutamine metabolism pathway and researched whether inhibiting this pathway can enhance radiosensitivity of PCSCs. We showed that glutamine deprivation significantly inhibited self-renewal, decreased expression of stemness-related genes, increased intracellular ROS, and induced apoptosis in PCSCs. These effects were countered by oxaloacetate, but not α-ketoglutarate. Knockdown of glutamic-oxaloacetic transaminase dramatically impaired PCSCs properties, while glutamate dehydrogenase knockdown had a limited effect, suggesting a dependence of PCSCs on non-canonical glutamine metabolism. Additionally, glutamine deprivation significantly increased radiation-induced ROS and sensitized PCSCs to fractionated radiation. Moreover, transaminase inhibitors effectively enhanced ROS generation, promoted radiation sensitivity, and attenuated tumor growth in nude mice following radiation exposure. Our findings reveal that inhibiting the non-canonical pathway of glutamine metabolism enhances the PCSC radiosensitivity and may be an effective adjunct in cancer radiotherapy.

  10. Temporal restriction of pancreatic branching competence during embryogenesis is mirrored in differentiating embryonic stem cells.

    PubMed

    Lim, Sue Mei; Li, Xueling; Schiesser, Jacqueline; Holland, Andrew M; Elefanty, Andrew G; Stanley, Edouard G; Micallef, Suzanne J

    2012-07-01

    To develop methods for the generation of insulin-producing β-cells for the treatment of diabetes, we have used GFP-tagged embryonic stem cells (ESCs) to elucidate the process of pancreas development. Using the reporter Pdx1(GFP/w) ESC line, we have previously described a serum-free differentiation protocol in which Pdx1-GFP(+) cells formed GFP bright (GFP(br)) epithelial buds that resembled those present in the developing mouse pancreas. In this study we extend these findings to demonstrate that these cells can undergo a process of branching morphogenesis, similar to that seen during pancreatic development of the mid-gestation embryo. These partially disaggregated embryoid bodies containing GFP(br) buds initially form epithelial ring-like structures when cultured in Matrigel. After several days in culture, these rings undergo a process of proliferation and form a ramified network of epithelial branches. Comparative analysis of explanted dissociated pancreatic buds from E13.5 Pdx1(GFP/w) embryos and ESC-derived GFP(br) buds reveal a similar process of proliferation and branching, with both embryonic Pdx1(GFP/w) branching pancreatic epithelium and ESC-derived GFP(br) branching organoids expressing markers representing epithelial (EpCAM and E-Cadherin), ductal (Mucin1), exocrine (Amylase and Carboxypeptidase 1A), and endocrine cell types (Glucagon and Somatostatin). ESC-derived branching structures also expressed a suite of genes indicative of ongoing pancreatic differentiation, paralleling gene expression within similar structures derived from the E13.5 fetal pancreas. In summary, differentiating mouse ESCs can generate pancreatic material that has significant similarity to the fetal pancreatic anlagen, providing an in vitro platform for investigating the cellular and molecular mechanisms underpinning pancreatic development.

  11. Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy.

    PubMed

    Wang, Zhiwei; Ahmad, Aamir; Li, Yiwei; Azmi, Asfar S; Miele, Lucio; Sarkar, Fazlul H

    2011-04-01

    Pancreatic cancer is the most aggressive malignant disease once it is diagnosed and it remains the fourth leading cause of cancer-related death in the U.S.A. Recent data indicates that the Notch signaling pathway plays an important role in the development and progression of pancreatic cancer. Emerging evidence also suggests that the activation of the Notch signaling pathway is mechanistically associated with molecular characteristics of cancer stem cells (CSCs) in pancreatic cancer. Moreover, CSCs are known to be highly drug-resistant, suggesting that targeted inactivation of Notch signaling would be useful for overcoming drug resistance and the elimination of CSCs. This review describes the roles of the Notch signaling pathway in pancreatic cancer with a special emphasis on its novel functions in the regulation of pancreatic CSC. Moreover, the review also proposes that targeting the Notch signaling pathway by natural agents may represent a novel strategy for overcoming drug resistance and the elimination of CSCs, which would be useful for the successful treatment of patients diagnosed with pancreatic cancer.

  12. Comparison of efficacy of Salmonella typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells.

    PubMed

    Hiroshima, Yukihiko; Zhao, Ming; Zhang, Yong; Maawy, Ali; Hassanein, Mohamed K; Uehara, Fuminari; Miwa, Shinji; Yano, Shuya; Momiyama, Masashi; Suetsugu, Atsushi; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2013-09-01

    The XPA1 human pancreatic cancer cell line is dimorphic, with spindle stem-like cells and round non-stem cells. We report here the in vitro IC 50 values of stem-like and non-stem XPA1 human pancreatic cells cells for: (1) 5-fluorouracil (5-FU), (2) cisplatinum (CDDP), (3) gemcitabine (GEM), and (4) tumor-targeting Salmonella typhimurium A1-R (A1-R). IC 50 values of stem-like XPA1 cells were significantly higher than those of non-stem XPA1 cells for 5-FU (P = 0.007) and CDDP (P = 0.012). In contrast, there was no difference between the efficacy of A1-R on stem-like and non-stem XPA1 cells. In vivo, 5-FU and A1-R significantly reduced the tumor weight of non-stem XPA1 cells (5-FU; P = 0.028; A1-R; P = 0.011). In contrast, only A1-R significantly reduced tumor weight of stem-like XPA1 cells (P = 0.012). The combination A1-R with 5-FU improved the antitumor efficacy compared with 5-FU monotherapy on the stem-like cells (P = 0.004). The results of the present report indicate A1-R is a promising therapy for chemo-resistant pancreatic cancer stem-like cells.

  13. More challenges ahead—metabolic heterogeneity of pancreatic cancer stem cells

    PubMed Central

    Heeschen, Christopher; Sancho, Patricia

    2016-01-01

    ABSTRACT Pancreatic cancer stem cells (CSCs) display a distinct metabolic phenotype based on their strong dependence on mitochondrial oxidative phosphorylation (OXPHOS) and limited metabolic plasticity. While suppression of MYC upstream of PGC-1α was the key determinant of this phenotype, we also identified a subset of CSCs with reduced mitochondrial content that showed resistance to mitochondrial targeting, but could be sensitized by inhibition of MYC. PMID:27308630

  14. In Vitro Differentiation and Expansion of Human Pluripotent Stem Cell-Derived Pancreatic Progenitors

    PubMed Central

    Chmielowiec, Jolanta; Borowiak, Malgorzata

    2014-01-01

    Recent progress in understanding stem cell biology has been remarkable, especially in deciphering signals that support differentiation towards tissue-specific lineages. This achievement positions us firmly at the beginning of an era of patient-specific regenerative medicine and human disease modeling. It will be necessary to equip the progress in this era with a reliable source of self-renewing progenitor cells that differentiate into functional target cells. The generation of pancreatic progenitors that mature in vivo into functional beta-cells has raised the hope for new therapeutic options in diabetes, but key challenges still remain including the production of sufficient numbers of cells for research and transplantation. Recent approaches to this problem have shown that the presence of organ- and stage-specific mesenchyme improves the generation of progenitors, from endoderm to endocrine cells. Alternatively, utilization of three-dimensional culture may improve the efficiency and yield of directed differentiation. Here, we review the current knowledge of pancreatic directed differentiation and ex vivo expansion of pancreatic progenitors, including recent advances in differentiation strategies for the generation of pancreatic progenitors, and we discuss persistent challenges which will need to be overcome before personalized cell-based therapy becomes a practical strategy. PMID:25148365

  15. Role of injured pancreatic extract promotes bone marrow-derived mesenchymal stem cells efficiently differentiate into insulin-producing cells.

    PubMed

    Xie, Hongbin; Wang, Yunshuai; Zhang, Hui; Qi, Hui; Zhou, Hanxin; Li, Fu-Rong

    2013-01-01

    Mesenchymal stem cells (MSCs) can be successfully induced to differentiate into insulin-producing cells (IPCs) by a variety of small molecules and cytokines in vitro. However, problems remain, such as low transdifferentiation efficiency and poor maturity of trans-differentiated cells. The damaged pancreatic cells secreted a large amount of soluble proteins, which were able to promote pancreative islet regeneration and MSCs differentiation. In this study, we utilized the rat injured pancreatic tissue extract to modulate rat bone marrow-derived MSCs differentiation into IPCs by the traditional two-step induction. Our results showed that injured pancreatic tissue extract could effectively promote the trans-differentiation efficiency and maturity of IPCs by the traditional induction. Moreover, IPCs were able to release more insulin in a glucose-dependent manner and ameliorate better the diabetic conditions of streptozotocin (STZ)-treated rats. Our study provides a new strategy to induce an efficient and directional differentiation of MSCs into IPCs.

  16. Differentiation and migration of neural crest stem cells are stimulated by pancreatic islets.

    PubMed

    Kozlova, Elena N; Jansson, Leif

    2009-06-17

    Neural crest stem cells (NCSCs) migrate during embryonic development towards the endoderm-derived pancreas and the interaction between NCSCs and beta-cell progenitors is crucial for their mutual differentiation. In diabetes, loss of beta-cells or impaired beta-cell function is accompanied by nerve degeneration, which contributes to the progression of the disease. Here we show that adult pancreatic islets markedly promote differentiation of NCSCs towards neuronal phenotype in vitro and in vivo after transplantation and increase their migration towards islets. These findings indicate that pancreatic islets can be used to promote differentiation of NCSCs towards neuronal phenotype and that this in-vitro system may help elucidate interactions between NCSCs and healthy or diseased beta-cells.

  17. Regenerative Therapy of Type 1 Diabetes Mellitus: From Pancreatic Islet Transplantation to Mesenchymal Stem Cells

    PubMed Central

    Rekittke, Nadine E.; Ang, Meidjie; Rawat, Divya; Khatri, Rahul

    2016-01-01

    Type 1 diabetes is an autoimmune disease resulting in the permanent destruction of pancreatic islets. Islet transplantation to portal vein provides an approach to compensate for loss of insulin producing cells. Clinical trials demonstrated that even partial islet graft function reduces severe hypoglycemic events in patients. However, therapeutic impact is restrained due to shortage of pancreas organ donors and instant inflammation occurring in the hepatic environment of the graft. We summarize on what is known about regenerative therapy in type 1 diabetes focusing on pancreatic islet transplantation and new avenues of cell substitution. Metabolic pathways and energy production of transplanted cells are required to be balanced and protection from inflammation in their intravascular bed is desired. Mesenchymal stem cells (MSCs) have anti-inflammatory features, and so they are interesting as a therapy for type 1 diabetes. Recently, they were reported to reduce hyperglycemia in diabetic rodents, and they were even discussed as being turned into endodermal or pancreatic progenitor cells. MSCs are recognized to meet the demand of an individual therapy not raising the concerns of embryonic or induced pluripotent stem cells for therapy. PMID:27047547

  18. Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes

    PubMed Central

    Terao, Naoko; Takamatsu, Shinji; Minehira, Tomomi; Sobajima, Tomoaki; Nakayama, Kotarosumitomo; Kamada, Yoshihiro; Miyoshi, Eiji

    2015-01-01

    AIM: To evaluate/isolate cancer stem cells (CSCs) from tissue or cell lines according to various definitions and cell surface markers. METHODS: Lectin microarray analysis was conducted on CSC-like fractions of the human pancreatic cancer cell line Panc1 by establishing anti-cancer drug-resistant cells. Changes in glycan structure of CSC-like cells were also investigated in sphere-forming cells as well as in CSC fractions obtained from overexpression of CD24 and CD44. RESULTS: Several types of fucosylation were increased under these conditions, and the expression of fucosylation regulatory genes such as fucosyltransferases, GDP-fucose synthetic enzymes, and GDP-fucose transporters were dramatically enhanced in CSC-like cells. These changes were significant in gemcitabine-resistant cells and sphere cells of a human pancreatic cancer cell line, Panc1. However, downregulation of cellular fucosylation by knockdown of the GDP-fucose transporter did not alter gemcitabine resistance, indicating that increased cellular fucosylation is a result of CSC-like transformation. CONCLUSION: Fucosylation might be a biomarker of CSC-like cells in pancreatic cancer. PMID:25852272

  19. Endothelial cells mediate islet-specific maturation of human embryonic stem cell-derived pancreatic progenitor cells.

    PubMed

    Jaramillo, Maria; Mathew, Shibin; Mamiya, Hikaru; Goh, Saik Kia; Banerjee, Ipsita

    2015-01-01

    It is well recognized that in vitro differentiation of embryonic stem cells (ESC) can be best achieved by closely recapitulating the in vivo developmental niche. Thus, implementation of directed differentiation strategies has yielded encouraging results in the area of pancreatic islet differentiation. These strategies have concentrated on direct addition of chemical signals, however, other aspect of the developmental niche are yet to be explored. During development, pancreatic progenitor (PP) cells grow as an epithelial sheet, which aggregates with endothelial cells (ECs) during the final stages of maturation. Several findings suggest that the interactions with EC play a role in pancreatic development. In this study, we recapitulated this phenomenon in an in vitro environment by maturing the human ESC (hESC)-derived PP cells in close contact with ECs. We find that co-culture with different ECs (but not fibroblast) alone results in pancreatic islet-specific differentiation of hESC-derived PP cells even in the absence of additional chemical induction. The differentiated cells responded to exogenous glucose levels by enhanced C-peptide synthesis. The co-culture system aligned well with endocrine development as determined by comprehensive analysis of involved signaling pathways. By recapitulating cell-cell interaction aspects of the developmental niche we achieved a differentiation model that aligns closely with islet organogenesis.

  20. A Scalable System for Production of Functional Pancreatic Progenitors from Human Embryonic Stem Cells

    PubMed Central

    Schulz, Thomas C.; Young, Holly Y.; Agulnick, Alan D.; Babin, M. Josephine; Baetge, Emmanuel E.; Bang, Anne G.; Bhoumik, Anindita; Cepa, Igor; Cesario, Rosemary M.; Haakmeester, Carl; Kadoya, Kuniko; Kelly, Jonathan R.; Kerr, Justin; Martinson, Laura A.; McLean, Amanda B.; Moorman, Mark A.; Payne, Janice K.; Richardson, Mike; Ross, Kelly G.; Sherrer, Eric S.; Song, Xuehong; Wilson, Alistair Z.; Brandon, Eugene P.; Green, Chad E.; Kroon, Evert J.; Kelly, Olivia G.; D’Amour, Kevin A.; Robins, Allan J.

    2012-01-01

    Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50–100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry. PMID:22623968

  1. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells.

    PubMed

    Schulz, Thomas C; Young, Holly Y; Agulnick, Alan D; Babin, M Josephine; Baetge, Emmanuel E; Bang, Anne G; Bhoumik, Anindita; Cepa, Igor; Cesario, Rosemary M; Haakmeester, Carl; Kadoya, Kuniko; Kelly, Jonathan R; Kerr, Justin; Martinson, Laura A; McLean, Amanda B; Moorman, Mark A; Payne, Janice K; Richardson, Mike; Ross, Kelly G; Sherrer, Eric S; Song, Xuehong; Wilson, Alistair Z; Brandon, Eugene P; Green, Chad E; Kroon, Evert J; Kelly, Olivia G; D'Amour, Kevin A; Robins, Allan J

    2012-01-01

    Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50-100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry.

  2. Metformin Targets the Metabolic Achilles Heel of Human Pancreatic Cancer Stem Cells

    PubMed Central

    Sancho, Patricia; Sanchez-Ripoll, Yolanda; Trabulo, Sara Maria; Dorado, Jorge; Balic, Anamaria; Hidalgo, Manuel; Heeschen, Christopher

    2013-01-01

    Pancreatic ductal adenocarcinomas contain a subset of exclusively tumorigenic cancer stem cells (CSCs), which are capable of repopulating the entire heterogeneous cancer cell populations and are highly resistant to standard chemotherapy. Here we demonstrate that metformin selectively ablated pancreatic CSCs as evidenced by diminished expression of pluripotency-associated genes and CSC-associated surface markers. Subsequently, the ability of metformin-treated CSCs to clonally expand in vitro was irreversibly abrogated by inducing apoptosis. In contrast, non-CSCs preferentially responded by cell cycle arrest, but were not eliminated by metformin treatment. Mechanistically, metformin increased reactive oxygen species production in CSC and reduced their mitochondrial transmembrane potential. The subsequent induction of lethal energy crisis in CSCs was independent of AMPK/mTOR. Finally, in primary cancer tissue xenograft models metformin effectively reduced tumor burden and prevented disease progression; if combined with a stroma-targeting smoothened inhibitor for enhanced tissue penetration, while gemcitabine actually appeared dispensable. PMID:24204632

  3. STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells

    PubMed Central

    Lin, Li; Jou, David; Wang, Yina; Ma, Haiyan; Liu, Tianshu; Fuchs, James; Li, Pui-Kai; Lü, Jiagao; Li, Chenglong; Lin, Jiayuh

    2016-01-01

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer including pancreatic cancer. Whether STAT3 is activated in stem cell-like pancreatic cancer cells and the effect of STAT3 inhibition, is still unknown. Flow cytometry was used to isolate pancreatic cancer stem-like cells which are identified by both aldehyde dehydrogenase (ALDH)-positive (ALDH+) as well as cluster of differentiation (CD) 44-positive/CD24-positive subpopulations (CD44+/CD24+). STAT3 activation and the effects of STAT3 inhibition by STAT3 inhibitors, LLL12, FLLL32, and Stattic in ALDH+ and CD44+/CD24+ cells were examined. Our results showed that ALDH+ and CD44+/CD24+ pancreatic cancer stem-like cells expressed higher levels of phosphorylated STAT3, an active form of STAT3, compared to ALDH-negative (ALDH−) and CD44-negative/CD24-negative (CD44−/CD24−) pancreatic cancer cells, suggesting that STAT3 is activated in pancreatic cancer stem-like cells. Small molecular STAT3 inhibitors inhibited STAT3 phosphorylation, STAT3 downstream target gene expression, cell viability, and tumorsphere formation in ALDH+ and CD44+/CD24+ cells. Our results indicate that STAT3 is a novel therapeutic target in pancreatic cancer stem-like cells and inhibition of activated STAT3 in these cells by STAT3 inhibitors may offer an effective treatment for pancreatic cancer. PMID:27748818

  4. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling.

    PubMed

    Balic, Anamaria; Sørensen, Morten Dræby; Trabulo, Sara Maria; Sainz, Bruno; Cioffi, Michele; Vieira, Catarina R; Miranda-Lorenzo, Irene; Hidalgo, Manuel; Kleeff, Joerg; Erkan, Mert; Heeschen, Christopher

    2014-07-01

    Pancreatic ductal adenocarcinoma is one of the deadliest carcinomas and is characterized by highly tumorigenic and metastatic cancer stem cells (CSC). CSCs evade available therapies, which preferentially target highly proliferative and more differentiated progenies, leaving behind CSCs as a putative source for disease relapse. Thus, to identify potentially more effective treatment regimens, we screened established and new compounds for their ability to eliminate CSCs in primary pancreatic cancer (stem) cells in vitro and corresponding patient-derived pancreatic cancer tissue xenografts in vivo. Intriguingly, we found that in vitro treatment with the antimalarial agent chloroquine significantly decreased CSCs, translating into diminished in vivo tumorigenicity and invasiveness in a large panel of pancreatic cancers. In vivo treatment in combination with gemcitabine was capable of more effectively eliminating established tumors and improved overall survival. The inhibitory effect of chloroquine was not related to inhibition of autophagy, but was due to inhibition of CXCL12/CXCR4 signaling, resulting in reduced phosphorylation of ERK and STAT3. Furthermore, chloroquine showed potent inhibition of hedgehog signaling by decreasing the production of Smoothened, translating into a significant reduction in sonic hedgehog-induced chemotaxis and downregulation of downstream targets in CSCs and the surrounding stroma. Our study demonstrates that via to date unreported effects, chloroquine is an effective adjuvant therapy to chemotherapy, offering more efficient tumor elimination and improved cure rates. Chloroquine should be further explored in the clinical setting as its success may help to more rapidly improve the poor prognosis of patients with pancreatic cancer. ©2014 American Association for Cancer Research.

  5. Nanog Predicts Poor Prognosis in Human Pancreatic Cancer and Is Downregulated by QingyihuaJi Formula in Pancreatic Cancer Stem Cells

    PubMed Central

    Song, Libin; Dong, Lei; Weng, Lao I.; Wang, Peng; Hua, Yongqiang

    2016-01-01

    Qingyihuaji formula (QYHJ), confirmed efficacious in a series of clinical trials, has been applied to human pancreatic carcinoma treatment in Shanghai Cancer Center for years. Recent evidence highlighted that pluripotent stem cells transcription factor Nanog plays a pivotal role in carcinogenesis. However, there is little published information regarding the underlying clinical significance and mechanisms of transcription factor Nanog in pancreatic cancer. In this study, our results indicated that Nanog is overexpressed in human pancreatic cancer stem cells and downregulated by QYHJ, which may contribute to explain the clinical effectiveness of QYHJ and provide advanced pancreatic cancer patients with a new therapeutic option, supporting our hypothesis that the degradation pathway is another mechanism by which QYHJ affects Nanog expression. PMID:27829864

  6. Platelet-Derived Mitochondria Display Embryonic Stem Cell Markers and Improve Pancreatic Islet β-cell Function in Humans.

    PubMed

    Zhao, Yong; Jiang, Zhaoshun; Delgado, Elias; Li, Heng; Zhou, Huimin; Hu, Wei; Perez-Basterrechea, Marcos; Janostakova, Anna; Tan, Qidong; Wang, Jing; Mao, Mao; Yin, Zhaohui; Zhang, Ye; Li, Ying; Li, Quanhai; Zhou, Jing; Li, Yunxiang; Martinez Revuelta, Eva; Maria García-Gala, Jose; Wang, Honglan; Perez-Lopez, Silvia; Alvarez-Viejo, Maria; Menendez, Edelmiro; Moss, Thomas; Guindi, Edward; Otero, Jesus

    2017-08-01

    Diabetes is a major global health issue and the number of individuals with type 1 diabetes (T1D) and type 2 diabetes (T2D) increases annually across multiple populations. Research to develop a cure must overcome multiple immune dysfunctions and the shortage of pancreatic islet β cells, but these challenges have proven intractable despite intensive research effort more than the past decades. Stem Cell Educator (SCE) therapy-which uses only autologous blood immune cells that are externally exposed to cord blood stem cells adhering to the SCE device, has previously been proven safe and effective in Chinese and Spanish subjects for the improvement of T1D, T2D, and other autoimmune diseases. Here, 4-year follow-up studies demonstrated the long-term safety and clinical efficacy of SCE therapy for the treatment of T1D and T2D. Mechanistic studies found that the nature of platelets was modulated in diabetic subjects after receiving SCE therapy. Platelets and their released mitochondria display immune tolerance-associated markers that can modulate the proliferation and function of immune cells. Notably, platelets also expressed embryonic stem cell- and pancreatic islet β-cell-associated markers that are encoded by mitochondrial DNA. Using freshly-isolated human pancreatic islets, ex vivo studies established that platelet-releasing mitochondria can migrate to pancreatic islets and be taken up by islet β cells, leading to the proliferation and enhancement of islet β-cell functions. These findings reveal new mechanisms underlying SCE therapy and open up new avenues to improve the treatment of diabetes in clinics. Stem Cells Translational Medicine 2017;6:1684-1697. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  7. Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters.

    PubMed

    Van Hoof, Dennis; Mendelsohn, Adam D; Seerke, Rina; Desai, Tejal A; German, Michael S

    2011-05-01

    Pancreatic β-cells function optimally when clustered in islet-like structures. However, nutrient and oxygen deprivation limits the viability of cells at the core of excessively large clusters. Hence, production of functional β-cells from human embryonic stem cells (hESCs) for patients with diabetes would benefit from the growth and differentiation of these cells in size-controlled aggregates. In this study, we controlled cluster size by seeding hESCs onto glass cover slips patterned by the covalent microcontact-printing of laminin in circular patches of 120 μm in diameter. These were used as substrates to grow and differentiate hESCs first into SOX17-positive/SOX7-negative definitive endoderm, after which many clusters released and formed uniformly sized three-dimensional clusters. Both released clusters and those that remained attached differentiated into HNF1β-positive primitive gut tube-like cells with high efficiency. Further differentiation yielded pancreatic endoderm-like cells that co-expressed PDX1 and NKX6.1. Controlling aggregate size allows efficient production of uniformly-clustered pancreatic endocrine precursors for in vivo engraftment or further in vitro maturation.

  8. A survival Kit for pancreatic beta cells: stem cell factor and c-Kit receptor tyrosine kinase.

    PubMed

    Feng, Zhi-Chao; Riopel, Matthew; Popell, Alex; Wang, Rennian

    2015-04-01

    The interactions between c-Kit and its ligand, stem cell factor (SCF), play an important role in haematopoiesis, pigmentation and gametogenesis. c-Kit is also found in the pancreas, and recent studies have revealed that c-Kit marks a subpopulation of highly proliferative pancreatic endocrine cells that may harbour islet precursors. c-Kit governs and maintains pancreatic endocrine cell maturation and function via multiple signalling pathways. In this review we address the importance of c-Kit signalling within the pancreas, including its profound role in islet morphogenesis, islet vascularisation, and beta cell survival and function. We also discuss the impact of c-Kit signalling in pancreatic disease and the use of c-Kit as a potential target for the development of cell-based and novel drug therapies in the treatment of diabetes.

  9. Calreticulin is highly expressed in pancreatic cancer stem-like cells.

    PubMed

    Matsukuma, Satoshi; Yoshimura, Kiyoshi; Ueno, Tomio; Oga, Atsunori; Inoue, Moeko; Watanabe, Yusaku; Kuramasu, Atsuo; Fuse, Masanori; Tsunedomi, Ryouichi; Nagaoka, Satoshi; Eguchi, Hidetoshi; Matsui, Hiroto; Shindo, Yoshitaro; Maeda, Noriko; Tokuhisa, Yoshihiro; Kawano, Reo; Furuya-Kondo, Tomoko; Itoh, Hiroshi; Yoshino, Shigefumi; Hazama, Shoichi; Oka, Masaaki; Nagano, Hiroaki

    2016-11-01

    Cancer stem-like cells (CSLCs) in solid tumors are thought to be resistant to conventional chemotherapy or molecular targeting therapy and to contribute to cancer recurrence and metastasis. In this study, we aimed to identify a biomarker of pancreatic CSLCs (P-CSLCs). A P-CSLC-enriched population was generated from pancreatic cancer cell lines using our previously reported method and its protein expression profile was compared with that of parental cells by 2-D electrophoresis and tandem mass spectrometry. The results indicated that a chaperone protein calreticulin (CRT) was significantly upregulated in P-CSLCs compared to parental cells. Flow cytometry analysis indicated that CRT was mostly localized to the surface of P-CSLCs and did not correlate with the levels of CD44v9, another P-CSLC biomarker. Furthermore, the side population in the CRT(high) /CD44v9(low) population was much higher than that in the CRT(low) /CD44v9(high) population. Calreticulin expression was also assessed by immunohistochemistry in pancreatic cancer tissues (n = 80) obtained after radical resection and was found to be associated with patients' clinicopathological features and disease outcomes in the Cox proportional hazard regression model. Multivariate analysis identified CRT as an independent prognostic factor for pancreatic cancer patients, along with age and postoperative therapy. Our results suggest that CRT can serve as a biomarker of P-CSLCs and a prognostic factor associated with poorer survival of pancreatic cancer patients. This novel biomarker can be considered as a therapeutic target for cancer immunotherapy.

  10. TRAIL-engineered pancreas-derived mesenchymal stem cells: characterization and cytotoxic effects on pancreatic cancer cells.

    PubMed

    Moniri, M R; Sun, X-Y; Rayat, J; Dai, D; Ao, Z; He, Z; Verchere, C B; Dai, L-J; Warnock, G L

    2012-09-01

    Mesenchymal stem cells (MSCs) have attracted great interest in cancer therapy owing to their tumor-oriented homing capacity and the feasibility of autologous transplantation. Currently, pancreatic cancer patients face a very poor prognosis, primarily due to the lack of therapeutic strategies with an effective degree of specificity. Anticancer gene-engineered MSCs specifically target tumor sites and can produce anticancer agents locally and constantly. This study was performed to characterize pancreas-derived MSCs and investigate the effects of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-engineered MSCs on pancreatic cancer cells under different culture conditions. Pancreas-derived MSCs exhibited positive expression on CD44, CD73, CD95, CD105, negative on CD34 and differentiated into adipogenic and osteogenic cells. TRAIL expression was assessed by both enzyme-linked immunosorbent assay and western blot analysis. Different patterns of TRAIL receptor expression were observed on the pancreatic cancer cell lines, including PANC1, HP62, ASPC1, TRM6 and BXPC3. Cell viability was assessed using a real-time monitoring system. Pancreatic cancer cell death was proportionally related to conditioned media from MSC(nsTRAIL) and MSC(stTRAIL). The results suggest that MSCs exhibit intrinsic inhibition of pancreatic cancer cells and that this effect can be potentiated by TRAIL-transfection on death receptor-bearing cell types.

  11. Prominin-1 (CD133) Reveals New Faces of Pancreatic Progenitor Cells and Cancer Stem Cells: Current Knowledge and Therapeutic Perspectives.

    PubMed

    Hori, Yuichi

    2013-01-01

    Islet transplantation-based therapies were proven successful for type 1 diabetes mellitus, but an extreme shortage of pancreatic islets has motivated recent efforts to develop renewable sources of islet-replacement tissue. Pancreatic progenitor cells hold a promising potential, yet attempts at their prospective isolation are scarce due to the lack of specific marker. We found that prominin-1 (often referred to as CD133 in humans) is expressed by the undifferentiated epithelial cells in the mouse embryonic pancreas. Putative pancreatic epithelial stem and progenitor cells were prospectively enriched in prominin-1(+) cell population by cell sorting and characterized. CD133 is also a cell surface marker of human pancreatic cancer stem cells (CSC), which are resistant to conventional treatments such as chemotherapy and radiotherapy. Therefore, a considerable interest in the specific targeting and eradication of CSC is emerging for the cancer therapy, and CD133 may represent a good molecular target. In this chapter, I will summarize our current knowledge about prominin-1/CD133 in mouse and human pancreas.

  12. Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats

    PubMed Central

    Kim, Hyun-Wook; Song, Woo-Jin; Li, Qiang; Han, Sei-Myoung; Jeon, Kee-Ok; Park, Sang-Chul; Ryu, Min-Ok; Chae, Hyung-Kyu; Kyeong, Kweon

    2016-01-01

    Severe acute pancreatitis (SAP) is associated with systemic complications and high mortality rate in dogs. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in several inflammation models. In the present study, the effects of canine adipose tissue-derived (cAT)-MSCs in a rat model of SAP induced by retrograde injection of 3% sodium taurocholate solution into the pancreatic duct were investigated. cAT-MSCs labeled with dioctadecyl-3,3,3′-tetramethylindo-carbocyanine perchlorate (1 × 107 cells/kg) were systemically administered to rats and pancreatic tissue was collected three days later for histopathological, quantitative real-time polymerase chain reaction, and immunocytochemical analyses. Greater numbers of infused cAT-MSCs were detected in the pancreas of SAP relative to sham-operated rats. cAT-MSC infusion reduced pancreatic edema, inflammatory cell infiltration, and acinar cell necrosis, and decreased pancreatic expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, -6, -12, -17, and -23 and interferon-γ, while stimulating expression of the anti-inflammatory cytokines IL-4 and IL-10 in SAP rats. Moreover, cAT-MSCs decreased the number of clusters of differentiation 3-positive T cells and increased that of forkhead box P3-positive T cells in the injured pancreas. These results indicate that cAT-MSCs can be effective as a cell-based therapeutic strategy for treatment of SAP in dogs. PMID:27297425

  13. Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats.

    PubMed

    Kim, Hyun-Wook; Song, Woo-Jin; Li, Qiang; Han, Sei-Myoung; Jeon, Kee-Ok; Park, Sang-Chul; Ryu, Min-Ok; Chae, Hyung-Kyu; Kyeong, Kweon; Youn, Hwa-Young

    2016-12-30

    Severe acute pancreatitis (SAP) is associated with systemic complications and high mortality rate in dogs. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in several inflammation models. In the present study, the effects of canine adipose tissue-derived (cAT)-MSCs in a rat model of SAP induced by retrograde injection of 3% sodium taurocholate solution into the pancreatic duct were investigated. cAT-MSCs labeled with dioctadecyl-3,3,3'-tetramethylindo-carbocyanine perchlorate (1 × 10⁷ cells/kg) were systemically administered to rats and pancreatic tissue was collected three days later for histopathological, quantitative real-time polymerase chain reaction, and immunocytochemical analyses. Greater numbers of infused cAT-MSCs were detected in the pancreas of SAP relative to sham-operated rats. cAT-MSC infusion reduced pancreatic edema, inflammatory cell infiltration, and acinar cell necrosis, and decreased pancreatic expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, -6, -12, -17, and -23 and interferon-γ, while stimulating expression of the anti-inflammatory cytokines IL-4 and IL-10 in SAP rats. Moreover, cAT-MSCs decreased the number of clusters of differentiation 3-positive T cells and increased that of forkhead box P3-positive T cells in the injured pancreas. These results indicate that cAT-MSCs can be effective as a cell-based therapeutic strategy for treatment of SAP in dogs.

  14. Cyr61-positive cancer stem-like cells enhances distal metastases of pancreatic cancer

    PubMed Central

    Shi, Weidong; Zhang, Chenyue; Chen, Zhen; Chen, Hao; Liu, Luming; Meng, Zhiqiang

    2016-01-01

    Efficient inhibition of tumor metastasis after resection of primary tumors is critical for cancer therapy. We have recently shown that Cyr61 promotes growth of pancreatic ductal adenocarcinoma (PDAC) through PI3k/Akt signaling-enhanced nuclear exclusion of p27. Here, we report that administration of adeno-associated viral vectors carrying a short-hairpin interfering RNA (shRNA) for Cyr61 via pancreatic duct significantly decreased the distal tumor metastases after resection of primary pancreatic tumor in mice. Moreover, Cyr61 depletion in PDAC cells significantly inhibited the tumor sphere formation in vitro, significantly decreased the growth of the subcutaneously transplanted tumor, and significantly decreased the incidence of tumor formation after serial adoptive transplantation into NOD/SCID mice. Finally, higher Cyr61 levels were detected in the PDAC specimens from the patients with distal tumor metastasis, compared to PDAC without metastasis at diagnosis. Together, our study suggests that suppression of Cyr61 in cancer stem cell-like cells in PDAC may inhibit tumor cell metastasis after resection of the primary tumor. PMID:27705906

  15. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells.

    PubMed

    Fitzgerald, Timothy L; Lertpiriyapong, Kvin; Cocco, Lucio; Martelli, Alberto M; Libra, Massimo; Candido, Saverio; Montalto, Giuseppe; Cervello, Melchiorre; Steelman, Linda; Abrams, Stephen L; McCubrey, James A

    2015-09-01

    Pancreatic cancer is currently the fourth most common cancer, is increasing in incidence and soon will be the second leading cause of cancer death in the USA. This is a deadly malignancy with an incidence that approximates the mortality with 44,000 new cases and 36,000 deaths each year. Surgery, although only modestly successful, is the only curative option. However, due the locally aggressive nature and early metastasis, surgery can be performed on less than 20% of patients. Cytotoxic chemotherapy is palliative, has significant toxicity and improves survival very little. Thus new treatment paradigms are needed desperately. Due to the extremely high frequency of KRAS gene mutations (>90%) detected in pancreatic cancer patients, the roles of the epidermal growth factor receptor (EGFR), Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTORC1/GSK-3 pathways have been investigated in pancreatic cancer for many years. Constitutively active Ras can activate both of these pathways and there is cross talk between Ras and EGFR which is believed to be important in driving metastasis. Mutant KRAS may also drive the expression of GSK-3 through Raf/MEK/ERK-mediated effects on GSK-3 transcription. GSK-3 can then regulate the expression of NF-kappaB which is important in modulating pancreatic cancer chemoresistance. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about these pathways and how their deregulation can lead to cancer. Multiple inhibitors to EGFR, PI3K, mTOR, GSK-3, Raf, MEK and hedgehog (HH) have been developed and are being evaluated in various cancers. Current research often focuses on the role of these pathways in cancer stem cells (CSC), with the goal to identify sites where therapeutic resistance may develop. Relatively novel fields of investigation such as microRNAs and drugs used for other diseases e.g., diabetes, (metformin) and malaria (chloroquine) have provided new information about

  16. Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction

    PubMed Central

    Tulpule, Asmin; Kelley, James M.; Lensch, M. William; McPherson, Jade; Park, In Hyun; Hartung, Odelya; Nakamura, Tomoka; Schlaeger, Thorsten M.; Shimamura, Akiko; Daley, George Q.

    2013-01-01

    Summary Shwachman-Diamond syndrome (SDS), a rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency and hematopoietic dysfunction, is caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. We created human pluripotent stem cell models of SDS by knock-down of SBDS in human embryonic stem cells (hESCs) and generation of induced pluripotent stem cell (iPSC) lines from two SDS patients. SBDS-deficient hESCs and iPSCs manifest deficits in exocrine pancreatic and hematopoietic differentiation in vitro, enhanced apoptosis and elevated protease levels in culture supernatants, which could be reversed by restoring SBDS protein expression through transgene rescue or by supplementing culture media with protease inhibitors. Protease-mediated auto-digestion provides a mechanistic link between the pancreatic and hematopoietic phenotypes in SDS, highlighting the utility of hESCs and iPSCs in obtaining novel insights into human disease. PMID:23602541

  17. Tumor-specific gene therapy for pancreatic cancer using human neural stem cells encoding carboxylesterase

    PubMed Central

    Choi, Seon-A; Yoon, Seung-Bin; Kim, Seung U.; Lee, Hong J.

    2016-01-01

    Advanced pancreatic cancer is one of the most lethal malignant human diseases lacking effective treatment. Its extremely low survival rate necessitates development of novel therapeutic approach. Human neural stem cells (NSCs) are known to have tumor-tropic effect. We genetically engineered them to express rabbit carboxyl esterase (F3.CE), which activates prodrug CPT-11(irinotecan) into potent metabolite SN-38. We found significant inhibition of the growth of BxPC3 human pancreatic cancer cell line in vitro by F3.CE in presence of CPT-11. Apoptosis was also markedly increased in BxPC3 cells treated with F3.CE and CPT-11. The ligand VEGF and receptor VEGF-1(Flt1) were identified to be the relevant tumor-tropic chemoattractant. We confirmed in vivo that in mice injected with BxPC3 on their skin, there was significant reduction of tumor size in those treated with both F3.CE and BxPC3 adjacent to the cancer mass. Administration of F3.CE in conjunction with CPT-11 could be a new possibility as an effective treatment regimen for patients suffering from advanced pancreatic cancer. PMID:27659534

  18. Tumor-specific gene therapy for pancreatic cancer using human neural stem cells encoding carboxylesterase.

    PubMed

    Choi, Sung S; Yoon, Kichul; Choi, Seon-A; Yoon, Seung-Bin; Kim, Seung U; Lee, Hong J

    2016-11-15

    Advanced pancreatic cancer is one of the most lethal malignant human diseases lacking effective treatment. Its extremely low survival rate necessitates development of novel therapeutic approach. Human neural stem cells (NSCs) are known to have tumor-tropic effect. We genetically engineered them to express rabbit carboxyl esterase (F3.CE), which activates prodrug CPT-11(irinotecan) into potent metabolite SN-38. We found significant inhibition of the growth of BxPC3 human pancreatic cancer cell line in vitro by F3.CE in presence of CPT-11. Apoptosis was also markedly increased in BxPC3 cells treated with F3.CE and CPT-11. The ligand VEGF and receptor VEGF-1(Flt1) were identified to be the relevant tumor-tropic chemoattractant. We confirmed in vivo that in mice injected with BxPC3 on their skin, there was significant reduction of tumor size in those treated with both F3.CE and BxPC3 adjacent to the cancer mass. Administration of F3.CE in conjunction with CPT-11 could be a new possibility as an effective treatment regimen for patients suffering from advanced pancreatic cancer.

  19. Pancreatic Endocrine and Exocrine Cell Ontogeny From Renal Capsule–transplanted Embryonic Stem Cells in Streptozocin-injured Mice

    PubMed Central

    Kodama, Maho; Takeshita, Fumitaka; Kanegasaki, Shiro; Ochiya, Takahiro; Quinn, Gary

    2008-01-01

    In this study, we describe pancreatic cell ontogeny in renal capsule–transplanted embryonic stem cells (ES) after injury by streptozocin (STZ), showing pancreatogenesis in situ. Seven-week-old female BALB/c nude mice were treated with either a single 175- or 200-mg/kg STZ dose, a regimen that induces substantial β-cell damage without overt hyperglycemia, and transplanted 24 hr later with 1 × 105 ES. Immunohistochemistry was performed on ES tissue at 15, 21, and 28 days after transplantation using antibodies against stage- and lineage-specific pancreatic markers. After 21 days, PDX-1+ pancreatic foci first appeared in the renal capsule and expressed both amylase and endocrine hormones (insulin, glucagon, and somatostatin). These foci increased in size by day 28 because of acinar and duct cell proliferation, whereas endocrine cells remained non-dividing, and made up 2–4% of ES tumor volume. PDX-1, Nkx6.1, Ngn3, and ISL-1 protein localization patterns in pancreatic foci were comparable with embryonic pancreatogenesis. A prevalence of multihormonal endocrine cells, a characteristic of adult β-cell regeneration, indicated a possible divergence from embryonic islet cell development. The results indicate that β-cell damage, without overt hyperglycemia, induces a process of fetal-like pancreatogenesis in renal capsule–transplanted ES, leading to β-cell neogenesis. (J Histochem Cytochem 56:33–44, 2008) PMID:17875656

  20. Studying Pancreatic Cancer Stem Cell Characteristics for Developing New Treatment Strategies

    PubMed Central

    Lonardo, Enza; Cioffi, Michele; Sancho, Patricia; Crusz, Shanthini; Heeschen, Christopher

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) contains a subset of exclusively tumorigenic cancer stem cells (CSCs) which have been shown to drive tumor initiation, metastasis and resistance to radio- and chemotherapy. Here we describe a specific methodology for culturing primary human pancreatic CSCs as tumor spheres in anchorage-independent conditions. Cells are grown in serum-free, non-adherent conditions in order to enrich for CSCs while their more differentiated progenies do not survive and proliferate during the initial phase following seeding of single cells. This assay can be used to estimate the percentage of CSCs present in a population of tumor cells. Both size (which can range from 35 to 250 micrometers) and number of tumor spheres formed represents CSC activity harbored in either bulk populations of cultured cancer cells or freshly harvested and digested tumors 1,2. Using this assay, we recently found that metformin selectively ablates pancreatic CSCs; a finding that was subsequently further corroborated by demonstrating diminished expression of pluripotency-associated genes/surface markers and reduced in vivo tumorigenicity of metformin-treated cells. As the final step for preclinical development we treated mice bearing established tumors with metformin and found significantly prolonged survival. Clinical studies testing the use of metformin in patients with PDAC are currently underway (e.g., NCT01210911, NCT01167738, and NCT01488552). Mechanistically, we found that metformin induces a fatal energy crisis in CSCs by enhancing reactive oxygen species (ROS) production and reducing mitochondrial transmembrane potential. In contrast, non-CSCs were not eliminated by metformin treatment, but rather underwent reversible cell cycle arrest. Therefore, our study serves as a successful example for the potential of in vitro sphere formation as a screening tool to identify compounds that potentially target CSCs, but this technique will require further in vitro and in

  1. Participation of adult bone marrow-derived stem cells in pancreatic regeneration: neogenesis versus endogenesis.

    PubMed

    Iskovich, Svetlana; Kaminitz, Ayelet; Yafe, Michal Pearl; Mizrahi, Keren; Stein, Jerry; Yaniv, Isaac; Askenasy, Nadir

    2007-12-01

    Regenerative medicine opens new avenues and promises towards more effective therapies for autoimmune disorders. Current therapeutic strategies for type I diabetes focus on three major directions, with distinct advantages and disadvantages: arrest of autoimmunity, islet transplantation and generation of neoislets. There is mounting evidence that candidate stem cells residing in the hematopoietic compartments participate in regeneration of pancreatic islets following chemical and autoimmune injury in vivo. The apparent major mechanisms include immunomodulation, revascularization, support of endogenous beta-cell regeneration and differentiation into insulin-producing cells. Review of the current evidence suggests that some divergent observations depend primarily on the experimental design, which both limits and accentuates developmental events. The flood of publications reporting negative results appears to reflect primarily suboptimal experimental conditions for differentiation of putative stem cells, rather than limited developmental plasticity. Stem cells modulate the course of autoimmune diabetes through multiple mechanisms, including de novo generation of units capable to sense, produce and secrete insulin. Therefore, the charged debate over controversies surrounding developmental plasticity should not impede attempts to design curative therapies for this disease.

  2. Treating Diet-Induced Diabetes and Obesity with Human Embryonic Stem Cell-Derived Pancreatic Progenitor Cells and Antidiabetic Drugs

    PubMed Central

    Bruin, Jennifer E.; Saber, Nelly; Braun, Natalie; Fox, Jessica K.; Mojibian, Majid; Asadi, Ali; Drohan, Campbell; O’Dwyer, Shannon; Rosman-Balzer, Diana S.; Swiss, Victoria A.; Rezania, Alireza; Kieffer, Timothy J.

    2015-01-01

    Summary Human embryonic stem cell (hESC)-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD) feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs. PMID:25801507

  3. Infusion of Bone Marrow Mesenchymal Stem Cells Attenuates Experimental Severe Acute Pancreatitis in Rats

    PubMed Central

    Huang, Dandan; Gao, Jun; Gong, Yanfang; Wu, Hongyu; Xu, Aifang

    2016-01-01

    Background & Aims. Severe acute pancreatitis (SAP) remains a high-mortality disease. Bone marrow (BM) mesenchymal stem cells (MSCs) have been demonstrated to have plasticity of transdifferentiation and to have immunomodulatory functions. In the present study, we assessed the roles of MSCs in SAP and the therapeutic effects of MSC on SAP after transplantation. Methods. A pancreatitis rat model was induced by the injection of taurocholic acid (TCA) into the pancreatic duct. After isolation and characterization of MSC from BM, MSC transplantation was conducted 24 hrs after SAP induction by tail vein injection. The survival rate was observed and MSCs were traced after transplantation. The expression of TNF-α and IL-1β mRNA in the transplantation group was also analyzed. Results. The survival rate of the transplantation group was significantly higher compared to the control group (p < 0.05). Infused MSCs were detected in the pancreas and BM 3 days after transplantation. The expression of TNF-α and IL-1β mRNA in the transplantation group was significantly lower than in the control group in both the pancreas and the lungs (p < 0.05). Conclusions. MSC transplantation could improve the prognosis of SAP rats. Engrafted MSCs have the capacity of homing, migration, and planting during the treatment of SAP. PMID:27721836

  4. Bufalin suppresses cancer stem-like cells in gemcitabine-resistant pancreatic cancer cells via Hedgehog signaling

    PubMed Central

    Wang, Haiyong; Ning, Zhouyu; Li, Yingyi; Zhu, Xiaoyan; Meng, Zhiqiang

    2016-01-01

    Cancer stem cells (CSCs) are important in cancer, as these cells possess enhanced tumor-forming capabilities and are resistant to current anticancer therapies. Agents with the ability to suppress CSCs are likely to provide novel opportunities for combating tumor proliferation and metastasis. The present study aimed to evaluate the effects of bufalin on pancreatic CSCs in vivo and in vitro. Using a serum-free suspension culture, tumor spheres were enriched in a gemcitabine-resistant human pancreatic cancer cell line, which had a higher percentage of CSCs, and western blotting, flow cytometry, and colony and tumor formation assays were used to demonstrate that these sphere cells exhibited CSC characteristics. Using these cancer stem-like cells as a model, the present study examined the effect of bufalin on pancreatic CSCs. It was demonstrated that bufalin inhibited the number of tumor spheres, and western blotting and immunohistochemical assays showed that the expression levels of CD24 and epithelial specific antigen (ESA) were downregulated by bufalin. Furthermore, in a subcutaneous xenograft model of implanted gemcitabine-resistant MiaPaCa2 cells, bufalin inhibited tumor growth and prolonged the duration of tumor formation. Additionally, the expression levels of CD24 and ESA were inhibited in the bufalin-treated mice. Notably, in another cancer model injected with tumor cells via the tail vein, fewer metastatic lesions were detected in the group in which tumor cells were pretreated with bufalin in vitro, compared with those without pretreatment. Of note, the Hedgehog (Hh) signaling pathway was found to be inhibited in the bufalin-treated cells. Taken together, these results suggested that bufalin suppressed pancreatic CSCs in gemcitabine-resistant MiaPaCa2 cells, and the Hh signaling pathway may be involved in this process. PMID:27432228

  5. Bulk pancreatic cancer cells can convert into cancer stem cells(CSCs) in vitro and 2 compounds can target these CSCs

    PubMed Central

    Ning, Xiaoyan; Du, Yiqi; Ben, Qiwen; Huang, Ling; He, Xiaoping; Gong, Yanfang; Gao, Jun; Wu, Hongyu; Man, Xiaohua; Jin, Jing; Xu, Ming; Li, Zhaoshen

    2016-01-01

    ABSTRACT Increasing evidence has confirmed the existence of cancer stem cells (CSCs) in both hematological malignancies and solid tumors. However, the origin of CSCs is still uncertain, and few agents have been capable of eliminating CSCs till now. The aim of this study was to investigate whether bulk pancreatic cancer cells could convert into CSCs under certain conditions and explore whether metformin and curcumin can kill pancreatic CSCs. Aspc1, Bxpc3 and Panc1 pancreatic cancer cells were cultured in stem cell culture medium (serum-free Dulbecco's modified Eagle medium/Nutrient Mixture F-12 containing basic fibroblast growth factor, epidermal growth factor, B27 and insulin) for 5 days and it was found that all the pancreatic cancer cells aggregated into spheres and expressed pancreatic cancer stem cell surface markers. Then characteristics of Panc1 sphere cells were analyzed and cytotoxicity assays were performed. The results show that Panc1 sphere cells exhibited CSC characteristics and were more resistant to conventional chemotherapy and more sensitive to metformin and curcumin than their parent cells. These findings suggested that bulk pancreatic cancer cells could acquire CSC characteristics under certain conditions, which may support the “yin-yang” model of CSCs (interconversion between bulk cancer cells and CSCs). These results also showed that metformin and curcumin could be candidate drugs for targeting pancreatic CSCs. PMID:26709750

  6. Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?

