Science.gov

Sample records for pancreatic tumor motion

  1. Characterization of Pancreatic Tumor Motion Using Cine MRI: Surrogates for Tumor Position Should Be Used With Caution

    SciTech Connect

    Feng, Mary Balter, James M.; Normolle, Daniel; Adusumilli, Saroja; Cao Yue; Chenevert, Thomas L.; Ben-Josef, Edgar

    2009-07-01

    Purpose: Our current understanding of intrafraction pancreatic tumor motion due to respiration is limited. In this study, we characterized pancreatic tumor motion and evaluated the application of several radiotherapy motion management strategies. Methods and Materials: Seventeen patients with unresectable pancreatic cancer were enrolled in a prospective internal review board-approved study and imaged during shallow free-breathing using cine MRI on a 3T scanner. Tumor borders were agreed on by a radiation oncologist and an abdominal MRI radiologist. Tumor motion and correlation with the potential surrogates of the diaphragm and abdominal wall were assessed. These data were also used to evaluate planning target volume margin construction, respiratory gating, and four-dimensional treatment planning for pancreatic tumors. Results: Tumor borders moved much more than expected. To provide 99% geometric coverage, margins of 20 mm inferiorly, 10 mm anteriorly, 7 mm superiorly, and 4 mm posteriorly are required. Tumor position correlated poorly with diaphragm and abdominal wall position, with patient-level Pearson correlation coefficients of -0.18-0.43. Sensitivity and specificity of gating with these surrogates was also poor, at 53%-68%, with overall error of 35%-38%, suggesting that the tumor may be underdosed and normal tissues overdosed. Conclusions: Motion of pancreatic tumor borders is highly variable between patients and larger than expected. There is substantial deformation with breathing, and tumor border position does not correlate well with abdominal wall or diaphragmatic position. Current motion management strategies may not account fully for tumor motion and should be used with caution.

  2. Optimizing 4-Dimensional Magnetic Resonance Imaging Data Sampling for Respiratory Motion Analysis of Pancreatic Tumors

    SciTech Connect

    Stemkens, Bjorn; Tijssen, Rob H.N.; Senneville, Baudouin D. de

    2015-03-01

    Purpose: To determine the optimum sampling strategy for retrospective reconstruction of 4-dimensional (4D) MR data for nonrigid motion characterization of tumor and organs at risk for radiation therapy purposes. Methods and Materials: For optimization, we compared 2 surrogate signals (external respiratory bellows and internal MRI navigators) and 2 MR sampling strategies (Cartesian and radial) in terms of image quality and robustness. Using the optimized protocol, 6 pancreatic cancer patients were scanned to calculate the 4D motion. Region of interest analysis was performed to characterize the respiratory-induced motion of the tumor and organs at risk simultaneously. Results: The MRI navigator was found to be a more reliable surrogate for pancreatic motion than the respiratory bellows signal. Radial sampling is most benign for undersampling artifacts and intraview motion. Motion characterization revealed interorgan and interpatient variation, as well as heterogeneity within the tumor. Conclusions: A robust 4D-MRI method, based on clinically available protocols, is presented and successfully applied to characterize the abdominal motion in a small number of pancreatic cancer patients.

  3. Modeling Pancreatic Tumor Motion Using 4-Dimensional Computed Tomography and Surrogate Markers

    SciTech Connect

    Huguet, Florence; Yorke, Ellen D.; Davidson, Margaret; Zhang, Zhigang; Jackson, Andrew; Mageras, Gig S.; Wu, Abraham J.; Goodman, Karyn A.

    2015-03-01

    Purpose: To assess intrafractional positional variations of pancreatic tumors using 4-dimensional computed tomography (4D-CT), their impact on gross tumor volume (GTV) coverage, the reliability of biliary stent, fiducial seeds, and the real-time position management (RPM) external marker as tumor surrogates for setup of respiratory gated treatment, and to build a correlative model of tumor motion. Methods and Materials: We analyzed the respiration-correlated 4D-CT images acquired during simulation of 36 patients with either a biliary stent (n=16) or implanted fiducials (n=20) who were treated with RPM respiratory gated intensity modulated radiation therapy for locally advanced pancreatic cancer. Respiratory displacement relative to end-exhalation was measured for the GTV, the biliary stent, or fiducial seeds, and the RPM marker. The results were compared between the full respiratory cycle and the gating interval. Linear mixed model was used to assess the correlation of GTV motion with the potential surrogate markers. Results: The average ± SD GTV excursions were 0.3 ± 0.2 cm in the left-right direction, 0.6 ± 0.3 cm in the anterior-posterior direction, and 1.3 ± 0.7 cm in the superior-inferior direction. Gating around end-exhalation reduced GTV motion by 46% to 60%. D95% was at least the prescribed 56 Gy in 76% of patients. GTV displacement was associated with the RPM marker, the biliary stent, and the fiducial seeds. The correlation was better with fiducial seeds and with biliary stent. Conclusions: Respiratory gating reduced the margin necessary for radiation therapy for pancreatic tumors. GTV motion was well correlated with biliary stent or fiducial seed displacements, validating their use as surrogates for daily assessment of GTV position during treatment. A patient-specific internal target volume based on 4D-CT is recommended both for gated and not-gated treatment; otherwise, our model can be used to predict the degree of GTV motion.

  4. Harmonic motion imaging for abdominal tumor detection and high-intensity focused ultrasound ablation monitoring: an in vivo feasibility study in a transgenic mouse model of pancreatic cancer.

    PubMed

    Chen, Hong; Hou, Gary Y; Han, Yang; Payen, Thomas; Palermo, Carmine F; Olive, Kenneth P; Konofagou, Elisa E

    2015-09-01

    Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radio-frequency signals using a 1-D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated at a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring.

  5. Harmonic Motion Imaging for Abdominal Tumor Detection and High-intensity Focused Ultrasound Ablation Monitoring: A Feasibility Study in a Transgenic Mouse Model of Pancreatic Cancer

    PubMed Central

    Chen, Hong; Hou, Gary Y.; Han, Yang; Payen, Thomas; Palermo, Carmine F.; Olive, Kenneth P.; Konofagou, Elisa E.

    2015-01-01

    Harmonic motion imaging (HMI) is a radiation force-based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess relative tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radiofrequency signals using a 1D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated with a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring. PMID:26415128

  6. SU-C-210-04: Considerable Pancreatic Tumor Motion During Breath-Hold Measured Using Intratumoral Fiducials On Fluoroscopic Movies

    SciTech Connect

    Lens, E; Horst, A van der; Versteijne, E; Tienhoven, G van; Bel, A

    2015-06-15

    Purpose: Using a breath hold (BH) technique during radiotherapy of pancreatic tumors is expected to reduce intra-fractional motion. The aim of this study was to evaluate the tumor motion during BH. Methods: In this pilot study, we included 8 consecutive pancreatic cancer patients. All had 2– 4 intratumoral gold fiducials. Patients were asked to perform 3 consecutive 30-second end-inhale BHs on day 5, 10 and 15 of their three-week treatment. During BH, airflow through a mouthpiece was measured using a spirometer. Any inadvertent flow of air during BH was monitored for all patients. We measured tumor motion on lateral fluoroscopic movies (57 in total) made during BH. In each movie the fiducials as a group were tracked over time in superior-inferior (SI) and anterior-posterior (AP) direction using 2-D image correlation between consecutive frames. We determined for each patient the range of intra-BH motion over all movies; we also determined the absolute means and standard deviations (SDs) for the entire patient group. Additionally, we investigated the relation between inadvertent airflow during BH and the intra-BH motion. Results: We found intra-BH tumor motion of up to 12.5 mm (range, 1.0–12.5 mm) in SI direction and up to 8.0 mm (range, 1.0–8.0 mm) in AP direction. The absolute mean motion over the patient population was 4.7 (SD: 3.0) mm and 2.8 (SD: 1.2) mm in the SI and AP direction, respectively. Patients were able to perform stable consecutive BHs; during only 20% of the movies we found very small airflows (≤ 65 ml). These were mostly stepwise in nature and could not explain the continuous tumor motions we observed. Conclusion: We found substantial (up to 12.5 mm) pancreatic tumor motion during BHs. We found minimal inadvertent airflow, seen only during a minority of BHs, and this did not explain the obtained results. This work was supported by the foundation Bergh in het Zadel through the Dutch Cancer Society (KWF Kankerbestrijding) project No. UVA 2011-5271.

  7. Pancreatic islet cell tumor

    MedlinePlus

    Complications of these tumors include: Diabetes Hormone crises (if the tumor releases certain types of hormones) Severe low blood sugar (from insulinomas) Severe ulcers in the stomach and small intestine (from gastrinomas) Spread of the tumor to the liver

  8. Pancreatic endocrine tumors: recent advances.

    PubMed

    Jensen, R T

    1999-01-01

    Pancreatic endocrine tumors (PET's) can be divided on a clinical and pathologic basis into ten classes [insulinomas, gastrinomas (Zollinger-Ellison syndrome), VIPomas (Verner-Morrison syndrome, WDHA, pancreatic cholera), glucagonomas, somatostatinomas, ACTH-releasing tumors (ACTHomas), growth hormone-releasing factor secreting tumors (GRFomas), nonfunctioning or pancreatic polypeptide secreting tumors (non-functioning PET), PET's causing carcinoid syndrome and PET's causing hypercalcemia)]. Recent reports suggest calcitonin-secreting PET's also rarely occur but whether they cause a distinct clinical syndrome is unclear. PET's resemble carcinoid tumors histologically; in their ability to synthesize and frequently secrete multiple peptides such as neuroendocrine cell markers (chromogranins); their biologic behavior and their tumor growth patterns. Both groups of tumors are highly vascular, have high densities of somatostatin receptors and similar tumor localization studies including somatostatin receptor scintigraphy are used for both. PET's, similar to carcinoids causing the carcinoid syndrome, require two separate treatment options be considered: treatment directed against the hormone-excess state and treatment directed against the tumor per se because of their malignant nature. In the last few years there have been advances in tumor diagnosis, localization methods, treatment approaches particularly related to the use of synthetic somatostatin analogues, and the definition of the role of surgical procedures in these diseases. Important other advances include insights into the long-term natural history of PET's particularly from studies of gastrinomas, which allow prognostic factors to be identified and the timing of treatment options to better planned, as well as insights into the molecular basis of these disorders. The latter includes both a description of the molecular basis of the genetic inherited syndromes associated with PET's or carcinoid tumors, as well as

  9. Update on pancreatic neuroendocrine tumors

    PubMed Central

    McKenna, Logan R.

    2014-01-01

    Pancreatic neuroendocrine tumors (pNETs) are relatively rare tumors comprising 1-2% of all pancreas neoplasms. In the last 10 years our understanding of this disease has increased dramatically allowing for advancements in the treatment of pNETs. Surgical excision remains the primary therapy for localized tumors and only potential for cure. New surgical techniques using laparoscopic approaches to complex pancreatic resections are a major advancement in surgical therapy and increasingly possible. With early detection being less common, most patients present with metastatic disease. Management of these patients requires multidisciplinary care combining the best of surgery, chemotherapy and other targeted therapies. In addition to surgical advances, recently, there have been significant advances in systemic therapy and targeted molecular therapy. PMID:25493258

  10. Adaptive motion mapping in pancreatic SBRT patients using Fourier transforms

    PubMed Central

    Jones, Bernard L.; Schefter, Tracey; Miften, Moyed

    2015-01-01

    Background and Purpose Recent studies suggest that 4DCT is unable to accurately measure respiratory-induced pancreatic tumor motion. In this work, we assessed the daily motion of pancreatic tumors treated with SBRT, and developed adaptive strategies to predict and account for this motion. Materials and Methods The daily motion trajectory of pancreatic tumors during CBCT acquisition was calculated using a model which reconstructs the instantaneous 3D position in each 2D CBCT projection image. We developed a metric (termed “Spectral Coherence,” SC) based on the Fourier frequency spectrum of motion in the SI direction, and analyzed the ability of SC to predict motion-based errors and classify patients according to motion characteristics. Results The amplitude of daily motion exceeded the predictions of pre-treatment 4DCT imaging by an average of 3.0 mm, 2.3 mm, and 3.5 mm in the AP/LR/SI directions. SC was correlated with daily motion differences and tumor dose coverage. In a simulated adaptive protocol, target margins were adjusted based on SC, resulting in significant increases in mean target D95, D99, and minimum dose. Conclusions Our Fourier-based approach differentiates between consistent and inconsistent motion characteristics of respiration and correlates with daily motion deviations from pre-treatment 4DCT. The feasibility of an SC-based adaptive protocol was demonstrated, and this patient-specific respiratory information was used to improve target dosimetry by expanding coverage in inconsistent breathers while shrinking treatment volumes in consistent breathers. PMID:25890573

  11. Histopathologically Proven Autoimmune Pancreatitis Mimicking Neuroendocrine Tumor or Pancreatic Cancer

    PubMed Central

    Onda, Shinji; Okamoto, Tomoyoshi; Kanehira, Masaru; Fujioka, Shuichi; Harada, Tohru; Hano, Hiroshi; Fukunaga, Masaharu; Yanaga, Katsuhiko

    2012-01-01

    Autoimmune pancreatitis (AIP) can be difficult to distinguish from pancreatic cancer. We report a case of histopathologically proven AIP mimicking neuroendocrine tumor (NET) or pancreatic cancer in a 53-year-old man. He was referred to our hospital for further evaluation of a pancreatic mass detected on ultrasonography at a medical check-up. Abdominal ultrasonography showed a 15-mm hypoechoic mass located in the pancreatic body. Computed tomography revealed a tumor without any contrast enhancement, and magnetic resonance imaging demonstrated the mass to be hyperintense on diffusion-weighted image. Endoscopic retrograde cholangiopancreatography revealed slight dilatation of a branch of the pancreatic duct without stricture of the main pancreatic duct. The common bile duct seemed intact. Under suspicion of a non-functioning NET or malignant neoplasm, laparotomy was performed. At laparotomy, an elastic firm and well-circumscribed mass was found suggestive of a non-functioning NET, thus enucleation was performed. Histopathologically, the lesion corresponded to AIP. PMID:22423237

  12. [Surgery for pancreatic neuroendocrine tumors].

    PubMed

    Shibata, Chikashi; Egawa, Shin-Ichi; Motoi, Fuyuhiko; Morikawa, Takanori; Naitoh, Takeshi; Unno, Michiaki; Sasaki, Iwao

    2012-11-01

    Approximately half of pancreatic neuroendocrine tumors (PNETs) are nonfunctioning, and insulinoma and gastrinoma are frequent forms of functioning tumors. The treatment of patients with PNETs should be based on the consideration that more than half are malignant except for insulinomas. Multiple endocrine neoplasia type 1 (MEN1) is often complicated with gastrinoma. Endoscopic ultrasound and somatostain receptor scintigraphy are useful in diagnosing PNETs, and the selective arterial secretagogue injection test is performed if necessary. WHO2010 is available as a histopathologic grading system of malignancy. Although surgical resection should first be considered as a treatment for PNETs, liver metastasis is a major factor hindering resection. In Japan, the choices of drugs to treat liver metastases are too few. In patients with MEN1 in whom PNETS are frequently multiple, we should perform procedures that preserve pancreatic function, although some patients may require total pancreatectomy for the complete resection of tumors. The indications for total pancreatectomy should be determined individually based on the tumor status and patient age. PMID:23330458

  13. General Information about Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)

    MedlinePlus

    ... Islet Cell Tumors) Treatment (PDQ®)–Patient Version General Information About Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Go ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  14. Pancreatic metastasis from mycosis fungoides mimicking primary pancreatic tumor.

    PubMed

    Ceriolo, Paola; Fausti, Valentina; Cinotti, Elisa; Bonadio, Silvia; Raffaghello, Lizzia; Bianchi, Giovanna; Orcioni, Giulio Fraternali; Fiocca, Roberto; Rongioletti, Franco; Pistoia, Vito; Borgonovo, Giacomo

    2016-03-28

    Mycosis fungoides (MF) is a cutaneous T-cell lymphoma that can undergo local progression with possible systemic dissemination. We report a case of a patient affected by MF with a pancreatic mass that was a diagnostic challenge between primitive tumor and pancreatic metastasis from MF. Clinical setting findings and imaging studies raised the suspicion of a pancreatic primary neoplasm. A diagnostic clue was provided by the combined histomorphologic/immunohistochemical study of pancreatic and cutaneous biopsies, which revealed a pancreatic localization of MF. Considering the rarity of metastatic localization of MF to the pancreas, we next investigated whether chemokine-chemokine receptor interactions could be involved in the phenomenon to provide new insight into the possible mechanisms underlying metastatic localization of MF to the pancreas. Histological analyses of archival pancreatic tissue demonstrated that glucagon-secreting cells of the pancreatic islets expressed the CCL27 chemokine, which may have attracted in our case metastatic MF cells expressing the complementary receptor CCR10.

  15. [Splenoportography in pancreatic tumors and retroperitoneal neoplasms].

    PubMed

    Roshchektaev, N V

    1975-01-01

    Along with other methods of investigation splenoportography was performed in 29 patients with tumors and in 2 patients with cystic affection of the pancreas. Moreover, in 5 cases splenoportography was performed due to a suspicion to pancreatic tumor, and also in 6 patients with retroperitoneal tumors and in 7-with renal tumors. In all these patients with pancreatic tumors splenoportograms have shown changes on the part of a splenoportal trunk, which corresponded to the localization and degree of spread of a tumor in most cases. Splenoportography is felt to be rational in retroperitoneal tumors. In such cases splenoportography would contribute to a detailed determination of tumor localization and its relation with the liver.

  16. Pancreatic metastasis from mycosis fungoides mimicking primary pancreatic tumor

    PubMed Central

    Ceriolo, Paola; Fausti, Valentina; Cinotti, Elisa; Bonadio, Silvia; Raffaghello, Lizzia; Bianchi, Giovanna; Orcioni, Giulio Fraternali; Fiocca, Roberto; Rongioletti, Franco; Pistoia, Vito; Borgonovo, Giacomo

    2016-01-01

    Mycosis fungoides (MF) is a cutaneous T-cell lymphoma that can undergo local progression with possible systemic dissemination. We report a case of a patient affected by MF with a pancreatic mass that was a diagnostic challenge between primitive tumor and pancreatic metastasis from MF. Clinical setting findings and imaging studies raised the suspicion of a pancreatic primary neoplasm. A diagnostic clue was provided by the combined histomorphologic/immunohistochemical study of pancreatic and cutaneous biopsies, which revealed a pancreatic localization of MF. Considering the rarity of metastatic localization of MF to the pancreas, we next investigated whether chemokine-chemokine receptor interactions could be involved in the phenomenon to provide new insight into the possible mechanisms underlying metastatic localization of MF to the pancreas. Histological analyses of archival pancreatic tissue demonstrated that glucagon-secreting cells of the pancreatic islets expressed the CCL27 chemokine, which may have attracted in our case metastatic MF cells expressing the complementary receptor CCR10. PMID:27022231

  17. Capecitabine, Temozolomide and Bevacizumab for Metastatic or Unresectable Pancreatic Neuroendocrine Tumors

    ClinicalTrials.gov

    2016-09-21

    Gastrinoma; Glucagonoma; Insulinoma; Pancreatic Polypeptide Tumor; Recurrent Islet Cell Carcinoma; Recurrent Pancreatic Cancer; Somatostatinoma; Stage III Pancreatic Cancer; Stage IV Pancreatic Cancer

  18. Radiological description of cystic pancreatic tumors.

    PubMed

    Rodríguez Torres, C; Larrosa López, R

    2016-01-01

    Although most cystic pancreatic lesions are pseudocysts, it is important to do a thorough differential diagnosis with true cystic tumors because cystic tumors are potentially malignant. Sometimes computed tomography and magnetic resonance imaging cannot establish the definitive diagnosis, making it necessary to perform other imaging tests such as endoscopic ultrasound, which in addition to morphological information, can also enable cytologic and biochemical analysis of the lesion through puncture and aspiration of its contents. Combining all these findings nearly always provides enough diagnostic information to allow the appropriate approach in each case. This article describes the specific morphological characteristics for each cystic pancreatic tumor on computed tomography, magnetic resonance imaging, and endoscopic ultrasound and reviews the guidelines for managing these types of lesions.

  19. Pancreatic neuroendocrine tumors: biology, diagnosis, and treatment

    PubMed Central

    Ro, Cynthia; Chai, Wanxing; Yu, Victoria E.; Yu, Run

    2013-01-01

    Pancreatic neuroendocrine tumors (PNETs), a group of endocrine tumors arising in the pancreas, are among the most common neuroendocrine tumors. The genetic causes of familial and sporadic PNETs are somewhat understood, but their molecular pathogenesis remains unknown. Most PNETs are indolent but have malignant potential. The biological behavior of an individual PNET is unpredictable; higher tumor grade, lymph node and liver metastasis, and larger tumor size generally indicate a less favorable prognosis. Endocrine testing, imaging, and histological evidence are necessary to accurately diagnose PNETs. A 4-pronged aggressive treatment approach consisting of surgery, locoregional therapy, systemic therapy, and complication control has become popular in academic centers around the world. The optimal application of the multiple systemic therapeutic modalities is under development; efficacy, safety, availability, and cost should be considered when treating a specific patient. The clinical presentation, diagnosis, and treatment of specific types of PNETs and familial PNET syndromes, including the novel Mahvash disease, are summarized. PMID:23237225

  20. Pancreatic pseudocyst or a cystic tumor of the pancreas?

    PubMed Central

    Rabie, Mohammad Ezzedien; El Hakeem, Ismail; Al Skaini, Mohammad Saad; El Hadad, Ahmad; Jamil, Salim; Tahir Shah, Mian; Obaid, Mahmoud

    2014-01-01

    Pancreatic pseudocysts are the most common cystic lesions of the pancreas and may complicate acute pancreatitis, chronic pancreatitis, or pancreatic trauma. While the majority of acute pseudocysts resolve spontaneously, few may require drainage. On the other hand, pancreatic cystic tumors, which usually require extirpation, may disguise as pseudocysts. Hence, the distinction between the two entities is crucial for a successful outcome. We conducted this study to highlight the fundamental differences between pancreatic pseudocysts and cystic tumors so that relevant management plans can be devised. We reviewed the data of patients with pancreatic cystic lesions that underwent intervention between June 2007 and December 2010 in our hospital. We identified 9 patients (5 males and 4 females) with a median age of 40 years (range, 30–70 years). Five patients had pseudocysts, 2 had cystic tumors, and 2 had diseases of undetermined pathology. Pancreatic pseudocysts were treated by pseudocystogastrostomy in 2 cases and percutaneous drainage in 3 cases. One case recurred after percutaneous drainage and required pseudocystogastrostomy. The true pancreatic cysts were serous cystadenoma, which was treated by distal pancreatectomy, and mucinous cystadenocarcinoma, which was initially treated by drainage, like a pseudocyst, and then by distal pancreatectomy when its true nature was revealed. We conclude that every effort should be exerted to distinguish between pancreatic pseudocysts and cystic tumors of the pancreas to avoid the serious misjudgement of draining rather than extirpating a pancreatic cystic tumor. Additionally, percutaneous drainage of a pancreatic pseudocyst is a useful adjunct that may substitute for surgical drainage. PMID:23958054

  1. Surgical management of pancreatic neuroendocrine tumors.

    PubMed

    Kimura, Wataru; Tezuka, Koji; Hirai, Ichiro

    2011-10-01

    This study outlines the surgical management and clinicopathological findings of pancreatic neuroendocrine tumors (P-NETs). There are various surgical options, such as enucleation of the tumor, spleen-preserving distal pancreatectomy, distal pancreatectomy with splenectomy, pancreatoduodenectomy, and duodenum-preserving pancreas head resection. Lymph node dissection is performed for malignant cases. New guidelines and classifications have been proposed and are now being used in clinical practice. However, there are still no clear indications for organ-preserving pancreatic resection or lymph node dissection. Hepatectomy is the first choice for liver metastases of well-differentiated neuroendocrine carcinoma without extrahepatic metastases. On the other hand, cisplatin-based combination therapy is performed as first-line chemotherapy for metastatic poorly differentiated neuroendocrine carcinoma. Other treatment options are radiofrequency ablation, transarterial chemoembolization/embolization, and liver transplantation. Systematic chemotherapy and biotherapy, such as that with somatostatin analogue and interferon-α, are used for recurrence after surgery. The precise surgical techniques for enucleation of the tumor and spleen-preserving distal pancreatectomy are described. PMID:21922354

  2. A retroperitoneal neuroendocrine tumor in ectopic pancreatic tissue.

    PubMed

    Okasha, Hussein Hassan; Al-Bassiouni, Fahim; El-Ela, Monir Abo; Al-Gemeie, Emad Hamza; Ezzat, Reem

    2013-07-01

    Ectopic pancreas is the relatively uncommon presence of pancreatic tissue outside the normal location of the pancreas. We report a case of abdominal pain due to retroperitoneal neuroendocrine tumor arising from heterotopic pancreatic tissue between the duodenal wall and the head of the pancreas. Patient underwent surgical enucleation of the tumor.

  3. A Retroperitoneal Neuroendocrine Tumor in Ectopic Pancreatic Tissue

    PubMed Central

    Okasha, Hussein Hassan; Al-Bassiouni, Fahim; El-Ela, Monir Abo; Al-Gemeie, Emad Hamza; Ezzat, Reem

    2013-01-01

    Ectopic pancreas is the relatively uncommon presence of pancreatic tissue outside the normal location of the pancreas. We report a case of abdominal pain due to retroperitoneal neuroendocrine tumor arising from heterotopic pancreatic tissue between the duodenal wall and the head of the pancreas. Patient underwent surgical enucleation of the tumor. PMID:24949389

  4. Irreversible electroporation for the treatment of pancreatic neuroendocrine tumors

    PubMed Central

    Papamichail, Michail; Ali, Amir; Pizanias, Michail; Peddu, Praveen; Karani, John

    2016-01-01

    Backgrounds/Aims Resection or enucleation is currently the treatment of choice for small pancreatic neuroendocrine tumors (NETs). Irreversible electroporation is a novel ablative method that is used for locally advanced pancreatic adenocarcinoma, but little data exists for its use for pancreatic NETs. We report an early experience of IRE for early pancreatic NETs. Methods Between April 2014 and March 2015, 3 patients with small (<2 cm) pancreatic NETs were treated with percutaneous IRE. Results There were no adverse effects during the procedure. Mean hospital stay was 2.6 days. All patients remained disease free on 12-19 months follow up. One patient developed recurrent pancreatitis with pseudocyst formation. Conclusions IRE for small tumors of the pancreas is practical and may offer advantages over other thermal ablative techniques, since it preserves vital structures such as blood vessels, bile and pancreatic ducts. Further data regarding the long term disease free interval is required to establish efficacy.

  5. Irreversible electroporation for the treatment of pancreatic neuroendocrine tumors

    PubMed Central

    Papamichail, Michail; Ali, Amir; Pizanias, Michail; Peddu, Praveen; Karani, John

    2016-01-01

    Backgrounds/Aims Resection or enucleation is currently the treatment of choice for small pancreatic neuroendocrine tumors (NETs). Irreversible electroporation is a novel ablative method that is used for locally advanced pancreatic adenocarcinoma, but little data exists for its use for pancreatic NETs. We report an early experience of IRE for early pancreatic NETs. Methods Between April 2014 and March 2015, 3 patients with small (<2 cm) pancreatic NETs were treated with percutaneous IRE. Results There were no adverse effects during the procedure. Mean hospital stay was 2.6 days. All patients remained disease free on 12-19 months follow up. One patient developed recurrent pancreatitis with pseudocyst formation. Conclusions IRE for small tumors of the pancreas is practical and may offer advantages over other thermal ablative techniques, since it preserves vital structures such as blood vessels, bile and pancreatic ducts. Further data regarding the long term disease free interval is required to establish efficacy. PMID:27621748

  6. TNM Staging of Pancreatic Neuroendocrine Tumors

    PubMed Central

    Yang, Min; Zeng, Lin; Zhang, Yi; Wang, Wei-guo; Wang, Li; Ke, Neng-wen; Liu, Xu-bao; Tian, Bo-le

    2015-01-01

    Abstract We aimed to analyze the clinical characteristics and compare the surgical outcome of pancreatic neuroendocrine tumors (p-NETs) using the 2 tumor-node-metastasis (TNM) systems by both the American Joint Committee on Cancer (AJCC) Staging Manual (seventh edition) and the European Neuroendocrine Tumor Society (ENETS). Moreover, we sought to validate the prognostic value of the new AJCC criterion. Data of 145 consecutive patients who were all surgically treated and histologically diagnosed as p-NETs from January 2002 to June 2013 in our single institution were retrospectively collected and analyzed. The 5-year overall survival (OS) rates for AJCC classifications of stages I, II, III, and IV were 79.5%, 63.1%, 15.0%, and NA, respectively, (P < 0.005). As for the ENETS system, the OS rates at 5 years for stages I, II, III, and IV were 75.5%, 72.7%, 29.0%, and NA, respectively, (P < 0.005). Both criteria present no statistically notable difference between stage I and stage II (P > 0.05) but between stage I and stages III and IV (P < 0.05), as well as those between stage II and stages III and IV (P < 0.05). Difference between stage III and IV by ENETS was significant (P = 0.031), whereas that by the AJCC was not (P = 0.144). What's more, the AJCC Staging Manual (seventh edition) was statistically significant in both uni- and multivariate analyses by Cox regression (P < 0.005 and P = 0.025, respectively). Our study indicated that the ENETS TNM staging system might be superior to the AJCC Staging Manual (seventh edition) for the clinical practice of p-NETs. Together with tumor grade and radical resection, the new AJCC system was also validated to be an independent predictor for p-NETs. PMID:25816036

  7. Immunohistochemical study of pancreatic neuroendocrine tumor in Panthera tigris tigris.

    PubMed

    Nyska, A; Goldstein, J; Eshkar, G; Klein, B

    1996-07-01

    The histological and immunohistochemical characteristics of a case of pancreatic neuroendocrine tumor are described in a 14-yr-old female Bengal tiger (Panthera tigris tigris) housed at the New Biblical Zoo of Jerusalem, Jerusalem, Israel, 1994. The neoplastic cells were immunohistochemically negative for insulin and glucagon, slightly positive for neuron-specific enolase, moderately positive for serotonin and somatostatin, and markedly positive for chromogranine A and gastrin. This is the first documentation of a pancreatic neuroendocrine tumor in the tiger.

  8. Immunohistochemical study of pancreatic neuroendocrine tumor in Panthera tigris tigris.

    PubMed

    Nyska, A; Goldstein, J; Eshkar, G; Klein, B

    1996-07-01

    The histological and immunohistochemical characteristics of a case of pancreatic neuroendocrine tumor are described in a 14-yr-old female Bengal tiger (Panthera tigris tigris) housed at the New Biblical Zoo of Jerusalem, Jerusalem, Israel, 1994. The neoplastic cells were immunohistochemically negative for insulin and glucagon, slightly positive for neuron-specific enolase, moderately positive for serotonin and somatostatin, and markedly positive for chromogranine A and gastrin. This is the first documentation of a pancreatic neuroendocrine tumor in the tiger. PMID:8827685

  9. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    SciTech Connect

    Yang, Juan; Cai, Jing; Wang, Hongjun; Chang, Zheng; Czito, Brian G.; Bashir, Mustafa R.; Palta, Manisha; Yin, Fang-Fang

    2014-11-15

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.

  10. [SURGICAL TREATMENT OF TUMORS OF THE LEFT PANCREATIC ANATOMICAL SEGMENT].

    PubMed

    Kopchak, V M; Tkachuk, O S; Kopchak, K V; Duvalko, O V; Khomyak, I V; Pererva, L O; Kvasivka, O O; Andronik, S V; Shevkolenko, G G; Khanenko, V V; Romaniv, Ya V; Grebihn, R M

    2015-04-01

    The results of treatment of 231 patients, suffering tumoral affection of pancreatic left anatomical segment in period of 2009-2013 yrs were analyzed. Individualized approach, using modern technologies, was applied. Radical operations were performed in 129 patients, ageing 14-81 yrs old, including pancreatic distal resections in various modifications, central resection and tumoral enucleation. Possibilities of the extended pancreatic resection performance were studied in conditions of tumoral invasion of adjacent organs, regional vessels, as well as impact of such interventions on postoperative complications and lethality rate. While performing pancreatic subtotal distal resection with simultant resection of affected main venous vessels and adjacent organs the operative intervention risk is enhanced, but possibilities of a radical operations performance in previously considered inoperable patients are expanding.

  11. An unusual presentation of a solid pseudopapillary pancreatic tumor.

    PubMed

    Månsson, Christopher; Karlson, Britt-Marie

    2012-01-01

    Solid pseudopapillary pancreatic tumor (SPPT) is a rare tumor that constitutes 1-2% of all pancreatic tumors and most of the patients are young females. SPPT has low malignancy potential and radical resection is associated with good results and a high survival rate, even in cases with large tumors: the 5-year survival rate is estimated as 95%. This paper describes an unusual presentation of an SPPT discovered after blunt trauma to the abdomen during a basketball game. Computed tomography revealed a large tumor in the pancreatic head and the patient was operated by pylorus-preseving pancreaticoduodenectomy. The histopathologic examination indicated an SPPT with R0-resection and after 4 years there were no signs of recurrence.

  12. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2016-01-01

    Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6–7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development. PMID:27189859

  13. Alisertib and Gemcitabine Hydrochloride in Treating Patients With Solid Tumors or Pancreatic Cancer

    ClinicalTrials.gov

    2016-08-09

    Acinar Cell Adenocarcinoma of the Pancreas; Duct Cell Adenocarcinoma of the Pancreas; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IV Pancreatic Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  14. Motion--pancreatic endoscopy is useful for the pain of chronic pancreatitis: arguments for the motion.

    PubMed

    Branch, Stanley M

    2003-01-01

    Pain is the dominant clinical problem in patients with chronic pancreatitis. It can be due to pseudocysts, as well as strictures and stones in the pancreatic ducts. Most experts agree that obstruction could cause increased pressure within the main pancreatic duct or its branches, resulting in pain. Endoscopic therapy aims to alleviate pain by reducing the pressure within the ductal system and draining pseudocysts. Approaches vary according to the specific nature of the problem, and include transgastric, transduodenal and transpapillary stenting and drainage. Additional techniques for the removal of stones from the pancreatic duct include extracorporeal shockwave lithotripsy. Success rates for stone extraction and stenting of strictures are high in specialized centres that employ experienced endoscopists, but pain often recurs during long term follow-up. Complications include pancreatitis, bleeding, infection and perforation. In the case of pancreatic pseudocysts, percutaneous or even surgical drainage should be considered if septae or large amounts of debris are present within the lesion. This article describes the techniques, indications and results of endoscopic therapy of pancreatic lesions.

  15. Pancreatic solitary fibrous tumor causing ectopic adrenocorticotropic hormone syndrome.

    PubMed

    Murakami, Keigo; Nakamura, Yasuhiro; Felizola, Saulo J A; Morimoto, Ryo; Satoh, Fumitoshi; Takanami, Kentaro; Katakami, Hideki; Hirota, Seiichi; Takeda, Yoshiyu; Meguro-Horike, Makiko; Horike, Shin-Ichi; Unno, Michiaki; Sasano, Hironobu

    2016-11-15

    Solitary fibrous tumors occasionally present with hypoglycemia because of the excessive release of insulin-like growth factor II. We report the first case of pancreatic solitary fibrous tumor causing ectopic adrenocorticotropic hormone syndrome. An 82-year-old Japanese man presented with lower limb edema, uncontrolled hypertension, hypokalemia, and baseline hypercortisolism. Distal pancreatectomy was performed after the clinical diagnosis of a neuroendocrine tumor with ectopic secretion of adrenocorticotropic hormone. On histological examination, the tumor showed spindle cells in a fascicular arrangement. The diagnosis of the solitary fibrous tumor was confirmed by the identification of the NAB2-STAT6 fusion gene and positive immuno-histochemical staining for STAT6 and CD34. Using quantitative real-time polymerase chain reaction, mRNA that encoded proopiomelanocortin, precursor of adrenocorticotropic hormone, was detected. Proopiomelanocortin production through the demethylation of the promoter region Domain IV was detected. Pancreatic solitary fibrous tumors represent a new cause of ectopic adrenocorticotropic hormone syndrome. PMID:27585487

  16. Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor.

    PubMed

    Valetti, Sabrina; Maione, Federica; Mura, Simona; Stella, Barbara; Desmaële, Didier; Noiray, Magali; Vergnaud, Juliette; Vauthier, Christine; Cattel, Luigi; Giraudo, Enrico; Couvreur, Patrick

    2014-10-28

    Chemotherapy for pancreatic cancer is hampered by the tumor's physio-pathological complexity. Here we show a targeted nanomedicine using a new ligand, the CKAAKN peptide, which had been identified by phage display, as an efficient homing device within the pancreatic pathological microenvironment. Taking advantage of the squalenoylation platform, the CKAAKN peptide was conjugated to squalene (SQCKAAKN) and then co-nanoprecipitated with the squalenoyl prodrug of gemcitabine (SQdFdC) giving near monodisperse nanoparticles (NPs) for safe intravenous injection. By interacting with a novel target pathway, the Wnt-2, the CKAAKN functionalization enabled nanoparticles: (i) to specifically interact with both tumor cells and angiogenic vessels and (ii) to simultaneously promote pericyte coverage, thus leading to the normalization of the vasculature likely improving the tumor accessibility for therapy. All together, this approach represents a unique targeted nanoparticle design with remarkable selectivity towards pancreatic cancer and multiple mechanisms of action.

  17. The Role of Tumor Cell-Derived Connective Tissue Growth Factor (CTGF/CCN2) in Pancreatic Tumor Growth

    PubMed Central

    Bennewith, Kevin L.; Huang, Xin; Ham, Christine M.; Graves, Edward E.; Erler, Janine T.; Kambham, Neeraja; Feazell, Jonathan; Yang, George P.; Koong, Albert

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted subcutaneously. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by PET imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed co-localization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer. PMID:19179545

  18. Endoscopic approach to the diagnosis of pancreatic cystic tumor

    PubMed Central

    Kawaguchi, Yoshiaki; Mine, Tetsuya

    2016-01-01

    Because of the aging of the population, prevalence of medical checkups, and advances in imaging studies, the number of pancreatic cystic lesions detected has increased. Once these lesions are detected, neoplastic cysts should be differentiated from non-neoplastic cysts. Furthermore, because of the malignant potential of some neoplastic pancreatic cysts, further differentiation between benign and malignant cysts should be made regardless of their size. Although endoscopic ultrasound (EUS) has a very high diagnostic performance for pancreatic cystic lesions among the various imaging modalities, EUS findings alone are insufficient for the differentiation of pancreatic cysts and diagnosis of malignancy. In addition, cytology by EUS-guided fine-needle aspiration (FNA) has a high specificity but a low sensitivity for diagnosing malignancy in pancreatic cystic tumors. The levels of amylase, lipase, and tumor markers in pancreatic cystic fluid are considered auxiliary parameters for diagnosis of benign and malignant cysts, and a definitive diagnosis of malignancy using these parameters is difficult. Thus, in addition to EUS, cytology by EUS-FNA, and cystic fluid analysis, new techniques based on EUS-guided through-the-needle imaging, such as confocal laser endomicroscopy and cystoscopy, have been explored in recent years. PMID:26909130

  19. Inhibition of pancreatic tumoral cells by snake venom disintegrins

    PubMed Central

    Lucena, Sara; Castro, Roberto; Lundin, Courtney; Hofstetter, Amanda; Alaniz, Amber; Suntravat, Montamas; Sánchez, Elda Eliza

    2014-01-01

    Pancreatic cancer often has a poor prognosis, even when diagnosed early. Pancreatic cancer typically spreads rapidly and is rarely detected in its early stages, which is a major reason it is a leading cause of cancer death. Signs and symptoms may not appear until pancreatic cancer is quite advanced, and complete surgical removal is not possible. Furthermore, pancreatic cancer responds poorly to most chemotherapeutic agents. The importance of integrins in several cell types that affect tumor progression has made them an appealing target for cancer therapy. Some of the proteins found in the snake venom present a great potential as anti-tumor agents. In this study, we summarize the activity of two integrins antagonist, recombinant disintegrins mojastin 1 and viridistatin 2, on human pancreatic carcinoma cell line (BXPC-3). Both recombinant disintegrins inhibited some essential aspects of the metastasis process such as proliferation, adhesion, migration, and survival through apoptosis, making these proteins prominent candidates for the development of drugs for the treatment of pancreatic cancer. PMID:25450798

  20. Radioimmunoassay for human pancreatic ribonuclease and measurement of serum immunoreactive pancreatic ribonuclease in patients with malignant tumors

    SciTech Connect

    Kurihara, M.; Ogawa, M.; Ohta, T.; Kurokawa, E.; Kitahara, T.; Murata, A.; Matsuda, K.; Kosaki, G.; Watanabe, T.; Wada, H.

    1984-05-01

    A method for radioimmunoassay of human pancreatic RNase was developed. The method is sensitive, reproducible, and specific. Almost no cross-reactivity exists between human pancreatic and liver RNases. A good correlation was observed between the serum concentration of pancreatic RNase as measured by radioimmunoassay and its enzymatic activity using polycytidylic acid as substrate. The concentration of serum pancreatic RNase correlates well with age, blood urea nitrogen, and albumin contents but does not correlate with serum amylase activity. Using the data of 52 patients with malignant tumors except pancreatic cancer, serum RNase level could be expressed by a multiple regression equation: Immunoreactive RNase content in pancreatic cancer was elevated in patients with complications from renal failure. Serum pancreatic RNase contents in patients with pancreatic cancer measured by radioimmunoassay agreed well with the values calculated using the equation derived from the data of patients with other malignant tumors.

  1. APC promoter is frequently methylated in pancreatic juice of patients with pancreatic carcinomas or periampullary tumors

    PubMed Central

    Ginesta, Mireia M.; Diaz-Riascos, Zamira Vanessa; Busquets, Juli; Pelaez, Núria; Serrano, Teresa; Peinado, Miquel Àngel; Jorba, Rosa; García-Borobia, Francisco Javier; Capella, Gabriel; Fabregat, Joan

    2016-01-01

    Early detection of pancreatic and periampullary neoplasms is critical to improve their clinical outcome. The present authors previously demonstrated that DNA hypermethylation of adenomatous polyposis coli (APC), histamine receptor H2 (HRH2), cadherin 13 (CDH13), secreted protein acidic and cysteine rich (SPARC) and engrailed-1 (EN-1) promoters is frequently detected in pancreatic tumor cells. The aim of the present study was to assess their prevalence in pancreatic juice of carcinomas of the pancreas and periampullary area. A total of 135 pancreatic juices obtained from 85 pancreatic cancer (PC), 26 ampullary carcinoma (AC), 10 intraductal papillary mucinous neoplasm (IPMN) and 14 chronic pancreatitis (CP) patients were analyzed. The methylation status of the APC, HRH2, CDH13, SPARC and EN-1 promoters was analyzed using methylation specific-melting curve analysis (MS-MCA). Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were also tested with allele-specific quantitative polymerase chain reaction amplification. Out of the 5 promoters analyzed, APC (71%) and HRH2 (65%) were the most frequently methylated in PC juice. APC methylation was also detected at a high frequency in AC (76%) and IPMN (80%), but only occasionally observed in CP (7%). APC methylation had a high sensitivity (71–80%) for all types of cancer analyzed. The panel (where a sample scored as positive when ≥2 markers were methylated) did not outperform APC as a single marker. Finally, KRAS detection in pancreatic juice offered a lower sensitivity (50%) and specificity (71%) for detection of any cancer. APC hypermethylation in pancreatic juice, as assessed by MS-MCA, is a frequent event of potential clinical usefulness in the diagnosis of pancreatic and periampullary neoplasms.

  2. APC promoter is frequently methylated in pancreatic juice of patients with pancreatic carcinomas or periampullary tumors

    PubMed Central

    Ginesta, Mireia M.; Diaz-Riascos, Zamira Vanessa; Busquets, Juli; Pelaez, Núria; Serrano, Teresa; Peinado, Miquel Àngel; Jorba, Rosa; García-Borobia, Francisco Javier; Capella, Gabriel; Fabregat, Joan

    2016-01-01

    Early detection of pancreatic and periampullary neoplasms is critical to improve their clinical outcome. The present authors previously demonstrated that DNA hypermethylation of adenomatous polyposis coli (APC), histamine receptor H2 (HRH2), cadherin 13 (CDH13), secreted protein acidic and cysteine rich (SPARC) and engrailed-1 (EN-1) promoters is frequently detected in pancreatic tumor cells. The aim of the present study was to assess their prevalence in pancreatic juice of carcinomas of the pancreas and periampullary area. A total of 135 pancreatic juices obtained from 85 pancreatic cancer (PC), 26 ampullary carcinoma (AC), 10 intraductal papillary mucinous neoplasm (IPMN) and 14 chronic pancreatitis (CP) patients were analyzed. The methylation status of the APC, HRH2, CDH13, SPARC and EN-1 promoters was analyzed using methylation specific-melting curve analysis (MS-MCA). Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were also tested with allele-specific quantitative polymerase chain reaction amplification. Out of the 5 promoters analyzed, APC (71%) and HRH2 (65%) were the most frequently methylated in PC juice. APC methylation was also detected at a high frequency in AC (76%) and IPMN (80%), but only occasionally observed in CP (7%). APC methylation had a high sensitivity (71–80%) for all types of cancer analyzed. The panel (where a sample scored as positive when ≥2 markers were methylated) did not outperform APC as a single marker. Finally, KRAS detection in pancreatic juice offered a lower sensitivity (50%) and specificity (71%) for detection of any cancer. APC hypermethylation in pancreatic juice, as assessed by MS-MCA, is a frequent event of potential clinical usefulness in the diagnosis of pancreatic and periampullary neoplasms. PMID:27602165

  3. Paradoxical Role of HMGB1 in Pancreatic Cancer: Tumor Suppressor or Tumor Promoter?

    PubMed

    Cebrián, María José García; Bauden, Monika; Andersson, Roland; Holdenrieder, Stefan; Ansari, Daniel

    2016-09-01

    Pancreatic cancer has a dismal prognosis and there is an increasing and unmet need to identify better diagnostic and therapeutic targets in order to ameliorate the course of the disease. HMGB1, a nuclear DNA-binding protein that acts as a transcription factor, is currently in the limelight. HMGB1 exhibits a dual role in pancreatic cancer; when intracellular, it acts as an anti-tumor protein stabilizing the genome, whereas extracellular HMGB1 behaves as a pro-tumor protein with cytokine, chemokine and growth factor functions. Although the exact mechanisms of HMGB1 in pancreatic cancer are still to be elucidated, the significance of this protein for processes, such as autophagy, immunogenic cell death, tumor growth, metastasis and resistance to chemotherapy, have become increasingly clear. In this review, we provide a systematic summary and review of the biological and clinical relevance of HMGB1 in pancreatic cancer. PMID:27630273

  4. Endoscopic diagnosis and treatment of pancreatic neuroendocrine tumors.

    PubMed

    Rustagi, Tarun; Farrell, James J

    2014-01-01

    Pancreatic neuroendocrine tumors (PNETs) are rare pancreatic neoplasms comprising only 1% to 2% of all pancreatic tumors. In recent years, the number of incidentally discovered PNETs has greatly increased given the widespread use of axial imaging. However, a significant proportion of PNETs may not be visualized on conventional imaging such as computed tomography, magnetic resonance imaging, and somatostatin receptor scintigraphy. Endoscopic ultrasound (EUS) has become an integral part of the diagnosis of PNETs because of its high sensitivity for detecting, localizing, and diagnosing PNETs. EUS-guided tissue acquisition provides histologic and immunologic confirmation, and may also allow prognostication about tumor behavior. In addition to preoperative assessment of these tumors, EUS has also been shown to have an important role in nonoperative management of small nonfunctional PNETs. Finally, recent developments suggest that interventional EUS may be used to aid intraoperative localization of PNETs and to deliver therapeutic agents for the treatment of PNETs. This review will discuss the endoscopic diagnosis and treatment of PNETs, with focus on recent advances in the utility of EUS in the clinical management of these tumors.

  5. Heterotopic gastrointestinal mucosa and pancreatic tissue in a retroperitoneal tumor.

    PubMed

    Hashimoto, Naoki; Hakamada, Kenichi; Narumi, Shunji; Totsuka, Eishi; Aoki, Kazunori; Kamata, Yoshimasa; Sasaki, Mutsuo

    2006-01-01

    We believe that this is the first report of a retroperitoneal tumor consisting of heterotopic gastrointestinal mucosa and pancreatic tissue. The patient was a 19-year-old woman with the chief complaint being occasional back pain. Abdominal computerized tomography demonstrated a 3.1 x 2.5 x 3.2-cm low-density solid and cystic lesion adjoining the left renal vein between the aorta and inferior vena cava. Angiography revealed that the inferior vena cava was displaced by the hypovascular tumor. The retroperitoneal lesion was diagnosed preoperatively as a benign tumor such as a neurogenic neoplasm or lymphangioma. At laparotomy, a cystic tumor was found, which existed behind the inferior vena cava and renal vessels, and contained reddish-brown fluid, suggesting hemorrhage in the past. The cut surface of the tumor showed a unilocular cyst with partially hypertrophic wall. Histopathological examination revealed a cystic tumor lined with heterotopic gastric and duodenal mucosa, with pancreatic tissue in the muscularis propria. In addition, evidence of bleeding from the gastric mucosa was observed in the cystic tumor. External secretion from these tissues could have triggered the hemorrhage and expanded the tumor, possibly resulting in the back pain.

  6. Pancreatic mucinous cystic tumor in Turner syndrome: How a tumor bends to a genetic disease☆

    PubMed Central

    Pizzi, Marco; Pennelli, Gianmaria; Merante-Boschin, Isabella; Fassan, Matteo; Pelizzo, Maria Rosa; Rugge, Massimo

    2013-01-01

    INTRODUCTION Mucinous cystic neoplasms (MCN) are uncommon tumors of the pancreatic corpus/tail occurring mostly in middle-aged women, with a variable clinico-biological behavior. On histology, MCNs concurrently show an epithelial mucosecreting component with ovarian-type stromal cells. PRESENTATION OF CASE This report describes the first case of a pancreatic MCN with no ovarian-type stroma in a patient with Turner syndrome (TS). DISCUSSION The mesenchymal component of MCN presumably results from the intra-pancreatic entrapment of ovarian stroma during embryogenesis. In our case, the absence of such stromal component may relate to the “dysgenetic” changes in the ovary involved in TS. CONCLUSION The present case of primary pancreatic MCN arising in a TS-patient triggers some original speculation on the morphogenesis of pancreatic MCN, also expanding the current clinico-pathological knowledge of this extremely rare entity. PMID:24096346

  7. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    PubMed

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  8. Targeting GIPC/Synectin in Pancreatic Cancer Inhibits Tumor Growth

    PubMed Central

    Muders, Michael H.; Vohra, Pawan K.; Dutta, Shamit K; Wang, Enfeng; Ikeda, Yasuhiro; Wang, Ling; Udugamasooriya, D. Gomika; Memic, Adnan; Rupashinghe, Chamila N.; Baretton, Gustavo B.; Aust, Daniela E.; Langer, Silke; Datta, Kaustubh; Simons, Michael; Spaller, Mark R.; Mukhopadhyay, Debabrata

    2009-01-01

    Translational Relevance The five year survival rate in patients with ductal adenocarcinoma of the pancreas is less than 4%. Accordingly, new targets for the treatment of this deadly disease are urgently needed. In this study, we show that targeting GAIP interacting protein C-terminal (GIPC, also known as Synectin) and its PDZ-domain reduces pancreatic cancer growth significantly in vitro and in vivo. Additionally, the blockage of GIPC/Synectin was accompanied by a reduction of IGF-1R protein levels. In summary, the use of a GIPC-PDZ domain inhibitor may be a viable option in the treatment of pancreatic adenocarcinoma in future. Purpose Various studies have demonstrated the importance of GAIP interacting protein, C-terminus (GIPC, also known as Synectin) as a central adaptor molecule in different signaling pathways and as an important mediator of receptor stability. GIPC/Synectin is associated with different growth promoting receptors like IGF-1R and integrins. These interactions were mediated through its PDZ domain. GIPC/Synectin has been shown to be overexpressed in pancreatic and breast cancer. The goal of this study was to demonstrate the importance of GIPC/Synectin in pancreatic cancer growth and to evaluate a possible therapeutic strategy by using a GIPC-PDZ domain inhibitor. Furthermore, the effect of targeting GIPC on the IGF-1 receptor as one of its associated receptors was tested. Experimental Design In vivo effects of GIPC/Synectin knockdown were studied after lentiviral transduction of luciferase-expressing pancreatic cancer cells with shRNA against GIPC/Synectin. Additionally, a GIPC-PDZ-targeting peptide was designed. This peptide was tested for its influence on pancreatic cancer growth in vitro and in vivo. Results Knockdown of GIPC/Synectin led to a significant inhibition of pancreatic adenocarcinoma growth in an orthotopic mouse model. Additionally, a cell-permeable GIPC-PDZ inhibitor was able to block tumor growth significantly without showing

  9. Fundamental differences in the neural invasion behavior of pancreatic endocrine tumors: relevance for local recurrence rates?

    PubMed

    Bergmann, Frank; Ceyhan, Güralp O; Rieker, Ralf J; Esposito, Irene; Fischer, Lars; Herpel, Esther; Friess, Helmut; Schirmacher, Peter; Kern, Michael A

    2009-01-01

    Neural invasion represents an important prognostic factor in pancreatic cancer, and it is thought to be one of the main causes for the high rate of postoperative local recurrences in pancreatic ductal adenocarcinomas. In contrast to the latter, systematic investigations of the mode and extent of neural invasion in pancreatic endocrine tumors have not yet been carried out, although this process represents an important feature in the classification of these tumors. In the present study, a total of 48 pancreatic endocrine tumors were analyzed including 10 well-differentiated endocrine tumors of uncertain behavior, 33 well-differentiated endocrine carcinomas, and 5 poorly differentiated endocrine carcinomas. Neural invasion was found in a large subset (73%) of pancreatic endocrine tumors. The frequency of neural invasion correlated with the grade of malignancy but occurred irrespective of functional activity, hormone phenotype, or histomorphology. Analogous to pancreatic ductal adenocarcinoma, the expression of epidermal growth factor receptor and nerve growth factor, which were expressed in 50% and 100% of the tumors, respectively, seemed to be associated with the frequency of neural invasion. However, in contrast to pancreatic ductal adenocarcinoma, neural invasion in pancreatic endocrine tumors was only detected within the tumor boundaries and did not reach beyond the tumor invasion front. This phenomenon may explain the low rate of local relapses after tumor resection in pancreatic endocrine tumors despite the high frequency of neural invasion.

  10. Effects of tumor motion in GRID therapy

    SciTech Connect

    Naqvi, Shahid A.; Mohiuddin, Majid M.; Ha, Jonathan K.; Regine, William F.

    2008-10-15

    Clinical and biological evidence suggest that the success of GRID therapy in debulking large tumors depends on the high peak-to-valley contrast in the dose distribution. In this study, we show that the peaks and valleys can be significantly blurred out by respiration-induced tumor motion, possibly affecting the clinical outcome. Using a kernel-based Monte Carlo dose engine that incorporates phantom motion, we calculate the dose distributions for a GRID with hexagonally arranged holes. The holes have a diameter of 1.3 cm and a minimum center-to-center separation of 2.1 cm (projected at the isocenter). The phantom moves either in the u{sub ||} direction, which is parallel to a line joining any two nearest neighbors, or in the perpendicular u{sub perpendicular} direction. The displacement-time waveform is modeled with a cos{sup n} function, with n assigned 1 for symmetric motion, or 6 to simulate a large inhale-exhale asymmetry. Dose calculations are performed on a water phantom for a 6 MV x-ray beam. Near d{sub max}, the static valley dose is 0.12D{sub 0}, where D{sub 0} is the peak static dose. For motion in the u{sub ||} direction, the peak and valley doses vary periodically with the amplitude of motion a and the transverse dose profiles are maximally flat near a=0.8 cm and a=1.9 cm. For the cos waveform, the minimum peak dose (D{sub p{sub m{sub i{sub n}}}}) is 0.67D{sub 0} and the maximum valley dose (D{sub v{sub m{sub a{sub x}}}}) is 0.60D{sub 0}. Less dose blurring is seen with the cos{sup 6} waveform, with D{sub p{sub m{sub i{sub n}}}}=0.77D{sub 0} and D{sub v{sub m{sub a{sub x}}}}=0.45D{sub 0}. For motion in the u{sub perpendicular} direction, the maximum flattening of dose profiles occurs at a=1.5 cm. GRIDs with smaller hole separations produce similar blurring at proportionally smaller amplitudes. The reported clinical response data from GRID therapy seem to indicate that mobile tumors, such as those in the thorax and abdomen, respond worse to GRID

  11. Quantification of Murine Pancreatic Tumors by High Resolution Ultrasound

    PubMed Central

    Sastra, Stephen A.; Olive, Kenneth P.

    2013-01-01

    Summary Ultrasonography is a powerful imaging modality that enables non-invasive, real time visualization of abdominal organs and tissues. This technology may be adapted for use in mice through the utilization of higher frequency transducers, allowing for extremely high resolution imaging of the mouse pancreas. This technique is particularly well-suited to pancreas imaging due to the ultrasonographic properties of the normal mouse pancreas, easily accessible imaging planes for the head and tail of the mouse pancreas, and the comparative difficulty in imaging the mouse pancreas with other technologies. A suite of measurements tools is available to characterize the normal and diseased states of tissues. Of particular utility for cancer applications is the ability to use tomography to construct a 3D tumor volume, enabling longitudinal imaging studies to track tumor development, or response to therapies. Here, we describe a detailed method for performing high resolution ultrasound to detect and measure pancreatic lesions in a genetically engineered mouse model of pancreatic ductal using the VisualSonics Vevo2100 High Resolution Ultrasound System. The method includes preparation of the animal for imaging, 2D and 3D image acquisition, and post-acquisition analysis of tumors volumes. The combined procedure has been utilized extensively by our group and others for the preclinical evaluation of novel therapeutic agents in the treatment of pancreatic ductal adenocarcinoma (1–4). PMID:23359158

  12. Opportunities and Challenges for Pancreatic Circulating Tumor Cells.

    PubMed

    Nagrath, Sunitha; Jack, Rhonda M; Sahai, Vaibhav; Simeone, Diane M

    2016-09-01

    Sensitive and reproducible platforms have been developed for detection, isolation, and enrichment of circulating tumor cells (CTCs)-rare cells that enter the blood from solid tumors, including those of the breast, prostate gland, lung, pancreas, and colon. These might be used as biomarkers in diagnosis or determination of prognosis. CTCs are no longer simply detected and quantified; they are now used in ex vivo studies of anticancer agents and early detection. We review what we have recently learned about CTCs from pancreatic tumors, describing advances in their isolation and analysis and challenges to their clinical utility. We summarize technologies used to isolate CTCs from blood samples of patients with pancreatic cancer, including immunoaffinity and label-free physical attribute-based capture. We explain methods of CTC analysis and how findings from these studies might be used to detect cancer at earlier stages, monitor disease progression, and determine prognosis. We review studies that have expanded CTCs for testing of anticancer agents and how these approaches might be used to personalize treatment. Advances in the detection, isolation, and analysis of CTCs have increased our understanding of the dissemination and progression of pancreatic cancer. However, standardization of methodologies and prospective studies are needed for this emerging technology to have a significant effect on clinical care. PMID:27339829

  13. Identification of peptides that bind to irradiated pancreatic tumor cells

    SciTech Connect

    Huang Canhui; Liu, Xiang Y.; Rehemtulla, Alnawaz; Lawrence, Theodore S. . E-mail: tsl@med.umich.edu

    2005-08-01

    Purpose: Peptides targeting tumor vascular cells or tumor cells themselves have the potential to be used as vectors for delivering either DNA in gene therapy or antitumor agents in chemotherapy. We wished to determine if peptides identified by phage display could be used to target irradiated pancreatic cancer cells. Methods and Materials: Irradiated Capan-2 cells were incubated with 5 x 10{sup 12} plaque-forming units of a phage display library. Internalized phage were recovered and absorbed against unirradiated cells. After five such cycles of enrichment, the recovered phage were subjected to DNA sequencing analysis and synthetic peptides made. The binding of both phage and synthetic peptides was evaluated by fluorescence staining and flow cytometry in vitro and in vivo. Results: We identified one 12-mer peptide (PA1) that binds to irradiated Capan-2 pancreatic adenocarcinoma cells but not to unirradiated cells. The binding of peptide was significant after 48 h incubation with cells. In vivo experiments with Capan-2 xenografts in nude mice demonstrated that these small peptides are able to penetrate tumor tissue after intravenous injections and bind specifically to irradiated tumor cells. Conclusion: These data suggest that peptides can be identified that target tumors with radiation-induced cell markers and may be clinically useful.

  14. Pancreatic mixed ductal-islet tumors. Is this an entity?

    PubMed

    Permert, J; Mogaki, M; Andrén-Sandberg, A; Kazakoff, K; Pour, P M

    1992-02-01

    Thirty-eight human pancreatic cancer specimens were studied for the reactivity of cancer cells with monoclonal antibodies against insulin, glucagon, somatostatin, pancreatic polypeptide (PP), vasoactive intestinal peptide (VIP), gastrin, calcitonin, and with argyrophilic reactivity. Immunoreactivity with one or several antibodies or argyrophilic reactivity were found in 30 (79%) cases. In 17 cases, the number of endocrine cells was excessive and morphologically consistent with the mixed ductal-islet tumor. Although most immunoreactive cells were located at the base of the malignant glands, some had intraepithelial location and were also present in the invasive portion of cancers, indicating their malignant nature. Endocrine cell proliferation were found in the pancreatic tissue adjacent to the carcinoma in 8 out of 12 specimens examined. In these cases, the immunoreactive cells were either distributed among the acinar cells or ductal cells. More endocrine cells were found in the hyperplastic ducts; however, no correlation was found between the degree of hyperplasia and the occurrence of any type of immunoreactive cells. Although several types of endocrine cells occurred in different pancreatic regions (head, body, and tail), PP cells were restricted to tissues taken from the head of the pancreas. Experimental data and similar observations by other investigators led us to conclude that participation of endocrine cells in ductal-type carcinomas is a general phenomenon and does not justify the classification of these lesions to mixed ductal-islet entity. However, because immunoreactive cells were more common and numerous in well-differentiated carcinomas, they may have some prognostic values. PMID:1316418

  15. Origin of induced pancreatic islet tumors: a radioautographic study

    SciTech Connect

    Michels, J.E.; Bauer, G.E.; Dixit, P.K.

    1987-02-01

    Endocrine tumors of the pancreas are induced in a high percentage of young rats by injections of streptozotocin and nicotinamide (SZ/NA). Benign tumors first appear 20 to 36 weeks after drug injections. To determine the possible site of their origin, the incorporation of (/sup 3/H)thymidine into islets, ducts, acini, microtumors, and gross tumors was examined by radioautography of histologic sections at 1 to 36 weeks after drug injection. Drug treatment led to early (1- to 6-week) increases in nuclear /sup 3/H labeling of exocrine pancreatic structures (ductal and acinar cells), which may involve DNA repair processes. A secondary increase in labeling of duct cells during the period of tumor emergence supports the assumption that SZ/NA-induced tumors are of ductal origin. Microtumors and gross tumors also exhibited markedly elevated rates of (/sup 3/H)thymidine incorporation compared to control islets. Nontumorous islet tissue, which exhibited a gradual decrease in volume due to B-cell destruction by the drug injection, showed about 10-fold higher /sup 3/H labeling than islets of controls at all time points. The results suggest that in addition to ductal precursors, islets that survive SZ/NA-induced injury may also provide sites of focal endocrine cell differentiation to tumor tissue. Once established, both microtumors and gross tumors continue to grow by accelerated cell division.

  16. Pancreatic Candidiasis That Mimics a Malignant Pancreatic Cystic Tumor on Magnetic Resonance Imaging: A Case Report in an Immunocompetent Patient.

    PubMed

    Seong, Minjung; Kang, Tae Wook; Ha, Sang Yun

    2015-01-01

    Candida is a commensal organism that is frequently found in the human gastrointestinal tract. It is the most common organism that causes pancreatic fungal infections. However, magnetic resonance imaging findings of Candida infection in the pancreas have not been described. We report imaging findings of pancreatic candidiasis in a patient in immunocompetent condition. It presented as a multi-septated cystic mass with a peripheral solid component in the background of pancreatitis and restricted diffusion on diffusion-weighted image that mimicked a malignant pancreatic cystic tumor.

  17. Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis.

    PubMed Central

    Gukovskaya, A S; Gukovsky, I; Zaninovic, V; Song, M; Sandoval, D; Gukovsky, S; Pandol, S J

    1997-01-01

    The aim of this study was to determine whether tumor necrosis factor-alpha (TNFalpha) and receptors for TNFalpha are expressed in the exocrine pancreas, and whether pancreatic acinar cells release and respond to TNFalpha. Reverse transcription PCR, immunoprecipitation, and Western blot analysis demonstrated the presence of TNFalpha and 55- and 75-kD TNFalpha receptors in pancreas from control rats, rats with experimental pancreatitis induced by supramaximal doses of cerulein, and in isolated pancreatic acini. Immunohistochemistry showed TNFalpha presence in pancreatic acinar cells. ELISA and bioassay measurements of TNFalpha indicated its release from pancreatic acinar cells during incubation in primary culture. Acinar cells responded to TNFalpha. TNFalpha potentiated NF-kappaB translocation into the nucleus and stimulated apoptosis in isolated acini while not affecting LDH release. In vivo studies demonstrated that neutralization of TNFalpha with an antibody produced a mild improvement in the parameters of cerulein-induced pancreatitis. However, TNFalpha neutralization greatly inhibited apoptosis in a modification of the cerulein model of pancreatitis which is associated with a high percentage of apoptotic cell death. The results indicate that pancreatic acinar cells produce, release, and respond to TNFalpha. This cytokine regulates apoptosis in both isolated pancreatic acini and experimental pancreatitis. PMID:9312187

  18. Pancreatic Tumor Cell Secreted CCN1/Cyr61 Promotes Endothelial cell migration and Aberrant Neovascularization

    PubMed Central

    Maity, Gargi; Mehta, Smita; Haque, Inamul; Dhar, Kakali; Sarkar, Sandipto; Banerjee, Sushanta K.; Banerjee, Snigdha

    2014-01-01

    The complex signaling networks between cancer cells and adjacent endothelial cells make it challenging to unravel how cancer cells send extracellular messages to promote aberrant vascularization or tumor angiogenesis. Here, in vitro and in vivo models show that pancreatic cancer cell generated unique microenvironments can underlie endothelial cell migration and tumor angiogenesis. Mechanistically, we find that pancreatic cancer cell secreted CCN1/Cyr61 matricellular protein rewires the microenvironment to promote endothelial cell migration and tumor angiogenesis. This event can be overcome by Sonic Hedgehog (SHh) antibody treatment. Collectively, these studies identify a novel CCN1 signaling program in pancreatic cancer cells which activates SHh through autocrine-paracrine circuits to promote endothelial cell migration and tumor angiogenesis and suggests that CCN1 signaling of pancreatic cancer cells is vital for the regulation of tumor angiogenesis. Thus CCN1 signaling could be an ideal target for tumor vascular disruption in pancreatic cancer. PMID:24833309

  19. Surgical Treatment and Clinical Outcome of Nonfunctional Pancreatic Neuroendocrine Tumors

    PubMed Central

    Yang, Min; Zeng, Lin; Zhang, Yi; Su, An-ping; Yue, Peng-ju; Tian, Bo-le

    2014-01-01

    Abstract Our primary aim of the present study was to analyze the clinical characteristics and surgical outcome of nonfunctional pancreatic neuroendocrine tumors (non-F-P-NETs), with an emphasis on evaluating the prognostic value of the newly updated 2010 grading classification of the World Health Organization (WHO). Data of 55 consecutive patients who were surgically treated and pathologically diagnosed as non-F-P-NETs in our single institution from January 2000 to December 2013 were retrospectively collected. This entirety comprised of 55 patients (31 males and 24 females), with a mean age of 51.24 ± 12.95 years. Manifestations of non-F-P-NETs were nonspecific. Distal pancreatectomy, pancreaticoduodenectomy, and local resection of pancreatic tumor were the most frequent surgical procedures, while pancreatic fistula was the most common but acceptable complication (30.3%). The overall 5-year survival rate of this entire cohort was 41.0%, with a median survival time of 60.4 months. Patients who underwent R0 resections obtained a better survival than those who did not (P < 0.005). As for the prognostic analysis, tumor size and lymph invasion were only statistically significant in univariate analysis (P = 0.046 and P < 0.05, respectively), whereas the newly updated 2010 grading classification of WHO (G1 and G2 vs G3), distant metastasis, and surgical margin were all meaningful in both univariate and multivariate analysis (P = 0.045, 0.001, and 0.042, respectively). Non-F-P-NETs are a kind of rare neoplasm, with mostly indolent malignancy. Patients with non-F-P-NETs could benefit from the radical resections. The new WHO criteria, distant metastasis and surgical margin, might be independent predictors for the prognosis of non-F-P-NETs. PMID:25396335

  20. [What is new in the pathology of pancreatic neuroendocrine tumors?].

    PubMed

    Komminoth, P; Perren, A

    2015-05-01

    The diagnostics of pancreatic neuroendocrine tumors (PanNEN) have changed in recent years especially concerning the World Health Organization (WHO) classification, TNM staging and grading. Furthermore, some new prognostic and predictive immunohistochemical markers have been introduced. Most progress, however, has been made in the molecular pathogenesis of these neoplasms. Using next generation sequencing techniques, the mammalian target of rapamycin (mTOR) pathway, hypoxia and epigenetic changes were identified as key players in tumorigenesis. In this article the most important developments of morphological as well as immunohistochemical diagnostics together with the molecular background of PanNEN are summarized.

  1. Prostate-Specific Membrane Antigen (PSMA) Avid Pancreatic Neuroendocrine Tumor.

    PubMed

    Vamadevan, Shankar; Shetty, Deepa; Le, Ken; Bui, Chuong; Mansberg, Robert; Loh, Han

    2016-10-01

    Ga-PSMA PET/CT is increasingly used to evaluate recurrent prostatic malignancy due to its high specificity. A 75-year-old man with a previous history of treated prostate cancer 3 years earlier presented with rising prostate-specific antigen (PSA) level and underwent Ga-PSMA PET/CT which demonstrated a PSMA-avid focus in the neck of the pancreas. Triple-phase abdominal CT demonstrated enhancement in the arterial phase and to a lesser extent the venous phase of a soft tissue mass in the neck of the pancreas. Cytological and histopathological examination of the soft tissue mass confirmed a low-grade pancreatic neuroendocrine tumor.

  2. Pancreatic neuroendocrine tumors: clinical features, diagnosis and medical treatment: advances

    PubMed Central

    Ito, Tetsuhide; Igarashi, Hisato; Jensen, Robert T.

    2013-01-01

    Pancreatic neuroendocrine tumors (pNETs) comprise with gastrointestinal carcinoids, the main groups of gastrointestinal neuroendocrine tumors (GI-NETs). Although these two groups of GI-NETs share many features including histological aspects; over-/ectopic expression of somatostatin receptors; the ability to ectopically secrete hormones/peptides/amines which can result in distinct functional syndromes; similar approaches used for tumor localization and some aspects of treatment, it is now generally agreed they should be considered separate. They differ in their pathogenesis, hormonal syndromes produced, many aspects of biological behavior and most important, in their response to certain anti-tumor treatment (chemotherapy, molecular targeted therapies). In this chapter the clinical features of the different types of pNETs will be considered as well as aspects of their diagnosis and medical treatment of the hormone-excess state. Emphasis will be on controversial areas or recent advances. The other aspects of the management of these tumors (surgery, treatment of advanced disease, tumor localization) are not dealt with here, because they are covered in other chapters in this volume. PMID:23582916

  3. miRNA dynamics in tumor-infiltrating myeloid cells modulating tumor progression in pancreatic cancer.

    PubMed

    Mühlberg, Leonie; Kühnemuth, Benjamin; Costello, Eithne; Shaw, Victoria; Sipos, Bence; Huber, Magdalena; Griesmann, Heidi; Krug, Sebastian; Schober, Marvin; Gress, Thomas M; Michl, Patrick

    2016-06-01

    Myeloid cells including tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) are known as important mediators of tumor progression in solid tumors such as pancreatic cancer. Infiltrating myeloid cells have been identified not only in invasive tumors, but also in early pre-invasive pancreatic intraepithelial precursor lesions (PanIN). The functional dynamics of myeloid cells during carcinogenesis is largely unknown. We aimed to systematically elucidate phenotypic and transcriptional changes in infiltrating myeloid cells during carcinogenesis and tumor progression in a genetic mouse model of pancreatic cancer. Using murine pancreatic myeloid cells isolated from the genetic mouse model at different time points during carcinogenesis, we examined both established markers of macrophage polarization using RT-PCR and FACS as well as transcriptional changes focusing on miRNA profiling. Myeloid cells isolated during carcinogenesis showed a simultaneous increase of established markers of M1 and M2 polarization during carcinogenesis, indicating that phenotypic changes of myeloid cells during carcinogenesis do not follow the established M1/M2 classification. MiRNA profiling revealed distinct regulations of several miRNAs already present in myeloid cells infiltrating pre-invasive PanIN lesions. Among them miRNA-21 was significantly increased in myeloid cells surrounding both PanIN lesions and invasive cancers. Functionally, miRNA-21-5p and -3p altered expression of the immune-modulating cytokines CXCL-10 and CCL-3 respectively. Our data indicate that miRNAs are dynamically regulated in infiltrating myeloid cells during carcinogenesis and mediate their functional phenotype by facilitating an immune-suppressive tumor-promoting micro-milieu. PMID:27471627

  4. Activity of drug-loaded tumor-penetrating microparticles in peritoneal pancreatic tumors.

    PubMed

    Lu, Ze; Tsai, Max; Wang, Jie; Cole, David J; Wientjes, M Guillaume; Au, Jessie L-S

    2014-01-01

    Intraperitoneal (IP) chemotherapy confers significant survival benefits in cancer patients. However, several problems, including local toxicity and ineffectiveness against bulky tumors, have prohibited it from becoming a standard of care. We have developed drug-loaded, polymeric tumor-penetrating microparticles (TPM) to address these problems. Initial studies showed that TPM provides tumor-selective delivery and is effective against ovarian SKOV3 tumors of relatively small size (<50 mg). The present study evaluated whether the TPM activity extends to other tumor types that are more bulky and have different morphologies and disease presentation. We evaluated TPM in mice bearing two IP human pancreatic tumors with different growth characteristics and morphologies (rapidly growing, large and porous Hs766T vs. slowly growing, smaller and densely packed MiaPaCa2), and at different disease stage (early stage with smaller tumors vs. late stage with larger tumors plus peritoneal carcinomatosis). Comparison of treatments with TPM or paclitaxel in Cremophor micelles, at equi-toxic doses, shows, in all tumor types: (a) higher paclitaxel levels in tumors (up to 55-fold) for TPM, (b) greater efficacy for TPM, including significantly longer survival and higher cure rate, and (c) a single dose of TPM was equally efficacious as multiple doses of paclitaxel/Cremophor. The results indicate tumor targeting property and superior antitumor activity of paclitaxel-loaded TPM are generalizable to small and large peritoneal tumors, with or without accompanying carcinomatosis.

  5. Pancreatic neuroendocrine tumor accompanied with multiple liver metastases

    PubMed Central

    Hori, Tomohide; Takaori, Kyoichi; Uemoto, Shinji

    2014-01-01

    Pancreatic neuroendocrine tumor (P-NET) is rare and slow-growing. Current classifications predict its prognosis and postoperative recurrence. Curative resection is ideal, although often difficult, because over 80% of patients have unresectable multiple liver metastases and extrahepatic metastasis. Aggressive surgery for liver metastases is important to improve survival. Aggressive or cytoreductive surgery for liver metastases is indicated to reduce hormone levels and improve symptoms and prognosis. Liver transplantation was originally conceived as an ideal therapy for unresectable liver metastases. Unfortunately, there is no clear consensus on the role and timing of surgery for primary tumor and liver metastases. Surgeons still face questions in deciding the best surgical scenario in patients with P-NET with unresectable liver metastases. PMID:25232452

  6. Utility of preoperative dynamic magnetic resonance imaging of the pancreas in diagnosing tumor-forming pancreatitis that mimics pancreatic cancer: report of a case.

    PubMed

    Kuroki, Tamotsu; Tajima, Yoshitsugu; Tsuneoka, Noritsugu; Adachi, Tomohiko; Kanematsu, Takashi

    2010-01-01

    The differential diagnosis of pancreatic carcinoma and tumor-forming pancreatitis remains difficult, and this situation can cause serious problems because the management and prognosis of these two focal pancreatic masses are entirely different. We herein report a case of tumor-forming pancreatitis that mimics pancreatic carcinoma in an 80-year-old woman. Computed tomography showed a solid mass in the head of the pancreas, and endoscopic retrograde cholangiopancreatography showed a complete obstruction of the main pancreatic duct in the head of the pancreas. Dynamic contrastenhanced magnetic resonance imaging (MRI) demonstrated a time-signal intensity curve (TIC) with a slow rise to a peak (1 min after the administration of the contrast material), followed by a slow decline at the pancreatic mass, indicating a fibrotic pancreas. Under the diagnosis of tumor-forming pancreatitis, the patient underwent a segmental pancreatectomy instead of a pancreaticoduodenectomy. The histopathology of the pancreatic mass was chronic pancreatitis without malignancy. The pancreatic TIC obtained from dynamiccontrast MRI can be helpful to differentiate tumor-forming pancreatitis from pancreatic carcinoma and to avoid any unnecessary major pancreatic surgery.

  7. Ultrafast magnetic resonance imaging improves the staging of pancreatic tumors.

    PubMed Central

    Trede, M; Rumstadt, B; Wendl, K; Gaa, J; Tesdal, K; Lehmann, K J; Meier-Willersen, H J; Pescatore, P; Schmoll, J

    1997-01-01

    OBJECTIVE: This prospective study was undertaken to evaluate the accuracy of a noninvasive "all-in-one" staging method in predicting surgical resectability in patients with pancreatic or periampullary tumors. SUMMARY BACKGROUND DATA: Despite progress in imaging techniques, accurate staging and correct prediction of resectability remains one of the chief problems in the management of pancreatic tumors. Staging algorithms designed to separate operable from inoperable patients to save the latter an unnecessary laparotomy are becoming increasingly complex, expensive, time-consuming, invasive, and not without risks for the patient. METHODS: Between August 1996 and February 1997, 58 consecutive patients referred for operation of a pancreatic or periampullary tumor were examined clinically and by 5 staging methods: 1) percutaneous ultrasonography (US); 2) ultrafast magnetic resonance imaging (UMRI); 3) dual-phase helical computed tomography (CT); 4) selective visceral angiography; and 5) endoscopic cholangiopancreatography (ERCP). The assessment of resectability by each procedure was verified by surgical exploration and histologic examination. RESULTS: The study comprised 40 male and 18 female patients with a median age of 63 years. Thirty-five lesions were located in the pancreatic head (60%), 11 in the body (19%), and 1 in the tail of the gland (2%); there were 9 tumors of the ampulla (16%) and 2 of the distal common duct (3%). All five staging methods were completed in 36 patients. For reasons ranging from metallic implants to contrast medium allergy or because investigations already had been performed elsewhere, US was completed in 57 (98%), UMRI in 54 (93%), CT in 49 (84%), angiography in 48 (83%), and ERCP in 49 (84%) of these 58 patients. Signs of unresectability found were vascular involvement in 22 (38%), extrapancreatic tumor spread in 16 (26%), liver metastases in 10 (17%), lymph node involvement in 6 (10%), and peritoneal nodules in only 2 patients (3%). These

  8. Pancreatic Neuroendocrine Tumor in the Setting of Dorsal Agenesis of the Pancreas

    PubMed Central

    2016-01-01

    Dorsal agenesis of the pancreas (DAP) is an uncommon embryological abnormality where there is absence of the distal pancreas. DAP is mostly asymptomatic, but common presenting symptoms include diabetes mellitus, abdominal pain, pancreatitis, enlarged pancreatic head, and, in a few cases, polysplenia. MRCP and ERCP are the gold standard imaging techniques to demonstrate the absence of the dorsal pancreatic duct. The literature on the association of pancreatic neoplasia and DAP is limited. We present the case of a pancreatic neuroendocrine tumor in a patient with dorsal agenesis of the pancreas, with a review of the related literature. PMID:27738535

  9. Technical Note: Simulation of 4DCT tumor motion measurement errors

    PubMed Central

    Dou, Tai H.; Thomas, David H.; O’Connell, Dylan; Bradley, Jeffrey D.; Lamb, James M.; Low, Daniel A.

    2015-01-01

    Purpose: To determine if and by how much the commercial 4DCT protocols under- and overestimate tumor breathing motion. Methods: 1D simulations were conducted that modeled a 16-slice CT scanner and tumors moving proportionally to breathing amplitude. External breathing surrogate traces of at least 5-min duration for 50 patients were used. Breathing trace amplitudes were converted to motion by relating the nominal tumor motion to the 90th percentile breathing amplitude, reflecting motion defined by the more recent 5DCT approach. Based on clinical low-pitch helical CT acquisition, the CT detector moved according to its velocity while the tumor moved according to the breathing trace. When the CT scanner overlapped the tumor, the overlapping slices were identified as having imaged the tumor. This process was repeated starting at successive 0.1 s time bin in the breathing trace until there was insufficient breathing trace to complete the simulation. The tumor size was subtracted from the distance between the most superior and inferior tumor positions to determine the measured tumor motion for that specific simulation. The effect of the scanning parameter variation was evaluated using two commercial 4DCT protocols with different pitch values. Because clinical 4DCT scan sessions would yield a single tumor motion displacement measurement for each patient, errors in the tumor motion measurement were considered systematic. The mean of largest 5% and smallest 5% of the measured motions was selected to identify over- and underdetermined motion amplitudes, respectively. The process was repeated for tumor motions of 1–4 cm in 1 cm increments and for tumor sizes of 1–4 cm in 1 cm increments. Results: In the examined patient cohort, simulation using pitch of 0.06 showed that 30% of the patients exhibited a 5% chance of mean breathing amplitude overestimations of 47%, while 30% showed a 5% chance of mean breathing amplitude underestimations of 36%; with a separate simulation

  10. Diabetic Ketoacidosis with Concurrent Pancreatitis, Pancreatic β Islet Cell Tumor, and Adrenal Disease in an Obese Ferret (Mustela putorius furo)

    PubMed Central

    Phair, Kristen A; Carpenter, James W; Schermerhorn, Thomas; Ganta, Chanran K; DeBey, Brad M

    2011-01-01

    A 5.5-y-old spayed female ferret (Mustela putorius furo) with a history of adrenal disease, respiratory disease, and chronic obesity was evaluated for progressive lethargy and ataxia, diminished appetite, and possible polyuria and polydipsia. Physical examination revealed obesity, lethargy, tachypnea, dyspnea, a pendulous abdomen, significant weakness and ataxia of the hindlimbs, prolonged skin tenting, and mild tail-tip alopecia. Clinicopathologic analysis revealed severe hyperglycemia, azotemia, an increased anion gap, glucosuria, ketonuria, proteinuria, and hematuria. Abdominal ultrasonography showed hyperechoic hepatomegaly, bilateral adrenomegaly, splenic nodules, mild peritoneal effusion, and thickened and mildly hypoechoic limbs of the pancreas with surrounding hyperechoic mesentery. Fine-needle aspirates of the liver were highly suggestive of hepatic lipidosis. In light of a diagnosis of concurrent diabetic ketoacidosis and pancreatitis, the ferret was treated with fluid therapy, regular and long-acting insulin administration, and pain medication. However, electrolyte derangements, metabolic acidosis, dyspnea, and the clinical appearance of the ferret progressively worsened despite treatment, and euthanasia was elected. Necropsy revealed severe hepatic lipidosis, severe suppurative pancreatitis and vacuolar degeneration of pancreatic islet cells, a pancreatic β islet cell tumor, bilateral adrenal cortical adenomas, and myocardial fibrosis. To our knowledge, this case represents the first report of concurrent diabetes mellitus, pancreatitis, pancreatic β islet cell tumor (insulinoma), and adrenal disease in a domestic ferret. The simultaneous existence of 3 endocrine diseases, pancreatitis, and their associated complications is a unique and clinically challenging situation. PMID:21838985

  11. Modulation of the Leptin Receptor Mediates Tumor Growth and Migration of Pancreatic Cancer Cells

    PubMed Central

    Chalfant, Madeleine C.; Gorden, Lee D.

    2015-01-01

    Obesity has been implicated as a significant risk factor for development of pancreatic cancer. In the setting of obesity, a systemic chronic inflammatory response is characterized by alterations in the production and secretion of a wide variety of growth factors. Leptin is a hormone whose level increases drastically in the serum of obese patients. High fat diet induced obesity in mice leads to an overall increased body weight, pancreatic weight, serum leptin, and pancreatic tissue leptin levels. Here we report the contribution of obesity and leptin to pancreatic cancer growth utilizing an in vivo orthotopic murine pancreatic cancer model, which resulted in increased tumor proliferation with concomitant increased tumor burden in the diet induced obese mice compared to lean mice. Human and murine pancreatic cancer cell lines were found to express the short as well as the long form of the leptin receptor and functionally responded to leptin induced activation through an increased phosphorylation of AKT473. In vitro, leptin stimulation increased cellular migration which was blocked by addition of a PI3K inhibitor. In vivo, depletion of the leptin receptor through shRNA knockdown partially abrogated increased orthotopic tumor growth in obese mice. These findings suggest that leptin contributes to pancreatic tumor growth through activation of the PI3K/AKT pathway, which promotes pancreatic tumor cell migration. PMID:25919692

  12. Recurrent acute pancreatitis and persistent hyperamylasemia as a presentation of pancreatic osteoclastic giant cell tumor: an unusual presentation of a rare tumor.

    PubMed

    Rustagi, Tarun; Rampurwala, Murtuza; Rai, Mridula; Golioto, Michael

    2011-01-01

    Giant cell tumors of the pancreas are rare neoplasms divided into three forms: osteoclastic, pleomorphic, and mixed. We report an unusual case of a 62-year-old male presenting with recurrent acute pancreatitis and found to have a mass in the head of the pancreas on routine imaging. Endoscopic retrograde cholangiopancreatography showed a main pancreatic duct stricture, with brush cytology revealing the diagnosis of osteoclastic giant cell tumor of the pancreas. Whipple's procedure was successfully performed for resection of this tumor. and IAP.

  13. MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors.

    PubMed

    Cros, J; Hentic, O; Rebours, V; Zappa, M; Gille, N; Theou-Anton, N; Vernerey, D; Maire, F; Lévy, P; Bedossa, P; Paradis, V; Hammel, P; Ruszniewski, P; Couvelard, A

    2016-08-01

    Temozolomide (TEM) showed encouraging results in well-differentiated pancreatic neuroendocrine tumors (WDPNETs). Low O(6)-methylguanine-DNA methyltransferase (MGMT) expression and MGMT promoter methylation within tumors correlate with a better outcome under TEM-based chemotherapy in glioblastoma. We aimed to assess whether MGMT expression and MGMT promoter methylation could help predict the efficacy of TEM-based chemotherapy in patients with WDPNET. Consecutive patients with progressive WDPNET and/or liver involvement over 50% who received TEM between 2006 and 2012 were retrospectively studied. Tumor response was assessed according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 guidelines. Nuclear expression of MGMT was assessed by immunochemistry (H-score, 0-300) and MGMT promoter methylation by pyrosequencing. Forty-three patients (21 men, 58years (27-84)) with grade 1 WDPNET (n=6) or 2 (n=36) were analyzed. Objective response, stable disease, and progression rates were seen in 17 patients (39.5%), 18 patients (41.9%), and 8 patients (18.6%), respectively. Low MGMT expression (≤50) was associated with radiological objective response (P=0.04) and better progression-free survival (PFS) (HR=0.35 (0.15-0.81), P=0.01). Disease control rate at 18months of treatment remained satisfying with an MGMT score up to 100 (74%) but dropped with a higher expression. High MGMT promoter methylation was associated with a low MGMT expression and longer PFS (HR=0.37 (0.29-1.08), P=0.05). Low MGMT score (≤50) appears to predict an objective tumor response, whereas an intermediate MGMT score (50-100) seems to be associated with prolonged stable disease. PMID:27353036

  14. MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors.

    PubMed

    Cros, J; Hentic, O; Rebours, V; Zappa, M; Gille, N; Theou-Anton, N; Vernerey, D; Maire, F; Lévy, P; Bedossa, P; Paradis, V; Hammel, P; Ruszniewski, P; Couvelard, A

    2016-08-01

    Temozolomide (TEM) showed encouraging results in well-differentiated pancreatic neuroendocrine tumors (WDPNETs). Low O(6)-methylguanine-DNA methyltransferase (MGMT) expression and MGMT promoter methylation within tumors correlate with a better outcome under TEM-based chemotherapy in glioblastoma. We aimed to assess whether MGMT expression and MGMT promoter methylation could help predict the efficacy of TEM-based chemotherapy in patients with WDPNET. Consecutive patients with progressive WDPNET and/or liver involvement over 50% who received TEM between 2006 and 2012 were retrospectively studied. Tumor response was assessed according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 guidelines. Nuclear expression of MGMT was assessed by immunochemistry (H-score, 0-300) and MGMT promoter methylation by pyrosequencing. Forty-three patients (21 men, 58years (27-84)) with grade 1 WDPNET (n=6) or 2 (n=36) were analyzed. Objective response, stable disease, and progression rates were seen in 17 patients (39.5%), 18 patients (41.9%), and 8 patients (18.6%), respectively. Low MGMT expression (≤50) was associated with radiological objective response (P=0.04) and better progression-free survival (PFS) (HR=0.35 (0.15-0.81), P=0.01). Disease control rate at 18months of treatment remained satisfying with an MGMT score up to 100 (74%) but dropped with a higher expression. High MGMT promoter methylation was associated with a low MGMT expression and longer PFS (HR=0.37 (0.29-1.08), P=0.05). Low MGMT score (≤50) appears to predict an objective tumor response, whereas an intermediate MGMT score (50-100) seems to be associated with prolonged stable disease.