    PubMed

    Kahraman, Sevim; Okawa, Erin R; Kulkarni, Rohit N

    2016-08-01

    Diabetes is a progressive disease affecting millions of people worldwide. There are several medications and treatment options to improve the life quality of people with diabetes. One of the strategies for the treatment of diabetes could be the use of human pluripotent stem cells or induced pluripotent stem cells. The recent advances in differentiation of stem cells into insulin-secreting beta-like cells in vitro make the transplantation of the stem cell-derived beta-like cells an attractive approach for treatment of type 1 and type 2 diabetes. While stem cell-derived beta-like cells provide an unlimited cell source for beta cell replacement therapies, these cells can also be used as a platform for drug screening or modeling diseases.

  7. Dendritic cells loaded with pancreatic Cancer Stem Cells (CSCs) lysates induce antitumor immune killing effect in vitro.

    PubMed

    Yin, Tao; Shi, Pengfei; Gou, Shanmiao; Shen, Qiang; Wang, Chunyou

    2014-01-01

    According to the cancer stem cells (CSCs) theory, malignant tumors may be heterogeneous in which a small population of CSCs drive the progression of cancer. Because of their intrinsic abilities, CSCs may survive a variety of treatments and then lead to therapeutic resistance and cancer recurrence. Pancreatic CSCs have been reported to be responsible for the malignant behaviors of pancreatic cancer, including suppression of immune protection. Thus, development of immune strategies to eradicate pancreatic CSCs may be of great value for the treatment of pancreatic cancer. In this study, we enriched pancreatic CSCs by culturing Panc-1 cells under sphere-forming conditions. Panc-1 CSCs expressed low levels of HLA-ABC and CD86, as measured by flow cytometry analysis. We further found that the Panc-1 CSCs modulate immunity by inhibiting lymphocyte proliferation which is promoted by phytohemagglutinin (PHA) and anti-CD3 monoclonal antibodies. The monocyte derived dendritic cells (DCs) were charged with total lysates generated from Panc-1 CSCs obtained from tumor sphere culturing. After co-culturing with lymphocytes at different ratios, the Panc-1 CSCs lysates modified DC effectively promoted lymphocyte proliferation. The activating efficiency reached 72.4% and 74.7% at the ratios of 1∶10 and 1∶20 with lymphocytes. The activated lymphocytes secreted high levels of INF-γ and IL-2, which are strong antitumor cytokines. Moreover, Panc-1 CSCs lysates modified DC induced significant cytotoxic effects of lymphocytes on Panc-1 CSCs and parental Panc-1 cells, respectively, as shown by lactate dehydrogenase (LDH) assay. Our study demonstrates that the development of CSCs-based vaccine is a promising strategy for treating pancreatic cancer.

  8. Role of Injured Pancreatic Extract Promotes Bone Marrow-Derived Mesenchymal Stem Cells Efficiently Differentiate into Insulin-Producing Cells

    PubMed Central

    Xie, Hongbin; Wang, Yunshuai; Zhang, Hui; Qi, Hui; Zhou, Hanxin; Li, Fu-Rong

    2013-01-01

    Mesenchymal stem cells (MSCs) can be successfully induced to differentiate into insulin-producing cells (IPCs) by a variety of small molecules and cytokines in vitro. However, problems remain, such as low transdifferentiation efficiency and poor maturity of trans-differentiated cells. The damaged pancreatic cells secreted a large amount of soluble proteins, which were able to promote pancreative islet regeneration and MSCs differentiation. In this study, we utilized the rat injured pancreatic tissue extract to modulate rat bone marrow-derived MSCs differentiation into IPCs by the traditional two-step induction. Our results showed that injured pancreatic tissue extract could effectively promote the trans-differentiation efficiency and maturity of IPCs by the traditional induction. Moreover, IPCs were able to release more insulin in a glucose-dependent manner and ameliorate better the diabetic conditions of streptozotocin (STZ)-treated rats. Our study provides a new strategy to induce an efficient and directional differentiation of MSCs into IPCs. PMID:24058711

  9. JNK pathway inhibition selectively primes pancreatic cancer stem cells to TRAIL-induced apoptosis without affecting the physiology of normal tissue resident stem cells

    PubMed Central

    Rhea, P. Robyn; Kettlun, Claudia; Heinemann, Mitja L.; Ruetering, Jennifer; Vykoukal, Jody; Alt, Eckhard

    2016-01-01

    Objective Successful treatment of solid cancers mandates targeting cancer stem cells (CSC) without impact on the physiology of normal tissue resident stem cells. C-Jun N-terminal kinase (JNK) signaling has been shown to be of importance in cancer. We test whether JNK inhibition would sensitize pancreatic CSCs to induction of apoptosis via low-dose TNFα-related apoptosis-inducing ligand (TRAIL). Design Effects of JNK inhibition (JNKi) were evaluated in vitro in functional assays, through mRNA and protein expression analysis, and in in vivo mouse studies. CSCs were enriched in anoikis-resistant spheroid culture and analyzed accordingly. Results We confirmed that the JNK pathway is an important regulatory pathway in pancreatic cancer stem cells and further found that JNK inhibition downregulates the decoy receptor DcR1 through IL-8 signaling while upregulating pro-apoptotic death receptors DR4/5, thereby sensitizing cells - even with acquired TRAIL-resistance - to apoptosis induction. Treatment of orthotopic pancreatic cancer xenografts with either gemcitabine, JNKi or TRAIL alone for 4 weeks showed only modest effects compared to control, while the combination of JNKi and TRAIL resulted in significantly lower tumor burden (69%; p < 0.04), reduced numbers of circulating tumor cells, and less distant metastatic events, without affecting the general health of the animals. Conclusions The combination of JNKi and TRAIL significantly impacts on CSCs, but leaves regular tissue-resident stem cells unaffected – even under hypoxic stress conditions. This concept of selective treatment of pancreatic CSCs warrants further evaluation. PMID:26840266

  10. An epithelial cell adhesion molecule- and CD3-bispecific antibody plus activated T-cells can eradicate chemoresistant cancer stem-like pancreatic carcinoma cells in vitro.

    PubMed

    Umebayashi, Masayo; Kiyota, Akifumi; Koya, Norihiro; Tanaka, Hiroto; Onishi, Hideya; Katano, Mitsuo; Morisaki, Takashi

    2014-08-01

    Cancer stem-like properties of various types of cancer, including pancreatic cancer, one of the most aggressive types, correlate with metastasis, invasion, and therapeutic resistance. More importantly, chemoresistance in cancer stem-like cells (CSLCs) is a critical problem for eradication of pancreatic cancer. Several cell surface markers, such as CD44 and epithelial cell adhesion molecule (EpCAM), are molecular targets on CSLCs of pancreatic carcinoma. In this study, we investigated whether catumaxomab, a clinical-grade bi-specific antibody that binds to both EpCAM on tumor cells and CD3 on T-cells, combined with activated T-cells can eliminate chemoresistant pancreatic CSLCs in vitro. Firstly, we established a CSLC line (MU-PK1) from human pancreatic carcinoma cells derived from a patient with chemoresistant and disseminated pancreatic cancer. These CSLCs were almost completely resistant to gemcitabine-mediated cytotoxicity up to a concentration of 10 μg/ml. The cells expressed high levels of CSLC markers (CD44 and EpCAM) and had significantly higher capacities for sphere formation, invasion, and aldehyde dehydrogenase-1 expression, which are associated with cancer stemness properties. We found that pre-treatment with catumaxomab and subsequent addition of interleukin-2/OKT3 activated autologous T-cells eliminated CSLCs during a short incubation period. Moreover, when MU-PK1 cells were cultured under hypoxic conditions, the CSLCs became more aggressive. However, the combination of cytokine-activated killer T-cells with catumaxomab successfully lysed almost all these cells. In conclusion, catumaxomab combined with activated T-cells may be a potent therapeutic modality to eradicate chemoresistant pancreatic CSLCs.

  11. Comparative evaluation of cancer stem cell markers in normal pancreas and pancreatic ductal adenocarcinoma.

    PubMed

    Vizio, Barbara; Mauri, Francesco A; Prati, Adriana; Trivedi, Pritesh; Giacobino, Alice; Novarino, Anna; Satolli, Maria Antonietta; Ciuffreda, Libero; Camandona, Michele; Gasparri, Guido; Bellone, Graziella

    2012-01-01

    Chemoresistance and self-renewal of cancer stem cells (CSC), found in many tumors including pancreatic ductal adenocarcinoma (PDAC), are believed to underlie tumor mass regrowth. The distribution of cells carrying the putative stem-cell markers CD133, Nestin, Notch1-4, Jagged1 and 2, ABCG2 and aldehyde dehydrogenase (ALDH1) was assessed immunohistochemically using PDAC and normal pancreas tissue microarrays. The immunoreactivity was semi-quantitatively graded against the normal pancreas and was correlated with the differentiation grade and disease stage. No statistical significant differences were found between normal pancreas and PDAC in the expression of Nestin, Notch1, 3 and 4, ABCG2 or ALDH1. Notch2 and Jagged1 and 2 expression were increased in PDAC. CD133-positive cells were above-normal in PDAC, but the difference was not statistically significant. Nestin, Notch1-4, Jagged1, ABCG2 and ALDH1 immunostaining scores were not correlated with tumor grade or disease stage. CD133 and Notch2 expression was significantly inversely correlated with tumor grade, but not disease stage. Notch3 immunostaining positively correlated with tumor stage, but not with differentiation grade. Jagged2 protein expression correlated inversely with disease stage, but not with tumor grade. From the clinical standpoint, improved delineation of the tumor CSC signature, putatively responsible for tumor initiation and recurrence after initial response to chemotherapy, may offer novel therapeutic targets for this highly lethal cancer.

  12. GSK3 Inhibitor-BIO Regulates Proliferation of Immortalized Pancreatic Mesenchymal Stem Cells (iPMSCs)

    PubMed Central

    Cao, Hui; Chu, Yuankui; Lv, Xiao; Qiu, Pubin; Liu, Chao; Zhang, Huiru; Li, Dan; Peng, Sha; Dou, Zhongying; Hua, Jinlian

    2012-01-01

    Background The small molecule 6-bromoindirubin-30-oxime (BIO), a glycogen synthase kinase 3 (GSK3) inhibitor, is a pharmacological agent known to maintain self-renewal in human and mouse embryonic stem cells (ESCs). However, the precise role of GSK3 in immortalized pancreatic mesenchymal stem cells (iPMSCs) growth and survival is not completely understood at present. Results To determine whether this molecule is involved in controlling the proliferation of iPMSCs, we examined the effect of BIO on iPMSCs. We found that the inactivation of GSK3 by BIO can robustly stimulate iPMSCs proliferation and mass formation as shown by QRT-PCR, western blotting, 5-Bromo-2-deoxyuridine (BrdU) immunostaining assay and tunel assay. However, we did not find the related roles of BIO on β cell differentiation by immunostaining, QRT-PCR assay, glucose-stimulated insulin release and C-peptide content analysis. Conclusions These results suggest that BIO plays a key role in the regulation of cell mass proliferation and maintenance of the undifferentiated state of iPMSCs. PMID:22384031

  13. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling.

    PubMed

    Al-Wadei, Mohammed H; Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2016-01-01

    A small subpopulation of pancreatic cancer cells with characteristics of stem cells drive tumour initiation, progression and metastasis. A better understanding of the regulation of cancer stem cells may lead to more effective cancer prevention and therapy. We have shown that the proliferation and migration of pancreatic cancer cell lines is activated by the nicotinic receptor-mediated release of stress neurotransmitters, responses reversed by γ-aminobutyric acid (GABA). However, the observed cancer inhibiting effects of GABA will only succeed clinically if GABA inhibits pancreatic cancer stem cells (PCSCs) in addition to the more differentiated cancer cells that comprise the majority of cancer tissues and cell lines. Using PCSCs isolated from two pancreatic cancer patients by cell sorting and by spheroid formation assay from pancreatic cancer cell line Panc-1, we tested the hypothesis that nicotine induces the self-renewal of PCSCs. Nicotinic acetylcholine receptors (nAChRs) α3, α4, α5 and α7 were expressed and chronic exposure to nicotine increased the protein expression of these receptors. Immunoassays showed that PCSCs produced the stress neurotransmitters epinephrine and norepinephrine and the inhibitory neurotransmitter GABA. Chronic nicotine significantly increased the production of stress neurotransmitters and sonic hedgehog (SHH) while inducing Gli1 protein and decreasing GABA. GABA treatment inhibited the induction of SHH and Gli1. Spheroid formation and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assays showed significant nicotine-induced increases in self renewal and cell proliferation, responses blocked by GABA. Our data suggest that nicotine increases the SHH-mediated malignant potential of PCSCs and that GABA prevents these effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Metastatic Potential and Chemoresistance of Human Pancreatic Cancer Stem Cells.

    PubMed

    Bhagwandin, Vikash J; Bishop, J Michael; Wright, Woodring E; Shay, Jerry W

    2016-01-01

    Cancer stem cells (CSCs) typically have the capacity to evade chemotherapy and may be the principal source of metastases. CSCs for human pancreatic ductal carcinoma (PDAC) have been identified, but neither the metastatic potential nor the chemoresistance of these cells has been adequately evaluated. We have addressed these issues by examining side-population (SP) cells isolated from the Panc-1 and BxPC3 lines of human PDAC cells, the oncogenotypes of which differ. SP cells could be isolated from monolayers of Panc-1, but only from spheroids of BxPC3. Using orthotopic xenografts into the severely immunocompromised NSG mouse, we found that SP cells isolated from both cell lines produced tumors that were highly metastatic, in contrast to previous experience with PDAC cell lines. SP cells derived from both cell lines expressed the ABCG2 transporter, which was demonstrably responsible for the SP phenotype. SP cells gave rise to non-SP (NSP) cells in vitro and in vivo, a transition that was apparently due to posttranslational inhibition of the ABCG2 transporter. Twenty-two other lines of PDAC cells also expressed ABCG2. The sensitivity of PDAC SP cells to the vinca alkaloid vincristine could be greatly increased by verapamil, a general inhibitor of transporters. In contrast, verapamil had no effect on the killing of PDAC cells by gemcitabine, the current first-line therapeutic for PDAC. We conclude that the isolation of SP cells can be a convenient and effective tool for the study of PDAC CSCs; that CSCs may be the principal progenitors of metastasis by human PDAC; that the ABCG2 transporter is responsible for the SP phenotype in human PDAC cells, and may be a ubiquitous source of drug-resistance in PDAC, but does not confer resistance to gemcitabine; and that inhibition of ABCG2 might offer a useful adjunct in a therapeutic attack on the CSCs of PDAC.

  15. The Metastatic Potential and Chemoresistance of Human Pancreatic Cancer Stem Cells

    PubMed Central

    Bhagwandin, Vikash J.; Bishop, J. Michael; Wright, Woodring E.; Shay, Jerry W.

    2016-01-01

    Cancer stem cells (CSCs) typically have the capacity to evade chemotherapy and may be the principal source of metastases. CSCs for human pancreatic ductal carcinoma (PDAC) have been identified, but neither the metastatic potential nor the chemoresistance of these cells has been adequately evaluated. We have addressed these issues by examining side-population (SP) cells isolated from the Panc-1 and BxPC3 lines of human PDAC cells, the oncogenotypes of which differ. SP cells could be isolated from monolayers of Panc-1, but only from spheroids of BxPC3. Using orthotopic xenografts into the severely immunocompromised NSG mouse, we found that SP cells isolated from both cell lines produced tumors that were highly metastatic, in contrast to previous experience with PDAC cell lines. SP cells derived from both cell lines expressed the ABCG2 transporter, which was demonstrably responsible for the SP phenotype. SP cells gave rise to non-SP (NSP) cells in vitro and in vivo, a transition that was apparently due to posttranslational inhibition of the ABCG2 transporter. Twenty-two other lines of PDAC cells also expressed ABCG2. The sensitivity of PDAC SP cells to the vinca alkaloid vincristine could be greatly increased by verapamil, a general inhibitor of transporters. In contrast, verapamil had no effect on the killing of PDAC cells by gemcitabine, the current first-line therapeutic for PDAC. We conclude that the isolation of SP cells can be a convenient and effective tool for the study of PDAC CSCs; that CSCs may be the principal progenitors of metastasis by human PDAC; that the ABCG2 transporter is responsible for the SP phenotype in human PDAC cells, and may be a ubiquitous source of drug-resistance in PDAC, but does not confer resistance to gemcitabine; and that inhibition of ABCG2 might offer a useful adjunct in a therapeutic attack on the CSCs of PDAC. PMID:26859746

  16. Early Developmental Perturbations in a Human Stem Cell Model of MODY5/HNF1B Pancreatic Hypoplasia

    PubMed Central

    Teo, Adrian Kee Keong; Lau, Hwee Hui; Valdez, Ivan Achel; Dirice, Ercument; Tjora, Erling; Raeder, Helge; Kulkarni, Rohit N.

    2016-01-01

    Summary Patients with an HNF1BS148L/+ mutation (MODY5) typically exhibit pancreatic hypoplasia. However, the molecular mechanisms are unknown due to inaccessibility of patient material and because mouse models do not fully recapitulate MODY5. Here, we differentiated MODY5 human-induced pluripotent stem cells (hiPSCs) into pancreatic progenitors, and show that the HNF1BS148L/+ mutation causes a compensatory increase in several pancreatic transcription factors, and surprisingly, a decrease in PAX6 pancreatic gene expression. The lack of suppression of PDX1, PTF1A, GATA4, and GATA6 indicates that MODY5-mediated pancreatic hypoplasia is mechanistically independent. Overexpression studies demonstrate that a compensatory increase in PDX1 gene expression is due to mutant HNF1BS148L/+ but not wild-type HNF1B or HNF1A. Furthermore, HNF1B does not appear to directly regulate PAX6 gene expression necessary for glucose tolerance. Our results demonstrate compensatory mechanisms in the pancreatic transcription factor network due to mutant HNF1BS148L/+ protein. Thus, patients typically develop MODY5 but not neonatal diabetes despite exhibiting pancreatic hypoplasia. PMID:26876668

  17. Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells.

    PubMed

    Zhao, Hengqiang; Duan, Qingke; Zhang, Zhengle; Li, Hehe; Wu, Heshui; Shen, Qiang; Wang, Chunyou; Yin, Tao

    2017-02-28

    Cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT)-type cells are considered as underlying causes of chemoresistance, tumour recurrence and metastasis in pancreatic cancer. We aimed to describe the mechanisms - particularly glycolysis - involved in the regulation of the CSC and EMT phenotypes. We used a gemcitabine-resistant (GR) Patu8988 cell line, which exhibited clear CSC and EMT phenotypes and showed reliance on glycolysis. Inhibition of glycolysis using 2-deoxy-D-glucose (2-DG) significantly enhanced the cytotoxicity of gemcitabine and inhibited the CSC and EMT phenotypes in GR cells both in vitro and in vivo. Intriguingly, the use of the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) restored the CSC and EMT phenotypes. H2 O2 produced changes similar to those of 2-DG, indicating that ROS were involved in the acquired cancer stemness and EMT phenotypes of GR cells. Moreover, doublecortin-like kinase 1 (DCLK1), a pancreatic CSC marker, was highly expressed and regulated the stemness and EMT phenotypes in GR cell. Both 2-DG and H2 O2 treatment suppressed DCLK1 expression, which was also rescued by NAC. Together, these findings revealed that glycolysis promotes the expression of DCLK1 and maintains the CSC and EMT phenotypes via maintenance of low ROS levels in chemoresistant GR cells. The glycolysis-ROS-DCLK1 pathway may be potential targets for reversing the malignant behaviour of pancreatic cancer.

  18. Epigenetic regulation of SOX9 by the NF-κB signaling pathway in pancreatic cancer stem cells.

    PubMed

    Sun, Lei; Mathews, Lesley A; Cabarcas, Stephanie M; Zhang, Xiaohu; Yang, Acong; Zhang, Ying; Young, Matthew R; Klarmann, Kimberly D; Keller, Jonathan R; Farrar, William L

    2013-08-01

    Pancreatic cancer is the fourth leading cause of cancer-related mortality in the world. Pancreatic cancer can be localized, locally advanced, or metastatic. The median 1- and 5-year survival rates are 25% and 6%, respectively. Epigenetic modifications such as DNA methylation play a significant role during both normal human development and cancer progression. To investigate epigenetic regulation of genes in the tumor-initiating population of pancreatic cancer cells, which are also termed cancer stem cells (CSCs), we conducted epigenetic arrays in PANC1 and HPAC pancreatic cancer cell lines and compared the global DNA methylation status of CpG promoters in invasive cells, demonstrated to be CSCs, to their noninvasive counterparts, or non-CSCs. Our results suggested that the NF-κB pathway is one of the most activated pathways in pancreatic CSCs. In agreement with this, we determined that upon treatment with NF-κB pathway inhibitors, the stem cell-like properties of cells are significantly disrupted. Moreover, SOX9, demethylated in CSCs, is shown to play a crucial role in the invasion process. Additionally, we found a potential NF-κB binding site located in the SOX9 promoter and determined that the NF-κB subunit p65 positively regulates SOX9 expression by binding to its promoter directly. This interaction can be efficiently blocked by NF-κB inhibitors. Thus, our work establishes a link between the classic NF-κB signaling transduction pathway and the invasiveness of pancreatic CSCs, which may result in the identification of novel signals and molecules that function at an epigenetic level, and could potentially be targeted for pharmaceutical investigations and clinical trials.

  19. Generation and characterization of novel tetracycline-inducible pancreatic transcription factor-expressing murine embryonic stem cell lines.

    PubMed

    Vincent, Robert; Treff, Nathan; Budde, Melisa; Kastenberg, Zachary; Odorico, Jon

    2006-12-01

    Pancreatic development in mammals is controlled in part by the expression and function of numerous genes encoding transcription factors. Yet, how these regulate each other and their target genes is incompletely understood. Embryonic stem (ES) cells have recently been shown to be capable of differentiating into pancreatic progenitor cells and insulin-producing cells, representing a useful in vitro model system for studying pancreatic and islet development. To generate tools to study the relationships of transcription factors in pancreatic development we have established seven unique mouse ES cell lines with tetracycline-inducible expression of either Hnf4alpha, Hnf6, Nkx2.2, Nkx6.1, Pax4, Pdx1, and Ptf1a cDNAs. Each of the cell lines was characterized for induction of transgene expression after exposure to doxycycline (DOX) by quantitative real-time PCR and immunofluorescence microscopy. Transgene expression in the presence of DOX was at least 97-fold that seen in untreated cells. Immunofluorescent staining of DOX-treated cultures showed efficient (>95% of cells) transgene protein expression while showing <5% positive staining in uninduced cells. Each of the ES cell lines maintained their pluripotency as measured by teratoma formation. Furthermore, transgene expression can be efficiently achieved in vivo through DOX administration to mice. The establishment of ES cell lines with temporally controllable induction of critical pancreatic transcription factor genes provides a new set of tools that could be used to interrogate gene regulatory networks in pancreatic development and potentially generate greater numbers of beta cells from ES cells.

  20. A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell.

    PubMed

    Niknamasl, Azadeh; Ostad, Seyed Nasser; Soleimani, Mansoureh; Azami, Mahmoud; Salmani, Maryam Kabir; Lotfibakhshaiesh, Nasrin; Ebrahimi-Barough, Somayeh; Karimi, Roya; Roozafzoon, Reza; Ai, Jafar

    2014-10-01

    Metabolic diabetes mellitus as the most serious and prevalent metabolic disease in the world has various complications. The most effective treatment of type I diabetes seems to be islet cell transplantation. Shortage of donors and difficult procedures and high rate of rejection have always restricted this approach. Tissue engineering is a novel effective solution to many medical problems such as diabetes. Endometrial mesenchymal stem cells as a lineage which have the potential to differentiate to mesodermal and endodermal tissues seem to be suitable for this purpose. Fibrin hydrogel with a high degree of biocompatibility and specific properties making it similar to normal pancreas seems to be an ideal scaffold. After successfully isolating stem cells (hEnSCs) from human endometrium, a three-step protocol was used to differentiate them into pancreatic beta cells. Fibrin was used as 3D scaffold. After 2 weeks, cells formed clusters like islets cells, and secretion of insulin was measured by chemiluminescence. PDX1, proinsulin, and c-peptide as special markers of β cells were detected by immunofluorescence. Expression of glucagon, PDX1, and insulin genes in mRNA level was detected by Real time PCR and gel electrophoresis. The former showed higher levels of gene expression in 3D cultures. SEM analysis showed good integrity between cells and scaffold. No toxicity was detected with fibrin scaffold by MTT assay. © 2014 International Federation for Cell Biology.

  1. δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis

    PubMed Central

    Husain, Kazim; Centeno, Barbara A; Coppola, Domenico; Trevino, Jose; Sebti, Said M; Malafa, Mokenge P

    2017-01-01

    The growth, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC) is characterized by the activation and growth of tumor-initiating cells in distant organs that have stem-like properties. Thus, inhibiting growth of these cells may prevent PDAC growth and metastases. We have demonstrated that δ-tocotrienol, a natural form of vitamin E (VEDT), is bioactive against cancer, delays progression, and prevents metastases in transgenic mouse models of PDAC. In this report, we provide the first evidence that VEDT selectively inhibits PDAC stem-like cells. VEDT inhibited the viability, survival, self-renewal, and expression of Oct4 and Sox2 transcription factors in 3 models of PDAC stem-like cells. In addition, VEDT inhibited the migration, invasion, and several biomarkers of epithelial-to-mesenchymal transition and angiogenesis in PDAC cells and tumors. These processes are critical for tumor metastases. Furthermore, in the L3.6pl orthotopic model of PDAC metastases, VEDT significantly inhibited growth and metastases of these cells. Finally, in an orthotopic xenograft model of human PDAC stem-like cells, we showed that VEDT significantly retarded the growth and metastases of gemcitabine-resistant PDAC human stem-like cells. Because VEDT has been shown to be safe and to reach bioactive levels in humans, this work supports investigating VEDT for chemoprevention of PDAC metastases. PMID:28404939

  2. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    PubMed

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-05

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer.

  3. Tissue-Specific Stem Cells Obtained by Reprogramming of Non-Obese Diabetic (NOD) Mouse-Derived Pancreatic Cells Confer Insulin Production in Response to Glucose

    PubMed Central

    Saitoh, Issei; Sato, Masahiro; Soda, Miki; Inada, Emi; Iwase, Yoko; Murakami, Tomoya; Ohshima, Hayato; Hayasaki, Haruaki; Noguchi, Hirofumi

    2016-01-01

    Type 1 diabetes occurs due to the autoimmune destruction of pancreatic β-cells in islets. Transplantation of islets is a promising option for the treatment of patients with type 1 diabetes that experience hypoglycemic unawareness despite maximal care, but the present shortage of donor islets hampers such transplantation. Transplantation of insulin-producing cells derived from the patients themselves would be one of the most promising approaches to cure type 1 diabetes. Previously, we demonstrated that insulin-producing cells could be produced by transfecting murine pancreatic cells with Yamanaka’s reprogramming factors. Non-obese diabetic (NOD) mice are naturally occurring mutant mice defective in insulin production due to autoimmune ablation of pancreatic β-cells. In this study, we showed that glucose-sensitive insulin-producing cells are successfully generated by transfecting primary pancreatic cells from NOD mice (aged 6 months old) with a plasmid harboring the cDNAs for Oct-3/4, Sox2, Klf4, and c-Myc. Transfection was repeated 4 times in a 2 day-interval. Sixty-five days after final transfection, cobblestone-like colonies appeared. They proliferated in vitro and expressed pluripotency-related genes as well as Pdx1, a transcription factor specific to tissue-specific stem cells for the β-cell lineage. Transplantation of these cells into nude mice failed to produce teratoma unlike induced pluripotent stem cells (iPSCs). Induction of these cells to the pancreatic β-cell lineage demonstrated their capability to produce insulin in response to glucose. These findings suggest that functional pancreatic β-cells can be produced from patients with type 1 diabetes. We call these resultant cells as “induced tissue-specific stem cells from the pancreas” (iTS-P) that could be valuable sources of safe and effective materials for cell-based therapy in type 1 diabetes. PMID:27662374

  4. Characterization of an In Vitro Differentiation Assay for Pancreatic-Like Cell Development from Murine Embryonic Stem Cells: Detailed Gene Expression Analysis

    PubMed Central

    Chen, Chialin; Chai, Jing; Singh, Lipi; Kuo, Ching-Ying; Jin, Liang; Feng, Tao; Marzano, Scott; Galeni, Sheetal; Zhang, Nan; Iacovino, Michelina; Qin, Lihui; Hara, Manami; Stein, Roland; Bromberg, Jonathan S.; Kyba, Michael

    2011-01-01

    Abstract Embryonic stem (ES) cell technology may serve as a platform for the discovery of drugs to treat diseases such as diabetes. However, because of difficulties in establishing reliable ES cell differentiation methods and in creating cost-effective plating conditions for the high-throughput format, screening for molecules that regulate pancreatic beta cells and their immediate progenitors has been limited. A relatively simple and inexpensive differentiation protocol that allows efficient generation of insulin-expressing cells from murine ES cells was previously established in our laboratories. In this report, this system is characterized in greater detail to map developmental cell stages for future screening experiments. Our results show that sequential activation of multiple gene markers for undifferentiated ES cells, epiblast, definitive endoderm, foregut, and pancreatic lineages was found to follow the sequence of events that mimics pancreatic ontogeny. Cells that expressed enhanced green fluorescent protein, driven by pancreatic and duodenal homeobox 1 or insulin 1 promoter, correctly expressed known beta cell lineage markers. Overexpression of Sox17, an endoderm fate-determining transcription factor, at a very early stage of differentiation (days 2–3) enhanced pancreatic gene expression. Overexpression of neurogenin3, an endocrine progenitor cell marker, induced glucagon expression at stages when pancreatic and duodenal homeobox 1 message was present (days 10–16). Forced expression (between days 16 and 25) of MafA, a pancreatic maturation factor, resulted in enhanced expression of insulin genes, glucose transporter 2 and glucokinase, and glucose-responsive insulin secretion. Day 20 cells implanted in vivo resulted in pancreatic-like cells. Together, our differentiation assay recapitulates the proceedings and behaviors of pancreatic development and will be valuable for future screening of beta cell effectors. PMID:21395400

  5. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  6. Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro.

    PubMed

    Marappagounder, Dhanasekaran; Somasundaram, Indumathi; Dorairaj, Sudarsanam; Sankaran, Rajkumar Janavikula

    2013-03-01

    Although stem cells are present in various adult tissues and body fluids, bone marrow has been the most popular source of stem cells for treatment of a wide range of diseases. Recent results for stem cells from adipose tissue have put it in a position to compete for being the leading therapeutic source. The major advantage of these stem cells over their counterparts is their amazing proliferative and differentiation potency. However, their pancreatic lineage transdifferentiation competence was not compared to that for bone marrow-derived stem cells. This study aims to identify an efficient source for transdifferentiation into pancreatic islet-like clusters, which would increase potential application in curative diabetic therapy. The results reveal that mesenchymal stem cells (MSC) derived from bone marrow and subcutaneous adipose tissue can differentiate into pancreatic islet-like clusters, as evidenced by their islet-like morphology, positive dithizone staining and expression of genes such as Nestin, PDX1, Isl 1, Ngn 3, Pax 4 and Insulin. The pancreatic lineage differentiation was further corroborated by positive results in the glucose challenge assay. However, the results indicate that bone marrow-derived MSCs are superior to those from subcutaneous adipose tissue in terms of differentiation into pancreatic islet-like clusters. In conclusion, bone marrow-derived MSC might serve as a better alternative in the treatment of diabetes mellitus than those from adipose tissue.

  7. p-21 activated kinase 4 (PAK4) maintains stem cell-like phenotypes in pancreatic cancer cells through activation of STAT3 signaling

    PubMed Central

    Tyagi, Nikhil; Marimuthu, Saravanakumar; Bhardwaj, Arun; Deshmukh, Sachin K.; Srivastava, Sanjeev K.; Singh, Ajay P.; McClellan, Steven; Carter, James E.; Singh, Seema

    2015-01-01

    Pancreatic cancer (PC) remains a highly lethal malignancy due to its unusual chemoresistance and high aggressiveness. A subpopulation of pancreatic tumor cells, known as cancer stem cells (CSCs), is considered responsible not only for tumor-maintenance, but also for its widespread metastasis and therapeutic failure. Here we investigated the role of p-21 activated kinase 4 (PAK4) in driving PC stemness properties. Our data demonstrate that triple-positive (CD24+/CD44+/EpCAM+) subpopulation of pancreatic CSCs exhibits greater level of PAK4 as compared to triple-negative (CD24−/CD44−/EpCAM−) cells. Moreover, PAK4 silencing in PC cells leads to diminished fraction of CD24, CD44, and EpCAM positive cells. Furthermore, we show that PAK4-silenced PC cells exhibit decreased sphere-forming ability and increased chemo-sensitivity to gemcitabine toxicity. PAK4 expression is also associated with enhanced levels of stemness-associated transcription factors (Oct4/Nanog/Sox2 and KLF4). Furthermore, our data show decreased nuclear accumulation and transcriptional activity of STAT3 in PAK4-silenced PC cells and restitution of its activity leads to restoration of stem cell phenotypes. Together, our findings deliver first experimental evidence for the involvement of PAK4 in PC stemness and support its clinical utility as a novel therapeutic target in PC. PMID:26546043

  8. Human embryonic stem cell-derived pancreatic endoderm alleviates diabetic pathology and improves reproductive outcome in C57BL/KsJ-Lep(db/+) gestational diabetes mellitus mice.

    PubMed

    Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua

    2015-07-01

    Gestational diabetes mellitus is a condition commonly encountered during mid to late pregnancy with pathologic manifestations including hyperglycemia, hyperinsulinemia, insulin resistance, and fetal maldevelopment. The cause of gestational diabetes mellitus can be attributed to both genetic and environmental factors, hence complicating its diagnosis and treatment. Pancreatic progenitors derived from human embryonic stem cells were shown to be able to effectively treat diabetes in mice. In this study, we have developed a system of treating diabetes using human embryonic stem cell-derived pancreatic endoderm in a mouse model of gestational diabetes mellitus. Human embryonic stem cells were differentiated in vitro into pancreatic endoderm, which were then transplanted into db/+ mice suffering from gestational diabetes mellitus. The transplant greatly improved glucose metabolism and reproductive outcome of the females compared with the control groups. Our findings support the feasibility of using differentiated human embryonic stem cells for treating gestational diabetes mellitus patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Endothelial Cell Co-culture Mediates Maturation of Human Embryonic Stem Cell to Pancreatic Insulin Producing Cells in a Directed Differentiation Approach

    PubMed Central

    Jaramillo, Maria; Banerjee, Ipsita

    2012-01-01

    Embryonic stem cells (ESC) have two main characteristics: they can be indefinitely propagated in vitro in an undifferentiated state and they are pluripotent, thus having the potential to differentiate into multiple lineages. Such properties make ESCs extremely attractive for cell based therapy and regenerative treatment applications 1. However for its full potential to be realized the cells have to be differentiated into mature and functional phenotypes, which is a daunting task. A promising approach in inducing cellular differentiation is to closely mimic the path of organogenesis in the in vitro setting. Pancreatic development is known to occur in specific stages 2, starting with endoderm, which can develop into several organs, including liver and pancreas. Endoderm induction can be achieved by modulation of the nodal pathway through addition of Activin A 3 in combination with several growth factors 4-7. Definitive endoderm cells then undergo pancreatic commitment by inhibition of sonic hedgehog inhibition, which can be achieved in vitro by addition of cyclopamine 8. Pancreatic maturation is mediated by several parallel events including inhibition of notch signaling; aggregation of pancreatic progenitors into 3-dimentional clusters; induction of vascularization; to name a few. By far the most successful in vitro maturation of ESC derived pancreatic progenitor cells have been achieved through inhibition of notch signaling by DAPT supplementation 9. Although successful, this results in low yield of the mature phenotype with reduced functionality. A less studied area is the effect of endothelial cell signaling in pancreatic maturation, which is increasingly being appreciated as an important contributing factor in in-vivo pancreatic islet maturation 10,11. The current study explores such effect of endothelial cell signaling in maturation of human ESC derived pancreatic progenitor cells into insulin producing islet-like cells. We report a multi-stage directed

  10. CCL21/CCR7 Axis Contributed to CD133+ Pancreatic Cancer Stem-Like Cell Metastasis via EMT and Erk/NF-κB Pathway

    PubMed Central

    Zhang, Lirong; Wang, Dongqing; Li, Yumei; Liu, Yanfang; Xie, Xiaodong; Wu, Yingying; Zhou, Yuepeng; Ren, Jing; Zhang, Jianxin; Zhu, Haitao; Su, Zhaoliang

    2016-01-01

    Background Tumor metastasis is driven by malignant cells and stromal cell components of the tumor microenvironment. Cancer stem cells (CSCs) are thought to be responsible for metastasis by altering the tumor microenvironment. Epithelial-mesenchymal transition (EMT) processes contribute to specific stages of the metastatic cascade, promoted by cytokines and chemokines secreted by stromal cell components in the tumor microenvironment. C-C chemokine receptor 7 (CCR7) interacts with its ligand, chemokine ligand 21(CCL21), to mediate metastasis in some cancer cells lines. This study investigated the role of CCL21/CCR7 in promoting EMT and metastasis of cluster of differentiation 133+ (CD133+) pancreatic cancer stem-like cells. Methods Panc-1, AsPC-1, and MIA PaCa-2 pancreatic cancer cells were selected because of their aggressive invasive potentials. CCR7 expression levels were examined in total, CD133+ and CD133− cell fractions by Immunofluorescence analysis and real time-quantitative polymerase chain reaction (RT-qPCR). The role of CCL21/CCR7 in mediating metastasis and survival of CD133+ pancreatic cancer stem-like cells was detected by Transwell assays and flow cytometry, respectively. EMT and lymph node metastasis related markers (E-cadherin, N- cadherin, LYVE-1) were analyzed by western blot. CCR7 expression levels were analyzed by immunohistochemical staining and RT-qPCR in resected tumor tissues, metastatic lymph nodes, normal lymph nodes and adjacent normal tissues from patients with pancreatic carcinoma. Results CCR7 expression was significantly increased in CD133+ pancreatic cancer stem-like cells, resected pancreatic cancer tissues, and metastatic lymph nodes, compared with CD133− cancer cells, adjacent normal tissues and normal lymph nodes, respectively. CCL21/CCR7 promoted metastasis and survival of CD133+ pancreatic cancer stem-like cells and regulated CD133+ pancreatic cancer stem-like cells metastasis by modulating EMT and Erk/NF-κB pathway

  11. Pancreatic Endoderm-Derived From Diabetic Patient-Specific Induced Pluripotent Stem Cell Generates Glucose-Responsive Insulin-Secreting Cells.

    PubMed

    Rajaei, Bahareh; Shamsara, Mehdi; Amirabad, Leila Mohammadi; Massumi, Mohammad; Sanati, Mohammad Hossein

    2017-10-01

    Human-induced pluripotent stem cells (hiPSCs) can potentially serve as an invaluable source for cell replacement therapy and allow the creation of patient- and disease-specific stem cells without the controversial use of embryos and avoids any immunological incompatibility. The generation of insulin-producing pancreatic β-cells from pluripotent stem cells in vitro provides an unprecedented cell source for personal drug discovery and cell transplantation therapy in diabetes. A new five-step protocol was introduced in this study, effectively induced hiPSCs to differentiate into glucose-responsive insulin-producing cells. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, primitive gut-tube endoderm, posterior foregut, pancreatic endoderm, and endocrine precursor. Each stage of differentiation were characterized by stage-specific markers. The produced cells exhibited many properties of functional β-cells, including expression of critical β-cells transcription factors, the potency to secrete C-peptide in response to high levels of glucose and the presence of mature endocrine secretory granules. This high efficient differentiation protocol, established in this study, yielded 79.18% insulin-secreting cells which were responsive to glucose five times higher than the basal level. These hiPSCs-derived glucose-responsive insulin-secreting cells might provide a promising approach for the treatment of type I diabetes mellitus. J. Cell. Physiol. 232: 2616-2625, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. An intensified systemic trafficking of bone marrow-derived stem/progenitor cells in patients with pancreatic cancer

    PubMed Central

    Starzyńska, Teresa; Dąbkowski, Krzysztof; Błogowski, Wojciech; Zuba-Surma, Ewa; Budkowska, Marta; Sałata, Daria; Dołęgowska, Barbara; Marlicz, Wojciech; Lubikowski, Jerzy; Ratajczak, Mariusz Z

    2013-01-01

    Various experimental studies indicate potential involvement of bone marrow (BM)-derived stem cells (SCs) in malignancy development and progression. In this study, we comprehensively analysed systemic trafficking of various populations of BM-derived SCs (BMSCs), i.e., mesenchymal, haematopoietic, endothelial stem/progenitor cells (MSCs, HSCs, EPCs respectively), and of recently discovered population of very small embryonic/epiblast-like SCs (VSELs) in pancreatic cancer patients. Circulating CD133+/Lin−/CD45−/CD34+ cells enriched for HSCs, CD105+/STRO-1+/CD45− cells enriched for MSCs, CD34+/KDR+/CD31+/CD45− cells enriched for EPCs and small CXCR4+CD34+CD133+ subsets of Lin−CD45− cells that correspond to VSELs were enumerated and sorted from blood samples derived from 29 patients with pancreatic cancer, and 19 healthy controls. In addition, plasma levels of stromal-derived factor-1 (SDF-1), growth/inhibitory factors and sphingosine-1-phosphate (S1P; chemoattractants for SCs), as well as, of complement cascade (CC) molecules (C3a, C5a and C5b-9/membrane attack complex – MAC) were measured. Higher numbers of circulating VSELs and MSCs were detected in pancreatic cancer patients (P < 0.05 and 0.01 respectively). This trafficking of BMSCs was associated with significantly elevated C5a (P < 0.05) and C5b-9/MAC (P < 0.005) levels together with S1P concentrations detected in plasma of cancer patients, and seemed to be executed in a SDF-1 independent manner. In conclusion, we demonstrated that in patients with pancreatic cancer, intensified peripheral trafficking of selected populations of BMSCs occurs. This phenomenon seems to correlate with systemic activation of the CC, hepatocyte growth factor and S1P levels. In contrast to previous studies, we demonstrate herein that systemic SDF-1 levels do not seem to be linked with increased mobilization of stem cells in patients with pancreatic cancer. PMID:23672538

  13. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine.

    PubMed

    Isayev, Orkhan; Rausch, Vanessa; Bauer, Nathalie; Liu, Li; Fan, Pei; Zhang, Yiyao; Gladkich, Jury; Nwaeburu, Clifford C; Mattern, Jürgen; Mollenhauer, Martin; Rückert, Felix; Zach, Sebastian; Haberkorn, Uwe; Gross, Wolfgang; Schönsiegel, Frank; Bazhin, Alexandr V; Herr, Ingrid

    2014-07-15

    According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patient-tumor-derived CSC-enriched spheroidal cultures were analyzed by glucose turnover measurements, MTT and ATP assays, flow cytometry of ALDH1 activity and annexin positivity, colony and spheroid formation, western blotting, electrophoretic mobility shift assay, xenotransplantation, and immunohistochemistry. The effect of siRNA-mediated inhibition of LDH-A and LDH-B was also investigated. The PDA cells exhibited a high glucose metabolism, and glucose withdrawal or LDH inhibition by siRNA prevented growth and colony formation. Treatment with the anti-glycolytic agent 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance. 3-bromopyruvate was less effective in weakly malignant PDA cells and did not affect non-malignant cells, predicting minimal side effects. 3-bromopyruvate inhibited in vivo tumor engraftment and growth on chicken eggs and mice and enhanced the efficacy of gemcitabine by influencing the expression of markers of proliferation, apoptosis, self-renewal, and metastasis. Most importantly, primary CSC-enriched spheroidal cultures were eliminated by 3-bromopyruvate. These findings propose that CSCs may be specifically dependent on a high glucose turnover and suggest 3-bromopyruvate for therapeutic intervention.

  14. Induction of pancreatic β cell gene expression in mesenchymal stem cells.

    PubMed

    Mehrfarjam, Zahra; Esmaeili, Fariba; Shabani, Leila; Ebrahimie, Esmaeil

    2016-05-01

    Transdifferentiattion potential of mesenchymal stem cells (MSCs) into insulin-producing cells (IPCs) has been suggested recently. In our recent works, we demonstrated the high performance of mouse neonate pancreas extract (MPE) in the production of functional IPCs from carcinoma stem cells. In this study, MPE was used to generate IPCs from MSCs without any genetic manipulation. To this end, bone marrow MSCs were isolated and characterized. In order to differentiate, MSCs were induced by selection of nestin-expressing cells and treatment with 100 μg/mL MPE. Morphological features of the differenti-ated cells were confirmed by dithizone staining. Immunoreactivity to insulin receptor beta, proinsulin, insulin, and C-peptide was observed by immunoflourescence. We also quantified glucose-dependent insulin production and secretion by ELISA. Real-time PCR indicated the expressions of β cell-related genes, PDX-1, INS1, INS2, EP300, and CREB1, in IPC cells. Possible pathways governed by CREB1, EP300, and PDX-1 transcription factors in differentiation of MSCs to IPCs were determined based on Gene Set Enrichment (GSE) approach at P = 0.05. Pathway discovery highlighted the negative regulatory effects of MIR124-2, HDAC5 protein, REST, and NR0B2 transcription factors on expression of CREB1, EP300, and PDX-1 and inhabitation of IPC differentiations. In contrast, a crosstalk between FOXA2 and TCF7L2 transcription factors, DNA-PK complex, KAT2B protein positively interacting with PDX-1, CREB1, EP300 resulted in the induction of IPC and following insulin production. In conclusion, we report an efficient, simple, and easy method for production of functional IPCs from MSCs by MPE treatment. © 2016 International Federation for Cell Biology.

  15. Inhibition of Six1 affects tumour invasion and the expression of cancer stem cell markers in pancreatic cancer.

    PubMed

    Lerbs, Tristan; Bisht, Savita; Schölch, Sebastian; Pecqueux, Mathieu; Kristiansen, Glen; Schneider, Martin; Hofmann, Bianca T; Welsch, Thilo; Reissfelder, Christoph; Rahbari, Nuh N; Fritzmann, Johannes; Brossart, Peter; Weitz, Jürgen; Feldmann, Georg; Kahlert, Christoph

    2017-04-07

    Epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSC) contribute to tumour progression and metastasis. Assessment of transcription factors involved in these two mechanisms can help to identify new targets for an oncological therapy. In this study, we focused on the evaluation of the transcription factor Six1 (Sine oculis 1). This protein is involved in embryologic development and its contribution to carcinogenesis has been described in several studies. Immunohistochemistry against Six1 was performed on a tissue microarray containing specimens of primary pancreatic ductal adenocarcinomas (PDAC) of 139 patients. Nuclear and cytoplasmic expression was evaluated and correlated to histopathological parameters. Expression of Six1 was inhibited transiently by siRNA in Panc1 and BxPc3 cells and stably by shRNA in Panc1 cells. Expression analysis of CDH1 and Vimentin mRNA was performed and cell motility was tested in a migration assay. Panc1 cells transfected with Six1 shRNA or scrambled shRNA were injected subcutaneously into nude mice. Tumour growth was observed for four weeks. Afterwards, tumours were stained against Six1, CD24 and CD44. Six1 was overexpressed in the cytoplasm and cellular nuclei in malignant tissues (p < 0.0001). No correlation to histopathological parameters could be detected. Six1 down-regulation decreased pancreatic cancer cell motility in vitro. CDH1 and vimentin expression was decreased after inhibition of the expression of Six1. Pancreatic tumours with impaired expression of Six1 showed significantly delayed growth and displayed loss of the CD24(+)/CD44(+) phenotype. We show that Six1 is overexpressed in human PDAC and that its inhibition results in a decreased tumour progression in vitro and in vivo. Therefore, targeting Six1 might be a novel therapeutic approach in patients with pancreatic cancer.

  16. FAM83A is amplified and promotes cancer stem cell-like traits and chemoresistance in pancreatic cancer.

    PubMed

    Chen, S; Huang, J; Liu, Z; Liang, Q; Zhang, N; Jin, Y

    2017-03-13

    Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), contribute to tumorigenesis, resistance to chemoradiotherapy and recurrence in human cancers, suggesting targeting CSCs may represent a potential therapeutic strategy. In the current study, we found family with sequence similarity 83, member A (FAM83A) is significantly overexpressed and associated with poorer overall survival and disease-free survival in pancreatic cancer. Overexpression of FAM83A markedly promoted, whereas inhibition of FAM83A decreased, CSC-like traits and chemoresistance both in vitro and in an in vivo mouse model of pancreatic cancer. Furthermore, overexpression of FAM83A activated the well-characterized CSC-associated pathways transforming growth factor-β (TGF-β) signaling and Wnt/β-catenin signaling. Importantly, the FAM83A locus was amplified in a number of human cancers and silencing FAM83A in associated cancer cell lines inhibited activation of the WNT/β-catenin and TGF-β signaling pathways and reduced tumorigenicity. Taken together, these results indicate that FAM83A has a vital oncogenic role to promote pancreatic cancer progression and may represent a potential clinical target.