  15. Feasibility of Electromagnetic Transponder Use to Monitor Inter- and Intrafractional Motion in Locally Advanced Pancreatic Cancer Patients

    SciTech Connect

    Shinohara, Eric T.; Kassaee, Alireza; Mitra, Nandita; Vapiwala, Neha; Plastaras, John P.; Drebin, Jeff; Wan, Fei; Metz, James M.

    2012-06-01

    Purpose: The primary objective of this study was to determine the feasibility of electromagnetic transponder implantation in patients with locally advanced unresectable pancreatic cancer. Secondarily, the use of transponders to monitor inter- and intrafractional motion, and the efficacy of breath holding for limiting target motion, were examined. Methods and Materials: During routine screening laparoscopy, 5 patients without metastatic disease were implanted with transponders peri-tumorally. The Calypso System's localization and tracking modes were used to monitor inter- and intrafractional motion, respectively. Intrafractional motion, with and without breath holding, was also examined using Calypso tracking mode. Results: Transponder implantation was well tolerated in all patients, with minimal migration, aside from 1 patient who expulsed a single transponder. Interfractional motion based on mean shifts from setup using tattoos/orthogonal imaging to transponder based localization from 164 treatments was significant in all dimensions. Mean shift (in millimeters), followed by the standard deviation and p value, were as follows: X-axis: 4.5 mm (1.0, p = 0.01); Y axis: 6.4 mm (1.9, p = 0.03); and Z-axis 3.9 mm (0.6, p = 0.002). Mean intrafractional motion was also found to be significant in all directions: superior, 7.2 mm (0.9, p = 0.01); inferior, 11.9 mm (0.9, p < 0.01); anterior: 4.9 mm (0.5, p = 0.01); posterior, 2.9 mm (0.5, p = 0.02); left, 2.2 mm (0.4, p = 0.02); and right, 3.1 mm (0.6, p = 0.04). Breath holding during treatment significantly decreased tumor motion in all directions. Conclusions: Electromagnetic transponder implantation appears to be safe and effective for monitoring inter- and intrafractional motion. Based on these results a larger clinical trial is underway.

  16. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt.

    PubMed

    Betancourt, Ricardo; Zou, Wei; Plastaras, John P; Metz, James M; Teo, Boon-Keng; Kassaee, Alireza

    2013-01-01

    The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable. PMID:23652242

  17. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt.

    PubMed

    Betancourt, Ricardo; Zou, Wei; Plastaras, John P; Metz, James M; Teo, Boon-Keng; Kassaee, Alireza

    2013-05-06

    The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable.

  18. Diaphragm motion characterization using chest motion data for biomechanics-based lung tumor tracking during EBRT

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2016-03-01

    Despite recent advances in image-guided interventions, lung cancer External Beam Radiation Therapy (EBRT) is still very challenging due to respiration induced tumor motion. Among various proposed methods of tumor motion compensation, real-time tumor tracking is known to be one of the most effective solutions as it allows for maximum normal tissue sparing, less overall radiation exposure and a shorter treatment session. As such, we propose a biomechanics-based real-time tumor tracking method for effective lung cancer radiotherapy. In the proposed algorithm, the required boundary conditions for the lung Finite Element model, including diaphragm motion, are obtained using the chest surface motion as a surrogate signal. The primary objective of this paper is to demonstrate the feasibility of developing a function which is capable of inputting the chest surface motion data and outputting the diaphragm motion in real-time. For this purpose, after quantifying the diaphragm motion with a Principal Component Analysis (PCA) model, correlation coefficient between the model parameters of diaphragm motion and chest motion data was obtained through Partial Least Squares Regression (PLSR). Preliminary results obtained in this study indicate that the PCA coefficients representing the diaphragm motion can be obtained through chest surface motion tracking with high accuracy.

  19. Acute Pancreatitis and Gastroduodenal Intussusception Induced by an Underlying Gastric Gastrointestinal Stromal Tumor: A Case Report

    PubMed Central

    Doğan, Ahmet; Koparan, Ibrahim Halil; Adin, Mehmet Emin

    2016-01-01

    Gastrointestinal stromal tumors (GISTs) are rare tumors of the gastrointestinal system and comprise only 1% to 3% of all gastrointestinal tract tumors, with the majority of them arising in the stomach. In this report, we present the unique findings of a case of gastroduodenal intussusception caused by an underlying gastric GIST and complicated with severe acute pancreatitis. PMID:27104028

  20. Benign retroperitoneal schwannoma mimicking a pancreatic cystic tumor: case report and literature review.

    PubMed

    Hsiao, W C; Lin, P W; Chang, K C

    1998-01-01

    A rare case of benign retroperitoneal schwannoma mimicking a pancreatic cystic tumor is reported herein. The tumor mass, based on a computed tomography scan and an abdominal echo examination, was initially suspected to be a mucinous cystadenoma or cystadenocarcinoma of the pancreas. However, the surgical and pathohistological findings made a final diagnosis of benign pancreatic schwannoma. The patient is doing well at a 2-year follow-up. The tumor, 18x17x15 cm in size, represented the largest among reported pancreatic schwannomas. Furthermore, a comprehensive review of reported cases of pancreatic schwannoma was carried out to summarize corresponding findings, including benign or malignant forms, adherence to other tissues, cystic change of the tumor, as well as relation to von Recklinghausen's neurofibromatosis.

  1. Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors.

    PubMed

    Wang, Jie; Lu, Ze; Wang, Junfeng; Cui, Minjian; Yeung, Bertrand Z; Cole, David J; Wientjes, M Guillaume; Au, Jessie L-S

    2015-10-28

    The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (p<0.05). In comparison, PCat-siSurvivin alone did not yield survivin knockdown or antitumor activity, indicating the in vivo effectiveness of intravenous siRNA-mediated gene silencing requires paclitaxel cotreatment. Additional in vitro studies showed that paclitaxel promoted the cytoplasmic release of siGLO, a 22 nucleotide double-stranded RNA that has no mRNA targets, from its PCat lipoplex and/or endosomes/lysosomes. Taken together, our earlier and current data show paclitaxel tumor priming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types

  2. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor

    PubMed Central

    Kuninty, Praneeth R.; Bojmar, Linda; Tjomsland, Vegard; Larsson, Marie; Storm, Gert; Östman, Arne; Sandström, Per; Prakash, Jai

    2016-01-01

    Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. α-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer. PMID:26918939

  3. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.

    PubMed

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E

    2008-11-01

    Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer.

  4. Somatostatin Receptor-1 Induces Cell Cycle Arrest and Inhibits Tumor Growth in Pancreatic Cancer

    PubMed Central

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F. Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E.

    2010-01-01

    Functional somatostatin receptors (SSTRs) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G0/G1 growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n=5, p<0.05, t-test), and inhibited tumor weight by 69% and 47%, (n=5, p<0.05, t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  5. The matricellular protein CYR61 interferes with normal pancreatic islets architecture and promotes pancreatic neuroendocrine tumor progression.

    PubMed

    Huang, Yu-Ting; Lan, Qiang; Ponsonnet, Lionel; Blanquet, Marisa; Christofori, Gerhard; Zaric, Jelena; Rüegg, Curzio

    2016-01-12

    The significance of matricellular proteins during development and cancer progression is widely recognized. However, how these proteins actively contribute to physiological development and pathological cancer progression is only partially elucidated. In this study, we investigated the role of the matricellular protein Cysteine-rich 61 (CYR61) in pancreatic islet development and carcinogenesis. Transgenic expression of CYR61 in β cells (Rip1CYR mice) caused irregular islets morphology and distorted sorting of α cells, but did not alter islets size, number or vascularization. To investigate the function of CYR61 during carcinogenesis, we crossed Rip1CYR mice with Rip1Tag2 mice, a well-established model of β cell carcinogenesis. Beta tumors in Rip1Tag2CYR mice were larger, more invasive and more vascularized compared to tumors in Rip1Tag2 mice. The effect of CYR61 on angiogenesis was fully abrogated by treating mice with the anti-VEGFR2 mAb DC101. Results from in vitro assays demonstrated that CYR61 modulated integrin α6β1-dependent invasion and adhesion without altering its expression. Taken together, these results show that CYR61 expression in pancreatic β cells interferes with normal islet architecture, promotes islet tumor growth, invasion and VEGF/VERGFR-2-dependent tumor angiogenesis. Taken together, these observations demonstrate that CYR61 acts as a tumor-promoting gene in pancreatic neuroendocrine tumors.

  6. Impact of APE1/Ref-1 redox inhibition on pancreatic tumor growth.

    PubMed

    Fishel, Melissa L; Jiang, Yanlin; Rajeshkumar, N V; Scandura, Glenda; Sinn, Anthony L; He, Ying; Shen, Changyu; Jones, David R; Pollok, Karen E; Ivan, Mircea; Maitra, Anirban; Kelley, Mark R

    2011-09-01

    Pancreatic cancer is especially a deadly form of cancer with a survival rate less than 2%. Pancreatic cancers respond poorly to existing chemotherapeutic agents and radiation, and progress for the treatment of pancreatic cancer remains elusive. To address this unmet medical need, a better understanding of critical pathways and molecular mechanisms involved in pancreatic tumor development, progression, and resistance to traditional therapy is therefore critical. Reduction-oxidation (redox) signaling systems are emerging as important targets in pancreatic cancer. AP endonuclease1/Redox effector factor 1 (APE1/Ref-1) is upregulated in human pancreatic cancer cells and modulation of its redox activity blocks the proliferation and migration of pancreatic cancer cells and pancreatic cancer-associated endothelial cells in vitro. Modulation of APE1/Ref-1 using a specific inhibitor of APE1/Ref-1's redox function, E3330, leads to a decrease in transcription factor activity for NFκB, AP-1, and HIF1α in vitro. This study aims to further establish the redox signaling protein APE1/Ref-1 as a molecular target in pancreatic cancer. Here, we show that inhibition of APE1/Ref-1 via E3330 results in tumor growth inhibition in cell lines and pancreatic cancer xenograft models in mice. Pharmacokinetic studies also show that E3330 attains more than10 μmol/L blood concentrations and is detectable in tumor xenografts. Through inhibition of APE1/Ref-1, the activity of NFκB, AP-1, and HIF1α that are key transcriptional regulators involved in survival, invasion, and metastasis is blocked. These data indicate that E3330, inhibitor of APE1/Ref-1, has potential in pancreatic cancer and clinical investigation of APE1/Ref-1 molecular target is warranted.

  7. Differentiation of solid pancreatic tumors by using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Choi, Seung Joon; Kim, Hyung Sik; Park, Hyunjin

    2014-01-01

    Distinguishing among different solid pancreatic tumor types, pancreatic ductal adenocarcinomas, neuroendocrine tumors (NETs), and solid pseudopapillary tumors (SPTs) is important, as the treatment options are vastly different. This study compared characteristics of solid pancreatic tumors by using dynamic contrast enhanced magnetic resonance imaging (MRI). Fifty patients underwent MR imaging of pancreatic masses with a histopathology that was later confirmed as an adenocarcinoma (n = 27), a NET (n = 16), and a SPT (n = 7). For qualitative analysis, two reviewers evaluated the morphologic features of the tumors: locations, margins, shapes, contained products, pancreatic ductal dilatation, and grade of signal intensity (SI). For the quantitative analysis, all phases of the MR images were co-registered using proprietary image registration software; thus, a region of interest (ROI) defined on one phase could be re-applied in other phases. The following four ratios were considered: tumor-to-uninvolved pancreas SI ratio, percent SI change, tumor-touninvolved pancreas enhancement index, and arterial-to-delayed washout rate. The areas under the receiver operating characteristic (ROC) curves were assessed for the four ratios. Adenocarcinomas had ill-defined margins, irregular shapes, and ductal dilatation compared with NETs and SPTs (P < 0.001). The tumor-to-uninvolved pancreas ratio on all dynamic phases was significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). Percentage SI changes of pancreatic tumors on the pancreatic and the portal venous phases were significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). A significant difference between NETs and adenocarcinomas was also found with respect to the tumor-to-uninvolved pancreas enhancement index and arterial-to-delayed washout rate. The percentage SI changes in the pancreatic phase and the arterial-to-delayed washout rate best distinguished between adenocarcinomas and

  8. WE-G-18C-06: Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    SciTech Connect

    Yang, J; Cai, J; Zheng, C; Czito, B; Palta, M; Yin, F; Wang, H; Bashir, M

    2014-06-15

    Purpose: To investigate whether diaphragm motion is a good surrogate for liver tumor motion by comparing their motion trajectories obtained from cine-MRI. Methods: Fourteen patients with hepatocellular carcinoma (10/14) or liver metastases (4/14) undergoing radiation therapy were included in this study. All patients underwent single-slice 2D cine-MRI simulations across the center of the tumor in three orthogonal planes. Tumor and diaphragm motion trajectories in the superior-inferior (SI), anteriorposterior (AP), and medial-lateral (ML) directions were obtained using the normalized cross-correlation based tracking technique. Agreement between tumor and diaphragm motions was assessed by calculating the phase difference percentage (PDP), intra-class correlation coefficient (ICC), Bland-Altman analysis (Diffs) and paired t-test. The distance (D) between tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between tumor and diaphragm motions. Results: Of all patients, the means (±standard deviations) of PDP were 7.1 (±1.1)%, 4.5 (±0.5)% and 17.5 (±4.5)% in the SI, AP and ML directions, respectively. The means of ICC were 0.98 (±0.02), 0.97 (±0.02), and 0.08 (±0.06) in the SI, AP and ML directions, respectively. The Diffs were 2.8 (±1.4) mm, 2.4 (±1.1) mm, and 2.2 (±0.5) mm in the SI, AP and ML directions, respectively. The p-values derived from the paired t-test were < 0.02 in SI and AP directions, whereas were > 0.58 in ML direction primarily due to the small motion in ML direction. Tumor and diaphragmatic motion had high concordance when the distance between the tumor and tracked diaphragm areas was small. Conclusion: Preliminary results showed that liver tumor motion had good correlations with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be a reliable surrogate for liver tumor motion. NIH (1R21CA165384-01A1), Golfers Against Cancer (GAC

  9. MSX2 in pancreatic tumor development and its clinical application for the diagnosis of pancreatic ductal adenocarcinoma

    PubMed Central

    Satoh, Kennichi; Hamada, Shin; Shimosegawa, Tooru

    2012-01-01

    MSX2, a member of the homeobox genes family, is demonstrated to be the downstream target for ras signaling pathway and is expressed in a variety of carcinoma cells, suggesting its relevance to the development of ductal pancreatic tumors since pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary-mucinous neoplasia (IPMN) harbor frequent K-ras gene mutations. Recent studies revealed the roles of MSX2 in the development of carcinoma of various origins including pancreas. Among gastrointestinal tumors, PDAC is one of the most malignant. PDAC progresses rapidly to develop metastatic lesions, frequently by the time of diagnosis, and these tumors are usually resistant to conventional chemotherapy and radiation therapy. The molecular mechanisms regulating the aggressive behavior of PDAC still remain to be clarified. On the other hand, IPMN of the pancreas is distinct from PDAC because of its intraductal growth in the main pancreatic duct or secondary branches with rare invasion and metastasis to distant organs. However, recent evidence indicated that once IPMN showed stromal invasion, it progresses like PDAC. Therefore, it is important to determin how IPMN progresses to malignant phenotype. In this review, we focus on the involvement of MSX2 in the enhancement of malignant behavior in PDAC and IPMN, and further highlight the clinical approach to differentiate PDAC from chronic pancreatitis by evaluating MSX2 expression level. PMID:23162473

  10. Everolimus in advanced pancreatic neuroendocrine tumors: the clinical experience.

    PubMed

    Yao, James C; Phan, Alexandria T; Jehl, Valentine; Shah, Gaurav; Meric-Bernstam, Funda

    2013-03-01

    The incidence of neuroendocrine tumors (NET) has increased dramatically in the past 30 years. This information has revitalized basic and clinical research into the molecular biology of NET and has resulted in the recent approval of new therapies for pancreatic NET (pNET), including the oral inhibitor of the mTOR everolimus. Everolimus significantly improved progression-free survival among patients with pNET in the phase III RADIANT-3 study. Here, we review the clinical studies showing the efficacy of everolimus in pNET and summarize the translational science from these studies. To understand the mechanisms of resistance and cause of treatment failure, we compared the type of progression events observed in the everolimus and placebo arms of the RADIANT-3 study. Comparison of the everolimus arm to the placebo arm indicated the fractions of progression events due to new metastasis only (21% vs. 22%), growth of preexisting lesions only (54% vs. 49%), and new metastasis along with growth of preexisting lesions (24% vs. 27%) were similar. These results suggest that although everolimus delays disease progression in patients with pNET, patients who experience disease progression while on everolimus do not appear to have a more aggressive metastatic phenotype than those whose disease progresses while on placebo.

  11. Circulating tumor cells in pancreatic cancer patients: Enrichment and cultivation

    PubMed Central

    Bobek, Vladimir; Gurlich, Robert; Eliasova, Petra; Kolostova, Katarina

    2014-01-01

    AIM: To investigate the feasibility of separation and cultivation of circulating tumor cells (CTCs) in pancreatic cancer (PaC) using a filtration device. METHODS: In total, 24 PaC patients who were candidates for surgical treatment were enrolled into the study. Peripheral blood samples were collected before an indicated surgery. For each patient, approximately 8 mL of venous blood was drawn from the antecubital veins. A new size-based separation MetaCell® technology was used for enrichment and cultivation of CTCs in vitro. (Separated CTCs were cultured on a membrane in FBS enriched RPMI media and observed by inverted microscope. The cultured cells were analyzed by means of histochemistry and immunohistochemistry using the specific antibodies to identify the cell origin. RESULTS: CTCs were detected in 16 patients (66.7%) of the 24 evaluable patients. The CTC positivity did not reflect the disease stage, tumor size, or lymph node involvement. The same percentage of CTC positivity was observed in the metastatic and non-metastatic patients (66.7% vs 66.7%). We report a successful isolation of CTCs in PaC patients capturing proliferating cells. The cells were captured by a capillary action driven size-based filtration approach that enabled cells cultures from the viable CTCs to be unaffected by any antibodies or lysing solutions. The captured cancer cells displayed plasticity which enabled some cells to invade the separating membrane. Further, the cancer cells in the “bottom fraction”, may represent a more invasive CTC-fraction. The CTCs were cultured in vitro for further downstream applications. CONCLUSION: The presented size-based filtration method enables culture of CTCs in vitro for possible downstream applications. PMID:25493031

  12. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis

    PubMed Central

    Ito, Hiromitsu; Tanaka, Shinji; Akiyama, Yoshimitsu; Shimada, Shu; Adikrisna, Rama; Matsumura, Satoshi; Aihara, Arihiro; Mitsunori, Yusuke; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Arii, Shigeki; Yamaoka, Shoji; Tanabe, Minoru

    2016-01-01

    Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs), but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1) was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer. PMID:26764906

  13. Neutrophil-Derived Proteases in the Microenvironment of Pancreatic Cancer -Active Players in Tumor Progression

    PubMed Central

    Felix, Klaus; Gaida, Matthias M.

    2016-01-01

    A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the fibro-inflammatory microenvironment, consisting of activated pancreatic stellate cells, extracellular matrix proteins, and a variety of inflammatory cells, such as T cells, macrophages, or neutrophils. Tumor-infiltrating immune cells, which are found in nearly all cancers, including PDAC, often fail to eliminate the tumor, but conversely can promote its progression by altering the tumor microenvironment. Pancreatic cancer cells are able to attract polymorphonuclear neutrophils (PMN) via tumor secreted chemokines and in human PDAC, PMN infiltrates can be observed in the vicinity of tumor cells and in the desmoplastic tumor stroma, which correlate with undifferentiated tumor growth and poor prognosis. The behavior of tumor-infiltrating neutrophils in the tumor micromilieu is not yet understood at a mechanistic level. It has been shown that PMN have the potential to kill tumor cells, either directly or by antibody-dependent cell-mediated cytotoxicity, but on the other side various adverse effects of PMN, such as promotion of aggressive tumor growth with epithelial-to-mesenchymal transition and increased metastatic potential, have been described. Recent therapeutic approaches for PDAC focus not only the tumor cell itself, but also elements of the tumor microenvironment. Therefore, the role of PMN and their derived products (e.g. cytokines, proteases) as a new vein for a therapeutic target should be critically evaluated in this context. This review summarizes the current understanding of the interplay between proteases of tumor-infiltrating neutrophils and pancreatic tumor cells and elements of the desmoplastic stroma. PMID:26929737

  14. In vivo localized harmonic motion imaging of VX2 tumors

    NASA Astrophysics Data System (ADS)

    Curiel, Laura; Hynynen, Kullervo

    2012-10-01

    We evaluated the feasibility of localized harmonic motion (LHM) imaging for tumor detection in vivo. LHM was induced using a single-element focused ultrasound (FUS) transducer (80 mm focal, 100 mm diameter, 1.54 MHz) and a separate transducer (5 kHz PRF, 5 MHz) was used to track motion by cross-correlating RF signals. A scan was performed with the transducers assembly and LHM was induced 5 times per location. Images were formed averaging the calculated LHM amplitudes. Ten New Zealand rabbits had VX2 tumors implanted on their thighs. Tumors were located using Magnetic resonance images and LHM images were obtained. Eight out of ten tumors were visualized on LHM images as a region with lower amplitude (5.7±1.3μm in tumors and 19.5±5.8μm in muscle). All tumors had an elongated shape running along the muscle fibers. It was possible to detect tumors larger than 4mm in width (short axis of the tumor). We performed a FUS ablation of one tumor and the ablated region was detected as well on LHM images as a reduced LHM amplitude region.

  15. SU-E-J-07: A Functional MR Protocol for the Pancreatic Tumor Delineation

    SciTech Connect

    Andreychenko, A; Heerkens, H; Meijer, G; Vulpen, M van; Lagendijk, J; Berg, C van den

    2014-06-01

    Purpose: Pancreatic cancer is one of the cancers with the poorest survival prognosis. At the time of diagnosis most of pancreatic cancers are unresectable and those patients can be treated by radiotherapy. Radiotherapy for pancreatic cancer is limited due to uncertainties in CT-based delineations. MRI provides an excellent soft tissue contrast. Here, an MR protocol is developed to improve delineations for radiotherapy treatment of pancreatic cancer. In a later stage this protocol can also be used for on-line visualization of the pancreas during MRI guided treatments. Methods: Nine pancreatic cancer patients were included. The MR protocol included T2 weighted(T2w), T1 weighted(T1w), diffusion weighted(DWI) and dynamic contrast enhanced(DCE) techniques. The tumor was delineated on T2w and T1w MRI by an experienced radiation oncologist. Healthy pancreas or pancreatitis (assigned by the oncologist based on T2w) areas were also delineated. Apparent diffusion coefficient(ADC), and area under the curve(AUC)/time to peak(TTP) maps were obtained from DWI and DCE scans, respectively. Results: A clear demarcation of tumor area was visible on b800 DWI images in 5 patients. ADC maps of those patients characterized tumor as an area with restricted water diffusion. Tumor delineations based on solely DCE were possible in 7 patients. In 6 of those patients AUC maps demonstrated tumor heterogeneity: a hypointense area with a hyperintense ring. TTP values clearly discriminated the tumor and the healthy pancreas but could not distinguish tumor and the pancreatitis accurately. Conclusion: MR imaging results in a more pronounced tumor contrast than contrast enhanced CT. The addition of quantitative, functional MRI provides valuable, additional information to the radiation oncologist on the spatial tumor extent by discriminating tumor from the healthy pancreas(TTP, DWI) and characterizing the tumor(ADC). Our findings indicate that tumor delineation in pancreatic cancer can greatly

  16. Acute pancreatitis following granulosa cell tumor removal in a mare

    PubMed Central

    Gomez, Diego E.; Radtke, Catherine L.; Russell, Lauren A.; Lopez, Alfonso; Wichtel, Maureen W.

    2015-01-01

    Acute pancreatitis is a rare disease in horses and is often associated with gastrointestinal disorders. Accurate diagnosis is challenging due to the presence of nonspecific clinical signs. This case represents the first documentation of acute pancreatitis in a horse following surgery of the reproductive tract. PMID:26483579

  17. Dynamic modeling of lung tumor motion during respiration

    NASA Astrophysics Data System (ADS)

    Kyriakou, E.; McKenzie, D. R.

    2011-05-01

    A dynamic finite element model of the lung that incorporates a simplified geometry with realistic lung material properties has been developed. Observations of lung motion from respiratory-gated computed tomography were used to provide a database against which the predictions of the model are assessed. Data from six patients presenting with lung tumors were processed to give sagittal sections of the lung containing the tumor as a function of the breathing phase. Statistical shape modeling was used to outline the diaphragm, the tumor volume and the thoracic wall at each breathing phase. The motion of the tumor in the superior-inferior direction was plotted against the diaphragm displacement. The finite element model employed a simplified geometry in which the lung material fills a rectangular volume enabling two-dimensional coordinates to be used. The diaphragm is represented as a piston, driving the motion. Plots of lung displacement against diaphragm displacement form hysteresis loops that are a sensitive indicator of the characteristics of the motion. The key parameters of lung material that determine the motion are the density and elastic properties of lung material and the airway permeability. The model predictions of the hysteresis behavior agreed well with observation only when lung material is modeled as viscoelastic. The key material parameters are suggested for use as prognostic indicators of the progression of disease and of changes arising from the response of the lung to radiation treatment.

  18. PIM kinases: an overview in tumors and recent advances in pancreatic cancer.

    PubMed

    Xu, Jianwei; Zhang, Taiping; Wang, Tianxiao; You, Lei; Zhao, Yupei

    2014-04-01

    The PIM kinases represent a family of serine/threonine kinases, which is composed of three different members (PIM1, PIM2 and PIM3). Aberrant expression of PIM kinases is observed in variety of tumors, including pancreatic cancer. The PIM kinases play pivotal roles in the regulation of cell cycle, apoptosis, properties of stem cells, metabolism, autophagy, drug resistance and targeted therapy. The roles of PIM kinases in pancreatic cancer include the regulation of proliferation, apoptosis, cell cycle, formation, angiogenesis and prediction prognosis. Blocking the activities of PIM kinases could prevent pancreatic cancer development. PIM kinases may be a novel target for cancer therapy. PMID:24799066

  19. Molecular beacon imaging of tumor marker gene expression in pancreatic cancer cells.

    PubMed

    Yang, Lily; Cao, Zehong; Lin, Yiming; Wood, William C; Staley, Charles A

    2005-05-01

    We have developed a fluorescence imaging-based approach to detect expression of tumor marker genes in pancreatic cancer cells using molecular beacons (MBs). MBs are short hairpin oligonucleotide probes that bind to specific oligonucleotide sequences and produce fluorescent signals. MBs targeting transcripts of two tumor marker genes, mutant K-ras and survivin, were synthesized and their specificity in detection of the expression of those genes in pancreatic cancer cells was examined. We found that K-ras MBs differentially bind to mutant K-ras mRNAs, resulting in strong fluorescent signals in pancreatic cancer cells with specific mutant K-ras genes but not in normal cells or cancer cells expressing either wild type or a different mutation of the K-ras gene. Additionally, MBs targeting survivin mRNA produced a bright fluorescent signal specifically in pancreatic cancer cells. We also demonstrated that MBs labeled with different fluorophores could detect survivin and mutant K-ras mRNAs simultaneously in single cancer cells. Furthermore, we showed that survivin and K-ras MBs have a high specificity in identifying cancer cells on frozen sections of pancreatic cancer tissues. In conclusion, molecular beacon-based imaging of expression of tumor marker genes has potential for the development of novel approaches for the detection of pancreatic cancer cells.

  20. Carcinoma of the pancreatic head and periampullary region. Tumor staging with laparoscopy and laparoscopic ultrasonography.

    PubMed Central

    John, T G; Greig, J D; Carter, D C; Garden, O J

    1995-01-01

    OBJECTIVE: The authors performed a prospective evaluation of staging laparoscopy with laparoscopic ultrasonography in predicting surgical resectability in patients with carcinomas of the pancreatic head and periampullary region. SUMMARY BACKGROUND DATA: Pancreatic resection with curative intent is possible in a select minority of patients who have carcinomas of the pancreatic head and periampullary region. Patient selection is important to plan appropriate therapy and avoid unnecessary laparotomy in patients with unresectable disease. Laparoscopic ultrasonography is a novel technique that combines the proven benefits of staging laparoscopy with high resolution intraoperative ultrasound of the liver and pancreas, but which has yet to be evaluated critically in the staging of pancreatic malignancy. METHODS: A cohort of 40 consecutive patients referred to a tertiary referral center and with a diagnosis of potentially resectable pancreatic or periampullary cancer underwent staging laparoscopy with laparoscopic ultrasonography. The diagnostic accuracy of staging laparoscopy alone and in conjunction with laparoscopic ultrasonography was evaluated in predicting tumor resectability (absence of peritoneal or liver metastases; absence of malignant regional lymphadenopathy; tumor confined to pancreatic head or periampullary region). RESULTS: "Occult" metastatic lesions were demonstrated by staging laparoscopy in 14 patients (35%). Laparoscopic ultrasonography demonstrated factors confirming unresectable tumor in 23 patients (59%), provided staging information in addition to that of laparoscopy alone in 20 patients (53%), and changed the decision regarding tumor resectability in 10 patients (25%). Staging laparoscopy with laparoscopic ultrasonography was more specific and accurate in predicting tumor resectability than laparoscopy alone (88% and 89% versus 50% and 65%, respectively). CONCLUSIONS: Staging laparoscopy is indispensable in the detection of "occult" intra

  1. Retroperitoneal bronchogenic cyst as a differential diagnosis of pancreatic mucinous cystic tumor.

    PubMed

    Andersson, Roland; Lindell, Gert; Cwikiel, Wojciech; Dawiskiba, Sigmund

    2003-01-01

    Cystic tumors of the pancreas where a pseudocyst has not been able to be excluded has been considered potentially proliferative and pre-malignant or malignant and thus aggressive surgical approach has been advocated. Retroperitoneal cystic tumors are rare and among these bronchogenic cysts are extremely infrequent. The present paper describes a case of bronchogenic cyst in association with the pancreas in which diagnostic work-up was not able to exclude a proliferative pancreatic cystic tumor.

  2. Tumor motion and deformation during external radiotherapy of bladder cancer

    SciTech Connect

    Lotz, Heidi T.; Pos, Floris J.; Hulshof, Maarten C.C.M.; Herk, Marcel van; Lebesque, Joos V.; Duppen, Joop C.; Remeijer, Peter . E-mail: prem@nki.nl

    2006-04-01

    Purpose: First, to quantify bladder-tumor motion in 3 dimensions during a 4-week to 5-week course of external radiotherapy. Second, to relate the motion to the tumor location on the bladder wall. Third, to extensively evaluate gross tumor volume (GTV) shape and volume changes during the course of the treatment. Methods and Materials: Multiple repeat computed tomography (CT) images were obtained for 21 bladder cancer patients. These scans were matched to the rigid bony anatomy. For each patient, the main direction and magnitude of the tumor movement was determined by use of principle-component analysis. To study GTV shape changes, all GTVs were registered to the GTV in the planning CT scan, and the residual shape errors were determined by measurement of edge variations perpendicular to the median surface. Results: Gross tumor volume translations were largest in cranial-caudal and anterior-posterior direction (SD, 0.1 to {approx}0.9 cm). The translations were strongly correlated with the tumor location on the bladder wall. The average value of the local standard deviations of the GTV shape ranged from 0.1 to approximately 0.35 cm. Conclusions: Despite large differences in bladder filling, variations in GTV shape were small compared with variations in GTV position. Geometric uncertainties in the GTV position depended strongly on the tumor location on the bladder wall.

  3. Diagnosing Pancreatic Tumors Using Contrast-enhanced Harmonic Endoscopic Ultrasonography with Sonazoid.

    PubMed

    Yamamoto, Naoki; Kato, Hironari; Mizukawa, Sho; Muro, Shinichiro; Akimoto, Yutaka; Uchida, Daisuke; Tomoda, Takeshi; Matsumoto, Kazuyuki; Horiguchi, Shigeru; Tsutsumi, Koichiro; Okada, Hiroyuki

    2016-08-01

    Contrast-enhanced harmonic endoscopic ultrasonography (CH-EUS) with contrast agent enabled us to assess the hemodynamics closely, despite limited data in pancreatic tumors. We have initiated a prospective, single arm, and non-randomized study to clarify the accuracy and safety of CH-EUS with Sonazoid and time-intensity curve (TIC) analysis for diagnosing benign or malignant pancreatic tumors. A total of 200 patients will undergo CH-EUS and TIC analysis. Receiver operating characteristic (ROC) analysis will be used to determine the optimal parameter cutoff values for TIC analysis. This will clarify whether CH-EUS and TIC can further improve the diagnosis of pancreatic tumors over conventional EUS. PMID:27549682

  4. EFFECTS OF TUMORS ON INHALED PHARMACOLOGIC DRUGS: II. PARTICLE MOTION

    EPA Science Inventory

    ABSTRACT

    Computer simulations were conducted to describe drug particle motion in human lung bifurcations with tumors. The computations used FIDAP with a Cray T90 supercomputer. The objective was to better understand particle behavior as affected by particle characteristics...

  5. The Tumor Suppressor rpl36 Restrains KRASG12V-Induced Pancreatic Cancer

    PubMed Central

    Provost, Elayne; Bailey, Jennifer M.; Aldrugh, Sumar; Liu, Shu; Iacobuzio-Donahue, Christine

    2014-01-01

    Abstract Ribosomal proteins are known to be required for proper assembly of mature ribosomes. Recent studies indicate an additional role for ribosomal proteins as candidate tumor suppressor genes. Pancreatic acinar cells, recently identified as effective cells of origin for pancreatic adenocarcinoma, display especially high-level expression of multiple ribosomal proteins. We, therefore, functionally interrogated the ability of two ribosomal proteins, rpl36 and rpl23a, to alter the response to oncogenic Kras in pancreatic acinar cells using a newly established model of zebrafish pancreatic cancer. These studies reveal that rpl36, but not rpl23a, acts as a haploinsufficient tumor suppressor, as manifested by more rapid tumor progression and decreased survival in rpl36hi1807/+;ptf1a:gal4VP16Tg;UAS:GFP-KRASG12V fish compared with their rpl36+/+;ptf1a:gal4VP16;UAS:GFP-KRASG12V siblings. These results suggest that rpl36 may function as an effective tumor suppressor during pancreatic tumorigenesis. PMID:25380065

  6. Mitigation of motion artifacts in CBCT of lung tumors based on tracked tumor motion during CBCT acquisition.

    PubMed

    Lewis, John H; Li, Ruijiang; Jia, Xun; Watkins, W Tyler; Lou, Yifei; Song, William Y; Jiang, Steve B

    2011-09-01

    An algorithm capable of mitigating respiratory motion blurring artifacts in cone-beam computed tomography (CBCT) lung tumor images based on the motion of the tumor during the CBCT scan is developed. The tumor motion trajectory and probability density function (PDF) are reconstructed from the acquired CBCT projection images using a recently developed algorithm Lewis et al (2010 Phys. Med. Biol. 55 2505-22). Assuming that the effects of motion blurring can be represented by convolution of the static lung (or tumor) anatomy with the motion PDF, a cost function is defined, consisting of a data fidelity term and a total variation regularization term. Deconvolution is performed through iterative minimization of this cost function. The algorithm was tested on digital respiratory phantom, physical respiratory phantom and patient data. A clear qualitative improvement is evident in the deblurred images as compared to the motion-blurred images for all cases. Line profiles show that the tumor boundaries are more accurately and clearly represented in the deblurred images. The normalized root-mean-squared error between the images used as ground truth and the motion-blurred images are 0.29, 0.12 and 0.30 in the digital phantom, physical phantom and patient data, respectively. Deblurring reduces the corresponding values to 0.13, 0.07 and 0.19. Application of a -700 HU threshold to the digital phantom results in tumor dimension measurements along the superior-inferior axis of 2.8, 1.8 and 1.9 cm in the motion-blurred, ground truth and deblurred images, respectively. Corresponding values for the physical phantom are 3.4, 2.7 and 2.7 cm. A threshold of -500 HU applied to the patient case gives measurements of 3.1, 1.6 and 1.7 cm along the SI axis in the CBCT, 4DCT and deblurred images, respectively. This technique could provide more accurate information about a lung tumor's size and shape on the day of treatment. PMID:21813959

  7. Positional Reproducibility of Pancreatic Tumors Under End-Exhalation Breath-Hold Conditions Using a Visual Feedback Technique

    SciTech Connect

    Nakamura, Mitsuhiro; Shibuya, Keiko; Shiinoki, Takehiro; Matsuo, Yukinori; Nakamura, Akira; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2011-04-01

    Purpose: To assess positional reproducibility of pancreatic tumors under end-exhalation (EE) breath-hold (BH) conditions with a visual feedback technique based on computed tomography (CT) images. Methods and Materials: Ten patients with pancreatic cancer were enrolled in an institutional review board-approved trial. All patients were placed in a supine position on an individualized vacuum pillow with both arms raised. At the time of CT scan, they held their breath at EE with the aid of video goggles displaying their abdominal displacement. Each three-consecutive helical CT data set was acquired four times (sessions 1-4; session 1 corresponded to the time of CT simulation). The point of interest within or in proximity to a gross tumor volume was defined based on certain structural features. The positional variations in point of interest and margin size required to cover positional variations were assessed. Results: The means {+-} standard deviations (SDs) of intrafraction positional variations were 0.0 {+-} 1.1, 0.1 {+-} 1.2, and 0.1 {+-} 1.0 mm in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively (p = 0.726). The means {+-} SDs of interfraction positional variations were 0.3 {+-} 2.0, 0.8 {+-} 1.8, and 0.3 {+-} 1.8 mm in the LR, AP, and SI directions, respectively (p = 0.533). Population-based margin sizes required to cover 95th percentiles of the overall positional variations were 4.7, 5.3, and 4.9 mm in the LR, AP, and SI directions, respectively. Conclusions: A margin size of 5 mm was needed to cover the 95th percentiles of the overall positional variations under EE-BH conditions, using this noninvasive approach to motion management for pancreatic tumors.

  8. mir-329 restricts tumor growth by targeting grb2 in pancreatic cancer

    PubMed Central

    Wen, Chenlei; Shi, Minmin; Tang, Xiaomei; Chen, Hao; Peng, Chenghong; Li, Hongwei; Fang, Yuan; Deng, Xiaxing; Shen, Baiyong

    2016-01-01

    Pancreatic cancer is one of the most lethal malignancies worldwide. To illustrate the pathogenic mechanism(s), we looked into the expression and function of miR-329 associated with pancreatic cancer development. It was found that miR-329 expression was downregulated in the pancreatic cancer patients who demonstrated significantly shorter overall survival than the patients having upregulated expression. Also, more advanced pT stage cases were observed in the low miR-329 expression group of patients. Interestingly, our studies uncovered that miR-329 overexpression inhibited proliferation and induced apoptosis of pancreatic cancer cells, in contrast the miR-329 inhibitor reversed this phenomenon dramatically. Additionally, overexpression of miR-329 significantly limited tumor growth in the xenograft model. In the mechanistic study, we identified GRB2 as a direct target of miR-329 in pancreatic cancer cells, and expression of GRB2 was inversely correlated with miR-329 expression in pancreatic cancer patients. Furthermore, GRB2 overexpression in cell line and xenograft model dramatically diminished miR-329 mediated anti-proliferation and apoptosis induction, indicating that GRB2/pERK pathway was mainly downregulated by miR-329 expression. In general, our study has shed light on miR-329 regulated mechanism and, miR-329/GRB2/pERK is potential to be targeted for pancreatic cancer management. PMID:26885689

  9. Mucin-producing pancreatic tumors: historical review of its nosological concept.

    PubMed

    Shimizu, M; Manabe, T

    1994-08-01

    A brief historic outline of the problem of mucin-producing pancreatic tumors is presented. Based on the authors' observations, clinical aspects and pathomorphology of these tumors have been described. The authors propose their own classification of this tumor type which is based on the literature published so far. Their classification also takes into account the localization of lesions. Reference is made to the concept described by the term "mucinous ductetatic/cystic lesions" (MDCL) and it is also pointed out that mucinous carcinoma may develop on the background of MDCL. Since the appearance of the term "mucus secreting pancreatic cancer" or "mucin-producing pancreatic tumor", many similar and/or related conditions have been described especially in Japan under the same or different names. However, there seems to be some confusion about the concept of this condition not only among clinicians but also among pathologists. In addition, another entity, mucinous cystic neoplasms of the pancreas, was proposed and may have provided some overlap with the former conditions in its concept. Furthermore, definitions of these two conditions varied according to the authors. In this paper, therefore, we review and critically analyze cases of mucin-producing pancreatic tumor (MPPT) as well as mucinous cystic neoplasm (MCN) of the pancreas, and intend to classify them under a generic term, i.e. "mucinous ductectatic/cystic lesions (MDCL) of the pancreas". PMID:7947630

  10. Intraductal delivery of adenoviruses targets pancreatic tumors in transgenic Ela-myc mice and orthotopic xenografts.

    PubMed

    José, Anabel; Sobrevals, Luciano; Miguel Camacho-Sánchez, Juan; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.

  11. Intraductal Delivery of Adenoviruses Targets Pancreatic Tumors in Transgenic Ela-myc Mice and Orthotopic Xenografts

    PubMed Central

    José, Anabel; Sobrevals, Luciano; Camacho-Sánchez, Juan Miguel; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p<0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors. PMID:23328228

  12. Circulating tumor DNA as a liquid biopsy target for detection of pancreatic cancer

    PubMed Central

    Takai, Erina; Yachida, Shinichi

    2016-01-01

    Most pancreatic cancer patients present with advanced metastatic disease, resulting in extremely poor 5-year survival, mainly because of the lack of a reliable modality for early detection and limited therapeutic options for advanced disease. Therefore, there is a need for minimally-invasive diagnostic tools for detecting pancreatic cancer at an early stage, when curative surgery and also novel therapeutic approaches including precision medicine may be feasible. The “liquid biopsy” addresses these unmet clinical needs based on the concept that simple peripheral blood sampling and detection of circulating tumor DNA (ctDNA) could provide diagnostic information. In this review, we provide an overview of the current status of blood-based tests for diagnosis of pancreatic cancer and the potential utility of ctDNA for precision medicine. We also discuss challenges that remain to be addressed in developing practical ctDNA-based liquid biopsy approaches for early diagnosis of pancreatic cancer. PMID:27784960

  13. Efficient targeting and tumor retardation effect of pancreatic adenocarcinoma up-regulated factor (PAUF)-specific RNA replacement in pancreatic cancer mouse model.