  17. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells.

    PubMed

    Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Li, Yiwei; Ahmad, Aamir; Banerjee, Sanjeev; Azmi, Asfar S; Miele, Lucio; Sarkar, Fazlul H

    2011-08-01

    Activation of Notch-1 is known to be associated with the development and progression of human malignancies including pancreatic cancer. Emerging evidence suggest that the acquisition of epithelial-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotype are interrelated and contributes to tumor recurrence and drug resistance. The molecular mechanism(s) by which Notch-1 contributes to the acquisition of EMT phenotype and CSC self-renewal capacity has not been fully elucidated. Here we show that forced over-expression of Notch-1 leads to increased cell growth, clonogenicity, migration and invasion of AsPC-1 cells. Moreover, over-expression of Notch-1 led to the induction of EMT phenotype by activation of mesenchymal cell markers such as ZEB1, CD44, EpCAM, and Hes-1. Here we also report, for the first time, that over-expression of Notch-1 leads to increased expression of miR-21, and decreased expression of miR-200b, miR-200c, let-7a, let-7b, and let-7c. Re-expression of miR-200b led to decreased expression of ZEB1, and vimentin, and increased expression of E-cadherin. Over-expression of Notch-1 also increased the formation of pancreatospheres consistent with expression of CSC surface markers CD44 and EpCAM. Finally, we found that genistein, a known natural anti-tumor agent inhibited cell growth, clonogenicity, migration, invasion, EMT phenotype, formation of pancreatospheres and expression of CD44 and EpCAM. These results suggest that the activation of Notch-1 signaling contributes to the acquisition of EMT phenotype, which is in part mediated through the regulation of miR-200b and CSC self-renewal capacity, and these processes could be attenuated by genistein treatment.

  18. DNMT1 Inhibition Reprograms Pancreatic Cancer Stem Cells via Upregulation of the miR-17-92 Cluster

    PubMed Central

    Zagorac, Sladjana; Alcala, Sonia; Bayon, Gustavo Fernandez; Kheir, Tony Bou; Schoenhals, Matthieu; González-Neira, Anna; Fraga, Mario Fernandez; Aicher, Alexandra; Heeschen, Christopher; Sainz, Bruno

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) and other carcinomas are hierarchically organized, with cancer stem cells (CSC) residing at the top of the hierarchy, where they drive tumor progression, metastasis, and chemoresistance. As CSC and non-CSC share an identical genetic background, we hypothesize that differences in epigenetics account for the striking functional differences between these two cell populations. Epigenetic mechanisms, such as DNA methylation, play an important role in maintaining pluripotency and regulating the differentiation of stem cells, but the role of DNA methylation in pancreatic CSC is obscure. In this study, we investigated the genome-wide DNA methylation profile of PDAC CSC, and we determined the importance of DNA methyltransferases for CSC maintenance and tumorigenicity. Using high-throughput methylation analysis, we discovered that sorted CSCs have a higher level of DNA methylation, regardless of the heterogeneity or polyclonality of the CSC populations present in the tumors analyzed. Mechanistically, CSC expressed higher DNMT1 levels than non-CSC. Pharmacologic or genetic targeting of DNMT1 in CSCs reduced their self-renewal and in vivo tumorigenic potential, defining DNMT1 as a candidate CSC therapeutic target. The inhibitory effect we observed was mediated in part through epigenetic reactivation of previously silenced miRNAs, in particular the miR-17-92 cluster. Together, our findings indicate that DNA methylation plays an important role in CSC biology and also provide a rationale to develop epigenetic modulators to target CSC plasticity and improve the poor outcome of PDAC patients. PMID:27261509

  19. Accelerated Maturation of Human Stem Cell-Derived Pancreatic Progenitor Cells into Insulin-Secreting Cells in Immunodeficient Rats Relative to Mice

    PubMed Central

    Bruin, Jennifer E.; Asadi, Ali; Fox, Jessica K.; Erener, Suheda; Rezania, Alireza; Kieffer, Timothy J.

    2015-01-01

    Summary Pluripotent human embryonic stem cells (hESCs) are a potential source of transplantable cells for treating patients with diabetes. To investigate the impact of the host recipient on hESC-derived pancreatic progenitor cell maturation, cells were transplanted into immunodeficient SCID-beige mice or nude rats. Following the transplant, basal human C-peptide levels were consistently higher in mice compared with rats, but only rats showed robust meal- and glucose-responsive human C-peptide secretion by 19–21 weeks. Grafts from rats contained a higher proportion of insulin:glucagon immunoreactivity, fewer exocrine cells, and improved expression of mature β cell markers compared with mice. Moreover, ECM-related genes were enriched, the collagen network was denser, and blood vessels were more intricately integrated into the engrafted endocrine tissue in rats relative to mice. Overall, hESC-derived pancreatic progenitor cells matured faster in nude rats compared with SCID-beige mice, indicating that the host recipient can greatly influence the fate of immature pancreatic progenitor cells post-transplantation. PMID:26677767

  20. Pancreatic insulin-producing cells differentiated from human embryonic stem cells correct hyperglycemia in SCID/NOD mice, an animal model of diabetes.

    PubMed

    Hua, Xiu-feng; Wang, Yan-wei; Tang, Yu-xiao; Yu, Sheng-qiang; Jin, Shao-hua; Meng, Xiao-mei; Li, Hua-feng; Liu, Fu-jun; Sun, Qiang; Wang, Hai-yan; Li, Jian-yuan

    2014-01-01

    Human pancreatic islet transplantation is a prospective curative treatment for diabetes. However, the lack of donor pancreases greatly limits this approach. One approach to overcome the limited supply of donor pancreases is to generate functional islets from human embryonic stem cells (hESCs), a cell line with unlimited proliferative capacity, through rapid directed differentiation. This study investigated whether pancreatic insulin-producing cells (IPCs) differentiated from hESCs could correct hyperglycemia in severe combined immunodeficient (SCID)/non-obese diabetic (NOD) mice, an animal model of diabetes. We generated pancreatic IPCs from two hESC lines, YT1 and YT2, using an optimized four-stage differentiation protocol in a chemically defined culture system. Then, about 5-7 × 10(6) differentiated cells were transplanted into the epididymal fat pad of SCID/NOD mice (n = 20). The control group were transplanted with undifferentiated hESCs (n = 6). Graft survival and function were assessed using immunohistochemistry, and measuring serum human C-peptide and blood glucose levels. The pancreatic IPCs were generated by the four-stage differentiation protocol using hESCs. About 17.1% of differentiated cells expressed insulin, as determined by flow cytometry. These cells secreted insulin/C-peptide following glucose stimulation, similarly to adult human islets. Most of these IPCs co-expressed mature β cell-specific markers, including human C-peptide, GLUT2, PDX1, insulin, and glucagon. After implantation into the epididymal fat pad of SCID/NOD mice, the hESC-derived pancreatic IPCs corrected hyperglycemia for ≥ 8 weeks. None of the animals transplanted with pancreatic IPCs developed tumors during the time. The mean survival of recipients was increased by implanted IPCs as compared to implanted undifferentiated hESCs (P<0.0001). The results of this study confirmed that human terminally differentiated pancreatic IPCs derived from hESCs can correct hyperglycemia in

  1. Regeneration of pancreatic beta cells.

    PubMed

    Jun, Hee-Sook

    2008-05-01

    Diabetes mellitus results from inadequate mass of insulin-producing pancreatic beta cells. Type 1 diabetes is characterized by absolute loss of beta cells due to autoimmune-mediated destruction. Type 2 diabetes is characterized by relative deficiency of beta cells due to lack of compensation for insulin resistance. Restoration of deficient beta cell mass by transplantation from exogenous sources or by endogenous regeneration of insulin-producing cells would be therapeutic options. Mature beta cells have an ability to proliferate; however, it has been shown to be difficult to expand adult beta cells in vitro. Alternatively, regeneration of beta cells from embryonic and adult stem cells and pancreatic progenitor cells is an attractive method to restore islet cell mass. With information obtained from the biology of pancreatic development, direct differentiation of stem and progenitor cells toward a pancreatic beta cell phenotype has been tried using various strategies, including forced expression of beta cell-specific transcription factors. Further research is required to understand how endogenous beta cells differentiate and to develop methods to regenerate beta cells for clinically applicable therapies for diabetes.

  2. Adult Human Biliary Tree Stem Cells Differentiate to β-Pancreatic Islet Cells by Treatment with a Recombinant Human Pdx1 Peptide

    PubMed Central

    Scafetta, Gaia; Renzi, Anastasia; De Canio, Michele; Sicilia, Francesca; Nevi, Lorenzo; Casa, Domenico; Panetta, Rocco; Berloco, Pasquale Bartolomeo; Reid, Lola M.; Federici, Giorgio; Gaudio, Eugenio; Maroder, Marella; Alvaro, Domenico

    2015-01-01

    Generation of β-pancreatic cells represents a major goal in research. The aim of this study was to explore a protein-based strategy to induce differentiation of human biliary tree stem cells (hBTSCs) towards β-pancreatic cells. A plasmid containing the sequence of the human pancreatic and duodenal homeobox 1 (PDX1) has been expressed in E. coli. Epithelial-Cell-Adhesion-Molecule positive hBTSCs or mature human hepatocyte cell line, HepG2, were grown in medium to which Pdx1 peptide was added. Differentiation toward pancreatic islet cells were evaluated by the expression of the β-cell transcription factors, Pdx1 and musculoapo-neurotic fibrosarcoma oncogene homolog A, and of the pancreatic hormones, insulin, glucagon, and somatostatin, investigated by real time polymerase chain reaction, western blot, light microscopy and immunofluorescence. C-peptide secretion in response to high glucose was also measured. Results indicated how purified Pdx1 protein corresponding to the primary structure of the human Pdx1 by mass spectroscopy was efficiently produced in bacteria, and transduced into hBTSCs. Pdx1 exposure triggered the expression of both intermediate and mature stage β-cell differentiation markers only in hBTSCs but not in HepG2 cell line. Furthermore, hBTSCs exposed to Pdx1 showed up-regulation of insulin, glucagon and somatostatin genes and formation of 3-dimensional islet-like structures intensely positive for insulin and glucagon. Finally, Pdx1-induced islet-like structures exhibited glucose-regulated C-peptide secretion. In conclusion, the human Pdx1 is highly effective in triggering hBTSC differentiation toward functional β-pancreatic cells. PMID:26252949

  3. A Preliminary Report: Radical Surgery and Stem Cell Transplantation for the Treatment of Patients With Pancreatic Cancer.

    PubMed

    Omazic, Brigitta; Ayoglu, Burcu; Löhr, Matthias; Segersvärd, Ralf; Verbeke, Caroline; Magalhaes, Isabelle; Potacova, Zuzana; Mattsson, Jonas; Terman, Alexei; Ghazi, Sam; Albiin, Nils; Kartalis, Nikolaos; Nilsson, Peter; Poiret, Thomas; Zhenjiang, Liu; Heuchel, Rainer; Schwenk, Jochen M; Permert, Johan; Maeurer, Markus J; Ringden, Olle

    2017-03-23

    We examined the immunologic effects of allogeneic hematopoietic stem cell transplantation (HSCT) in the treatment of pancreatic ductal adenocarcinoma, a deadly disease with a median survival of 24 months for resected tumors and a 5-year survival rate of 6%. After adjuvant chemotherapy, 2 patients with resected pancreatic ductal adenocarcinoma underwent HSCT with HLA-identical sibling donors. Comparable patients who underwent radical surgery, but did not have a donor, served as controls (n=6). Both patients developed humoral and cellular (ie, HLA-A*01:01-restricted) immune responses directed against 2 novel tumor-associated antigens (TAAs), INO80E and UCLH3 after HSCT. Both TAAs were highly expressed in the original tumor tissue suggesting that HSCT promoted a clinically relevant, long-lasting cellular immune response. In contrast to untreated controls, who succumbed to progressive disease, both patients are tumor-free 9 years after diagnosis. Radical surgery combined with HSCT may cure pancreatic adenocarcinoma and change the cellular immune repertoire capable of responding to clinically and biologically relevant TAAs.

  4. Huntingtin Is Required for Neural But Not Cardiac/Pancreatic Progenitor Differentiation of Mouse Embryonic Stem Cells In vitro

    PubMed Central

    Yu, Man Shan; Tanese, Naoko

    2017-01-01

    Mutation in the huntingtin (HTT) gene causes Huntington’s disease (HD). It is an autosomal dominant trinucleotide-repeat expansion disease in which CAG repeat sequence expands to >35. This results in the production of mutant HTT protein with an increased stretch of glutamines near the N-terminus. The wild type HTT gene encodes a 350 kD protein whose function remains elusive. Mutant HTT protein has been implicated in transcription, axonal transport, cytoskeletal structure/function, signal transduction, and autophagy. HD is characterized by the appearance of nuclear inclusions and degeneration of the striatum. Although HTT protein is expressed early in embryos, most patients develop symptoms in mid-life. It is also unclear why the ubiquitously expressed mutant HTT specifically causes striatal atrophy. Wild type Htt is essential for development as Htt knockout mice die at day E7.5. Increasing evidence suggests mutant Htt may alter neurogenesis and development of striatal neurons resulting in neuronal loss. Using a mouse embryonic stem cell model, we examined the role of Htt in neural differentiation. We found cells lacking Htt inefficient in generating neural stem cells. In contrast differentiation into progenitors of mesoderm and endoderm lineages was not affected. The data suggests Htt is essential for neural but not cardiac/pancreatic progenitor differentiation of embryonic stem cells in vitro. PMID:28270748

  5. In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system.

    PubMed

    Chen, X C; Liu, H; Li, H; Cheng, Y; Yang, L; Liu, Y F

    2016-06-27

    In this study, a dynamic three-dimensional cell culture technology was used to expand and differentiate rat pancreatic duct-derived stem cells (PDSCs) into islet-like cell clusters that can secrete insulin. PDSCs were isolated from rat pancreatic tissues by in situ collagenase digestion and density gradient centrifugation. Using a dynamic three-dimensional culture technique, the cells were expanded and differentiated into functional islet-like cell clusters, which were characterized by morphological and phenotype analyses. After maintaining 1 x 108 isolated rat PDSCs in a dynamic three-dimensional cell culture for 7 days, 1.5 x 109 cells could be harvested. Passaged PDSCs expressed markers of pancreatic endocrine progenitors, including CD29 (86.17%), CD73 (90.73%), CD90 (84.13%), CD105 (78.28%), and Pdx-1. Following 14 additional days of culture in serum-free medium with nicotinamide, keratinocyte growth factor (KGF), and b fibroblast growth factor (FGF), the cells were differentiated into islet-like cell clusters (ICCs). The ICC morphology reflected that of fused cell clusters. During the late stage of differentiation, representative clusters were non-adherent and expressed insulin indicated by dithizone (DTZ)-positive staining. Insulin was detected in the extracellular fluid and cytoplasm of ICCs after 14 days of differentiation. Additionally, insulin levels were significantly higher at this time compared with the levels exhibited by PDSCs before differentiation (P < 0.01). By using a dynamic three-dimensional cell culture system, PDSCs can be expanded in vitro and can differentiate into functional islet-like cell clusters.

  6. Systematically labeling developmental stage-specific genes for the study of pancreatic β-cell differentiation from human embryonic stem cells.

    PubMed

    Liu, Haisong; Yang, Huan; Zhu, Dicong; Sui, Xin; Li, Juan; Liang, Zhen; Xu, Lei; Chen, Zeyu; Yao, Anzhi; Zhang, Long; Zhang, Xi; Yi, Xing; Liu, Meng; Xu, Shiqing; Zhang, Wenjian; Lin, Hua; Xie, Lan; Lou, Jinning; Zhang, Yong; Xi, Jianzhong; Deng, Hongkui

    2014-10-01

    The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP(+) cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro.

  7. Systematically labeling developmental stage-specific genes for the study of pancreatic β-cell differentiation from human embryonic stem cells

    PubMed Central

    Liu, Haisong; Yang, Huan; Zhu, Dicong; Sui, Xin; Li, Juan; Liang, Zhen; Xu, Lei; Chen, Zeyu; Yao, Anzhi; Zhang, Long; Zhang, Xi; Yi, Xing; Liu, Meng; Xu, Shiqing; Zhang, Wenjian; Lin, Hua; Xie, Lan; Lou, Jinning; Zhang, Yong; Xi, Jianzhong; Deng, Hongkui

    2014-01-01

    The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP+ cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro. PMID:25190258

  8. A Distinct Slow-Cycling Cancer Stem-like Subpopulation of Pancreatic Adenocarcinoma Cells is maintained in Vivo

    PubMed Central

    Dembinski, Jennifer L.; Krauss, Stefan

    2010-01-01

    Pancreatic adenocarcinoma has the worst prognosis of any major malignancy, with <5% of patients surviving five years. This can be contributed to the often late diagnosis, lack of sufficient treatment and metastatic spread. Heterogeneity within tumors is increasingly becoming a focus in cancer research, as novel therapies are required to target the most aggressive subpopulations of cells that are frequently termed cancer stem cells (CSCs). In the current study, we describe the identification of a slow-cycling cancer stem-like population of cells in vivo in BxPC-3 and Panc03.27 xenografts. A distinct slow-cycling label-retaining population of cells (DiI+/SCC) was found both at the edge of tumors, and in small circumscribed areas within the tumors. DiI+/SCC in these areas display an epithelial-to-mesenchymal transition (EMT) fingerprint, including an upregulation of the mesenchymal markers vimentin and N-cadherin and a loss of the epithelial marker E-cadherin. DiI+/SCC also displayed a critical re-localization of beta-catenin from the membrane to the nucleus. Additionally, the DiI+/SCC population was found to express the developmental signaling molecule sonic hedgehog. This study represents a novel step in defining the biological activities of a tumorigenic subpopulation within the heterogeneous tumor microenvironment in vivo. Understanding the interactions and functions of a CSC population within the context of the tumor microenvironment is critical to design targeted therapeutics. PMID:24281215

  9. Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats.

    PubMed

    Matveyenko, Aleksey V; Georgia, Senta; Bhushan, Anil; Butler, Peter C

    2010-11-01

    Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant.

  10. Pancreatic Cancer Stem-like Cells Display Aggressive Behavior Mediated via Activation of FoxQ1

    PubMed Central

    Bao, Bin; Azmi, Asfar S.; Aboukameel, Amro; Ahmad, Aamir; Bolling-Fischer, Aliccia; Sethi, Seema; Ali, Shadan; Li, Yiwei; Kong, Dejuan; Banerjee, Sanjeev; Back, Jessica; Sarkar, Fazlul H.

    2014-01-01

    Subpopulations of cancer stem cells (CSCs) or cancer stem-like cells (CSLCs) have been identified from most tumors, including pancreatic cancer (PC), and the existence of these cells is clinically relevant. Emerging evidence suggests that CSLCs participate in cell growth/proliferation, migration/invasion, metastasis, and chemo-radiotherapy resistance, ultimately contributing to poor clinical outcome. However, the pathogenesis and biological significance of CSLCs in PC has not been well characterized. In the present study, we found that isolated triple-marker-positive (CD44+/CD133+/EpCAM+) cells of human PC MiaPaCa-2 and L3.6pl cells behave as CSLCs. These CSLCs exhibit aggressive behavior, such as increased cell growth, migration, clonogenicity, and self-renewal capacity. The mRNA expression profiling analysis showed that CSLCs (CD44+/CD133+/EpCAM+) exhibit differential expression of more than 1,600 mRNAs, including FoxQ1, compared with the triple-marker-negative (CD44−/CD133−/EpCAM−) cells. The knockdown of FoxQ1 by its siRNA in CSLCs resulted in the inhibition of aggressive behavior, consistent with the inhibition of EpCAM and Snail expression. Mouse xenograft tumor studies showed that CSLCs have a 100-fold higher potential for tumor formation and rapid tumor growth, consistent with overexpression of CSC-associated markers/mediators, including FoxQ1, compared with its parental MiaPaCa-2 cells. The inhibition of FoxQ1 attenuated tumor formation and growth, and expression of CSC markers in the xenograft tumor derived from CSLCs of MiaPaCa-2 cells. These data clearly suggest the role of differentially expressed genes in the regulation of CSLC characteristics, further suggesting that targeting some of these genes could be important for the development of novel therapies for achieving better treatment outcome of PC. PMID:24719318

  11. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids.

    PubMed

    Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B; Crawford, Howard C; Arrowsmith, Cheryl; Kalloger, Steve E; Renouf, Daniel J; Connor, Ashton A; Cleary, Sean; Schaeffer, David F; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K

    2015-11-01

    There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53(R175H) induces cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. We also define culture conditions for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture and phenotypic heterogeneity of the primary tumor and retain patient-specific physiological changes, including hypoxia, oxygen consumption, epigenetic marks and differences in sensitivity to inhibition of the histone methyltransferase EZH2. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies.

  12. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell and patient-derived tumor organoids

    PubMed Central

    Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B.; Crawford, Howard C.; Arrowsmith, Cheryl; Kalloger, Steve E.; Renouf, Daniel J.; Connor, Ashton A; Cleary, Sean; Schaeffer, David F.; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K.

    2016-01-01

    There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells (PSCs) into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53R175H induced cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. Culture conditions are also defined for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture, phenotypic heterogeneity of the primary tumor, and retain patient-specific physiologic changes including hypoxia, oxygen consumption, epigenetic marks, and differential sensitivity to EZH2 inhibition. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies. PMID:26501191

  13. Tolerance induction and reversal of diabetes in mice transplanted with human embryonic stem cell-derived pancreatic endoderm.

    PubMed

    Szot, Gregory L; Yadav, Mahesh; Lang, Jiena; Kroon, Evert; Kerr, Justin; Kadoya, Kuniko; Brandon, Eugene P; Baetge, Emmanuel E; Bour-Jordan, Hélène; Bluestone, Jeffrey A

    2015-02-05

    Type 1 diabetes (T1D) is an autoimmune disease caused by T cell-mediated destruction of insulin-producing β cells in the islets of Langerhans. In most cases, reversal of disease would require strategies combining islet cell replacement with immunotherapy that are currently available only for the most severely affected patients. Here, we demonstrate that immunotherapies that target T cell costimulatory pathways block the rejection of xenogeneic human embryonic-stem-cell-derived pancreatic endoderm (hESC-PE) in mice. The therapy allowed for long-term development of hESC-PE into islet-like structures capable of producing human insulin and maintaining normoglycemia. Moreover, short-term costimulation blockade led to robust immune tolerance that could be transferred independently of regulatory T cells. Importantly, costimulation blockade prevented the rejection of allogeneic hESC-PE by human PBMCs in a humanized model in vivo. These results support the clinical development of hESC-derived therapy, combined with tolerogenic treatments, as a sustainable alternative strategy for patients with T1D.

  14. Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1.

    PubMed

    Lin, Guiting; Wang, Guifang; Liu, Gang; Yang, Li-Jun; Chang, Lung-Ji; Lue, Tom F; Lin, Ching-Shwun

    2009-12-01

    Due to the limited supply of donor pancreas, it is imperative that we identify alternative cell sources that can be used to treat diabetes mellitus (DM). Multipotent adipose tissue-derived stem cells (ADSC) can be abundantly and safely isolated for autologous transplantation and therefore are an ideal candidate. Here, we report the derivation of insulin-producing cells from human or rat ADSC by transduction with the pancreatic duodenal homeobox 1 (Pdx1) gene. RT-PCR analyses showed that native ADSC expressed insulin, glucagon, and NeuroD genes that were up-regulated following Pdx1 transduction. ELISA analyses showed that the transduced cells secreted increasing amount of insulin in response to increasing concentration of glucose. Transplantation of these cells under the renal capsule of streptozotocin-induced diabetic rats resulted in lowered blood glucose, higher glucose tolerance, smoother fur, and less cataract. Histological examination showed that the transplanted cells formed tissue-like structures and expressed insulin. Thus, ADSC-expressing Pdx1 appear to be suitable for treatment of DM.

  15. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells

    PubMed Central

    Cioffi, Michele; Trabulo, Sara M; Sanchez-Ripoll, Yolanda; Miranda-Lorenzo, Irene; Lonardo, Enza; Dorado, Jorge; Reis Vieira, Catarina; Ramirez, Juan Carlos; Hidalgo, Manuel; Aicher, Alexandra; Hahn, Stephan; Sainz, Bruno; Heeschen, Christopher

    2015-01-01

    Objective Cancer stem cells (CSCs) represent the root of many solid cancers including pancreatic ductal adenocarcinoma, are highly chemoresistant and represent the cellular source for disease relapse. However the mechanisms involved in these processes still need to be fully elucidated. Understanding the mechanisms implicated in chemoresistance and metastasis of pancreatic cancer is critical to improving patient outcomes. Design Micro-RNA (miRNA) expression analyses were performed to identify functionally defining epigenetic signatures in pancreatic CSC-enriched sphere-derived cells and gemcitabine-resistant pancreatic CSCs. Results We found the miR-17-92 cluster to be downregulated in chemoresistant CSCs versus non-CSCs and demonstrate its crucial relevance for CSC biology. In particular, overexpression of miR-17-92 reduced CSC self-renewal capacity, in vivo tumourigenicity and chemoresistance by targeting multiple NODAL/ACTIVIN/TGF-β1 signalling cascade members as well as directly inhibiting the downstream targets p21, p57 and TBX3. Overexpression of miR-17-92 translated into increased CSC proliferation and their eventual exhaustion via downregulation of p21 and p57. Finally, the translational impact of our findings could be confirmed in preclinical models for pancreatic cancer. Conclusions Our findings therefore identify the miR-17-92 cluster as a functionally determining family of miRNAs in CSCs, and highlight the putative potential of developing modulators of this cluster to overcome drug resistance in pancreatic CSCs. PMID:25887381

  16. The structural and functional recovery of pancreatic β-cells in type 1 diabetes mellitus induced mesenchymal stem cell-conditioned medium.

    PubMed

    Nugroho, Widagdo Sri; Kusindarta, Dwi Liliek; Susetya, Heru; Fitriana, Ida; Mulyani, Guntari Titik; Fibrianto, Yuda Heru; Haryanto, Aris; Budipitojo, Teguh

    2016-05-01

    Various studies have shown that secreted factors alone in culture medium without stem cell are capable of repairing tissues by itself in various conditions involving damaged tissue/organ. Therefore, this study was aimed to investigate the role of human umbilical cord mesenchymal stem cell-derived conditioned medium (CM) on the recovery of pancreatic β-cells in Wistar rats (Rattus norvegicus) with type 1 diabetes mellitus. The 0.05 ml CM induction was applied to the diabetic group of rats in weeks 1, 2, 3, and 4. 1 week after each CM induction, insulin concentration was analyzed using ELISA. The pancreas was divided into 3 regions, processed by paraffin method, stained with hematoxylin-eosin, and immunohistochemical method for insulin. This study indicated the decrease in the total number of islets and insulin concentration after the injection of single dose of alloxan. The exocrine acini were also damaged. Microscopic observation detected the presence of small islets in the diabetic group 1 week after the first 0.05 ml CM induction. The number and size of the islets increased in line with the CM doses and time of inductions. Immunohistochemically, the presence of low intensity of insulin-positive cells could be recognized at the splenic and duodenal regions of the pancreas, but not gastric region, 1 week after the first and second 0.05 ml CM induction. The intensity of staining and the number of insulin-positive cells increased dramatically in 1 week after the third and fourth 0.05 ml of CM induction in all regions of the pancreas. The data of insulin blood concentration showed clear differences between the second and the fourth induction of 0.05 ml CM induction. This study showed very strong evidence on the role of human umbilical cord mesenchymal stem cell-derived CM in recovering the pancreatic β-cells damage in Wistar rats (R. norvegicus) with type 1 diabetes mellitus, structurally and functionally.

  17. Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an ex vivo, in vitro, and in vivo study

    PubMed Central

    Wang, Min-Cong; Jiao, Min; Wu, Tao; Jing, Li; Cui, Jie; Guo, Hui; Tian, Tao; Ruan, Zhi-ping; Wei, Yong-Chang; Jiang, Li-Li; Sun, Hai-Feng; Huang, Lan-Xuan; Nan, Ke-Jun; Li, Chun-Li

    2016-01-01

    Cancer stem cell theory indicates cancer stem cells are the key to promote tumor invasion and metastasis. Studies showed that BMI-1 could promote self-renew, differentiation and tumor formation of CSCs and invasion/metastasis of human cancer. However, whether BMI-1 could regulate invasion and metastasis ability of CSCs is still unclear. In our study, we found that up-regulated expression of BMI-1 was associated with tumor invasion, metastasis and poor survival of pancreatic cancer patients. CD133+ cells were obtained by using magnetic cell sorting and identified of CSCs properties such as self-renew, multi-differentiation and tumor formation ability. Then, we found that BMI-1 expression was up-regulated in pancreatic cancer stem cells. Knockdown of BMI-1 expression attenuated invasion ability of pancreatic cancer stem cells in Transwell system and liver metastasis capacity in nude mice which were injected CSCs through the caudal vein. We are the first to reveal that BMI-1 could promote invasion and metastasis ability of pancreatic cancer stem cells. Finally, we identified that BMI-1 expression activating PI3K/AKT singing pathway by negative regulating PTEN was the main mechanism of promoting invasion and metastasis ability of pancreatic CSCs. In summary, our findings indicate that BMI-1 could be used as the therapeutic target to inhibiting CSCs-mediated pancreatic cancer metastasis. PMID:26840020

  18. Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an ex vivo, in vitro, and in vivo study.

    PubMed

    Wang, Min-Cong; Jiao, Min; Wu, Tao; Jing, Li; Cui, Jie; Guo, Hui; Tian, Tao; Ruan, Zhi-ping; Wei, Yong-Chang; Jiang, Li-Li; Sun, Hai-Feng; Huang, Lan-Xuan; Nan, Ke-Jun; Li, Chun-Li

    2016-02-23

    Cancer stem cell theory indicates cancer stem cells are the key to promote tumor invasion and metastasis. Studies showed that BMI-1 could promote self-renew, differentiation and tumor formation of CSCs and invasion/metastasis of human cancer. However, whether BMI-1 could regulate invasion and metastasis ability of CSCs is still unclear. In our study, we found that up-regulated expression of BMI-1 was associated with tumor invasion, metastasis and poor survival of pancreatic cancer patients. CD133+ cells were obtained by using magnetic cell sorting and identified of CSCs properties such as self-renew, multi-differentiation and tumor formation ability. Then, we found that BMI-1 expression was up-regulated in pancreatic cancer stem cells. Knockdown of BMI-1 expression attenuated invasion ability of pancreatic cancer stem cells in Transwell system and liver metastasis capacity in nude mice which were injected CSCs through the caudal vein. We are the first to reveal that BMI-1 could promote invasion and metastasis ability of pancreatic cancer stem cells. Finally, we identified that BMI-1 expression activating PI3K/AKT singing pathway by negative regulating PTEN was the main mechanism of promoting invasion and metastasis ability of pancreatic CSCs. In summary, our findings indicate that BMI-1 could be used as the therapeutic target to inhibiting CSCs-mediated pancreatic cancer metastasis.

  19. Stem cells.

    PubMed

    Behr, Björn; Ko, Sae Hee; Wong, Victor W; Gurtner, Geoffrey C; Longaker, Michael T

    2010-10-01

    Stem cells are self-renewing cells capable of differentiating into multiple cell lines and are classified according to their origin and their ability to differentiate. Enormous potential exists in use of stem cells for regenerative medicine. To produce effective stem cell-based treatments for a range of diseases, an improved understanding of stem cell biology and better control over stem cell fate are necessary. In addition, the barriers to clinical translation, such as potential oncologic properties of stem cells, need to be addressed. With renewed government support and continued refinement of current stem cell methodologies, the future of stem cell research is exciting and promises to provide novel reconstructive options for patients and surgeons limited by traditional paradigms.

  20. Types of Stem Cells

    MedlinePlus

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  1. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.

    PubMed

    Amer, Luke D; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J; Bryant, Stephanie J

    2015-08-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15)μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced under both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (∼ 2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1(+)/Nkx6.1(+) cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Retraction: "Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells" by Bao et al.

    PubMed

    2016-08-01

    The above article, published online on April 18, 2011 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the second author that found Figures 1C and 4C to be inappropriately re-used and re-labeled. REFERENCE Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. 2011. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112:2296-2306; doi: 10.1002/jcb.23150.

  3. PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth.

    PubMed

    Sharma, Narinder; Nanta, Rajesh; Sharma, Jay; Gunewardena, Sumedha; Singh, Karan P; Shankar, Sharmila; Srivastava, Rakesh K

    2015-10-13

    Cancer stem cells (CSCs) play major roles in cancer initiation, progression, and metastasis. It is evident from growing reports that PI3K/Akt/mTOR and Sonic Hedgehog (Shh) signaling pathways are aberrantly reactivated in pancreatic CSCs. Here, we examined the efficacy of combining NVP-LDE-225 (PI3K/mTOR inhibitor) and NVP-BEZ-235 (Smoothened inhibitor) on pancreatic CSCs characteristics, microRNA regulatory network, and tumor growth. NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting pancreatic CSC's characteristics and tumor growth in mice by acting at the level of Gli. Combination of NVP-LDE-225 and NVP-BEZ-235 inhibited self-renewal capacity of CSCs by suppressing the expression of pluripotency maintaining factors Nanog, Oct-4, Sox-2 and c-Myc, and transcription of Gli. NVP-LDE-225 co-operated with NVP-BEZ-235 to inhibit Lin28/Let7a/Kras axis in pancreatic CSCs. Furthermore, a superior interaction of these drugs was observed on spheroid formation by pancreatic CSCs isolated from Pankras/p53 mice. The combination of these drugs also showed superior effects on the expression of proteins involved in cell proliferation, survival and apoptosis. In addition, NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting EMT through modulation of cadherin, vimentin and transcription factors Snail, Slug and Zeb1. In conclusion, these data suggest that the combined inhibition of PI3K/Akt/mTOR and Shh pathways may be beneficial for the treatment of pancreatic cancer.

  4. Transplantation of stem cells obtained from murine dental pulp improves pancreatic damage, renal function, and painful diabetic neuropathy in diabetic type 1 mouse model.

    PubMed

    Guimarães, Elisalva Teixeira; Cruz, Gabriela da Silva; Almeida, Tiago Farias de; Souza, Bruno Solano de Freitas; Kaneto, Carla Martins; Vasconcelos, Juliana Fraga; Santos, Washington Luis Conrado dos; Santos, Ricardo Ribeiro-dos; Villarreal, Cristiane Flora; Soares, Milena Botelho Pereira

    2013-01-01

    Diabetes mellitus (DM) is one of the most common and serious chronic diseases in the world. Here, we investigated the effects of mouse dental pulp stem cell (mDPSC) transplantation in a streptozotocin (STZ)-induced diabetes type 1 model. C57BL/6 mice were treated intraperitoneally with 80 mg/kg of STZ and transplanted with 1 × 10(6) mDPSCs or injected with saline, by an endovenous route, after diabetes onset. Blood and urine glucose levels were reduced in hyperglycemic mice treated with mDPSCs when compared to saline-treated controls. This correlated with an increase in pancreatic islets and insulin production 30 days after mDPSC therapy. Moreover, urea and proteinuria levels normalized after mDPSC transplantation in diabetic mice, indicating an improvement of renal function. This was confirmed by a histopathological analysis of kidney sections. We observed the loss of the epithelial brush border and proximal tubule dilatation only in saline-treated diabetic mice, which is indicative of acute renal lesion. STZ-induced thermal hyperalgesia was also reduced after cell therapy. Three days after transplantation, mDPSC-treated diabetic mice exhibited nociceptive thresholds similar to that of nondiabetic mice, an effect maintained throughout the 90-day evaluation period. Immunofluorescence analyses of the pancreas revealed the presence of GFP(+) cells in, or surrounding, pancreatic islets. Our results demonstrate that mDPSCs may contribute to pancreatic β-cell renewal, prevent renal damage in diabetic animals, and produce a powerful and long-lasting antinociceptive effect on behavioral neuropathic pain. Our results suggest stem cell therapy as an option for the control of diabetes complications such as intractable diabetic neuropathic pain.

  5. [Stem cell properties of therapeutic potential].

    PubMed

    Seo, Geom Seog

    2011-09-25

    Stem cell research is a innovative technology that focuses on using undifferentiated cells able to self-renew through the asymmetrical or symmetrical divisions. Three types of stem cells have been studied in laboratory including embryonic stem cell, adult stem cells and induced pluripotent stem cells. Embryonic stem cells are pluripotent stem cells derived from the inner cell mass and it can give rise to any fetal or adult cell type. Adult stem cells are multipotent, have the ability to differentiate into a limited number of specialized cell types, and have been obtained from the bone marrow, umbilical cord blood, placenta and adipose tissue. Stem cell therapy is the most promising therapy for several degenerative and devastating diseases including digestive tract disease such as liver failure, inflammatory bowel disease, Celiac sprue, and pancreatitis. Further understanding of biological properties of stem cells will lead to safe and successful stem cell therapies. (Korean J Gastroenterol 2011;58: 125-132).

  6. Alginate Encapsulation of Human Embryonic Stem Cells to Enhance Directed Differentiation to Pancreatic Islet-Like Cells

    PubMed Central

    Richardson, Thomas; Kumta, Prashant N.

    2014-01-01

    The pluripotent property of human embryonic stem cells (hESCs) makes them attractive for treatment of degenerative diseases such as diabetes. We have developed a stage-wise directed differentiation protocol to produce alginate-encapsulated islet-like cells derived from hESCs, which can be directly implanted for diabetes therapy. The advantage of alginate encapsulation lies in its capability to immunoisolate, along with the added possibility of scalable culture. We have evaluated the possibility of encapsulating hESCs at different stages of differentiation. Encapsulation of predifferentiated cells resulted in insufficient cellular yield and differentiation. On the other hand, encapsulation of undifferentiated hESCs followed by differentiation induction upon encapsulation resulted in the highest viability and differentiation. More striking was that alginate encapsulation resulted in a much stronger differentiation compared to parallel two-dimensional cultures, resulting in 20-fold increase in c-peptide protein synthesis. To elucidate the mechanism contributing to encapsulation-mediated enhancement in hESC maturation, investigation of the signaling pathways revealed interesting insight. While the phospho-protein levels of all the tested signaling molecules were lower under encapsulation, the ratio of pSMAD/pAKT was significantly higher, indicating a more efficient signal transduction under encapsulation. These results clearly demonstrate that alginate encapsulation of hESCs and differentiation to islet-cell types provides a potentially translatable treatment option for type 1 diabetes. PMID:24881778

  7. Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells.

    PubMed

    Richardson, Thomas; Kumta, Prashant N; Banerjee, Ipsita

    2014-12-01

    The pluripotent property of human embryonic stem cells (hESCs) makes them attractive for treatment of degenerative diseases such as diabetes. We have developed a stage-wise directed differentiation protocol to produce alginate-encapsulated islet-like cells derived from hESCs, which can be directly implanted for diabetes therapy. The advantage of alginate encapsulation lies in its capability to immunoisolate, along with the added possibility of scalable culture. We have evaluated the possibility of encapsulating hESCs at different stages of differentiation. Encapsulation of predifferentiated cells resulted in insufficient cellular yield and differentiation. On the other hand, encapsulation of undifferentiated hESCs followed by differentiation induction upon encapsulation resulted in the highest viability and differentiation. More striking was that alginate encapsulation resulted in a much stronger differentiation compared to parallel two-dimensional cultures, resulting in 20-fold increase in c-peptide protein synthesis. To elucidate the mechanism contributing to encapsulation-mediated enhancement in hESC maturation, investigation of the signaling pathways revealed interesting insight. While the phospho-protein levels of all the tested signaling molecules were lower under encapsulation, the ratio of pSMAD/pAKT was significantly higher, indicating a more efficient signal transduction under encapsulation. These results clearly demonstrate that alginate encapsulation of hESCs and differentiation to islet-cell types provides a potentially translatable treatment option for type 1 diabetes.

  8. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo

    PubMed Central

    Wang, Dan; Ding, Xiaoming; Xue, Wujun; Zheng, Jin; Tian, Xiaohui; Li, Yang; Wang, Xiaohong; Song, Huanjin; Liu, Hua; Luo, Xiaohui

    2017-01-01

    It is unknown whether a scaffold containing both small intestinal submucosa (SIS) and mesenchymal stem cells (MSCs) for transplantation may improve pancreatic islet function and survival. In this study, we examined the effects of a SIS-MSC scaffold on islet function and survival in vitro and in vivo. MSCs and pancreatic islets were isolated from Sprague-Dawley rats, and SIS was isolated from Bamei pigs. The islets were apportioned among 3 experimental groups as follows: SIS-islets, SIS-MSC-islets and control-islets. In vitro, islet function was measured by a glucose-stimulated insulin secretion test; cytokines in cultured supernatants were assessed by enzyme-linked immunosorbent assay; and gene expression was analyzed by reverse transcription-quantitative PCR. In vivo, islet transplantation was performed in rats, and graft function and survival were monitored by measuring the blood glucose levels. In vitro, the SIS-MSC scaffold was associated with improved islet viability and enhanced insulin secretion compared with the controls, as well as with the increased the expression of insulin 1 (Ins1), pancreatic and duodenal homeobox 1 (Pdx1), platelet endothelial cell adhesion molecule 1 [Pecam1; also known as cluster of differentiation 31 (CD31)] and vascular endothelial growth factor A (Vegfa) in the islets, increased growth factor secretion, and decreased tumor necrosis factor (TNF) secretion. In vivo, the SIS-MSC scaffold was associated with improved islet function and graft survival compared with the SIS and control groups. On the whole, our findings demonstrate that the SIS-MSC scaffold significantly improved pancreatic islet function and survival in vitro and in vivo. This improvement may be associated with the upregulation of insulin expression, the improvement of islet microcirculation and the secretion of cytokines. PMID:27909715

  9. Combination of carbon ion beam and gemcitabine causes irreparable DNA damage and death of radioresistant pancreatic cancer stem-like cells in vitro and in vivo

    PubMed Central

    Sai, Sei; Wakai, Toshifumi; Vares, Guillaume; Yamada, Shigeru; Kamijo, Takehiko; Kamada, Tadashi; Shirai, Toshiyuki

    2015-01-01

    We try to elucidate whether a carbon ion beam alone or in combination with gemcitabine has advantages over X-ray in targeting putative pancreatic cancer stem-like cells (CSCs) in vitro and in vivo. Colony, spheroid formation and tumorigenicity assays confirmed that CD44+/ESA+ cells sorted from PANC1 and PK45 cells have more CSC properties than CD44−/ESA− cells. The number of colonies and spheroids formed from CSCs after carbon ion beam irradiation was significantly reduced compared to after X-ray irradiation, and they were extremely highly suppressed when carbon ion beam combined with gemcitabine. The relative biological effectiveness (RBE) values for the carbon ion beam relative to X-ray at the D10 levels for CSCs were 2.23-2.66. Expressions of multiple cell death-related genes were remarkably highly induced, and large numbers of γH2AX foci in CSCs were formed after carbon ion beam combined with gemcitabine. The highly expressed CSC markers were significantly inhibited after 30 Gy of carbon ion beam and almost lost after 25 Gy carbon ion beam combined with 50 mg/kg gemcitabine. In conclusion, a carbon ion beam combined with gemcitabine has superior potential to kill pancreatic CSCs via irreparable clustered DSB compared to a carbon ion alone or X-rays combined with gemcitabine. PMID:25849939

  10. Pancreatic Islet Cell Development and Regeneration

    PubMed Central

    Romer, Anthony I.; Sussel, Lori

    2015-01-01

    Purpose This review will discuss recent advances in understanding mouse and human pancreatic islet cell development, novel concepts related to β cell dysfunction and improved approaches for replenishing β cells to treat diabetes. Recent Findings Considerable knowledge about pancreatic islet development and function has been gained using model systems with subsequent validation in human tissues. Recently, several rodent studies have revealed that differentiated adult islet cells retain remarkable plasticity and can be converted to other islet cell types by perturbing their transcription factor profiles. Furthermore, significant advances have been made in the generation of β-like cells from stem cell populations. Therefore, the generation of functionally mature β cells by the in situ conversion of non-β cell populations or by the directed differentiation of human pluripotent stem cells could represent novel mechanisms for replenishing β cells in diabetic patients. Summary The overall conservation between mouse and human pancreatic development, islet physiology and etiology of diabetes encourages the translation of novel β cell replacement therapies to humans. Further deciphering the molecular mechanisms that direct islet cell regeneration, plasticity and function could improve and expand the β cell replacement strategies for treating diabetes. PMID:26087337

  11. The utility of hyperthermic intra-abdominal chemotherapy with gemcitabine for the inhibition of tumor progression in an experimental model of pancreatic peritoneal carcinomatosis, in relation to their behavior with pancreatic cancer stem cells CD133+ CXCR4.

    PubMed

    García-Santos, Esther Pilar; Padilla-Valverde, David; Villarejo-Campos, Pedro; Murillo-Lázaro, Cristina; Fernández-Grande, Esther; Palomino-Muñoz, Teodoro; Rodríguez-Martínez, Marta; Amo-Salas, Mariano; Nuñez-Guerrero, Paloma; Sánchez-García, Susana; Puerto-Puerto, Alejandro; Martín-Fernández, Jesús

    2016-01-01

    The origin of pancreatic cancer has been identified as a population of malignant pancreatic stem cells CD133+ CXCR4+ immunophenotype. These cells have high capacity for early locoregional invasion, being responsible for early recurrence and high mortality rates of pancreatic cancer. We propose a study for decreasing tumor progression of pancreatic cancer by reducing the volume and neoplastic subpopulation of pancreatic cancer stem cells CD133+ CXCR4+. Therefore, we develop a new therapeutic model, characterized by the application of HIPEC (Hyperthermic Intraperitoneal Chemotherapy) with gemcitabine. Pancreatic tumor cell line: human cell line BxPC-3. The animal model involved 18 immunosuppressed rats 5 weeks weighing 150-200 gr. The implantation of 13 × 10(6) cells/mL was performed with homogeneous distribution in the 13 abdominopelvic quadrants according to the peritoneal carcinomatosis index (PCI) and were randomized into three treatment groups. Group I (4 rats) received intravenous saline. Group II (6 rats) received intravenous gemcitabine. Group III (8 rats) received HIPEC at 41 °C for 30 min with gemcitabine + gemcitabine IV. A histological study confirmed pancreatic cancer and immunohistochemical quantification of pancreatic cancer stem cells CD133+ CXCR4+ tumor cells. There was a population decline of pancreatic cancer stem cells CD133+ CXCR4+ in the HIPEC group with respect to the other two groups (p < 0.001). There was a decrease in PCI between treatment groups (p < 0.05). The initial results are encouraging since there is a declining population of cancer stem cells CD133+ CXCR4+ in the HIPEC group and decreased tumor volume compared to the other two treatment groups. All the conclusions are only valid for BxPC3 cell line, and the effects HIPEC on Kras-driven pancreatic tumors remain to be determined. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  12. Pathologic pancreatic endocrine cell hyperplasia

    PubMed Central

    Ouyang, Debra; Dhall, Deepti; Yu, Run

    2011-01-01

    Pathologic hyperplasia of various pancreatic endocrine cells is rare but has been long known. β cell hyperplasia contributes to persistent hyperinsulinemic hypoglycemia of infancy, which is commonly caused by mutations in the islet ATP-sensitive potassium channel, and to non-insulinoma pancreatogenous hypoglycemia in adults, which may or may not be associated with bariatric surgery. α cell hyperplasia may cause glucagonoma syndrome or induce pancreatic neuroendocrine tumors. An inactivating mutation of the glucagon receptor causes α cell hyperplasia and asymptomatic hyperglucagonemia. Pancreatic polypeptide cell hyperplasia has been described without a clearly-characterized clinical syndrome and hyperplasia of other endocrine cells inside the pancreas has not been reported to our knowledge. Based on morphological evidence, the main pathogenetic mechanism for pancreatic endocrine cell hyperplasia is increased endocrine cell neogenesis from exocrine ductal epithelium. Pancreatic endocrine cell hyperplasia should be considered in the diagnosis and management of hypoglycemia, elevated islet hormone levels, and pancreatic neuroendocrine tumors. Further studies of pathologic pancreatic endocrine cell hyperplasia will likely yield insights into the pathogenesis and treatment of diabetes and pancreatic neuroendocrine tumors. PMID:21245985

  13. Quantum dots labelling allows detection of the homing of mesenchymal stem cells administered as immunomodulatory therapy in an experimental model of pancreatic islets transplantation.

    PubMed

    Mannucci, Silvia; Calderan, Laura; Quaranta, Paola; Antonini, Sara; Mosca, Franco; Longoni, Biancamaria; Marzola, Pasquina; Boschi, Federico

    2017-03-01

    Cell transplantation is considered a promising therapeutic approach in several pathologies but still needs innovative and non-invasive imaging technologies to be validated. The use of mesenchymal stem cells (MSCs) attracts major interest in clinical transplantation thanks to their regenerative properties, low immunogenicity and ability to regulate immune responses. In several animal models, MSCs are used in co-transplantation with pancreatic islets (PIs) for the treatment of type I diabetes, supporting graft survival and prolonging normal glycaemia levels. In this study we investigated the homing of systemically administered MSCs in a rat model of pancreatic portal vein transplantation. MSCs labelled with quantum dots (Qdots) were systemically injected by tail vein and monitored by optical fluorescence imaging. The fluorescence signal of the liver in animals co-transplanted with MSCs and PIs was significantly higher than in control animals in which MSCs alone were transplanted. By using magnetic labelling of PIs, the homing of PIs into liver was independently confirmed. These results demonstrate that MSCs injected in peripheral blood vessels preferentially accumulate into liver when PIs are transplanted in the same organ. Moreover, we prove that bimodal MRI-fluorescence imaging allows specific monitoring of the fate of two types of cells.

  14. Pancreatic stellate cells--multi-functional cells in the pancreas.

    PubMed

    Masamune, Atsushi; Shimosegawa, Tooru

    2013-01-01

    There is accumulating evidence that activated pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis in chronic pancreatitis and pancreatic cancer. In addition, we have seen great progress in our understanding of the cell biology of PSCs and the interactions between PSCs and other cell types in the pancreas. In response to pancreatic injury or inflammation, quiescent PSCs are activated to myofibroblast-like cells. Recent studies have shown that the activation of intracellular signaling pathways such as mitogen-activated protein kinases plays a role in the activation of PSCs. microRNAs might also play a role, because the microRNA expression profiles are dramatically altered in the process of activation. In addition to producing extracellular matrix components such as type I collagen, PSCs have a wide variety of cell functions related to local immunity, inflammation, angiogenesis, and exocrine and endocrine functions in the pancreas. From this point of view, the interactions between PSCs and other cell types such as pancreatic exocrine cells, endocrine cells, and cancer cells have attracted increasing attention of researchers. PSCs might regulate exocrine functions in the pancreas through the cholecystokinin-induced release of acetylcholine. PSCs induce apoptosis and decrease insulin expression in β-cells, suggesting a novel mechanism of diabetes in diseased pancreas. PSCs promote the progression of pancreatic cancer by multiple mechanisms. Recent studies have shown that PSCs induce epithelial-mesenchymal transition and enhance the stem-cell like features of pancreatic cancer cells. In conclusion, PSCs should now be recognized as not only profibrogenic cells but as multi-functional cells in the pancreas.

  15. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets.

    PubMed

    Sordi, Valeria; Malosio, Maria Luisa; Marchesi, Federica; Mercalli, Alessia; Melzi, Raffaella; Giordano, Tiziana; Belmonte, Nathalie; Ferrari, Giuliana; Leone, Biagio Eugenio; Bertuzzi, Federico; Zerbini, Gianpaolo; Allavena, Paola; Bonifacio, Ezio; Piemonti, Lorenzo

    2005-07-15

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are stromal cells with the ability to proliferate and differentiate into many tissues. Although they represent powerful tools for several therapeutic settings, mechanisms regulating their migration to peripheral tissues are still unknown. Here, we report chemokine receptor expression on human BM-MSCs and their role in mediating migration to tissues. A minority of BM-MSCs (2% to 25%) expressed a restricted set of chemokine receptors (CXC receptor 4 [CXCR4], CX3C receptor 1 [CX3CR1], CXCR6, CC chemokine receptor 1 [CCR1], CCR7) and, accordingly, showed appreciable chemotactic migration in response to the chemokines CXC ligand 12 (CXCL12), CX3CL1, CXCL16, CC chemokine ligand 3 (CCL3), and CCL19. Using human pancreatic islets as an in vitro model of peripheral tissue, we showed that islet supernatants released factors able to attract BM-MSCs in vitro, and this attraction was principally mediated by CX3CL1 and CXCL12. Moreover, cells with features of BM-MSCs were detected within the pancreatic islets of mice injected with green fluorescent protein (GFP)-positive BM. A population of bona fide MSCs that also expressed CXCR4, CXCR6, CCR1, and CCR7 could be isolated from normal adult human pancreas. This study defines the chemokine receptor repertoire of human BM-MSCs that determines their migratory activity. Modulation of homing capacity may be instrumental for harnessing the therapeutic potential of BM-MSCs.

  16. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (KrasG12D, and KrasG12D/tp53R270H) mice

    PubMed Central

    Verma, Raj Kumar; Yu, Wei; Shrivastava, Anju; Shankar, Sharmila; Srivastava, Rakesh K.

    2016-01-01

    Activation of sonic hedgehog (Shh) in cancer stem cell (CSC) has been demonstrated with aggressiveness of pancreatic cancer. In order to enhance the biological activity of α-mangostin, we formulated mangostin-encapsulated PLGA nanoparticles (Mang-NPs) and examined the molecular mechanisms by which they inhibit human and KC mice (PdxCre;LSL-KrasG12D) pancreatic CSC characteristics in vitro, and pancreatic carcinogenesis in KPC (PdxCre;LSLKrasG12D;LSL-Trp53R172H) mice. Mang-NPs inhibited human and KrasG12D mice pancreatic CSC characteristics in vitro. Mang-NPs also inhibited EMT by up-regulating E-cadherin and inhibiting N-cadherin and transcription factors Slug, and pluripotency maintaining factors Nanog, c-Myc, and Oct4. Furthermore, Mang-NPs inhibited the components of Shh pathway and Gli targets. In vivo, Mang-NPs inhibited the progression of pancreatic intraneoplasia to pancreatic ductal adenocarcinoma and liver metastasis in KPC mice. The inhibitory effects of Mang-NPs on carcinogenesis in KPC mice were associated with downregulation of pluripotency maintaining factors (c-Myc, Nanog and Oct4), stem cell markers (CD24 and CD133), components of Shh pathway (Gli1, Gli2, Patched1/2, and Smoothened), Gli targets (Bcl-2, XIAP and Cyclin D1), and EMT markers and transcription factors (N-cadherin, Slug, Snail and Zeb1), and upregulation of E-cadherin. Overall, our data suggest that Mang-NPs can inhibit pancreatic cancer growth, development and metastasis by targeting Shh pathway. PMID:27624879

  17. Role of pancreatic stellate cells in chemoresistance in pancreatic cancer

    PubMed Central

    McCarroll, Joshua A.; Naim, Stephanie; Sharbeen, George; Russia, Nelson; Lee, Julia; Kavallaris, Maria; Goldstein, David; Phillips, Phoebe A.

    2014-01-01

    Pancreatic cancer is highly chemoresistant. A major contributing factor is the characteristic extensive stromal or fibrotic reaction, which comprises up to 90% of the tumor volume. Over the last decade there has been intensive research into the role of the pro-fibrogenic pancreatic stellate cells (PSCs) and their interaction with pancreatic cancer cells. As a result of the significant alterations in the tumor microenvironment following activation of PSCs, tumor progression, and chemoresistance is enhanced. This review will discuss how PSCs contribute to chemoresistance in pancreatic cancer. PMID:24782785

  18. Stem Cell Sciences plc.

    PubMed

    Daniels, Sebnem

    2006-09-01

    Stem Cell Sciences' core objective is to develop safe and effective stem cell-based therapies for currently incurable diseases. In order to achieve this goal, Stem Cell Sciences recognizes the need for multiple technologies and a globally integrated stem cell initiative. The key challenges for the successful application of stem cells in the clinic is the need for a reproducible supply of pure, fully characterized stem cells that have been grown in suitable conditions for use in the clinic.

  19. Cooperation by Fibroblasts and Bone Marrow-Mesenchymal Stem Cells to Improve Pancreatic Rat-to-Mouse Islet Xenotransplantation

    PubMed Central

    Meana, Alvaro; Otero, Jesus; Esteban, Manuel M.

    2013-01-01

    Experimental and clinical experiences highlight the need to review some aspects of islet transplantation, especially with regard to site of grafting and control of the immune response. The subcutaneous space could be a good alternative to liver but its sparse vasculature is its main limitation. Induction of graft tolerance by using cells with immunoregulatory properties is a promising approach to avoid graft rejection. Both Fibroblasts and Mesenchymal Stem Cells (MSCs) have shown pro-angiogenic and immunomodulatory properties. Transplantation of islets into the subcutaneous space using plasma as scaffold and supplemented with fibroblasts and/or Bone Marrow-MSCs could be a promising strategy to achieve a functional extra-hepatic islet graft, without using immunosuppressive drugs. Xenogenic rat islets, autologous fibroblasts and/or allogenic BM-MSCs, were mixed with plasma, and coagulation was induced to constitute a Plasma-based Scaffold containing Islets (PSI), which was transplanted subcutaneously both in immunodeficient and immunocompetent diabetic mice. In immunodeficient diabetic mice, PSI itself allowed hyperglycemia reversion temporarily, but the presence of pro-angiogenic cells (fibroblasts or BM-MSCs) within PSI was necessary to improve graft re-vascularization and, thus, consistently maintain normoglycemia. In immunocompetent diabetic mice, only PSI containing BM-MSCs, but not those containing fibroblasts, normalized glycemia lasting up to one week after transplantation. Interestingly, when PSI contained both fibroblasts and BM-MSCs, the normoglycemia period showed an increase of 4-times with a physiological-like response in functional tests. Histology of immunocompetent mice showed an attenuation of the immune response in those grafts with BM-MSCs, which was improved by co-transplantation with fibroblasts, since they increased BM-MSC survival. In summary, fibroblasts and BM-MSCs showed similar pro-angiogenic properties in this model of islet

  20. Resectable pancreatic small cell carcinoma

    PubMed Central

    Winter, Jordan M.; Narang, Amol K.; Mansfield, Aaron S.; Herman, Joseph M.; Cameron, John L.; Laheru, Dan; Eckhauser, Fred E.; Olson, Mathew T.; Hruban, Ralph H.; Miller, Robert C.; Andersen, Dana K.

    2011-01-01

    Primary pancreatic small cell carcinoma (SCC) is rare, with just over 30 cases reported in the literature. Only 7 of these patients underwent surgical resection with a median survival of 6 months. Prognosis of SCC is therefore considered to be poor, and the role of adjuvant therapy is uncertain. Here we report two institutions' experience with resectable pancreatic SCC. Six patients with pancreatic SCC treated at the Johns Hopkins Hospital (4 patients) and the Mayo Clinic (2 patients) were identified from prospectively collected pancreatic cancer databases and re-reviewed by pathology. All six patients underwent a pancreaticoduodenectomy. Clinicopathologic data were analyzed, and the literature on pancreatic SCC was reviewed. Median age at diagnosis was 50 years (range 27–60). All six tumors arose in the head of the pancreas. Median tumor size was 3 cm, and all cases had positive lymph nodes except for one patient who only had five nodes sampled. There were no perioperative deaths and three patients had at least one postoperative complication. All six patients received adjuvant therapy, five of whom were given combined modality treatment with radiation, cisplatin, and etoposide. Median survival was 20 months with a range of 9–173 months. The patient who lived for 9 months received chemotherapy only, while the patient who lived for 173 months was given chemoradiation with cisplatin and etoposide and represents the longest reported survival time from pancreatic SCC to date. Pancreatic SCC is an extremely rare form of cancer with a poor prognosis. Patients in this surgical series showed favorable survival rates when compared to prior reports of both resected and unresectable SCC. Cisplatin and etoposide appears to be the preferred chemotherapy regimen, although its efficacy remains uncertain, as does the role of combined modality treatment with radiation. PMID:21464878

  1. Stem Cell Basics

    MedlinePlus

    ... healthy cells replace damaged cells in adult organisms. Stem cell research is one of the most fascinating areas of ... as with many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates ...

  2. Cancer Stem Cells: Repair Gone Awry?

    PubMed Central

    Rangwala, Fatima; Omenetti, Alessia; Diehl, Anna Mae

    2011-01-01

    Because cell turnover occurs in all adult organs, stem/progenitor cells within the stem-cell niche of each tissue must be appropriately mobilized and differentiated to maintain normal organ structure and function. Tissue injury increases the demands on this process, and thus may unmask defective regulation of pathways, such as Hedgehog (Hh), that modulate progenitor cell fate. Hh pathway dysregulation has been demonstrated in many types of cancer, including pancreatic and liver cancers, in which defective Hh signaling has been linked to outgrowth of Hh-responsive cancer stem-initiating cells and stromal elements. Hence, the Hh pathway might be a therapeutic target in such tumors. PMID:21188169

  3. Two-photon imaging of stem cells

    NASA Astrophysics Data System (ADS)

    Uchugonova, A.; Gorjup, E.; Riemann, I.; Sauer, D.; König, K.

    2008-02-01

    A variety of human and animal stem cells (rat and human adult pancreatic stem cells, salivary gland stem cells, dental pulpa stem cells) have been investigated by femtosecond laser 5D two-photon microscopy. Autofluorescence and second harmonic generation have been imaged with submicron spatial resolution, 270 ps temporal resolution, and 10 nm spectral resolution. In particular, NADH and flavoprotein fluorescence was detected in stem cells. Major emission peaks at 460nm and 530nm with typical mean fluorescence lifetimes of 1.8 ns and 2.0 ns, respectively, were measured using time-correlated single photon counting and spectral imaging. Differentiated stem cells produced the extracellular matrix protein collagen which was detected by SHG signals at 435 nm.

  4. Heterogeneity of the Pancreatic Beta Cell

    PubMed Central

    Gutierrez, Giselle Dominguez; Gromada, Jesper; Sussel, Lori

    2017-01-01

    The pancreatic beta cell functions as a key regulator of blood glucose levels by integrating a variety of signals in response to changing metabolic demands. Variations in beta cell identity that translate into functionally different subpopulations represent an interesting mechanism to allow beta cells to efficiently respond to diverse physiological and pathophysiological conditions. Recently, there is emerging evidence that morphological and functional differences between beta cells exist. Furthermore, the ability of novel single cell technologies to characterize the molecular identity of individual beta cells has created a new era in the beta cell field. These studies are providing important novel information about the origin of beta cell heterogeneity, the type and proportions of the different beta cell subpopulations, as well as their intrinsic properties. Furthermore, characterization of different beta cell subpopulations that could variably offer protection from or drive progression of diabetes has important clinical implications in diabetes prevention, beta cell regeneration and stem cell treatments. In this review, we will assess the evidence that supports the existence of heterogeneous populations of beta cells and the factors that could influence their formation. We will also address novel studies using islet single cell analysis that have provided important information toward understanding beta cell heterogeneity and discuss the caveats that may be associated with these new technologies. PMID:28321233

  5. Pancreatic stellate cell: Pandora's box for pancreatic disease biology

    PubMed Central

    Bynigeri, Ratnakar R; Jakkampudi, Aparna; Jangala, Ramaiah; Subramanyam, Chivukula; Sasikala, Mitnala; Rao, G Venkat; Reddy, D Nageshwar; Talukdar, Rupjyoti

    2017-01-01

    Pancreatic stellate cells (PSCs) were identified in the early 1980s, but received much attention after 1998 when the methods to isolate and culture them from murine and human sources were developed. PSCs contribute to a small proportion of all pancreatic cells under physiological condition, but are essential for maintaining the normal pancreatic architecture. Quiescent PSCs are characterized by the presence of vitamin A laden lipid droplets. Upon PSC activation, these perinuclear lipid droplets disappear from the cytosol, attain a myofibroblast like phenotype and expresses the activation marker, alpha smooth muscle actin. PSCs maintain their activated phenotype via an autocrine loop involving different cytokines and contribute to progressive fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Several pathways (e.g., JAK-STAT, Smad, Wnt signaling, Hedgehog etc.), transcription factors and miRNAs have been implicated in the inflammatory and profibrogenic function of PSCs. The role of PSCs goes much beyond fibrosis/desmoplasia in PDAC. It is now shown that PSCs are involved in significant crosstalk between the pancreatic cancer cells and the cancer stroma. These interactions result in tumour progression, metastasis, tumour hypoxia, immune evasion and drug resistance. This is the rationale for therapeutic preclinical and clinical trials that have targeted PSCs and the cancer stroma. PMID:28210075

  6. Pancreatic stellate cell: Pandora's box for pancreatic disease biology.

    PubMed

    Bynigeri, Ratnakar R; Jakkampudi, Aparna; Jangala, Ramaiah; Subramanyam, Chivukula; Sasikala, Mitnala; Rao, G Venkat; Reddy, D Nageshwar; Talukdar, Rupjyoti

    2017-01-21

    Pancreatic stellate cells (PSCs) were identified in the early 1980s, but received much attention after 1998 when the methods to isolate and culture them from murine and human sources were developed. PSCs contribute to a small proportion of all pancreatic cells under physiological condition, but are essential for maintaining the normal pancreatic architecture. Quiescent PSCs are characterized by the presence of vitamin A laden lipid droplets. Upon PSC activation, these perinuclear lipid droplets disappear from the cytosol, attain a myofibroblast like phenotype and expresses the activation marker, alpha smooth muscle actin. PSCs maintain their activated phenotype via an autocrine loop involving different cytokines and contribute to progressive fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Several pathways (e.g., JAK-STAT, Smad, Wnt signaling, Hedgehog etc.), transcription factors and miRNAs have been implicated in the inflammatory and profibrogenic function of PSCs. The role of PSCs goes much beyond fibrosis/desmoplasia in PDAC. It is now shown that PSCs are involved in significant crosstalk between the pancreatic cancer cells and the cancer stroma. These interactions result in tumour progression, metastasis, tumour hypoxia, immune evasion and drug resistance. This is the rationale for therapeutic preclinical and clinical trials that have targeted PSCs and the cancer stroma.

  7. Stem cell applications in diabetes.

    PubMed

    Noguchi, Hirofumi

    2012-01-01

    Diabetes mellitus is a devastating disease and the World Health Organization (WHO) expects that the number of diabetic patients will increase to 300 million by the year 2025. Patients with diabetes experience decreased insulin secretion that is linked to a significant reduction in the number of islet cells. Type 1 diabetes is characterized by the selective destruction of pancreatic β cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology that, in addition to β cell loss caused by apoptotic programs, includes β cell de-differentiation and peripheric insulin resistance. The success achieved over the last few years with islet transplantation suggests that diabetes can be cured by the replenishment of deficient β cells. These observations are proof of the concept and have intensified interest in treating diabetes or other diseases not only by cell transplantation but also by stem cells. An increasing body of evidence indicates that, in addition to embryonic stem cells, several potential adult stem/progenitor cells derived from the pancreas, liver, spleen, and bone marrow could differentiate into insulin-producing cells in vitro or in vivo. However, significant controversy currently exists in this field. Pharmacological approaches aimed at stimulating the in vivo/ex vivo regeneration of β cells have been proposed as a way of augmenting islet cell mass. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. A new technology, known as protein transduction, facilitates the differentiation of stem cells into insulin-producing cells. Recent progress in the search for new sources of β cells has opened up several possibilities for the development of new treatments for diabetes.

  8. Stem cells for the treatment of diabetes.

    PubMed

    Noguchi, Hirofumi

    2007-02-01

    Diabetes mellitus is a devastating disease and over 6% of the population is affected worldwide. The success achieved over the last few years with islet transplantation suggest that diabetes can be cured by the replenishment of deficient beta cells. These observations are proof of concept and have intensified interest in treating diabetes or other diseases not only by cell transplantation but also by stem cells. Work with ES cells has not yet produced cells with the phenotype of true beta cells, but there has been recent progress in directing ES cells to the endoderm. Bone marrow-derived stem cells could initiate pancreatic regeneration. Pancreatic stem/progenitor cells have been identified, and the formation of new beta cells from duct, acinar and liver cells is an active area of investigation. Some agents including glucagon-like peptide-1/exendin-4 can stimulate the regeneration of beta cells in vivo. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. New technology, known as protein transduction technology, facilitates the differentiation of stem cells into insulin-producing cells. Recent progress in the search for new sources of beta cells has opened up several possibilities for the development of new treatments for diabetes.

  9. Liver cancer stem cells.

    PubMed

    Sell, Stewart; Leffert, Hyam L

    2008-06-10

    In an effort to review the evidence that liver cancer stem cells exist, two fundamental questions must be addressed. First, do hepatocellular carcinomas (HCC) arise from liver stem cells? Second, do HCCs contain cells that possess properties of cancer stem cells? For many years the finding of preneoplastic nodules in the liver during experimental induction of HCCs by chemicals was interpreted to support the hypothesis that HCC arose by dedifferentiation of mature liver cells. More recently, recognition of the role of small oval cells in the carcinogenic process led to a new hypothesis that HCC arises by maturation arrest of liver stem cells. Analysis of the cells in HCC supports the presence of cells with stem-cell properties (ie, immortality, transplantability, and resistance to therapy). However, definitive markers for these putative cancer stem cells have not yet been found and a liver cancer stem cell has not been isolated.

  10. Cyr61/CCN1 signaling is critical for epithelial-mesenchymal transition and stemness and promotes pancreatic carcinogenesis

    PubMed Central

    2011-01-01

    Background Despite recent advances in outlining the mechanisms involved in pancreatic carcinogenesis, precise molecular pathways and cellular lineage specification remains incompletely understood. Results We show here that Cyr61/CCN1 play a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. Cyr61 mRNA and protein were detected in the early precursor lesions and their expression intensified with disease progression. Cyr61/CCN1 expression was also detected in different pancreatic cancer cell lines. The aggressive cell lines, in which the expressions of mesenchymal/stem cell molecular markers are predominant; exhibit more Cyr61/CCN1 expression. Cyr61 expression is exorbitantly higher in cancer stem/tumor initiating Panc-1-side-population (SP) cells. Upon Cyr61/CCN1 silencing, the aggressive behaviors are reduced by obliterating interlinking pathobiological events such as reversing the EMT, blocking the expression of stem-cell-like traits and inhibiting migration. In contrast, addition of Cyr61 protein in culture medium augments EMT and stemness features in relatively less aggressive BxPC3 pancreatic cancer cells. Using a xenograft model we demonstrated that cyr61/CCN1 silencing in Panc-1-SP cells reverses the stemness features and tumor initiating potency of these cells. Moreover, our results imply a miRNA-based mechanism for the regulation of aggressive behaviors of pancreatic cancer cells by Cyr61/CCN1. Conclusions In conclusion, the discovery of the involvement of Cyr61/CCN1 in pancreatic carcinogenesis may represent an important marker for PDAC and suggests Cyr61/CCN1 can be a potential cancer therapeutic target. PMID:21232118

  11. Apigenin Inhibits Pancreatic Stellate Cell Activity in Pancreatitis

    PubMed Central

    Mrazek, Amy A.; Porro, Laura J.; Bhatia, Vandanajay; Falzon, Miriam; Spratt, Heidi; Zhou, Jia; Chao, Celia; Hellmich, Mark R.

    2015-01-01

    BACKGROUND Chronic pancreatitis (CP) is characterized by recurrent pancreatic injury, resulting in inflammation, necrosis, and fibrosis. There are currently no drugs limiting pancreatic fibrosis associated with CP, and there is a definite need to fill this void in patient care. MATERIALS AND METHODS Pancreatitis was induced in C57/BL6 mice using supraphysiologic doses of cerulein (CR), and apigenin treatment (once daily, 50 μg/mouse by oral gavage) was initiated one week into the recurrent acute pancreatitis (RAP) protocol. Pancreata were harvested after four weeks of RAP. Immunostaining with fibronectin antibody was used to quantify the extent of pancreatic fibrosis. To assess how apigenin may decrease organ fibrosis, we evaluated the effect of apigenin on the proliferation and apoptosis of human pancreatic stellate cells (PSCs) in vitro. Lastly, we assessed apigenin’s effect on gene expression in PSCs stimulated with parathyroid hormone related protein (PTHrP), a pro-fibrotic and pro-inflammatory mediator of pancreatitis, using RT-PCR. RESULTS After four weeks of RAP, apigenin significantly reduced the fibrotic response to injury while preserving acinar units. Apigenin inhibited viability and induced apoptosis of PSCs in a time and dose-dependent manner. Lastly, apigenin reduced PTHrP-stimulated increases in the PSC mRNA expression levels of extracellular matrix proteins collagen 1A1 and fibronectin, proliferating cell nuclear antigen, TGF-β, and IL-6. CONCLUSIONS These in vivo and in vitro studies provide novel insights regarding apigenin’s mechanism(s) of action in reducing the severity of RAP. Additional preclinical testing of apigenin analogs is warranted to develop a therapeutic agent for patients at risk for CP. PMID:25799526

  12. Stem Cell Transplant

    MedlinePlus

    ... transplant is a procedure that infuses healthy blood stem cells into your body to replace your damaged or ... A bone marrow transplant is also called a stem cell transplant. A bone marrow transplant may be necessary ...

  13. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  14. Nail stem cells.

    PubMed

    Sellheyer, Klaus

    2013-03-01

    Our knowledge on stem cells of the hair follicle has increased exponentially after the bulge was characterized as the stem cell niche two decades ago. In contrast, little is known about stem cells in the nail unit. Whereas hair follicles are plentiful and easy to access, the human body has only twenty nails and they are rarely biopsied. Therefore, examining fetal material offers unique advantages. In the following mini-review, our current knowledge on nail stem cells is summarized and analogies to the hair follicle stem cells are drawn.

  15. Inhibition of PRDM14 expression in pancreatic cancer suppresses cancer stem-like properties and liver metastasis in mice.

    PubMed

    Moriya, Chiharu; Taniguchi, Hiroaki; Miyata, Kanjiro; Nishiyama, Nobuhiro; Kataoka, Kazunori; Imai, Kohzoh

    2017-06-01

    Pancreatic cancer is one of the most lethal types of cancer, with aggressive properties characterized by metastasis, recurrence and drug resistance. Cancer stem cells are considered to be responsible for these properties. PRDM14, a transcriptional regulator that maintains pluripotency in embryonic stem cells, is overexpressed in some cancers. Here, we assessed PRDM14 expression and the effects of PRDM14 knockdown on cancer stem-like phenotypes in pancreatic cancer. We observed that PRDM14 protein was overexpressed in pancreatic cancer tissues compared with normal pancreatic tissues. Using lentiviral shRNA-transduced pancreatic cancer cells, we found that PRDM14 knockdown decreased sphere formation, number of side population and cell surface marker-positive cells and subcutaneous xenograft tumors and liver metastasis in mice. This was accompanied by upregulation of some microRNAs (miRNAs), including miR-125a-3p. miR-125a-3p, a tumor suppressor that is down-regulated in pancreatic cancer, has been suggested to regulate the expression of the Src-family kinase, Fyn. In PRDM14-knockdown cells, Fyn was expressed at lower levels and downstream proteins were less activated. These changes were considered to cause suppression of the above cancer phenotypes. In addition, we used small interfering RNA (siRNA)-based therapy targeting PRDM14 in a mouse model of liver metastasis induced using MIA-PaCa2 cells, and this treatment significantly decreased metastasis and in vitro migration. Taken together, these results suggest that targeting the overexpression of PRDM14 suppresses cancer stem-like phenotypes, including liver metastasis, via miRNA regulation and siRNA-based therapy targeting it shows promise as a treatment for patients with pancreatic cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Improving cellular function and immune protection via layer-by-layer nanocoating of pancreatic islet β-cell spheroids cocultured with mesenchymal stem cells.

    PubMed

    Bhaiji, Tasneem; Zhi, Zheng-Liang; Pickup, John C

    2012-06-01

    Islet transplantation as a therapy for type 1 diabetes is currently limited by lack of primary transplant material from human donors and post-transplantation loss of islets caused by adverse immune and nonimmune reactions. This study aimed to develop a novel strategy to create microenvironment for islets via integration of nanoencapsulation with cell cocultures, thereby enhancing their survival and function. The nanoencapsulation was achieved via layer-by-layer deposition of phosphorycholine-modified poly-L-lysine/heparin leading to the formation of nanometer-thick multilayer coating on islets. Spheroids formed by coculturing MIN6 β-cells with mesenchymal stem cells in suspension were used as the tool for testing encapsulation. Coculturing MSCs with MIN6 cells allowed the cell constructs to enhance structural and morphologic stability with improved insulin secretory function and render them less susceptible to inflammatory cytokine-induced apoptosis. Combining nanoencapsulation with coculture of MSCs/MIN6 resulted in higher glucose responsiveness, and lower antibody binding and apoptosis-inducing effects of cytokines. This strategy of nanoencapsulating islet cocultures appears promising to improve cellular delivery of insulin for treating type 1 diabetes. Copyright © 2012 Wiley Periodicals, Inc.

  17. A Combination of Human Embryonic Stem Cell-Derived Pancreatic Endoderm Transplant with LDHA-Repressing miRNA Can Attenuate High-Fat Diet Induced Type II Diabetes in Mice

    PubMed Central

    Chen, Yunya; Wang, Xiujie; Shao, Xinyu

    2015-01-01

    Type II diabetes mellitus (T2D) is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. The deficit and dysfunction of insulin secreting β-cell are signature symptom for T2D. Additionally, in pancreatic β-cell, a small group of genes which are abundantly expressed in most other tissues are highly selectively repressed. Lactate dehydrogenase A (LDHA) is one of such genes. Upregulation of LDHA is found in both human T2D and rodent T2D models. In this study, we identified a LDHA-suppressing microRNA (hsa-miR-590-3p) and used it together with human embryonic stem cell (hESC) derived pancreatic endoderm (PE) transplantation into a high-fat diet induced T2D mouse model. The procedure significantly improved glucose metabolism and other symptoms of T2D. Our findings support the potential T2D treatment using the combination of microRNA and hESC-differentiated PE cells. PMID:26770982

  18. Pancreatic β Cell Mass Death

    PubMed Central

    Marrif, Husnia I.; Al-Sunousi, Salma I.

    2016-01-01

    Type two diabetes (T2D) is a challenging metabolic disorder for which a cure has not yet been found. Its etiology is associated with several phenomena, including significant loss of insulin-producing, beta cellcell) mass via progressive programmed cell death and disrupted cellular autophagy. In diabetes, the etiology of β cell death and the role of mitochondria are complex and involve several layers of mechanisms. Understanding the dynamics of those mechanisms could permit researchers to develop an intervention for the progressive loss of β cells. Currently, diabetes research has shifted toward rejuvenation and plasticity technology and away from the simplified approach of hormonal compensation. Diabetes research is currently challenged by questions such as how to enhance cell survival, decrease apoptosis and replenish β cell mass in diabetic patients. In this review, we discuss evidence that β cell development and mass formation are guided by specific signaling systems, particularly hormones, transcription factors, and growth factors, all of which could be manipulated to enhance mass growth. There is also strong evidence that β cells are dynamically active cells, which, under specific conditions such as obesity, can increase in size and subsequently increase insulin secretion. In certain cases of aggressive or advanced forms of T2D, β cells become markedly impaired, and the only alternatives for maintaining glucose homeostasis are through partial or complete cell grafting (the Edmonton protocol). In these cases, the harvesting of an enriched population of viable β cells is required for transplantation. This task necessitates a deep understanding of the pharmacological agents that affect β cell survival, mass, and function. The aim of this review is to initiate discussion about the important signals in pancreatic β cell development and mass formation and to highlight the process by which cell death occurs in diabetes. This review also examines the

  19. Duct Cells Contribute to Regeneration of Endocrine and Acinar Cells Following Pancreatic Damage in Adult Mice

    PubMed Central

    CRISCIMANNA, ANGELA; SPEICHER, JULIE A.; HOUSHMAND, GOLBAHAR; SHIOTA, CHIYO; PRASADAN, KRISHNA; Ji, BAOAN; LOGSDON, CRAIG D.; GITTES, GEORGE K.; ESNI, FARZAD

    2015-01-01

    BACKGROUND & AIMS There have been conflicting results on a cell of origin in pancreatic regeneration. These discrepancies predominantly stem from lack of specific markers for the pancreatic precursors/stem cells, as well as differences in the targeted cells and severity of tissue injury in the experimental models so far proposed. We attempted to create a model that used diphtheria toxin receptor (DTR) to ablate specific cell populations, control the extent of injury, and avoid induction of the inflammatory response. METHODS To target specific types of pancreatic cells, we crossed R26DTR or R26dtR/lacZ mice with transgenic mice that express the Cre recombinase in the pancreas, under control of the Pdx1 (global pancreatic) or elastase (acinar-specific) promoters. RESULTS Exposure of PdxCre;R26DTR mice to diphtheria toxin resulted in extensive ablation of acinar and endocrine tissues but not ductal cells. Surviving cells within the ductal compartment contributed to regeneration of endocrine and acinar cells via recapitulation of the embryonic pancreatic developmental program. However, following selective ablation of acinar tissue in ElaCre-ERT2;R26DTR mice, regeneration likely occurred by reprogramming of ductal cells to acinar lineage. CONCLUSIONS In the pancreas of adult mice, epithelial cells within the ductal compartment contribute to regeneration of endocrine and acinar cells. The severity of injury determines the regenerative mechanisms and cell types that contribute to this process. PMID:21763240

  20. Stem cells remember their grade.

    PubMed

    Lo Celso, Cristina; Scadden, David T

    2007-08-16

    The stem cell state is understood based on what cells do in performance assays, crude measures of a highly refined state. In this issue of Cell Stem Cell, Dykstra et al. (2007) reveal stem cell gradation and the extent to which that gradation is retained in stem cell daughters of hematopoietic stem cells.

  1. Retraction: "Activated K-Ras and INK4a/Arf Deficiency Promote Aggressiveness of Pancreatic Cancer by Induction of EMT Consistent With Cancer Stem Cell Phenotype" by Wang et al.

    PubMed

    2016-10-01

    The above article, published online on November 23, 2012 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the first author and the corresponding author that found Figure 4B and C to be inappropriately manipulated and re-labeled. Literature Cited Wang Z, Ali S, Banerjee S, Bao B, Li Y, Azmi AS, Korc M, Sarkar FH. 2013. Activated K-Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype. J Cell Physiol 228:556-562; doi: 10.1002/jcp.24162.

  2. Stem Cells and Aging.

    PubMed

    Koliakos, George

    2017-02-01

    The article is a presentation at the 4th Conference of ESAAM, which took place on October 30-31, 2015, in Athens, Greece. Its purpose was not to cover all aspects of cellular aging but to share with the audience of the Conference, in a 15-minute presentation, current knowledge about the rejuvenating and repairing somatic stem cells that are distinct from other stem cell types (such as embryonic or induced pluripotent stem cells), emphasize that our body in old age cannot take advantage of these rejuvenating cells, and provide some examples of novel experimental stem cell applications in the field of rejuvenation and antiaging biomedical research.

  3. Stress and stem cells.

    PubMed

    Tower, John

    2012-01-01

    The unique properties and functions of stem cells make them particularly susceptible to stresses and also lead to their regulation by stress. Stem cell division must respond to the demand to replenish cells during normal tissue turnover as well as in response to damage. Oxidative stress, mechanical stress, growth factors, and cytokines signal stem cell division and differentiation. Many of the conserved pathways regulating stem cell self-renewal and differentiation are also stress-response pathways. The long life span and division potential of stem cells create a propensity for transformation (cancer) and specific stress responses such as apoptosis and senescence act as antitumor mechanisms. Quiescence regulated by CDK inhibitors and a hypoxic niche regulated by FOXO transcription factor function to reduce stress for several types of stem cells to facilitate long-term maintenance. Aging is a particularly relevant stress for stem cells, because repeated demands on stem cell function over the life span can have cumulative cell-autonomous effects including epigenetic dysregulation, mutations, and telomere erosion. In addition, aging of the organism impairs function of the stem cell niche and systemic signals, including chronic inflammation and oxidative stress.

  4. Stress and stem cells

    PubMed Central

    Tower, John

    2013-01-01

    The unique properties and functions of stem cells make them particularly susceptible to stresses and also lead to their regulation by stress. Stem cell division must respond to the demand to replenish cells during normal tissue turnover as well as in response to damage. Oxidative stress, mechanical stress, growth factors, and cytokines signal stem cell division and differentiation. Many of the conserved pathways regulating stem cell self-renewal and differentiation are also stress-response pathways. The long life span and division potential of stem cells create a propensity for transformation (cancer) and specific stress responses such as apoptosis and senescence act as antitumor mechanisms. Quiescence regulated by CDK inhibitors and a hypoxic niche regulated by FOXO transcription factor function to reduce stress for several types of stem cells to facilitate long-term maintenance. Aging is a particularly relevant stress for stem cells, because repeated demands on stem cell function over the life span can have cumulative cell-autonomous effects including epigenetic dysregulation, mutations, and telomere erosion. In addition, aging of the organism impairs function of the stem cell niche and systemic signals, including chronic inflammation and oxidative stress. PMID:23799624

  5. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    SciTech Connect

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  6. Colorectal cancer stem cells.

    PubMed

    Salama, Paul; Platell, Cameron

    2009-10-01

    Somatic stem cells reside at the base of the crypts throughout the colonic mucosa. These cells are essential for the normal regeneration of the colonic epithelium. The stem cells reside within a special 'niche' comprised of intestinal sub-epithelial myofibroblasts that tightly control their function. It has been postulated that mutations within these adult colonic stem cells may induce neoplastic changes. Such cells can then dissociate from the epithelium and travel into the mesenchyme and thus form invasive cancers. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumour. It is this group of cells that exhibits characteristics of colonic stem cells. Although anti-neoplastic agents can induce remissions by inhibiting cell division, the stem cells appear to be remarkably resistant to both standard chemotherapy and radiotherapy. These stem cells may therefore persist after treatment and form the nucleus for cancer recurrence. Hence, future treatment modalities should focus specifically on controlling the cancer stem cells. In this review, we discuss the biology of normal and malignant colonic stem cells.

  7. Bone Marrow-Derived Mesenchymal Stem Cells Repair Necrotic Pancreatic Tissue and Promote Angiogenesis by Secreting Cellular Growth Factors Involved in the SDF-1α/CXCR4 Axis in Rats

    PubMed Central

    Qian, Daohai; Gong, Jian; He, Zhigang; Hua, Jie; Lin, Shengping; Xu, Chenglei; Meng, Hongbo; Song, Zhenshun

    2015-01-01

    Acute pancreatitis (AP), a common acute abdominal disease, 10%–20% of which can evolve into severe acute pancreatitis (SAP), is of significant morbidity and mortality. Bone marrow-derived mesenchymal stem cells (BMSCs) have been reported to have a potential therapeutic role on SAP, but the specific mechanism is unclear. Therefore, we conducted this experiment to shed light on the probable mechanism. We validated that SDF-1α significantly stimulated the expressions of VEGF, ANG-1, HGF, TGF-β, and CXCR4 in BMSCs, which were inhibited by its receptor agonist, AMD3100. The capacities of proliferation, migration, and repair of human umbilical vein endothelial cells were enhanced by BMSCs supernatant. Meanwhile, BMSCs supernatant could also promote angiogenesis, especially after the stimulation with SDF-1α. In vivo, the migration of BMSCs was regulated by SDF-1α/CXCR4 axis. Moreover, transplanted BMSCs could significantly alleviate SAP, reduce the systematic inflammation (TNF-α↓, IL-1β↓, IL-6↓, IL-4↑, IL-10↑, and TGF-β↑), and promote tissue repair and angiogenesis (VEGF↑, ANG-1↑, HGF↑, TGF-β↑, and CD31↑), compared with the SAP and anti-CXCR4 groups. Taken together, the results showed that BMSCs ameliorated SAP and the SDF-1α/CXCR4 axis was involved in the repair and regeneration process. PMID:25810724

  8. The reprogrammed pancreatic progenitor-like intermediate state of hepatic cells is more susceptible to pancreatic beta cell differentiation.

    PubMed

    Wang, Qiwei; Wang, Hai; Sun, Yu; Li, Shi-Wu; Donelan, William; Chang, Lung-Ji; Jin, Shouguang; Terada, Naohiro; Cheng, Henrique; Reeves, Westley H; Yang, Li-Jun

    2013-08-15

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapy. However, their low efficiency of lineage-specific differentiation and tumorigenesis severely hinder clinical translation. We hypothesized that reprogramming of somatic cells into lineage-specific progenitor cells might allow for large-scale expansion, avoiding the tumorigenesis inherent with iPSCs and simultaneously facilitating lineage-specific differentiation. Here we aimed at reprogramming rat hepatic WB cells, using four Yamanaka factors, into pancreatic progenitor cells (PPCs) or intermediate (IM) cells that have characteristics of PPCs. IM clones were selected based on their specific morphology and alkaline phosphatase activity and stably passaged under defined culture conditions. IM cells did not have iPSC properties, could be stably expanded in large quantity, and expressed all 14 genes that are used to define the PPC developmental stage. Directed differentiation of IM and WB cells by Pdx1-Ngn3-MafA (PNM) into pancreatic beta-like cells revealed that the IM cells are more susceptible to directed beta cell differentiation because of their open chromatin configuration, as demonstrated by expression of key pancreatic beta cell genes, secretion of insulin in response to glucose stimulation, and easy access to exogenous PNM proteins at the rat insulin 1 and Pdx1 promoters. This notion that IM cells are superior to their parental cells is further supported by the epigenetic demonstration of accessibility of Pdx1 and insulin 1 promoters. In conclusion, we have developed a strategy to derive and expand PPC cells from hepatic WB cells using conventional cell reprogramming. This proof-of-principal study may offer a novel, safe and effective way to generate autologous pancreatic beta cells for cell therapy of diabetes.

  9. Intraoperative Stem Cell Therapy

    PubMed Central

    Coelho, Mónica Beato; Cabral, Joaquim M.S.; Karp, Jeffrey M.

    2013-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the potential regenerative mechanisms and the roles of different cell populations in the regeneration process are discussed. Although intraoperative stem cell therapies have been shown to be safe and effective for several indications, there are still critical challenges to be tackled prior to adoption into the standard surgical armamentarium. PMID:22809140

  10. Cell therapies for pancreatic beta-cell replenishment.

    PubMed

    Okere, Bernard; Lucaccioni, Laura; Dominici, Massimo; Iughetti, Lorenzo

    2016-07-11

    The current treatment approach for type 1 diabetes is based on daily insulin injections, combined with blood glucose monitoring. However, administration of exogenous insulin fails to mimic the physiological activity of the islet, therefore diabetes often progresses with the development of serious complications such as kidney failure, retinopathy and vascular disease. Whole pancreas transplantation is associated with risks of major invasive surgery along with side effects of immunosuppressive therapy to avoid organ rejection. Replacement of pancreatic beta-cells would represent an ideal treatment that could overcome the above mentioned therapeutic hurdles. In this context, transplantation of islets of Langerhans is considered a less invasive procedure although long-term outcomes showed that only 10 % of the patients remained insulin independent five years after the transplant. Moreover, due to shortage of organs and the inability of islet to be expanded ex vivo, this therapy can be offered to a very limited number of patients. Over the past decade, cellular therapies have emerged as the new frontier of treatment of several diseases. Furthermore the advent of stem cells as renewable source of cell-substitutes to replenish the beta cell population, has blurred the hype on islet transplantation. Breakthrough cellular approaches aim to generate stem-cell-derived insulin producing cells, which could make diabetes cellular therapy available to millions. However, to date, stem cell therapy for diabetes is still in its early experimental stages. This review describes the most reliable sources of stem cells that have been developed to produce insulin and their most relevant experimental applications for the cure of diabetes.

  11. Myeloproliferative neoplasm stem cells.

    PubMed

    Mead, Adam J; Mullally, Ann

    2017-03-23

    Myeloproliferative neoplasms (MPNs) arise in the hematopoietic stem cell (HSC) compartment as a result of the acquisition of somatic mutations in a single HSC that provides a selective advantage to mutant HSC over normal HSC and promotes myeloid differentiation to engender a myeloproliferative phenotype. This population of somatically mutated HSC, which initiates and sustains MPNs, is termed MPN stem cells. In >95% of cases, mutations that drive the development of an MPN phenotype occur in a mutually exclusive manner in 1 of 3 genes: JAK2, CALR, or MPL The thrombopoietin receptor, MPL, is the key cytokine receptor in MPN development, and these mutations all activate MPL-JAK-STAT signaling in MPN stem cells. Despite common biological features, MPNs display diverse disease phenotypes as a result of both constitutional and acquired factors that influence MPN stem cells, and likely also as a result of heterogeneity in the HSC in which MPN-initiating mutations arise. As the MPN clone expands, it exerts cell-extrinsic effects on components of the bone marrow niche that can favor the survival and expansion of MPN stem cells over normal HSC, further sustaining and driving malignant hematopoiesis. Although developed as targeted therapies for MPNs, current JAK2 inhibitors do not preferentially target MPN stem cells, and as a result, rarely induce molecular remissions in MPN patients. As the understanding of the molecular mechanisms underlying the clonal dominance of MPN stem cells advances, this will help facilitate the development of therapies that preferentially target MPN stem cells over normal HSC.

  12. Fish Stem Cell Cultures

    PubMed Central

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer. PMID:21547056

  13. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  14. Information on Stem Cell Research

    MedlinePlus

    ... Home » Current Research » Focus on Research Focus on Stem Cell Research Stem cells possess the unique ability to differentiate ... virus infection. To search the complete list of stem cell research projects funded by NIH please go to NIH ...

  15. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants A ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  16. Current stem cell based therapies in diabetes

    PubMed Central

    Lilly, Meredith A; Davis, Meghan F; Fabie, Josh E; Terhune, Elizabeth B; Gallicano, G Ian

    2016-01-01

    Diabetes is a disease with wide-ranging personal and societal impacts that has been managed medicinally for over half a century. Since the discovery of stem cells, pancreatic islet regeneration has become a central target for clinical application that has the potential to decrease or eliminate the need for insulin administration and adjunctive medications. The discovery of alternative routes to pluripotency that bypass the ethical implications of embryonic stem cells has significantly expanded the horizons of stem cell based therapy. Engraftment of mature insulin producing cells derived from induced pluripotent stem cells may represent the most promising treatment strategy for diabetic patients with impaired β-cell function. These cells are easily accessible and have been shown to closely mimic endogenous β-cell function in vivo. While the risks of oncogenesis and transplant rejection are still of great concern, large strides have been made on both fronts with the application of integration free induction strategies and the ongoing development of microcapsules that cloak implanted cells from an autoimmune response. This review will focus on the progress and remaining obstacles in diabetes related stem cell research, and will specifically discuss approaches using embryonic, induced pluripotent, germline and mesenchymal derived stem cells. PMID:27853630

  17. Hematopoietic Stem Cells Therapies.

    PubMed

    Chivu-Economescu, Mihaela; Rubach, Martin

    2017-01-01

    Stem cell-based therapies are recognized as a new way to treat various diseases and injuries, with a wide range of health benefits. The goal is to heal or replace diseased or destroyed organs or body parts with healthy new cells provided by stem cell transplantation. The current practical form of stem cell therapy is the hematopoietic stem cells transplant applied for the treatment of hematological disorders. There are over 2100 clinical studies in progress concerning hematopoietic stem cell therapies. All of them are using hematopoietic stem cells to treat various diseases like: cancers, leukemia, lymphoma, cardiac failure, neural disorders, auto-immune diseases, immunodeficiency, metabolic or genetic disorders. Several challenges are to be addressed prior to developing and applying large scale cell therapies: 1) to explain and control the mechanisms of differentiation and development toward a specific cell type needed to treat the disease, 2) to obtain a sufficient number of desired cell type for transplantation, 3) to overcome the immune rejection and 4) to show that transplanted cells fulfill their normal functions in vivo after transplants.

  18. Immune cell functions in pancreatic cancer.

    PubMed

    Plate, J M; Harris, J E

    2000-01-01

    Pancreatic cancer kills nearly 29,000 people in the United States annually-as many people as are diagnosed with the disease. Chemotherapeutic treatment is ineffective in halting progression of the disease. Yet, specific immunity to pancreatic tumor cells in subjects with pancreatic cancer has been demonstrated repeatedly during the last 24 years. Attempts to expand and enhance tumor-specific immunity with biotherapy, however, have not met with success. The question remains, "Why can't specific immunity regulate pancreatic cancer growth?" The idea that tumor cells have evolved protective mechanisms against immunity was raised years ago and has recently been revisited by a number of research laboratories. In pancreatic cancer, soluble factors produced by and for the protection of the tumor environment have been detected and are often distributed to the victim's circulatory system where they may effect a more generalized immunosuppression. Yet the nature of these soluble factors remains controversial, since some also serve as tumor antigens that are recognized by the same T cells that may become inactivated by them. Unless the problem of tumor-derived immunosuppressive products is addressed directly through basic and translational research studies, successful biotherapeutic treatment for pancreatic cancer may not be forthcoming.

  19. Stem Cell Organoid Engineering

    PubMed Central

    Yin, Xiaolei; Mead, Benjamin E.; Safaee, Helia; Langer, Robert; Karp, Jeffrey M.; Levy, Oren

    2016-01-01

    Organoid systems leverage the self-organizing properties of stem cells to create diverse multi-cellular tissue proxies. Most organoid models only represent single or partial components of a tissue, and it is often difficult to control the cell type, organization, and cell-cell/cell-matrix interactions within these systems. Herein, we discuss basic approaches to generate stem cell-based organoids, their advantages and limitations, and how bioengineering strategies can be used to steer the cell composition and their 3D organization within organoids to further enhance their utility in research and therapies. PMID:26748754

  20. Engineering Stem Cell Organoids.

    PubMed

    Yin, Xiaolei; Mead, Benjamin E; Safaee, Helia; Langer, Robert; Karp, Jeffrey M; Levy, Oren

    2016-01-07

    Organoid systems leverage the self-organizing properties of stem cells to create diverse multi-cellular tissue proxies. Most organoid models only represent single or partial components of a tissue, and it is often difficult to control the cell type, organization, and cell-cell/cell-matrix interactions within these systems. Herein, we discuss basic approaches to generate stem cell-based organoids, their advantages and limitations, and how bioengineering strategies can be used to steer the cell composition and their 3D organization within organoids to further enhance their utility in research and therapies.

  1. [On plant stem cells and animal stem cells].

    PubMed

    You, Yun; Jiang, Chao; Huang, Lu-Qi

    2014-01-01

    A comparison of plant and animal stem cells can highlight core aspects of stem-cell biology. In both kingdoms, stem cells are defined by their clonogenic properties and are maintained by intercellular signals. The signaling molecules are different in plants and animals stem cell niches, but the roles of argonaute and polycomb group proteins suggest that there are some molecular similarities.