    PubMed

    Kim, Yun-Hee; Moon, Ju Young; Kim, Eun-Ok; Lee, Sang-Jin; Kang, Se Hun; Kim, Seok Ki; Heo, Kyun; Lee, Yusun; Kim, Hana; Kim, Kyung-Tae; Kim, Daehong; Song, Min Sun; Lee, Seoung-Wook; Lee, Yangsoon; Koh, Sang Seok; Kim, In-Hoo

    2014-03-28

    The soluble protein pancreatic adenocarcinoma up-regulated factor (PAUF) plays an important role in pancreatic tumor progression and has begun to attract attention as a therapeutic target for pancreatic cancer. We herein present PAUF RNA-targeting gene therapy strategies with both targeting and therapeutic function using trans-splicing ribozyme (TSR) in pancreatic cancer. We developed adenoviral PAUF-targeting TSR (Rz) containing a PAUF-specific internal guide sequence (IGS) determined by library screening. This Rz harbors suicide gene, herpes simplex virus thymidine kinase (HSV-tk) or firefly luciferase (Luc) as a transgene for 3' exon replacement of PAUF RNAs. Ad-Rz-TK, Rz harboring the HSV-tk, showed significant inhibition of tumor growth in vivo as well as PAUF-dependent cell death in vitro via a successful trans-splicing reaction. Selective induction of Rz-controlled transgene in PAUF-expressing pancreatic cancer was confirmed through noninvasive in vivo imaging; a luminescence signal from Rz harboring Luc (Ad-Rz-Luc) was detectable only in pancreatic tumor sites, not in normal mice. In addition, a [(125)I] FIAU signal reflecting thymidine kinase expression through SPECT and ex vivo biodistribution was co-localized with the tumor sites when we treated with Ad-Rz-TK in orthotopic xenograft model. Taken together, these results imply that PAUF-targeting TSR can contribute to successful targeted gene therapy for pancreatic cancer.

  14. Pancreatitis.

    PubMed

    Mitchell, R M S; Byrne, M F; Baillie, J

    2003-04-26

    In the past decade, our understanding of the genetic basis, pathogenesis, and natural history of pancreatitis has grown strikingly. In severe acute pancreatitis, intensive medical support and non-surgical intervention for complications keeps patients alive; surgical drainage (necrosectomy) is reserved for patients with infected necrosis for whom supportive measures have failed. Enteral feeding has largely replaced the parenteral route; controversy remains with respect to use of prophylactic antibiotics. Although gene therapy for chronic pancreatitis is years away, our understanding of the roles of gene mutations in hereditary and sporadic pancreatitis offers tantalising clues about the disorder's pathogenesis. The division between acute and chronic pancreatitis has always been blurred: now, genetics of the disorder suggest a continuous range of disease rather than two separate entities. With recognition of pancreatic intraepithelial neoplasia, we see that chronic pancreatitis is a premalignant disorder in some patients. Magnetic resonance cholangiopancreatography and endoscopic ultrasound are destined to replace endoscopic retrograde cholangiopancreatography for many diagnostic indications in pancreatic disease.

  15. Pancreatitis

    MedlinePlus

    ... the hormones insulin and glucagon into the bloodstream. Pancreatitis is inflammation of the pancreas. It happens when digestive enzymes start digesting the pancreas itself. Pancreatitis can be acute or chronic. Either form is ...

  16. Agenesis of the dorsal pancreas and its association with pancreatic tumors.

    PubMed

    Sakpal, Sujit Vijay; Sexcius, Lucretia; Babel, Nitin; Chamberlain, Ronald Scott

    2009-05-01

    Morphogenesis of the pancreas is a complex process; nevertheless, congenital anomalies are rare. At embryogenesis, the pancreas develops from the endoderm-lined dorsal and ventral buds of the duodenum. The ventral bud gives rise to the lower head and uncinate process of the pancreas; whereas, the dorsal bud gives rise to the upper head, isthmus, body, and tail of the pancreas. Rarely, developmental failure of the dorsal pancreatic bud at embryogenesis results in the agenesis of the dorsal pancreas--neck, body, and tail. Even rarer is the association of pancreatic tumors with agenesis of the dorsal pancreas. In addition to citing our case, we provide a comprehensive review on agenesis of the dorsal pancreas and its association with pancreatic tumors.

  17. Harmonic Motion Imaging (HMI) for Tumor Imaging and Treatment Monitoring.

    PubMed

    Konofagou, Elisa E; Maleke, Caroline; Vappou, Jonathan

    2012-01-01

    Palpation is an established screening procedure for the detection of several superficial cancers including breast, thyroid, prostate, and liver tumors through both self and clinical examinations. This is because solid masses typically have distinct stiffnesses compared to the surrounding normal tissue. In this paper, the application of Harmonic Motion Imaging (HMI) for tumor detection based on its stiffness as well as its relevance in thermal treatment is reviewed. HMI uses a focused ultrasound (FUS) beam to generate an oscillatory acoustic radiation force for an internal, non-contact palpation to internally estimate relative tissue hardness. HMI studies have dealt with the measurement of the tissue dynamic motion in response to an oscillatory acoustic force at the same frequency, and have been shown feasible in simulations, phantoms, ex vivo human and bovine tissues as well as animals in vivo. Using an FUS beam, HMI can also be used in an ideal integration setting with thermal ablation using high-intensity focused ultrasound (HIFU), which also leads to an alteration in the tumor stiffness. In this paper, a short review of HMI is provided that encompasses the findings in all the aforementioned areas. The findings presented herein demonstrate that the HMI displacement can accurately depict the underlying tissue stiffness, and the HMI image of the relative stiffness could accurately detect and characterize the tumor or thermal lesion based on its distinct properties. HMI may thus constitute a non-ionizing, cost-efficient and reliable complementary method for noninvasive tumor detection, localization, diagnosis and treatment monitoring.

  18. Chronic increased serum lipase without evidence of pancreatitis: tumor-derived lipase?

    PubMed

    Donnelly, J G; Ooi, D S; Burns, B F; Goel, R

    1996-03-01

    A 51-year-old man developed a large retroperitoneal tumor with liver and lymph node metastases; there was no radiological evidence of pancreatic involvement. Despite the progression of disease, results of laboratory tests, notably serum amylase, were normal except for minor increases in aspartate aminotransferase and gamma-glutamyltransferase and a marked increase in lipase. The increased lipase was not attributable to formation of macroenzyme. To determine the source of the lipase, we fractionated serum and a tumor biopsy homogenate, using electrophoresis. The lipase pattern obtained from the patient's serum differed from that seen in serum from a patient with acute pancreatitis. Additionally, the lipase pattern obtained from a homogenate of biopsy sample from the retroperitoneal tumor did not match the pattern observed for normal pancreas. Apparently, the source of this increased serum lipase activity was the nonpancreatic tumor.

  19. A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease

    PubMed Central

    Wagner, Martin; Greten, Florian R.; Weber, Christoph K.; Koschnick, Stefan; Mattfeldt, Torsten; Deppert, Wolfgang; Kern, Horst; Adler, Guido; Schmid, Roland M.

    2001-01-01

    This study describes a tumor progression model for ductal pancreatic cancer in mice overexpressing TGF-α. Activation of Ras and Erk causes induction of cyclin D1-Cdk4 without increase of cyclin E or PCNA in ductal lesions. Thus, TGF-α is able to promote progression throughout G1, but not S phase. Crossbreeding with p53 null mice accelerates tumor development in TGF-α transgenic mice dramatically. In tumors developing in these mice, biallelic deletion of Ink4a/Arf or LOH of the Smad4 locus is found suggesting that loci in addition to p53 are involved in antitumor activities. We conclude that these genetic events are critical for pancreatic tumor formation in mice. This model recapitulates pathomorphological features and genetic alterations of the human disease. PMID:11159909

  20. Pancreatic neuroendocrine tumor with ectopic adrenocorticotropin production: a case report and review of literature.

    PubMed

    Patel, Forum B; Khagi, Simon; Daly, Kevin P; Lechan, Ronald M; Ummaritchot, Vorawan; Saif, Muhammad W

    2013-09-01

    Pancreatic neuroendocrine tumors (p-NETs) entail a vast array of tumors, which can vary from benign neoplastic growths to rapidly aggressive malignancies. Such is the case with ectopic adrenocorticotropic hormone (ACTH)-producing p-NETs. These tumors have been found to be quite aggressive and a challenge to treat, especially due to the occurrence of metastatic disease even after resection of the primary tumor. We discuss the case of a 44-year-old female who initially presented with vague, non-specific symptoms, in which a malignant p-NET was found to be the cause of her clinical presentation. Although resection of the pancreatic mass was performed, the patient presented again with metastatic disease to the liver. PMID:24023341

  1. LDL Receptor: An open route to feed pancreatic tumor cells

    PubMed Central

    Vasseur, Sophie; Guillaumond, Fabienne

    2016-01-01

    ABSTRACT The role of altered lipid metabolism in pancreatic ductal adenocarcinoma (PDAC) is poorly appreciated. We recently identified the lipid signature of PDAC and revealed low-density lipoprotein receptor (Ldlr) as a metabolic driver of this disease. Here, we comment our findings that disruption of Ldlr leads to intratumoral cholesterol imbalance and improves chemotherapy efficiency. PMID:27308549

  2. Pharmacokinetically Guided Everolimus in Patients With Breast Cancer, Pancreatic Neuroendocrine Tumors, or Kidney Cancer

    ClinicalTrials.gov

    2016-01-12

    Estrogen Receptor-positive Breast Cancer; Gastrinoma; Glucagonoma; HER2-negative Breast Cancer; Insulinoma; Mucositis; Oral Complications; Pancreatic Polypeptide Tumor; Progesterone Receptor-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Islet Cell Carcinoma; Recurrent Renal Cell Cancer; Somatostatinoma; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Renal Cell Cancer

  3. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue.

  4. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue. PMID:25571382

  5. Endoscopic Ultrasonography-Guided Ethanol Ablation for Small Pancreatic Neuroendocrine Tumors: Results of a Pilot Study

    PubMed Central

    Choi, Jun-Ho; Oh, Dongwook; Lee, Sang Soo; Seo, Dong-Wan; Lee, Sung Koo; Kim, Myung-Hwan

    2015-01-01

    Background/Aims Endoscopic ultrasonography (EUS)-guided ethanol ablation is gaining popularity for the treatment of focal pancreatic lesions. The aim of this study was to evaluate the safety, feasibility, and treatment response after EUS-guided ethanol injection for small pancreatic neuroendocrine tumors (p-NETs). Methods This was a retrospective analysis of a prospectively collected database including 11 consecutive patients with p-NETs who underwent EUS-guided ethanol injection. Results EUS-guided ethanol injection was successfully performed in 11 patients with 14 tumors. The final diagnosis was based on histology and clinical signs as follows: 10 non-functioning neuroendocrine tumors and four insulinomas. During follow-up (median, 370 days; range, 152 to 730 days), 10 patients underwent clinical follow-up after treatment, and one patient was excluded because of loss to follow-up. A single treatment session with an injection of 0.5 to 3.8 mL of ethanol resulted in complete responses (CRs) at the 3-month radiologic imaging for seven of 13 tumors (response rate, 53.8%). Multiple treatment sessions performed in three tumors with residual viable enhancing tissue increased the number of tumors with CRs to eight of 13 (response rate, 61.5%). Mild pancreatitis occurred in three of 11 patients. Conclusions EUS-guided ethanol injection appears to be a safe, feasible, and potentially effective method for treating small p-NETs in patients who are poor surgical candidates. PMID:25844345

  6. Effects of tumors on inhaled pharmacologic drugs: II. Particle motion.

    PubMed

    Martonen, T B; Guan, X

    2001-01-01

    Computer simulations were conducted to describe drug particle motion in human lung bifurcations with tumors. The computations used FIDAP with a Cray T90 supercomputer. The objective was to better understand particle behavior as affected by particle characteristics, airflow conditions, and disease-modified airway geometries. The results indicated that increases in particle sizes, breathing intensities and tumor sizes could enhance drug deposition on the tumors. The modeling suggested that targeted drug delivery could be achieved by regulating breathing parameters and designing (selecting physical features of) aerosolized drugs. We present the theoretical work as a step towards improving aerosol therapy protocols. Since modeling describes factors affecting dose, it is complementary to considerations of the molecular aspects of drug formulation and pharmacokinetics.

  7. Endoscopic Ultrasound-Guided Radiofrequency Ablation of the Pancreatic Tumors: A Promising Tool in Management of Pancreatic Tumors

    PubMed Central

    2016-01-01

    Objective. Radiofrequency ablation is a well-established antitumor treatment and is recognized as one of the least invasive therapeutic modalities for pancreatic neoplasm. Endoscopic ultrasound-guided radiofrequency ablation (EUS-RFA) delivery can be used to treat both pancreatic cancer and asymptomatic premalignant pancreatic neoplasms and may serve as a less invasive alternative to surgical resection. This is an appealing option that may result in less morbidity and mortality. The aim of this review was to summarize and evaluate the clinical and technical effectiveness of EUS-guided RFA of pancreatic neoplasms. Methods. A through literature review was performed to identify the studies describing this novel technique. In this review article, we have summarized human case series. The indications, techniques, limitations, and complications reported are discussed. Results. A total of six studies were included. Overall, a 100% technical success rate was reported in human studies. Complications related to endoscopic ultrasound-guided radiofrequency ablation delivery have been described; however, few cases have presented life-threatening outcomes. Conclusion. We believe that this novel technique can be a safe and effective alternative approach in the management of selected patients. PMID:27478820

  8. SU-D-201-04: Study On the Impact of Tumor Shape and Size On Drug Delivery to Pancreatic Tumors

    SciTech Connect

    Soltani, M; Bazmara, H; Sefidgar, M; Subramaniam, R; Rahmim, A

    2015-06-15

    Purpose: Drug delivery to solid tumors can be expressed physically using transport phenomena such as convection and diffusion for the drug of interest within extracellular matrices. We aimed to carefully model these phenomena, and to investigate the effect of tumor shape and size on drug delivery to solid tumors in the pancreas. Methods: In this study, multiple tumor geometries as obtained from clinical PET/CT images were considered. An advanced numerical method was used to simultaneously solve fluid flow and solute transport equations. Data from n=45 pancreatic cancer patients with non-resectable locoregional disease were analyzed, and geometrical information from the tumors including size, shape, and aspect ratios were classified. To investigate effect of tumor shape, tumors with similar size but different shapes were selected and analyzed. Moreover, to investigate effect of tumor size, tumors with similar shapes but different sizes, ranging from 1 to 77 cm{sup 3}, were selected and analyzed. A hypothetical tumor similar to one of the analyzed tumors, but scaled to reduce its size below 0.2 cm{sup 3}, was also analyzed. Results: The results showed relatively similar average drug concentration profiles in tumors with different sizes. Generally, smaller tumors had higher absolute drug concentration. In the hypothetical tumor, with volume less than 0.2 cm{sup 3}, the average drug concentration was 20% higher in comparison to its counterparts. For the various real tumor geometries, however, the maximum difference between average drug concentrations was 10% for the smallest and largest tumors. Moreover, the results demonstrated that for pancreatic tumors the shape is not significant. The negligible difference of drug concentration in different tumor shapes was due to the minimum effect of convection in pancreatic tumors. Conclusion: In tumors with different sizes, smaller tumors have higher drug delivery; however, the impact of tumor shape in the case of pancreatic

  9. Clobenpropit enhances anti-tumor effect of gemcitabine in pancreatic cancer

    PubMed Central

    Paik, Woo Hyun; Ryu, Ji Kon; Jeong, Kyoung-Sin; Park, Jin Myung; Song, Byeong Jun; Lee, Sang Hyub; Kim, Yong-Tae; Yoon, Yong Bum

    2014-01-01

    AIM: To evaluate the anti-tumor effect of clobenpropit, which is a specific H3 antagonist and H4 agonist, in combination with gemcitabine in a pancreatic cancer cell line. METHODS: Three kinds of human pancreatic cancer cell lines (Panc-1, MiaPaCa-2, and AsPC-1) were used in this study. Expression of H3 and H4 receptors in pancreatic cancer cells was identified with Western blotting. Effects of clobenpropit on cell proliferation, migration and apoptosis were evaluated. Alteration of epithelial and mesenchymal markers after administration of clobenpropit was analyzed. An in vivo study with a Panc-1 xenograft mouse model was also performed. RESULTS: H4 receptors were present as 2 subunits in human pancreatic cancer cells, while there was no expression of H3 receptor. Clobenpropit inhibited cell migration and increased apoptosis of pancreatic cancer cells in combination with gemcitabine. Clobenpropit up-regulated E-cadherin, but down-regulated vimentin and matrix metalloproteinase 9 in real-time polymerase chain reaction. Also, clobenpropit inhibited tumor growth (gemcitabine 294 ± 46 mg vs combination 154 ± 54 mg, P = 0.02) and enhanced apoptosis in combination with gemcitabine (control 2.5%, gemcitabine 25.8%, clobenpropit 9.7% and combination 40.9%, P = 0.001) by up-regulation of E-cadherin and down-regulation of Zeb1 in Panc-1 xenograft mouse. CONCLUSION: Clobenpropit enhanced the anti-tumor effect of gemcitabine in pancreatic cancer cells through inhibition of the epithelial-mesenchymal transition process. PMID:25024609

  10. Influence of the Implantation Site on the Sensitivity of Patient Pancreatic Tumor Xenografts to Apo2L/TRAIL Therapy

    PubMed Central

    Sharma, R; Buitrago, S; Pitoniak, R; Gibbs, JF; Curtin, L; Seshadri, M; Repasky, EA; Hylander, BL

    2015-01-01

    Objectives We have previously demonstrated activity of Apo2L/TRAIL against patient pancreatic tumor xenografts. Here, we have examined the influence of the tumor implantation site on therapeutic response of orthotopic tumors and their metastases to Apo2L/TRAIL. Methods Sensitivity of six patient pancreatic tumor xenografts to Apo2L/TRAIL was determined in a subcutaneous model. To compare the response of orthotopic tumors, cells from subcutaneous xenografts were injected into the pancreas. Tumor growth was confirmed by histological examination of selected mice and then treatment was started. When all control mice developed externally palpable tumors, the experiment was terminated and pancreatic weights compared between control and treated groups. Magnetic resonance imaging was used to quantitate the response of orthotopic and metastatic tumors. Results The sensitivity to Apo2L/TRAIL observed in subcutaneous tumors was maintained in orthotopic tumors. Metastatic spread was observed with orthotopic tumor implantation. In an orthotopic model of a sensitive tumor, primary and metastatic tumor burden was significantly reduced and median survival significantly extended by Apo2L/TRAIL therapy. Conclusions Our data provide evidence that the site of tumor engraftment does not alter the inherent sensitivity of patient xenografts to Apo2L/TRAIL and these results highlight the potential of Apo2/TRAIL therapy against primary and metastatic pancreatic cancer. PMID:24518511

  11. [Von Hippel-Lindau disease type 2-related pancreatic neuroendocrine tumor and adrenal myelolipoma].

    PubMed

    Dolzhansky, O V; Morozova, M M; Korostelev, S A; Kanivets, I V; Chardarov, N K; Shatveryan, G A; Pal'tseva, E M; Fedorov, D N

    2016-01-01

    The paper describes a case of von Hippel--Lindau-related pancreatic neuroendocrine tumor and adrenal myelolipoma in a 44-year-old woman. The pancreatic tumor and a left retroperitoneal mass were removed in the women in July 2014 and May 2015. Histological examination of the pancreatic tumor revealed that the latter consisted of clear cells forming tubular and tubercular structures showing the expression of chromogranin A, synaptophysin, and cytokeratins 18 and 19 and a negative response to CD10 and RCC. The adrenal medullary mass presented as clear-cell alveolar structures with inclusions of adipose tissue mixed with erythroid, myeloid, and lymphoid cells. The clear-cell component of the adrenal gland expressed neuroendocrine markers with a negative response to cytokeratins, CD10, and RCC. Molecular genetic examination yielded a signal corresponding to two copies of the VHL gene. No deletions or amplifications of the gene were detected. Cases of von Hippel--Lindau disease concurrent with adrenal pheochromocytoma and myelolipoma and simultaneous pancreatic involvement were not found in the literature. PMID:26978235

  12. A Pancreatic Solid Pseudo-Papillary Tumor Detected After Abdominal Injury

    PubMed Central

    Ishii, Atsushi; Yoshimura, Kazuko; Ideguchi, Hiroshi; Hirose, Shinichi

    2013-01-01

    Solid pseudo-papillary tumor (SPT) of the pancreas is a relatively benign tumor that is more frequently reported in females. Most patients usually present with abdominal pain or mass. We experienced the girl who identified SPT with the injury. We diagnosed SPT in a previously healthy 14-year-old Asian girl after abdominal injury. She experienced upper abdominal pain and vomiting after being hit by a basketball. Blood examination revealed a high serum amylase level. Abdominal radiography indicated abnormal bowel gases. Contrast-enhanced computed tomography revealed a smooth, peripheral and unilocular mass approximately 55 mm in diameter in the pancreatic tail. Based on these observations, acute pancreatitis complicated by a pancreatic mass was initially diagnosed. Therapy for acute pancreatitis was instituted, while we simultaneously investigated the mass. Levels of tumor markers were not profoundly elevated in serum. Dynamic contrast-enhanced magnetic resonance imaging (MRI) revealed moderate and gradual increase in contrast-enhanced imaging, consistent with findings of SPT of the pancreas. We thus elected surgical resection for her. Pathological examination of the surgical specimen confirmed our diagnosis of SPT. SPT of the pancreas should be considered as a differential diagnosis of acute abdomen disorders, especially in instances after minor abdominal injuries in young women, and diagnoses must be confirmed with MRIs.

  13. CA19-9: A promising tumor marker for pancreatic carcinoma

    SciTech Connect

    Sakahara, H.; Endo, K.; Nakajima, K.; Hidaka, A.; Nakashima, T.; Ohta, H.; Torizuka, K.; Naito, A.; Suzuki, T.

    1984-01-01

    In order to evaluate CA19-9 as a tumor marker for pancreatic carcinoma (PC), serum levels of CA19-9 were compared with those of CEA and elastase-1 in 56 patients, consisted of 43 cases with histologically proven adenocarcinomas and 13 cases with chronic pancreatitis. Serum levels were determined by using RIA kit obtained from CIS, France (CA19-9 and CEA) and Abbot (elastase-1). CA19-9 gave the highest accuracy among tumor markers the authors have studied and serum levels were markedly elevated over 100U/ml in 30 (70%) cases with PC, whereas none in chronic pancreatitis. CA19-9 values were closely related to the tumor size and the presence or absence of metastsis on CT findings. Small tumors of less than 3cm in diameter, although the site of tumor was limited to the head of the pancreas, showed positive results in 2 out of 5 cases. Furthermore, CA19-9 was at a level of less than 22U/ml in 98 normal controls and was found to be elevated in only 4 (3%) out of 124 patients with benign diseases, including liver diseases, gastric ulcer, cholelithiasis, and so on. These results indicate that CA19-9 is much better in diagnosis and management of PC than is CEA.

  14. A Sporadic Desmoid Tumor: an Exceptional Pancreatic Cystic-Solid Mass.

    PubMed

    Ardakani, Jalal Vahedian; Mehrjardi, Ali Zare; Wadji, Massoud Baghai; Saraee, Amir

    2016-08-01

    Desmoid tumors are locally aggressive and non-metastatic neoplasms with a high rate of recurrence. Desmoid tumors of the pancreas are, however, very rare, and only a few cases have been reported in the literature. This paper reports an anecdotal case of a diffuse pancreatic desmoid tumor with the involvement of the pancreatic head, body, and-partially-tail. The patient underwent the Whipple procedure and subtotal pancreatectomy. Histopathological assessment showed that the tissues were partly positive for smooth muscle actin, but not for S100 or PanCK. The Ki67 index of the cells was only 1 %. Unfortunately, the patient died on the 10th postoperative day due to massive upper gastrointestinal bleeding. PMID:27574352

  15. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma.

    PubMed

    Penny, Hweixian Leong; Sieow, Je Lin; Adriani, Giulia; Yeap, Wei Hseun; See Chi Ee, Peter; San Luis, Boris; Lee, Bernett; Lee, Terence; Mak, Shi Ya; Ho, Ying Swan; Lam, Kong Peng; Ong, Choon Kiat; Huang, Ruby Y J; Ginhoux, Florent; Rotzschke, Olaf; Kamm, Roger D; Wong, Siew Cheng

    2016-08-01

    Patients with pancreatic ductal adenocarcinoma (PDAC) face a clinically intractable disease with poor survival rates, attributed to exceptionally high levels of metastasis. Epithelial-to-mesenchymal transition (EMT) is pronounced at inflammatory foci within the tumor; however, the immunological mechanisms promoting tumor dissemination remain unclear. It is well established that tumors exhibit the Warburg effect, a preferential use of glycolysis for energy production, even in the presence of oxygen, to support rapid growth. We hypothesized that the metabolic pathways utilized by tumor-infiltrating macrophages are altered in PDAC, conferring a pro-metastatic phenotype. We generated tumor-conditioned macrophages in vitro, in which human peripheral blood monocytes were cultured with conditioned media generated from normal pancreatic or PDAC cell lines to obtain steady-state and tumor-associated macrophages (TAMs), respectively. Compared with steady-state macrophages, TAMs promoted vascular network formation, augmented extravasation of tumor cells out of blood vessels, and induced higher levels of EMT. TAMs exhibited a pronounced glycolytic signature in a metabolic flux assay, corresponding with elevated glycolytic gene transcript levels. Inhibiting glycolysis in TAMs with a competitive inhibitor to Hexokinase II (HK2), 2-deoxyglucose (2DG), was sufficient to disrupt this pro-metastatic phenotype, reversing the observed increases in TAM-supported angiogenesis, extravasation, and EMT. Our results indicate a key role for metabolic reprogramming of tumor-infiltrating macrophages in PDAC metastasis, and highlight the therapeutic potential of using pharmacologics to modulate these metabolic pathways. PMID:27622062

  16. Pancreatic Cancer Tumor Size on CT Scan Versus Pathologic Specimen: Implications for Radiation Treatment Planning

    SciTech Connect

    Arvold, Nils D.; Niemierko, Andrzej; Mamon, Harvey J.; Hong, Theodore S.

    2011-08-01

    Purpose: Pancreatic cancer primary tumor size measurements are often discordant between computed tomography (CT) and pathologic specimen after resection. Dimensions of the primary tumor are increasingly relevant in an era of highly conformal radiotherapy. Methods and Materials: We retrospectively evaluated 97 consecutive patients with resected pancreatic cancer at two Boston hospitals. All patients had CT scans before surgical resection. Primary endpoints were maximum dimension (in millimeters) of the primary tumor in any direction as reported by the radiologist on CT and by the pathologist for the resected gross fresh specimen. Endoscopic ultrasound (EUS) findings were analyzed if available. Results: Of the patients, 87 (90%) had preoperative CT scans available for review and 46 (47%) had EUS. Among proximal tumors (n = 69), 40 (58%) had pathologic duodenal invasion, which was seen on CT in only 3 cases. The pathologic tumor size was a median of 7 mm larger compared with CT size for the same patient (range, -15 to 43 mm; p < 0.0001), with 73 patients (84%) having a primary tumor larger on pathology than CT. Endoscopic ultrasound was somewhat more accurate, with pathologic tumor size being a median of only 5 mm larger compared with EUS size (range, -15 to 35 mm; p = 0.0003). Conclusions: Computed tomography scans significantly under-represent pancreatic cancer tumor size compared with pathologic specimens in resectable cases. We propose a clinical target volume expansion formula for the primary tumor based on our data. The high rate of pathologic duodenal invasion suggests a risk of duodenal undercoverage with highly conformal radiotherapy.

  17. Applications of a novel tumor-grading-metastasis staging system for pancreatic neuroendocrine tumors

    PubMed Central

    Yang, Min; Tan, Chun-Lu; Zhang, Yi; Ke, Neng-Wen; Zeng, Lin; Li, Ang; Zhang, Hao; Xiong, Jun-Jie; Guo, Zi-Heng; Tian, Bo-Le; Liu, Xu-Bao

    2016-01-01

    Abstract The ability to stratify patients with pancreatic neuroendocrine tumors (p-NETs) into prognostic groups has been hindered by the absence of a commonly accepted staging system. Both the 7th tumor-node-metastasis (TNM) staging guidelines by the American Joint Committee on Cancer (AJCC) and the 2010 grading classifications by the World Health Organization (WHO) were validated to be unsatisfactory. We aim to evaluate the feasibility of combining the latest AJCC and WHO criteria to devise a novel tumor-grading-metastasis (TGM) staging system. We also sought to examine the stage-specific survival rates and the prognostic value of this new TGM system for p-NETs. Data of 120 patients with surgical resection and histopathological diagnosis of p-NETs from January 2004 to February 2014 in our institution were retrospectively collected and analyzed. Based on the AJCC and WHO criteria, we replaced the stage N0 and N1 with stage Ga (NET G1 and NET G2) and Gb (NET G3 and MANEC) respectively, without changes of the definition of T or M stage. The present novel TGM staging system was grouped as follows: stage I was defined as T1–2, Ga, M0; stage II as T3, Ga, M0 or as T1–3, Gb, M0; stage III as T4, Ga–b, M0 and stage IV as any T, M1. The new TGM staging system successfully distributed 55, 42, 12, and 11 eligible patients in stage I to IV, respectively. Differences of survival compared stage I with III and IV for patients with p-NETs were both statistically significant (P < 0.001), as well as those of stage II with III and IV (P < 0.001). Patients in stage I showed better a survival than those in stage II, whereas difference between stages III and IV was not notable (P = 0.001, P = 0.286, respectively). In multivariate models, when the TGM staging system was evaluated in place of the individual T, G, and M variables, this new criteria were proven to be an independent predictor of survival for surgically resected p-NETs (P < 0.05). Stratifying patients well

  18. Neutralizing murine TGFβR2 promotes a differentiated tumor cell phenotype and inhibits pancreatic cancer metastasis.

    PubMed

    Ostapoff, Katherine T; Cenik, Bercin Kutluk; Wang, Miao; Ye, Risheng; Xu, Xiaohong; Nugent, Desiree; Hagopian, Moriah M; Topalovski, Mary; Rivera, Lee B; Carroll, Kyla D; Brekken, Rolf A

    2014-09-15

    Elevated levels of TGFβ are a negative prognostic indicator for patients diagnosed with pancreatic cancer; as a result, the TGFβ pathway is an attractive target for therapy. However, clinical application of pharmacologic inhibition of TGFβ remains challenging because TGFβ has tumor suppressor functions in many epithelial malignancies, including pancreatic cancer. In fact, direct neutralization of TGFβ promotes tumor progression of genetic murine models of pancreatic cancer. Here, we report that neutralizing the activity of murine TGFβ receptor 2 using a monoclonal antibody (2G8) has potent antimetastatic activity in orthotopic human tumor xenografts, syngeneic tumors, and a genetic model of pancreatic cancer. 2G8 reduced activated fibroblasts, collagen deposition, microvessel density, and vascular function. These stromal-specific changes resulted in tumor cell epithelial differentiation and a potent reduction in metastases. We conclude that TGFβ signaling within stromal cells participates directly in tumor cell phenotype and pancreatic cancer progression. Thus, strategies that inhibit TGFβ-dependent effector functions of stromal cells could be efficacious for the therapy of pancreatic tumors. Cancer Res; 74(18); 4996-5007. ©2014 AACR. PMID:25060520

  19. Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations.

    PubMed

    Sawai, Yugo; Kodama, Yuzo; Shimizu, Takahiro; Ota, Yuji; Maruno, Takahisa; Eso, Yuji; Kurita, Akira; Shiokawa, Masahiro; Tsuji, Yoshihisa; Uza, Norimitsu; Matsumoto, Yuko; Masui, Toshihiko; Uemoto, Shinji; Marusawa, Hiroyuki; Chiba, Tsutomu

    2015-08-15

    Pancreatic ductal adenocarcinoma (PDAC) develops via an accumulation of various gene mutations. The mechanism underlying the mutations in PDAC development, however, is not fully understood. Recent insight into the close association between the mutation pattern of various cancers and specific mutagens led us to investigate the possible involvement of activation-induced cytidine deaminase (AID), a DNA editing enzyme, in pancreatic tumorigenesis. Our immunohistochemical findings revealed AID protein expression in human acinar ductal metaplasia, pancreatic intraepithelial neoplasia, and PDAC. Both the amount and intensity of the AID protein expression increased with the progression from precancerous to cancerous lesions in human PDAC tissues. To further assess the significance of ectopic epithelial AID expression in pancreatic tumorigenesis, we analyzed the phenotype of AID transgenic (AID Tg) mice. Consistent with our hypothesis that AID is involved in the mechanism of the mutations underlying pancreatic tumorigenesis, we found precancerous lesions developing in the pancreas of AID Tg mice. Using deep sequencing, we also detected Kras and c-Myc mutations in our analysis of the whole pancreas of AID Tg mice. In addition, Sanger sequencing confirmed the presence of Kras, c-Myc, and Smad4 mutations, with the typical mutational footprint of AID in precancerous lesions in AID Tg mice separated by laser capture microdissection. Taken together, our findings suggest that AID contributes to the development of pancreatic precancerous lesions by inducing tumor-related gene mutations. Our new mouse model without intentional manipulation of specific tumor-related genes provides a powerful system for analyzing the mutations involved in PDAC.

  20. Prognostication and response assessment in liver and pancreatic tumors: The new imaging

    PubMed Central

    De Robertis, Riccardo; Tinazzi Martini, Paolo; Demozzi, Emanuele; Puntel, Gino; Ortolani, Silvia; Cingarlini, Sara; Ruzzenente, Andrea; Guglielmi, Alfredo; Tortora, Giampaolo; Bassi, Claudio; Pederzoli, Paolo; D’Onofrio, Mirko

    2015-01-01

    Diffusion-weighted imaging (DWI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) are technical improvements of morphologic imaging that can evaluate functional properties of hepato-bilio-pancreatic tumors during conventional MRI or CT examinations. Nevertheless, the term “functional imaging” is commonly used to describe molecular imaging techniques, as positron emission tomography (PET) CT/MRI, which still represent the most widely used methods for the evaluation of functional properties of solid neoplasms; unlike PET or single photon emission computed tomography, functional imaging techniques applied to conventional MRI/CT examinations do not require the administration of radiolabeled drugs or specific equipments. Moreover, DWI and DCE-MRI can be performed during the same session, thus providing a comprehensive “one-step” morphological and functional evaluation of hepato-bilio-pancreatic tumors. Literature data reveal that functional imaging techniques could be proposed for the evaluation of these tumors before treatment, given that they may improve staging and predict prognosis or clinical outcome. Microscopic changes within neoplastic tissues induced by treatments can be detected and quantified with functional imaging, therefore these techniques could be used also for post-treatment assessment, even at an early stage. The aim of this editorial is to describe possible applications of new functional imaging techniques apart from molecular imaging to hepatic and pancreatic tumors through a review of up-to-date literature data, with a particular emphasis on pathological correlations, prognostic stratification and post-treatment monitoring. PMID:26078555

  1. CD14/TLR4 priming potentially recalibrates and exerts anti-tumor efficacy in tumor associated macrophages in a mouse model of pancreatic carcinoma

    PubMed Central

    Prakash, Hridayesh; Nadella, Vinod; Singh, Sandhya; Schmitz-Winnenthal, Hubertus

    2016-01-01

    Pancreatic cancer is the fourth major cause of cancer related deaths in the world and 5 year survival is below 5%. Among various tumor directed therapies, stimulation of Toll-like receptors (TLR) has shown promising effects in various tumor models. However, pancreatic cancer cells frequently express these receptors themselves and their stimulation (TLR 2 and/or 4 particularly) within tumor microenvironment is known to potentially enhance tumor cell proliferation and cancer progression. Consistent stimulation of tumor associated macrophages (TAMs), in particular with tumor derived TLR ligand within the tumor microenvironment promotes cancer related inflammation, which is sterile, non-immunogenic and carcinogenic in nature. In view of this, recalibrating of TAM has the potential to induce immunogenic inflammation. Consistent with this, we provide experimental evidence for the first time in this study that priming of TAMs with TLR4 ligend (LPS) alone or in combination with IFN-γ not only recalibrates pancreatic tumor cells induced M2 polarization, but also confers anti-tumor potential in TAMs. Most interestingly, reduced tumor growth in macrophage depleted animals suggests that macrophage directed approaches are important for the management of pancreatic tumors. PMID:27511884

  2. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma.

    PubMed

    Moffitt, Richard A; Marayati, Raoud; Flate, Elizabeth L; Volmar, Keith E; Loeza, S Gabriela Herrera; Hoadley, Katherine A; Rashid, Naim U; Williams, Lindsay A; Eaton, Samuel C; Chung, Alexander H; Smyla, Jadwiga K; Anderson, Judy M; Kim, Hong Jin; Bentrem, David J; Talamonti, Mark S; Iacobuzio-Donahue, Christine A; Hollingsworth, Michael A; Yeh, Jen Jen

    2015-10-01

    Pancreatic ductal adenocarcinoma (PDAC) remains a lethal disease with a 5-year survival rate of 4%. A key hallmark of PDAC is extensive stromal involvement, which makes capturing precise tumor-specific molecular information difficult. Here we have overcome this problem by applying blind source separation to a diverse collection of PDAC gene expression microarray data, including data from primary tumor, metastatic and normal samples. By digitally separating tumor, stromal and normal gene expression, we have identified and validated two tumor subtypes, including a 'basal-like' subtype that has worse outcome and is molecularly similar to basal tumors in bladder and breast cancers. Furthermore, we define 'normal' and 'activated' stromal subtypes, which are independently prognostic. Our results provide new insights into the molecular composition of PDAC, which may be used to tailor therapies or provide decision support in a clinical setting where the choice and timing of therapies are critical. PMID:26343385

  3. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma.

    PubMed

    Moffitt, Richard A; Marayati, Raoud; Flate, Elizabeth L; Volmar, Keith E; Loeza, S Gabriela Herrera; Hoadley, Katherine A; Rashid, Naim U; Williams, Lindsay A; Eaton, Samuel C; Chung, Alexander H; Smyla, Jadwiga K; Anderson, Judy M; Kim, Hong Jin; Bentrem, David J; Talamonti, Mark S; Iacobuzio-Donahue, Christine A; Hollingsworth, Michael A; Yeh, Jen Jen

    2015-10-01

    Pancreatic ductal adenocarcinoma (PDAC) remains a lethal disease with a 5-year survival rate of 4%. A key hallmark of PDAC is extensive stromal involvement, which makes capturing precise tumor-specific molecular information difficult. Here we have overcome this problem by applying blind source separation to a diverse collection of PDAC gene expression microarray data, including data from primary tumor, metastatic and normal samples. By digitally separating tumor, stromal and normal gene expression, we have identified and validated two tumor subtypes, including a 'basal-like' subtype that has worse outcome and is molecularly similar to basal tumors in bladder and breast cancers. Furthermore, we define 'normal' and 'activated' stromal subtypes, which are independently prognostic. Our results provide new insights into the molecular composition of PDAC, which may be used to tailor therapies or provide decision support in a clinical setting where the choice and timing of therapies are critical.

  4. Hypoxia Responsive, Tumor Penetrating Lipid Nanoparticles for Delivery of Chemotherapeutics to Pancreatic Cancer Cell Spheroids.

    PubMed

    Kulkarni, Prajakta; Haldar, Manas K; Katti, Preeya; Dawes, Courtney; You, Seungyong; Choi, Yongki; Mallik, Sanku

    2016-08-17

    Solid tumors are often poorly irrigated due to structurally compromised microcirculation. Uncontrolled multiplication of cancer cells, insufficient blood flow, and the lack of enough oxygen and nutrients lead to the development of hypoxic regions in the tumor tissues. As the partial pressure of oxygen drops below the necessary level (10 psi), the cancer cells modulate their genetic makeup to survive. Hypoxia triggers tumor progression by enhancing angiogenesis, cancer stem cell production, remodeling of the extracellular matrix, and epigenetic changes in the cancer cells. However, the hypoxic regions are usually located deep in the tumors and are usually inaccessible to the intravenously injected drug carrier or the drug. Considering the designs of the reported nanoparticles, it is likely that the drug is delivered to the peripheral tumor tissues, close to the blood vessels. In this study, we prepared lipid nanoparticles (LNs) comprising the synthesized hypoxia-responsive lipid and a peptide-lipid conjugate. We observed that the resultant LNs penetrated to the hypoxic regions of the tumors. Under low oxygen partial pressure, the hypoxia-responsive lipid undergoes reduction, destabilizing the lipid membrane, and releasing encapsulated drugs from the nanoparticles. We demonstrated the results employing spheroidal cultures of the pancreatic cancer cells BxPC-3. We observed that the peptide-decorated, drug encapsulated LNs reduced the viability of pancreatic cancer cells of the spheroids to 35% under hypoxic conditions. PMID:27391789

  5. Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models

    SciTech Connect

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2010-01-15

    Purpose: A treatment monitoring study investigated the differential effects of orthotopic pancreatic cancer models in response to interstitial photodynamic therapy (PDT), and the validity of using magnetic resonance imaging as a surrogate measure of response was assessed. Methods and Materials: Different orthotopic pancreatic cancer xenograft models (AsPC-1 and Panc-1) were used to represent the range of pathophysiology observed in human beings. Identical dose escalation studies (10, 20, and 40J/cm) using interstitial verteporfin PDT were performed, and magnetic resonance imaging with T2-weighted and T1-weighted contrast were used to monitor the total tumor volume and the vascular perfusion volume, respectively. Results: There was a significant amount of necrosis in the slower-growing Panc-1 tumor using high light dose, although complete necrosis was not observed. Lower doses were required for the same level of tumor kill in the faster-growing AsPC-1 cell line. Conclusions: The tumor growth rate and vascular pattern of the tumor affect the optimal PDT treatment regimen, with faster-growing tumors being relatively easier to treat. This highlights the fact that therapy in human beings shows a heterogeneous range of outcomes, and suggests a need for careful individualized treatment outcomes assessment in clinical work.

  6. Management of the Primary Tumor and Limited Metastases in Patients With Metastatic Pancreatic Cancer.

    PubMed

    Herman, Joseph M; Hoffman, John P; Thayer, Sarah P; Wolff, Robert A

    2015-05-01

    New combinations of cytotoxic chemotherapy have been proven to increase response rates and survival times compared with single-agent gemcitabine for patients with metastatic pancreatic cancer. These responses have been dramatic for a subset of patients, therefore raising questions about the management of limited metastatic disease with surgery or other ablative methods. Similarly, for patients having a complete radiographic response to chemotherapy in the metastatic compartment, whether to consider local therapy in the form of radiation or surgery for the primary tumor is now an appropriate question. Therefore, collaboration among experts in surgery, medical oncology, and radiation oncology has led to the development of guiding principles for local therapies to the primary intact pancreatic tumor for patients with limited metastatic disease and those who have had a significant response after systemic therapy.

  7. Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate retention of tumor morphology through incorporation of murine stromal elements.

    PubMed

    Delitto, Daniel; Pham, Kien; Vlada, Adrian C; Sarosi, George A; Thomas, Ryan M; Behrns, Kevin E; Liu, Chen; Hughes, Steven J; Wallet, Shannon M; Trevino, Jose G

    2015-05-01

    Direct implantation of viable surgical specimens provides a representative preclinical platform in pancreatic adenocarcinoma. Patient-derived xenografts consistently demonstrate retained tumor morphology and genetic stability. However, the evolution of the tumor microenvironment over time remains poorly characterized in these models. This work specifically addresses the recruitment and incorporation of murine stromal elements into expanding patient-derived pancreatic adenocarcinoma xenografts, establishing the integration of murine cells into networks of invading cancer cells. In addition, we provide methods and observations in the establishment and maintenance of a patient-derived pancreatic adenocarcinoma xenograft model. A total of 25 histologically confirmed pancreatic adenocarcinoma specimens were implanted subcutaneously into nonobese diabetic severe combined immunodeficiency mice. Patient demographics, staging, pathological analysis, and outcomes were analyzed. After successful engraftment of tumors, histological and immunofluorescence analyses were performed on explanted tumors. Pancreatic adenocarcinoma specimens were successfully engrafted in 15 (60%) of 25 attempts. Successful engraftment does not appear to correlate with clinicopathologic factors or patient survival. Tumor morphology is conserved through multiple passages, and tumors retain metastatic potential. Interestingly, despite morphological similarity between passages, human stromal elements do not appear to expand with invading cancer cells. Rather, desmoplastic murine stroma dominates the xenograft microenvironment after the initial implantation. Recruitment of stromal elements in this manner to support and maintain tumor growth represents a novel avenue for investigation into tumor-stromal interactions.