  2. In Vitro Proliferation of Porcine Pancreatic Islet Cells for β-Cell Therapy Applications

    PubMed Central

    Niu, Guoguang; McQuilling, John P.; Zhou, Yu; Opara, Emmanuel C.; Orlando, Giuseppe

    2016-01-01

    β-Cell replacement through transplantation is the only curative treatment to establish a long-term stable euglycemia in diabetic patients. Owing to the shortage of donor tissue, attempts are being made to develop alternative sources of insulin-secreting cells. Stem cells differentiation and reprograming as well as isolating pancreatic progenitors from different sources are some examples; however, no approach has yet yielded a clinically relevant solution. Dissociated islet cells that are cultured in cell numbers by in vitro proliferation provide a promising platform for redifferentiation towards β-cells phenotype. In this study, we cultured islet-derived cells in vitro and examined the expression of β-cell genes during the proliferation. Islets were isolated from porcine pancreases and enzymatically digested to dissociate the component cells. The cells proliferated well in tissue culture plates and were subcultured for no more than 5 passages. Only 10% of insulin expression, as measured by PCR, was preserved in each passage. High glucose media enhanced insulin expression by about 4–18 fold, suggesting a glucose-dependent effect in the proliferated islet-derived cells. The islet-derived cells also expressed other pancreatic genes such as Pdx1, NeuroD, glucagon, and somatostatin. Taken together, these results indicate that pancreatic islet-derived cells, proliferated in vitro, retained the expression capacity for key pancreatic genes, thus suggesting that the cells may be redifferentiated into insulin-secreting β-like cells. PMID:28050568

  3. What are the macrophages and stellate cells doing in pancreatic adenocarcinoma?

    PubMed Central

    Pandol, Stephen J.; Edderkaoui, Mouad

    2015-01-01

    Pancreatic ductal adenocarcinoma is a devastating disease characterized by a dense desmoplastic stroma. Chemo- and radio-therapeutic strategies based on targeting cancer cells have failed in improving the outcome of this cancer suggesting important roles for stroma in therapy resistance. Cells in the tumor stroma have been shown to regulate proliferation, resistance to apoptosis and treatments, epithelial to mesenchymal transition (EMT) and stemness of cancer cells. Stellate cells in their activated state have been thought over the past decade to only have tumor promoting roles. However, recent findings suggest that stellate cells may have protective roles as well. The present review highlights the latest findings on the role of two major components of tumor stroma, pancreatic stellate cells and macrophages, in promoting or inhibiting pancreatic cancer, focused on their effects on EMT and cancer stemness. PMID:26029109

  4. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    SciTech Connect

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael; Linscheid, Philippe; Christ-Crain, Mirjam; Keller, Ulrich; Mueller, Beat; Zulewski, Henryk . E-mail: henryk.zulewski@unibas.ch

    2006-03-24

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.

  5. [Mesenchymal stromal cells transplantation in acute and chronic pancreatitis in rats].

    PubMed

    Lazebnik, L B; Trubitsyna, I E; Agafonov, M A; Kniazev, O V; Liundup, A V

    2011-01-01

    Before using MSC transplantation in the clinic to conduct preclinical studies MSCs to animals with acute and chronic pancreatitis. Work out the timing and dose of MSCs. The rationale of MSCs transplantation for the regeneration of damaged pancreatic tissue. The essence of the experiments is to establish the existence of common pathogenetic mechanisms for the development of pathological processes and sanogenesis toxic damage of pancreatic tissue. The study was work out in the rat model of acute and chronic pancreatitis, to explore beneficial and adverse effects of allogeneic stem cells for regenerative-reduction processes. For cell transplantation using allogenic stromal cell fraction of bone marrow, the cell suspension was injected at a dose of 2 x 10(6) and 5 x 10(6) cells.

  6. Melanoma stem cells.

    PubMed

    Roesch, Alexander

    2015-02-01

    The cancer stem cell concept significantly broadens our understanding of melanoma biology. However, this concept should be regarded as an integral part of a holistic cancer model that also includes the genetic evolution of tumor cells and the variability of cell phenotypes within a dynamic tumor microenvironment. The biologic complexity and methodological difficulties in identifying cancer stem cells and their biomarkers are currently impeding the direct translation of experimental findings into clinical practice. Nevertheless, it is these methodological shortcomings that provide a new perspective on the phenotypic heterogeneity and plasticity of melanoma with important consequences for future therapies. The development of new combination treatment strategies, particularly with regard to overcoming treatment resistance, could significantly benefit from targeted elimination of cell subpopulations with cancer stem cell properties. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  7. Gene and cell therapy for pancreatic cancer.

    PubMed

    Singh, Hans Martin; Ungerechts, Guy; Tsimberidou, Apostolia M

    2015-04-01

    The clinical outcomes of patients with pancreatic cancer are poor, and the limited success of classical chemotherapy underscores the need for new, targeted approaches for this disease. The delivery of genetic material to cells allows for a variety of therapeutic concepts. Engineered agents based on synthetic biology are under clinical investigation in various cancers, including pancreatic cancer. This review focuses on Phase I - III clinical trials of gene and cell therapy for pancreatic cancer and on future implications of recent translational research. Trials available in the US National Library of Medicine (www.clinicaltrials.gov) until February 2014 were reviewed and relevant published results of preclinical and clinical studies were retrieved from www.pubmed.gov . In pancreatic cancer, gene and cell therapies are feasible and may have synergistic antitumor activity with standard treatment and/or immunotherapy. Challenges are related to application safety, manufacturing costs, and a new spectrum of adverse events. Further studies are needed to evaluate available agents in carefully designed protocols and combination regimens. Enabling personalized cancer therapy, insights from molecular diagnostic technologies will guide the development and selection of new gene-based drugs. The evolving preclinical and clinical data on gene-based therapies can lay the foundation for future avenues improving patient care in pancreatic cancer.

  8. Intravital characterization of tumor cell migration in pancreatic cancer

    PubMed Central

    Beerling, Evelyne; Oosterom, Ilse; Voest, Emile; Lolkema, Martijn; van Rheenen, Jacco

    2016-01-01

    ABSTRACT Curing pancreatic cancer is difficult as metastases often determine the poor clinical outcome. To gain more insight into the metastatic behavior of pancreatic cancer cells, we characterized migratory cells in primary pancreatic tumors using intravital microscopy. We visualized the migratory behavior of primary tumor cells of a genetically engineered pancreatic cancer mouse model and found that pancreatic tumor cells migrate with a mesenchymal morphology as single individual cells or collectively as a stream of non-cohesive single motile cells. These findings may improve our ability to conceive treatments that block metastatic behavior. PMID:28243522

  9. Dental pulp stem cells

    PubMed Central

    Ashri, Nahid Y.; Ajlan, Sumaiah A.; Aldahmash, Abdullah M.

    2015-01-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors. PMID:26620980

  10. Reversing breast cancer stem cell into breast somatic stem cell.

    PubMed

    Wijaya, L; Agustina, D; Lizandi, A O; Kartawinata, M M; Sandra, F

    2011-02-01

    Stem cells have an important role in cell biology, allowing tissues to be renewed by freshly created cells throughout their lifetime. The specific micro-environment of stem cells is called stem cell niche; this environment influences the development of stem cells from quiescence through stages of differentiation. Recent advance researches have improved the understanding of the cellular and molecular components of the micro-environment--or niche--that regulates stem cells. We point out an important trend to the study of niche activity in breast cancers. Breast cancer has long been known to conserve a heterogeneous population of cells. While the majority of cells that make up tumors are destined to differentiate and eventually stop dividing, only minority populations of cells, termed cancer stem cell, possess extensive self renewal capability. These cancer stem cells possess characteristics of both stem cells and cancer cells. Breast cancer stem cells reversal to breast somatic stem cells offer a new therapy, that not only can stop the spread of breast cancer cells, but also can differentiate breast cancer stem cells into normal breast somatic stem cells. These can replace damaged breast tissue. Nevertheless, the complexity of realizing this therapy approach needs further research.

  11. Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters

    PubMed Central

    Lopez, Ana D.; Kayali, Ayse G.; Hayek, Alberto; King, Charles C.

    2014-01-01

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells. PMID:24895054

  12. Isolation, culture, and imaging of human fetal pancreatic cell clusters.

    PubMed

    Lopez, Ana D; Kayali, Ayse G; Hayek, Alberto; King, Charles C

    2014-05-18

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation(1-9). However in vitro, genesis of insulin producing cells from human fetal ICCs is low(10); results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust(11-17). A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro(11-22), far fewer exist for ICCs(10,23,24). Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue(6). Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.

  13. Catalyzing stem cell research.

    PubMed

    Willemse, Lisa; Lyall, Drew; Rudnicki, Michael

    2008-09-01

    In 2001, the Stem Cell Network was the first of its kind, a bold initiative to forge and nurture pan-Canadian collaborations involving researchers, engineers, clinicians and private and public sector partners. Canada's broad and deep pool of stem cell talent proved to be a fertile ground for such an initiative, giving rise to a strong, thriving network that, 7 years later, can list innovative cell expansion and screening technologies, early-phase clinical trials for stroke, pulmonary hypertension, muscular dystrophy and cornea replacement, and leading discourse on ethical, legal and social issues among its accomplishments. As it moves into its second and final phase of funding, the Stem Cell Network continues to push boundaries and has set its sights on overcoming the obstacles that impede the transfer of research findings to clinical applications, commercial products and public policy.

  14. Stem Cell Research

    SciTech Connect

    Verfaillie, Catherine

    2009-01-23

    We have identified a population of primitive cells in normal human post-natal bone marrow that can, at the single cell level, differentiate in many ways and also proliferate extensively. These cells can differentiate in vitro into most mesodermal cell types (for example, bone cells, and others), as well as cells into cells of the nervous system. The finding that stem cells exist in post-natal tissues with previously unknown proliferation and differentiation potential opens up the possibility of using them to treat a host of degenerative, traumatic or congenital diseases.

  15. Multipotent Stem Cell and Reproduction.

    PubMed

    Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi

    2016-01-01

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.

  16. Simultaneous characterization of pancreatic stellate cells and other pancreatic components within three-dimensional tissue environment during chronic pancreatitis

    NASA Astrophysics Data System (ADS)

    Hu, Wenyan; Fu, Ling

    2013-05-01

    Pancreatic stellate cells (PSCs) and other pancreatic components that play a critical role in exocrine pancreatic diseases are generally identified separately by conventional studies, which provide indirect links between these components. Here, nonlinear optical microscopy was evaluated for simultaneous characterization of these components within a three-dimensional (3-D) tissue environment, primarily based on multichannel detection of intrinsic optical emissions and cell morphology. Fresh rat pancreatic tissues harvested at 1 day, 7 days, and 28 days after induction of chronic pancreatitis were imaged, respectively. PSCs, inflammatory cells, blood vessels, and collagen fibers were identified simultaneously. The PSCs at day 1 of chronic pancreatitis showed significant enlargement compared with those in normal pancreas (p<0.001, analysis of variance linear contrast; n=8 for each group). Pathological events relating to these components were observed, including presence of inflammatory cells, deposited collagen, and phenotype conversion of PSCs. We demonstrate that label-free nonlinear optical microscopy is an efficient tool for dissecting PSCs and other pancreatic components coincidently within 3-D pancreatic tissues. It is a prospect for intravital observation of dynamic events under natural physiological conditions, and might help uncover the key mechanisms of exocrine pancreatic diseases, leading to more effective treatments.

  17. Stem cell mobilization.

    PubMed

    Cottler-Fox, Michele H; Lapidot, Tsvee; Petit, Isabelle; Kollet, Orit; DiPersio, John F; Link, Dan; Devine, Steven

    2003-01-01

    Successful blood and marrow transplant (BMT), both autologous and allogeneic, requires the infusion of a sufficient number of hematopoietic progenitor/stem cells (HPCs) capable of homing to the marrow cavity and regenerating a full array of hematopoietic cell lineages in a timely fashion. At present, the most commonly used surrogate marker for HPCs is the cell surface marker CD34, identified in the clinical laboratory by flow cytometry. Clinical studies have shown that infusion of at least 2 x 10(6) CD34(+) cells/kg recipient body weight results in reliable engraftment as measured by recovery of adequate neutrophil and platelet counts approximately 14 days after transplant. Recruitment of HPCs from the marrow into the blood is termed mobilization, or, more commonly, stem cell mobilization. In Section I, Dr. Tsvee Lapidot and colleagues review the wide range of factors influencing stem cell mobilization. Our current understanding focuses on chemokines, proteolytic enzymes, adhesion molecules, cytokines and stromal cell-stem cell interactions. On the basis of this understanding, new approaches to mobilization have been designed and are now starting to undergo clinical testing. In Section II, Dr. Michele Cottler-Fox describes factors predicting the ability to mobilize the older patient with myeloma. In addition, clinical approaches to improving collection by individualizing the timing of apheresis and adjusting the volume of blood processed to achieve a desired product are discussed. Key to this process is the daily enumeration of blood CD34(+) cells. Newer methods of enumerating and mobilizing autologous blood HPCs are discussed. In Section III, Dr. John DiPersio and colleagues provide data on clinical results of mobilizing allogeneic donors with G-CSF, GM-CSF and the combination of both as relates to the number and type of cells collected by apheresis. Newer methods of stem cell mobilization as well as the relationship of graft composition on immune reconstitution

  18. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    SciTech Connect

    Gao Xiaodong; Song Lujun; Shen Kuntang; Wang Hongshan; Niu Weixin Qin Xinyu

    2008-06-20

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed {beta} cells were in the process of proliferation. BrdU{sup +} insulin{sup -} PDX-1{sup +} cells, Ngn3{sup +} cells and insulin{sup +} glucagon{sup +} cells, which showed stem cells, were also found during {beta}-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34{sup +} cells can promote repair of pancreatic islets. Moreover, both proliferation of {beta} cells and differentiation of pancreatic stem cells contribute to the regeneration of {beta} cells.

  19. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice.

    PubMed

    Gao, Xiaodong; Song, Lujun; Shen, Kuntang; Wang, Hongshan; Niu, Weixin; Qin, Xinyu

    2008-06-20

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed beta cells were in the process of proliferation. BrdU(+) insulin(-) PDX-1(+) cells, Ngn3(+) cells and insulin(+) glucagon(+) cells, which showed stem cells, were also found during beta-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34(+) cells can promote repair of pancreatic islets. Moreover, both proliferation of beta cells and differentiation of pancreatic stem cells contribute to the regeneration of beta cells.

  20. Cloning of Mammary Stem Cells

    DTIC Science & Technology

    2001-11-01

    these parity-induced cells do represent a totipotent mammary stem cell population per se, but these cells might support stem cell maintenance as... Stem Cells PRINCIPAL INVESTIGATOR: Dr. Kay-Uwe Wagner CONTRACTING ORGANIZATION: University of Nebraska Medical Center Omaha, Nebraska 68198-6810 REPORT...Mammary Stem Cells DAMD17-00-1-0641 6. AUTHOR(S) Dr. Kay-Uwe Wagner 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

  1. Inhibition of Pancreatic Cancer Cell Proliferation by LRH-1 Inhibitors

    DTIC Science & Technology

    2013-09-01

    AD_________________ Award Number: W81XWH-12-1-0396 TITLE: INHIBITION OF PANCREATIC CANCER CELL...DATES COVERED 15September2012–14September2013 4. TITLE AND SUBTITLE INHIBITION OF PANCREATIC CANCER CELL PROLIFERATION BY LRH-1 INHIBITORS 5a...of pancreatic cancer is devastating, with mortality rates nearing its incidence rates. To date, there are no effective targeted anti-pancreatic

  2. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  3. Fifth Annual Stem Cell Summit.

    PubMed

    Knowlton, Daniel

    2010-04-01

    The Fifth Annual Stem Cell Summit, held in New York, included topics covering new commercial developments in the research field of stem cell-based therapies. This conference report highlights selected presentations on embryonic and adult stem cells, stem cell-based therapies for the treatment of orthopedic and cardiovascular indications and inflammatory diseases, as well as technologies for processing and storing stem cells. Investigational therapies discussed include placental expanded (PLX) cells (Pluristem Therapeutics Inc), StemEx (Gamida-Teva Joint Venture/Teva Pharmaceutical Industries Ltd) and remestemcel-L (Osiris Therapeutics Inc/Genzyme Corp/JCR Pharmaceuticals Co Ltd/ Mochida Pharmaceutical Co Ltd).

  4. Stem Cell Transplants (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Stem Cell Transplants KidsHealth > For Parents > Stem Cell Transplants A A A What's in this article? ... Recovery Coping en español Trasplantes de células madre Stem cells are cells in the body that have the ...

  5. Stem cells and transplant arteriosclerosis.

    PubMed

    Xu, Qingbo

    2008-05-09

    Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent developments in stem cell research have suggested novel mechanisms of vascular remodeling in allografts. For example, stem cells derived from the recipient may repair damaged endothelial cells of arteries in transplant organs. Further evidence suggests that stem cells or endothelial progenitor cells may be released from both bone marrow and non-bone marrow tissues. Vascular stem cells appear to replenish cells that died in donor vessels. Concomitantly, stem/progenitor cells may also accumulate in the intima, where they differentiate into smooth muscle cells. However, several issues concerning the contribution of stem cells to the pathogenesis of transplant arteriosclerosis are controversial, eg, whether bone marrow-derived stem cells can differentiate into smooth muscle cells that form neointimal lesions of the vessel wall. This review summarizes recent research on the role of stem cells in transplant arteriosclerosis, discusses the mechanisms of stem cell homing and differentiation into mature endothelial and smooth muscle cells, and highlights the controversial issues in the field.

  6. Laser biomodulation on stem cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  7. Neural stem cells.

    PubMed

    Kennea, Nigel L; Mehmet, Huseyin

    2002-07-01

    Neural stem cells (NSCs) have the ability to self-renew, and are capable of differentiating into neurones, astrocytes and oligodendrocytes. Such cells have been isolated from the developing brain and more recently from the adult central nervous system. This review aims to provide an overview of the current research in this evolving area. There is now increasing knowledge of the factors controlling the division and differentiation of NSCs during normal brain development. In addition, the cues for differentiation in vitro, and the possibility of transdifferentiation are reviewed. The discovery of these cells in the adult brain has encouraged research into their role during neurogenesis in the normal mature brain and after injury. Lastly other sources of neural precursors are discussed, and the potential for stem cells to be used in cell replacement therapy for brain injury or degenerative brain diseases with a particular emphasis on cerebral ischaemia and Parkinson's disease. Copyright 2002 John Wiley & Sons, Ltd.

  8. [Stem cell colloquy: conclusion].

    PubMed

    Tubiana, Maurice

    2002-10-01

    The stem cell data presented and discussed during the symposium raise the hope that important medical progress can be made in several fields: neuro-degenerative diseases, those linked to cellular deficit, some aspects of aging linked to cellular degeneration, and the treatment of cancers that may harm normal tissues at risk of being infiltrated by malignant cells. Three main types of stem cells are available. (i) Those present in normal adult tissue: contrary to what was believed, some data suggest that certain adult stem cells have a great plasticity (they can differentiate into cells different from those in tissues from which they were taken) and can proliferate in vitro without losing their properties. Nevertheless, their use faces several obstacles: in ill or elderly subjects, then these cells can be limited in number or not multiply well in vitro. In this case, auto-grafting of the cells cannot be used. They must be sought in another subject, and allo-grafting causes difficult and sometimes insoluble problems of immunological tolerance. (ii) Embryonic stem cells from surplus human embryos, obtained by in vitro fertilisation, which the parents decide not to use: these cells have a great potential for proliferation and differentiation, but can also encounter problems of immunological intolerance. (iii) Cells obtained from cell nuclear transfer in oocytes: these cells are well tolerated, since they are genetically and immunologically identical to those of the host. All types of stem cells can be obtained with them. However, they do present problems. For obtaining them, female oocytes are needed, which could lead to their commercialization. Moreover, the first steps for obtaining these cells are identical to those used in reproductive cloning. It therefore appears that each type of cell raises difficult scientific and practical problems. More research is needed to overcome these obstacles and to determine which type of stem cell constitutes the best solution for

  9. Neural stem cells: an overview.

    PubMed

    Parati, E A; Pozzi, S; Ottolina, A; Onofrj, M; Bez, A; Pagano, S F

    2004-01-01

    Multipotent stem cells are present in the majority of mammalian tissues where they are a renewable source of specialized cells. According to the several biological portions from which multipotent stem cells can be derived, they are characterized as a) embryonic stem cells (ESCs) isolated from the pluripotent inner-cell mass of the pre-implantation blastocyste-stage embryo; b) multipotent fetal stem cells (FSCs) from aborted fetuses; and c) adult stem cells (ASCs) localized in small zones of several organs known as "niche" where a subset of tissue cells and extracellular substrates can indefinitely house one or more stem cells and control their self-renewal and progeny production in vivo. ECSs have an high self-renewing capacity, plasticity and pluripotency over the years. Pluripotency is a property that makes a stem cell able to give rise to all cell type found in the embryo and adult animals.

  10. Stem cells and healthy aging.

    PubMed

    Goodell, Margaret A; Rando, Thomas A

    2015-12-04

    Research into stem cells and aging aims to understand how stem cells maintain tissue health, what mechanisms ultimately lead to decline in stem cell function with age, and how the regenerative capacity of somatic stem cells can be enhanced to promote healthy aging. Here, we explore the effects of aging on stem cells in different tissues. Recent research has focused on the ways that genetic mutations, epigenetic changes, and the extrinsic environmental milieu influence stem cell functionality over time. We describe each of these three factors, the ways in which they interact, and how these interactions decrease stem cell health over time. We are optimistic that a better understanding of these changes will uncover potential strategies to enhance stem cell function and increase tissue resiliency into old age.

  11. Stem Cells and Female Reproduction

    PubMed Central

    Du, Hongling; Taylor, Hugh S.

    2011-01-01

    Several recent findings in stem cell biology have resulted in new opportunities for the treatment of reproductive disease. Endometrial regeneration can be driven by bone marrow derived stem cells. This finding has potential implications for the treatment of uterine disorders. It also supports a new theory for the etiology of endometriosis. The ovaries have been shown to contain stem cells that form oocytes in adults and can be cultured in vitro to develop mature oocytes. Stem cells from the fetus have been demonstrated to lead to microchimerism in the mother and implicated in several maternal diseases. Additionally the placenta may be another source of hematopoietic stem cell. Finally endometrial derived stem cells have been demonstrated to differentiate into non-reproductive tissues. While we are just beginning to understand stem cells and many key questions remain, the potential advantages of stem cells in reproductive biology and medicine are apparent. PMID:19208782

  12. Stem cells as a treatment for chronic liver disease and diabetes.

    PubMed

    Levicar, N; Dimarakis, I; Flores, C; Tracey, J; Gordon, M Y; Habib, N A

    2007-01-01

    Advances in stem cell biology and the discovery of pluripotent stem cells have made the prospect of cell therapy and tissue regeneration a clinical reality. Cell therapies hold great promise to repair, restore, replace or regenerate affected organs and may perform better than any pharmacological or mechanical device. There is an accumulating body of evidence supporting the contribution of adult stem cells, in particular those of bone marrow origin, to liver and pancreatic islet cell regeneration. In this review, we will focus on the cell therapy for the diseased liver and pancreas by adult haematopoietic stem cells, as well as their possible contribution and application to tissue regeneration. Furthermore, recent progress in the generation, culture and targeted differentiation of human haematopoietic stem cells to hepatic and pancreatic lineages will be discussed. We will also explore the possibility that stem cell technology may lead to the development of clinical modalities for human liver disease and diabetes.

  13. Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice

    PubMed Central

    Li, Ning; Wu, Xuefeng; Holzer, Ryan G.; Lee, Jun-Hee; Todoric, Jelena; Park, Eek-Joong; Ogata, Hisanobu; Gukovskaya, Anna S.; Gukovsky, Ilya; Pizzo, Donald P.; VandenBerg, Scott; Tarin, David; Atay, Çiǧdem; Arkan, Melek C.; Deerinck, Thomas J.; Moscat, Jorge; Diaz-Meco, Maria; Dawson, David; Erkan, Mert; Kleeff, Jörg; Karin, Michael

    2013-01-01

    Chronic pancreatitis is an inflammatory disease that causes progressive destruction of pancreatic acinar cells and, ultimately, loss of pancreatic function. We investigated the role of IκB kinase α (IKKα) in pancreatic homeostasis. Pancreas-specific ablation of IKKα (IkkαΔpan) caused spontaneous and progressive acinar cell vacuolization and death, interstitial fibrosis, inflammation, and circulatory release of pancreatic enzymes, clinical signs resembling those of human chronic pancreatitis. Loss of pancreatic IKKα causes defective autophagic protein degradation, leading to accumulation of p62-mediated protein aggregates and enhanced oxidative and ER stress in acinar cells, but none of these effects is related to NF-κB. Pancreas-specific p62 ablation prevented ER and oxidative stresses and attenuated pancreatitis in IkkαΔpan mice, suggesting that cellular stress induced by p62 aggregates promotes development of pancreatitis. Importantly, downregulation of IKKα and accumulation of p62 aggregates were also observed in chronic human pancreatitis. Our studies demonstrate that IKKα, which may control autophagic protein degradation through its interaction with ATG16L2, plays a critical role in maintaining pancreatic acinar cell homeostasis, whose dysregulation promotes pancreatitis through p62 aggregate accumulation. PMID:23563314

  14. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  15. Inflammation and cancer stem cells.

    PubMed

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Characterization of Amniotic Stem Cells

    PubMed Central

    Koike, Chika; Zhou, Kaixuan; Takeda, Yuji; Fathy, Moustafa; Okabe, Motonori; Yoshida, Toshiko; Nakamura, Yukio; Kato, Yukio

    2014-01-01

    Abstract The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow–derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow–derived MSCs. The sorted TRA1-60–positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60–negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells. PMID:25068631

  17. Materials as stem cell regulators

    NASA Astrophysics Data System (ADS)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-06-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

  18. Materials as stem cell regulators

    PubMed Central

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  19. Kindlin-2 in pancreatic stellate cells promotes the progression of pancreatic cancer.

    PubMed

    Yoshida, Naoki; Masamune, Atsushi; Hamada, Shin; Kikuta, Kazuhiro; Takikawa, Tetsuya; Motoi, Fuyuhiko; Unno, Michiaki; Shimosegawa, Tooru

    2017-04-01

    Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis associated with pancreatic ductal adenocarcinoma (PDAC). Kindlin-2 is a focal adhesion protein that regulates the activation of integrins. This study aimed to clarify the role of kindlin-2 in PSCs in pancreatic cancer. Kindlin-2 expression in 79 resected pancreatic cancer tissues was examined by immunohistochemical staining. Kindlin-2-knockdown immortalized human PSCs were established using small interfering RNA. Pancreatic cancer cells were treated with conditioned media of PSCs, and the cell proliferation and migration were examined. SUIT-2 pancreatic cancer cells were subcutaneously injected into nude mice alone or with PSCs and the size of the tumors was monitored. Kindlin-2 expression was observed in PDAC and the peritumoral stroma. Stromal kindlin-2 expression was associated with shorter recurrence-free survival time after R0 resection. Knockdown of kindlin-2 resulted in decreased proliferation, migration, and cytokine expression in PSCs. The PSC-induced proliferation and migration of pancreatic cancer cells were suppressed by kindlin-2 knockdown in PSCs. In vivo, co-injection of PSCs increased the size of the tumors, but this effect was abolished by kindlin-2 knockdown in PSCs. In conclusion, kindlin-2 in PSCs promoted the progression of pancreatic cancer.

  20. Differentiated human stem cells resemble fetal, not adult, β cells.

    PubMed

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  1. Skin deep: from dermal fibroblasts to pancreatic beta cells.

    PubMed

    Manzar, Gohar S; Kim, Eun-Mi; Rotti, Pavana; Zavazava, Nicholas

    2014-08-01

    Type I diabetes (T1D) is a chronic autoimmune disease caused by pancreatic β-cell destruction induced by autoantibodies and autoreactive T cells. After significant reduction of the β-cell mass, diabetes sets in and can cause significant complications. It is estimated that more than 3 million Americans have T1D, and its prevalence among young individuals is progressively rising; however, the reasons for this increase are not known. Islet transplantation is recognized as the ultimate cure for T1D, but unfortunately, the severe scarcity of available islets makes it necessary to establish alternative sources of β-cells. Our lab seeks to establish human-induced pluripotent stem cells as an unlimited, novel source of insulin-producing cells (IPCs) that are patient-specific, obviating the requirement for immunosuppression. Although several reports have emerged demonstrating successful derivation of IPCs from human pluripotent stem cells, the efficiencies of derivation are inadequate and these IPCs do not respond to glucose stimulation in vitro. We reasoned that the use of a growth factor sequestering bioscaffold and promotion of cell-cell signaling through 3D clustering would enhance the generation of functionally superior IPCs compared to those derived by 2D differentiation. Here, we discuss a novel 3D platform for the generation of highly efficient human IPCs.

  2. Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells.

    PubMed

    Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund

    2017-05-31

    Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.

  3. Melanocytes, melanocyte stem cells, and melanoma stem cells.

    PubMed

    Lang, Deborah; Mascarenhas, Joseph B; Shea, Christopher R

    2013-01-01

    Melanocyte stem cells differ greatly from melanoma stem cells; the former provide pigmented cells during normal tissue homeostasis and repair, and the latter play an active role in a lethal form of cancer. These 2 cell types share several features and can be studied by similar methods. Aspects held in common by both melanocyte stem cells and melanoma stem cells include their expression of shared biochemical markers, a system of similar molecular signals necessary for their maintenance, and a requirement for an ideal niche microenvironment for providing these factors. This review provides a perspective of both these cell types and discusses potential models of stem cell growth and propagation. Recent findings provide a strong foundation for the development of new therapeutics directed at isolating and manipulating melanocyte stem cells for tissue engineering or at targeting and eradicating melanoma specifically, while sparing nontumor cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Multifunctional roles of urokinase plasminogen activator (uPA) in cancer stemness and chemoresistance of pancreatic cancer.

    PubMed

    Asuthkar, Swapna; Stepanova, Victoria; Lebedeva, Tatiana; Holterman, Aixuan L; Estes, Norman; Cines, Douglas B; Rao, Jasti S; Gondi, Christopher S

    2013-09-01

    Pancreatic ductal adenocarcinoma (PDAC) is almost always lethal. One of the underlying reasons for this lethality is believed to be the presence of cancer stem cells (CSC), which impart chemoresistance and promote recurrence, but the mechanisms responsible are unclear. Recently the poor prognosis of PDAC has been correlated with increased expression of urokinase plasminogen activator (uPA). In the present study we examine the role of uPA in the generation of PDAC CSC. We observe a subset of cells identifiable as a side population (SP) when sorted by flow cytometry of MIA PaCa-2 and PANC-1 pancreatic cancer cells that possess the properties of CSC. A large fraction of these SP cells are CD44 and CD24 positive, are gemcitabine resistant, possess sphere-forming ability, and exhibit increased tumorigenicity, known characteristics of cancer stemness. Increased tumorigenicity and gemcitabine resistance decrease after suppression of uPA. We observe that uPA interacts directly with transcription factors LIM homeobox-2 (Lhx2), homeobox transcription factor A5 (HOXA5), and Hey to possibly promote cancer stemness. uPA regulates Lhx2 expression by suppressing expression of miR-124 and p53 expression by repressing its promoter by inactivating HOXA5. These results demonstrate that regulation of gene transcription by uPA contributes to cancer stemness and clinical lethality.

  5. Multifunctional roles of urokinase plasminogen activator (uPA) in cancer stemness and chemoresistance of pancreatic cancer

    PubMed Central

    Asuthkar, Swapna; Stepanova, Victoria; Lebedeva, Tatiana; Holterman, AiXuan L.; Estes, Norman; Cines, Douglas B.; Rao, Jasti S.; Gondi, Christopher S.

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is almost always lethal. One of the underlying reasons for this lethality is believed to be the presence of cancer stem cells (CSC), which impart chemoresistance and promote recurrence, but the mechanisms responsible are unclear. Recently the poor prognosis of PDAC has been correlated with increased expression of urokinase plasminogen activator (uPA). In the present study we examine the role of uPA in the generation of PDAC CSC. We observe a subset of cells identifiable as a side population (SP) when sorted by flow cytometry of MIA PaCa-2 and PANC-1 pancreatic cancer cells that possess the properties of CSC. A large fraction of these SP cells are CD44 and CD24 positive, are gemcitabine resistant, possess sphere-forming ability, and exhibit increased tumorigenicity, known characteristics of cancer stemness. Increased tumorigenicity and gemcitabine resistance decrease after suppression of uPA. We observe that uPA interacts directly with transcription factors LIM homeobox-2 (Lhx2), homeobox transcription factor A5 (HOXA5), and Hey to possibly promote cancer stemness. uPA regulates Lhx2 expression by suppressing expression of miR-124 and p53 expression by repressing its promoter by inactivating HOXA5. These results demonstrate that regulation of gene transcription by uPA contributes to cancer stemness and clinical lethality. PMID:23864708

  6. Overexpression of ankyrin1 promotes pancreatic cancer cell growth

    PubMed Central

    Omura, Noriyuki; Mizuma, Masamichi; MacGregor, Anne; Hong, Seung-Mo; Ayars, Michael; Almario, Jose Alejandro; Borges, Michael; Kanda, Mitsuro; Li, Ang; Vincent, Audrey; Maitra, Anirban; Goggins, Michael

    2016-01-01

    The methylation status of a promoter influences gene expression and aberrant methylation during tumor development has important functional consequences for pancreatic and other cancers. Using methylated CpG island amplification and promoter microarrays, we identified ANK1 as hypomethylated in pancreatic cancers. Expression analysis determined ANK1 as commonly overexpressed in pancreatic cancers relative to normal pancreas. ANK1 was co-expressed with miR-486 in pancreatic cancer cells. Stable knockdown of ANK1 in the pancreatic cancer cell line AsPC1 led to changes in cell morphology, and decreases in colony formation. Stable knockdown of ANK1 also marked reduced the growth of tumors in athymic nude mice. Among patients undergoing pancreaticoduodenectomy, those with pancreatic cancers expressing ANK1 had a poorer prognosis than those without ANK1 expression. These findings indicate a role for ANK1 overexpression in mediating pancreatic cancer tumorigenicity. PMID:27144336

  7. Effect of taurine on acinar cell apoptosis and pancreatic fibrosis in dibutyltin dichloride-induced chronic pancreatitis.

    PubMed

    Matsushita, Koki; Mizushima, Takaaki; Shirahige, Akinori; Tanioka, Hiroaki; Sawa, Kiminari; Ochi, Koji; Tanimoto, Mitsune; Koide, Norio

    2012-01-01

    The relationship between pancreatic fibrosis and apoptosis of pancreatic acinar cells has not been fully elucidated. We reported that taurine had an anti-fibrotic effect in a dibutyltin dichloride (DBTC)-chronic pancreatitis model. However, the effect of taurine on apoptosis of pancreatic acinar cells is still unclear. Therefore, we examined apoptosis in DBTC-chronic pancreatitis and in the AR42J pancreatic acinar cell line with/without taurine. Pancreatic fibrosis was induced by a single administration of DBTC. Rats were fed a taurine-containing diet or a normal diet and were sacrificed at day 5. The AR42J pancreatic acinar cell line was incubated with/without DBTC with taurine chloramines. Apoptosis was determined by using terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) assay. The expression of Bad and Bcl-2 proteins in the AR42J cells lysates was detected by Western blot analysis. The apoptotic index of pancreatic acinar cells in DBTC-administered rats was significantly increased. Taurine treatment inhibited pancreatic fibrosis and apoptosis of acinar cells induced by DBTC. The number of TUNEL-positive cells in the AR42J pancreatic acinar cell lines was significantly increased by the addition of DBTC. Incubation with taurine chloramines ameliorated these changes. In conclusion, taurine inhibits apoptosis of pancreatic acinar cells and pancreatitis in experimental chronic pancreatitis.

  8. [Preclinical experience in stem cell therapy for digestive tract diseases].

    PubMed

    Jeon, Myung Shin; Hong, Soon Sun

    2011-09-25

    Adult stem cells are multipotent and self-renewing cells that contain several functions; i) migration and homing potential: stem cells can migrate to injured and inflamed tissues. ii) differentiation potential: stem cells which migrated to injured tissues can be differentiated into multiple cell types for repairing and regenerating the tissues. iii) immunomodulatory properties: stem cells, especially mesenchymal stem cells can suppress immune system such as inflammation. All those characteristics might be useful for the treatment of the digestive tract diseases which are complex and encompass a broad spectrum of different pathogenesis. Preclinical stem cell therapy showed some promising results, especially in liver failure, pancreatitis, sepsis, and inflammatory bowel disease. If we can understand more about the mechanism of stem cell action, stem cell therapy can become a promising alternative treatment for refractory digestive disease in the near future. In this review, we summarized current preclinical experiences in diseases of the digestive tract using stem cells. (Korean J Gastroenterol 2011;58:133-138).

  9. [Melanocyte stem cells in adults].

    PubMed

    Aubin-Houzelstein, Geneviève; Djian-Zaouche, Johanna; Panthier, Jean-Jacques

    2008-01-01

    Melanocyte stem cells have been recently localized in mice, in the outer root sheath of the lower permanent portion of the hair follicle. Specific depletion of melanocyte stem cell population is responsible for natural hair greying in aging mice and humans. Melanocyte stem cells also seem to drive the growth of malignant melanomas. A few mutations, either spontaneous or genetically engineered, accelerate the natural process of hair greying with age. These mutations allowed the identification of genes and signalling pathways controlling emergence, maintenance and/or differentiation of melanocyte stem cells. This review summarizes recent studies on the melanocyte stem cells and defines a few major unanswered questions in the field.

  10. New perspectives in stem cell research: beyond embryonic stem cells.

    PubMed

    Leeb, C; Jurga, M; McGuckin, C; Forraz, N; Thallinger, C; Moriggl, R; Kenner, L

    2011-04-01

    Although stem cell research is a rather new field in modern medicine, media soon popularized it. The reason for this hype lies in the potential of stem cells to drastically increase quality of life through repairing aging and diseased organs. Nevertheless, the essence of stem cell research is to understand how tissues are maintained during adult life. In this article, we summarize the various types of stem cells and their differentiation potential in vivo and in vitro. We review current clinical applications of stem cells and highlight problems encountered when going from animal studies to clinical practice. Furthermore, we describe the current state of induced pluripotent stem cell technology and applications for disease modelling and cell replacement therapy. © 2011 Blackwell Publishing Ltd.

  11. Forkhead Protein FoxO1 Acts as a Repressor to Inhibit Cell Differentiation in Human Fetal Pancreatic Progenitor Cells

    PubMed Central

    Jiang, Zongzhe; Tian, Jingjing; Zhang, Wenjian; Yan, Hao; Liu, Liping; Huang, Zhenhe; Lou, Jinning

    2017-01-01

    Our colleagues have reported previously that human pancreatic progenitor cells can readily differentiate into insulin-containing cells. Particularly, transplantation of these cell clusters upon in vitro induction for 3-4 w partially restores hyperglycemia in diabetic nude mice. In this study, we used human fetal pancreatic progenitor cells to identify the forkhead protein FoxO1 as the key regulator for cell differentiation. Thus, induction of human fetal pancreatic progenitor cells for 1 week led to increase of the pancreatic β cell markers such as Ngn3, but decrease of stem cell markers including Oct4, Nanog, and CK19. Of note, FoxO1 knockdown or FoxO1 inhibitor significantly upregulated Ngn3 and insulin as well as the markers such as Glut2, Kir6.2, SUR1, and VDCC, which are designated for mature β cells. On the contrary, overexpression of FoxO1 suppressed the induction and reduced expression of these β cell markers. Taken together, these results suggest that FoxO1 may act as a repressor to inhibit cell differentiation in human fetal pancreatic progenitor cells. PMID:28349071

  12. Stem cells and regenerative medicine for diabetes mellitus.

    PubMed

    Sumi, Shoichiro; Gu, Yuanjun; Hiura, Akihito; Inoue, Kazutomo

    2004-10-01

    A profound knowledge of the development and differentiation of pancreatic tissues, especially islets of Langerhans, is necessary for developing regenerative therapy for severe diabetes mellitus. A recent developmental study showed that PTF-1a is expressed in almost all parts of pancreatic tissues, in addition to PDX-1, a well-known transcription factor that is essential for pancreas development. Another study suggested that alpha cells and beta cells individually, but not sequentially, differentiated from neurogenin-3--expressing precursor cells. Under strong induction of pancreas regeneration, it is likely that pancreatic duct cells dedifferentiate to grow, express PDX-1, and re-differentiate toward other cell types including islet cells. Duct epithelium-like cells can be cultivated from crude pancreatic exocrine cells and can be induced to differentiate toward islet-like cell clusters under some culture conditions. These cell clusters made from murine pancreas have been shown to control hyperglycemia when transplanted into diabetic mice. Liver-derived oval cells and their putative precursor H-CFU-C have been shown to differentiate toward pancreatic cells. Furthermore, extrapancreatic cells contained in bone marrow and amniotic membrane are reported to become insulin-producing cells. However, their exact characterization and relationship between these cell types remain to be elucidated. Our recent study has shown that islet-like cell clusters can be differentiated from mouse embryonic stem cells. Transplantation of these clusters could ameliorate hyperglycemia of STZ-induced diabetic mice without forming teratomas. Interestingly, these cells expressed several genes specific to exocrine pancreatic tissue in addition to islet-related genes, suggesting that stable and efficient differentiation toward certain tissues can only be achieved through a process mimicking normal development of the tissue. Perhaps recent developments in these fields may rapidly lead to an

  13. miR-18a counteracts AKT and ERK activation to inhibit the proliferation of pancreatic progenitor cells

    PubMed Central

    Li, Xuyan; Zhang, Zhenwu; Li, Yunchao; Zhao, Yicheng; Zhai, Wenjun; Yang, Lin; Kong, Delin; Wu, Chunyan; Chen, Zhenbao; Teng, Chun-Bo

    2017-01-01

    Activation of endogenous stem/progenitor cells to repair injured tissues is an ideal option for disease treatment. However, adult pancreatic progenitor cells remain in a quiescent state in vivo. Thus, it is difficult to stimulate proliferation and differentiation in these progenitor cells, and the cause remains elusive. miR-17-92 cluster miRNAs are highly conserved in mammals and are expressed in multiple tissue stem/progenitor cells, but their role in pancreatic progenitor cells are less well known. In the present study, we demonstrate that miR-18a, but not the other members of the miR-17-92 gene cluster, inhibits the proliferation of pancreatic progenitor cells in vitro and ex vivo. miR-18a inhibits proliferation of adult pancreatic progenitor cells through arresting the cell cycle at G1 stage, indicating that miR-18a plays a role in keeping the adult pancreatic progenitor cells in quiescence. miR-18a inhibits pancreatic progenitor proliferation by targeting the gene expressions of connective tissue growth factor (CTGF), neural precursor cell expressed, developmentally down-regulated 9 (Nedd9), and cyclin dependent kinase 19 (CDK19), as well as by suppressing activation of the proliferation-related signaling pathways phosphatidylinositol 3-kinase–protein kinase B (PI3K/AKT) and extracellular signal-regulated kinase (ERK). PMID:28332553

  14. Maturation of Stem Cell-Derived Beta-cells Guided by the Expression of Urocortin 3

    PubMed Central

    van der Meulen, Talitha; Huising, Mark O.

    2014-01-01

    Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully generate pancreatic endoderm cells. In diabetic rodents, such cells can differentiate further along the beta-cell lineage until they are eventually capable of restoring normoglycemia. While these observations demonstrate that stem cell-derived pancreatic endoderm has the potential to differentiate into mature, glucose-responsive beta-cells, the signals that direct differentiation and maturation from pancreatic endoderm onwards remain poorly understood. In this review, we analyze the sequence of events that culminates in the formation of beta-cells during embryonic development. and summarize how current protocols to generate beta-cells have sought to capitalize on this ontogenic template. We place particular emphasis on the current challenges and opportunities which occur in the later stages of beta-cell differentiation and maturation of transplantable stem cell-derived beta-cells. Another focus is on the question how the use of recently identified maturation markers such as urocortin 3 can be instrumental in guiding these efforts. PMID:25148370

  15. Stem cells in dentistry--part I: stem cell sources.

    PubMed

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties.

  16. Measuring stem cell circadian rhythm.

    PubMed

    Hrushesky, William; Rich, Ivan N

    2015-01-01

    Circadian rhythms are biological rhythms that occur within a 24-h time cycle. Sleep is a prime example of a circadian rhythm and with it melatonin production. Stem cell systems also demonstrate circadian rhythms. This is particularly the case for the proliferating cells within the system. In fact, all proliferating cell populations exhibit their own circadian rhythm, which has important implications for disease and the treatment of disease. Stem cell chronobiology is particularly important because the treatment of cancer can be significantly affected by the time of day a drug is administered. This protocol provides a basis for measuring hematopoietic stem cell circadian rhythm for future stem cell chronotherapeutic applications.

  17. Genetically modified mesenchymal stem cells for improved islet transplantation.

    PubMed

    Wu, Hao; Ye, Zhaoyang; Mahato, Ram I

    2011-10-03

    The use of adult stem cells for therapeutic purposes has met with great success in recent years. Among several types of adult stem cells, mesenchymal stem cells (MSCs) derived from bone marrow (BM) and other sources have gained popularity for basic research and clinical applications because of their therapeutic potential in treating a variety of diseases. Because of their tissue regeneration potential and immune modulation effect, MSCs were recently used as cell-based therapy to promote revascularization, increase pancreatic β-cell proliferation, and avoid allograft rejection in islet transplantation. Taking advantage of the recent progress in gene therapy, genetically modified MSCs can further enhance and expand the therapeutic benefit of primary MSCs while retaining their stem-cell-like properties. This review aims to gain a thorough understanding of the current obstacles to successful islet transplantation and discusses the potential role of primary MSCs before or after genetic modification in islet transplantation.

  18. Breast Cancer Stem Cells

    PubMed Central

    Velasco-Velázquez, Marco A.; Homsi, Nora; De La Fuente, Marisol; Pestell, Richard G.

    2012-01-01

    Breast cancer stem cells (BCSCs) constitute a subpopulation of tumor cells that express stem cell-associated markers and have a high capacity for tumor generation in vivo. Identification of BCSCs from tumor samples or breast cancer cell lines has been based mainly on CD44+/CD24−/low or ALDH+ phenotypes. BCSCs isolation has allowed the analysis of the molecular mechanisms involved in their origin, self-renewal, differentiation into tumor cells, resistance to radiation therapy and chemotherapy, and invasiveness and metastatic ability. Molecular genetic analysis using knockout animals and inducible transgenics have identified NF-κB, c-Jun, p21CIP1, and Forkhead-like-protein Dach1 in BCSC expansion and fate. Clinical analyses of BCSCs in breast tumors have found a correlation between the proportion of BCSCs and poor prognosis. Therefore, new therapies that specifically target BCSCs are an urgent need. We summarize recent evidence that partially explain the biological characteristics of BCSCs. PMID:22249027

  19. Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis

    PubMed Central

    Mews, P; Phillips, P; Fahmy, R; Korsten, M; Pirola, R; Wilson, J; Apte, M

    2002-01-01

    Background: It is now generally accepted that chronic pancreatic injury and fibrosis may result from repeated episodes of acute pancreatic necroinflammation (the necrosis-fibrosis sequence). Recent studies suggest that pancreatic stellate cells (PSCs), when activated, may play an important role in the development of pancreatic fibrosis. Factors that may influence PSC activation during pancreatic necroinflammation include cytokines known to be important in the pathogenesis of acute pancreatitis, such as tumour necrosis factor α (TNF-α), and the interleukins 1, 6, and 10 (IL-1, IL-6, and IL-10). Aim: To determine the effects of these cytokines on PSC activation, as assessed by cell proliferation, α smooth muscle actin (α-SMA) expression, and collagen synthesis. Methods: Cultured rat PSCs were incubated with cytokines for 24 hours. Cell proliferation was assessed by measuring 3H thymidine incorporation into cellular DNA, α-SMA expression by western blotting, and collagen synthesis by incorporation of 14C proline into collagenase sensitive protein. mRNA levels for procollagen α1(1) in PSCs were determined by northern and dot blotting methods. Results: Expression of α-SMA by PSCs was increased on exposure to each of the cytokines used in the study. Stellate cell proliferation was stimulated by TNF-α but inhibited by IL-6, while IL-1 and IL-10 had no effect on PSC proliferation. Collagen synthesis by PSCs was stimulated by TNF-α and IL-10, inhibited in response to IL-6, and unaltered by IL-1. Changes in collagen protein synthesis in response to TNF-α, IL-10, and IL-6 were not regulated at the mRNA level in the cells. Conclusion: This study has demonstrated that PSCs have the capacity to respond to cytokines known to be upregulated during acute pancreatitis. Persistent activation of PSCs by cytokines during acute pancreatitis may be a factor involved in the progression from acute pancreatitis to chronic pancreatic injury and fibrosis. PMID:11889076

  20. Autophagy in stem cell aging.

    PubMed

    Revuelta, Miren; Matheu, Ander

    2017-10-01

    Aging is responsible for changes in mammalian tissues that result in an imbalance to tissue homeostasis and a decline in the regeneration capacity of organs due to stem cell exhaustion. Autophagy is a constitutive pathway necessary to degrade damaged organelles and protein aggregates. Autophagy is one of the hallmarks of aging, which involves a decline in the number and functionality of stem cells. Recent studies show that stem cells require autophagy to get rid of cellular waste produced during the quiescent stage. In particular, two independent studies in muscle and hematopoietic stem cells demonstrate the relevance of the autophagy impairment for stem cell exhaustion and aging. In this review, we summarize the main results of these works, which helped to elucidate the impact of autophagy in stem cell activity as well as in age-associated diseases. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. Making a Hematopoietic Stem Cell.

    PubMed

    Daniel, Michael G; Pereira, Carlos-Filipe; Lemischka, Ihor R; Moore, Kateri A

    2016-03-01

    Previous attempts to either generate or expand hematopoietic stem cells (HSCs) in vitro have involved either ex vivo expansion of pre-existing patient or donor HSCs or de novo generation from pluripotent stem cells (PSCs), comprising both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). iPSCs alleviated ESC ethical issues but attempts to generate functional mature hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful. New efforts focus on directly reprogramming somatic cells into definitive HSCs and HSPCs. To meet clinical needs and to advance drug discovery and stem cell therapy, alternative approaches are necessary. In this review, we synthesize the strategies used and the key findings made in recent years by those trying to make an HSC. Published by Elsevier Ltd.

  2. PDX:PBX complexes are required for normal proliferation of pancreatic cells during development.

    PubMed

    Dutta, S; Gannon, M; Peers, B; Wright, C; Bonner-Weir, S; Montminy, M

    2001-01-30

    The homeobox factor PDX-1 is a key regulator of pancreatic morphogenesis and glucose homeostasis; targeted disruption of the PDX-1 gene leads to pancreatic agenesis in pdx-1(-/-) homozygotes. Pdx-1 heterozygotes develop normally, but they display glucose intolerance in adulthood. Like certain other homeobox proteins, PDX-1 contains a consensus FPWMK motif that promotes heterodimer formation with the ubiquitous homeodomain protein PBX. To evaluate the importance of PDX-1:PBX complexes in pancreatic morphogenesis and glucose homeostasis, we expressed either wild-type or PBX interaction defective PDX-1 transgenes under control of the PDX-1 promoter. Both wild-type and mutant PDX-1 transgenes corrected glucose intolerance in pdx-1 heterozygotes. The wild-type PDX-1 transgene rescued the development of all pancreatic lineages in pdx-1(-/-) animals, and these mice survived to adulthood. In contrast, pancreata from pdx-1(-/-) mice expressing the mutant PDX-1 transgene were hypoplastic, and these mice died within 3 weeks of birth from pancreatic insufficiency. All pancreatic cell types were observed in pdx-1(-/-) mice expressing the mutant PDX-1 transgene; but the islets were smaller, and increased numbers of islet hormone-positive cells were noted within the ductal epithelium. These results indicate that PDX-1:PBX complexes are dispensable for glucose homeostasis and for differentiation of stem cells into ductal, endocrine, and acinar lineages; but they are essential for expansion of these populations during development.

  3. DKK3 blocked translocation of β-catenin/EMT induced by hypoxia and improved gemcitabine therapeutic effect in pancreatic cancer Bxpc-3 cell.

    PubMed

    Guo, Qingqu; Qin, Wenjie

    2015-12-01

    The Wnt/β-catenin signalling pathway is activated in pancreatic cancer initiation and progression. Dickkopf-related protein 3 (DKK3) is a member of the human Dickkopf family and an antagonist of Wnt ligand activity. However, the function of DKK3 in this pathway in pancreatic cancer is rarely known. We examined the expression of DKK3 in six human pancreatic cancer cell lines, 75 pancreatic cancer and 75 adjacent non-cancerous tissues. Dickkopf-related protein 3 was frequently silenced and methylation in pancreatic cancer cell lines (3/6). The expression of DKK3 was significantly lower in pancreatic cancer tissues than in adjacent normal pancreas tissues. Further, ectopic expression of DKK3 inhibits nuclear translocation of β-catenin induced by hypoxia in pancreatic cancer Bxpc-3 cell. The forced expression of DKK3 markedly suppressed migration and the stem cell-like phenotype of pancreatic cancer Bxpc-3 cell in hypoxic conditions through reversing epithelial-mesenchymal transition (EMT). The stable expression of DKK3 sensitizes pancreatic cancer Bxpc-3 cell to gemcitabine, delays tumour growth and augments gemcitabine therapeutic effect in pancreatic cancer xenotransplantation model. Thus, we conclude from our finding that DKK3 is a tumour suppressor and improved gemcitabine therapeutic effect through inducing apoptosis and regulating β-catenin/EMT signalling in pancreatic cancer Bxpc-3 cell.

  4. Cardiac stem cell niche, MMP9, and culture and differentiation of embryonic stem cells.

    PubMed

    Mishra, Paras Kumar; Kuypers, Nicholas John; Singh, Shree Ram; Leiberh, Noel Diaz; Chavali, Vishalakshi; Tyagi, Suresh C

    2013-01-01

    Embryonic stem cells (ESC) are totipotent, self-renewing, and clonogenic, having potential to differentiate into a wide variety of cell types. Due to regenerative capability, it has tremendous potential for treating myocardial infarction (death of myocardial tissue) and type 1 diabetes (death of pancreatic beta cells). Understanding the components regulating ESC differentiation is the key to unlock the regenerative potential of ESC-based therapies. Both the stiffness of extracellular matrix (ECM) and surrounding niche/microenvironment play pivotal roles in ESC differentiation. Matrix metalloproteinase-9 (MMP9) induces fibrosis that causes stiffness of the ECM and impairs differentiation of cardiac stem cells into cardiomyocytes. Here, we describe the method of ESC culture and differentiation, and the expression of MMP9 and its inhibitor, tissue inhibitor of metalloproteinase-4 (TIMP4) in differentiating ESC.

  5. (Re)defining stem cells.

    PubMed

    Shostak, Stanley

    2006-03-01

    Stem-cell nomenclature is in a muddle! So-called stem cells may be self-renewing or emergent, oligopotent (uni- and multipotent) or pluri- and totipotent, cells with perpetual embryonic features or cells that have changed irreversibly. Ambiguity probably seeped into stem cells from common usage, flukes in biology's history beginning with Weismann's divide between germ and soma and Haeckel's biogenic law and ending with contemporary issues over the therapeutic efficacy of adult versus embryonic cells. Confusion centers on tissue dynamics, whether stem cells are properly members of emerging or steady-state populations. Clarity might yet be achieved by codifying differences between cells in emergent populations, including embryonic stem and embryonic germ (ES and EG) cells in tissue culture as opposed to self-renewing (SR) cells in steady-state populations.

  6. Ionic mechanisms in pancreatic β cell signaling.

    PubMed

    Yang, Shao-Nian; Shi, Yue; Yang, Guang; Li, Yuxin; Yu, Jia; Berggren, Per-Olof

    2014-11-01

    The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K(+), Na(+), Ca(2+) and Cl(-) across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K(+) efflux through ATP-sensitive K(+) (KATP) channels, the voltage-gated Ca(2+) (CaV) channel-mediated Ca(2+) influx and K(+) efflux through voltage-gated K(+) (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K(+) efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca(2+) influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K(+) efflux mediated by KV2.1 delayed rectifier K(+) channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca(2+) entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.

  7. Stem cell tracking by nanotechnologies.

    PubMed

    Villa, Chiara; Erratico, Silvia; Razini, Paola; Fiori, Fabrizio; Rustichelli, Franco; Torrente, Yvan; Belicchi, Marzia

    2010-03-12

    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET), single-photon emission tomography (SPECT), magnetic resonance (MR) imaging, and X-Ray computed microtomography (microCT). This review examines the use of nanotechnologies for stem cell tracking.

  8. Stem Cell Tracking by Nanotechnologies

    PubMed Central

    Villa, Chiara; Erratico, Silvia; Razini, Paola; Fiori, Fabrizio; Rustichelli, Franco; Torrente, Yvan; Belicchi, Marzia

    2010-01-01

    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET), single-photon emission tomography (SPECT), magnetic resonance (MR) imaging, and X-Ray computed microtomography (microCT). This review examines the use of nanotechnologies for stem cell tracking. PMID:20480000

  9. Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function

    PubMed Central

    Osterman, Carlos J. Diaz; Lynch, James C.; Leaf, Patrick; Gonda, Amber; Ferguson Bennit, Heather R.; Griffiths, Duncan; Wall, Nathan R.

    2015-01-01

    Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin’s effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through

  10. Regeneration therapy of pancreatic beta cells: towards a cure for diabetes?

    PubMed

    Yamaoka, Takashi

    2002-09-06

    Regeneration therapy is an approach which could potentially move us towards a cure for type 1 diabetes. It is classified into three categories: (1) In vitro regeneration therapy using transplanted cultured cells, including ES cells, pancreatic stem cells, and beta-cell lines, in conjunction with immunosuppressive therapy or immunoisolation. (2) In ex vivo regeneration therapy, patients' own cells, such as bone marrow stem cells, are transiently removed and induced to differentiate into beta cells in vitro. At present, however, insulin-producing cells cannot be generated from bone marrow stem cells. (3) In in vivo regeneration therapy, impaired tissues regenerate from patients' own cells in vivo. beta-Cell neogenesis from non-beta-cells and beta-cell proliferation in vivo have been considered, particularly as regeneration therapies for type 2 diabetes. Regeneration therapy of pancreatic beta cells can be combined with various other therapeutic strategies, including islet transplantation, cell-based therapy, gene therapy, and drug therapy to promote beta-cell proliferation and neogenesis, and it is hoped that these strategies will, in the future, provide a cure for diabetes.

  11. Nuclear receptor regulation of stemness and stem cell differentiation

    PubMed Central

    Jeong, Yangsik

    2009-01-01

    Stem cells include a diverse number of toti-, pluri-, and multi-potent cells that play important roles in cellular genesis and differentiation, tissue development, and organogenesis. Genetic regulation involving various transcription factors results in the self-renewal and differentiation properties of stem cells. The nuclear receptor (NR) superfamily is composed of 48 ligand-activated transcription factors involved in diverse physiological functions such as metabolism, development, and reproduction. Increasing evidence shows that certain NRs function in regulating stemness or differentiation of embryonic stem (ES) cells and tissue-specific adult stem cells. Here, we review the role of the NR superfamily in various aspects of stem cell biology, including their regulation of stemness, forward- and trans-differentiation events; reprogramming of terminally differentiated cells; and interspecies differences. These studies provide insights into the therapeutic potential of the NR superfamily in stem cell therapy and in treating stem cell-associated diseases (e.g., cancer stem cell). PMID:19696553

  12. Control of beta-cell differentiation by the pancreatic mesenchyme.

    PubMed

    Attali, Myriam; Stetsyuk, Volodymyr; Basmaciogullari, Annie; Aiello, Virginie; Zanta-Boussif, Maria A; Duvillie, Bertrand; Scharfmann, Raphael

    2007-05-01

    The importance of mesenchymal-epithelial interactions for normal development of the pancreas was recognized in the early 1960s, and mesenchymal signals have been shown to control the proliferation of early pancreatic progenitor cells. The mechanisms by which the mesenchyme coordinates cell proliferation and differentiation to produce the normal number of differentiated pancreatic cells are not fully understood. Here, we demonstrate that the mesenchyme positively controls the final number of beta-cells that develop from early pancreatic progenitor cells. In vitro, the number of beta-cells that developed from rat embryonic pancreatic epithelia was larger in cultures with mesenchyme than without mesenchyme. The effect of mesenchyme was not due to an increase in beta-cell proliferation but was due to increased proliferation of early pancreatic duodenal homeobox-1 (PDX1)-positive progenitor cells, as confirmed by bromodeoxyuridine incorporation. Consequently, the window during which early PDX1(+) pancreatic progenitor cells differentiated into endocrine progenitor cells expressing Ngn3 was extended. Fibroblast growth factor 10 mimicked mesenchyme effects on proliferation of early PDX1(+) progenitor cells and induction of Ngn3 expression. Taken together, our results indicate that expansion of early PDX1(+) pancreatic progenitor cells represents a way to increase the final number of beta-cells developing from early embryonic pancreas.

  13. Loss of Ifnar1 in Pancreatic Acinar Cells Ameliorates the Disease Course of Acute Pancreatitis

    PubMed Central

    Miller, Katharina J.; Raulefs, Susanne; Kong, Bo; Steiger, Katja; Regel, Ivonne; Gewies, Andreas; Kleeff, Jörg; Michalski, Christoph W.

    2015-01-01

    Type I interferon constitutes an essential component of the combinational therapy against viral disease. Acute pancreatitis is one side effect of type I interferon-based therapy, implying that activation of type I interferon signaling affects the homeostasis and integrity of pancreatic acinar cells. Here, we investigated the role of type I interferon signaling in pancreatic acinar cells using a caerulein-induced murine model of acute pancreatitis. Pancreas-specific ablation of interferon (alpha and beta) receptor 1 (Ifnar1) partially protected animals from caerulein-induced pancreatitis, as demonstrated by reduced tissue damage. Profiling of infiltrating immune cells revealed that this dampened tissue damage response correlated with the number of macrophages in the pancreas. Pharmacologic depletion of macrophages reversed the protective effect of Ifnar1 deficiency. Furthermore, expression of chemokine (C-C motif) ligand 2 (Ccl2), a potent factor for macrophage recruitment, was significantly increased in the Ifnar1-deficient pancreas. Thus, type I interferon signaling in pancreatic acinar cells controls pancreatic homeostasis by affecting the macrophage-mediated inflammatory response in the pancreas. PMID:26618925

  14. Pluripotency of adult stem cells derived from human and rat pancreas

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Birth, M.; Rohwedel, J.; Assmuth, K.; Goepel, A.; Wedel, T.

    Adult stem cells are undifferentiated cells found within fully developed tissues or organs of an adult individuum. Until recently, these cells have been considered to bear less self-renewal ability and differentiation potency compared to embryonic stem cells. In recent studies an undifferentiated cell type was found in primary cultures of isolated acini from exocrine pancreas termed pancreatic stellate cells. Here we show that pancreatic stellate-like cells have the capacity of extended self-renewal and are able to differentiate spontaneously into cell types of all three germ layers expressing markers for smooth muscle cells, neurons, glial cells, epithelial cells, chondrocytes and secretory cells (insulin, amylase). Differentiation and subsequent formation of three-dimensional cellular aggregates (organoid bodies) were induced by merely culturing pancreatic stellate-like cells in hanging drops. These cells were developed into stable, long-term, in vitro cultures of both primary undifferentiated cell lines as well as organoid cultures. Thus, evidence is given that cell lineages of endodermal, mesodermal, and ectodermal origin arise spontaneously from a single adult undifferentiated cell type. Based on the present findings it is assumed that pancreatic stellate-like cells are a new class of lineage uncommitted pluripotent adult stem cells with a remarkable self-renewal ability and differentiation potency. The data emphasize the versatility of adult stem cells and may lead to a reappraisal of their use for the treatment of inherited disorders or acquired degenerative diseases.

  15. [Nicotinamide influence on pancreatic cells viability].

    PubMed

    Kuchmerovs'ka, T M; Donchenko, H V; Tykhonenko, T M; Huzyk, M M; Stavniĭchuk, R V; Ianits'ka, L V; Stepanenko, S P; Klymenko, A P

    2012-01-01

    The study was undertaken to investigate the modulating effect of nicotinamide (NAm) in different concentrations and under different glucose concentrations on the viability and oxidative stress induced by streptozotocin (STZ, 5 mmol/l) and hydrogen peroxide (H2O2, 100 micromol/l) on isolated rat pancreatic cells of the Langerhans islets in vitro. Cell viability did not depend on the concentration of glucose in the range of 5-20 mmol/l, and in subsequent studies we used glucose in concentration of 10 mmol/l to protect cells against its hypo- and hyperglycemic action. Cytoprotective effect of NAm in concentrations from 5 to 20 mmol/l on cells survival was the same. It was found that the destructive action of STZ and H2O2 during 24 hours on isolated cells of the pancreas resulted in the significant cell death. It was revealed that NAm in concentration of 5 mmol/l not only had cytoprotective effects against STZ and H2O2 but also partially reduced the level of oxidative stress in the investigated cells induced by these compounds. High concentration of NAm, 35 mmol/l, causes cytotoxic effect on the viability of pancreatic islet cells and increase of oxidative stress induced by STZ and H2O2. Most likely these effects could be associated with direct modulatory action of NAm on important effector mechanisms involved in cell death, including PARP-dependent processes, or/and indirectly, through metabolic and antioxidant effects of the compound.

  16. Stem Cells, Redox Signaling, and Stem Cell Aging

    PubMed Central

    Liang, Raymond

    2014-01-01

    Abstract Significance: Functional stem cell decline has been postulated to result in loss of maintenance of tissue homeostasis leading to organismal decline and diseases of aging. Recent Advances: Recent findings implicate redox metabolism in the control of stem cell pool and stem cell aging. Although reactive oxygen species (ROS) are better known for their damaging properties to DNA, proteins and lipids, recent findings suggest that ROS may also be an integral physiological mediator of cellular signaling in primary cells. Critical Issues: Here we review recent published work on major signaling pathways and transcription factors that are regulated by ROS and mediate ROS regulation of stem cell fate. We will specifically focus on how alterations in this regulation may be implicated in disease and particularly in diseases of stem cell aging. In general, based on the work described here we propose a model in which ROS function as stem cell rheostat. Future Directions: Future work in elucidating how ROS control stem cell cycling, apoptotic machinery, and lineage determination should shed light on mechanisms whereby ROS may control stem cell aging. Antioxid. Redox Signal. 20, 1902–1916. PMID:24383555

  17. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population.

  18. FACS Sorting Mammary Stem Cells.

    PubMed

    Iriondo, Oihana; Rábano, Miriam; Vivanco, María D M

    2015-01-01

    Fluorescent-activated cell sorting (FACS) represents one of the key techniques that have been used to isolate and characterize stem cells, including cells from the mammary gland. A combination of approaches, including recognition of cell surface antigens and different cellular activities, has facilitated the identification of stem cells from the healthy mammary gland and from breast tumors. In this chapter we describe the protocol to use FACS to separate breast cancer stem cells, but most of the general principles discussed could be applied to sort other types of cells.

  19. Targeting prostate cancer stem cells.

    PubMed

    Crea, Francesco; Mathews, Lesley A; Farrar, William L; Hurt, Elaine M

    2009-12-01

    Cancer stem cells are the sub-population of cells present within tumors responsible for tumorigenesis. These cells have unique biological properties including self-renewal and the ability to differentiate. Furthermore, it is thought that these cells are more resistant to conventional chemotherapy and, as a result, are responsible for patient relapse. We will discuss the identification of prostate cancer stem cells, their unique properties and how these cells may be targeted for more efficacious therapies.

  20. Pancreatic Satellite Cells Derived Galectin-1 Increase the Progression and Less Survival of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Gao, Jun; Wang, Sen; Ye, Nianyuan; Li, Ping; Gao, Sujun; Miao, Yi; Wang, Daorong; Jiang, Kuirong

    2014-01-01

    Background Galectin-1, a member of carbohydrate-binding proteins with a polyvalent function on tumor progression, was found strongly expressed in pancreatic satellite cells (PSCs), which partner in crime with cancer cells and promote the development of pancreatic ductal adenocarcinoma (PDAC). We evaluated the effects of PSCs derived Galectin-1 on the progression of PDAC, as well as the tumor establishment and development in mouse xenografts. Methods The relationship between immunohistochemistry staining intensity of Galectin-1 and clinicopathologic variables were assessed in 66 PDAC tissues, 18 chronic pancreatitis tissues and 10 normal controls. The roles of PSCs isolated from PDAC and normal pancreas on the proliferative activity, MMP2 and MMP9 expression, and the invasion of CFPAC-1 in the co-cultured system, as well as on the tumor establishment and development in mouse xenografts by mixed implanting with CFPAC-1 subcutaneously were evaluated. Results Galectin-1 expression was gradually increased from normal pancreas (negative), chronic pancreatitis (weak) to PDAC (strong), in which Galectin-1 expression was also increased from well, moderately to poorly differentiated PDAC. Galectin-1 staining intensity of pancreatic cancer tissue was associated with increase in tumor size, lymph node metastasis, perineural invasion and differentiation and UICC stage, and served as the independent prognostic indicator of poor survival of pancreatic cancer. In vitro and in vivo experiments indicated that TGF-β1 upregulated Galectin-1 expression in PSCs, which could further promotes the proliferative activity, MMP2 and MMP9 expression, and invasion of pancreatic cancer cells, as well as the tumor establishment and growth. Conclusion Galectin-1 expression in stromal cells of pancreatic cancer suggests that this protein plays a role in the promotion of cancer cells invasion and metastasis and provides a therapeutic target for the treatment of pancreatic cancer. PMID:24595374

  1. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    PubMed

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  2. Chronic cadmium exposure in vitro causes acquisition of multiple tumor cell characteristics in human pancreatic epithelial cells.

    PubMed

    Qu, Wei; Tokar, Erik J; Kim, Andrew J; Bell, Matthew W; Waalkes, Michael P

    2012-09-01

    Cancer may be a stem cell (SC)-based disease involving formation of cancer SCs (CSCs) potentially arising from transformation of normal SCs. Cadmium has been linked to human pancreatic cancer. We studied cadmium exposure of human pancreatic ductal epithelial (HPDE) cells and whether SCs may be targeted in this process. We chronically exposed HPDE cells to low level cadmium (1 μM) for ≤ 29 weeks. Nonadherent spheroid formation was used to indicate CSC-like cell production, and we assessed tumor cell characteristics in such spheres. Assessed tumor cell characteristics including secretion of matrix metalloproteinase-9 (MMP-9), invasion, and colony formation were fortified by evaluating expression of relevant genes by real-time reverse transcription polymerase chain reaction and by Western blot. Increased MMP-9 secretion and overexpression of the pancreatic cancer marker S100P occurred in chronic (29 weeks of exposure) cadmium-exposed (CCE) cells. CCE cells also showed markedly higher colony formation and invasion, typical of cancer cells. Floating "spheres" of viable cells, known to contain an abundance of normal SCs or CSCs, form in vitro with many cell types. CCE cells produced 3-fold more spheres than control cells and were more invasive, secreted more MMP-9, and overexpressed markers for pancreatic SCs/CSCs (i.e., CXCR4, OCT4, CD44) and S100P, a marker for pancreatic cancer. CCE-derived spheres rapidly produced aggressive, highly branched, and poorly differentiated glandular-like structures in Matrigel. Chronic cadmium exposure produced multiple tumor cell characteristics in HPDE cells and CCE cell-derived spheres. These data support the plausibility of cadmium as a human pancreatic carcinogen.

  3. Altered Gene Expression in Cerulein-Stimulated Pancreatic Acinar Cells: Pathologic Mechanism of Acute Pancreatitis

    PubMed Central

    Yu, Ji Hoon; Lim, Joo Weon

    2009-01-01

    Acute pancreatitis is a multifactorial disease associated with the premature activation of digestive enzymes. The genes expressed in pancreatic acinar cells determine the severity of the disease. The present study determined the differentially expressed genes in pancreatic acinar cells treated with cerulein as an in vitro model of acute pancreatitis. Pancreatic acinar AR42J cells were stimulated with 10-8 M cerulein for 4 h, and genes with altered expression were identified using a cDNA microarray for 4,000 rat genes and validated by real-time PCR. These genes showed a 2.5-fold or higher increase with cerulein: lithostatin, guanylate cyclase, myosin light chain kinase 2, cathepsin C, progestin-induced protein, and pancreatic trypsin 2. Stathin 1 and ribosomal protein S13 showed a 2.5-fold or higher decreases in expression. Real-time PCR analysis showed time-dependent alterations of these genes. Using commercially available antibodies specific for guanylate cyclase, myosin light chain kinase 2, and cathepsin C, a time-dependent increase in these proteins were observed by Western blotting. Thus, disturbances in proliferation, differentiation, cytoskeleton arrangement, enzyme activity, and secretion may be underlying mechanisms of acute pancreatitis. PMID:20054485

  4. Protein Kinase D Regulates Cell Death Pathways in Experimental Pancreatitis

    PubMed Central

    Yuan, Jingzhen; Liu, Yannan; Tan, Tanya; Guha, Sushovan; Gukovsky, Ilya; Gukovskaya, Anna; Pandol, Stephen J.

    2012-01-01

    Inflammation and acinar cell necrosis are two major pathological responses of acute pancreatitis, a serious disorder with no current therapies directed to its molecular pathogenesis. Serine/threonine protein kinase D family, which includes PKD/PKD1, PKD2, and PKD3, has been increasingly implicated in the regulation of multiple physiological and pathophysiological effects. We recently reported that PKD/PKD1, the predominant PKD isoform expressed in rat pancreatic acinar cells, mediates early events of pancreatitis including NF-κB activation and inappropriate intracellular digestive enzyme activation. In current studies, we investigated the role and mechanisms of PKD/PKD1 in the regulation of necrosis in pancreatic acinar cells by using two novel small molecule PKD inhibitors CID755673 and CRT0066101 and molecular approaches in in vitro and in vivo experimental models of acute pancreatitis. Our results demonstrated that both CID755673 and CRT0066101 are PKD-specific inhibitors and that PKD/PKD1 inhibition by either the chemical inhibitors or specific PKD/PKD1 siRNAs attenuated necrosis while promoting apoptosis induced by pathological doses of cholecystokinin-octapeptide (CCK) in pancreatic acinar cells. Conversely, up-regulation of PKD expression in pancreatic acinar cells increased necrosis and decreased apoptosis. We further showed that PKD/PKD1 regulated several key cell death signals including inhibitors of apoptotic proteins, caspases, receptor-interacting protein kinase 1 to promote necrosis. PKD/PKD1 inhibition by CID755673 significantly ameliorated necrosis and severity of pancreatitis in an in vivo experimental model of acute pancreatitis. Thus, our studies indicate that PKD/PKD1 is a key mediator of necrosis in acute pancreatitis and that PKD/PKD1 may represent a potential therapeutic target in acute pancreatitis. PMID:22470346

  5. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis

    PubMed Central

    Apte, M; Haber, P; Darby, S; Rodgers, S; McCaughan, G; Korsten, M; Pirola, R; Wilson, J

    1999-01-01

    BACKGROUND—The pathogenesis of pancreatic fibrosis is unknown. In the liver, stellate cells play a major role in fibrogenesis by synthesising increased amounts of collagen and other extracellular matrix (ECM) proteins when activated by profibrogenic mediators such as cytokines and oxidant stress. 
AIMS—To determine whether cultured rat pancreatic stellate cells produce collagen and other ECM proteins, and exhibit signs of activation when exposed to the cytokines platelet derived growth factor (PDGF) or transforming growth factor β (TGF-β). 
METHODS—Cultured pancreatic stellate cells were immunostained for the ECM proteins procollagen III, collagen I, laminin, and fibronectin using specific polyclonal antibodies. For cytokine studies, triplicate wells of cells were incubated with increasing concentrations of PDGF or TGF-β. 
RESULTS—Cultured pancreatic stellate cells stained strongly positive for all ECM proteins tested. Incubation of cells with 1, 5, and 10 ng/ml PDGF led to a significant dose related increase in cell counts as well as in the incorporation of 3H-thymidine into DNA. Stellate cells exposed to 0.25, 0.5, and 1 ng/ml TGF-β showed a dose dependent increase in α smooth muscle actin expression and increased collagen synthesis. In addition, TGF-β increased the expression of PDGF receptors on stellate cells. 
CONCLUSIONS—Pancreatic stellate cells produce collagen and other extracellular matrix proteins, and respond to the cytokines PDGF and TGF-β by increased proliferation and increased collagen synthesis. These results suggest an important role for stellate cells in pancreatic fibrogenesis. 

 Keywords: pancreatic fibrosis; stellate cell activation; cytokines PMID:10075961

  6. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  7. Epidermal stem cells: an update.

    PubMed

    Watt, Fiona M; Lo Celso, Cristina; Silva-Vargas, Violeta

    2006-10-01

    The mammalian epidermis is a highly accessible tissue in which to study the properties of adult stem cells. Global gene expression profiling has revealed new markers and regulators of the stem cell compartment. Although stem cells have the potential to differentiate into multiple lineages, their progeny follow a more restricted number of lineages in undamaged epidermis as a result of local microenvironmental cues. The response of the epidermis to a particular signal depends on signal strength and duration. Recent advances in the field have led to elucidation of the mechanisms by which stem cells are maintained and the pathways that interact with Wnt signalling to specify lineage choice as cells leave the stem cell compartment. This work has also yielded new insights into skin tumour development.

  8. Bioprinting for stem cell research

    PubMed Central

    Tasoglu, Savas; Demirci, Utkan

    2012-01-01

    Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439

  9. Stem cells for spine surgery

    PubMed Central

    Schroeder, Joshua; Kueper, Janina; Leon, Kaplan; Liebergall, Meir

    2015-01-01

    In the past few years, stem cells have become the focus of research by regenerative medicine professionals and tissue engineers. Embryonic stem cells, although capable of differentiating into cell lineages of all three germ layers, are limited in their utilization due to ethical issues. In contrast, the autologous harvest and subsequent transplantation of adult stem cells from bone marrow, adipose tissue or blood have been experimentally utilized in the treatment of a wide variety of diseases ranging from myocardial infarction to Alzheimer’s disease. The physiologic consequences of stem cell transplantation and its impact on functional recovery have been studied in countless animal models and select clinical trials. Unfortunately, the bench to bedside translation of this research has been slow. Nonetheless, stem cell therapy has received the attention of spinal surgeons due to its potential benefits in the treatment of neural damage, muscle trauma, disk degeneration and its potential contribution to bone fusion. PMID:25621119

  10. Stem Cells behind the Barrier

    PubMed Central

    Cangkrama, Michael; Ting, Stephen B.; Darido, Charbel

    2013-01-01

    Epidermal stem cells sustain the adult skin for a lifetime through self-renewal and the production of committed progenitors. These stem cells generate progeny that will undergo terminal differentiation leading to the development of a protective epidermal barrier. Whereas the molecular mechanisms that govern epidermal barrier repair and renewal have been extensively studied, pathways controlling stem cell differentiation remain poorly understood. Asymmetric cell divisions, small non-coding RNAs (microRNAs), chromatin remodeling complexes, and multiple differentiation factors tightly control the balance of stem and progenitor cell proliferation and differentiation, and disruption of this balance leads to skin diseases. In this review, we summarize and discuss current advances in our understanding of the mechanisms regulating epidermal stem and progenitor cell differentiation, and explore new relationships for maintenance of skin barrier function. PMID:23812084

  11. [Stem cell therapy: an update].

    PubMed

    Coulombel, Laure

    2009-03-01

    Medicine will be faced with a major challenge in coming years, namely how to treat for tissue dysfunction due to disease and aging There are two basic options: drug therapy and cell therapy. Stem cells have been the subject of intense speculation and controversy for several years, as they open up radically new therapeutic possibilities. Classical drugs can only smoothen consequences of tissue dysfunction, whereas cell therapy has the potential to restore tissue function by providing fresh cells. Cell therapy is totally different from organ transplantation, which can only benefit a limited number of patients. The use of the generic term "stem cells" to designate a whole variety of cell types that are present throughout life, is a source of confusion and ambiguity. It will take years of cognitive research to unravel the molecular mechanisms that govern a stem cell's multi- or totipotent status before we can fully exploit this therapeutic tool to the full. The younger a stem cell the greater its potential and, probably, the more durable its benefits, but the use of embryonic stem cells raises ethical issues. The redundancy or equivalence of diferent categories of cells is another source of controversy, yet researchers must be able to study stem cells in all their diversity, as complementary rather than competitive alternatives, in an acceptable ethical and regulatory environment. We briefly describe the three types of stem cells: pluripotent embryonic stem cells, fetal and adult stem cells, and pluripotent reprogrammed adult somatic cells. Only the former two categories have physiological functions: the first gives rise to tissues and organs while the second maintains tissue function during adulthood

  12. Stem cells in pharmaceutical biotechnology.

    PubMed

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  13. A sesquiterpene lactone from Siegesbeckia glabrescens suppresses Hedgehog/Gli-mediated transcription in pancreatic cancer cells

    PubMed Central

    Lee, Hwa Jin; Wu, Qian; Li, Hua; Bae, Gyu-Un; Kim, An Keun; Ryu, Jae-Ha

    2016-01-01

    Pancreatic cancer is aggressive and therefore difficult to treat; however, continued efforts have been made with the aim of developing an effective therapy against the disease. The Hedgehog (Hh) signaling pathway is reportedly involved in the proliferation and survival of pancreatic cancer cells. The transcription factor glioma-associated oncogene (Gli) is a key component of the Hh signaling pathway and the primary effector of pancreatic cancer development. Inhibiting Gli is a proven therapeutic strategy for this disease. The present study examined the regulation of Gli and the expression of its target genes to identify an inhibitor of the Sonic Hh (Shh) pathway. A germacranolide sesquiterpene lactone (GSL) was isolated from Siegesbeckia glabrescens as an inhibitor of Gli-mediated transcription. The results demonstrated that GSL inhibited Shh-induced osteoblast differentiation and Gli homolog 1 (Gli1)-mediated transcriptional activity in mesenchymal C3H10T1/2 stem cells. Furthermore, GSL suppressed Gli-mediated transcriptional activity in human pancreatic cancer PANC-1 and AsPC-1 cells, which resulted in reduced cancer cell proliferation and downregulated expression of the Gli-target genes, Gli1 and cyclin D1. A sesquiterpene lactone from S. glabrescens may therefore serve as a candidate for the treatment of Hh/Gli-dependent pancreatic cancer. PMID:27698879

  14. The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine.

    PubMed

    Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2010-12-01

    Multipotent adult stem cells have many potential therapeutic applications. Our recent findings suggest that hair follicles are a promising source of easily accessible multipotent stem cells. Stem cells in the hair follicle area express the neural stem cell marker nestin, suggesting that hair-follicle stem cells and neural stem cells have common features. Nestin-expressing hair follicle stem cells can form neurons and other cell types, and thus adult hair follicle stem cells could have important therapeutic applications, particularly for neurologic diseases. Transplanted hair follicle stem cells promote the functional recovery of injured peripheral nerve and spinal cord. Recent findings suggest that direct transplantation of hair-follicle stem cells without culture can promote nerve repair, which makes them potentially clinically practical. Human hair follicle stem cells as well as mouse hair follicle stem cells promote nerve repair and can be applied to test the hypothesis that human hair follicle stem cells can provide a readily available source of neurologically therapeutic stem cells. The use of hair follicle stem cells for nerve regeneration overcomes critical problems of embryonic stem cells or induced pluripotent stem cells in that the hair follicle stem cells are multipotent, readily accessible, non-oncogenic, and are not associated with ethical issues.

  15. Ethical boundary-work in the embryonic stem cell laboratory.

    PubMed

    Wainwright, Steven P; Williams, Clare; Michael, Mike; Farsides, Bobbie; Cribb, Alan

    2006-09-01

    Most accounts of the ethics of stem cell research are de- contextualised reviews of the ethical and legal literature. In this chapter we present a socially embedded account of some of the ethical implications of stem cell research, from the perspectives of scientists directly involved in this area. Based on an ethnography of two leading embryonic stem cell laboratories in the UK, our data form part of the findings from a larger project mapping the scientific, medical, social and ethical dimensions of innovative stem cell treatment, focusing on the areas of liver cell and pancreatic islet cell transplantation. We explore three key issues: what individual scientists themselves view as ethical sources of human embryos and stem cells; their perceptions of human embryos and stem cells; and how scientists perceive regulatory frameworks in stem cell research. We argue that these dimensions of laboratory practice are all examples of 'ethical boundary-work', which is becoming an integral part of the routine practice and performance of biomedical science. Our work adds to the relatively few sociological studies that explore ethics in clinical settings and to an even smaller body of work that explores scientists' views on the ethical issues relating to their research.

  16. Stem cell therapies: California dreamin'?

    PubMed

    Novak, Kris

    2010-01-08

    Ready or not, stem cells are a step closer to the clinic, thanks to approximately $230 million awarded by CIRM to 14 California-based research groups to develop stem cell-based therapies within 4 years. But, as Kris Novak reports, some of these projects are closer to therapeutic reality than others.

  17. Stem cell mitochondria during aging.

    PubMed

    Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Shyh-Chang, Ng

    2016-04-01

    Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future.

  18. FDA Warns About Stem Cell Claims

    MedlinePlus

    ... Home For Consumers Consumer Updates FDA Warns About Stem Cell Claims Share Tweet Linkedin Pin it More sharing ... blood-forming system. back to top Regulation of Stem Cells FDA regulates stem cells in the U.S. to ...

  19. What's It Like to Donate Stem Cells?

    MedlinePlus

    ... for Cancer What’s It Like to Donate Stem Cells? People usually volunteer to donate stem cells for ... autologous transplant. If you want to donate stem cells for someone else People who want to donate ...

  20. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    PubMed

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  1. Stem cells to replace or regenerate the diabetic pancreas: Huge potential & existing hurdles

    PubMed Central

    Bhartiya, Deepa

    2016-01-01

    Various stem cell sources are being explored to treat diabetes since the proof-of-concept for cell therapy was laid down by transplanting cadaveric islets as a part of Edmonton protocol in 2000. Human embryonic stem (hES) cells derived pancreatic progenitors have got US-FDA approval to be used in clinical trials to treat type 1 diabetes mellitus (T1DM). However, these progenitors more closely resemble their foetal counterparts and thus whether they will provide long-term regeneration of adult human pancreas remains to be demonstrated. In addition to lifestyle changes and administration of insulin sensitizers, regeneration of islets from endogenous pancreatic stem cells may benefit T2DM patients. The true identity of pancreatic stem cells, whether these exist or not, whether regeneration involves reduplication of existing islets or ductal epithelial cells transdifferentiate, remains a highly controversial area. We have recently demonstrated that a novel population of very small embryonic-like stem cells (VSELs) is involved during regeneration of adult mouse pancreas after partial-pancreatectomy. VSELs (pluripotent stem cells in adult organs) should be appreciated as an alternative for regenerative medicine as these are autologous (thus immune rejection issues do not exist) with no associated risk of teratoma formation. T2DM is a result of VSELs dysfunction with age and uncontrolled proliferation of VSELs possibly results in pancreatic cancer. Extensive brainstorming and financial support are required to exploit the potential of endogenous VSELs to regenerate the pancreas in a patient with diabetes. PMID:27241638

  2. Targeting cancer stem cells: a new therapy to cure cancer patients.

    PubMed

    Hu, Yapeng; Fu, Liwu

    2012-01-01

    Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. They have been identified in blood, breast, brain, colon, melanoma, pancreatic, prostate, ovarian, lung cancers and so on. It is often considered to be associated with chemo-resistance and radio-resistance that lead to the failure of traditional therapies. Most therapies are directed at the fast growing tumor mass but not the slow dividing cancer stem cells. Eradicating cancer stem cells, the root of cancer origin and recurrence, has been thought as a promising approach to improve cancer survival or even to cure cancer patients. Understanding the characteristics of cancer stem cells will help to develop novel therapies to eliminate the initiating cancer stem cell, and the relevant patents on the cancer stem cell and cancer therapy by cancer stem cells will be discussed.

  3. [Plasticity of tissue stem cells].

    PubMed

    Uher, Ferenc; Vas, Virág

    2002-05-05

    In the early stages of embryonic development, cells have the capability of dividing indefinitely and then differentiating into any type of cell in the body. Recent studies have revealed that much of this remarkable developmental potential of stem cells is retained by small populations of cells within most tissues in the adult. Intercellular signals that control the proliferation, differentiation and survival of tissue stem cells in their niches are being identified and include a diverse array of morphogens, cytokines, chemokines and cell adhesion molecules. Adult tissue stem cells, moreover, can also differentiate into developmentally unrelated cell types, such as nerve stem cells into blood cells. Currently, we can only speculate about the mechanisms involved in such dramatic changes in cell fate. For example, the emergence of, say, hematopoietic stem cells from brain neurospheres could involve either transdifferentiation (brain-->blood) or dedifferentiation (brain-->pluripotent cells), or by the actions of rare, but residual pluripotent stem cells. This issue is central to understanding the molecular basis of commitment and lies at the heart of debates about plasticity and the reversibility of developmental restriction.

  4. Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells

    PubMed Central

    Zhang, Wei-Wei; Zhan, Shu-Hui; Geng, Chang-Xin; Sun, Xin; Erkan, Mert; Kleeff, Jörg; Xie, Xiang-Jun

    2016-01-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription-quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, as well as in PSCs. An enzyme-linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)-α and transforming growth factor-β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co-cultured adhesive potential of Panc-1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc-1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc-1 cells. The expression of TNF-α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, and also in

  5. Lasers, stem cells, and COPD

    PubMed Central

    2010-01-01

    The medical use of low level laser (LLL) irradiation has been occurring for decades, primarily in the area of tissue healing and inflammatory conditions. Despite little mechanistic knowledge, the concept of a non-invasive, non-thermal intervention that has the potential to modulate regenerative processes is worthy of attention when searching for novel methods of augmenting stem cell-based therapies. Here we discuss the use of LLL irradiation as a "photoceutical" for enhancing production of stem cell growth/chemoattractant factors, stimulation of angiogenesis, and directly augmenting proliferation of stem cells. The combination of LLL together with allogeneic and autologous stem cells, as well as post-mobilization directing of stem cells will be discussed. PMID:20158898

  6. Immune privilege of stem cells.

    PubMed

    Ichiryu, Naoki; Fairchild, Paul J

    2013-01-01

    Immune privilege provides protection to vital tissues or cells of the body when foreign antigens are introduced into these sites. The modern concept of relative immune privilege applies to a variety of tissues and anatomical structures, including the hair follicles and mucosal surfaces. Even sites of chronic inflammation and developing tumors may acquire immune privilege by recruiting immunoregulatory effector cells. Adult stem cells are no exception. For their importance and vitality, many adult stem cell populations are believed to be immune privileged. A preimplantation-stage embryo that derives from a totipotent stem cell (i.e., a fertilized oocyte) must be protected from maternal allo-rejection for successful implantation and development to occur. Embryonic stem cells, laboratory-derived cell lines of preimplantation blastocyst-origin, may, therefore, retain some of the immunological properties of the developing embryo. However, embryonic stem cells and their differentiated tissue derivatives transplanted into a recipient do not necessarily have an ability to subvert immune responses to the extent required to exploit their pluripotency for regenerative medicine. In this review, an extended definition of immune privilege is developed and the capacity of adult and embryonic stem cells to display both relative and acquired immune privilege is discussed. Furthermore, we explore how these intrinsic properties of stem cells may one day be harnessed for therapeutic gain.

  7. On hematopoietic stem cell fate.

    PubMed

    Metcalf, Donald

    2007-06-01

    Multipotential hematopoietic stem cells (HSCs) maintain blood-cell formation throughout life. Here, Metcalf considers the origin and heterogeneity of HSCs, their ability to self-generate, and their commitment to the various hematopoietic lineages.

  8. Stem cell mechanics: Auxetic nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Ning

    2014-06-01

    The nuclei of naive mouse embryonic stem cells that are transitioning towards differentiation expand when the cells are stretched and contract when they are compressed. What drives this auxetic phenotype is, however, unclear.

  9. Gastrointestinal stem cell up-to-date.

    PubMed

    Pirvulet, V

    2015-01-01

    Cellular and tissue regeneration in the gastrointestinal tract depends on stem cells with properties of self-renewal, clonogenicity, and multipotency. Progress in stem cell research and the identification of potential gastric, intestinal, colonic stem cells new markers and the signaling pathways provide hope for the use of stem cells in regenerative medicine and treatments for disease. This review provides an overview of the different types of stem cells, focusing on tissue-restricted adult stem cells.

  10. Environmental Contaminants and Pancreatic Beta-Cells

    PubMed Central

    Fabricio, Gabriel; Malta, Ananda; Chango, Abalo; De Freitas Mathias, Paulo Cezar

    2016-01-01

    Despite health policies as well as clinical and research efforts, diabetes prevalence is still rising around the world. A multitude of causes have been suggested for this increase, mostly related to familial background, the occidental diet which is rich in fat/carbohydrates, and sedentary life style. Type 2 diabetes involves malfunctions of the primary pancreatic beta-cells, usually attributed to local damage; however, it can be associated with other stressful environmental agents, such as chemical contaminants from food, plastic and air, among others. Indeed, exposure to these chemical agents during perinatal and adolescent life can increase the risk of developing cardiometabolic diseases later in life. This review explores data showing which environmental chemical agents may produce injury in beta-cells and further impair the insulinotropic process of type 2 diabetes. Additionally, it points the need to also consider unusual causes of metabolic diseases, such as environmental contaminants. PMID:27087124

  11. Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells.

    PubMed

    Zhang, Wei-Wei; Zhan, Shu-Hui; Geng, Chang-Xin; Sun, Xin; Erkan, Mert; Kleeff, Jörg; Xie, Xiang-Jun

    2016-10-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription‑quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc‑1 and T3M4 cells, as well as in PSCs. An enzyme‑linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)‑α and transforming growth factor‑β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co‑cultured adhesive potential of Panc‑1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc‑1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc‑1 cells. The expression of TNF‑α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc

  12. Perineural Mast Cells Are Specifically Enriched in Pancreatic Neuritis and Neuropathic Pain in Pancreatic Cancer and Chronic Pancreatitis

    PubMed Central

    Wang, Kun; Kehl, Timo; Giese, Nathalia A.; Algül, Hana; Friess, Helmut; Ceyhan, Güralp O.

    2013-01-01

    Background Pancreatic neuritis is a histopathological hallmark of pancreatic neuropathy and correlates to abdominal neuropathic pain sensation in pancreatic adenocarcinoma (PCa) and chronic pancreatitis (CP). However, inflammatory cell subtypes that compose pancreatic neuritis and their correlation to the neuropathic pain syndrome in PCa and CP are yet unknown. Methods Inflammatory cells within pancreatic neuritis lesions of patients with PCa (n = 20) and CP (n = 20) were immunolabeled and colorimetrically quantified with the pan-leukocyte marker CD45, with CD68 (macrophages), CD8 (cytotoxic T-lymphocytes), CD4 (T-helper cells), CD20 (B-lymphocytes), NCL-PC (plasma cells), neutrophil elastase, PRG2 (eosinophils), anti-mast cell (MC) tryptase and correlated to pain sensation. Perineural mast cell subtypes were analyzed by double immunolabeling with MC chymase. Expression and neural immunoreactivity of protease-activated receptor type 1 (PAR-1) and type 2 (PAR-2) were analyzed in PCa and CP and correlated to pain status of the patients. Results In PCa and CP, nerves were predominantly infiltrated by cytotoxic T-lymphocytes (PCa: 35% of all perineural inflammatory cells, CP: 33%), macrophages (PCa: 39%, CP: 33%) and MC (PCa: 21%, CP: 27%). In both entities, neuropathic pain sensation was associated with a specific increase of perineural MC (PCa without pain: 14% vs. PCa with pain: 31%; CP without pain: 19% vs. CP with pain: 34%), not affecting the frequency of other inflammatory cell subtypes. The vast majority of these MC contained MC chymase. PAR-1 and PAR-2 expression did not correlate to the pain sensation of PCa and CP patients. Conclusion Pancreatic neuritis in PC and CP is composed of cytotoxic T-lymphocytes, macrophages and MC. The specific enrichment of MC around intrapancreatic nerves in neuropathic pain due to PCa and CP suggests the presence of MC-induced visceral hypersensitivity in the pancreas. Therefore, pancreatic and enteric neuropathies seem

  13. Keratinocyte stem cells: a commentary.

    PubMed

    Potten, Christopher S; Booth, Catherine

    2002-10-01

    For many years it has been widely accepted that stem cells play a crucial role in adult tissue maintenance. The concept that the renewing tissues of the body contain a small subcompartment of self-maintaining stem cells, upon which the entire tissue is dependent, is also now accepted as applicable to all renewing tissues. Gene therapy and tissue engineering are driving considerable interest in the clinical application of such hierarchically organized cellular compartments. Recent initial observations have provided a tantalizing insight into the large pluripotency of these cells. Indeed, scientists are now beginning to talk about the possible totipotency of some adult tissue stem cells. Such work is currently phenomenologic, but analysis of data derived from genomics and proteomics, identifying the crucial control signals involved, will soon provide a further impetus to stem cell biology with far reaching applications. The epidermis with its relatively simple structure, ease of accessibility, and the ability to grow its cells in vitro is one obvious target tissue for testing stem cell manipulation theories. It is crucial, however, that the normal keratinocyte stem cell is thoroughly characterized prior to attempting to manipulate its pluripotency. This commentary assesses the data generated to date and critically discusses the conclusions that have been drawn. Our current level of understanding, or lack of understanding, of the keratinocyte stem cell is reviewed.

  14. A Comparison of Culture Characteristics between Human Amniotic Mesenchymal Stem Cells and Dental Stem Cells.

    PubMed

    Yusoff, Nurul Hidayat; Alshehadat, Saaid Ayesh; Azlina, Ahmad; Kannan, Thirumulu Ponnuraj; Hamid, Suzina Sheikh Abdul

    2015-04-01

    In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental stem cells and amniotic stem cells, with respect to their differentiation lineages, passage numbers and animal model studies. Amniotic stem cells have a greater number of differentiation lineages than dental stem cells. On the contrary, dental stem cells showed the highest number of passages compared to amniotic stem cells. For tissue regeneration based on animal studies, amniotic stem cells showed the shortest time to regenerate in comparison with dental stem cells.

  15. Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus.

    PubMed

    Li, Lisha; Li, Furong; Gao, Feng; Yang, Yali; Liu, Yuanyuan; Guo, Pingping; Li, Yulin

    2016-05-01

    Bone-marrow-derived stem cells can regenerate pancreatic tissue in a model of type 1 diabetes mellitus. Mesenchymal stem cells (MSCs) form the main part of bone marrow. We show that the intrapancreatic transplantation of MSCs elevates serum insulin and C-peptide, while decreasing blood glucose. MSCs engrafted into the damaged rat pancreas become distributed into the blood vessels, acini, ducts, and islets. Renascent islets, islet-like clusters, and a small number of MSCs expressing insulin protein have been observed in the pancreas of diabetic rats. Intrapancreatic transplantation of MSCs triggers a series of molecular and cellular events, including differentiation towards the pancreas directly and the provision of a niche to start endogenous pancreatic regeneration, which ameliorates hypoinsulinemia and hyperglycemia caused by streptozotocin. These data establish the many roles of MSCs in the restoration of the function of an injured organ.