  8. Characterization of a pancreatic islet cell tumor in a polar bear (Ursus maritimus).

    PubMed

    Fortin, Jessica S; Benoit-Biancamano, Marie-Odile

    2014-01-01

    Herein, we report a 25-year-old male polar bear suffering from a pancreatic islet cell tumor. The aim of this report is to present a case of this rare tumor in a captive polar bear. The implication of potential risk factors such as high carbohydrate diet or the presence of amyloid fibril deposits was assessed. Necropsy examination revealed several other changes, including nodules observed in the liver, spleen, pancreas, intestine, and thyroid glands that were submitted for histopathologic analysis. Interestingly, the multiple neoplastic nodules were unrelated and included a pancreatic islet cell tumor. Immunohistochemistry of the pancreas confirmed the presence of insulin and islet amyloid polypeptide (IAPP) within the pancreatic islet cells. The IAPP gene was extracted from the paraffin-embedded liver tissue and sequenced. IAPP cDNA from the polar bear exhibits some differences as compared to the sequence published for several other species. Different factors responsible for neoplasms in bears such as diet, infectious agents, and industrial chemical exposure are reviewed. This case report raised several issues that further studies may address by evaluating the prevalence of cancers in captive or wild animals. PMID:25273481

  9. Characterization of a pancreatic islet cell tumor in a polar bear (Ursus maritimus).

    PubMed

    Fortin, Jessica S; Benoit-Biancamano, Marie-Odile

    2014-01-01

    Herein, we report a 25-year-old male polar bear suffering from a pancreatic islet cell tumor. The aim of this report is to present a case of this rare tumor in a captive polar bear. The implication of potential risk factors such as high carbohydrate diet or the presence of amyloid fibril deposits was assessed. Necropsy examination revealed several other changes, including nodules observed in the liver, spleen, pancreas, intestine, and thyroid glands that were submitted for histopathologic analysis. Interestingly, the multiple neoplastic nodules were unrelated and included a pancreatic islet cell tumor. Immunohistochemistry of the pancreas confirmed the presence of insulin and islet amyloid polypeptide (IAPP) within the pancreatic islet cells. The IAPP gene was extracted from the paraffin-embedded liver tissue and sequenced. IAPP cDNA from the polar bear exhibits some differences as compared to the sequence published for several other species. Different factors responsible for neoplasms in bears such as diet, infectious agents, and industrial chemical exposure are reviewed. This case report raised several issues that further studies may address by evaluating the prevalence of cancers in captive or wild animals.

  10. CTHRC1 promotes angiogenesis by recruiting Tie2-expressing monocytes to pancreatic tumors

    PubMed Central

    Lee, Jaemin; Song, Jinhoi; Kwon, Eun-Soo; Jo, Seongyea; Kang, Min Kyung; Kim, Yeon Jeong; Hwang, Yeonsil; Bae, Hosung; Kang, Tae Heung; Chang, Suhwan; Cho, Hee Jun; Kim, Song Cheol; Kim, Seokho; Koh, Sang Seok

    2016-01-01

    CTHRC1 (collagen triple-helix repeat-containing 1), a protein secreted during the tissue-repair process, is highly expressed in several malignant tumors, including pancreatic cancer. We recently showed that CTHRC1 has an important role in the progression and metastasis of pancreatic cancer. Although CTHRC1 secretion affects tumor cells, how it promotes tumorigenesis in the context of the microenvironment is largely unknown. Here we identified a novel role of CTHRC1 as a potent endothelial activator that promotes angiogenesis by recruiting bone marrow-derived cells to the tumor microenvironment during tumorigenesis. Recombinant CTHRC1 (rCTHRC1) enhanced endothelial cell (EC) proliferation, migration and capillary-like tube formation, which was consistent with the observed increases in neovascularization in vivo. Moreover, rCTHRC1 upregulated angiopoietin-2 (Ang-2), a Tie2 receptor ligand, through ERK-dependent activation of AP-1 in ECs, resulting in recruitment of Tie2-expressing monocytes (TEMs) to CTHRC1-overexpressing tumor tissues. Treatment with a CTHRC1-neutralizing antibody-abrogated Ang-2 expression in the ECs in vitro. Moreover, administration of a CTHRC1-neutralizing antibody to a xenograft mouse model reduced the tumor burden and infiltration of TEMs in the tumor tissues, indicating that blocking the CTHRC1/Ang-2/TEM axis during angiogenesis inhibits tumorigenesis. Collectively, our findings support the hypothesis that CTHRC1 induction of the Ang-2/Tie2 axis mediates the recruitment of TEMs, which are important for tumorigenesis and can be targeted to achieve effective antitumor responses in pancreatic cancers. PMID:27686285

  11. Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): System description and prototype testing

    SciTech Connect

    Wilbert, Juergen; Meyer, Juergen; Baier, Kurt; Guckenberger, Matthias; Herrmann, Christian; Hess, Robin; Janka, Christian; Ma Lei; Mersebach, Torben; Richter, Anne; Roth, Michael; Schilling, Klaus; Flentje, Michael

    2008-09-15

    A novel system for real-time tumor tracking and motion compensation with a robotic HexaPOD treatment couch is described. The approach is based on continuous tracking of the tumor motion in portal images without implanted fiducial markers, using the therapeutic megavoltage beam, and tracking of abdominal breathing motion with optical markers. Based on the two independently acquired data sets the table movements for motion compensation are calculated. The principle of operation of the entire prototype system is detailed first. In the second part the performance of the HexaPOD couch was investigated with a robotic four-dimensional-phantom capable of simulating real patient tumor trajectories in three-dimensional space. The performance and limitations of the HexaPOD table and the control system were characterized in terms of its dynamic behavior. The maximum speed and acceleration of the HexaPOD were 8 mm/s and 34.5 mm/s{sup 2} in the lateral direction, and 9.5 mm/s and 29.5 mm/s{sup 2} in longitudinal and anterior-posterior direction, respectively. Base line drifts of the mean tumor position of realistic lung tumor trajectories could be fully compensated. For continuous tumor tracking and motion compensation a reduction of tumor motion up to 68% of the original amplitude was achieved. In conclusion, this study demonstrated that it is technically feasible to compensate breathing induced tumor motion in the lung with the adaptive tumor tracking system.

  12. Efficacy and Safety of Endoscopic Ultrasound-guided Ethanol Ablation Therapy for Pancreatic Neuroendocrine Tumors.

    PubMed

    Matsumoto, Kazuyuki; Kato, Hironari; Tsutsumi, Koichiro; Mizukawa, Sho; Yabe, Syuntaro; Seki, Hiroyuki; Akimoto, Yutaka; Uchida, Daisuke; Tomoda, Takeshi; Yamamoto, Naoki; Horiguchi, Shigeru; Okada, Hiroyuki

    2016-08-01

    Recently, endoscopic ultrasonography (EUS)-guided ethanol ablation for small pancreatic neuroendocrine tumors (p-NETs) has been reported. However, the efficacy and safety of the technique remain unclear. We have launched a prospective pilot study of EUS-guided ethanol ablation for p-NETs. The major eligibility criteria are the presence of a pathologically diagnosed grade (G) 1 or G2 p-NET, a tumor size of 2cm, and being a poor candidate for surgery. A total of 5 patients will be treated. The primary endpoint will be the complete ablation rate at 1 month after treatment. PMID:27549680

  13. Polyethylenimine-coated SPION exhibits potential intrinsic anti-metastatic properties inhibiting migration and invasion of pancreatic tumor cells.

    PubMed

    Mulens-Arias, Vladimir; Rojas, José Manuel; Pérez-Yagüe, Sonia; Morales, María del Puerto; Barber, Domingo F

    2015-10-28

    Due to its aggressive behavior, pancreatic cancer is one of the principal causes of cancer-related deaths. The highly metastatic potential of pancreatic tumor cells demands the development of more effective anti-metastatic approaches for this disease. Although polyethylenimine-coated superparamagnetic iron oxide nanoparticles (PEI-coated SPIONs) have been studied for their utility as transfection agents, little is known of their effect on tumor cell biology. Here we demonstrated that PEI-coated SPIONs have potent inhibitory effects on pancreatic tumor cell migration/invasion, through inhibition of Src kinase and decreased expression of MT1-MMP and MMP2 metalloproteinases. When treated with PEI-coated SPIONs, the pancreatic tumor cell line Pan02 showed reduced invadosome density and thus, a decrease in their ability to invade through basement membrane. These nanoparticles temporarily downmodulated microRNA-21, thereby upregulating the cell migration inhibitors PTEN, PDCD4 and Sprouty-1. PEI-coated SPIONs thus show intrinsic, possibly anti-metastatic properties for modulating pancreatic tumor cell migration machinery, which indicates their potential as anti-metastatic agents for treatment of pancreatic cancer.

  14. Mucin-producing pancreatic tumors: a study of nuclear DNA content by flow cytometry.

    PubMed

    Murakami, Y; Yokoyama, T; Kodama, T; Takesue, Y; Okita, M; Nakamitsu, A; Imamura, Y; Santo, T; Tsumura, H; Miyamoto, K

    1993-01-01

    Nuclear DNA content in eight surgically resected mucin-producing pancreatic tumors (MPPT) consisting of two mucinous intraductal adenocarcinomas (MIDAC), two mucinous intraductal adenomas (MIDA), one mucinous cyst-adenocarcinoma (MCAC), and three mucinous cystadenomas (MCA) were measured by flow cytometry using paraffin-embedded tissue samples. The technique of Shutte was used for the preparation of paraffin-embedded tissue into single dissociated nuclei, while the method of Vindelov was used for staining the isolated nuclei with propidium iodine. Clinicopathologically, the four patients with MIDAC or MIDA were all male and had cystic lesions with a dilated pancreatic duct at the head of the pancreas, while the four patients with MCAC or MCA were all females and had cystic tumors at either the body or tail of the pancreas. All eight patients with MPPT had no metastasis to the regional lymph nodes and were all still alive without recurrence. In an analysis of nuclear DNA content, seven of eight patients had DNA diploid tumors while one patient with a MIDAC perforating the duodenum and choledochus had a DNA aneuploid tumor. Thus, these findings suggest that DNA diploid patterns in MPPT might be associated with a favorable prognosis in MPPT although some patients whose MPPT invaded the surrounding organs might have DNA aneuploid tumors. PMID:8395265

  15. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma

    PubMed Central

    Moffitt, Richard A.; Marayati, Raoud; Flate, Elizabeth L.; Volmar, Keith E.; Loeza, S. Gabriela Herrera; Hoadley, Katherine A.; Rashid, Naim U.; Williams, Lindsay A.; Eaton, Samuel C.; Chung, Alexander H.; Smyla, Jadwiga K.; Anderson, Judy M.; Kim, Hong Jin; Bentrem, David J.; Talamonti, Mark S.; Iacobuzio-Donahue, Christine A.; Hollingsworth, Michael A.; Yeh, Jen Jen

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains a lethal disease with a 5-year survival of 4%. A key hallmark of PDAC is extensive stromal involvement, which makes capturing precise tumor-specific molecular information difficult. Here, we have overcome this problem by applying blind source separation to a diverse collection of PDAC gene expression microarray data, which includes primary, metastatic, and normal samples. By digitally separating tumor, stroma, and normal gene expression, we have identified and validated two tumor-specific subtypes including a “basal-like” subtype which has worse outcome, and is molecularly similar to basal tumors in bladder and breast cancer. Furthermore, we define “normal” and “activated” stromal subtypes which are independently prognostic. Our results provide new insight into the molecular composition of PDAC which may be used to tailor therapies or provide decision support in a clinical setting where the choice and timing of therapies is critical. PMID:26343385

  16. Three-Dimensional Motion of Liver Tumors Using Cine-Magnetic Resonance Imaging

    SciTech Connect

    Kirilova, Anna Lockwood, Gina; Choi, Perry; Bana, Neelufer; Haider, Masoom A.; Brock, Kristy K.; Eccles, Cynthia; Dawson, Laura A.

    2008-07-15

    Purpose: To measure the three-dimensional motion of liver tumors using cine-magnetic resonance imaging (MRI) and compare it to the liver motion assessed using fluoroscopy. Methods and Materials: Liver and liver tumor motion were investigated in the first 36 patients with primary (n = 20) and metastatic (n = 16) liver cancer accrued to our Phase I stereotactic radiotherapy study. At simulation, all patients underwent anteroposterior fluoroscopy, and the maximal diaphragm excursion in the craniocaudal (CC) direction was observed. Cine-MRI using T{sub 2}-weighted single shot fast spin echo sequences were acquired in three orthogonal planes during free breathing through the centroid of the most dominant liver tumor. ImageJ software was used to measure the maximal motion of the tumor edges in each plane. The intra- and interobserver reproducibility was also quantified. Results: The average CC motion of the liver at fluoroscopy was 15 mm (range, 5-41). On cine-MRI, the average CC tumor motion was 15.5 mm (range, 6.9-35.4), the anteroposterior motion was 10 mm (range, 3.7-21.6), and the mediolateral motion was 7.5 mm (range, 3.8-14.8). The fluoroscopic CC diaphragm motion did not correlate well with the MRI CC tumor motion (r = 0.25). The mean intraobserver error was <2 mm in the CC, anteroposterior, and mediolateral directions, and 90% of measurements between observers were within 3 mm. Conclusions: The results of our study have shown that cine-MRI can be used to directly assess liver tumor motion in three dimensions. Tumor motion did not correlate well with the diaphragm motion measured using kilovoltage fluoroscopy. The tumor motion data from cine-MRI can be used to facilitate individualized planning target volume margins to account for breathing motion.

  17. Assessment of biophysical tumor response to PDT in pancreatic cancer using localized reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Isabelle, Martin; Klubben, William; He, Ting; Laughney, Ashley M.; Glaser, Adam; Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Hasan, Tayyaba; Pogue, Brian W.

    2011-02-01

    Biophysical changes such as inflammation and necrosis occur immediately following PDT and may be used to assess the treatment response to PDT treatment in-vivo. This study uses localized reflectance measurements to quantify the scatter changes in tumor tissue occurring in response to verteporfin-based PDT treatment in xenograft pancreas tumors. Nude mice were implanted with subcutaneous AsPC-1 pancreatic tumors cells in matrigel, and allowed to establish solid tumors near 100mm3 volume. The mice were sensitized with 1mg/kg of the active component of verteporfin (benzoporphryin derivative, BPD), one hour before light delivery. The optical irradiation was performed using a 1 cm cylindrical interstitial diffusing tip fiber with 20J of red light (690nm). Tumor tissue was excised progressively and imaged, from 1 day to 4 weeks, after PDT treatment. The tissue sections were stained and analyzed by an expert veterinary pathologist, who provided information on tissue regions of interest. This information was correlated with variations in scattering and absorption parameters elucidated from the spectral images and the degree of necrosis and inflammation involvement was identified. Areas of necrosis and dead cells exhibited the lowest average scatter irradiance signature (3.78 and 4.07 respectively) compared to areas of viable pancreatic tumor cells and areas of inflammation (5.81 and 7.19 respectively). Bilirubin absorbance parameters also showed a lower absorbance value in necrotic tissue and areas of dead cells (0.05 and 0.1 respectively) compared to tissue areas for viable pancreatic tumor cells and areas of inflammation (0.28 and 0.35). These results demonstrate that localized reflectance spectroscopy is an imaging modality that can be used to identify tissue features associated with PDT treatment (e.g. necrosis and inflammation) that can be correlated with histopathologically-reviewed H&E stained slides. Further study of this technique may provide means for automated

  18. Orchestrating the Tumor Microenvironment to Improve Survival for Patients With Pancreatic Cancer Normalization, Not Destruction

    PubMed Central

    Whatcott, Clifford J.; Hanl, Haiyong; Von Hoff, Daniel D.

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. The microenvironment of pancreatic cancer could be one of the “perfect storms” that support the growth of a cancer. Indeed, pancreatic cancer may be the poster child of a problem with the microenvironment. In this article, we review the rationale and attempts to date on modifying or targeting structural proteins in the microenvironment including hyaluronan (HA) (in primary and metastases), collagen, and SPARC (secreted protein, acidic, and rich in cysteine). Indeed, working in this area has produced a regimen that improves survival for patients with advanced pancreatic cancer (nab-paclitaxel + gemcitabine). In addition, in initial clinical trials, PEGylated hyaluronidase appears promising. We also review a new approach that is different than targeting/destroying the microenvironment and that is orchestrating, reengineering, reprogramming, or normalizing the microenvironment (including normalizing structural proteins, normalizing an immunologically tumor-friendly environment to a less friendly environment, reversing epithelial-to-mesenchymal transition, and so on). We believe this will be most effectively done by agents that have global effects on transcription. There is initial evidence that this can be done by agents such as vitamin D derivatives and other new agents. There is no doubt these opportunities can now be tried in the clinic with hopefully beneficial effects. PMID:26222082

  19. Orchestrating the Tumor Microenvironment to Improve Survival for Patients With Pancreatic Cancer: Normalization, Not Destruction.

    PubMed

    Whatcott, Clifford J; Han, Haiyong; Von Hoff, Daniel D

    2015-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. The microenvironment of pancreatic cancer could be one of the "perfect storms" that support the growth of a cancer. Indeed, pancreatic cancer may be the poster child of a problem with the microenvironment. In this article, we review the rationale and attempts to date on modifying or targeting structural proteins in the microenvironment including hyaluronan (HA) (in primary and metastases), collagen, and SPARC (secreted protein, acidic, and rich in cysteine). Indeed, working in this area has produced a regimen that improves survival for patients with advanced pancreatic cancer (nab-paclitaxel + gemcitabine). In addition, in initial clinical trials, PEGylated hyaluronidase appears promising. We also review a new approach that is different than targeting/destroying the microenvironment and that is orchestrating, reengineering, reprogramming, or normalizing the microenvironment (including normalizing structural proteins, normalizing an immunologically tumor-friendly environment to a less friendly environment, reversing epithelial-to-mesenchymal transition, and so on). We believe this will be most effectively done by agents that have global effects on transcription. There is initial evidence that this can be done by agents such as vitamin D derivatives and other new agents. There is no doubt these opportunities can now be tried in the clinic with hopefully beneficial effects.

  20. Orchestrating the Tumor Microenvironment to Improve Survival for Patients With Pancreatic Cancer: Normalization, Not Destruction.

    PubMed

    Whatcott, Clifford J; Han, Haiyong; Von Hoff, Daniel D

    2015-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. The microenvironment of pancreatic cancer could be one of the "perfect storms" that support the growth of a cancer. Indeed, pancreatic cancer may be the poster child of a problem with the microenvironment. In this article, we review the rationale and attempts to date on modifying or targeting structural proteins in the microenvironment including hyaluronan (HA) (in primary and metastases), collagen, and SPARC (secreted protein, acidic, and rich in cysteine). Indeed, working in this area has produced a regimen that improves survival for patients with advanced pancreatic cancer (nab-paclitaxel + gemcitabine). In addition, in initial clinical trials, PEGylated hyaluronidase appears promising. We also review a new approach that is different than targeting/destroying the microenvironment and that is orchestrating, reengineering, reprogramming, or normalizing the microenvironment (including normalizing structural proteins, normalizing an immunologically tumor-friendly environment to a less friendly environment, reversing epithelial-to-mesenchymal transition, and so on). We believe this will be most effectively done by agents that have global effects on transcription. There is initial evidence that this can be done by agents such as vitamin D derivatives and other new agents. There is no doubt these opportunities can now be tried in the clinic with hopefully beneficial effects. PMID:26222082

  1. Portal vein-circulating tumor cells predict liver metastases in patients with resectable pancreatic cancer.

    PubMed

    Bissolati, Massimiliano; Sandri, Maria Teresa; Burtulo, Giovanni; Zorzino, Laura; Balzano, Gianpaolo; Braga, Marco

    2015-02-01

    Pancreatic cancer patients underwent surgical resection often present distant metastases early after surgery. Detection of circulating tumor cells (CTCs) has been correlated to a worse oncological outcome in patients with advanced pancreatic cancer. The objective of this pilot study is to investigate the possible prognostic role of CTCs in patients undergoing surgery for pancreatic cancer. In 20 patients undergoing pancreatic resection, 10 mL blood sample was collected intraoperatively from both systemic circulation (SC) and portal vein (PV). Blood sample was analyzed for CTCs with CellSearch® system. All patients underwent an oncologic follow-up for at least 3 years, quarterly. CTCs were detected in nine (45%) patients: five patients had CTCs in PV only, three patients in both SC and PV, and one patient in SC only. CTC-positive and CTC-negative patients were similar for demographics and cancer stage pattern. No significant differences were found in both overall and disease-free survival between CTC-positive and CTC-negative patients. At 3-year follow-up, portal vein CTC-positive patients presented a higher rate of liver metastases than CTC-negative patients (53 vs. 8%, p = 0.038). CTCs were found in 45% of the patients. No correlation between CTCs and survival was found. The presence of CTCs in portal vein has been associated to higher rate of liver metastases after surgery.

  2. Assessment of tumor motion reproducibility with audio-visual coaching through successive 4D CT sessions.

    PubMed

    Goossens, Samuel; Senny, Frédéric; Lee, John A; Janssens, Guillaume; Geets, Xavier

    2014-01-04

    This study aimed to compare combined audio-visual coaching with audio coaching alone and assess their respective impact on the reproducibility of external breathing motion and, one step further, on the internal lung tumor motion itself, through successive sessions. Thirteen patients with NSCLC were enrolled in this study. The tumor motion was assessed by three to four successive 4D CT sessions, while the breathing signal was measured from magnetic sensors positioned on the epigastric region. For all sessions, the breathing was regularized with either audio coaching alone (AC, n = 5) or combined with a real-time visual feedback (A/VC, n = 8) when tolerated by the patients. Peak-to-peak amplitude, period and signal shape of both breathing and tumor motions were first measured. Then, the correlation between the respiratory signal and internal tumor motion over time was evaluated, as well as the residual tumor motion for a gated strategy. Although breathing and tumor motions were comparable between AC and AV/C groups, A/VC approach achieved better reproducibility through sessions than AC alone (mean tumor motion of 7.2 mm ± 1 vs. 8.6 mm ± 1.8 mm, and mean breathing motion of 14.9 mm ± 1.2 mm vs. 13.3mm ± 3.7 mm, respectively). High internal/external correlation reproducibility was achieved in the superior-inferior tumor motion direction for all patients. For the anterior posterior tumor motion direction, better correlation reproducibility has been observed when visual feedback has been used. For a displacement-based gating approach, A/VC might also be recommended, since it led to smaller residual tumor motion within clinically relevant duty cycles. This study suggests that combining real-time visual feedback with audio coaching might improve the reproducibility of key characteristics of the breathing pattern, and might thus be considered in the implementation of lung tumor radiotherapy.

  3. Pancreatic tumor cell metabolism: focus on glycolysis and its connected metabolic pathways.

    PubMed

    Guillaumond, Fabienne; Iovanna, Juan Lucio; Vasseur, Sophie

    2014-03-01

    Because of lack of effective treatment, pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of death by cancer in Western countries, with a very weak improvement of survival rate over the last 40years. Defeat of numerous conventional therapies to cure this cancer makes urgent to develop new tools usable by clinicians for a better management of the disease. Aggressiveness of pancreatic cancer relies on its own hallmarks: a low vascular network as well as a prominent stromal compartment (desmoplasia), which creates a severe hypoxic environment impeding correct oxygen and nutrients diffusion to the tumoral cells. To survive and proliferate in those conditions, pancreatic cancer cells set up specific metabolic pathways to meet their tremendous energetic and biomass demands. However, as PDAC is a heterogenous tumor, a complex reprogramming of metabolic processes is engaged by cancer cells according to their level of oxygenation and nutrients supply. In this review, we focus on the glycolytic activity of PDAC and the glucose-connected metabolic pathways which contribute to the progression and dissemination of this disease. We also discuss possible therapeutic strategies targeting these pathways in order to cure this disease which still until now is resistant to numerous conventional treatments.

  4. Neuroendocrine tumor targeting: study of novel gallium-labeled somatostatin radiopeptides in a rat pancreatic tumor model.

    PubMed

    Froidevaux, Sylvie; Eberle, Alex N; Christe, Martine; Sumanovski, Lazar; Heppeler, Axel; Schmitt, Jörg S; Eisenwiener, Klaus; Beglinger, Christoph; Mäcke, Helmut R

    2002-04-20

    Somatostatin analogs labeled with radionuclides are of considerable interest in the diagnosis and therapy of SSTR-expressing tumors, such as gastroenteropancreatic, small cell lung, breast and frequently nervous system tumors. In view of the favorable physical characteristics of the Ga isotopes (67)Ga and (68)Ga, enabling conventional tumor scintigraphy, PET and possibly internal radiotherapy, we focused on the development of a Ga-labeled somatostatin analog suitable for targeting SSTR-expressing tumors. For this purpose, 3 somatostatin analogs, OC, TOC and TATE were conjugated to the metal chelator DOTA and labeled with the radiometals (111)In, (90)Y and (67)Ga. They were then evaluated for their performance in the AR4-2J pancreatic tumor model by testing SSTR2-binding affinity, internalization/externalization in isolated cells and biodistribution in tumor-bearing nude mice. Surprisingly, we found that, compared to (111)In or (90)Y, labeling with (67)Ga considerably improved the biologic performance of the tested somatostatin analogs with respect to SSTR2 affinity and tissue distribution. (67)Ga-labeled DOTA-somatostatin analogs were rapidly excreted from nontarget tissues, leading to excellent tumor-to-nontarget tissue uptake ratios. Of interest for radiotherapeutic application, [(67)Ga]DOTATOC was strongly internalized by AR4-2J cells. Furthermore, our results suggest a link between the radioligand charge and its kidney retention. The excellent tumor selectivity of Ga-DOTA somatostatin analogs together with the different applications of Ga in nuclear oncology suggests that Ga-DOTA somatostatin analogs will become an important tool in the management of SSTR-positive tumors.

  5. Thermal therapy of pancreatic tumors using endoluminal ultrasound: parametric and patient-specific modeling

    PubMed Central

    Adams, Matthew S.; Scott, Serena J.; Salgaonkar, Vasant A.; Sommer, Graham; Diederich, Chris J.

    2016-01-01

    Purpose To investigate endoluminal ultrasound applicator configurations for volumetric thermal ablation and hyperthermia of pancreatic tumors using 3D acoustic and biothermal finite element models. Materials and Methods Parametric studies compared endoluminal heating performance for varying applicator transducer configurations (planar, curvilinear-focused, or radial-diverging), frequencies (1–5 MHz), and anatomical conditions. Patient-specific pancreatic head and body tumor models were used to evaluate feasibility of generating hyperthermia and thermal ablation using an applicator positioned in the duodenal or stomach lumen. Temperature and thermal dose were calculated to define ablation (>240 EM43°C) and moderate hyperthermia (40–45 °C) boundaries, and to assess sparing of sensitive tissues. Proportional-integral control was incorporated to regulate maximum temperature to 70–80 °C for ablation and 45 °C for hyperthermia in target regions. Results Parametric studies indicated that 1–3 MHz planar transducers are most suitable for volumetric ablation, producing 5–8 cm3 lesion volumes for a stationary 5 minute sonication. Curvilinear-focused geometries produce more localized ablation to 20–45 mm depth from the GI tract and enhance thermal sparing (Tmax<42 °C) of the luminal wall. Patient anatomy simulations show feasibility in ablating 60.1–92.9% of head/body tumor volumes (4.3–37.2 cm3) with dose <15 EM43°C in the luminal wall for 18–48 min treatment durations, using 1–3 applicator placements in GI lumen. For hyperthermia, planar and radial-diverging transducers could maintain up to 8 cm3 and 15 cm3 of tissue, respectively, between 40–45 °C for a single applicator placement. Conclusions Modeling studies indicate the feasibility of endoluminal ultrasound for volumetric thermal ablation or hyperthermia treatment of pancreatic tumor tissue. PMID:27097663

  6. Metastatic testicular tumor presenting as a scrotal hydrocele: An initial manifestation of pancreatic adenocarcinoma

    PubMed Central

    KIM, YEON WOOK; KIM, JIN WON; KIM, JEE-HYUN; LEE, JUNGSIL; LEE, EUIJAE; KIM, MOON YOUNG; YANG, HYUN KYUNG; CHANG, HYUN

    2014-01-01

    Metastatic pancreatic adenocarcinoma involving the testis is a rare condition with a poor prognosis. The current study describes the case of a 69-year-old male who presented with a painful swelling of the left scrotum. Scrotal ultrasonography revealed hydroceles in the scrotal sacs, with the left one being larger in size. The patient underwent left hydrocelectomy and was eventually diagnosed with metastatic adenocarcinoma. Abdominal computed tomography, which was performed to detect the primary cancer, showed a pancreatic tail carcinoma with liver and multiple lymph node metastases, and peritoneal carcinomatosis. The patient received gemcitabine-based chemotherapy but resulted in progressive disease. This case shows that in a patient in whom a primary testicular tumor is unusual due to their age, a testicular mass or hydrocele should be a suspect for possible metastatic disease. PMID:24932235

  7. Hypercalcemia from metastatic pancreatic neuroendocrine tumor secreting 1,25-dihydroxyvitamin D

    PubMed Central

    Zhu, Viola; de las Morenas, Antonio; Janicek, Milos

    2014-01-01

    Malignant hypercalcemia occurs in about 20-30% of patients with cancer, both solid tumors and hematologic malignancies. The secretion of parathyroid hormone-related protein (PTH-rP) is the most common cause and has been shown to be the etiology of hypercalcemia associated with neuroendocrine tumors. Here we report the case of a patient with metastatic pancreatic neuroendocrine tumor who developed hypercalcemia more than 4 years after the initial diagnosis as a result of secretion of 1,25-dihydroxyvitamin D, a mechanism only commonly seen in lymphomas. The successful control of the patient’s disease with capecitabine and temozolomide led to the alleviation of this paraneoplastic syndrome. PMID:25083313

  8. Multiorgan chronic inflammatory hepatobiliary pancreatic murine model deficient in tumor necrosis factor receptors 1 and 2

    PubMed Central

    Oz, Helieh S

    2016-01-01

    AIM: To provoke persistent/chronic multiorgan inflammatory response and to contribute to stones formation followed by fibrosis in hepatobiliary and pancreatic tissues. METHODS: Tumor necrosis factor receptors 1 and 2 (TNFR1/R2) deficient mice reared in-house were given dibutyltin dichloride (DBTC) twice within 10 d by oral gavage delivery. Sham control animals received vehicle treatment and naïve animals remained untreated throughout the study. Animals were monitored daily for symptoms of pain and discomfort. The abdominal and hindpaw hypersensitivity were assessed with von Frey microfilaments. Exploratory behaviors were recorded at the baseline, after initiation of treatment, and before study termination. Histopathological changes were examined postmortem in tissues. Collagen accumulation and fibrosis were confirmed with Sirius Red staining. RESULTS: Animals lost weight after oral administration of DBTC and developed persistent inflammatory abdominal and hindpaw hypersensitivity compared to sham-treated controls (P < 0.0001). These pain related secondary mechanical hypersensitivity responses increased more than 2-fold in DBTC-treated animals. The drastically diminished rearing and grooming rates persisted after DBTC administration throughout the study. Gross as well as micropathology at one month confirmed that animals treated with DBTC developed chronic hepatobiliary injuries evidenced with activation of stellate cells, multifocal necrosis, fatty degeneration of hepatocytes, periportal infiltration of inflammatory cells, and prominent biliary ductal dilation. The severity of hepatitis was scored 3.7 ± 0.2 (severe) in DBTC-treated animals vs score 0 (normal) in sham-treated animals. Fibrotic thickening was extensive around portal ducts, in hepatic parenchyma as well as in lobular pancreatic structures and confirmed with Sirius Red histopathology. In addition, pancreatic microarchitecture was presented with distortion of islets, and parenchyma, infiltration of

  9. Characteristics of Tumor Infiltrating Lymphocyte and Circulating Lymphocyte Repertoires in Pancreatic Cancer by the Sequencing of T Cell Receptors

    PubMed Central

    Bai, Xueli; Zhang, Qi; Wu, Song; Zhang, Xiaoyu; Wang, Mingbang; He, Fusheng; Wei, Tao; Yang, Jiaqi; Lou, Yu; Cai, Zhiming; Liang, Tingbo

    2015-01-01

    Pancreatic cancer has a poor prognosis and few effective treatments. The failure of treatment is partially due to the high heterogeneity of cancer cells within the tumor. T cells target and kill cancer cells by the specific recognition of cancer-associated antigens. In this study, T cells from primary tumor and blood of sixteen patients with pancreatic cancer were characterized by deep sequencing. T cells from blood of another eight healthy volunteers were also studied as controls. By analyzing the complementary determining region 3 (CDR3) gene sequence, we found no significant differences in the T cell receptor (TCR) repertoires between patients and healthy controls. Types and length of CDR3 were similar among groups. However, two clusters of patients were identified according to the degree of CDR3 overlap within tumor sample group. In addition, clonotypes with low frequencies were found in significantly higher numbers in primary pancreatic tumors compared to blood samples from patients and healthy controls. This study is the first to characterize the TCR repertoires of pancreatic cancers in both primary tumors and matched blood samples. The results imply that specific types of pancreatic cancer share potentially important immunological characteristics. PMID:26329277

  10. Expansion of Tumor-reactive T Cells From Patients With Pancreatic Cancer.

    PubMed

    Meng, Qingda; Liu, Zhenjiang; Rangelova, Elena; Poiret, Thomas; Ambati, Aditya; Rane, Lalit; Xie, Shanshan; Verbeke, Caroline; Dodoo, Ernest; Del Chiaro, Marco; Löhr, Matthias; Segersvärd, Ralf; Maeurer, Markus J

    2016-01-01

    Generation of T lymphocytes with reactivity against cancer is a prerequisite for effective adoptive cellular therapies. We established a protocol for tumor-infiltrating lymphocytes (TILs) from patients with pancreatic ductal adenocarcinoma. Tumor samples from 17 pancreatic cancer specimens were cultured with cytokines (IL-2, IL-15, and IL-21) to expand TILs. After 10 days of culture, TILs were stimulated with an anti-CD3 antibody (OKT3) and irradiated allogeneic peripheral blood mononuclear cells. Reactivity of TILs against tumor-associated antigens (mesothelin, survivin, or NY-ESO-1) was detected by intracellular cytokine production by flow cytometry. Cytotoxicity was measured using a Chromium 51 release assay, and reactivity of TILs against autologous tumor cells was detected by INF-[gamma] production (ELISA). TIL composition was tested by CD45RA, CCR7, 4-1BB, LAG-3, PD-1, TIM3, and CTLA-4 marker analysis. TCR V[beta] was determined by flow cytometry and TCR clonality was gauged measuring the CDR3 region length by PCR analysis and subsequent sequencing. We could reliably obtain TILs from 17/17 patients with a majority of CD8(+) T cells. CD3(+)CD8(+), CD3(+)CD4(+), and CD3(+)CD4(-)CD8(-)[double-negative (DN) T cells] resided predominantly in central (CD45RA(-)CCR7(+)) and effector (CD45RA-CCR7-) memory subsets. CD8(+) TILs tested uniformly positive for LAG-3 (about 100%), whereas CD4(+) TILs showed only up to 12% LAG-3(+) staining and PD-1 showed a broad expression pattern in TILs from different patients. TILs from individual patients recognized strongly (up to 11.9% and 8.2% in CD8(+)) NY-ESO-1, determined by ICS, or mesothelin, determined respectively by TNF-[alpha] and IFN-[gamma] production. Twelve of 17 of CD8(+) TILs showed preferential expansion of certain TCR V[beta] families (eg, 99.2% V[beta]13.2 in CD8(+) TILs, 77% in the V[beta]1, 65.9% in the V[beta]22, and 63.3% in the V[beta]14 family). TCR CDR3 analysis exhibited monoclonal or oligoclonal TCRs

  11. [Treatment Strategy for Non-Functional Pancreatic Neuroendocrine Tumors (P-NETs) at Kurume University Hospital].

    PubMed

    Kawashima, Yusuke; Ishikawa, Hiroto; Hisaka, Toru; Okuda, Kouji; Akagi, Yoshito

    2016-01-01

    Pancreatic neuroendocrine tumors (P-NETs) are relatively rare. Approximately 50-90% of non-functioning P-NETs are malignant, and the only curative treatment is surgical resection. Liver and lymph node metastases often occur. In Japan, the mTOR inhibitor everolimus is now covered by the national health insurance for treatment of P-NETs, including advanced and unresectable tumors. We present a case of P-NETs with liver metastases seen at our hospital and discuss our treatment strategy for this disease. Patients with tumors≤1 cm receive follow-up observation. For G1 and G2 (other than G3) tumors, if their size is >1 cm when first discovered, resection of the primary lesion along with lymph node dissection (as for pancreatic cancer) is performed. In G1 and G2 tumors with synchronous distant metastases, the primary lesion is first resected, and depending on the pathological findings, chemotherapy (LAR plus everolimus) may be administered. After 4 courses of chemotherapy, the response is assessed, and if further resection is possible, resection is performed. When there are synchronous liver metastases, if partial resection and local treatment (such as RFA) are possible, the primary lesion and synchronous lesions are resected. If a major hepatic resection procedure such as a segmentectomy or lobectomy is possible, the primary lesion is resected, followed by chemotherapy. After 4 courses of chemotherapy, the response is assessed, and if further resection is possible, hepatic resection is performed. G3 tumors are usually highly malignant, advanced, and often associated with metastases at the time of diagnosis. Chemotherapy may be an option for treating patients with G3 tumors. PMID:26809536

  12. Prognostic Significance of p27, Ki-67, and Topoisomerase lla Expression in Clinically Nonfunctioning Pancreatic Endocrine Tumors.

    PubMed

    Chang, Hee Jin; Batts, Kenneth P.; Lloyd, Ricardo V.; Sebo, Thomas J.; Thompson, Geoffrey B.; Lohse, Christine M.; Pankratz, Shane V.

    2000-01-01

    Nonfunctioning islet cell tumors or pancreatic endocrine tumors are the most common type of malignant islet cell tumor. Although previously detected usually at an advanced stage because of mass effect, the early detection rate of small localized disease has been increasing. To date it has been difficult to predict the clinical behavior in localized regional nonfunctioning tumors. To investigate potential markers predicting malignancy and poor prognosis in nonfunctioning pancreatic endocrine tumors, we analyzed the expression of Ki-67, topoisomerase Ila (Topolla), and p27, as well as a variety of clinicopathologic parameters in 76 cases of nonfunctioning islet cell tumors (23 benign cases and 53 malignant cases). Ki-67, Topolla. and p27 labeling indices were significantly different between benign and malignant tumors. Expression of Ki-67, Topolla, and p27 were associated with survival in patients with a malignant tumor in a univariate setting. However, only p27 and Topolla were jointly associated with survival in multivariate analysis. Immunohistochemical staining for p27, Topolla, and Ki-67 can be helpful in the diagnosis of nonfunctioning pancreatic endocrine tumor. Analysis of p27 and Topolla may also have potential utility as prognostic factors for malignant tumors.

  13. Pancreatitis

    MedlinePlus

    ... to the abdomen. In 1 out of 4 childhood cases, a cause is never found. What are the symptoms of pancreatitis? Inflammation of the pancreas is often associated with pain in the upper abdomen and/or the back which may develop slowly, ...

  14. SU-E-J-29: Audiovisual Biofeedback Improves Tumor Motion Consistency for Lung Cancer Patients

    SciTech Connect

    Lee, D; Pollock, S; Makhija, K; Keall, P; Greer, P; Arm, J; Hunter, P; Kim, T

    2014-06-01

    Purpose: To investigate whether the breathing-guidance system: audiovisual (AV) biofeedback improves tumor motion consistency for lung cancer patients. This will minimize respiratory-induced tumor motion variations across cancer imaging and radiotherapy procedues. This is the first study to investigate the impact of respiratory guidance on tumor motion. Methods: Tumor motion consistency was investigated with five lung cancer patients (age: 55 to 64), who underwent a training session to get familiarized with AV biofeedback, followed by two MRI sessions across different dates (pre and mid treatment). During the training session in a CT room, two patient specific breathing patterns were obtained before (Breathing-Pattern-1) and after (Breathing-Pattern-2) training with AV biofeedback. In each MRI session, four MRI scans were performed to obtain 2D coronal and sagittal image datasets in free breathing (FB), and with AV biofeedback utilizing Breathing-Pattern-2. Image pixel values of 2D images after the normalization of 2D images per dataset and Gaussian filter per image were used to extract tumor motion using image pixel values. The tumor motion consistency of the superior-inferior (SI) direction was evaluated in terms of an average tumor motion range and period. Results: Audiovisual biofeedback improved tumor motion consistency by 60% (p value = 0.019) from 1.0±0.6 mm (FB) to 0.4±0.4 mm (AV) in SI motion range, and by 86% (p value < 0.001) from 0.7±0.6 s (FB) to 0.1±0.2 s (AV) in period. Conclusion: This study demonstrated that audiovisual biofeedback improves both breathing pattern and tumor motion consistency for lung cancer patients. These results suggest that AV biofeedback has the potential for facilitating reproducible tumor motion towards achieving more accurate medical imaging and radiation therapy procedures.

  15. Geometric uncertainty of 2D projection imaging in monitoring 3D tumor motion

    NASA Astrophysics Data System (ADS)

    Suh, Yelin; Dieterich, Sonja; Keall, Paul J.

    2007-07-01

    The purpose of this study was to investigate the accuracy of two-dimensional (2D) projection imaging methods in three-dimensional (3D) tumor motion monitoring. Many commercial linear accelerator types have projection imaging capabilities, and tumor motion monitoring is useful for motion inclusive, respiratory gated or tumor tracking strategies. Since 2D projection imaging is limited in its ability to resolve the motion along the imaging beam axis, there is unresolved motion when monitoring 3D tumor motion. From the 3D tumor motion data of 160 treatment fractions for 46 thoracic and abdominal cancer patients, the unresolved motion due to the geometric limitation of 2D projection imaging was calculated as displacement in the imaging beam axis for different beam angles and time intervals. The geometric uncertainty to monitor 3D motion caused by the unresolved motion of 2D imaging was quantified using the root-mean-square (rms) metric. Geometric uncertainty showed interfractional and intrafractional variation. Patient-to-patient variation was much more significant than variation for different time intervals. For the patient cohort studied, as the time intervals increase, the rms, minimum and maximum values of the rms uncertainty show decreasing tendencies for the lung patients but increasing for the liver and retroperitoneal patients, which could be attributed to patient relaxation. Geometric uncertainty was smaller for coplanar treatments than non-coplanar treatments, as superior-inferior (SI) tumor motion, the predominant motion from patient respiration, could be always resolved for coplanar treatments. Overall rms of the rms uncertainty was 0.13 cm for all treatment fractions and 0.18 cm for the treatment fractions whose average breathing peak-trough ranges were more than 0.5 cm. The geometric uncertainty for 2D imaging varies depending on the tumor site, tumor motion range, time interval and beam angle as well as between patients, between fractions and within a

  16. 64-Slice spiral computed tomography and three-dimensional reconstruction in the diagnosis of cystic pancreatic tumors

    PubMed Central

    WEN, ZHAOXIA; YAO, FENGQING; WANG, YUXING

    2016-01-01

    The present study aimed to describe the characteristics of cystic pancreatic tumors using computed tomography (CT) and to evaluate the diagnostic accuracy (DA) of post-imaging three-dimensional (3D) reconstruction. Clinical and imaging data, including multi-slice spiral CT scans, enhanced scans and multi-faceted reconstruction, from 30 patients with pathologically confirmed cystic pancreatic tumors diagnosed at the Linyi People's Hospital between August 2008 and June 2014 were retrospectively analyzed. Following the injection of Ultravist® 300 contrast agent, arterial, portal venous and parenchymal phase scans were obtained at 28, 60 and 150 sec, respectively, and 3D reconstructions of the CT images were generated. The average age of the patients was 38.4 years (range, 16–77 years), and the cohort included 5 males and 25 females (ratio, 1:5). The patients included 8 cases of mucinous cystadenoma (DA), 80%]; 9 cases of cystadenocarcinoma (DA, 84%); 6 cases of serous cystadenoma (DA, 100%); 3 cases of solid pseudopapillary tumor (DA, 100%); and 4 cases of intraductal papillary mucinous neoplasm (DA, 100%). 3D reconstructions of CT images were generated and, in the 4 cases of intraductal papillary mucinous neoplasm, the tumor was connected to the main pancreatic duct and multiple mural nodules were detected in one of these cases. The DA of the 3D-reconstructed images of cystic pancreatic tumors was 89.3%. The 64-slice spiral CT and 3D-reconstructed CT images facilitated the visualization of cystic pancreatic tumor characteristics, in particular the connections between the tumor and the main pancreatic duct. In conclusion, the 3D reconstruction of multi-slice CT data may provide an important source of information for the surgical team, in combination with the available clinical data. PMID:27073473

  17. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular-fibrosis and tumor progression

    PubMed Central

    Laklai, Hanane; Miroshnikova, Yekaterina A.; Pickup, Michael W.; Collisson, Eric A.; Kim, Grace E.; Barrett, Alex S.; Hill, Ryan C.; Lakins, Johnathon N.; Schlaepfer, David D.; Mouw, Janna K.; LeBleu, Valerie S.; Roy, Nilotpal; Novitskiy, Sergey V.; Johansen, Julia S.; Poli, Valeria; Kalluri, Raghu; Iacobuzio-Donahue, Christine A.; Wood, Laura D.; Hebrok, Matthias; Hansen, Kirk; Moses, Harold L.; Weaver, Valerie M.