  16. Hyaluronan stimulates pancreatic cancer cell motility

    PubMed Central

    Cheng, Xiao-Bo; Kohi, Shiro; Koga, Atsuhiro; Hirata, Keiji; Sato, Norihiro

    2016-01-01

    Hyaluronan (HA) accumulates in pancreatic ductal adenocarcinoma (PDAC), but functional significance of HA in the aggressive phenotype remains unknown. We used different models to investigate the effect of HA on PDAC cell motility by wound healing and transwell migration assay. Changes in cell motility were examined in 8 PDAC cell lines in response to inhibition of HA production by treatment with 4-methylumbelliferone (4-MU) and to promotion by treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or by co-culture with tumor-derived stromal fibroblasts. We also investigated changes in cell motility by adding exogenous HA. Additionally, mRNA expressions of hyaluronan synthases and hyaluronidases were examined using real time RT-PCR. Inhibition of HA by 4-MU significantly decreased the migration, whereas promotion of HA by TPA or co-culture with tumor-derived fibroblasts significantly increased the migration of PDAC cells. The changes in HA production by these treatments tended to be associated with changes in HAS3 mRNA expression. Furthermore, addition of exogenous HA, especially low-molecular-weight HA, significantly increased the migration of PDAC cells. These findings suggest that HA stimulates PDAC cell migration and thus represents an ideal therapeutic target to prevent invasion and metastasis. PMID:26684359

  17. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    SciTech Connect

    Kim, In-Gyu; Lee, Jae-Ha; Kim, Seo-Yoen; Kim, Jeong-Yul; Cho, Eun-Wie

    2014-11-21

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation.

  18. β-cell replacement sources for type 1 diabetes: a focus on pancreatic ductal cells

    PubMed Central

    Corritore, Elisa; Lee, Yong-Syu; Sokal, Etienne M.; Lysy, Philippe A.

    2016-01-01

    Thorough research on the capacity of human islet transplantation to cure type 1 diabetes led to the achievement of 3- to 5-year-long insulin independence in nearly half of transplanted patients. Yet, translation of this technique to clinical routine is limited by organ shortage and the need for long-term immunosuppression, restricting its use to adults with unstable disease. The production of new bona fide β cells in vitro was thus investigated and finally achieved with human pluripotent stem cells (PSCs). Besides ethical concerns about the use of human embryos, studies are now evaluating the possibility of circumventing the spontaneous tumor formation associated with transplantation of PSCs. These issues fueled the search for cell candidates for β-cell engineering with safe profiles for clinical translation. In vivo studies revealed the regeneration capacity of the exocrine pancreas after injury that depends at least partially on facultative progenitors in the ductal compartment. These stimulated subpopulations of pancreatic ductal cells (PDCs) underwent β-cell transdifferentiation through reactivation of embryonic signaling pathways. In vitro models for expansion and differentiation of purified PDCs toward insulin-producing cells were described using cocktails of growth factors, extracellular-matrix proteins and transcription factor overexpression. In this review, we will describe the latest findings in pancreatic β-cell mass regeneration due to adult ductal progenitor cells. We will further describe recent advances in human PDC transdifferentiation to insulin-producing cells with potential for clinical translational studies. PMID:27540464

  19. Germline and Pluripotent Stem Cells.

    PubMed

    Reik, Wolf; Surani, M Azim

    2015-11-02

    Epigenetic mechanisms play an essential role in the germline and imprinting cycle. Germ cells show extensive epigenetic programming in preparation for the generation of the totipotent state, which in turn leads to the establishment of pluripotent cells in blastocysts. The latter are the cells from which pluripotent embryonic stem cells are derived and maintained in culture. Following blastocyst implantation, postimplantation epiblast cells develop, which give rise to all somatic cells as well as primordial germ cells, the precursors of sperm and eggs. Pluripotent stem cells in culture can be induced to undergo differentiation into somatic cells and germ cells in culture. Understanding the natural cycles of epigenetic reprogramming that occur in the germline will allow the generation of better and more versatile stem cells for both therapeutic and research purposes.

  20. Bone regeneration and stem cells

    PubMed Central

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  1. Bone repair and stem cells.

    PubMed

    Ono, Noriaki; Kronenberg, Henry M

    2016-10-01

    Bones are an important component of vertebrates; they grow explosively in early life and maintain their strength throughout life. Bones also possess amazing capabilities to repair-the bone is like new without a scar after complete repair. In recent years, a substantial progress has been made in our understanding on mammalian bone stem cells. Mouse genetic models are powerful tools to understand the cell lineage, giving us better insights into stem cells that regulate bone growth, maintenance and repair. Recent findings about these stem cells raise new questions that require further investigations.

  2. Generation of Multipotent Foregut Stem Cells from Human Pluripotent Stem Cells

    PubMed Central

    Hannan, Nicholas R.F.; Fordham, Robert P.; Syed, Yasir A.; Moignard, Victoria; Berry, Andrew; Bautista, Ruben; Hanley, Neil A.; Jensen, Kim B.; Vallier, Ludovic

    2013-01-01

    Summary Human pluripotent stem cells (hPSCs) could provide an infinite source of clinically relevant cells with potential applications in regenerative medicine. However, hPSC lines vary in their capacity to generate specialized cells, and the development of universal protocols for the production of tissue-specific cells remains a major challenge. Here, we have addressed this limitation for the endodermal lineage by developing a defined culture system to expand and differentiate human foregut stem cells (hFSCs) derived from hPSCs. hFSCs can self-renew while maintaining their capacity to differentiate into pancreatic and hepatic cells. Furthermore, near-homogenous populations of hFSCs can be obtained from hPSC lines which are normally refractory to endodermal differentiation. Therefore, hFSCs provide a unique approach to bypass variability between pluripotent lines in order to obtain a sustainable source of multipotent endoderm stem cells for basic studies and to produce a diversity of endodermal derivatives with a clinical value. PMID:24319665

  3. Chlamydia pneumoniae promotes dysfunction of pancreatic beta cells.

    PubMed

    Rodriguez, Annette R; Plascencia-Villa, Germán; Witt, Colleen M; Yu, Jieh-Juen; José-Yacamán, Miguel; Chambers, James P; Perry, George; Guentzel, M Neal; Arulanandam, Bernard P

    2015-06-01

    The human pathogen Chlamydia pneumoniae has been implicated in chronic inflammatory diseases including type 2 diabetes. Therefore, we designed a study to evaluate pancreatic beta cells and mast cells during chlamydial infection. Our study revealed that C. pneumoniae infected mast cells significantly (p<0.005) decreased beta cell ATP and insulin production, in contrast to uninfected mast cells co-cultured with beta cells. Infected mast cells exhibited pyknotic nuclei and active caspase-3 and caspase-1 expression. Additionally, ex vivo analyses of tissues collected from C. pneumoniae infected mice showed increased interleukin-1β production in splenocytes and pancreatic tissues as was observed with in vitro mast cell-beta cell co-cultures during C. pneumoniae infection. Notably, infected mast cells promoted beta cell destruction. Our findings reveal the negative effect of C. pneumoniae on mast cells, and the consequential impact on pancreatic beta cell function and viability.

  4. Enhanced Expression of Fibroblast Growth Factor Receptor 2 IIIc Promotes Human Pancreatic Cancer Cell Proliferation

    PubMed Central

    Ishiwata, Toshiyuki; Matsuda, Yoko; Yamamoto, Tetsushi; Uchida, Eiji; Korc, Murray; Naito, Zenya

    2012-01-01

    In pancreatic ductal adenocarcinoma (PDAC), the fibroblast growth factor receptor 1 (FGFR-1) IIIb isoform correlates with the inhibition of cancer cell proliferation, migration, and invasion, whereas FGFR-1 IIIc enhances cancer cell proliferation. The FGFR-2 IIIb isoform is expressed in PDAC, and its expression correlates with increased venous invasion. We examined the role of FGFR-2 IIIc in PDAC. FGFR-2 IIIc was expressed in all six pancreatic cancer cell lines examined and was highest in PANC-1 cells. FGFR-2 IIIc was abundant in the cancer cells from 83 of 117 PDAC cases, which correlated with decreased duration to development of liver metastasis after surgery. FGFR-2 IIIc-transfected cells exhibited increased proliferation in vitro and formed larger subcutaneous and orthotopic tumors, the latter producing more liver metastases. Moreover, FGF-2 exerted a more rapid stimulatory effect on the levels of phosphorylated extracellular signal-regulated kinase (p-ERK) in FGFR-2 IIIc stably transfected PANC-1 cells, compared with control cells. FGFR-2 IIIc-transfected cells also formed more spheres and contained more side population cells. Suppression of FGFR-2 IIIc expression inhibited the proliferation of PANC-1 cells, whereas an anti-FGFR-2 IIIc antibody inhibited the proliferation and migration of PANC-1 cells. Thus, high FGFR-2 IIIc levels in PDAC contribute to disease aggressiveness and confer to pancreatic cancer cells features suggestive of cancer stem cells, indicating that FGFR-2 IIIc may be a novel and important therapeutic target in PDAC. PMID:22440254

  5. Stem cells for tooth engineering.

    PubMed

    Bluteau, G; Luder, H U; De Bari, C; Mitsiadis, T A

    2008-07-31

    Tooth development results from sequential and reciprocal interactions between the oral epithelium and the underlying neural crest-derived mesenchyme. The generation of dental structures and/or entire teeth in the laboratory depends upon the manipulation of stem cells and requires a synergy of all cellular and molecular events that finally lead to the formation of tooth-specific hard tissues, dentin and enamel. Although mesenchymal stem cells from different origins have been extensively studied in their capacity to form dentin in vitro, information is not yet available concerning the use of epithelial stem cells. The odontogenic potential resides in the oral epithelium and thus epithelial stem cells are necessary for both the initiation of tooth formation and enamel matrix production. This review focuses on the different sources of stem cells that have been used for making teeth in vitro and their relative efficiency. Embryonic, post-natal or even adult stem cells were assessed and proved to possess an enormous regenerative potential, but their application in dental practice is still problematic and limited due to various parameters that are not yet under control such as the high risk of rejection, cell behaviour, long tooth eruption period, appropriate crown morphology and suitable colour. Nevertheless, the development of biological approaches for dental reconstruction using stem cells is promising and remains one of the greatest challenges in the dental field for the years to come.

  6. GPCRs in Stem Cell Function

    PubMed Central

    DOZE, VAN A.; PEREZ, DIANNE M.

    2013-01-01

    Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G-protein coupled receptors in the regulation of stem cells and their potential in future clinical applications. PMID:23415095

  7. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system

    PubMed Central

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-01-01

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells. PMID:26573336

  8. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    PubMed

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  9. Discovery of HAP Stem Cells.

    PubMed

    Li, Lingna; Hoffman, Robert M

    2016-01-01

    Cells expressing the stem cell marker, nestin, were selectively labeled in transgenic mice by placing green fluorescent protein (GFP) under the control of the nestin promoter in transgenic mice. In these transgenic mice, neural and other stem cells brightly expressed GFP. The mice were termed nestin-driven GFP (ND-GFP) mice. During early anagen or growth phase of the hair follicle, ND-GFP appeared in the permanent upper hair follicle immediately below the sebaceous glands in the follicle bulge. The relatively small, oval-shaped, nestin-expressing cells in the bulge area surrounded the hair shaft and were interconnected by short dendrites. The location of the nestin-expressing cells in the hair follicle varied with the hair cycle. During telogen or resting phase and in early anagen, the GFP-positive cells are mainly in the bulge area. However, in mid- and late-anagen, the GFP-expressing cells were located in the upper outer-root sheath as well as in the bulge area. The expression of the unique protein, nestin, in both neural stem cells and hair follicle stem cells, which suggested their relationship. The ND-GFP hair follicle stem cells were later termed hair-follicle-associated pluripotent (HAP) stem cells.

  10. Cytokines and Pancreatic β-Cell Apoptosis.

    PubMed

    Berchtold, L A; Prause, M; Størling, J; Mandrup-Poulsen, T

    The discovery 30 years ago that inflammatory cytokines cause a concentration, activity, and time-dependent bimodal response in pancreatic β-cell function and viability has been a game-changer in the fields of research directed at understanding inflammatory regulation of β-cell function and survival and the causes of β-cell failure and destruction in diabetes. Having until then been confined to the use of pathophysiologically irrelevant β-cell toxic chemicals as a model of β-cell death, researchers could now mimic endocrine and paracrine effects of the cytokine response in vitro by titrating concentrations in the low to the high picomolar-femtomolar range and vary exposure time for up to 14-16h to reproduce the acute regulatory effects of systemic inflammation on β-cell secretory responses, with a shift to inhibition at high picomolar concentrations or more than 16h of exposure to illustrate adverse effects of local, chronic islet inflammation. Since then, numerous studies have clarified how these bimodal responses depend on discrete signaling pathways. Most interest has been devoted to the proapoptotic response dependent upon mainly nuclear factor κ B and mitogen-activated protein kinase activation, leading to gene expressional changes, endoplasmic reticulum stress, and triggering of mitochondrial dysfunction. Preclinical studies have shown preventive effects of cytokine antagonism in animal models of diabetes, and clinical trials demonstrating proof of concept are emerging. The full clinical potential of anticytokine therapies has yet to be shown by testing the incremental effects of appropriate dosing, timing, and combinations of treatments. Due to the considerable translational importance of enhancing the precision, specificity, and safety of antiinflammatory treatments of diabetes, we review here the cellular, preclinical, and clinical evidence of which of the death pathways recently proposed in the Nomenclature Committee on Cell Death 2012

  11. Stem cell therapy without the cells

    PubMed Central

    Maguire, Greg

    2013-01-01

    As an example of the burgeoning importance of stem cell therapy, this past month the California Institute for Regenerative Medicine (CIRM) has approved $70 million to create a new network of stem cell clinical trial centers. Much work in the last decade has been devoted to developing the use of autologous and allogeneic adult stem cell transplants to treat a number of conditions, including heart attack, dementia, wounds, and immune system-related diseases. The standard model teaches us that adult stem cells exists throughout most of the body and provide a means to regenerate and repair most tissues through replication and differentiation. Although we have often witnessed the medical cart placed in front of the scientific horse in the development of stem cell therapies outside of academic circles, great strides have been made, such as the use of purified stem cells1 instead of whole bone marrow transplants in cancer patients, where physicians avoid re-injecting the patients with their own cancer cells.2 We most often think of stem cell therapy acting to regenerate tissue through replication and then differentiation, but recent studies point to the dramatic effects adult stem cells exert in the repair of various tissues through the release of paracrine and autocrine substances, and not simply through differentiation. Indeed, up to 80% of the therapeutic effect of adult stem cells has been shown to be through paracrine mediated actions.3 That is, the collected types of molecules released by the stem cells, called the secretome, or stem cell released molecules (SRM), number in the 100s, including proteins, microRNA, growth factors, antioxidants, proteasomes, and exosomes, and target a multitude of biological pathways through paracrine actions. The composition of the different molecule types in SRM is state dependent, and varies with cell type and conditions such as age and environment. PMID:24567776

  12. Designing of promiscuous inhibitors against pancreatic cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Chaudhary, Kumardeep; Singla, Deepak; Gautam, Ankur; Raghava, Gajendra P. S.

    2014-04-01

    Pancreatic cancer remains the most devastating disease with worst prognosis. There is a pressing need to accelerate the drug discovery process to identify new effective drug candidates against pancreatic cancer. We have developed QSAR models for predicting promiscuous inhibitors using the pharmacological data. Our models achieved maximum Pearson correlation coefficient of 0.86, when evaluated on 10-fold cross-validation. Our models have also successfully validated the drug-to-oncogene relationship and further we used these models to screen FDA approved drugs and tested them in vitro. We have integrated these models in a webserver named as DiPCell, which will be useful for screening and designing novel promiscuous drug molecules. We have also identified the most and least effective drugs for pancreatic cancer cell lines. On the other side, we have identified resistant pancreatic cancer cell lines, which need investigative scanner on them to put light on resistant mechanism in pancreatic cancer.

  13. Stem cells and combinatorial science.

    PubMed

    Fang, Yue Qin; Wong, Wan Qing; Yap, Yan Wen; Orner, Brendan P

    2007-09-01

    Stem cell-based technologies have the potential to help cure a number of cell degenerative diseases. Combinatorial and high throughput screening techniques could provide tools to control and manipulate the self-renewal and differentiation of stem cells. This review chronicles historic and recent progress in the stem cell field involving both pluripotent and multipotent cells, and it highlights relevant cellular signal transduction pathways. This review further describes screens using libraries of soluble, small-molecule ligands, and arrays of molecules immobilized onto surfaces while proposing future trends in similar studies. It is hoped that by reviewing both the stem cell and the relevant high throughput screening literature, this paper can act as a resource to the combinatorial science community.

  14. Stem Cells in the Lung

    PubMed Central

    Liu, Xiaoming; Driskell, Ryan R.; Engelhardt, John F.

    2007-01-01

    The lung is composed of two major anatomically distinct regions—the conducting airways and gas-exchanging airspaces. From a cell biology standpoint, the conducting airways can be further divided into two major compartments, the tracheobronchial and bronchiolar airways, while the alveolar regions of the lung make up the gas-exchanging airspaces. Each of these regions consists of distinct epithelial cell types with unique cellular physiologies and stem cell compartments. This chapter focuses on model systems with which to study stem cells in the adult tracheobronchial airways, also referred to as the proximal airway of the lung. Important in such models is an appreciation for the diversity of stem cell niches in the conducting airways that provide localized environmental signals to both maintain and mobilize stem cells in the setting of airway injury and normal cellular turnover. Because cellular turnover in airways is relatively slow, methods for analysis of stem cells in vivo have required prior injury to the lung. In contrast, ex vivo and in vitro models for analysis of airway stem cells have used genetic markers to track lineage relationships together with reconstitution systems that mimic airway biology. Over the past decades, several widely acceptable methods have been developed and used in the characterization of adult airway stem/ progenitor cells. These include localization of label-retaining cells (LRCs), retroviral tagging of epithelial cells seeded into xenografts, air–liquid interface cultures to track clonal proliferative potential, and multiple transgenic mouse models. This chapter reviews the biologic context and use of these models while providing detailed methods for several of the more broadly useful models for studying adult airway stem/progenitor cell types. PMID:17141060

  15. Islet Endothelial Cells Derived From Mouse Embryonic Stem Cells.

    PubMed

    Jain, Neha; Lee, Eun Jung

    2016-01-01

    The islet endothelium comprises a specialized population of islet endothelial cells (IECs) expressing unique markers such as nephrin and α-1 antitrypsin (AAT) that are not found in endothelial cells in surrounding tissues. However, due to difficulties in isolating and maintaining a pure population of these cells, the information on these islet-specific cells is currently very limited. Interestingly, we have identified a large subpopulation of endothelial cells exhibiting IEC phenotype, while deriving insulin-producing cells from mouse embryonic stem cells (mESCs). These cells were identified by the uptake of low-density lipoprotein (LDL) and were successfully isolated and subsequently expanded in endothelial cell culture medium. Further analysis demonstrated that the mouse embryonic stem cell-derived endothelial cells (mESC-ECs) not only express classical endothelial markers, such as platelet endothelial cell adhesion molecule (PECAM1), thrombomodulin, intercellular adhesion molecule-1 (ICAM-1), and endothelial nitric oxide synthase (eNOS) but also IEC-specific markers such as nephrin and AAT. Moreover, mESC-ECs secrete basement membrane proteins such as collagen type IV, laminin, and fibronectin in culture and form tubular networks on a layer of Matrigel, demonstrating angiogenic activity. Further, mESC-ECs not only express eNOS, but also its eNOS expression is glucose dependent, which is another characteristic phenotype of IECs. With the ability to obtain highly purified IECs derived from pluripotent stem cells, it is possible to closely examine the function of these cells and their interaction with pancreatic β-cells during development and maturation in vitro. Further characterization of tissue-specific endothelial cell properties may enhance our ability to formulate new therapeutic angiogenic approaches for diabetes.

  16. Dental stem cells and their sources.

    PubMed

    Sedgley, Christine M; Botero, Tatiana M

    2012-07-01

    The search for more accessible mesenchymal stem cells than those found in bone marrow has propelled interest in dental tissues. Human dental stem/progenitor cells (collectively termed dental stem cells [DSCs]) that have been isolated and characterized include dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem cells, and dental follicle progenitor cells. Common characteristics of these cell populations are the capacity for self-renewal and the ability to differentiate into multiple lineages. In vitro and animal studies have shown that DSCs can differentiate into osseous, odontogenic, adipose, endothelial, and neural-like tissues.

  17. Nanotechniques Inactivate Cancer Stem Cells

    NASA Astrophysics Data System (ADS)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  18. Modeling Stem Cell Myogenic Differentiation

    PubMed Central

    Deshpande, Rajiv S.; Spector, Alexander A.

    2017-01-01

    The process of stem cell myogenesis (transformation into skeletal muscle cells) includes several stages characterized by the expression of certain combinations of myogenic factors. The first part of this process is accompanied by cell division, while the second part is mainly associated with direct differentiation. The mechanical cues are known to enhance stem cell myogenesis, and the paper focuses on the stem cell differentiation under the condition of externally applied strain. The process of stem cell myogenic differentiation is interpreted as the interplay among transcription factors, targeted proteins and strain-generated signaling molecule, and it is described by a kinetic multi-stage model. The model parameters are optimally adjusted by using the available data from the experiment with adipose-derived stem cells subjected to the application of cyclic uniaxial strains of the magnitude of 10%. The modeling results predict the kinetics of the process of myogenic differentiation, including the number of cells in each stage of differentiation and the rates of differentiation from one stage to another for different strains from 4% to 16%. The developed model can help better understand the process of myogenic differentiation and the effects of mechanical cues on stem cell use in muscle therapies. PMID:28106095

  19. Stem cells, dot-com.

    PubMed

    Liang, Bryan A; Mackey, Tim K

    2012-09-12

    Direct-to-consumer (DTC) advertising of suspect goods and services has burgeoned because of the Internet. Despite very limited approval for use, DTC stem cell-marketed "treatments" have emerged for an array of conditions, creating global public health and safety risks. However, it remains unclear whether such use of stem cells is subject to drugs or biologics regulations. To address this gap, regulatory agencies should be given clear authority, and the international community should create a framework for appropriate stem cell use. In addition, consumer protection laws should be used to scrutinize providers.

  20. Stem cells: research tools and clinical treatments.

    PubMed

    Fahey, Michael C; Wallace, Euan M

    2011-09-01

    The term 'stem cell' most commonly refers to embryonic stem cells, particularly in the lay media; however, it also describes other cell types. A stem cell represents a cell of multi-lineage potential with the ability for self-renewal. It is now clear that the plasticity and immortality of a given stem cell will depend on what type of stem cell it is, whether an embryonic stem cell, a fetal-placental stem cell or an adult stem cell. Stem cells offer great promise as cell-based therapies for the future. With evolving technology, much of the socio-political debate regarding stem cells can now be avoided. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  1. 4-Phenylbutyric Acid Attenuates Pancreatic Beta-Cell Injury in Rats with Experimental Severe Acute Pancreatitis

    PubMed Central

    Guo, Wen-yi; Zhao, Liang; Xiang, Ming-wei; Mei, Fang-chao; Abliz, Ablikim; Hu, Peng; Deng, Wen-hong; Yu, Jia

    2016-01-01

    Endoplasmic reticulum (ER) stress is a particular process with an imbalance of homeostasis, which plays an important role in pancreatitis, but little is known about how ER stress is implicated in severe acute pancreatitis (SAP) induced pancreatic beta-cell injury. To investigate the effect of 4-phenylbutyric acid (4-PBA) on the beta-cell injury following SAP and the underlying mechanism, twenty-four Sprague-Dawley rats were randomly divided into sham-operation (SO) group, SAP model group, and 4-PBA treatment group. SAP model was induced by infusion of 5% sodium taurocholate into the biliopancreatic duct. 4-PBA or normal saline was injected intraperitoneally for 3 days in respective group before successful modeling. Results showed that 4-PBA attenuated the following: (1) pancreas and islet pathological injuries, (2) serum TNF-α and IL-1β, (3) serum insulin and glucose, (4) beta-cell ultrastructural changes, (5) ER stress markers (BiP, ORP150, and CHOP), Caspase-3, and insulin expression in islet. These results suggested that 4-PBA mitigates pancreatic beta-cell injury and endocrine disorder in SAP, presumably because of its role in inhibiting excessive endoplasmic reticulum stress. This may serve as a new therapeutic target for reducing pancreatic beta-cell injury and endocrine disorder in SAP upon 4-PBA treatment. PMID:27656209

  2. Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors.

    PubMed

    Bonnavion, Rémy; Teinturier, Romain; Jaafar, Rami; Ripoche, Doriane; Leteurtre, Emmanuelle; Chen, Yuan-Jia; Rehfeld, Jens F; Lepinasse, Florian; Hervieu, Valérie; Pattou, François; Vantyghem, Marie-Christine; Scoazec, Jean-Yves; Bertolino, Philippe; Zhang, Chang Xian

    2015-10-01

    The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have migrated from the duodenum. In the current study, we further characterized previously described transient pancreatic gastrin-expressing cells using cell lineage tracing in a pan-pancreatic progenitor and a pancreatic endocrine progenitor model. We provide evidence showing that pancreatic gastrin-expressing cells, found from embryonic day 12.5 until postnatal day 7, are derived from pancreatic Ptf1a(+) and neurogenin 3-expressing (Ngn3(+)) progenitors. Importantly, the majority of them coexpress glucagon, with 4% coexpressing insulin, indicating that they are a temporary subpopulation of both alpha and beta cells. Interestingly, Men1 disruption in both Ngn3 progenitors and beta and alpha cells resulted in the development of pancreatic gastrin-expressing tumors, suggesting that the latter developed from islet cells. Finally, we detected gastrin expression using three human cohorts with pancreatic endocrine tumors (pNETs) that have not been diagnosed as gastrinomas (in 9/34 pNETs from 6/14 patients with multiple endocrine neoplasia type 1, in 5/35 sporadic nonfunctioning pNETs, and in 2/20 sporadic insulinomas), consistent with observations made in mouse models. Our work provides insight into the histogenesis of pancreatic gastrin-expressing tumors.

  3. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    SciTech Connect

    Yu, Ge; Wan, Rong; Hu, Yanling; Ni, Jianbo; Yin, Guojian; Xing, Miao; Shen, Jie; Tang, Maochun; Chen, Congying; Fan, Yuting; Xiao, Wenqin; Zhao, Yan; Wang, Xingpeng; and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  4. Advances in stem cell therapy.

    PubMed

    Pérez López, Silvia; Otero Hernández, Jesús

    2012-01-01

    Since the beginning of stem cell biology, considerable effort has been focused in the translation of scientific insights into new therapies. Cell-based assays represent a new strategy for organ and tissue repair in several pathologies. Moreover, alternative treatment strategies are urgently needed due to donor organ shortage that costs many lives every year and results in lifelong immunosuppression. At the moment, only the use of hematopoietic stem cells is considered as the standard for the treatment of malignant and genetic bone marrow disorders, being all other stem cell applications highly experimental. The present chapter tries to summarize some ongoing approaches of stem cell regenerative medicine and also introduces recent findings from published studies and trials conducted in various tissues such as skeletal muscle, liver and lung.

  5. Reversal of diabetes in rats using GLP-1-expressing adult pancreatic duct-like precursor cells transformed from acinar to ductal cells.

    PubMed

    Lee, Jieun; Wen, Jing; Park, Jeong Youp; Kim, Sun-A; Lee, Eun Jig; Song, Si Young

    2009-09-01

    Pancreatic injury induces replacement of exocrine acinar cells with ductal cells. These ductal cells have the potential to regenerate the pancreas, but their origin still remains unknown. It has been reported that adult pancreatic acinar cells have the potential to transdifferentiate to ductal progenitor cells. In this regards, we established novel adult pancreatic duct-like progenitor cell lines YGIC4 and YGIC5 and assessed the usefulness of these ductal progenitors in the cell therapy of diabetic rats. Acinar cells were cultured from pancreata of male Sprague Dawley rats and gradually attained ductal cell characteristics, such as expression of CK19 and CFTR with a concomitant down-regulation of amylase expression over time, suggesting transdifferentiation from acinar to ductal cells. During cell culture, the expression of Pdx-1, c-Kit, and vimentin peaked and then decreased, suggesting that transdifferentiation recapitulated embryogenesis. Overexpression of pancreas development regulatory genes and CK19, as well as the ability to differentiate into insulin-producing cells, suggests that the YGIC5 cells had characteristics of pancreatic progenitor cells. Finally, YGIC5 cells coexpressing Green fluorescent protein (GFP) and glucagon-like peptide (GLP)-1 under the activation of a zinc-inducible metallothionein promoter were intravenously infused to STZ-induced diabetic rats. Hyperglycemia was ameliorated with elevation of plasma insulin, and GFP-positive donor cells were colocalized in the acinar and islet areas of recipient pancreata following zinc treatment. In conclusion, after establishing pancreatic progenitor cell lines YGIC4 and YGIC5 under the concept of acinar to ductal transdifferentiation in vitro, we demonstrate how these adult pancreatic stem/progenitor cells can be used to regulate adult pancreatic differentiation toward developing therapy for pancreatic disease such as diabetes mellitus.

  6. Diabetes and Stem Cell Function

    PubMed Central

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-01-01

    Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment. PMID:26075247

  7. Stem cell therapy for Parkinson's disease.

    PubMed

    Takahashi, Jun

    2007-06-01

    The aim of stem cell therapy for Parkinson's disease is to reconstruct nigro-striatal neuronal pathways using endogenous neural stem/precursor cells or grafted dopaminergic neurons. As an alternative, transplantation of stem cell-derived dopaminergic neurons into the striatum has been attempted, with the aim of stimulating local synapse formation and/or release of dopamine and cytokines from grafted cells. Candidate stem cells include neural stem/precursor cells, embryonic stem cells and other stem/precursor cells. Among these, embryonic stem cells are pluripotent cells that proliferate extensively, making them a good potential donor source for transplantation. However, tumor formation and ethical issues present major problems for embryonic stem cell therapy. This review describes the current status of stem cell therapy for Parkinson's disease, as well as future research approaches from a clinical perspective.

  8. Cancer stem cells in surgery

    PubMed Central

    D’ANDREA, V.; GUARINO, S.; DI MATTEO, F.M.; SACCÀ, M. MAUGERI; DE MARIA, R.

    2014-01-01

    The Cancer Stem Cells (CSC) hypothesis is based on three fundamental ideas: 1) the similarities in the mechanisms that regulate self-renewal of normal stem cells and cancer cells; 2) the possibility that tumour cells might arise from normal stem cells; 3) the notion that tumours might contain ‘cancer stem cells’ - rare cells with indefinite proliferative potential that drive the formation and growth of tumours. The roles for cancer stem cells have been demonstrated for some cancers, such as cancers of the hematopoietic system, breast, brain, prostate, pancreas and liver. The attractive idea about cancer stem cell hypothesis is that it could partially explain the concept of minimal residual disease. After surgical macroscopically zero residual (R0) resections, even the persistence of one single cell nestling in one of the so called “CSCs niches” could give rise to distant relapse. Furthermore the metastatic cells can remain in a “dormant status” and give rise to disease after long period of apparent disease free. These cells in many cases have acquired resistance traits to chemo and radiotherapy making adjuvant treatment vain. Clarifying the role of the cancer stem cells and their implications in the oncogenesis will play an important role in the management of cancer patient by identifying new prospective for drugs and specific markers to prevent and monitoring relapse and metastasis. The identification of the niche where the CSCs reside in a dormant status might represent a valid instrument to follow-up patients also after having obtained a R0 surgical resection. What we believe is that if new diagnostic instruments were developed specifically to identify the localization and status of activity of the CSCs during tumor dormancy, this would lead to impressive improvement in the early detection and management of relapse and metastasis. PMID:25644725

  9. Neural Stem Cells and Glioblastoma

    PubMed Central

    Rispoli, Rossella; Conti, Carlo; Celli, Paolo; Caroli, Emanuela; Carletti, Sandro

    2014-01-01

    Summary Glioblastoma multiforme represents one of the most common brain cancers with a rather heterogeneous cellular composition, as indicated by the term “multiforme". Recent reports have described the isolation and identification of cancer neural stem cells from human adult glioblastoma multiforme, which possess the capacity to establish, sustain, and expand these tumours, even under the challenging settings posed by serial transplantation experiments. Our study focused on the distribution of neural cancer stem cells inside the tumour. The study is divided into three phases: removal of tumoral specimens in different areas of the tumour (centre, periphery, marginal zone) in an operative room equipped with a 1.5 T scanner; isolation and characterization of neural cancer stem cells from human adult glioblastoma multiforme; identification of neural cancer stem cell distribution inside the tumour. PMID:24750704

  10. Framework bolsters stem cell progress.

    PubMed

    Gross, Michael

    2004-08-10

    With many of the leading science nations still stuck in debates on the use of embryonic stem cells, Britain, with a regulatory framework in place, is well-positioned to take the lead. Michael Gross reports.

  11. [Progress in stem cells and regenerative medicine].

    PubMed

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  12. Stem cells, tissue engineering and periodontal regeneration.

    PubMed

    Han, J; Menicanin, D; Gronthos, S; Bartold, P M

    2014-06-01

    The aim of this review is to discuss the clinical utility of stem cells in periodontal regeneration by reviewing relevant literature that assesses the periodontal-regenerative potential of stem cells. We consider and describe the main stem cell populations that have been utilized with regard to periodontal regeneration, including bone marrow-derived mesenchymal stem cells and the main dental-derived mesenchymal stem cell populations: periodontal ligament stem cells, dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla and dental follicle precursor cells. Research into the use of stem cells for tissue regeneration has the potential to significantly influence periodontal treatment strategies in the future.

  13. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment

    PubMed Central

    Aponte, Pedro M.

    2017-01-01

    Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs) behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs), which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions. PMID:28473858

  14. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment.

    PubMed

    Aponte, Pedro M; Caicedo, Andrés

    2017-01-01

    Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs) behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs), which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions.

  15. Tracking stem cells in the cardiovascular system.

    PubMed

    Chemaly, Elie R; Yoneyama, Ryuichi; Frangioni, John V; Hajjar, Roger J

    2005-11-01

    Stem cells are a promising approach to cardiovascular therapeutics. Animal experiments have assessed the fate of injected stem cells through ex vivo methods on sacrificed animals. Approaches are needed for in vivo tracking of stem cells. Various imaging techniques and contrast agents for stem cell tracking will be reviewed.

  16. Research Advancements in Porcine Derived Mesenchymal Stem Cells

    PubMed Central

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs) before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton’s jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs) have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson’s disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  17. Immunotargeting of cancer stem cells

    PubMed Central

    Gąbka-Buszek, Agnieszka; Jankowski, Jakub; Mackiewicz, Andrzej

    2015-01-01

    Cancer stem cells (CSCs) represent a distinctive population of tumour cells that control tumour initiation, progression, and maintenance. Their influence is great enough to risk the statement that successful therapeutic strategy must target CSCs in order to eradicate the disease. Because cancer stem cells are highly resistant to chemo- and radiotherapy, new tools to fight against cancer have to be developed. Expression of antigens such as ALDH, CD44, EpCAM, or CD133, which distinguish CSCs from normal cells, together with CSC immunogenicity and relatively low toxicity of immunotherapies, makes immune targeting of CSCs a promising approach for cancer treatment. This review will present immunotherapeutic approaches using dendritic cells, T cells, pluripotent stem cells, and monoclonal antibodies to target and eliminate CSCs. PMID:25691822

  18. Impaired Pancreatic Beta Cell Function by Chronic Intermittent Hypoxia

    PubMed Central

    Wang, Ning; Khan, Shakil A.; Prabhakar, Nanduri R.; Nanduri, Jayasri

    2013-01-01

    Breathing disorders with recurrent apnea produce periodic decreases in arterial blood O2 or chronic intermittent hypoxia (CIH). Recurrent apnea patients and CIH-exposed rodents exhibit several co-morbidities including diabetes. However, the effects of CIH on pancreatic beta cell function are not known. In the present study, we investigated pancreatic beta cell function in C57BL6 mice exposed to 30 days of CIH. CIH-exposed mice exhibited elevated levels of fasting plasma insulin, but comparable glucose levels, and higher homeostasis model assessment (HOMA), indicating insulin resistance. Pancreatic beta cell morphology was unaltered in CIH- exposed mice. Insulin content was decreased in CIH-exposed beta cells, and this effect was associated with increased proinsulin levels. mRNA and protein levels of the enzyme pro-hormone convertase 1 (PC1) which converts proinsulin to insulin were down regulated in CIH-treated islets. More importantly, glucose-stimulated insulin secretion (GSIS) was impaired in CIH-exposed mice and in isolated islets. Mitochondrial reactive oxygen species (ROS) levels were elevated in CIH-exposed pancreatic islets. Treatment of mice with mito-tempol, a scavenger of mitochondrial ROS during CIH exposure, prevented the augmented insulin secretion and restored the proinsulin as well as HOMA values to control levels. These results demonstrate that CIH leads to pancreatic beta cell dysfunction manifested by augmented basal insulin secretion, insulin resistance, defective proinsulin processing, impaired GSIS and mitochondrial ROS mediates the effects of CIH on pancreatic beta cell function. PMID:23709585

  19. Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis

    PubMed Central

    Liu, Weifeng; Wang, Xinshuai; Sun, Junjun; Yang, Yanhui; Li, Wensheng; Song, Junxin

    2017-01-01

    Pancreatic cancer is an aggressive malignancy and is unresponsive to conventional chemotherapies. Parthenolide, a sesquiterpene lactone isolated from feverfew, has exhibited potent anticancer effects against various cancers. The purpose of this report was to investigate the effect and underlying mechanism of parthenolide in human pancreatic cancer Panc-1 and BxPC3 cells. The results demonstrated that parthenolide suppressed the growth and induced apoptosis of Panc-1 and BxPC3 pancreatic cancer cells with the half maximal inhibitory concentration (IC50) ranging between 7 and 9 μM after 24 h of treatment. Significant autophagy was induced by parthenolide treatment in pancreatic cancer cells. Parthenolide treatment concentration-dependently increased the percentage of autophagic cells and significantly increased the expression levels of p62/SQSTM1, Beclin 1, and LC3II in Panc-1 cells. Punctate LC3II staining confirmed autophagy. Furthermore, inhibiting autophagy by chloroquine, 3-methyladenine, or LC3II siRNA significantly blocked parthenolide-induced apoptosis, suggesting that parthenolide induced apoptosis through autophagy in this study. In conclusion, these studies established that parthenolide inhibits pancreatic cell growth by autophagy-mediated apoptosis. Data of the present study suggest that parthenolide can serve as a potential chemotherapeutic agent for pancreatic cancer. PMID:28176967

  20. Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis.

    PubMed

    Liu, Weifeng; Wang, Xinshuai; Sun, Junjun; Yang, Yanhui; Li, Wensheng; Song, Junxin

    2017-01-01

    Pancreatic cancer is an aggressive malignancy and is unresponsive to conventional chemotherapies. Parthenolide, a sesquiterpene lactone isolated from feverfew, has exhibited potent anticancer effects against various cancers. The purpose of this report was to investigate the effect and underlying mechanism of parthenolide in human pancreatic cancer Panc-1 and BxPC3 cells. The results demonstrated that parthenolide suppressed the growth and induced apoptosis of Panc-1 and BxPC3 pancreatic cancer cells with the half maximal inhibitory concentration (IC50) ranging between 7 and 9 μM after 24 h of treatment. Significant autophagy was induced by parthenolide treatment in pancreatic cancer cells. Parthenolide treatment concentration-dependently increased the percentage of autophagic cells and significantly increased the expression levels of p62/SQSTM1, Beclin 1, and LC3II in Panc-1 cells. Punctate LC3II staining confirmed autophagy. Furthermore, inhibiting autophagy by chloroquine, 3-methyladenine, or LC3II siRNA significantly blocked parthenolide-induced apoptosis, suggesting that parthenolide induced apoptosis through autophagy in this study. In conclusion, these studies established that parthenolide inhibits pancreatic cell growth by autophagy-mediated apoptosis. Data of the present study suggest that parthenolide can serve as a potential chemotherapeutic agent for pancreatic cancer.

  1. Cellular spectroscopy: applications to cancer stem cell characterization

    NASA Astrophysics Data System (ADS)

    Wiegand, G.; Xin, H.; Anderson, A.; Mullinax, J.; Jaiswal, K.; Wiegand, A.; Avital, Itzhak

    2011-02-01

    Spectroscopic and light scattering methods were used to gain insight into the existence and characterization of the cancer stem cell. Fundamental technical description of devices used have been reported elsewhere. We included alterations and implementation of these biophotonic instruments as applied to our objectives. We disassociated human tumor and submitted the cells to optical characterization to support our working hypothesis of stem cell origins to cancer and mechanisms. Single cell combined with population based analysis within the Pancreatic cancer system led us to information regarding the polarization state of cells possessing anchor proteins and drug influx pumps. Multispectral imaging combined with flow cytometry enabled us to target rare cells that appear to retain template DNA. rendering them resistant to anti-cancer drug therapy. In this study we describe an optical method that combines high-throughput population pattern and correlates each cell with an individual fluorescent and bright-field image.

  2. Stem cell potential of the mammalian gonad

    PubMed Central

    Liu, Chia-Feng; Barsoum, Ivraym; Gupta, Rupesh; Hofmann, Marie-Claude; Yao, Humphrey Hung-Chang

    2010-01-01

    Stem cells have enormous potential for therapeutic application because of their ability to self-renew and differentiate into different cell types. Gonads, which consist of somatic cells and germ cells, are the only organs capable of transmitting genetic materials to the offspring. Germ-line stem cells and somatic stem cells have been found in the testis; however, the presence of stem cells in the ovary remains controversial. In this review, we discuss studies focusing on whether stem cell properties are present in the different cell types of male and female gonads and their implications on stem cell research. PMID:19482665

  3. Persistence of side population cells with high drug efflux capacity in pancreatic cancer

    PubMed Central

    Zhou, Jing; Wang, Chun-You; Liu, Tao; Wu, Bin; Zhou, Feng; Xiong, Jiong-Xin; Wu, He-Shui; Tao, Jing; Zhao, Gang; Yang, Ming; Gou, Shan-Miao

    2008-01-01

    AIM: To investigate the persistence of side population (SP) cells in pancreatic cancer and their role and mechanism in the drug resistance. METHODS: The presentation of side population cells in pancreatic cancer cell line PANC-1 and its proportion change when cultured with Gemcitabine, was detected by Hoechst 33342 staining and FACS analysis. The expression of ABCB1 and ABCG2 was detected by real-time PCR in either SP cells or non-SP cells. RESULTS: SP cells do exist in PANC-1, with a median of 3.3% and a range of 2.1-8.7%. After cultured with Gemcitabine for 3 d, the proportion of SP cells increased significantly (3.8% ± 1.9%, 10.7% ± 3.7%, t = 4.616, P = 0.001 < 0.05). ABCB1 and ABCG2 expressed at higher concentrations in SP as compared with non-SP cells (ABCB1: 1.15 ± 0.72, 5.82 ± 1.16, t = 10.839, P = 0.000 < 0.05; ABCG2: 1.16 ± 0.75, 5.48 ± 0.94, t = 11.305, P = 0.000 < 0.05), which may contribute to the efflux of fluorescent staining and drug resistance. CONCLUSION: SP cells with inherently high resistance to chemotherapeutic agents do exist in pancreatic cancers, which may be candidate cancer stem cells contributing to the relapse of the tumor. PMID:18240351

  4. Assessing the Secretory Capacity of Pancreatic Acinar Cells

    PubMed Central

    Geron, Erez; Schejter, Eyal D.; Shilo, Ben-Zion

    2014-01-01

    Pancreatic acinar cells produce and secrete digestive enzymes. These cells are organized as a cluster which forms and shares a joint lumen. This work demonstrates how the secretory capacity of these cells can be assessed by culture of isolated acini. The setup is advantageous since isolated acini, which retain many characteristics of the intact exocrine pancreas can be manipulated and monitored more readily than in the whole animal. Proper isolation of pancreatic acini is a key requirement so that the ex vivo culture will represent the in vivo nature of the acini. The protocol demonstrates how to isolate intact acini from the mouse pancreas. Subsequently, two complementary methods for evaluating pancreatic secretion are presented. The amylase secretion assay serves as a global measure, while direct imaging of pancreatic secretion allows the characterization of secretion at a sub-cellular resolution. Collectively, the techniques presented here enable a broad spectrum of experiments to study exocrine secretion. PMID:25226212

  5. Isolation, culture and genetic manipulation of mouse pancreatic ductal cells.

    PubMed

    Reichert, Maximilian; Takano, Shigetsugu; Heeg, Steffen; Bakir, Basil; Botta, Gregory P; Rustgi, Anil K

    2013-01-01

    The most common subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). PDAC resembles duct cells morphologically and, to some extent, at a molecular level. Recently, genetic-lineage labeling has become popular in the field of tumor biology in order to study cell-fate decisions or to trace cancer cells in the mouse. However, certain biological questions require a nongenetic labeling approach to purify a distinct cell population in the pancreas. Here we describe a protocol for isolating mouse pancreatic ductal epithelial cells and ductlike cells directly in vivo using ductal-specific Dolichos biflorus agglutinin (DBA) lectin labeling followed by magnetic bead separation. Isolated cells can be cultured (in two or three dimensions), manipulated by lentiviral transduction to modulate gene expression and directly used for molecular studies. This approach is fast (~4 h), affordable, results in cells with high viability, can be performed on the bench and is applicable to virtually all genetic and nongenetic disease models of the pancreas.

  6. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells.

    PubMed

    Ting, David T; Wittner, Ben S; Ligorio, Matteo; Vincent Jordan, Nicole; Shah, Ajay M; Miyamoto, David T; Aceto, Nicola; Bersani, Francesca; Brannigan, Brian W; Xega, Kristina; Ciciliano, Jordan C; Zhu, Huili; MacKenzie, Olivia C; Trautwein, Julie; Arora, Kshitij S; Shahid, Mohammad; Ellis, Haley L; Qu, Na; Bardeesy, Nabeel; Rivera, Miguel N; Deshpande, Vikram; Ferrone, Cristina R; Kapur, Ravi; Ramaswamy, Sridhar; Shioda, Toshi; Toner, Mehmet; Maheswaran, Shyamala; Haber, Daniel A

    2014-09-25

    Circulating tumor cells (CTCs) are shed from primary tumors into the bloodstream, mediating the hematogenous spread of cancer to distant organs. To define their composition, we compared genome-wide expression profiles of CTCs with matched primary tumors in a mouse model of pancreatic cancer, isolating individual CTCs using epitope-independent microfluidic capture, followed by single-cell RNA sequencing. CTCs clustered separately from primary tumors and tumor-derived cell lines, showing low-proliferative signatures, enrichment for the stem-cell-associated gene Aldh1a2, biphenotypic expression of epithelial and mesenchymal markers, and expression of Igfbp5, a gene transcript enriched at the epithelial-stromal interface. Mouse as well as human pancreatic CTCs exhibit a very high expression of stromal-derived extracellular matrix (ECM) proteins, including SPARC, whose knockdown in cancer cells suppresses cell migration and invasiveness. The aberrant expression by CTCs of stromal ECM genes points to their contribution of microenvironmental signals for the spread of cancer to distant organs. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Stem Cells and Calcium Signaling

    PubMed Central

    Tonelli, Fernanda M.P.; Santos, Anderson K.; Gomes, Dawidson A.; da Silva, Saulo L.; Gomes, Katia N.; Ladeira, Luiz O.