    2016-01-01

    Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality yet anti-stromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor β (TGF-β) signaling have elevated epithelial Stat3 activity and develop a stiffer, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several Kras-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby Stat3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial Stat3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated Stat3 associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors, and highlight Stat3 and mechanics as key drivers of this phenotype. PMID:27089513

  18. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression.

    PubMed

    Laklai, Hanane; Miroshnikova, Yekaterina A; Pickup, Michael W; Collisson, Eric A; Kim, Grace E; Barrett, Alex S; Hill, Ryan C; Lakins, Johnathon N; Schlaepfer, David D; Mouw, Janna K; LeBleu, Valerie S; Roy, Nilotpal; Novitskiy, Sergey V; Johansen, Julia S; Poli, Valeria; Kalluri, Raghu; Iacobuzio-Donahue, Christine A; Wood, Laura D; Hebrok, Matthias; Hansen, Kirk; Moses, Harold L; Weaver, Valerie M

    2016-05-01

    Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors and highlight STAT3 and mechanics as key drivers of this phenotype.

  19. Ductulo-insular pancreatic endocrine tumor with amyloid deposition: report of a case.

    PubMed

    Shintaku, Masayuki; Tado, Hiroki; Inayama, Kumiko; Murakami, Takaaki; Suzuki, Takahisa

    2015-04-01

    We report a case of ductulo-insular pancreatic endocrine tumor (DI-PET) in a 50-year-old woman. The patient presented with symptoms and signs of hypoglycemia, and a small tumor in the uncus of the pancreas was extirpated. The tumor predominantly consisted of a neuroendocrine tumor (NET) of grade 2, which surrounded a minor component of ductular proliferation accompanied by a desmoplastic stroma. Both components were largely juxtaposed but admixed with each other in small areas. The NET component was immunoreactive for insulin and accompanied by the marked deposition of amyloid in the stroma. The ductular component consisted of a haphazard proliferation of ductules showing mildly atypical cytological features and immunoreactivities for cytokeratins 7 and 19. DI-PET is a rare composite neoplasm that should be distinguished from mixed ductal-neuroendocrine carcinoma because of the marked differences in treatment modalities and prognoses between the tumors. DI-PET associated with stromal amyloid deposition has not been reported to date. The 'transdifferentiation' of NET cells into ductular cells is considered as the most plausible histogenetic mechanism of this tumor, although other possibilities, such as an origin from a primitive endodermal stem cell or the induction of ductular proliferation by stimulation with NET-derived humoral factors, cannot be excluded. PMID:25684418

  20. A rare case of three different tumors in the same pancreatic specimen: a case report and brief review of the literature

    PubMed Central

    Paiella, Salvatore; Luchini, Claudio; Amodio, Antonio; Rusev, Borislav; Bassi, Claudio; Manfredi, Riccardo; Frulloni, Luca

    2016-01-01

    Solid pseudopapillary tumors (SPT) of the pancreas are rare neoplasms mainly affecting young women. Pancreatic serous cystadenomas (SCAs) and pancreatic neuroendocrine tumors (PanNETs) account for about 2% of all pancreatic neoplasms. The combination of these three lesions, to our knowledge, has never been described in literature. Here we report a case of combined SPT, SCA and PanNET affecting a 33-year-old woman. PMID:27284489

  1. Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action.

    PubMed

    Skrzypski, M; Sassek, M; Abdelmessih, S; Mergler, S; Grötzinger, C; Metzke, D; Wojciechowicz, T; Nowak, K W; Strowski, M Z

    2014-01-01

    Capsaicin (CAP), the pungent ingredient of chili peppers, inhibits growth of various solid cancers via TRPV1 as well as TRPV1-independent mechanisms. Recently, we showed that TRPV1 regulates intracellular calcium level and chromogranin A secretion in pancreatic neuroendocrine tumor (NET) cells. In the present study, we characterize the role of the TRPV1 agonist - CAP - in controlling proliferation and apoptosis of pancreatic BON and QGP-1 NET cells. We demonstrate that CAP reduces viability and proliferation, and stimulates apoptotic death of NET cells. CAP causes mitochondrial membrane potential loss, inhibits ATP synthesis and reduces mitochondrial Bcl-2 protein production. In addition, CAP increases cytochrome c and cleaved caspase 3 levels in cytoplasm. CAP reduces reactive oxygen species (ROS) generation. The antioxidant N-acetyl-l-cysteine (NAC) acts synergistically with CAP to reduce ROS generation, without affecting CAP-induced toxicity. TRPV1 protein reduction by 75% reduction fails to attenuate CAP-induced cytotoxicity. In summary, these results suggest that CAP induces cytotoxicity by disturbing mitochondrial potential, and inhibits ATP synthesis in NET cells. Stimulation of ROS generation by CAP appears to be a secondary effect, not related to CAP-induced cytotoxicity. These results justify further evaluation of CAP in modulating pancreatic NETs in vivo. PMID:24075930

  2. Use of an endoscopic surgical spacer during laparoscopic pancreatic tumor enucleation.

    PubMed

    Nakamura, Yoshiharu; Matsumoto, Satoshi; Uchida, Eiji; Tajiri, Takashi; Jo, Yoshio; Inoue, Toshiki

    2010-04-01

    A number of recent reports have highlighted the usefulness of laparoscopic surgery for pancreatic surgery; however, the procedure is not yet standard because of its technical challenges. Using an endoscopic surgical spacer (SECUREA) that we developed, we performed laparoscopic enucleation of a pancreatic tumor in a patient with pancreatic mucinous cystadenoma. The SECUREA is a polyurethane sponge with a radiopaque marker. It is elliptic-cylindrical and measures 6.5 cm on the major axis, 3.5 cm on the minor axis, and 2 cm in height. Herein, we report the intraoperative findings and examine the usefulness of SECUREA for laparoscopic enucleation. The spacer was introduced into the abdominal cavity through a 12-mm trocar, and was grasped with forceps to isolate or extend organs and tissues, thereby ensuring a safe and relatively uncontaminated surgical field. In addition, the high absorptiveness and water-holding capacity of the sponge facilitated removal of exudate, which created a clearer operative field and reduced the technical challenges of drainage manipulation. Indeed, replacement of the sponge was unnecessary because it returned to its original state after the liquid it contained had been aspirated. Our findings suggest that the SECUREA increases safety and reduces the technical difficulties of laparoscopic enucleation. PMID:20453423

  3. Resected tumor seeding in stomach wall due to endoscopic ultrasonography-guided fine needle aspiration of pancreatic adenocarcinoma

    PubMed Central

    Tomonari, Akiko; Katanuma, Akio; Matsumori, Tomoaki; Yamazaki, Hajime; Sano, Itsuki; Minami, Ryuki; Sen-yo, Manabu; Ikarashi, Satoshi; Kin, Toshifumi; Yane, Kei; Takahashi, Kuniyuki; Shinohara, Toshiya; Maguchi, Hiroyuki

    2015-01-01

    Endoscopic ultrasonography-guided fine needle aspiration (EUS-FNA) is a useful and relatively safe tool for the diagnosis and staging of pancreatic cancer. However, there have recently been several reports of tumor seeding after EUS-FNA of adenocarcinomas. A 78-year-old man was admitted to our hospital due to upper gastric pain. Examinations revealed a 20 mm mass in the pancreatic body, for which EUS-FNA was performed. The cytology of the lesion was adenocarcinoma, and the stage of the cancer was T3N0M0. The patient underwent surgery with curative intent, followed by adjuvant chemotherapy with S-1. An enlarging gastric submucosal tumor was found on gastroscopy at 28 mo after surgery accompanied by a rising level of CA19-9. Biopsy result was adenocarcinoma, consistent with a pancreatic primary tumor. Tumor seeding after EUS-FNA was strongly suspected. The patient underwent surgical resection of the gastric tumor with curative intent. The pathological result of the resected gastric specimen was adenocarcinoma with a perfectly matched mucin special stain result with the previously resected pancreatic cancer. This is the first case report of tumor seeding after EUS-FNA which was surgically resected and inspected pathologically. PMID:26217099

  4. Comparison of cytotoxic T lymphocyte responses against pancreatic cancer induced by dendritic cells transfected with total tumor RNA and fusion hybrided with tumor cell

    PubMed Central

    Chen, Jiang; Li, Hong-Yu; Wang, Di; Shao, Xiao-Dong

    2015-01-01

    Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination. PMID:25736302

  5. Massive renal urothelial carcinoma with renal vein tumor thrombus, pancreatic infiltration and adrenal metastasis: A case report

    PubMed Central

    Li, Tao; Gao, Liang; Wu, Weilu; Chen, Peng; Bu, Siyuan; Wei, Qiang; Yang, Lu

    2016-01-01

    A 49-year-old female patient presented with a massive left renal tumor, recurrent left flank pain and gross hematuria. The tumor was accompanied by a renal vein tumor thrombus, pancreatic infiltration and a solitary adrenal metastasis. Radical nephrectomy, distal pancreatectomy, ipsilateral adrenalectomy and splenectomy were performed. Histopathological examination suggested high-grade urothelial carcinoma (UC); however, tumor recurrence and multiple metastases were detected only 3 months after the surgery, and the patient succumbed during follow-up 1 month later. To the best of our knowledge, this is the first case of renal UC of such advanced stage with renal vein tumor thrombus, pancreatic infiltration and a solitary adrenal metastasis. PMID:27446406

  6. Improving pancreatic cancer diagnosis using circulating tumor cells: prospects for staging and single-cell analysis

    PubMed Central

    Court, Colin M; Ankeny, Jacob S; Hou, Shuang; Tseng, Hsian-Rong; Tomlinson, James S

    2016-01-01

    Pancreatic cancer (PC) is the fourth most common cause of cancer-related death in the USA, primarily due to late presentation coupled with an aggressive biology. The lack of adequate biomarkers for diagnosis and staging confound clinical decision-making and delay potentially effective therapies. Circulating tumor cells (CTCs) are a promising new biomarker in PC. Preliminary studies have demonstrated their potential clinical utility, and newer CTC isolation platforms have the potential to provide clinicians access to tumor tissue in a reliable, real-time manner. Such a ‘liquid biopsy’ has been demonstrated in several cancers, and small studies have demonstrated its potential applications in PC. This article reviews the available literature on CTCs as a biomarker in PC and presents the latest innovations in CTC research as well as their potential applications in PC. PMID:26390158

  7. Gastro-entero-pancreatic neuroendocrine tumors: Is now time for a new approach?

    PubMed Central

    Berardi, Rossana; Torniai, Mariangela; Savini, Agnese; Rinaldi, Silvia; Cascinu, Stefano

    2016-01-01

    Gastro-entero-pancreatic tumors (GEP-NETs) are rare neoplasms often characterized by an overexpression of somatostatin receptors. Thus, radiolabeled somatostatin analogues have showed an increasing relevance both in diagnosis and treatment, especially in low- and intermediate-differentiated GEP-NETs. These evidences have led to a growing development of new functional imaging techniques as 68Ga-DOTATATE positron emission tomography/computed tomography (PET/CT) proved useful in the management of these neoplasms. However these tumors have a heterogeneous behavior also modifying their aggressiveness through time. Therefore sometimes 18F-fluorodeoxyglucose PET/CT appears to be more appropriate to obtain a better assessment of the disease. According to these considerations, the combination of different functional imaging techniques should be considered in the management of GEP-NETs patients allowing clinicians to choose the tailored therapeutic approach among available options. PMID:27081635

  8. The miR-24-Bim pathway promotes tumor growth and angiogenesis in pancreatic carcinoma.

    PubMed

    Liu, Rui; Zhang, Haiyang; Wang, Xia; Zhou, Likun; Li, Hongli; Deng, Ting; Qu, Yanjun; Duan, Jingjing; Bai, Ming; Ge, Shaohua; Ning, Tao; Zhang, Le; Huang, Dingzhi; Ba, Yi

    2015-12-22

    miRNAs are a group of small RNAs that have been reported to play a key role at each stage of tumorigenesis and are believed to have future practical value. We now demonstrate that Bim, which stimulates cell apoptosis, is obviously down-regulated in pancreatic cancer (PaC) tissues and cell lines. And Bim-related miR-24 is significantly up-regulated in PaC. The repressed expression of Bim is proved to be a result of miR-24, thus promoting cell growth of both cancer and vascular cells, and accelerating vascular ring formation. By using mouse tumor model, we clearly showed that miR-24 promotes tumor growth and angiogenesis by suppressing Bim expression in vivo. Therefore, a new pathway comprising miR-24 and Bim can be used in the exploration of drug-target therapy of PaC.

  9. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD

    PubMed Central

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K.; Miyazaki, Hideki; Michael, Iacovos P.; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-01-01

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis. PMID:26831065

  10. Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures.

    PubMed

    Mohamed, Amira; Blanchard, Marie-Pierre; Albertelli, Manuela; Barbieri, Federica; Brue, Thierry; Niccoli, Patricia; Delpero, Jean-Robert; Monges, Genevieve; Garcia, Stephane; Ferone, Diego; Florio, Tullio; Enjalbert, Alain; Moutardier, Vincent; Schonbrunn, Agnes; Gerard, Corinne; Barlier, Anne; Saveanu, Alexandru

    2014-10-01

    Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) raise difficult therapeutic problems despite the emergence of targeted therapies. Somatostatin analogs (SSA) remain pivotal therapeutic drugs. However, the tachyphylaxis and the limited antitumoral effects observed with the classical somatostatin 2 (sst2) agonists (octreotide and lanreotide) led to the development of new SSA, such as the pan sst receptor agonist pasireotide. Our aim was to compare the effects of pasireotide and octreotide on cell survival, chromogranin A (CgA) secretion, and sst2 phosphorylation/trafficking in pancreatic NET (pNET) primary cells from 15 tumors. We established and characterized the primary cultures of human pancreatic tumors (pNETs) as powerful preclinical models for understanding the biological effects of SSA. At clinically relevant concentrations (1-10 nM), pasireotide was at least as efficient as octreotide in inhibiting CgA secretion and cell viability through caspase-dependent apoptosis during short treatments, irrespective of the expression levels of the different sst receptors or the WHO grade of the parental tumor. Interestingly, unlike octreotide, which induces a rapid and persistent partial internalization of sst2 associated with its phosphorylation on Ser341/343, pasireotide did not phosphorylate sst2 and induced a rapid and transient internalization of the receptor followed by a persistent recycling at the cell surface. These results provide the first evidence, to our knowledge, of striking differences in the dynamics of sst2 trafficking in pNET cells treated with the two SSAs, but with similar efficiency in the control of CgA secretion and cell viability.

  11. Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors

    NASA Astrophysics Data System (ADS)

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Handels, Heinz

    2012-02-01

    Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a known source of uncertainty and should be accounted for during radiotherapy planning - which is difficult by using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to predict patients' motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only 3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&- shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the modelbased 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment of respiratory motion effects.

  12. Computed tomography-guided percutaneous core needle biopsy in pancreatic tumor diagnosis

    PubMed Central

    Tyng, Chiang J; Almeida, Maria Fernanda A; Barbosa, Paula NV; Bitencourt, Almir GV; Berg, José Augusto AG; Maciel, Macello S; Coimbra, Felipe JF; Schiavon, Luiz Henrique O; Begnami, Maria Dirlei; Guimarães, Marcos D; Zurstrassen, Charles E; Chojniak, Rubens

    2015-01-01

    AIM: To evaluate the techniques, results, and complications related to computed tomography (CT)-guided percutaneous core needle biopsies of solid pancreatic lesions. METHODS: CT-guided percutaneous biopsies of solid pancreatic lesions performed at a cancer reference center between January 2012 and September 2013 were retrospectively analyzed. Biopsy material was collected with a 16-20 G Tru-Core needle (10-15 cm; Angiotech, Vancouver, CA) using a coaxial system and automatic biopsy gun. When direct access to the lesion was not possible, indirect (transgastric or transhepatic) access or hydrodissection and/or pneumodissection maneuvers were used. Characteristics of the patients, lesions, procedures, and histologic results were recorded using a standardized form. RESULTS: A total of 103 procedures included in the study were performed on patients with a mean age of 64.8 year (range: 39-94 year). The mean size of the pancreatic lesions was 45.5 mm (range: 15-195 mm). Most (75/103, 72.8%) procedures were performed via direct access, though hydrodissection and/or pneumodissection were used in 22.2% (23/103) of cases and indirect transhepatic or transgastric access was used in 4.8% (5/103) of cases. Histologic analysis was performed on all biopsies, and diagnoses were conclusive in 98.1% (101/103) of cases, confirming 3.9% (4/103) of tumors were benign and 94.2% (97/103) were malignant; results were atypical in 1.9% (2/103) of cases, requiring a repeat biopsy to diagnose a neuroendocrine tumor, and surgical resection to confirm a primary adenocarcinoma. Only mild/moderate complications were observed in 9/103 patients (8.7%), and they were more commonly associated with biopsies of lesions located in the head/uncinate process (n = 8), than of those located in the body/tail (n = 1) of the pancreas, but this difference was not significant. CONCLUSION: CT-guided biopsy of a pancreatic lesion is a safe procedure with a high success rate, and is an excellent option for minimally

  13. [Motion analysis of target in stereotactic radiotherapy of lung tumors using 320-row multidetector CT].

    PubMed

    Imae, Toshikazu; Haga, Akihiro; Nakagawa, Keiichi; Ino, Kenji; Tanaka, Kenichirou; Okano, Yukari; Sasaki, Katsutake; Saegusa, Shigeki; Shiraki, Takashi; Oritate, Takashi; Yano, Keiichi; Shinohara, Hiroyuki

    2011-01-01

    Multi-detector computed tomography (MDCT) has rapidly evolved and is increasingly used for treatment simulation of thoracic and abdominal radiotherapy. A 320-detector row CT scanner has recently become available that allows axial volumetric scanning of a 16-cm-long range in a patient without table movement. Current radiotherapy techniques require a generous margin around the presumed gross tumor volume (GTV) to account for uncertainties such as tumor motion and set up error. Motion analysis is useful to evaluate the internal margin of a moving target due to respiration and to improve therapeutic precision. The purpose of this study is to propose a method using phase-only correlation to automatically detect the target and to assess the motion of the target in numerical phantoms and patients. Free-breathing scans using 320-detector row CT were acquired for 4 patients with lung tumor(s). The proposed method was feasible for motion analysis of all numerical phantoms and patients. The results reproduced the facts that the motion of tumors in the patients varied in orbits during the respiratory cycle and exhibited hysteresis. The maximum distance between peak exhalation and inhalation increased as the tumors approached the diaphragm. The proposed method detected the three-dimensional position of the targets automatically and analyzed the trajectories. The tumor motion due to respiration differed by region and was greatest for the lower lobe. PMID:21471676

  14. Image-Guided Radiofrequency Ablation of a Pancreatic Tumor with a New Triple Spiral-Shaped Electrode

    SciTech Connect

    Thanos, Loukas; Poulou, Loukia S.; Mailli, Lito; Pomoni, Maria; Kelekis, Dimitrios A.

    2010-02-15

    Image-guided, minimally invasive treatment modalities have become an area of considerable interest and research during the last few years for the treatment of primary and secondary liver tumors. We report our experience with an unresectable pancreatic tumor, treated with application of radiofrequency ablation under CT guidance that even though a complication occurred during the procedure, had excellent results on follow-up CT scans.

  15. Pre-clinical evaluation of a novel CEA-targeting near-infrared fluorescent tracer delineating colorectal and pancreatic tumors

    PubMed Central

    Boonstra, Martin C.; Tolner, Berend; Schaafsma, Boudewijn E.; Boogerd, Leonora S.F.; Prevoo, Hendrica A.J.M; Bhavsar, Guarav; Kuppen, Peter J.K.; Sier, Cornelis F.M.; Bonsing, Bert A.; Frangioni, John V.; van de Velde, Cornelis J.H.; Chester, Kerry A.; Vahrmeijer, Alexander L.

    2016-01-01

    Surgery is the cornerstone of oncologic therapy with curative intent. However, identification of tumor cells in the resection margins is difficult, resulting in non-radical resections, increased cancer recurrence and subsequent decreased patient survival. Novel imaging techniques that aid in demarcating tumor margins during surgery are needed. Overexpression of carcinoembryonic antigen (CEA) is found in the majority of gastro-intestinal carcinomas, including colorectal and pancreas. We developed ssSM3E/800CW, a novel CEA-targeted near-infrared fluorescent (NIRF) tracer, based on a disulphide stabilized single-chain antibody fragment (ssScFv), to visualize colorectal and pancreatic tumors in a clinically translatable setting. The applicability of the tracer was tested for cell and tissue binding characteristics and dosing using immunohistochemistry, flow cytometry, cell-based plate assays and orthotopic colorectal (HT-29, well differentiated) and pancreatic (BXPC-3, poorly differentiated) xenogeneic human-mouse models. NIRF signals were visualized using the clinically compatible FLARE™ imaging system. Calculated clinically relevant doses of ssSM3E/800CW selectively accumulated in colorectal and pancreatic tumors/cells, with highest tumor-to-background ratios of 5.1±0.6 at 72 h post-injection, which proved suitable for intra-operative detection and delineation of tumor boarders and small (residual) tumor-nodules in mice, between 8 h and 96 h post-injection. Ex vivo fluorescence imaging and pathologic examination confirmed tumor-specificity and the distribution of the tracer. Our results indicate that ssSM3E/800CW shows promise as a diagnostic tool to recognize colorectal and pancreatic cancers for fluorescent-guided surgery applications. If successful translated clinically, this tracer could help improve the completeness of surgery and thus survival. PMID:25895046

  16. Does contrast-enhanced ultrasound reveal tumor angiogenesis in pancreatic ductal carcinoma? A prospective study.

    PubMed

    Nishida, Mutsumi; Koito, Kazumitsu; Hirokawa, Naoki; Hori, Masakazu; Satoh, Taishi; Hareyama, Masato

    2009-02-01

    The purpose of this study is to evaluate tumor vascularity of pancreatic carcinoma noninvasively by contrast-enhanced ultrasound (US) and clarify the diagnostic value of tumor vascularity in subjects with nonresectable advanced pancreatic carcinoma. The study was approved by our institutional review board and written informed consent was obtained from all subjects. Twenty-seven subjects with advanced pancreatic ductal carcinoma were treated by chemoradiotherapy. Contrast-enhanced US, US guided biopsies and dynamic computed tomography (CT) were performed before and after the therapy. We assigned the intratumoral enhancement pattern of US as an enhanced ultrasound (EU) score, from 1 to 4, according to the degree of enhancement area. Intratumoral microvessel density (IMD) and average vessel diameter (AVD) were calculated by means of CD 34 immunostaining. Vascular endothelial growth factor (VEGF) staining was graded on a scale of 1 to 3. EU scores before chemoradiotherapy were compared with IMD, AVD, VEGF, histological grading and hepatic metastasis. After the therapy, local treatment response was evaluated by dynamic CT calculating the maximum area of the tumor, by comparing it with its size in pre- therapy. Subjects who had at least a 50% or more decrease of tumor size lasting more than 4 wk were estimated as partial response (PR), more than a 50% of increase progressive disease (PD) and if neither PR nor PD criteria were met, they were classified as stabled disease (SD). Next, EU scores were compared with IMD, AVD, VEGF and treatment response. Statistically significant differences were evaluated by Pearson's correlation, post-hoc, Spearman's rank correlation, Wilcoxon rank sum and Student's t-test. A p < 0.05 was defined as being statistically significant. Before the therapy, the EU score and IMD were significantly correlated (r = 0.50, p < 0.02), as was VEGF (r = 0.45, p < 0.05). The EU score and AVD were negatively correlated (r = - 0.56, p < 0.02). Significant

  17. A biomechanical approach for in vivo lung tumor motion prediction during external beam radiation therapy

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2015-03-01

    Lung Cancer is the leading cause of cancer death in both men and women. Among various treatment methods currently being used in the clinic, External Beam Radiation Therapy (EBRT) is used widely not only as the primary treatment method, but also in combination with chemotherapy and surgery. However, this method may lack desirable dosimetric accuracy because of respiration induced tumor motion. Recently, biomechanical modeling of the respiratory system has become a popular approach for tumor motion prediction and compensation. This approach requires reasonably accurate data pertaining to thoracic pressure variation, diaphragm position and biomechanical properties of the lung tissue in order to predict the lung tissue deformation and tumor motion. In this paper, we present preliminary results of an in vivo study obtained from a Finite Element Model (FEM) of the lung developed to predict tumor motion during respiration.

  18. A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis

    SciTech Connect

    Kim, Su Jin; Chang, Suhwan; Lee, Yangsoon; Kim, Na Young; Hwang, Yeonsil; Min, Hye Jin; Yoo, Kyung-Sook; Park, Eun Hye; Kim, Seokho; Chung, Young-Hwa; Park, Young Woo; Koh, Sang Seok

    2014-11-07

    Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31{sup +} vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models.

  19. Comparison of Liver Tumor Motion With and Without Abdominal Compression Using Cine-Magnetic Resonance Imaging

    SciTech Connect

    Eccles, Cynthia L.; Patel, Ritesh; Simeonov, Anna K.; Lockwood, Gina; Haider, Masoom; Dawson, Laura A.

    2011-02-01

    Purpose: Abdominal compression (AC) can be used to reduce respiratory liver motion in patients undergoing liver stereotactic body radiotherapy. The purpose of the present study was to measure the changes in three-dimensional liver tumor motion with and without compression using cine-magnetic resonance imaging. Patients and Methods: A total of 60 patients treated as a part of an institutional research ethics board-approved liver stereotactic body radiotherapy protocol underwent cine T2-weighted magnetic resonance imaging through the tumor centroid in the coronal and sagittal planes. A total of 240 cine-magnetic resonance imaging sequences acquired at one to three images each second for 30-60 s were evaluated using an in-house-developed template matching tool (based on the coefficient correlation) to measure the magnitude of the tumor motion. The average tumor edge displacements were used to determine the magnitude of changes in the caudal-cranial (CC) and anteroposterior (AP) directions, with and without AC. Results: The mean tumor motion without AC of 11.7 mm (range, 4.8-23.3) in the CC direction was reduced to 9.4 mm (range, 1.6-23.4) with AC. The tumor motion was reduced in both directions (CC and AP) in 52% of the patients and in a single direction (CC or AP) in 90% of the patients. The mean decrease in tumor motion with AC was 2.3 and 0.6 mm in the CC and AP direction, respectively. Increased motion occurred in one or more directions in 28% of patients. Clinically significant (>3 mm) decreases were observed in 40% and increases in <2% of patients in the CC direction. Conclusion: AC can significantly reduce three-dimensional liver tumor motion in most patients, although the magnitude of the reduction was smaller than previously reported.

  20. Decreased Warburg effect induced by ATP citrate lyase suppression inhibits tumor growth in pancreatic cancer.

    PubMed

    Zong, Haifeng; Zhang, Yang; You, Yong; Cai, Tiantian; Wang, Yehuang

    2015-03-01

    ATP citrate lyase (ACLY) is responsible for the conversion of cytosolic citrate into acetyl-CoA and oxaloacetate, and the first rate-limiting enzyme involved in de novo lipogenesis. Recent studies have demonstrated that inhibition of elevated ACLY results in growth arrest and apoptosis in a subset of cancers; however, the expression pattern and underlying biological function of ACLY in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the current study, overexpressed ACLY was more commonly observed in PDAC compared to normal pancreatic tissues. Kaplan-Meier survival analysis showed that high expression level of ACLY resulted in a poor prognosis of PDAC patients. Silencing of endogenous ACLY expression by siRNA in PANC-1 cells led to reduced cell viability and increased cell apoptosis. Furthermore, significant decrease in glucose uptake and lactate production was observed after ACLY was knocked down, and this effect was blocked by 2-deoxy-D-glucose, indicating that ACLY functions in the Warburg effect affect PDAC cell growth. Collectively, this study reveals that suppression of ACLY plays an anti-tumor role through decreased Warburg effect, and ACLY-related inhibitors might be potential therapeutic approaches for PDAC. PMID:25701462

  1. Effect of Audio Coaching on Correlation of Abdominal Displacement With Lung Tumor Motion

    SciTech Connect

    Nakamura, Mitsuhiro Narita, Yuichiro; Matsuo, Yukinori; Narabayashi, Masaru; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Nagata, Yasushi; Hiraoka, Masahiro

    2009-10-01

    Purpose: To assess the effect of audio coaching on the time-dependent behavior of the correlation between abdominal motion and lung tumor motion and the corresponding lung tumor position mismatches. Methods and Materials: Six patients who had a lung tumor with a motion range >8 mm were enrolled in the present study. Breathing-synchronized fluoroscopy was performed initially without audio coaching, followed by fluoroscopy with recorded audio coaching for multiple days. Two different measurements, anteroposterior abdominal displacement using the real-time positioning management system and superoinferior (SI) lung tumor motion by X-ray fluoroscopy, were performed simultaneously. Their sequential images were recorded using one display system. The lung tumor position was automatically detected with a template matching technique. The relationship between the abdominal and lung tumor motion was analyzed with and without audio coaching. Results: The mean SI tumor displacement was 10.4 mm without audio coaching and increased to 23.0 mm with audio coaching (p < .01). The correlation coefficients ranged from 0.89 to 0.97 with free breathing. Applying audio coaching, the correlation coefficients improved significantly (range, 0.93-0.99; p < .01), and the SI lung tumor position mismatches became larger in 75% of all sessions. Conclusion: Audio coaching served to increase the degree of correlation and make it more reproducible. In addition, the phase shifts between tumor motion and abdominal displacement were improved; however, all patients breathed more deeply, and the SI lung tumor position mismatches became slightly larger with audio coaching than without audio coaching.

  2. Therapy of metastatic pancreatic neuroendocrine tumors (pNETs): recent insights and advances

    PubMed Central

    Ito, Tetsuhide; Igarashi, Hisato

    2013-01-01

    Neuroendocrine tumors (NETs) [carcinoids, pancreatic neuroendocrine tumors (pNETs)] are becoming an increasing clinical problem because not only are they increasing in frequency, but they can frequently present with advanced disease that requires diagnostic and treatment approaches different from those used in the neoplasms that most physicians are used to seeing and treating. In the past few years there have been numerous advances in all aspects of NETs including: an understanding of their unique pathogenesis; specific classification systems developed which have prognostic value; novel methods of tumor localization developed; and novel treatment approaches described. In patients with advanced metastatic disease these include the use of newer chemotherapeutic approaches, an increased understanding of the role of surgery and cytoreductive methods, the development of methods for targeted delivery of cytotoxic agents, and the development of targeted medical therapies (everolimus, sunitinib) based on an increased understanding of the disease biology. Although pNETs and gastrointestinal NETs share many features, recent studies show they differ in pathogenesis and in many aspects of diagnosis and treatment, including their responsiveness to different therapies. Because of limited space, this review will be limited to the advances made in the management and treatment of patients with advanced metastatic pNETs over the past 5 years. PMID:22886480

  3. Do Maximum Intensity Projection Images Truly Capture Tumor Motion?

    SciTech Connect

    Park, Kwangyoul Huang, Long; Gagne, Havaleh; Papiez, Lech

    2009-02-01

    Purpose: For the treatment of patients with lung cancer, internal target volume frequently is determined by using maximum intensity projection (MIP) images generated by means of four-dimensional computed tomography (4D-CT). To check the accuracy of MIPs for various target motions, especially for targets moving irregularly, we performed phantom studies using a programmable dynamic lung phantom. Methods and Materials: A custom-built programmable lung phantom was used to simulate irregular target motions along the superior-inferior direction. After scanning in helical mode using 4D-CT, reconstructed phase and MIP images were imported into the Pinnacle 8.0 treatment planning system for image analysis. Results: For all regular periodic target motions with constant amplitude and period, the measured MIP target span along the superior-inferior direction was accurate within 2-3 mm of the real target motion span. For irregular target motions with varying amplitudes and periods, the measured MIP target span systematically underrepresented the real range of target motion by more than 1 cm in some cases. The difference between measured MIP target span and real target span decreased as the target moved faster. We associate these discrepancies with the fact that current reconstruction algorithms of commercial 4D-CT are based on phase binning. Conclusions: According to our phantom measurements, MIP accurately reflects the range of target motion for regular target motion. However, it generally underestimates the range of target motion when the motion is irregular in amplitude and periodicity. Clinical internal target volume determination using MIP requires caution, especially when there is breathing irregularity.

  4. Non-specific internalization of laser ablated pure gold nanoparticles in pancreatic tumor cell.

    PubMed

    Sobhan, M A; Sreenivasan, V K A; Withford, M J; Goldys, E M

    2012-04-01

    We investigate the intracellular uptake of 7.3 nm, 21.2 nm and 31.3 nm average size pure colloidal gold nanoparticles synthesized using femtosecond laser ablation technique in pure water. Dark-field imaging, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) was used to assess the uptake of these pure gold nanoparticles in the pancreatic tumor cell line. We show that these ligand-free gold nanoparticles are non-toxic to these cells. The nanoparticles and cell images indicated that unmodified gold nanoparticles interacted with the cells, despite negative surface charge on both the cells and the nanoparticles. We also demonstrate that the uptake of the gold nanoparticles is size-dependent.

  5. GLP1 and glucagon co-secreting pancreatic neuroendocrine tumor presenting as hypoglycemia after gastric bypass

    PubMed Central

    Guimarães, Marta; Rodrigues, Pedro; Pereira, Sofia S; Nora, Mário; Gonçalves, Gil; Albrechtsen, Nicolai Wewer; Hartmann, Bolette; Holst, Jens Juul

    2015-01-01

    Summary Post-prandial hypoglycemia is frequently found after bariatric surgery. Although rare, pancreatic neuroendocrine tumors (pNET), which occasionally are mixed hormone secreting, can lead to atypical clinical manifestations, including reactive hypoglycemia. Two years after gastric bypass surgery for the treatment of severe obesity, a 54-year-old female with previous type 2 diabetes, developed post-prandial sweating, fainting and hypoglycemic episodes, which eventually led to the finding by ultrasound of a 1.8-cm solid mass in the pancreatic head. The 72-h fast test and the plasma chromogranin A levels were normal but octreotide scintigraphy showed a single focus of abnormal radiotracer uptake at the site of the nodule. There were no other clinical signs of hormone secreting pNET and gastrointestinal hormone measurements were not performed. The patient underwent surgical enucleation with complete remission of the hypoglycemic episodes. Histopathology revealed a well-differentiated neuroendocrine carcinoma with low-grade malignancy with positive chromogranin A and glucagon immunostaining. An extract of the resected tumor contained a high concentration of glucagon (26.707 pmol/g tissue), in addition to traces of GLP1 (471 pmol/g), insulin (139 pmol/g) and somatostatin (23 pmol/g). This is the first report of a GLP1 and glucagon co-secreting pNET presenting as hypoglycemia after gastric bypass surgery. Although pNET are rare, they should be considered in the differential diagnosis of the clinical approach to the post-bariatric surgery hypoglycemia patient. Learning points pNETs can be multihormonal-secreting, leading to atypical clinical manifestations.Reactive hypoglycemic episodes are frequent after gastric bypass.pNETs should be considered in the differential diagnosis of hypoglycemia after bariatric surgery. PMID:26266036

  6. Tumor-Priming Smoothened Inhibitor Enhances Deposition and Efficacy of Cytotoxic Nanoparticles in a Pancreatic Cancer Model.

    PubMed

    Roy Chaudhuri, Tista; Straubinger, Ninfa L; Pitoniak, Rosemarie F; Hylander, Bonnie L; Repasky, Elizabeth A; Ma, Wen Wee; Straubinger, Robert M

    2016-01-01

    Most pancreatic adenocarcinoma patients present with unresectable disease and benefit little from chemotherapy. Poor tumor perfusion and vascular permeability limit drug deposition. Previous work showed that Smoothened inhibitors of hedgehog signaling (sHHI) promote neovascularization in spontaneous mouse models of pancreatic cancer (PaCA) and enhance tumor permeability to low-molecular weight compounds. Here, we tested the hypothesis that sHHI can enhance tumor deposition and efficacy of drug-containing nanoparticles consisting of 80 to 100 nm sterically-stabilized liposomes (SSL) containing doxorubicin (SSL-DXR). SCID mice bearing low-passage patient-derived PaCA xenografts (PDX) were pretreated p.o. for 10 days with 40 mg/kg/d NVP-LDE225 (erismodegib), followed by i.v. SSL-DXR. Microvessel density, permeability, perfusion, and morphology were compared with untreated controls, as was SSL deposition and therapeutic efficacy. The sHHI alone affected tumor growth minimally, but markedly increased extravasation of nanoparticles into adenocarcinoma cell-enriched regions of the tumor. Immunostaining showed that sHHI treatment decreased pericyte coverage (α-SMA(+)) of CD31(+) vascular endothelium structures, and increased the abundance of endothelium-poor (CD31(-)) basement membrane structures (collagen IV(+)), suggesting increased immature microvessels. SSL-DXR (15 mg/kg) administered after sHHI pretreatment arrested tumor volume progression and decreased tumor perfusion/permeability, suggesting an initial vascular pruning response. Compared with controls, one cycle of 10-day sHHI pretreatment followed by 6 mg/kg SSL-DXR doubled median tumor progression time. Three cycles of treatment with sHHI and SSL-DXR, with a 10-day between-cycle drug holiday, nearly tripled median tumor progression time. Based upon these data, short-term sHHI treatment sequenced with nanoparticulate drug carriers constitutes a potential strategy to enhance efficacy of pancreatic cancer therapy

  7. Tumor-Priming Smoothened Inhibitor Enhances Deposition and Efficacy of Cytotoxic Nanoparticles in a Pancreatic Cancer Model.

    PubMed

    Roy Chaudhuri, Tista; Straubinger, Ninfa L; Pitoniak, Rosemarie F; Hylander, Bonnie L; Repasky, Elizabeth A; Ma, Wen Wee; Straubinger, Robert M

    2016-01-01

    Most pancreatic adenocarcinoma patients present with unresectable disease and benefit little from chemotherapy. Poor tumor perfusion and vascular permeability limit drug deposition. Previous work showed that Smoothened inhibitors of hedgehog signaling (sHHI) promote neovascularization in spontaneous mouse models of pancreatic cancer (PaCA) and enhance tumor permeability to low-molecular weight compounds. Here, we tested the hypothesis that sHHI can enhance tumor deposition and efficacy of drug-containing nanoparticles consisting of 80 to 100 nm sterically-stabilized liposomes (SSL) containing doxorubicin (SSL-DXR). SCID mice bearing low-passage patient-derived PaCA xenografts (PDX) were pretreated p.o. for 10 days with 40 mg/kg/d NVP-LDE225 (erismodegib), followed by i.v. SSL-DXR. Microvessel density, permeability, perfusion, and morphology were compared with untreated controls, as was SSL deposition and therapeutic efficacy. The sHHI alone affected tumor growth minimally, but markedly increased extravasation of nanoparticles into adenocarcinoma cell-enriched regions of the tumor. Immunostaining showed that sHHI treatment decreased pericyte coverage (α-SMA(+)) of CD31(+) vascular endothelium structures, and increased the abundance of endothelium-poor (CD31(-)) basement membrane structures (collagen IV(+)), suggesting increased immature microvessels. SSL-DXR (15 mg/kg) administered after sHHI pretreatment arrested tumor volume progression and decreased tumor perfusion/permeability, suggesting an initial vascular pruning response. Compared with controls, one cycle of 10-day sHHI pretreatment followed by 6 mg/kg SSL-DXR doubled median tumor progression time. Three cycles of treatment with sHHI and SSL-DXR, with a 10-day between-cycle drug holiday, nearly tripled median tumor progression time. Based upon these data, short-term sHHI treatment sequenced with nanoparticulate drug carriers constitutes a potential strategy to enhance efficacy of pancreatic cancer therapy.

  8. Development of an endoluminal high-intensity ultrasound applicator for image-guided thermal therapy of pancreatic tumors

    NASA Astrophysics Data System (ADS)

    Adams, Matthew S.; Scott, Serena J.; Salgaonkar, Vasant A.; Jones, Peter D.; Plata-Camargo, Juan C.; Sommer, Graham; Diederich, Chris J.

    2015-03-01

    An ultrasound applicator for endoluminal thermal therapy of pancreatic tumors has been introduced and evaluated through acoustic/biothermal simulations and ex vivo experimental investigations. Endoluminal therapeutic ultrasound constitutes a minimally invasive conformal therapy and is compatible with ultrasound or MR-based image guidance. The applicator would be placed in the stomach or duodenal lumen, and sonication would be performed through the luminal wall into the tumor, with concurrent water cooling of the wall tissue to prevent its thermal injury. A finite-element (FEM) 3D acoustic and biothermal model was implemented for theoretical analysis of the approach. Parametric studies over transducer geometries and frequencies revealed that operating frequencies within 1-3 MHz maximize penetration depth and lesion volume while sparing damage to the luminal wall. Patient-specific FEM models of pancreatic head tumors were generated and used to assess the feasibility of performing endoluminal ultrasound thermal ablation and hyperthermia of pancreatic tumors. Results indicated over 80% of the volume of small tumors (~2 cm diameter) within 35 mm of the duodenum could be safely ablated in under 30 minutes or elevated to hyperthermic temperatures at steady-state. Approximately 60% of a large tumor (~5 cm diameter) model could be safely ablated by considering multiple positions of the applicator along the length of the duodenum to increase coverage. Prototype applicators containing two 3.2 MHz planar transducers were fabricated and evaluated in ex vivo porcine carcass heating experiments under MR temperature imaging (MRTI) guidance. The applicator was positioned in the stomach adjacent to the pancreas, and sonications were performed for 10 min at 5 W/cm2 applied intensity. MRTI indicated over 400C temperature rise in pancreatic tissue with heating penetration extending 3 cm from the luminal wall.

  9. Four-Dimensional Computed Tomography-Based Interfractional Reproducibility Study of Lung Tumor Intrafractional Motion

    SciTech Connect

    Michalski, Darek Sontag, Marc; Li Fang; Andrade, Regiane S. de; Uslene, Irmute; Brandner, Edward D.; Heron, Dwight E.; Yue Ning; Huq, M. Saiful

    2008-07-01

    Purpose: To evaluate the interfractional reproducibility of respiration-induced lung tumors motion, defined by their centroids and the intrafractional target motion range. Methods and Materials: Twentythree pairs of four-dimensional/computed tomography scans were acquired for 22 patients. Gross tumor volumes were contoured, Clinical target volumes (CTVs) were generated. Geometric data for CTVs and lung volumes were extracted. The motion tracks of CTV centroids, and CTV edges along the cranio-caudal, anterior-posterior, and lateral directions were evaluated. The Pearson correlation coefficient for motion tracks along the cranio-caudal direction was determined for the entire respiratory cycle and for five phases about the end of expiration. Results: The largest motion extent was along the cranio-caudal direction. The intrafractional motion extent for five CTVs was <0.5 cm, the largest motion range was 3.59 cm. Three CTVs with respiration-induced displacement >0.5 cm did not exhibit the similarity of motion, and for 16 CTVs with motion >0.5 cm the correlation coefficient was >0.8. The lung volumes in corresponding phases for cases that demonstrated CTVs motion similarity were reproducible. No correlation between tumor size and mobility was found. Conclusion: Target motion reproducibility seems to be present in 87% of cases in our dataset. Three cases with dissimilar motion indicate that it is advisable to verify target motion during treatment. The adaptive adjustment to compensate the possible interfractional shifts in a target position should be incorporated as a routine policy for lung cancer radiotherapy.

  10. A simulation study of irregular respiratory motion and its dosimetric impact on lung tumors

    NASA Astrophysics Data System (ADS)

    Mutaf, Y. D.; Scicutella, C. J.; Michalski, D.; Fallon, K.; Brandner, E. D.; Bednarz, G.; Huq, M. S.

    2011-02-01

    This study is aimed at providing a dosimetric evaluation of the irregular motion of lung tumors due to variations in patients' respiration. Twenty-three lung cancer patients are retrospectively enrolled in this study. The motion of the patient clinical target volume is simulated and two types of irregularities are defined: characteristic and uncharacteristic motions. Characteristic irregularities are representative of random fluctuations in the observed target motion. Uncharacteristic irregular motion is classified as systematic errors in determination of the target motion during the planning session. Respiratory traces from measurement of patient abdominal motion are also used for the target motion simulations. Characteristic irregular motion was observed to cause minimal changes in target dosimetry with the largest effect of 2.5% ± 0.9% (1σ) reduction in the minimum target dose (Dmin) observed for targets that move 2 cm on average and exhibiting 50% amplitude variations within a session. However, uncharacteristic irregular motion introduced more drastic changes in the clinical target volume (CTV) dose; 4.1% ± 1.7% reduction for 1 cm motion and 9.6% ± 1.7% drop for 2 cm. In simulations with patients' abdominal motion, corresponding changes in target dosimetry were observed to be negligible (<0.1%). Only uncharacteristic irregular motion was identified as a clinically significant source of dosimetric uncertainty.

  11. Leveraging respiratory organ motion for non-invasive tumor treatment devices: a feasibility study

    NASA Astrophysics Data System (ADS)

    Möri, Nadia; Jud, Christoph; Salomir, Rares; Cattin, Philippe C.

    2016-06-01

    In noninvasive abdominal tumor treatment, research has focused on minimizing organ motion either by gating, breath holding or tracking of the target. The paradigm shift proposed in this study takes advantage of the respiratory organ motion to passively scan the tumor. In the proposed self-scanning method, the focal point of the HIFU device is held fixed for a given time, while it passively scans the tumor due to breathing motion. The aim of this paper is to present a treatment planning method for such a system and show by simulation its feasibility. The presented planning method minimizes treatment time and ensures complete tumor ablation under free-breathing. We simulated our method on realistic motion patterns from a patient specific statistical respiratory model. With our method, we achieved a shorter treatment time than with the gold-standard motion-compensation approach. The main advantage of the proposed method is that electrically steering of the focal spot is no longer needed. As a consequence, it is much easier to find an optimal solution for both avoiding near field heating and covering the whole tumor. However, the reduced complexity on the beam forming comes at the price of an increased complexity on the planning side as well as a reduced efficiency in the energy distribution. Although we simulate the approach on HIFU, the idea of self-scanning passes over to other tumor treatment modalities such as proton therapy or classical radiation therapy.

  12. A Tumorigenic Factor Interactome Connected Through Tumor Suppressor MicroRNA-198 in Human Pancreatic Cancer

    PubMed Central

    Marin-Muller, Christian; Li, Dali; Bharadwaj, Uddalak; Li, Min; Chen, Changyi; Hodges, Sally E.; Fisher, William E.; Mo, Qianxing; Hung, Mien-Chie; Yao, Qizhi

    2013-01-01

    Purpose The majority of pancreatic cancers (PCs) overexpress mesothelin (MSLN), which contributes to enhanced proliferation, invasion and migration. However, the MSLN regulatory network is still unclear. Here, we investigated the regulation of a panel of tumorigenic factors, and explored the potential of MSLN regulated miR-198 treatment in vivo. Experimental Design The expression and functional regulation of the tumorigenic factors MSLN, NF-κB, and the homeobox transcription factors (TFs) POU2F2 (OCT-2), Pre-B-cell leukemia homeobox factor 1 (PBX-1), valosin-containing protein (VCP), and miR-198 were studied in PC cell lines, patient tumor samples and in xenograft PC mouse models. Results We found that miR-198 is downregulated in PC and is involved in an intricate reciprocal regulatory loop with MSLN, which represses miR-198 through NF-κB-mediated OCT-2 induction. Furthermore, miR-198 repression leads to overexpression of PBX-1 and VCP. The dysregulated PBX-1/VCP axis leads to increased tumorigenicity. Reconstitution of miR-198 in PC cells results in reduced tumor growth, metastasis, and increased survival through direct targeting MSLN, PBX-1, and VCP. Most interestingly, reduced levels of miR-198 in human tissue samples are associated with upregulation of these tumorigenic factors (MSLN, OCT-2, PBX-1, VCP) and predict poor survival. Reduced miR-198 expression links this tumor network signature and prognosticates poor patient outcome. High miR-198 disrupts the network and predicts better prognosis and increased survival. Conclusions MiR-198 acts as a central tumor suppressor and modulates the molecular makeup of a critical interactome in PC, indicating a potential prognostic marker signature and the therapeutic potential of attacking this tumorigenic network through a central vantage point. PMID:23989979

  13. Risk Factors for Sporadic Pancreatic Neuroendocrine Tumors: A Case-Control Study

    PubMed Central

    Ben, Qiwen; Zhong, Jie; Fei, Jian; Chen, Haitao; Yv, Lifen; Tan, Jihong; Yuan, Yaozong

    2016-01-01

    The current study examined risk factors for sporadic pancreatic neuroendocrine tumors (PNETs), including smoking, alcohol use, first-degree family history of any cancer (FHC), and diabetes in the Han Chinese ethnic group. In this clinic-based case-control analysis on 385 patients with sporadic PNETs and 614 age- and sex-matched controls, we interviewed subjects using a specific questionnaire on demographics and potential risk factors. An unconditional multivariable logistic regression analysis was used to estimate adjusted odds ratios (AORs). No significant differences were found between patients and controls in terms of demographic variables. Most of the patients with PNETs had well-differentiated PNETs (G1, 62.9%) and non-advanced European Neuroendocrine Tumor Society (ENETS) stage (stage I or II, 83.9%). Ever/heavy smoking, a history of diabetes and a first-degree FHC were independent risk factors for non-functional PNETs. Only heavy drinking was found to be an independent risk factor for functional PNETs (AOR = 1.87; 95% confidence interval [CI], 1.01–3.51). Ever/heavy smoking was also associated with advanced ENETS staging (stage III or IV) at the time of diagnosis. This study identified first-degree FHC, ever/heavy smoking, and diabetes as risk factors for non-functional PNETs, while heavy drinking as a risk factor for functional PNETs. PMID:27782199

  14. Pancreatic neuroendocrine tumor and solid-pseudopapillary neoplasm: Key immunohistochemical profiles for differential diagnosis

    PubMed Central

    Ohara, Yusuke; Oda, Tatsuya; Hashimoto, Shinji; Akashi, Yoshimasa; Miyamoto, Ryoichi; Enomoto, Tsuyoshi; Satomi, Kaishi; Morishita, Yukio; Ohkohchi, Nobuhiro

    2016-01-01

    AIM To reveal better diagnostic markers for differentiating neuroendocrine tumor (NET) from solid-pseudopapillary neoplasm (SPN), focusing primarily on immunohistochemical analysis. METHODS We reviewed 30 pancreatic surgical specimens of NET (24 cases) and SPN (6 cases). We carried out comprehensive immunohistochemical profiling using 9 markers: Synaptophysin, chromogranin A, pan-cytokeratin, E-cadherin, progesterone receptor, vimentin, α-1-antitrypsin, CD10, and β-catenin. RESULTS E-cadherin staining in NETs, and nuclear labeling of β-catenin in SPNs were the most sensitive and specific markers. Dot-like staining of chromogranin A might indicate the possibility of SPNs rather than NETs. The other six markers were not useful because their expression overlapped widely between NETs and SPNs. Moreover, two cases that had been initially diagnosed as NETs on the basis of their morphological features, demonstrated SPN-like immunohistochemical profiles. Careful diagnosis is crucial as we actually found two confusing cases showing disagreement between the tumor morphology and immunohistochemical profiles. CONCLUSION E-cadherin, chromogranin A, and β-catenin were the most useful markers which should be employed for differentiating between NET and SPN.

  15. Comparison of methods for proliferative index analysis for grading pancreatic well-differentiated neuroendocrine tumors.

    PubMed

    Goodell, Pamela P; Krasinskas, Alyssa M; Davison, Jon M; Hartman, Douglas J

    2012-04-01

    Assessment of proliferative activity is required for grading well-differentiated pancreatic neuroendocrine tumors. However, a standardized method for obtaining the Ki-67 proliferative index is lacking. This study compared proliferative activity obtained by 3 methods: single-field hot spot (Ki-67 HS) and 10 consecutive field average (Ki-67 CFA) using the Ventana image analysis system (Ventana Medical Systems, Tucson, AZ) and mitotic index (MI). These methods resulted in discrepant grades in 30 (67%) of our 45 cases. With the current Ki-67 cutoff of more than 2% for intermediate-grade tumors, MI, CFA, and HS resulted in specificities of 91%, 94%, and 31%, respectively, for detecting metastasis, with positive predictive values (PPVs) of 25%, 67%, and 31%, respectively. At a higher Ki-67 cutoff of 7.5%, HS analysis resulted in a specificity of 94% and PPV of 71% for predicting metastasis. While single-field HS analysis may be practical and reliable at a higher cutoff, this study emphasizes the variability that can exist when different methods of assessment are used.

  16. Analysis of potential response predictors to capecitabine/temozolomide in metastatic pancreatic neuroendocrine tumors.

    PubMed

    Cives, M; Ghayouri, M; Morse, B; Brelsford, M; Black, M; Rizzo, A; Meeker, A; Strosberg, J

    2016-09-01

    The capecitabine and temozolomide (CAPTEM) regimen is active in the treatment of metastatic pancreatic neuroendocrine tumors (pNETs), with response rates ranging from 30 to 70%. Small retrospective studies suggest that O(6)-methylguanine DNA methyltransferase (MGMT) deficiency predicts response to temozolomide. High tumor proliferative activity is also commonly perceived as a significant predictor of response to cytotoxic chemotherapy. It is unclear whether chromosomal instability (CIN), which correlates with alternative lengthening of telomeres (ALT), is a predictive factor. In this study, we evaluated 143 patients with advanced pNET who underwent treatment with CAPTEM for radiographic and biochemical response. MGMT expression (n=52), grade (n=128) and ALT activation (n=46) were investigated as potential predictive biomarkers. Treatment with CAPTEM was associated with an overall response rate (ORR) of 54% by RECIST 1.1. Response to CAPTEM was not influenced by MGMT expression, proliferative activity or ALT pathway activation. Based on these results, no biomarker-driven selection criteria for use of the CAPTEM regimen can be recommended at this time.

  17. Pancreatic Extra-Gastrointestinal Stromal Tumor: An Unusual Presentation of a Rare Diagnosis

    PubMed Central

    Joshi, Jitesh; Rustagi, Tarun

    2010-01-01

    Background: Gastrointestinal stromal tumors (GISTs) rarely develop outside the digestive tract and such tumors are designated extra-GISTs (EGISTs). The majority of EGISTs are located in the mesentery, omentum, and retroperitoneum, and the primary localization in the pancreas has been reported in only about six cases. We describe a patient with a large metastatic pancreatic EGIST that had metastasized to the liver at time of presentation. Case: An 84-year-old male presented with worsening confusion and agitation for the past few days. He also reported progressively increasing abdominal distension for the past 3 years, more so in the past few months. He denied any abdominal pain, nausea, or vomiting. He mentioned one episode of melena 2 months ago. There was a history of unintentional weight loss of 30 pounds over the past few months. Review of systems was otherwise negative. Past medical history was significant for diabetes mellitus and lactose intolerance. Pertinent examination findings included a cachectic appearance, altered mentation without any focal neurologic deficit, and marked abdominal distension with dullness on percussion. Investigations were significant for elevated ammonia level (168 ug/dL), AST/ALT/Alk. phosphatase (424/153/102 U/L), and total bilirubin of 1.7 mg/dL. CEA and CA19-9 were within normal limits. Computed tomography (CT) scan of the abdomen showed an extremely large central heterogeneous mass of 34 × 24 × 27 cm replacing the entire pancreatic tissue and multiple hepatic metastases. Subsequently, a CT-guided liver biopsy demonstrated a spindle cell neoplasm with CD117 (c-kit), CD34, and vimentin-positive cells, consistent with liver metastasis from an EGIST. On day 3, he had massive hematemesis, for which he was transferred to the intensive care unit. His condition rapidly deteriorated with hemodynamic instability and further worsening of mental status. After a thorough discussion about treatment options and prognosis, his family

  18. Correlation of lung tumor motion with external surrogate indicators of respiration

    SciTech Connect

    Hoisak, Jeremy D.P.; Sixel, Katharina E. . E-mail: Katharina.Sixel@sw.ca; Tirona, Romeo; Cheung, Patrick; Pignol, Jean-Philippe

    2004-11-15

    Purpose: To assess the correlation of respiratory volume and abdominal displacement with tumor motion as seen with X-ray fluoroscopy. Measurements throughout the patient's treatment course allowed an assessment of the interfractional reproducibility of this correlation. Methods and materials: Data were acquired from 11 patients; 5 were studied over multiple days. Measurements of respiratory volume by spirometry and abdominal displacement by a real-time position tracking system were correlated to simultaneously acquired X-ray fluoroscopy measurements of superior-inferior tumor displacement. The linear correlation coefficient was computed for each data acquisition. The phase relationship between the surrogate and tumor signals was estimated through cross-correlation delay analysis. Results: Correlation coefficients ranged from very high to very low (0.99-0.39, p < 0.0001). The correlation between tumor displacement and respiratory volume was higher and more reproducible from day to day than between tumor displacement and abdominal displacement. A nonzero phase relationship was observed in nearly all patients (-0.65 to +0.50 s). This relationship was observed to vary over inter- and intrafractional time scales. Only 1 of 5 patients studied over multiple days had a consistent relationship between tumor motion and either surrogate. Conclusions: Respiratory volume has a more reproducible correlation with tumor motion than does abdominal displacement. If forming a tumor-surrogate prediction model from a limited series of observations, the use of surrogates to guide treatment might result in geographic miss.

  19. The Immunohistochemical Evaluation of Solid Pseudopapillary Tumors of the Pancreas and Pancreatic Neuroendocrine Tumors Reveals ERO1Lβ as a New Biomarker.

    PubMed

    Xie, Junjie; Zhu, Yi; Chen, Hao; Shi, Minmin; Gu, Jiangning; Zhang, Jiaqiang; Shen, Baiyong; Deng, Xiaxing; Zhan, Xi; Peng, Chenghong

    2016-01-01

    Solid pseudopapillary tumor of the pancreas (SPTP) is a class of low-grade malignant tumors that carry a favorable prognosis after surgery. Our group has reported that dysfunctions in the endoplasmic reticulum (ER) protein processing pathway may play a role in tumor development. However, alterations of this pathway in other pancreatic tumors had not been well investigated. In this study, we collected 35 SPTP and pancreatic neuroendocrine tumor (PNET) specimens and described the clinicopathological features of them. We performed immunohistochemistry (IHC) for 6 representative proteins (ERO1Lβ, TRAM1, GRP94, BIP, P4HB, and PDIA4) involved in the ER pathway in both SPTP and PNET specimens. We compared the IHC scoring results of tumors and matched normal pancreas tissues and demonstrated that these proteins were downregulated in SPTP specimens. Five of these proteins (TRAM1, GRP94, BIP, P4HB, and PDIA4) did not display significant changes between PNET and normal pancreas tissue. However, ERO1Lβ was upregulated in PNET tissues compared to the normal tissues, which could be used as a pathological biomarker in the future.

  20. Optimal surface marker locations for tumor motion estimation in lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Dong, Bin; Jiang Graves, Yan; Jia, Xun; Jiang, Steve B.

    2012-12-01

    Using fiducial markers on the patient’s body surface to predict the tumor location is a widely used approach in lung cancer radiotherapy. The purpose of this work is to propose an algorithm that automatically identifies a sparse set of locations on the patient’s surface with the optimal prediction power for the tumor motion. In our algorithm, it is assumed that there is a linear relationship between the surface marker motion and the tumor motion. The sparse selection of markers on the external surface and the linear relationship between the marker motion and the internal tumor motion are represented by a prediction matrix. Such a matrix is determined by solving an optimization problem, where the objective function contains a sparsity term that penalizes the number of markers chosen on the patient’s surface. Bregman iteration is used to solve the proposed optimization problem. The performance of our algorithm has been tested on realistic clinical data of four lung cancer patients. Thoracic 4DCT scans with ten phases are used for the study. On a reference phase, a grid of points are casted on the patient’s surfaces (except for the patient’s back) and propagated to other phases via deformable image registration of the corresponding CT images. Tumor locations at each phase are also manually delineated. We use nine out of ten phases of the 4DCT images to identify a small group of surface markers that are mostly correlated with the motion of the tumor and find the prediction matrix at the same time. The tenth phase is then used to test the accuracy of the prediction. It is found that on average six to seven surface markers are necessary to predict tumor locations with a 3D error of about 1 mm. It is also found that the selected marker locations lie closely in those areas where surface point motion has a large amplitude and a high correlation with the tumor motion. Our method can automatically select sparse locations on the patient’s external surface and

  1. Antitumor effect of antitissue factor antibody‐MMAE conjugate in human pancreatic tumor xenografts

    PubMed Central

    Koga, Yoshikatsu; Manabe, Shino; Aihara, Yoshiyuki; Sato, Ryuta; Tsumura, Ryo; Iwafuji, Hikaru; Furuya, Fumiaki; Fuchigami, Hirobumi; Fujiwara, Yuki; Hisada, Yohei; Yamamoto, Yoshiyuki; Yasunaga, Masahiro

    2015-01-01

    Tissue factor (TF) triggers the extrinsic blood coagulation cascade and is highly expressed in various types of cancer. In this study, we investigated the antitumor effect of an antibody–drug conjugate (ADC) consisting of an anti‐TF monoclonal antibody and monomethyl auristatin E (MMAE). MMAE was conjugated to an anti‐human TF or anti‐mouse TF antibody using a valine‐citrulline linker that could be potentially hydrolyzed by cathepsin B in the acidic environment of the lysosome. The cytotoxic and antitumor effects of the ADCs against four pancreatic cancer cell lines were analyzed. Both the ADC with the anti‐human TF antibody and that with the anti‐mouse TF antibody were stable under physiological conditions. The anti‐human ADC was internalized in TF‐expressing human tumor cell lines, followed by effective MMAE release. The half maximal inhibitory concentration (IC50) of MMAE was approximately 1 nM for all of the cell lines used. Meanwhile, the IC50 of anti‐human ADC was 1.15 nM in the cell lines showing high TF expression, while exceeding 100 nM in the cells showing low TF expression levels. Anti‐human ADC with passive and active targeting ability exerted significant suppression of tumor growth as compared to that observed in the saline group (p < 0.01). Also significant tumor growth suppressions were seen at the anti‐mouse ADC and control ADC groups compared to the saline group (p < 0.01) due to EPR effect. Because various clinical human cancers express highly amount of TF, this new anti‐TF ADC may deserve a clinical evaluation. PMID:25704403

  2. Aminoguanidine impedes human pancreatic tumor growth and metastasis development in nude mice

    PubMed Central

    Mohamad, Nora A; Cricco, Graciela P; Sambuco, Lorena A; Croci, Máximo; Medina, Vanina A; Gutiérrez, Alicia S; Bergoc, Rosa M; Rivera, Elena S; Martín, Gabriela A

    2009-01-01

    AIM: To study the action of aminoguanidine on pancreatic cancer xenografts in relation to cell proliferation, apoptosis, redox status and vascularization. METHODS: Xenografts of PANC-1 cells were developed in nude mice. The animals were separated into two groups: control and aminoguanidine treated. Tumor growth, survival and appearance of metastases were determined in vivo in both groups. Tumors were excised and ex vivo histochemical studies were performed. Cell growth was assessed by Ki-67 expression. Apoptosis was studied by intratumoral expression of B cell lymphoma-2 protein (Bcl-2) family proteins and Terminal deoxynucleotidyl transferase biotin-dUTP Nick End Labeling (Tunel). Redox status was evaluated by the expression of endothelial nitric oxide synthase (eNOS), catalase, copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GPx). Finally, vascularization was determined by Massons trichromic staining, and by VEGF and CD34 expression. RESULTS: Tumor volumes after 32 d of treatment by aminoguanidine (AG) were significantly lower than in control mice (P < 0.01). Median survival of AG mice was significantly greater than control animals (P < 0.01). The appearance of both homolateral and contralateral palpable metastases was significantly delayed in AG group. Apoptotic cells, intratumoral vascularization (trichromic stain) and the expression of Ki-67, Bax, eNOS, CD34, VEGF, catalase, CuZnSOD and MnSOD were diminished in AG treated mice (P < 0.01), while the expression of Bcl-2 and GPx did not change. CONCLUSION: The antitumoral action of aminoguanidine is associated with decreased cell proliferation, reduced angiogenesis, and reduced expression of antioxidant enzymes. PMID:19266598

  3. Extracellular matrix composition and rigidity regulate invasive behavior and response to PDT in 3D pancreatic tumor models

    NASA Astrophysics Data System (ADS)

    Cramer, Gwendolyn; El-Hamidi, Hamid; Jafari, Seyedehrojin; Jones, Dustin P.; Celli, Jonathan P.

    2016-03-01

    The composition and mechanical compliance of the extracellular matrix (ECM) have been shown to serve as regulators of tumor growth and invasive behavior. These effects may be particularly relevant in tumors of the pancreas, noted for a profound desmoplastic reaction and an abundance of stroma rich in ECM. In view of recent progress in the clinical implementation of photodynamic therapy (PDT) for pancreatic tumors, in this report we examine how ECM composition and rheological properties impact upon invasive behavior and response to PDT in 3D multicellular pancreatic tumor spheroids in ECM environments with characterized rheological properties. Tumor spheroids were cultured initially in attachment-free conditions to form millimeter-sized spheroids that were transplanted into reconstituted ECM microenvironments (Matrigel and Type I Collagen) that were characterized using bulk oscillatory shear rheology. Analysis of growth behavior shows that the soft collagen ECM promoted growth and extensive invasion and this microenvironment was used in subsequent assessment of PDT and chemotherapy response. Evaluation of treatment response revealed that primary tumor nodule growth is inhibited more effectively with PDT, while verteporfin PDT response is significantly enhanced in the ECM-infiltrating populations that are non-responsive to oxaliplatin chemotherapy. This finding is potentially significant, suggesting the potential for PDT to target these clinically problematic invasive populations that are associated with aggressive metastatic progression and chemoresistance. Experiments to further validate and identify the mechanistic basis of this observation are ongoing.

  4. Dosimetric evaluation of intrafractional tumor motion by means of a robot driven phantom

    SciTech Connect

    Richter, Anne; Wilbert, Juergen; Flentje, Michael

    2011-10-15

    Purpose: The aim of the work was to investigate the influence of intrafractional tumor motion to the accumulated (absorbed) dose. The accumulated dose was determined by means of calculations and measurements with a robot driven motion phantom. Methods: Different motion scenarios and compensation techniques were realized in a phantom study to investigate the influence of motion on image acquisition, dose calculation, and dose measurement. The influence of motion on the accumulated dose was calculated by employing two methods (a model based and a voxel based method). Results: Tumor motion resulted in a blurring of steep dose gradients and a reduction of dose at the periphery of the target. A systematic variation of motion parameters allowed the determination of the main influence parameters on the accumulated dose. The key parameters with the greatest influence on dose were the mean amplitude and the pattern of motion. Investigations on necessary safety margins to compensate for dose reduction have shown that smaller safety margins are sufficient, if the developed concept with optimized margins (OPT concept) was used instead of the standard internal target volume (ITV) concept. Both calculation methods were a reasonable approximation of the measured dose with the voxel based method being in better agreement with the measurements. Conclusions: Further evaluation of available systems and algorithms for dose accumulation are needed to create guidelines for the verification of the accumulated dose.

  5. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Coupled with Enzymatic Depletion of Tumor Hyaluronan Induces Complete Regression of Aggressive Pancreatic Tumors.

    PubMed

    Manuel, Edwin R; Chen, Jeremy; D'Apuzzo, Massimo; Lampa, Melanie G; Kaltcheva, Teodora I; Thompson, Curtis B; Ludwig, Thomas; Chung, Vincent; Diamond, Don J

    2015-09-01

    Bacterial-based therapies are emerging as effective cancer treatments and hold promise for refractory neoplasms, such as pancreatic ductal adenocarcinoma (PDAC), which has not shown significant improvement in therapy for more than 25 years. Using a novel combination of shIDO-ST, a Salmonella-based therapy targeting the immunosuppressive molecule indoleamine 2,3-dioxygenase (IDO), with an enzyme, PEGPH20, which depletes extracellular matrix hyaluronan, we observed extended survival with frequent total regression of autochthonous and orthotopic PDAC tumors. This observation was associated with migration and accumulation of activated polymorphonuclear neutrophils (PMN) from spleens into tumors, which was not seen using a scrambled control (shScr-ST). Purified splenic PMNs from PEGPH20/shIDO-ST-treated mice exhibited significant IDO knockdown and were able to kill tumor targets ex vivo through mechanisms involving FasL and serine proteases. In addition, CD8(+) T cells were observed to contribute to late control of pancreatic tumors. Collectively, our data demonstrate that entry of shIDO-ST and PMNs into otherwise impermeable desmoplastic tumors is facilitated by PEGPH20-mediated HA removal, further highlighting an important component of effective treatment for PDAC.

  6. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Coupled with Enzymatic Depletion of Tumor Hyaluronan Induces Complete Regression of Aggressive Pancreatic Tumors

    PubMed Central

    Manuel, Edwin R.; Chen, Jeremy; D'Apuzzo, Massimo; Lampa, Melanie G.; Kaltcheva, Teodora I.; Thompson, Curtis B.; Ludwig, Thomas; Chung, Vincent; Diamond, Don J.

    2015-01-01

    Bacterial-based therapies are emerging as effective cancer treatments and hold promise for refractory neoplasms such as pancreatic ductal adenocarcinoma (PDAC), which has not shown significant improvement in therapy for over twenty-five years. Using a novel combination of shIDO-ST, a Salmonella-based therapy targeting the immunosuppressive molecule indoleamine 2,3-dioxygenase (IDO), with an enzyme, PEGPH20, which depletes extracellular matrix hyaluronan, we observed extended survival with frequent total regression of autochthonous and orthotopic PDAC tumors. This was associated with migration and accumulation of activated polymorphonuclear neutrophils (PMN) from spleens into tumors, which was not observed using a scrambled control (shScr-ST). Purified splenic PMNs from PEGPH20/shIDO-ST-treated mice exhibited significant IDO knockdown and were able to kill tumor targets ex-vivo through mechanisms involving FasL and serine proteases. In addition, CD8+ T cells were observed to contribute to late control of pancreatic tumors. Collectively, our data demonstrate that entry of shIDO-ST and PMNs into otherwise impermeable desmoplastic tumors is facilitated by PEGPH20-mediated HA removal, further highlighting an important component of effective treatment for PDAC. PMID:26134178

  7. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Coupled with Enzymatic Depletion of Tumor Hyaluronan Induces Complete Regression of Aggressive Pancreatic Tumors.

    PubMed

    Manuel, Edwin R; Chen, Jeremy; D'Apuzzo, Massimo; Lampa, Melanie G; Kaltcheva, Teodora I; Thompson, Curtis B; Ludwig, Thomas; Chung, Vincent; Diamond, Don J

    2015-09-01

    Bacterial-based therapies are emerging as effective cancer treatments and hold promise for refractory neoplasms, such as pancreatic ductal adenocarcinoma (PDAC), which has not shown significant improvement in therapy for more than 25 years. Using a novel combination of shIDO-ST, a Salmonella-based therapy targeting the immunosuppressive molecule indoleamine 2,3-dioxygenase (IDO), with an enzyme, PEGPH20, which depletes extracellular matrix hyaluronan, we observed extended survival with frequent total regression of autochthonous and orthotopic PDAC tumors. This observation was associated with migration and accumulation of activated polymorphonuclear neutrophils (PMN) from spleens into tumors, which was not seen using a scrambled control (shScr-ST). Purified splenic PMNs from PEGPH20/shIDO-ST-treated mice exhibited significant IDO knockdown and were able to kill tumor targets ex vivo through mechanisms involving FasL and serine proteases. In addition, CD8(+) T cells were observed to contribute to late control of pancreatic tumors. Collectively, our data demonstrate that entry of shIDO-ST and PMNs into otherwise impermeable desmoplastic tumors is facilitated by PEGPH20-mediated HA removal, further highlighting an important component of effective treatment for PDAC. PMID:26134178

  8. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    PubMed

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. PMID:26531324

  9. Treatment Parameters Optimization to Compensate for Interfractional Anatomy Variability and Intrafractional Tumor Motion

    PubMed Central

    Brevet, Romain; Richter, Daniel; Graeff, Christian; Durante, Marco; Bert, Christoph

    2015-01-01

    Scanned ion beam therapy of lung tumors is severely limited in its clinical applicability by intrafractional organ motion, interference effects between beam and tumor motion (interplay), as well as interfractional anatomic changes. To compensate for dose deterioration caused by intrafractional motion, motion mitigation techniques, such as gating, have been developed. However, optimization of the treatment parameters is needed to further improve target dose coverage and normal tissue sparing. The aim of this study was to determine treatment-planning parameters that permit to recover good target coverage for each fraction of lung tumor treatments. For 9 lung tumor patients from MD Anderson Cancer Center (Houston, Texas), a total of 70 weekly time-resolved computed tomography (4DCT) datasets, which depict the evolution of the patient anatomy over the several fractions of the treatment, were available. Using the GSI in-house treatment planning system TRiP4D, 4D simulations were performed on each weekly 4DCT for each patient using gating and optimization of a single treatment plan based on a planning CT acquired prior to treatment. The impact on target dose coverage (V 95%,CTV) of variations in focus size and length of the gating window, as well as different additional margins and the number of fields was analyzed. It appeared that interfractional variability could potentially have a larger impact on V 95%,CTV than intrafractional motion. However, among the investigated parameters, the use of a large beam spot size, a short gating window, additional margins, and multiple fields permitted to obtain an average V 95%,CTV of 96.5%. In the presented study, it was shown that optimized treatment parameters have an important impact on target dose coverage in the treatment of moving tumors. Indeed, intrafractional motion occurring during the treatment of lung tumors and interfractional variability were best mitigated using a large focus, a short gating window, additional margins

  10. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

    NASA Astrophysics Data System (ADS)

    Nasehi Tehrani, Joubin; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  11. IGRT/ART phantom with programmable independent rib cage and tumor motion

    SciTech Connect

    Haas, Olivier C. L.; Mills, John A.; Land, Imke; Mulholl, Pete; Menary, Paul; Crichton, Robert; Wilson, Adrian; Sage, John; Anna, Morenc; Depuydt, Tom

    2014-02-15

    Purpose: This paper describes the design and experimental evaluation of the Methods and Advanced Equipment for Simulation and Treatment in Radiation Oncology (MAESTRO) thorax phantom, a new anthropomorphic moving ribcage combined with a 3D tumor positioning system to move target inserts within static lungs. Methods: The new rib cage design is described and its motion is evaluated using Vicon Nexus, a commercial 3D motion tracking system. CT studies at inhale and exhale position are used to study the effect of rib motion and tissue equivalence. Results: The 3D target positioning system and the rib cage have millimetre accuracy. Each axis of motion can reproduce given trajectories from files or individually programmed sinusoidal motion in terms of amplitude, period, and phase shift. The maximum rib motion ranges from 7 to 20 mm SI and from 0.3 to 3.7 mm AP with LR motion less than 1 mm. The repeatability between cycles is within 0.16 mm root mean square error. The agreement between CT electron and mass density for skin, ribcage, spine hard and inner bone as well as cartilage is within 3%. Conclusions: The MAESTRO phantom is a useful research tool that produces programmable 3D rib motions which can be synchronized with 3D internal target motion. The easily accessible static lungs enable the use of a wide range of inserts or can be filled with lung tissue equivalent and deformed using the target motion system.

  12. Planning 4-Dimensional Computed Tomography (4DCT) Cannot Adequately Represent Daily Intrafractional Motion of Abdominal Tumors

    SciTech Connect

    Ge, Jiajia; Santanam, Lakshmi; Noel, Camille; Parikh, Parag J.

    2013-03-15

    Purpose: To evaluate whether planning 4-dimensional computed tomography (4DCT) can adequately represent daily motion of abdominal tumors in regularly fractionated and stereotactic body radiation therapy (SBRT) patients. Methods and Materials: Intrafractional tumor motion of 10 patients with abdominal tumors (4 pancreas-fractionated and 6 liver-stereotactic patients) with implanted fiducials was measured based on daily orthogonal fluoroscopic movies over 38 treatment fractions. The needed internal margin for at least 90% of tumor coverage was calculated based on a 95th and fifth percentile of daily 3-dimensional tumor motion. The planning internal margin was generated by fusing 4DCT motion from all phase bins. The disagreement between needed and planning internal margin was analyzed fraction by fraction in 3 motion axes (superior-inferior [SI], anterior-posterior [AP], and left-right [LR]). The 4DCT margin was considered as an overestimation/underestimation of daily motion when disagreement exceeded at least 3 mm in the SI axis and/or 1.2 mm in the AP and LR axes (4DCT image resolution). The underlying reasons for this disagreement were evaluated based on interfractional and intrafractional breathing variation. Results: The 4DCT overestimated daily 3-dimensional motion in 39% of the fractions in 7 of 10 patients and underestimated it in 53% of the fractions in 8 of 10 patients. Median underestimation was 3.9 mm, 3.0 mm, and 1.7 mm in the SI axis, AP axis, and LR axis, respectively. The 4DCT was found to capture irregular deep breaths in 3 of 10 patients, with 4DCT motion larger than mean daily amplitude by 18 to 21 mm. The breathing pattern varied from breath to breath and day to day. The intrafractional variation of amplitude was significantly larger than intrafractional variation (2.7 mm vs 1.3 mm) in the primary motion axis (ie, SI axis). The SBRT patients showed significantly larger intrafractional amplitude variation than fractionated patients (3.0 mm vs 2

  13. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids.

    PubMed

    Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B; Crawford, Howard C; Arrowsmith, Cheryl; Kalloger, Steve E; Renouf, Daniel J; Connor, Ashton A; Cleary, Sean; Schaeffer, David F; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K

    2015-11-01

    There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53(R175H) induces cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. We also define culture conditions for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture and phenotypic heterogeneity of the primary tumor and retain patient-specific physiological changes, including hypoxia, oxygen consumption, epigenetic marks and differences in sensitivity to inhibition of the histone methyltransferase EZH2. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies.

  14. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell and patient-derived tumor organoids

    PubMed Central

    Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B.; Crawford, Howard C.; Arrowsmith, Cheryl; Kalloger, Steve E.; Renouf, Daniel J.; Connor, Ashton A; Cleary, Sean; Schaeffer, David F.; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K.

    2016-01-01

    There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells (PSCs) into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53R175H induced cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. Culture conditions are also defined for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture, phenotypic heterogeneity of the primary tumor, and retain patient-specific physiologic changes including hypoxia, oxygen consumption, epigenetic marks, and differential sensitivity to EZH2 inhibition. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies. PMID:26501191

  15. Machine-learning based comparison of CT-perfusion maps and dual energy CT for pancreatic tumor detection

    NASA Astrophysics Data System (ADS)

    Goetz, Michael; Skornitzke, Stephan; Weber, Christian; Fritz, Franziska; Mayer, Philipp; Koell, Marco; Stiller, Wolfram; Maier-Hein, Klaus H.

    2016-03-01

    Perfusion CT is well-suited for diagnosis of pancreatic tumors but tends to be associated with a high radiation exposure. Dual-energy CT (DECT) might be an alternative to perfusion CT, offering correlating contrasts while being acquired at lower radiation doses. While previous studies compared intensities of Dual Energy iodine maps and CT-perfusion maps, no study has assessed the combined discriminative power of all information that can be generated from an acquisition of both functional imaging methods. We therefore propose the use of a machine learning algorithm for assessing the amount of information that becomes available by the combination of multiple images. For this, we train a classifier on both imaging methods, using a new approach that allows us to train only from small regions of interests (ROIs). This makes our study comparable to other - ROI-based analysis - and still allows comparing the ability of both classifiers to discriminate between healthy and tumorous tissue. We were able to train classifiers that yield DICE scores over 80% with both imaging methods. This indicates that Dual Energy Iodine maps might be used for diagnosis of pancreatic tumors instead of Perfusion CT, although the detection rate is lower. We also present tumor risk maps that visualize possible tumorous areas in an intuitive way and can be used during diagnosis as an additional information source.

  16. Inherited pancreatic endocrine tumor syndromes: advances in molecular pathogenesis, diagnosis, management and controversies

    PubMed Central

    Jensen, Robert T.; Berna, Marc J.; Bingham, David B; Norton, Jeffrey A.

    2008-01-01

    Pancreatic endocrine tumors (PETs) can occur in as part of four inherited disorders including: Multiple Endocrine Neoplasia type 1 (MEN1), von Hippel-Lindau disease (VHL), neurofibromatosis 1(NF-1) [von Recklinghausen’s disease] and the tuberous sclerosis complex (TSC). The relative frequency with which patients with these disorders develop PETs is MEN1>VHL>NF-1>TSC. Over the last few years there have been major advances in the understanding of the genetics and molecular pathogenesis of these disorders as well in the localization, medical and surgical treatment of the PETs in these patients. The study of the PETs in these disorders has not only provided insights into the possible pathogenesis of sporadic PETs, but have also presented a number of unique management and treatment issues, some of which are applicable to patients with sporadic PETs. Therefore the study of PETs in these uncommon disorders has provided valuable insights that in many cases are applicable to the general group of patients with sporadic PETs. In this article these areas are briefly reviewed as well as the current state of knowledge of the PETs in these disorders and the controversies that exist in their management are briefly summarized and discussed. PMID:18798544

  17. Percutaneous Fine Needle Biopsy in Pancreatic Tumors: A Study of 42 Cases

    PubMed Central

    Lewitowicz, Piotr; Matykiewicz, Jaroslaw; Heciak, Jacek; Koziel, Dorota; Gluszek, Stanisław

    2012-01-01

    The technological progress within the range of methods of pancreas imaging and their more common accessibility selects a group of patients requiring a microscopic diagnosis. Percutaneous fine needle aspiration biopsy under the control of ultrasonography (PCFNA/USG) is the method commonly used in determining the character of a focal pancreatic lesion. Aim of the Work. An assessment of the accessibility of PCFNA biopsy in the assessment of solid and cystic changes in a pancreas and the correlation of the results of imaging examination, cytological smear and concentration of a serous marker CA19-9. Material and Methodology. In our material we analysed 43 cases of tumors of the pancreas among the patients who were at the average age of 59 ± 10.4 (14 women, 28 men) diagnosed by PCFNA biopsy. Results. In a group we are 23 cases of cancer, 12 cases of inflammation and 7 cases of cellular atypia for which 2 cases of IPMN were included. The sensitivity of the method was 92.5% but specificity was 68%. In our opinion PCFNA/USG is a method of the comparable sensitivity and specificity with fine needle aspiration biopsy with EUS control and its efficiency depends to a considerable degree on experience and interdisciplinary collaboration. PMID:23304130

  18. Liquid biopsy in patients with pancreatic cancer: Circulating tumor cells and cell-free nucleic acids

    PubMed Central

    Imamura, Taisuke; Komatsu, Shuhei; Ichikawa, Daisuke; Kawaguchi, Tsutomu; Miyamae, Mahito; Okajima, Wataru; Ohashi, Takuma; Arita, Tomohiro; Konishi, Hirotaka; Shiozaki, Atsushi; Morimura, Ryo; Ikoma, Hisashi; Okamoto, Kazuma; Otsuji, Eigo

    2016-01-01

    Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer (PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs), such as DNA, mRNA, and noncoding RNA have been recognized. In the recent years, their presence in the blood has encouraged researchers to investigate their potential use as novel blood biomarkers, and numerous studies have demonstrated their potential clinical utility as a biomarker for certain types of cancer. This concept, called “liquid biopsy” has been focused on as a less invasive, alternative approach to cancer tissue biopsy for obtaining genetic and epigenetic aberrations that contribute to oncogenesis and cancer progression. In this article, we review the available literature on CTCs and cfNAs in patients with cancer, particularly focusing on PCa, and discuss future perspectives in this field. PMID:27433079

  19. Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer.

    PubMed

    Takai, Erina; Totoki, Yasushi; Nakamura, Hiromi; Morizane, Chigusa; Nara, Satoshi; Hama, Natsuko; Suzuki, Masami; Furukawa, Eisaku; Kato, Mamoru; Hayashi, Hideyuki; Kohno, Takashi; Ueno, Hideki; Shimada, Kazuaki; Okusaka, Takuji; Nakagama, Hitoshi; Shibata, Tatsuhiro; Yachida, Shinichi

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. The genomic landscape of the PDAC genome features four frequently mutated genes (KRAS, CDKN2A, TP53, and SMAD4) and dozens of candidate driver genes altered at low frequency, including potential clinical targets. Circulating cell-free DNA (cfDNA) is a promising resource to detect and monitor molecular characteristics of tumors. In the present study, we determined the mutational status of KRAS in plasma cfDNA using multiplex picoliter-droplet digital PCR in 259 patients with PDAC. We constructed a novel modified SureSelect-KAPA-Illumina platform and an original panel of 60 genes. We then performed targeted deep sequencing of cfDNA and matched germline DNA samples in 48 patients who had ≥1% mutant allele frequencies of KRAS in plasma cfDNA. Importantly, potentially targetable somatic mutations were identified in 14 of 48 patients (29.2%) examined by targeted deep sequencing of cfDNA. We also analyzed somatic copy number alterations based on the targeted sequencing data using our in-house algorithm, and potentially targetable amplifications were detected. Assessment of mutations and copy number alterations in plasma cfDNA may provide a prognostic and diagnostic tool to assist decisions regarding optimal therapeutic strategies for PDAC patients. PMID:26669280

  20. Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer

    PubMed Central

    Takai, Erina; Totoki, Yasushi; Nakamura, Hiromi; Morizane, Chigusa; Nara, Satoshi; Hama, Natsuko; Suzuki, Masami; Furukawa, Eisaku; Kato, Mamoru; Hayashi, Hideyuki; Kohno, Takashi; Ueno, Hideki; Shimada, Kazuaki; Okusaka, Takuji; Nakagama, Hitoshi; Shibata, Tatsuhiro; Yachida, Shinichi

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. The genomic landscape of the PDAC genome features four frequently mutated genes (KRAS, CDKN2A, TP53, and SMAD4) and dozens of candidate driver genes altered at low frequency, including potential clinical targets. Circulating cell-free DNA (cfDNA) is a promising resource to detect and monitor molecular characteristics of tumors. In the present study, we determined the mutational status of KRAS in plasma cfDNA using multiplex picoliter-droplet digital PCR in 259 patients with PDAC. We constructed a novel modified SureSelect-KAPA-Illumina platform and an original panel of 60 genes. We then performed targeted deep sequencing of cfDNA and matched germline DNA samples in 48 patients who had ≥1% mutant allele frequencies of KRAS in plasma cfDNA. Importantly, potentially targetable somatic mutations were identified in 14 of 48 patients (29.2%) examined by targeted deep sequencing of cfDNA. We also analyzed somatic copy number alterations based on the targeted sequencing data using our in-house algorithm, and potentially targetable amplifications were detected. Assessment of mutations and copy number alterations in plasma cfDNA may provide a prognostic and diagnostic tool to assist decisions regarding optimal therapeutic strategies for PDAC patients. PMID:26669280

  1. Whole-exome characterization of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1.

    PubMed

    Vandamme, Timon; Peeters, Marc; Dogan, Fadime; Pauwels, Patrick; Van Assche, Elvire; Beyens, Matthias; Mortier, Geert; Vandeweyer, Geert; de Herder, Wouter; Van Camp, Guy; Hofland, Leo J; Op de Beeck, Ken

    2015-04-01

    The human BON-1 and QGP-1 cell lines are two frequently used models in pancreatic neuroendocrine tumor (PNET) research. Data on the whole-exome genetic constitution of these cell lines is largely lacking. This study presents, to our knowledge, the first whole-exome profile of the BON-1 and QGP-1 cell lines. Cell line identity was confirmed by short tandem repeat profiling. Using GTG-banding and a CytoSNP-12v2 Beadchip array, cell line ploidy and chromosomal alterations were determined in BON-1 and QGP-1. The exomes of both cell lines were sequenced on Ilumina's HiSeq next-generation sequencing (NGS) platform. Single-nucleotide variants (SNVs) and insertions and deletions (indels) were detected using the Genome Analysis ToolKit. SNVs were validated by Sanger sequencing. Ploidy of BON-1 and QGP-1 was 3 and 4 respectively, with long stretches of loss of heterozygosity across multiple chromosomes, which is associated with aggressive tumor behavior. In BON-1, 57 frameshift indels and 1725 possible protein-altering SNVs were identified in the NGS data. In the QGP-1 cell line, 56 frameshift indels and 1095 SNVs were identified. ATRX, a PNET-associated gene, was mutated in both cell lines, while mutation of TSC2 was detected in BON-1. A mutation in NRAS was detected in BON-1, while KRAS was mutated in QGP-1, implicating aberrations in the RAS pathway in both cell lines. Homozygous mutations in TP53 with possible loss of function were identified in both cell lines. Various MUC genes, implicated in cell signaling, lubrication and chemical barriers, which are frequently expressed in PNET tissue samples, showed homozygous protein-altering SNVs in the BON-1 and QGP-1 cell lines.