    2014-01-01

    The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca2+ concentration [Ca2+]i. Acting as an intracellular messenger, Ca2+ has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca2+-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential. PMID:22453975

  8. New Insights into Thyroid Stem Cells

    PubMed Central

    Lin, Reigh-Yi

    2009-01-01

    Stem cells exhibit an extraordinary ability for self-renewal. They also give rise to many specialized cells. The potential of stem cells in regenerative medicine, developmental biology, and drug discovery has been well documented. Although advances in stem cell science have raised broad ethical concerns, it is clear that stem cell technology has revolutionized our thinking in modern biology and medicine and provided the basis for understanding many of the mechanisms controlling basic biological processes and disease mechanisms. This review details the nascent field of thyroid stem cell research, exploring the current status of thyroid stem cell differentiation from the perspectives of both developmental biology and cell replacement therapy. It highlights successes to date in the generation of thyroid follicular cells from embryonic stem cells in the laboratory and the identification and characterization of adult stem cells from human thyroid glands and thyroid cancers. Finally, it outlines future challenges with a focus on potential stem cell therapy for thyroid patients. PMID:17727339

  9. Effect of Wasabi Component 6-(Methylsulfinyl)hexyl Isothiocyanate and Derivatives on Human Pancreatic Cancer Cells

    PubMed Central

    Chen, Yu-Jen; Huang, Yu-Chuen; Tsai, Tung-Hu

    2014-01-01

    The naturally occurring compound 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) was isolated from Wasabia japonica (Wasabi), a pungent spice used in Japanese food worldwide. The synthetic derivatives 6-(methylsulfenyl)hexyl isothiocyanate (I7447) and 6-(methylsulfonyl)hexyl isothiocyanate (I7557) are small molecule compounds derived from 6-MITC. This study aimed to evaluate the effect of these compounds on human pancreatic cancer cells. Human pancreatic cancer cell lines PANC-1 and BxPC-3 were used to perform an MTT assay for cell viability and Liu's stain for morphological observation. The cell cycle was analyzed by DNA histogram. Aldehyde dehydrogenase (ALDH) activity was used as a marker for cancer stem cells (CSC). Western blotting was performed for the expression of proteins related to CSC signaling. The results showed that compounds 6-MITC and I7557, but not I7447, inhibited viability of both PANC-1 and BxPC-3 cells. Morphological observation showed mitotic arrest and apoptosis in 6-MITC- and I7557-treated cells. These two compounds induced G2/M phase arrest and hypoploid population. Percentages of ALDH-positive PANC-1 cells were markedly reduced by 6-MITC and I7557 treatment. The expression of CSC signaling molecule SOX2, but not NOTCH1, ABCG2, Sonic hedgehog, or OCT4, was inhibited by 6-MITC and I7557. In conclusion, wasabi compounds 6-MITC and I7557 may possess activity against the growth and CSC phenotypes of human pancreatic cancer cells. PMID:24575144

  10. Glucagon secretion from pancreatic α-cells

    PubMed Central

    Briant, Linford; Salehi, Albert; Vergari, Elisa; Zhang, Quan; Rorsman, Patrik

    2016-01-01

    Type 2 diabetes involves a ménage à trois of impaired glucose regulation of pancreatic hormone release: in addition to impaired glucose-induced insulin secretion, the release of the hyperglycaemic hormone glucagon becomes dysregulated; these last-mentioned defects exacerbate the metabolic consequences of hypoinsulinaemia and are compounded further by hypersecretion of somatostatin (which inhibits both insulin and glucagon secretion). Glucagon secretion has been proposed to be regulated by either intrinsic or paracrine mechanisms, but their relative significance and the conditions under which they operate are debated. Importantly, the paracrine and intrinsic modes of regulation are not mutually exclusive; they could operate in parallel to control glucagon secretion. Here we have applied mathematical modelling of α-cell electrical activity as a novel means of dissecting the processes that underlie metabolic regulation of glucagon secretion. Our analyses indicate that basal hypersecretion of somatostatin and/or increased activity of somatostatin receptors may explain the loss of adequate counter-regulation under hypoglycaemic conditions, as well as the physiologically inappropriate stimulation of glucagon secretion during hyperglycaemia seen in diabetic patients. We therefore advocate studying the interaction of the paracrine and intrinsic mechanisms; unifying these processes may give a more complete picture of the regulation of glucagon secretion from α-cells than studying the individual parts. PMID:27044683

  11. Stem Cells in Spine Surgery.

    PubMed

    Hansraj, Kenneth K

    2016-10-26

    Spine surgeons are embracing advanced biologic technologies in an attempt to help millions of people achieve a better outcome in spine surgery. These new technologies may be complicated to understand, partly because the contribution of different types of cells has not been definitively identified. This paper describes the characteristics of the stem cells used in spine surgery, including their actions and possible complications. The description necessitates an overview of all studies to date on the use of stem cells in spine surgery, as well as other cells used in cellular therapy. The paper summarizes the results of major studies to date on the use of stem cells in spine surgery. Cells were harvested from the posterior superior iliac spine, vertebral bodies in surgery, fat tissue, or from the posterior spine of cadavers. This paper reports on three studies involving 37 patients treated with stem cells for regenerative spine surgery, 14 studies involving 533 patients treated with stem cells in spinal fusion surgery, and one study in which stem cells were used for the treatment of anterior cervical discectomy and fusion. Indications, techniques, and calibration of results were different in each study. Results are available for cellular augmentation of demineralized bone sponges, OsteoSponge® (Bacterin, Belgrade, Montana) and concentrated bone marrow (Terumo BCT®, Lakewood, CO); cancellous allograft bone and BMA; mineralized collagen and BMA; Osteocel® Plus (OC+) (Nuvasive®, San Diego, California); b-Tricalcium phosphate (b-TCP) (SYNTHES® Dento, West Chester, Pennsylvania; a silicate-substituted calcium phosphate (Si-CaP) with bone marrow aspirate (BMA), and HEALOS® graft carrier (DePuy Synthes, West Chester, Pennsylvania) with bone marrow aspirate. Stem cell augmentation of spinal fusion surgery is equivalent to the gold standard for iliac crest bone graft in posterolateral fusion models. There is evidence of safety and feasibility in the injectable treatment

  12. Aptamer-Mediated Delivery of Chemotherapy to Pancreatic Cancer Cells

    PubMed Central

    Ray, Partha; Cheek, Marcus A.; Sharaf, Mariam L.; Li, Na; Ellington, Andrew D.; Sullenger, Bruce A.; Shaw, Barbara Ramsay

    2012-01-01

    Gemcitabine is a nucleoside analog that is currently the best available single-agent chemotherapeutic drug for pancreatic cancer. However, efficacy is limited by our inability to deliver sufficient active metabolite into cancer cells without toxic effects on normal tissues. Targeted delivery of gemcitabine into cancer cells could maximize effectiveness and concurrently minimize toxic side effects by reducing uptake into normal cells. Most pancreatic cancers overexpress epidermal growth factor receptor (EGFR), a trans-membrane receptor tyrosine kinase. We utilized a nuclease resistant RNA aptamer that binds and is internalized by EGFR on pancreatic cancer cells to deliver gemcitabine-containing polymers into EGFR-expressing cells and inhibit cell proliferation in vitro. This approach to cell type–specific therapy can be adapted to other targets and to other types of therapeutic cargo. PMID:23030589

  13. Metformin suppresses sonic hedgehog expression in pancreatic cancer cells.

    PubMed

    Nakamura, Masafumi; Ogo, Ayako; Yamura, Masahiro; Yamaguchi, Yoshiyuki; Nakashima, Hiroshi

    2014-04-01

    Metformin use has previously been associated with decreased cancer risk. The Hedgehog signaling pathway is a well-characterized early and late mediator of pancreatic cancer oncogenesis. The aim of the present study was to clarify the effect of metformin on factors involved in Hedgehog signaling. BxPC3 human pancreatic cancer cells were treated with metformin, and Sonic hedgehog (Shh) mRNA and protein levels were examined by real time reverse transcription-polymerase chain reaction, immunohistochemistry and immunoblotting, respectively. The effect of metformin on Shh levels was also examined in three other cancer cell lines. Shh protein and mRNA expression was suppressed by metformin in BxPC3 cells. This phenomenon was further confirmed in three other cancer cell lines. Shh mRNA expression was inhibited by metformin in a concentration-dependent manner in two cancer cell lines. Metformin reduces the expression of Shh in several cancer cell lines including pancreatic cancer cell.

  14. Connective tissue growth factor production by activated pancreatic stellate cells in mouse alcoholic chronic pancreatitis

    PubMed Central

    Charrier, Alyssa; Brigstock, David R.

    2010-01-01

    Alcoholic chronic pancreatitis (ACP) is characterized by pancreatic necrosis, inflammation, and scarring, the latter of which is due to excessive collagen deposition by activated pancreatic stellate cells (PSC). The aim of this study was to establish a model of ACP in mice, a species that is usually resistant to the toxic effects of alcohol, and to identify the cell type(s) responsible for production of connective tissue growth factor (CTGF), a pro-fibrotic molecule. C57Bl/6 male mice received intraperitoneal ethanol injections for three weeks against a background of cerulein-induced acute pancreatitis. Peak blood alcohol levels remained consistently high in ethanol-treated mice as compared to control mice. In mice receiving ethanol plus cerulein, there was increased collagen deposition as compared to other treatment groups as well as increased frequency of α-smooth muscle actin and desmin-positive PSC which also demonstrated significantly enhanced CTGF protein production. Expression of mRNA for collagen α1(I), α-smooth muscle actin or CTGF were all increased and co-localized exclusively to activated PSC in ACP. Pancreatic expression of mRNA for key profibrotic markers were all increased in ACP. In conclusion, a mouse model of ACP has been developed that mimics key pathophysiological features of the disease in humans and which shows that activated PSC are the principal producers of collagen and CTGF. PSC-derived CTGF is thus a candidate therapeutic target in anti-fibrotic strategies for ACP. PMID:20368699

  15. Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells.

    PubMed

    Trabulo, Sara; Aires, Antonio; Aicher, Alexandra; Heeschen, Christopher; Cortajarena, Aitziber L

    2017-02-01

    Nanomedicine nowadays offers novel solutions in cancer therapy by introducing multimodal treatments in one single formulation. In addition, nanoparticles act as nanocarriers changing the solubility, biodistribution and efficiency of the therapeutic molecules, thus generating more efficient treatments and reducing their side effects. To apply these novel therapeutic approaches, efforts are focused on the multi-functionalization of the nanoparticles and will open up new avenues to advanced combinational therapies. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with unmet medical needs. Abundant expression of the anti-phagocytosis signal CD47 has also been observed on pancreatic cancer cells, in particular a subset of cancer stem cells (CSCs) responsible for resistance to standard therapy and metastatic potential. CD47 receptor is found on pancreatic cancer and highly expressed on CSCs, but not on normal pancreas. Inhibiting CD47 using monoclonal antibodies has been shown as an effective strategy to treat PDAC in vivo. However, CD47 inhibition effectively slowed tumor growth only in combination with Gemcitabine or Abraxane. In this work, we present the generation of multifunctionalized iron oxide magnetic nanoparticles (MNPs) that include the anti-CD47 antibody and the chemotherapeutic drug Gemcitabine in a single formulation. We demonstrate the in vitro efficacy of the formulation against CD47-positive pancreatic cancer cells. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.

  16. Vitamin D Receptor Signaling and Pancreatic Cancer Cell EMT

    PubMed Central

    Li, Zhiwei; Guo, Junli; Xie, Keping; Zheng, Shaojiang

    2016-01-01

    Pancreatic ductal adenocarcinoma remains one of the most lethal of human malignancies. Even in patients who undergo resection, long-term survival rates remain extremely low. A major contributor to the aggressiveness of pancreatic ductal adenocarcinoma is epithelial-to-mesenchymal transition (EMT), a physiologic process of morphological and genetic changes in carcinoma cells from an epithelial phenotype to a mesenchymal phenotype, which is the basis of the high metastatic potential of pancreatic cancer cells. EMT is triggered by various tumor microenvironmental factors, including cytokines, growth factors, and chemotherapeutic agents. This review highlights the growing evidence of the effect of EMT on pancreatic cancer progression, focusing on the interaction of EMT with other pathways central to cancer progression, especially vitamin D receptor signaling. Studies of the signaling pathways that lead to the inactivation of EMT programs during these disease processes are providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions. PMID:25506892

  17. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    PubMed

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-07

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells.

  18. CAR T-cell therapy for pancreatic cancer.

    PubMed

    DeSelm, Carl J; Tano, Zachary E; Varghese, Anna M; Adusumilli, Prasad S

    2017-07-01

    Chimeric antigen receptor (CAR) T-cell therapy utilizes genetic engineering to redirect a patient's own T cells to target cancer cells. The remarkable results in hematological malignancies prompted investigating this approach in solid tumors such as pancreatic cancer. The complex tumor microenvironment, stromal hindrance in limiting immune response, and expression of checkpoint blockade on T cells pose hurdles. Herein, we summarize the opportunities, challenges, and state of knowledge in targeting pancreatic cancer with CAR T-cell therapy. © 2017 Wiley Periodicals, Inc.

  19. miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis.

    PubMed

    Chakraborty, Chiranjib; Chin, Kok-Yong; Das, Srijit

    2016-10-01

    Over the last few years, microRNAs (miRNA)-controlled cancer stem cells have drawn enormous attention. Cancer stem cells are a small population of tumor cells that possess the stem cell property of self-renewal. Recent data shows that miRNA regulates this small population of stem cells. In the present review, we explained different characteristics of cancer stem cells as well as miRNA regulation of self-renewal and differentiation in cancer stem cells. We also described the migration and tumor formation. Finally, we described the different miRNAs that regulate various types of cancer stem cells, such as prostate cancer stem cells, head and neck cancer stem cells, breast cancer stem cells, colorectal cancer stem cells, lung cancer stem cells, gastric cancer stem cells, pancreatic cancer stem cells, etc. Extensive research is needed in order to employ miRNA-based therapeutics to control cancer stem cell population in various cancers in the future.

  20. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro

    PubMed Central

    Russ, Holger A; Parent, Audrey V; Ringler, Jennifer J; Hennings, Thomas G; Nair, Gopika G; Shveygert, Mayya; Guo, Tingxia; Puri, Sapna; Haataja, Leena; Cirulli, Vincenzo; Blelloch, Robert; Szot, Greg L; Arvan, Peter; Hebrok, Matthias

    2015-01-01

    Directed differentiation of human pluripotent stem cells into functional insulin-producing beta-like cells holds great promise for cell replacement therapy for patients suffering from diabetes. This approach also offers the unique opportunity to study otherwise inaccessible aspects of human beta cell development and function in vitro. Here, we show that current pancreatic progenitor differentiation protocols promote precocious endocrine commitment, ultimately resulting in the generation of non-functional polyhormonal cells. Omission of commonly used BMP inhibitors during pancreatic specification prevents precocious endocrine formation while treatment with retinoic acid followed by combined EGF/KGF efficiently generates both PDX1+ and subsequent PDX1+/NKX6.1+ pancreatic progenitor populations, respectively. Precise temporal activation of endocrine differentiation in PDX1+/NKX6.1+ progenitors produces glucose-responsive beta-like cells in vitro that exhibit key features of bona fide human beta cells, remain functional after short-term transplantation, and reduce blood glucose levels in diabetic mice. Thus, our simplified and scalable system accurately recapitulates key steps of human pancreas development and provides a fast and reproducible supply of functional human beta-like cells. PMID:25908839

  1. Bone marrow-derived pancreatic stellate cells in rats.

    PubMed

    Sparmann, Gisela; Kruse, Marie-Luise; Hofmeister-Mielke, Nicole; Koczan, Dirk; Jaster, Robert; Liebe, Stefan; Wolff, Daniel; Emmrich, Jörg

    2010-03-01

    Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation.

  2. Stem Cells and Liver Regeneration

    PubMed Central

    DUNCAN, ANDREW W.; DORRELL, CRAIG; GROMPE, MARKUS

    2011-01-01

    One of the defining features of the liver is the capacity to maintain a constant size despite injury. Although the precise molecular signals involved in the maintenance of liver size are not completely known, it is clear that the liver delicately balances regeneration with overgrowth. Mammals, for example, can survive surgical removal of up to 75% of the total liver mass. Within 1 week after liver resection, the total number of liver cells is restored. Moreover, liver overgrowth can be induced by a variety of signals, including hepatocyte growth factor or peroxisome proliferators; the liver quickly returns to its normal size when the proliferative signal is removed. The extent to which liver stem cells mediate liver regeneration has been hotly debated. One of the primary reasons for this controversy is the use of multiple definitions for the hepatic stem cell. Definitions for the liver stem cell include the following: (1) cells responsible for normal tissue turnover, (2) cells that give rise to regeneration after partial hepatectomy, (3) cells responsible for progenitor-dependent regeneration, (4) cells that produce hepatocyte and bile duct epithelial phenotypes in vitro, and (5) transplantable liver-repopulating cells. This review will consider liver stem cells in the context of each definition. PMID:19470389

  3. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells.

    PubMed

    Rezania, Alireza; Bruin, Jennifer E; Arora, Payal; Rubin, Allison; Batushansky, Irina; Asadi, Ali; O'Dwyer, Shannon; Quiskamp, Nina; Mojibian, Majid; Albrecht, Tobias; Yang, Yu Hsuan Carol; Johnson, James D; Kieffer, Timothy J

    2014-11-01

    Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.

  4. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    PubMed

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  5. Novel aspects on pancreatic beta-cell signal-transduction.

    PubMed

    Leibiger, Ingo B; Brismar, Kerstin; Berggren, Per-Olof

    2010-05-21

    Pancreatic beta-cells release insulin in appropriate amounts in order to keep blood glucose levels within physiological limits. Failure to do so leads to the most common metabolic disorder in man, diabetes mellitus. The glucose-stimulus/insulin-secretion coupling represents a sophisticated interplay between glucose and a variety of modulatory factors. These factors are provided by the blood supply (such as nutrients, vitamins, incretins etc.), the nerval innervations, cell-cell contacts as well as by paracrine and autocrine feedback loops within the pancreatic islet of Langerhans. However, the underlying mechanisms of their action remain poorly understood. In the present mini-review we discuss novel aspects of selective insulin signaling in the beta-cell and novel insights into the role of higher inositol phosphates in insulin secretion. Finally we present a newly developed experimental platform that allows non-invasive and longitudinal in vivo imaging of pancreatic islet/beta-cell biology at single-cell resolution.

  6. Stem cells in pediatric cardiology.

    PubMed

    Patel, Pranali; Mital, Seema

    2013-10-01

    The ability to reprogram virtually any cell of human origin to behave like embryonic or pluripotent stem cells is a major breakthrough in stem cell biology. Human induced pluripotent stem cells (iPSC) provide a unique opportunity to study "disease in a dish" within a defined genetic and environmental background. Patient-derived iPSCs have been successfully used to model cardiomyopathies, rhythm disorders and vascular disorders. They also provide an exciting opportunity for drug discovery and drug repurposing for disorders with a known molecular basis including childhood onset heart disease, particularly cardiac genetic disorders. The review will discuss their use in drug discovery, efficacy and toxicity studies with emphasis on challenges in pediatric-focused drug discovery. Issues that will need to be addressed in the coming years include development of maturation protocols for iPSC-derived cardiac lineages, use of iPSCs to study not just cardiac but extra-cardiac phenotypes in the same patient, scaling up of stem cell platforms for high-throughput drug screens, translating drug testing results to clinical applications in the paradigm of personalized medicine, and improving both the efficiency and the safety of iPSC-derived lineages for future stem cell therapies.

  7. Pluripotent stem cells for Schwann cell engineering.

    PubMed

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    2015-04-01

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitulating the various stages of in vivo neural crest formation and SC differentiation. In this review, we survey the cellular and molecular mechanisms underlying these in vivo processes. We then focus on the current in vitro strategies for generating SCs from two sources of pluripotent stem cells, namely embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Different methods for SC engineering from ESCs and iPSCs are reviewed and suggestions are proposed for optimizing the existing protocols. Potential safety issues regarding the clinical application of iPSC-derived SCs are discussed as well. Lastly, we will address future aspects of SC engineering.

  8. Lineage Reprogramming: A Promising Road for Pancreatic β Cell Regeneration.

    PubMed

    Wei, Rui; Hong, Tianpei

    2016-03-01

    Cell replacement therapy is a promising method to restore pancreatic β cell function and cure diabetes. Distantly related cells (fibroblasts, keratinocytes, and muscle cells) and developmentally related cells (hepatocytes, gastrointestinal, and pancreatic exocrine cells) have been successfully reprogrammed into β cells in vitro and in vivo. However, while some reprogrammed β cells bear similarities to bona fide β cells, others do not develop into fully functional β cells. Here we review various strategies currently used for β cell reprogramming, including ectopic expression of specific transcription factors associated with islet development, repression of maintenance factors of host cells, regulation of epigenetic modifications, and microenvironmental changes. Development of simple and efficient reprogramming methods is a key priority for developing fully functional β cells suitable for cell replacement therapy.

  9. Stem Cell Information: Glossary

    MedlinePlus

    ... a fluid-filled cavity (the blastocoel ), and a cluster of cells on the interior (the inner cell ... the female body. Inner cell mass (ICM) —The cluster of cells inside the blastocyst . These cells give ...

  10. [Therapeutic use of stem cells].

    PubMed

    Uzan, Georges

    2004-09-15

    Stem cells display important capacities of self renewing, proliferation and differentiation. Because those present in the embryo have the more remarkable properties, their potential use in the therapy of until now incurable degenerative diseases have been envisioned. Embryonic stem (ES) cells are located in the inner mass of the balstocyst at early stages of the development. Even in long-term cultures they still retain their undifferentiated features. Under specific culture conditions, ES cells can be committed into a variety of differentiation pathways, giving rise to large amounts of cells corresponding to different tissues (neurones, cardiomyocytes, skeletal muscle, etc.). However, producing these tissues from already established ES cell lines would lead to immune rejection when transplanted to patients. To prevent this pitfall and using the expertise accumulated by animal cloning by nucleus transfer, it has been proposed to adapt this technique to human ES cells. The therapeutic cloning consists in transferring the nucleus of somatic stem cells isolated from the patient into an enucleated oocyte, to allow blastocyst development from which ES cells will be derived. From these stem cells, compatible tissues will be then produced. The problem is that it is in theoretically possible to reimplant the cloned blastocyst into a surrogate mother for obtaining a baby genetically identical to the donor. This is called reproductive cloning. This worrying risk raises important ethic and legal questions.

  11. Molecular basis of potassium channels in pancreatic duct epithelial cells.

    PubMed

    Hayashi, Mikio; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K(+) channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K(+) channels in pancreatic duct cells, including KCNN4 (KCa 3.1), KCNMA1 (KCa 1.1), KCNQ1 (Kv 7.1), KCNH2 (Kv 11.1), KCNH5 (Kv 10.2), KCNT1 (KCa 4.1), KCNT2 (KCa 4.2), and KCNK5 (K 2P 5.1). We will give an overview of K(+) channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K(+) channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K(+) channels may be of importance.

  12. Molecular basis of potassium channels in pancreatic duct epithelial cells

    PubMed Central

    Hayashi, Mikio; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance. PMID:23962792

  13. Epigenetics in cancer stem cells.

    PubMed

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  14. Cancer stem cells in osteosarcoma.

    PubMed

    Brown, Hannah K; Tellez-Gabriel, Marta; Heymann, Dominique

    2017-02-01

    Osteosarcoma is the most common primary bone tumour in children and adolescents and advanced osteosarcoma patients with evidence of metastasis share a poor prognosis. Osteosarcoma frequently gains resistance to standard therapies highlighting the need for improved treatment regimens and identification of novel therapeutic targets. Cancer stem cells (CSC) represent a sub-type of tumour cells attributed to critical steps in cancer including tumour propagation, therapy resistance, recurrence and in some cases metastasis. Recent published work demonstrates evidence of cancer stem cell phenotypes in osteosarcoma with links to drug resistance and tumorigenesis. In this review we will discuss the commonly used isolation techniques for cancer stem cells in osteosarcoma as well as the identified biochemical and molecular markers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Current progress of human trials using stem cell therapy as a treatment for diabetes mellitus

    PubMed Central

    Cheng, Shuk Kei; Park, Elisse Y; Pehar, Andjela; Rooney, Alexandra C; Gallicano, G. Ian

    2016-01-01

    Diabetes mellitus affects millions of people worldwide, and is associated with serious complications that affect nearly all body systems. Because of the severity of this global health concern, there is a great deal of research being performed on alternative treatments and possible cures. Previous treatments for diabetes have included exogenous insulin injection and pancreatic islet transplantations. These treatment methods have several limitations; thus, the use of stem cells in treating diabetes is currently a significant area of research. This review outlines current research on stem cell therapy for diabetes mellitus. Numerous studies have been performed on animals using various types of stem cells, including mesenchymal stem cells and embryonic stem cells. Moreover, results and limitations of animal studies have been confirmed in various clinical trials. Overall, stem cell treatment shows prospective advantages over insulin injections and other current treatment options, and ongoing clinical trials suggest that this therapy may be a viable treatment option for diabetics in the near future. PMID:27853629

  16. Pancreatic panniculitis as a paraneoplastic phenomenon of a pancreatic acinar cell carcinoma.

    PubMed

    Naeyaert, Charlotte; de Clerck, Frederik; De Wilde, Vincent

    2016-12-01

    We present the case of a 59-year-old patient admitted with extreme painful erythematous subcutaneous nodules of the lower extremities in association with arthritis and peripheral eosinophilia. Upon skin biopsy, the diagnosis of pancreatic panniculitis was made. On further investigation, an underlying acinar cell type pancreas carcinoma was revealed. This clinical case does illustrate how a seemingly innocuous skin condition may herald an underlying malignant disease. The presence of pancreatic panniculitis should trigger clinicians to undertake further thorough diagnostic investigation of the pancreas.

  17. Reconstructing the stem cell debate.

    PubMed

    Sitko, Bradley J

    2002-01-01

    Human embryonic stem cells have been a major topic in science, medicine, and religion since their discovery in 1998. However, due to the complex discourse and rhetoric of scientific language, debate has remained within the professional realm via "expert bioethics." Using the tenets of pragmatism, the author examines the need to move the debate to society as a whole and disentangle the stem cell debate from the ideologies of the human cloning and abortion debates. Opening this issue to a societal debate will advance societal growth, resulting in informed decisions on moral issues, funding, or regulation associated with hES cell research.

  18. Stem cells' exodus: a journey to immortality.

    PubMed

    Zhou, Yi; Lewallen, Michelle; Xie, Ting

    2013-01-28

    Stem cell niches provide a regulatory microenvironment that retains stem cells and promotes self-renewal. Recently in Developmental Cell, Rinkevich et al. (2013) showed that cell islands (CIs) of Botryllus schlosseri, a colonial chordate, provide niches for maintaining cycling stem cells that migrate from degenerated CIs to newly formed buds.

  19. Human stem cell ethics: beyond the embryo.

    PubMed

    Sugarman, Jeremy

    2008-06-05

    Human embryonic stem cell research has elicited powerful debates about the morality of destroying human embryos. However, there are important ethical issues related to stem cell research that are unrelated to embryo destruction. These include particular issues involving different types of cells used, the procurement of such cells, in vivo use of stem cells, intellectual property, and conflicts of interest.

  20. Targeting Ovarian Carcinoma Stem Cells

    DTIC Science & Technology

    2012-05-01

    expertise with expertise in gynecologic oncology /ovarian carcinoma and in animal models of cancer this proposal will: 1) Identify, isolate, and...more numerous differentiated progeny characterizing the malignancy . Although the clinical significance of these cancer stem cells (CSC) has been...the dramatic initial response rates in ovarian carcinoma represent therapeutic effectiveness against the differentiated cancer cells making up the

  1. Stem-cell ecology and stem cells in motion

    PubMed Central

    Scadden, David T.

    2008-01-01

    This review highlights major scientific developments over the past 50 years or so in concepts related to stem-cell ecology and to stem cells in motion. Many thorough and eloquent reviews have been presented in the last 5 years updating progress in these issues. Some paradigms have been challenged, others validated, or new ones brought to light. In the present review, we will confine our remarks to the historical development of progress. In doing so, we will refrain from a detailed analysis of controversial data, emphasizing instead widely accepted views and some challenging novel ones. PMID:18398055

  2. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion

    PubMed Central

    Coleman, Stacey J; Chioni, Athina-Myrto; Ghallab, Mohammed; Anderson, Rhys K; Lemoine, Nicholas R; Kocher, Hemant M; Grose, Richard P

    2014-01-01

    Pancreatic cancer is characterised by desmoplasia, driven by activated pancreatic stellate cells (PSCs). Over-expression of FGFs and their receptors is a feature of pancreatic cancer and correlates with poor prognosis, but whether their expression impacts on PSCs is unclear. At the invasive front of human pancreatic cancer, FGF2 and FGFR1 localise to the nucleus in activated PSCs but not cancer cells. In vitro, inhibiting FGFR1 and FGF2 in PSCs, using RNAi or chemical inhibition, resulted in significantly reduced cell proliferation, which was not seen in cancer cells. In physiomimetic organotypic co-cultures, FGFR inhibition prevented PSC as well as cancer cell invasion. FGFR inhibition resulted in cytoplasmic localisation of FGFR1 and FGF2, in contrast to vehicle-treated conditions where PSCs with nuclear FGFR1 and FGF2 led cancer cells to invade the underlying extra-cellular matrix. Strikingly, abrogation of nuclear FGFR1 and FGF2 in PSCs abolished cancer cell invasion. These findings suggest a novel therapeutic approach, where preventing nuclear FGF/FGFR mediated proliferation and invasion in PSCs leads to disruption of the tumour microenvironment, preventing pancreatic cancer cell invasion. PMID:24503018

  3. Pancreatic Cancer

    MedlinePlus

    ... hormones that help control blood sugar levels. Pancreatic cancer usually begins in the cells that produce the juices. Some risk factors for developing pancreatic cancer include Smoking Long-term diabetes Chronic pancreatitis Certain ...

  4. Epigenomic plasticity enables human pancreatic α to β cell reprogramming.

    PubMed

    Bramswig, Nuria C; Everett, Logan J; Schug, Jonathan; Dorrell, Craig; Liu, Chengyang; Luo, Yanping; Streeter, Philip R; Naji, Ali; Grompe, Markus; Kaestner, Klaus H

    2013-03-01

    Insulin-secreting β cells and glucagon-secreting α cells maintain physiological blood glucose levels, and their malfunction drives diabetes development. Using ChIP sequencing and RNA sequencing analysis, we determined the epigenetic and transcriptional landscape of human pancreatic α, β, and exocrine cells. We found that, compared with exocrine and β cells, differentiated α cells exhibited many more genes bivalently marked by the activating H3K4me3 and repressing H3K27me3 histone modifications. This was particularly true for β cell signature genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a monovalent state in β cells, carrying only the activating or repressing mark. Our epigenomic findings suggested that α to β cell reprogramming could be promoted by manipulating the histone methylation signature of human pancreatic islets. Indeed, we show that treatment of cultured pancreatic islets with a histone methyltransferase inhibitor leads to colocalization of both glucagon and insulin and glucagon and insulin promoter factor 1 (PDX1) in human islets and colocalization of both glucagon and insulin in mouse islets. Thus, mammalian pancreatic islet cells display cell-type-specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes.

  5. Epigenomic plasticity enables human pancreatic α to β cell reprogramming

    PubMed Central

    Bramswig, Nuria C.; Everett, Logan J.; Schug, Jonathan; Dorrell, Craig; Liu, Chengyang; Luo, Yanping; Streeter, Philip R.; Naji, Ali; Grompe, Markus; Kaestner, Klaus H.

    2013-01-01

    Insulin-secreting β cells and glucagon-secreting α cells maintain physiological blood glucose levels, and their malfunction drives diabetes development. Using ChIP sequencing and RNA sequencing analysis, we determined the epigenetic and transcriptional landscape of human pancreatic α, β, and exocrine cells. We found that, compared with exocrine and β cells, differentiated α cells exhibited many more genes bivalently marked by the activating H3K4me3 and repressing H3K27me3 histone modifications. This was particularly true for β cell signature genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a monovalent state in β cells, carrying only the activating or repressing mark. Our epigenomic findings suggested that α to β cell reprogramming could be promoted by manipulating the histone methylation signature of human pancreatic islets. Indeed, we show that treatment of cultured pancreatic islets with a histone methyltransferase inhibitor leads to colocalization of both glucagon and insulin and glucagon and insulin promoter factor 1 (PDX1) in human islets and colocalization of both glucagon and insulin in mouse islets. Thus, mammalian pancreatic islet cells display cell-type–specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes. PMID:23434589

  6. Common stemness regulators of embryonic and cancer stem cells

    PubMed Central

    Hadjimichael, Christiana; Chanoumidou, Konstantina; Papadopoulou, Natalia; Arampatzi, Panagiota; Papamatheakis, Joseph; Kretsovali, Androniki

    2015-01-01

    Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies. PMID:26516408

  7. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer.

    PubMed

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-08-21

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.

  8. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis

    PubMed Central

    Zambirinis, Constantinos P.; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H.; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D.; Tuveson, David

    2015-01-01

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. PMID:26481685

  9. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.

    PubMed

    Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George

    2015-11-16

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis.

  10. Introduction to stem cells and regenerative medicine.

    PubMed

    Kolios, George; Moodley, Yuben

    2013-01-01

    Stem cells are a population of undifferentiated cells characterized by the ability to extensively proliferate (self-renewal), usually arise from a single cell (clonal), and differentiate into different types of cells and tissue (potent). There are several sources of stem cells with varying potencies. Pluripotent cells are embryonic stem cells derived from the inner cell mass of the embryo and induced pluripotent cells are formed following reprogramming of somatic cells. Pluripotent cells can differentiate into tissue from all 3 germ layers (endoderm, mesoderm, and ectoderm). Multipotent stem cells may differentiate into tissue derived from a single germ layer such as mesenchymal stem cells which form adipose tissue, bone, and cartilage. Tissue-resident stem cells are oligopotent since they can form terminally differentiated cells of a specific tissue. Stem cells can be used in cellular therapy to replace damaged cells or to regenerate organs. In addition, stem cells have expanded our understanding of development as well as the pathogenesis of disease. Disease-specific cell lines can also be propagated and used in drug development. Despite the significant advances in stem cell biology, issues such as ethical controversies with embryonic stem cells, tumor formation, and rejection limit their utility. However, many of these limitations are being bypassed and this could lead to major advances in the management of disease. This review is an introduction to the world of stem cells and discusses their definition, origin, and classification, as well as applications of these cells in regenerative medicine.

  11. Potential of pluripotent stem cells for diabetes therapy.

    PubMed

    Schroeder, Insa S

    2012-10-01

    Diabetes mellitus type 1 (T1DM) and type 2 (T2DM) are common diseases. To date, it is widely accepted that all forms of DM lead to the loss of beta cells. Therefore, to avoid the debilitating comorbidities when glycemic control cannot be fully achieved, some would argue that beta cell replacement is the only way to cure the disease. Due to organ donor shortage, other cell sources for beta cell replacement strategies have to be employed. Pluripotent stem cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells offer a valuable alternative to provide the necessary cells to substitute organ transplants but also to serve as a model to study the onset and progression of the disease, resulting in better treatment regimens. This review will summarize recent progress in the establishment of pluripotent stem cells, their differentiation into the pancreatic lineage with a focus on two-dimensional (2D) and three-dimensional (3D) differentiation settings, the special role of iPS cells in the analysis of genetic predispositions to diabetes, and techniques that help to move current approaches to clinical applications. Particular attention, however, is also given to the long-term challenges that have to be addressed before ES or iPS cell-based therapies will become a broadly accepted treatment option.

  12. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    PubMed

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  13. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    PubMed Central

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted. PMID:27721702

  14. Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization.

    PubMed

    Maity, Gargi; Mehta, Smita; Haque, Inamul; Dhar, Kakali; Sarkar, Sandipto; Banerjee, Sushanta K; Banerjee, Snigdha

    2014-05-16

    The complex signaling networks between cancer cells and adjacent endothelial cells make it challenging to unravel how cancer cells send extracellular messages to promote aberrant vascularization or tumor angiogenesis. Here, in vitro and in vivo models show that pancreatic cancer cell generated unique microenvironments can underlie endothelial cell migration and tumor angiogenesis. Mechanistically, we find that pancreatic cancer cell secreted CCN1/Cyr61 matricellular protein rewires the microenvironment to promote endothelial cell migration and tumor angiogenesis. This event can be overcome by Sonic Hedgehog (SHh) antibody treatment. Collectively, these studies identify a novel CCN1 signaling program in pancreatic cancer cells which activates SHh through autocrine-paracrine circuits to promote endothelial cell migration and tumor angiogenesis and suggests that CCN1 signaling of pancreatic cancer cells is vital for the regulation of tumor angiogenesis. Thus CCN1 signaling could be an ideal target for tumor vascular disruption in pancreatic cancer.

  15. Multipotent Stem Cell and Current Application.

    PubMed

    Sobhani, Aligholi; Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sargolzaei Aval, Fereydoon

    2017-01-01

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. Multipotent Stem cells have been applying in treatment of different disorders such as spinal cord injury, bone fracture, autoimmune diseases, rheumatoid arthritis, hematopoietic defects, and fertility preservation.

  16. Preconditioning and stem cell survival.

    PubMed

    Haider, Husnain Kh; Ashraf, Muhammad

    2010-04-01

    The harsh ischemic and cytokine-rich microenvironment in the infarcted myocardium, infiltrated by the inflammatory and immune cells, offers a significant challenge to the transplanted donor stem cells. Massive cell death occurs during transplantation as well as following engraftment which significantly lowers the effectiveness of the heart cell therapy. Various approaches have been adopted to overcome this problem nevertheless with multiple limitations with each of these current approaches. Cellular preconditioning and reprogramming by physical, chemical, genetic, and pharmacological manipulation of the cells has shown promise and "prime" the cells to the "state of readiness" to withstand the rigors of lethal ischemia in vitro as well as posttransplantation. This review summarizes the past and present novel approaches of ischemic preconditioning, pharmacological and genetic manipulation using preconditioning mimetics, recombinant growth factor protein treatment, and reprogramming of stem cells to overexpress survival signaling molecules, microRNAs, and trophic factors for intracrine, autocrine, and paracrine effects on cytoprotection.

  17. Inflammatory role of the acinar cells during acute pancreatitis

    PubMed Central

    Dios, Isabel De

    2010-01-01

    Pancreatic acinar cells are secretory cells whose main function is to synthesize, store and finally release digestive enzymes into the duodenum. However, in response to noxious stimuli, acinar cells behave like real inflammatory cells because of their ability to activate signalling transduction pathways involved in the expression of inflammatory mediators. Mediated by the kinase cascade, activation of Nuclear factor-κB, Activating factor-1 and Signal transducers and activators of transcription transcription factors has been demonstrated in acinar cells, resulting in overexpression of inflammatory genes. In turn, kinase activity is down-regulated by protein phosphatases and the final balance between kinase and phosphatase activity will determine the capability of the acinar cells to produce inflammatory factors. The kinase/phosphatase pair is a redox-sensitive system in which kinase activation overwhelms phosphatase activity under oxidant conditions. Thus, the oxidative stress developed within acinar cells at early stages of acute pancreatitis triggers the activation of signalling pathways involved in the up-regulation of cytokines, chemokines and adhesion molecules. In this way, acinar cells trigger the release of the first inflammatory signals which can mediate the activation and recruitment of circulating inflammatory cells into the injured pancreas. Accordingly, the role of acinar cells as promoters of the inflammatory response in acute pancreatitis may be considered. This concept leads to amplifying the focus from leukocyte to acinar cells themselves, to explain the local inflammation in early pancreatitis. PMID:21577290

  18. Inflammatory role of the acinar cells during acute pancreatitis.

    PubMed

    Dios, Isabel De

    2010-02-06

    Pancreatic acinar cells are secretory cells whose main function is to synthesize, store and finally release digestive enzymes into the duodenum. However, in response to noxious stimuli, acinar cells behave like real inflammatory cells because of their ability to activate signalling transduction pathways involved in the expression of inflammatory mediators. Mediated by the kinase cascade, activation of Nuclear factor-κB, Activating factor-1 and Signal transducers and activators of transcription transcription factors has been demonstrated in acinar cells, resulting in overexpression of inflammatory genes. In turn, kinase activity is down-regulated by protein phosphatases and the final balance between kinase and phosphatase activity will determine the capability of the acinar cells to produce inflammatory factors. The kinase/phosphatase pair is a redox-sensitive system in which kinase activation overwhelms phosphatase activity under oxidant conditions. Thus, the oxidative stress developed within acinar cells at early stages of acute pancreatitis triggers the activation of signalling pathways involved in the up-regulation of cytokines, chemokines and adhesion molecules. In this way, acinar cells trigger the release of the first inflammatory signals which can mediate the activation and recruitment of circulating inflammatory cells into the injured pancreas. Accordingly, the role of acinar cells as promoters of the inflammatory response in acute pancreatitis may be considered. This concept leads to amplifying the focus from leukocyte to acinar cells themselves, to explain the local inflammation in early pancreatitis.

  19. Casein kinase II inhibition induces apoptosis in pancreatic cancer cells.

    PubMed

    Hamacher, Rainer; Saur, Dieter; Fritsch, Ralph; Reichert, Maximilian; Schmid, Roland M; Schneider, Günter

    2007-09-01

    Pancreatic cancer is one of the most common causes of cancer death in western civilization. The five-year survival rate is below 1% and of the 10% of patients with resectable disease only around one-fifth survives 5 years. Survival rates have not changed much during the last 20 years, demonstrating the inefficacy of current available therapies. To improve the prognosis of pancreatic cancer, there is the need to develop effective non-surgical treatment for this disease. The protein kinase casein kinase II (CK2) is a ubiquitously expressed serine-threonine kinase and its activity is enhanced in all human tumors examined so far. The contribution of CK2 to the tumor maintenance of pancreatic cancer has not been investigated. To investigate the function of CK2 in pancreatic cancer cells we used the CK2 specific inhibitors 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole and Apigenin. Furthermore, we interfered with CK2 expression using CK2 specific siRNAs. Interfering with CK2 function led to a reduction of pancreatic cancer cell viability, which was due to caspase-dependent apoptosis. The induction of apoptosis correlated with a reduced NF-kappaB-dependent transcriptional activity. This study validates CK2 as a molecular drug target in a preclinical in vitro model of pancreatic cancer.

  20. Doublecortin-like kinase 1 is elevated serologically in pancreatic ductal adenocarcinoma and widely expressed on circulating tumor cells.

    PubMed

    Qu, Dongfeng; Johnson, Jeremy; Chandrakesan, Parthasarathy; Weygant, Nathaniel; May, Randal; Aiello, Nicole; Rhim, Andrew; Zhao, Lichao; Zheng, Wei; Lightfoot, Stanley; Pant, Shubham; Irvan, Jeremy; Postier, Russell; Hocker, James; Hanas, Jay S; Ali, Naushad; Sureban, Sripathi M; An, Guangyu; Schlosser, Michael J; Stanger, Ben; Houchen, Courtney W

    2015-01-01

    Doublecortin-like kinase 1 (DCLK1) is a putative pancreatic stem cell marker and is upregulated in pancreatic cancer, colorectal cancer, and many other solid tumors. It marks tumor stem cells in mouse models of intestinal neoplasia. Here we sought to determine whether DCLK1 protein can be detected in the bloodstream and if its levels in archived serum samples could be quantitatively assessed in pancreatic cancer patients. DCLK1 specific ELISA, western blotting, and immunohistochemical analyses were used to determine expression levels in the serum and staining intensity in archived tumor tissues of pancreatic ductal adenocarcinoma (PDAC) patients and in pancreatic cancer mouse models. DCLK1 levels in the serum were elevated in early stages of PDAC (stages I and II) compared to healthy volunteers (normal controls). No differences were observed between stages III/IV and normal controls. In resected surgical tissues, DCLK1 expression intensity in the stromal cells was significantly higher than that observed in tumor epithelial cells. Circulating tumor cells were isolated from KPCY mice and approximately 52% of these cells were positive for Dclk1 staining. Dclk1 levels in the serum of KPC mice were also elevated. We have previously demonstrated that DCLK1 plays a potential role in regulating epithelial mesenchymal transition (EMT). Given the increasingly recognized role of EMT derived stem cells in cancer progression and metastasis, we hypothesize that DCLK1 may contribute to the metastatic process. Taken together, our results suggest that DCLK1 serum levels and DCLK1 positive circulating tumor cells should be further assessed for their potential diagnostic and prognostic significance.

  1. Doublecortin-Like Kinase 1 Is Elevated Serologically in Pancreatic Ductal Adenocarcinoma and Widely Expressed on Circulating Tumor Cells

    PubMed Central

    Weygant, Nathaniel; May, Randal; Aiello, Nicole; Rhim, Andrew; Zhao, Lichao; Zheng, Wei; Lightfoot, Stanley; Pant, Shubham; Irvan, Jeremy; Postier, Russell; Hocker, James; Hanas, Jay S.; Ali, Naushad; Sureban, Sripathi M.; An, Guangyu; Schlosser, Michael J.; Stanger, Ben; Houchen, Courtney W.

    2015-01-01

    Doublecortin-like kinase 1 (DCLK1) is a putative pancreatic stem cell marker and is upregulated in pancreatic cancer, colorectal cancer, and many other solid tumors. It marks tumor stem cells in mouse models of intestinal neoplasia. Here we sought to determine whether DCLK1 protein can be detected in the bloodstream and if its levels in archived serum samples could be quantitatively assessed in pancreatic cancer patients. DCLK1 specific ELISA, western blotting, and immunohistochemical analyses were used to determine expression levels in the serum and staining intensity in archived tumor tissues of pancreatic ductal adenocarcinoma (PDAC) patients and in pancreatic cancer mouse models. DCLK1 levels in the serum were elevated in early stages of PDAC (stages I and II) compared to healthy volunteers (normal controls). No differences were observed between stages III/IV and normal controls. In resected surgical tissues, DCLK1 expression intensity in the stromal cells was significantly higher than that observed in tumor epithelial cells. Circulating tumor cells were isolated from KPCY mice and approximately 52% of these cells were positive for Dclk1 staining. Dclk1 levels in the serum of KPC mice were also elevated. We have previously demonstrated that DCLK1 plays a potential role in regulating epithelial mesenchymal transition (EMT). Given the increasingly recognized role of EMT derived stem cells in cancer progression and metastasis, we hypothesize that DCLK1 may contribute to the metastatic process. Taken together, our results suggest that DCLK1 serum levels and DCLK1 positive circulating tumor cells should be further assessed for their potential diagnostic and prognostic significance. PMID:25723399

  2. Pancreastatin producing cell line from human pancreatic islet cell tumor.

    PubMed

    Funakoshi, A; Tateishi, K; Tsuru, M; Jimi, A; Wakasugi, H; Ikeda, Y; Kono, A

    1990-04-30

    It has been characterized that cell line QGP-1 derived from human non-functioning pancreatic islet cell tumor produces human pancreastatin. Exponentially growing cultures produced 5.7 fmol of pancreastatin/10(6) cells/hr. Human pancreastatin immunoreactivities in plasma and tumor after xenografting with QGP-1 into nude mouse were 92.7 fmol/ml and 160.2 pmol/g wet weight, respectively. Immunocytochemical study revealed both chromogranin A and pancreastatin immunoreactive cells in the tumor. Gel filtrations of culture medium and tumor extract identified heterogenous molecular forms of PST-LI which eluted as large and smaller molecular species. These results suggest that plasma pancreastatin levels may be useful as a tumor marker of endocrine tumor of the pancreas, and the pancreastatin producing cell line may be useful for studies of the mechanism of secretions and processing of chromogranin A and pancreastatin.

  3. Targeting cancer stem cells in solid tumors by vitamin D.

    PubMed

    So, Jae Young; Suh, Nanjoo

    2015-04-01

    Cancer stem cells (CSCs) are a small subset of cells that may be responsible for initiation, progression, and recurrence of tumors. Recent studies have demonstrated that CSCs are highly tumorigenic and resistant to conventional chemotherapies, making them a promising target for the development of preventive/therapeutic agents. A single or combination of various markers, such as CD44, EpCAM, CD49f, CD133, CXCR4, ALDH-1, and CD24, were utilized to isolate CSCs from various types of human cancers. Notch, Hedgehog, Wnt, and TGF-β signalingregulate self-renewal and differentiation of normal stem cells andare aberrantly activated in CSCs. In addition, many studies have demonstrated that these stem cell-associated signaling pathways are required for the maintenance of CSCs in different malignancies, including breast, colorectal, prostate, and pancreatic cancers. Accumulating evidence has shown inhibitory effects of vitamin D and its analogs on the cancer stem cell signaling pathways, suggesting vitamin D as a potential preventive/therapeutic agent against CSCs. In this review, we summarize recent findings about the roles of Notch, Hedgehog, Wnt, and TGF-β signaling in CSCs as well as the effects of vitamin D on these stem cell signaling pathways. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Targeting cancer stem cells in solid tumors by vitamin D

    PubMed Central

    Jae Young, So; Nanjoo, Suh

    2014-01-01

    Cancer stem cells (CSCs) are a small subset of cells that may be responsible for initiation, progression and recurrence of tumors. Recent studies have demonstrated that CSCs are highly tumorigenic and resistant to conventional chemotherapies, making them a promising target for the development of preventive/therapeutic agents. A single or combination of various markers, such as CD44, EpCAM, CD49f, CD133, CXCR4, ALDH-1 and CD24, were utilized to isolate CSCs fromvarious types of human cancers. Notch, Hedgehog, Wnt, and TGF-β signalingregulate self-renewal and differentiation of normal stem cells andare aberrantly activated in CSCs. In addition, many studies have demonstrated that these stem cell-associated signaling pathways are required for the maintenance of CSCs in differentmalignancies, including breast, colorectal, prostate and pancreatic cancers. Accumulating evidence hasshowninhibitory effects of vitamin D and its analogs on the cancer stem cell signaling pathways, suggesting vitamin D as a potential preventive/therapeutic agent against CSCs.In this review, we summarize recent findings about the roles of Notch, Hedgehog, Wnt, and TGF-β signaling in CSCs as well as the effects of vitamin D on these stem cell signaling pathways. PMID:25460302

  5. Regeneration of insulin-producing pancreatic cells using a volatile bioactive compound and human teeth.

    PubMed

    Okada, Mio; Imai, Toshio; Yaegaki, Ken; Ishkitiev, Nikolay; Tanaka, Tomoko

    2014-10-30

    Transplantation of insulin (INS)-secreting cells differentiated in vitro from stem cells promises a safer and easier treatment of severe diabetes mellitus. A volatile bioactive compound, hydrogen sulfide (H2S), promotes cell differentiation; human tooth-pulp stem cells undergo hepatic differentiation. The aim of this study is to develop a novel protocol using H2S to enhance pancreatic differentiation from the CD117(+) cell fraction of human tooth pulp. During the differentiation, the cells were exposed to 0.1 ng ml(-1) H2S. Immunocytochemistry, RT-PCR, determination of INS c-peptide content and flow cytometry of pancreatically related markers were carried out. Expression of WNT and the PI3K/AKT signaling pathway were also determined by PCR array. After differentiation, INS, glucagon (GCG), somatostatin (SST) and pancreatic polypeptide (PPY) were positive when examined by immunofluorescence. INS and GCG were also determined flow-cytometrically. Only the cells expressing INS increased after H2S exposure. The number of cells expressing GCG was significantly decreased. Genes involved in canonical WNT and the WNT/calcium pathways were highly expressed after H2S exposure. H2S accelerated INS synthesis and secretion by regenerated INS-producing cells from human teeth. All signaling pathway functions of the PI3K-AKT pathway were extremely activated by H2S exposure. The matured INS-producing cells originating in human teeth were increased by H2S in order to control blood-glucose level.