  2. SU-E-J-133: Evaluation of Inter- and Intra-Fractional Pancreas Tumor Residual Motions with Abdominal Compression

    SciTech Connect

    Li, Y; Shi, F; Tian, Z; Jia, X; Meyer, J; Jiang, S; Mao, W

    2014-06-01

    Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motion pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be comparable

  3. Real-time tracking of respiratory-induced tumor motion by dose-rate regulation

    NASA Astrophysics Data System (ADS)

    Han-Oh, Yeonju Sarah

    We have developed a novel real-time tumor-tracking technology, called Dose-Rate-Regulated Tracking (DRRT), to compensate for tumor motion caused by breathing. Unlike other previously proposed tumor-tracking methods, this new method uses a preprogrammed dynamic multileaf collimator (MLC) sequence in combination with real-time dose-rate control. This new scheme circumvents the technical challenge in MLC-based tumor tracking, that is to control the MLC motion in real time, based on real-time detected tumor motion. The preprogrammed MLC sequence describes the movement of the tumor, as a function of breathing phase, amplitude, or tidal volume. The irregularity of tumor motion during treatment is handled by real-time regulation of the dose rate, which effectively speeds up or slows down the delivery of radiation as needed. This method is based on the fact that all of the parameters in dynamic radiation delivery, including MLC motion, are enslaved to the cumulative dose, which, in turn, can be accelerated or decelerated by varying the dose rate. Because commercially available MLC systems do not allow the MLC delivery sequence to be modified in real time based on the patient's breathing signal, previously proposed tumor-tracking techniques using a MLC cannot be readily implemented in the clinic today. By using a preprogrammed MLC sequence to handle the required motion, the task for real-time control is greatly simplified. We have developed and tested the pre- programmed MLC sequence and the dose-rate regulation algorithm using lung-cancer patients breathing signals. It has been shown that DRRT can track the tumor with an accuracy of less than 2 mm for a latency of the DRRT system of less than 0.35 s. We also have evaluated the usefulness of guided breathing for DRRT. Since DRRT by its very nature can compensate for breathing-period changes, guided breathing was shown to be unnecessary for real-time tracking when using DRRT. Finally, DRRT uses the existing dose-rate control

  4. Quantification of Esophageal Tumor Motion on Cine-Magnetic Resonance Imaging

    SciTech Connect

    Lever, Frederiek M.; Lips, Irene M.; Crijns, Sjoerd P.M.; Reerink, Onne; Lier, Astrid L.H.M.W. van; Moerland, Marinus A.; Vulpen, Marco van; Meijer, Gert J.

    2014-02-01

    Purpose: To quantify the movement of esophageal tumors noninvasively on cine-magnetic resonance imaging (MRI) by use of a semiautomatic method to visualize tumor movement directly throughout multiple breathing cycles. Methods and Materials: Thirty-six patients with esophageal tumors underwent MRI. Tumors were located in the upper (8), middle (7), and lower (21) esophagus. Cine-MR images were collected in the coronal and sagittal plane during 60 seconds at a rate of 2 Hz. An adaptive correlation filter was used to automatically track a previously marked reference point. Tumor movement was measured in the craniocaudal (CC), left–right (LR), and anteroposterior (AP) directions and its relationship along the longitudinal axis of the esophagus was investigated. Results: Tumor registration within the individual images was typically done at a millisecond time scale. The mean (SD) peak-to-peak displacements in the CC, AP, and LR directions were 13.3 (5.2) mm, 4.9 (2.5) mm, and 2.7 (1.2) mm, respectively. The bandwidth to cover 95% of excursions from the mean position (c95) was also calculated to exclude outliers caused by sporadic movements. The mean (SD) c95 values were 10.1 (3.8) mm, 3.7 (1.9) mm, and 2.0 (0.9) mm in the CC, AP, and LR dimensions. The end-exhale phase provided a stable position in the respiratory cycle, compared with more variety in the end-inhale phase. Furthermore, lower tumors showed more movement than did higher tumors in the CC and AP directions. Conclusions: Intrafraction tumor movement was highly variable between patients. Tumor position proved the most stable during the respiratory cycle in the end-exhale phase. A better understanding of tumor motion makes it possible to individualize radiation delivery strategies accordingly. Cine-MRI is a successful noninvasive modality to analyze motion for this purpose in the future.

  5. TGF-β blockade depletes T regulatory cells from metastatic pancreatic tumors in a vaccine dependent manner

    PubMed Central

    Soares, Kevin C.; Rucki, Agnieszka A.; Kim, Victoria; Foley, Kelly; Solt, Sara; Wolfgang, Christopher L.; Jaffee, Elizabeth M.; Zheng, Lei

    2015-01-01

    Our neoadjuvant clinical trial of a GM-CSF secreting allogeneic pancreas tumor vaccine (GVAX) revealed the development of tertiary lymphoid aggregates (TLAs) within the pancreatic ductal adenocarcinoma (PDA) tumor microenvironment 2 weeks after GVAX treatment. Microarray studies revealed that multiple components of the TGF-β pathway were suppressed in TLAs from patients who survived greater than 3 years and who demonstrated vaccine-enhanced mesothelin-specific T cell responses. We tested the hypothesis that combining GVAX with TGF-β inhibitors will improve the anti-tumor immune response of vaccine therapy. In a metastatic murine model of pancreatic cancer, combination therapy with GVAX vaccine and a TGF-β blocking antibody improved the cure rate of PDA-bearing mice. TGF-β blockade in combination with GVAX significantly increased the infiltration of effector CD8+ T lymphocytes, specifically anti-tumor-specific IFN-γ producing CD8+ T cells, when compared to monotherapy controls (all p < 0.05). TGF-β blockade alone did not deplete T regulatory cells (Tregs), but when give in combination with GVAX, GVAX induced intratumoral Tregs were depleted. Therefore, our PDA preclinical model demonstrates a survival advantage in mice treated with an anti-TGF-β antibody combined with GVAX therapy and provides strong rational for testing this combinational therapy in clinical trials. PMID:26515728

  6. Overexpressed EDIL3 predicts poor prognosis and promotes anchorage-independent tumor growth in human pancreatic cancer

    PubMed Central

    Feng, Ming-Xuan; Wang, Ya-Hui; Yang, Xiao-Mei; He, Ping; Tian, Guang-Ang; Zhang, Xiao-Xin; Li, Qing; Cao, Xiao-Yan; Huo, Yan-Miao; Yang, Min-Wei; Fu, Xue-Liang; Li, Jiao; Liu, De-Jun; Dai, Miao; Wen, Shan-Yun; Gu, Jian-Ren; Hong, Jie; Hua, Rong; Zhang, Zhi-Gang; Sun, Yong-Wei

    2016-01-01

    Epidermal Growth Factor-like repeats and Discoidin I-Like Domains 3 (EDIL3), an extracellular matrix (ECM) protein associated with vascular morphogenesis and remodeling, is commonly upregulated in multiple types of human cancers and correlates with tumor progression. However, its expression pattern and underlying cellular functions in pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. In current study, we observed that expression of EDIL3 was significantly up-regulated in PDAC compared with normal controls in both cell lines and clinical specimens. In addition, elevated EDIL3 expression was positively correlated with patients’ TNM stage and T classification. Kaplan-Meier analysis indicated that high EDIL3 expression was significantly associated with shorter overall survival times in PDAC patients. Multivariate Cox regression analysis confirmed EDIL3 expression, age, lymph node metastasis and histological differentiation as independent prognostic factors in PDAC. Knockdown of EDIL3 showed no significant influence on cell viability, migration, invasion and starvation-induced apoptosis, but compromised anoikis resistance and anchorage independent tumor growth of PDAC cells. Meanwhile, treatment with recombinant EDIL3 protein markedly promoted anoikis resistance and anchorage independent tumor growth. Mechanistically, we demonstrated that altered protein expression of Bcl-2 family might contribute to the oncogenic activities of EDIL3. In conclusion, this study provides evidences that EDIL3 is a potential predictor and plays an important role in anchorage independent tumor growth of PDAC and EDIL3-related pathways might represent a novel therapeutic strategy for treatment of pancreatic cancer. PMID:26735172

  7. Focused ultrasound treatment of VX2 tumors controlled by local harmonic motion.

    PubMed

    Curiel, Laura; Huang, Yuexi; Vykhodtseva, Natalia; Hynynen, Kullervo

    2009-06-01

    The purpose of this study was to evaluate the feasibility of using localized harmonic motion (LHM) to monitor and control focused ultrasound surgery (FUS) in VX2 tumors in vivo. FUS exposures were performed on 13 VX2 tumors implanted in nine rabbits. The same transducer induced coagulation and generated a localized oscillatory motion by periodically varying the radiation force. A separate diagnostic ultrasound transducer tracked motion by cross-correlating echo signals at different instances. A threshold in motion amplitude was instituted to cease exposure. Coagulation was confirmed by T2-weighted MR images, thermal dose obtained through MR thermometry and histological examinations. For tumor locations achieving coagulation, the LHM amplitude was 9% (p = 0.04) to 57% (p < 0.0001) lower than that before exposure. Control was successful for 74 (69%) out of 108 cases, with 52 (48%) reaching the threshold and achieving coagulation and 22 (21%) never reaching threshold nor coagulating. For the 34 (31%) unsuccessful exposures, 16 (15%) never reached the threshold but coagulation occurred, and 18 (16%) reached threshold without coagulation confirmed. Noise or radio-frequency signal changes explained motion over- or underestimation in 24 (22%) cases; the remaining 10 (9%) had other causes of error. The control was generally successful, but sudden change or noise in the acquired echo signal caused failure. Coagulation after exposure could be validated by comparing amplitudes before and after exposure.

  8. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study

    SciTech Connect

    Seppenwoolde, Yvette; Berbeco, Ross I.; Nishioka, Seiko; Shirato, Hiroki; Heijmen, Ben

    2007-07-15

    The Synchrony{sup TM} Respiratory Tracking System (RTS) is a treatment option of the CyberKnife robotic treatment device to irradiate extra-cranial tumors that move due to respiration. Advantages of RTS are that patients can breath normally and that there is no loss of linac duty cycle such as with gated therapy. Tracking is based on a measured correspondence model (linear or polynomial) between internal tumor motion and external (chest/abdominal) marker motion. The radiation beam follows the tumor movement via the continuously measured external marker motion. To establish the correspondence model at the start of treatment, the 3D internal tumor position is determined at 15 discrete time points by automatic detection of implanted gold fiducials in two orthogonal x-ray images; simultaneously, the positions of the external markers are measured. During the treatment, the relationship between internal and external marker positions is continuously accounted for and is regularly checked and updated. Here we use computer simulations based on continuously and simultaneously recorded internal and external marker positions to investigate the effectiveness of tumor tracking by the RTS. The Cyberknife does not allow continuous acquisition of x-ray images to follow the moving internal markers (typical imaging frequency is once per minute). Therefore, for the simulations, we have used data for eight lung cancer patients treated with respiratory gating. All of these patients had simultaneous and continuous recordings of both internal tumor motion and external abdominal motion. The available continuous relationship between internal and external markers for these patients allowed investigation of the consequences of the lower acquisition frequency of the RTS. With the use of the RTS, simulated treatment errors due to breathing motion were reduced largely and consistently over treatment time for all studied patients. A considerable part of the maximum reduction in treatment error

  9. Reproducibility of Tumor Motion Probability Distribution Function in Stereotactic Body Radiation Therapy of Lung Cancer

    SciTech Connect

    Zhang Fan; Hu Jing; Kelsey, Chris R.; Yoo, David; Yin Fangfang; Cai Jing

    2012-11-01

    Purpose: To evaluate the reproducibility of tumor motion probability distribution function (PDF) in stereotactic body radiation therapy (SBRT) of lung cancer using cine megavoltage (MV) images. Methods and Materials: Cine MV images of 20 patients acquired during three-dimensional conformal (6-11 beams) SBRT treatments were retrospectively analyzed to extract tumor motion trajectories. For each patient, tumor motion PDFs were generated per fraction (PDF{sub n}) using three selected 'usable' beams. Patients without at least three usable beams were excluded from the study. Fractional PDF reproducibility (R{sub n}) was calculated as the Dice similarity coefficient between PDF{sub n} to a 'ground-truth' PDF (PDF{sub g}), which was generated using the selected beams of all fractions. The mean of R{sub n}, labeled as R{sub m}, was calculated for each patient and correlated to the patient's mean tumor motion rang (A{sub m}). Change of R{sub m} during the course of SBRT treatments was also evaluated. Intra- and intersubject coefficient of variation (CV) of R{sub m} and A{sub m} were determined. Results: Thirteen patients had at least three usable beams and were analyzed. The mean of R{sub m} was 0.87 (range, 0.84-0.95). The mean of A{sub m} was 3.18 mm (range, 0.46-7.80 mm). R{sub m} was found to decrease as A{sub m} increases following an equation of R{sub m} = 0.17e{sup -0.9Am} + 0.84. R{sub m} also decreased slightly throughout the course of treatments. Intersubject CV of R{sub m} (0.05) was comparable to intrasubject CV of R{sub m} (range, 0.02-0.09); intersubject CV of A{sub m} (0.73) was significantly greater than intrasubject CV of A{sub m} (range, 0.09-0.24). Conclusions: Tumor motion PDF can be determined using cine MV images acquired during the treatments. The reproducibility of lung tumor motion PDF decreased exponentially as the tumor motion range increased and decreased slightly throughout the course of the treatments.

  10. Differential Motion Between Mediastinal Lymph Nodes and Primary Tumor in Radically Irradiated Lung Cancer Patients

    SciTech Connect

    Schaake, Eva E.; Rossi, Maddalena M.G.; Buikhuisen, Wieneke A.; Burgers, Jacobus A.; Smit, Adrianus A.J.; Belderbos, José S.A.; Sonke, Jan-Jakob

    2014-11-15

    Purpose/Objective: In patients with locally advanced lung cancer, planning target volume margins for mediastinal lymph nodes and tumor after a correction protocol based on bony anatomy registration typically range from 1 to 1.5 cm. Detailed information about lymph node motion variability and differential motion with the primary tumor, however, is lacking from large series. In this study, lymph node and tumor position variability were analyzed in detail and correlated to the main carina to evaluate possible margin reduction. Methods and Materials: Small gold fiducial markers (0.35 × 5 mm) were placed in the mediastinal lymph nodes of 51 patients with non-small cell lung cancer during routine diagnostic esophageal or bronchial endoscopic ultrasonography. Four-dimensional (4D) planning computed tomographic (CT) and daily 4D cone beam (CB) CT scans were acquired before and during radical radiation therapy (66 Gy in 24 fractions). Each CBCT was registered in 3-dimensions (bony anatomy) and 4D (tumor, marker, and carina) to the planning CT scan. Subsequently, systematic and random residual misalignments of the time-averaged lymph node and tumor position relative to the bony anatomy and carina were determined. Additionally, tumor and lymph node respiratory amplitude variability was quantified. Finally, required margins were quantified by use of a recipe for dual targets. Results: Relative to the bony anatomy, systematic and random errors ranged from 0.16 to 0.32 cm for the markers and from 0.15 to 0.33 cm for the tumor, but despite similar ranges there was limited correlation (0.17-0.71) owing to differential motion. A large variability in lymph node amplitude between patients was observed, with an average motion of 0.56 cm in the cranial-caudal direction. Margins could be reduced by 10% (left-right), 27% (cranial-caudal), and 10% (anteroposterior) for the lymph nodes and −2%, 15%, and 7% for the tumor if an online carina registration protocol replaced a

  11. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy

    SciTech Connect

    Shirzadi, Zahra; Sadeghi-Naini, Ali; Samani, Abbas

    2013-05-15

    Purpose: A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Estimating lung tissue incompressibility parameter variations resulting from air content variation throughout respiration is critical for computer assisted tumor motion tracking. Continuous tumor motion is a major challenge in lung cancer radiotherapy, especially with external beam radiotherapy. If not accounted for, this motion may lead to areas of radiation overdosage for normal tissue. Given the unavailability of imaging modality that can be used effectively for real-time lung tumor tracking, computer assisted approach based on tissue deformation estimation can be a good alternative. This approach involves lung biomechanical model where its fidelity depends on input tissue properties. This investigation shows that considering variable tissue incompressibility parameter is very important for predicting tumor motion accurately, hence improving the lung radiotherapy outcome. Methods: First, an in silico lung phantom study was conducted to demonstrate the importance of employing variable Poisson's ratio for tumor motion predication. After it was established that modeling this variability is critical for accurate tumor motion prediction, an optimization based technique was developed to estimate lung tissue Poisson's ratio as a function of respiration cycle time. In this technique, the Poisson's ratio and lung pressure value were varied systematically until optimal values were obtained, leading to maximum similarity between acquired and simulated 4D CT lung images. This technique was applied in an ex vivo porcine lung study where simulated images were constructed using the end exhale CT image and deformation fields obtained from the lung's FE modeling of each respiration time increment. To model the tissue, linear elastic and Marlow hyperelastic material models in conjunction with variable Poisson's ratio were used. Results: The phantom study showed that

  12. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    SciTech Connect

    Rottmann, Joerg; Berbeco, Ross; Keall, Paul

    2013-09-15

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  13. Application of a spring-dashpot system to clinical lung tumor motion data

    SciTech Connect

    Ackerley, E. J.; Wilson, P. L.; Cavan, A. E.; Berbeco, R. I.; Meyer, J.

    2013-02-15

    Purpose: The treatment efficacy of radiation therapy for lung tumors can be increased by compensating for breath-induced tumor motion. In this study, we quantitatively examine a mathematical model of pseudomechanical linkages between an external surrogate signal and lung tumor motion. Methods: A spring-dashpot system based on the Voigt model was developed to model the correlation between abdominal respiratory motion and tumor motion during lung radiotherapy. The model was applied to clinical data obtained from 52 treatments ('beams') from 10 patients, treated on the Mitsubishi Real-Time Radiation Therapy system, Sapporo, Japan. In Stage 1, model parameters were optimized for individual patients and beams to determine reference values and to investigate how well the model can describe the data. In Stage 2, for each patient the optimal parameters determined for a single beam were applied to data from other beams to investigate whether a beam-specific set of model parameters is sufficient to model tumor motion over a course of treatment. Results: In Stage 1, the baseline root mean square (RMS) residual error for all individually optimized beam data was 0.90 {+-} 0.40 mm (mean {+-} 1 standard deviation). In Stage 2, patient-specific model parameters based on a single beam were found to model the tumor position closely, even for irregular beam data, with a mean increase with respect to Stage 1 values in RMS error of 0.37 mm. On average, the obtained model output for the tumor position was 95% of the time within an absolute bound of 2.0 and 2.6 mm in Stages 1 and 2, respectively. The model was capable of dealing with baseline, amplitude and frequency variations of the input data, as well as phase shifts between the input abdominal and output tumor signals. Conclusions: These results indicate that it may be feasible to collect patient-specific model parameters during or prior to the first treatment, and then retain these for the rest of the treatment period. The model has

  14. Long-Term Disease Control of a Pancreatic Neuroendocrine Tumor with Lanreotide Autogel®: A Case Report

    PubMed Central

    Lybaert, Willem; Van Hul, Erik; Woestenborghs, Heidi

    2014-01-01

    The CLARINET study (ClinicalTrials.gov: NCT00353496) showed that somatostatin analogs are able to stabilize tumor growth in patients with intestinal and pancreatic neuroendocrine tumors (NETs). Here, we present a case of NET originating from the pancreatic tail that was treated with lanreotide Autogel®. A 60-year-old patient underwent resection of a pancreatic NET with splenectomy and distal pancreatectomy. Four months after surgery, there was an increase in chromogranin A levels, along with a hypercaptating lesion of approximately 3.5 cm at the residual part of the pancreatic corpus. Treatment with 30 mg monthly-administered octreotide long-acting release (LAR) was initiated. After 3 months of treatment, a control CT scan revealed diffuse metastases in the liver, although the patient presented no symptoms and liver tests were normal. Due to difficulties with the administration of octreotide LAR, treatment was switched to lanreotide Autogel® 120 mg, administered as monthly deep-subcutaneous injections. Progression-free survival, as shown by 3-monthly CT scans, was obtained for 2 years without the need to increase the lanreotide Autogel® dose, and the patient reported no side effects. After these 2 years, deterioration of the patient's clinical status and weight loss were observed, along with increased size of the liver lesions and appearance of peritoneal metastases. Chemotherapy treatment with cisplatinum-etoposide was initiated, while the lanreotide Autogel® injections were continued. After three chemotherapy cycles, a rapid decline in the patient's quality of life was noted, and she requested discontinuation of the chemotherapy and lanreotide injections. One month later, the patient died due to clinical progressive disease. PMID:25408662

  15. Emerging therapies and latest development in the treatment of unresectable pancreatic neuroendocrine tumors: an update for clinicians

    PubMed Central

    Sharma, Jaya; Duque, Marvin

    2013-01-01

    Pancreatic neuroendocrine tumors (pNETs) differ in their clinical behavior, presentation and prognosis based on their initial histological features and disease stage. While small resectable tumors can be treated surgically, metastatic and locally advanced disease carries a significant mortality and treatment options have been limited in terms of their efficacy. Streptozocin-based regimens were the only agents available before but recent advances have improved the armamentarium to treat pNETs. Newer chemotherapeutic agents such as temozolomide, somatostatin analogs and targeted therapies including everolimus and sunitinib are now available to treat these tumors. Several combination regimens with targeted therapies and newer agents such as pazopanib are being developed and tested in ongoing trials. PMID:24179483

  16. Real-time tumor motion estimation using respiratory surrogate via memory-based learning

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Berbeco, Ross I.; Xing, Lei

    2012-08-01

    Respiratory tumor motion is a major challenge in radiation therapy for thoracic and abdominal cancers. Effective motion management requires an accurate knowledge of the real-time tumor motion. External respiration monitoring devices (optical, etc) provide a noninvasive, non-ionizing, low-cost and practical approach to obtain the respiratory signal. Due to the highly complex and nonlinear relations between tumor and surrogate motion, its ultimate success hinges on the ability to accurately infer the tumor motion from respiratory surrogates. Given their widespread use in the clinic, such a method is critically needed. We propose to use a powerful memory-based learning method to find the complex relations between tumor motion and respiratory surrogates. The method first stores the training data in memory and then finds relevant data to answer a particular query. Nearby data points are assigned high relevance (or weights) and conversely distant data are assigned low relevance. By fitting relatively simple models to local patches instead of fitting one single global model, it is able to capture highly nonlinear and complex relations between the internal tumor motion and external surrogates accurately. Due to the local nature of weighting functions, the method is inherently robust to outliers in the training data. Moreover, both training and adapting to new data are performed almost instantaneously with memory-based learning, making it suitable for dynamically following variable internal/external relations. We evaluated the method using respiratory motion data from 11 patients. The data set consists of simultaneous measurement of 3D tumor motion and 1D abdominal surface (used as the surrogate signal in this study). There are a total of 171 respiratory traces, with an average peak-to-peak amplitude of ∼15 mm and average duration of ∼115 s per trace. Given only 5 s (roughly one breath) pretreatment training data, the method achieved an average 3D error of 1.5 mm and 95

  17. Simulation of dosimetric consequences of 4D-CT-based motion margin estimation for proton radiotherapy using patient tumor motion data

    NASA Astrophysics Data System (ADS)

    Koybasi, Ozhan; Mishra, Pankaj; St. James, Sara; Lewis, John H.; Seco, Joao

    2014-02-01

    For the radiation treatment of lung cancer patients, four-dimensional computed tomography (4D-CT) is a common practice used clinically to image tumor motion and subsequently determine the internal target volume (ITV) from the maximum intensity projection (MIP) images. ITV, which is derived from short pre-treatment 4D-CT scan (<6 s per couch position), may not adequately cover the extent of tumor motion during the treatment, particularly for patients that exhibit a large respiratory variability. Inaccurate tumor localization may result in under-dosage of the tumor or over-dosage of the surrounding tissues. The purpose of this study is therefore to assess the degree of tumor under-dosage in case of regular and irregular breathing for proton radiotherapy using ITV-based treatment planning. We place a spherical lesion into a modified XCAT phantom that is also capable of producing 4D images based on irregular breathing, and move the tumor according to real tumor motion data, which is acquired over multiple days by tracking gold fiducial markers implanted into the lung tumors of patients. We derive ITVs by taking the union of all tumor positions during 6 s of tumor motion in the phantom using the first day patient tumor tracking data. This is equivalent to ITVs generated clinically from cine-mode 4D-CT MIP images. The treatment plans created for different ITVs are then implemented on dynamic phantoms with tumor motion governed by real tumor tracking data from consecutive days. By comparing gross tumor volume dose distribution on days of ‘treatment’ with the ITV dose distribution, we evaluate the deviation of the actually delivered dose from the predicted dose. Our results have shown that the proton treatment planning on ITV derived from pre-treatment cine-mode 4D-CT can result in under-dosage (dose covering 95% of volume) of the tumor by up to 25.7% over 3 min of treatment for the patient with irregular respiratory motion. Tumor under-dosage is less significant for

  18. Erythropoietin enhancement of rat pancreatic tumor cell proliferation requires the activation of ERK and JNK signals.

    PubMed

    Bose, Chhanda; Udupa, Kodetthoor B

    2008-08-01

    Erythropoietin (EPO) regulates the proliferation and differentiation of erythroid cells by binding to its specific transmembrane receptor EPOR. Recent studies, however, have shown that the EPOR is additionally present in various cancer cells and EPO induces the proliferation of these cells, suggesting a different function for EPO other than erythropoiesis. Therefore, the purpose of the present study was to examine EPOR expression and the role of EPO in the proliferation and signaling cascades involved in this process, using the rat pancreatic tumor cell line AR42J. Our results showed that AR42J cells expressed EPOR, and EPO significantly enhanced their proliferation. Cell cycle analysis of EPO-treated cells indicated an increased percentage of cells in the S phase, whereas cell numbers in G0/G1 phase were significantly reduced. Phosphorylation of extracellular regulatory kinase 1/2 (ERK1/2) and c-Jun NH(2) terminal kinase 1/2 (JNK1/2) was rapidly stimulated and sustained after EPO addition. Treatment of cells with mitogen-activated protein/ERK kinase (MEK) inhibitor PD98059 or JNK inhibitor SP600125 significantly inhibited EPO-enhanced proliferation and also increased the fraction of cells in G0/G1 phase. Furthermore, the inhibition of JNK using small interference RNA (siRNA) suppressed EPO-enhanced proliferation of AR42J cells. Taken together, our results indicate that AR42J cells express EPOR and that the activation of both ERK1/2 and JNK1/2 by EPO is essential in regulating proliferation and the cell cycle. Thus both appear to play a key role in EPO-enhanced proliferation and suggest that the presence of both is required for EPO-mediated proliferation of AR42J cells.

  19. Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer

    PubMed Central

    Chien, Wenwen; Sun, Qiao-Yang; Lee, Kian Leong; Ding, Ling-Wen; Wuensche, Peer; Torres-Fernandez, Lucia A.; Tan, Siew Zhuan; Tokatly, Itay; Zaiden, Norazean; Poellinger, Lorenz; Mori, Seiichi; Yang, Henry; Tyner, Jeffrey W.; Koeffler, H. Phillip

    2015-01-01

    We utilized three tiers of screening to identify novel therapeutic agents for pancreatic cancers. First, we analyzed 14 pancreatic cancer cell lines against a panel of 66 small-molecule kinase inhibitors and dasatinib was the most potent. Second, we performed RNA expression analysis on 3 dasatinib-resistant and 3 dasatinib–sensitive pancreatic cancer cell lines to profile their gene expression. Third, gene profiling data was integrated with the connectivity map database to search for potential drugs. Thioridazine was one of the top ranking small molecules with highly negative enrichment. Thioridazine and its family members of phenothiazine including penfludidol caused pancreatic cancer cell death and affected protein expression levels of molecules involved in cell cycle regulation, apoptosis, and multiple kinase activities. This family of drugs causes activation of protein phosphatase 2 (PP2A). The drug FTY-720 (activator of PP2A) induced apoptosis of pancreatic cancer cells. Silencing catalytic unit of PP2A rendered pancreatic cancer cells resistant to penfluridol. Our observations suggest potential therapeutic use of penfluridol or similar agent associated with activation of PP2A in pancreatic cancers. PMID:25637283

  20. High Expression of MicroRNA-196a Indicates Poor Prognosis in Resected Pancreatic Neuroendocrine Tumor

    PubMed Central

    Lee, Yoon Suk; Kim, Haeryoung; Kim, Hyoung Woo; Lee, Jong-Chan; Paik, Kyu-Hyun; Kang, Jingu; Kim, Jaihwan; Yoon, Yoo-Seok; Han, Ho-Seong; Sohn, Insuk; Cho, Jeonghee; Hwang, Jin-Hyeok

    2015-01-01

    Abstract There is limited data on miRNA expression in pancreatic neuroendocrine tumors (PanNETs). In this study, we aimed to identify miRNAs that could be potential prognostic biomarkers of PanNETs in patients who underwent curative surgery. For miRNA target screening, 2 primary PanNETs and corresponding liver metastases were screened for miRNA expression by the NanoString nCounter analysis. Candidate miRNAs were selected by ≥2-fold difference of expression between metastatic versus primary tumor. For miRNA target validation, quantitative real-time PCR was performed for candidate miRNAs on 37 PanNETs and matched nonneoplastic pancreata, and the miRNA levels were correlated with the clinicopathological features and patient survival data. Eight miRNAs (miRNA-27b, -122, -142–5p, -196a, -223, -590–5p, -630, and -944) were selected as candidate miRNAs. Only miR-196a level was significantly associated with stage, and mitotic count. When PanNETs were stratified into high (n = 10) and low (n = 27) miRNA-196a expression groups, miRNA-196a-high PanNETs were significantly associated with advanced pathologic T stage (50.0% vs 7.4%), N stage (50.0% vs 3.7%), higher mitotic counts (60.0% vs 3.7%), and higher Ki-67-labeling indices (60.0% vs 22.2%). In addition, high miRNA-196a expression was significantly associated with decreased overall survival (P = 0.046) and disease-free survival (P < 0.001) during a median follow-up of 37.9 months with the hazard ratio for recurrence of 16.267 (95% confidence interval = 1.732–153.789; P = 0.015). MiRNA-196a level may be a promising prognostic marker of recurrence in resected PanNETs, although further experimental investigation would be required. PMID:26683934

  1. Merlin/NF2 Suppresses Pancreatic Tumor Growth and Metastasis by Attenuating the FOXM1-Mediated Wnt/β-Catenin Signaling.

    PubMed

    Quan, Ming; Cui, Jiujie; Xia, Tian; Jia, Zhiliang; Xie, Dacheng; Wei, Daoyan; Huang, Suyun; Huang, Qian; Zheng, Shaojiang; Xie, Keping

    2015-11-15

    Merlin, the protein encoded by the NF2 gene, is a member of the band 4.1 family of cytoskeleton-associated proteins and functions as a tumor suppressor for many types of cancer. However, the roles and mechanism of Merlin expression in pancreatic cancer have remained unclear. In this study, we sought to determine the impact of Merlin expression on pancreatic cancer development and progression using human tissue specimens, cell lines, and animal models. Decreased expression of Merlin was pronounced in human pancreatic tumors and cancer cell lines. Functional analysis revealed that restored expression of Merlin inhibited pancreatic tumor growth and metastasis in vitro and in vivo. Furthermore, Merlin suppressed the expression of Wnt/β-catenin signaling downstream genes and the nuclear expression of β-catenin protein, and overexpression of Forkhead box M1 (FOXM1) attenuated the suppressive effect of Merlin on Wnt/β-catenin signaling. Mechanistically, Merlin decreased the stability of FOXM1 protein, which plays critical roles in nuclear translocation of β-catenin. Collectively, these findings demonstrated that Merlin critically regulated pancreatic cancer pathogenesis by suppressing FOXM1/β-catenin signaling, suggesting that targeting novel Merlin/FOXM1/β-catenin signaling is an effective therapeutic strategy for pancreatic cancer.

  2. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth.

    PubMed

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-04-15

    The malate-aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate-aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD(+) redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate-aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  3. SIRT3-dependent GOT2 acetylation status affects the malate–aspartate NADH shuttle activity and pancreatic tumor growth

    PubMed Central

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-01-01

    The malate–aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate–aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD+ redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate–aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  4. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis.

    PubMed

    Helm, Ole; Held-Feindt, Janka; Grage-Griebenow, Evelin; Reiling, Norbert; Ungefroren, Hendrik; Vogel, Ilka; Krüger, Uwe; Becker, Thomas; Ebsen, Michael; Röcken, Christoph; Kabelitz, Dieter; Schäfer, Heiner; Sebens, Susanne

    2014-08-15

    Pancreatic ductal adenocarcinoma (PDAC) still ranking 4th in the order of fatal tumor diseases is characterized by a profound tumor stroma with high numbers of tumor-associated macrophages (TAMs). Driven by environmental factors, monocytes differentiate into M1- or M2-macrophages, the latter commonly regarded as being protumorigenic. Because a detailed analysis of TAMs in human PDAC development is still lacking, freshly isolated PDAC-derived TAMs were analyzed for their phenotype and impact on epithelial-mesenchymal-transition (EMT) of benign (H6c7) and malignant (Colo357) pancreatic ductal epithelial cells. TAMs exhibited characteristics of M1-macrophages (expression of HLA-DR, IL-1β, or TNF-α) and M2-macrophages (expression of CD163 and IL-10). In the presence of TAMs, H6c7, and Colo357 cells showed an elongated cell shape along with an increased expression of mesenchymal markers such as vimentin and reduced expression of epithelial E-cadherin. Similar to TAMs, in vitro generated M1- and M2-macrophages both mediated EMT in H6c7 and Colo357 cells. M1-macrophages acquired M2-characteristics during coculture that could be prevented by GM-CSF treatment. However, M1-macrophages still potently induced EMT in H6c7 and Colo357 cells although lacking M2-characteristics. Overall, these data demonstrate that TAMs exhibit anti- as well as proinflammatory properties that equally contribute to EMT induction in PDAC initiation and development. PMID:24458546

  5. Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles.

    PubMed

    Pittella, Frederico; Cabral, Horacio; Maeda, Yoshinori; Mi, Peng; Watanabe, Sumiyo; Takemoto, Hiroyasu; Kim, Hyun Jin; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2014-03-28

    Efficient systems for delivery of small interfering RNA (siRNA) are required for clinical application of RNA interference (RNAi) in cancer therapy. Herein, we developed a safe and efficient nanocarrier comprising poly(ethylene glycol)-block-charge-conversional polymer (PEG-CCP)/calcium phosphate (CaP) hybrid micelles for systemic delivery of siRNA and studied their efficacy in spontaneous bioluminescent pancreatic tumors from transgenic mice. PEG-CCP was engineered to provide the siRNA-loaded hybrid micelles with enhanced colloidal stability and biocompatibility due to the PEG capsule and with endosome-disrupting functionality due to the acidic pH-responsive CCP segment where the polyanionic structure could be converted to polycationic structure at acidic pH through cis-aconitic amide cleavage. The resulting hybrid micelles were confirmed to have a diameter of <50nm, with a narrow size distribution. Intravenously injected hybrid micelles significantly reduced the luciferase-based luminescent signal from the spontaneous pancreatic tumors in an siRNA sequence-specific manner. The gene silencing activity of the hybrid micelles correlated with their preferential tumor accumulation, as indicated by fluorescence imaging and histological analysis. Moreover, there were no significant changes in hematological parameters in mice treated with the hybrid micelles. These results demonstrate the great potential of the hybrid micelles as siRNA carriers for RNAi-based cancer therapy. PMID:24440662

  6. Treatment of nitrosamine-induced pancreatic tumors in hamsters with analogs of somatostatin and luteinizing hormone-releasing hormone

    SciTech Connect

    Paz-Bouza, J.I.; Redding, T.W.; Schally, A.V.

    1987-02-01

    Pancreatic ductal adenocarcinoma was induced in female Syrian golden hamsters by injecting N-nitrosobis(2-oxopropyl)amine (BOP) once a week at a dose of 10 mg per kg of body weight for 18 weeks. Hamsters were then treated with somatostatin analog (RC-160) or with (6-D-tryptophan)luteinizing hormone-releasing hormone ((D-Trp/sup 6/)LH-RH) delayed delivery systems. After 18 weeks of BOP administration, the hamsters were divided into three groups of 10-20 animals each. Group I consisted of untreated controls, group II was injected with RC-160, and group III was injected with (D-Trp/sub 2/)LH-RH. A striking decrease in tumor weight and volume was obtained in animals treated with (D-Trp/sup 6/)LH-RH or with the somatostatin analog RC-160. After 45 days of treatment with either analog, the survival rate was significantly higher in groups II and III (70%), as compared with the control group (35%). The studies, done by light microscopy, high-resolution microscopy, and electron microscopy, showed a decrease in the total number of cancer cells and changes in the epithelium, connective tissue, and cellular organelles in groups II and III treated with the hypothalamic analogs as compared to controls. These results in female hamsters with induced ductal pancreatic tumors confirm and extend the authors findings, obtained in male animals with transplanted tumors, that (D-Trp/sub 6/)LH-RH and somatostatin analogs inhibit the growth of pancreatic cancers.

  7. Surgical treatment and clinical outcome of nonfunctional pancreatic neuroendocrine tumors: a 14-year experience from one single center.

    PubMed

    Yang, Min; Zeng, Lin; Zhang, Yi; Su, An-Ping; Yue, Peng-Ju; Tian, Bo-le

    2014-11-01

    Our primary aim of the present study was to analyze the clinical characteristics and surgical outcome of nonfunctional pancreatic neuroendocrine tumors (non-F-P-NETs), with an emphasis on evaluating the prognostic value of the newly updated 2010 grading classification of the World Health Organization (WHO).Data of 55 consecutive patients who were surgically treated and pathologically diagnosed as non-F-P-NETs in our single institution from January 2000 to December 2013 were retrospectively collected.This entirety comprised of 55 patients (31 males and 24 females), with a mean age of 51.24 ± 12.95 years. Manifestations of non-F-P-NETs were nonspecific. Distal pancreatectomy, pancreaticoduodenectomy, and local resection of pancreatic tumor were the most frequent surgical procedures, while pancreatic fistula was the most common but acceptable complication (30.3%). The overall 5-year survival rate of this entire cohort was 41.0%, with a median survival time of 60.4 months. Patients who underwent R0 resections obtained a better survival than those who did not (P < 0.005). As for the prognostic analysis, tumor size and lymph invasion were only statistically significant in univariate analysis (P = 0.046 and P < 0.05, respectively), whereas the newly updated 2010 grading classification of WHO (G1 and G2 vs G3), distant metastasis, and surgical margin were all meaningful in both univariate and multivariate analysis (P = 0.045, 0.001, and 0.042, respectively).Non-F-P-NETs are a kind of rare neoplasm, with mostly indolent malignancy. Patients with non-F-P-NETs could benefit from the radical resections. The new WHO criteria, distant metastasis and surgical margin, might be independent predictors for the prognosis of non-F-P-NETs. PMID:25396335

  8. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells

    PubMed Central

    Duewell, P; Steger, A; Lohr, H; Bourhis, H; Hoelz, H; Kirchleitner, S V; Stieg, M R; Grassmann, S; Kobold, S; Siveke, J T; Endres, S; Schnurr, M

    2014-01-01

    Pancreatic cancer is characterized by a microenvironment suppressing immune responses. RIG-I-like helicases (RLH) are immunoreceptors for viral RNA that induce an antiviral response program via the production of type I interferons (IFN) and apoptosis in susceptible cells. We recently identified RLH as therapeutic targets of pancreatic cancer for counteracting immunosuppressive mechanisms and apoptosis induction. Here, we investigated immunogenic consequences of RLH-induced tumor cell death. Treatment of murine pancreatic cancer cell lines with RLH ligands induced production of type I IFN and proinflammatory cytokines. In addition, tumor cells died via intrinsic apoptosis and displayed features of immunogenic cell death, such as release of HMGB1 and translocation of calreticulin to the outer cell membrane. RLH-activated tumor cells led to activation of dendritic cells (DCs), which was mediated by tumor-derived type I IFN, whereas TLR, RAGE or inflammasome signaling was dispensable. Importantly, CD8α+ DCs effectively engulfed apoptotic tumor material and cross-presented tumor-associated antigen to naive CD8+ T cells. In comparison, tumor cell death mediated by oxaliplatin, staurosporine or mechanical disruption failed to induce DC activation and antigen presentation. Tumor cells treated with sublethal doses of RLH ligands upregulated Fas and MHC-I expression and were effectively sensitized towards Fas-mediated apoptosis and cytotoxic T lymphocyte (CTL)-mediated lysis. Vaccination of mice with RLH-activated tumor cells induced protective antitumor immunity in vivo. In addition, MDA5-based immunotherapy led to effective tumor control of established pancreatic tumors. In summary, RLH ligands induce a highly immunogenic form of tumor cell death linking innate and adaptive immunity. PMID:25012502

  9. Focused Ultrasound Surgery Control Using Local Harmonic Motion: VX2 Tumor Study

    SciTech Connect

    Curiel, Laura; Chopra, Rajiv; Goertz, David; Hynynen, Kullervo

    2009-04-14

    The objective of this study was to develop a real-time method for controlling focused ultrasound surgery using ultrasound imaging. The approach uses measurements of localized harmonic motion (LHM) in order to perform controlled FUS exposures by detecting changes in the elastic properties of tissues during coagulation. Methods: Nine New Zealand rabbits with VX2 tumors implanted in the thigh were used for this study. LHM was generated within the tumors by periodic induction of radiation force using a FUS transducer (80-mm focal length, 100-mm diameter, 20-mm central hole, 1.485-MHz). Tissue motion was tracked by collecting and cross-correlating RF signals during the motion using a separate diagnostic transducer (3-kHz PRF, 5-MHz). After locating the tumor in MR images, a series of sonications were performed to treat the tumors using a reduction in LHM amplitude to control the exposure. Results: LHM was successfully used to control the sonications. A LHM amplitude threshold value was determined at which changes were considered significant and then the exposure was started and stopped when the LHM amplitude dropped below the threshold. The appearance of a lesion was then verified by MRI. The feasibility of LHM measurements to control FUS exposure was validated.

  10. Modulation of cell cycle and gene expression in pancreatic tumor cell lines by methionine deprivation (methionine stress): implications to the therapy of pancreatic adenocarcinoma.

    PubMed

    Kokkinakis, Demetrius M; Liu, Xiaoyan; Neuner, Russell D

    2005-09-01

    The effect of methionine deprivation (methionine stress) on the proliferation, survival, resistance to chemotherapy, and regulation of gene and protein expression in pancreatic tumor lines is examined. Methionine stress prevents successful mitosis and promotes cell cycle arrest and accumulation of cells with multiple micronuclei with decondensed chromatin. Inhibition of mitosis correlates with CDK1 down-regulation and/or inhibition of its function by Tyr(15) phosphorylation or Thr(161) dephosphorylation. Inhibition of cell cycle progression correlates with loss of hyperphosphorylated Rb and up-regulation of p21 via p53 and/or transforming growth factor-beta (TGF-beta) activation depending on p53 status. Although methionine stress-induced toxicity is not solely dependent on p53, the gain in p21 and loss in CDK1 transcription are more enhanced in wild-type p53 tumors. Up-regulation of SMAD7, a TGF-beta signaling inhibitor, suggests that SMAD7 does not restrict the TGF-beta-mediated induction of p21, although it may prevent up-regulation of p27. cDNA oligoarray analysis indicated a pleiotropic response to methionine stress. Cell cycle and mitotic arrest is in agreement with up-regulation of NF2, ETS2, CLU, GADD45alpha, GADD45beta, and GADD45gamma and down-regulation of AURKB, TOP2A, CCNA, CCNB, PRC1, BUB1, NuSAP, IFI16, and BRCA1. Down-regulation of AREG, AGTR1, M-CSF, and EGF, IGF, and VEGF receptors and up-regulation of GNA11 and IGFBP4 signify loss of growth factor support. PIN1, FEN1, and cABL up-regulation and LMNB1, AREG, RhoB, CCNG, TYMS, F3, and MGMT down-regulation suggest that methionine stress sensitizes the tumor cells to DNA-alkylating drugs, 5-fluorouracil, and radiation. Increased sensitivity of pancreatic tumor cell lines to temozolomide is shown under methionine stress conditions and is attributed in part to diminished O(6)-methylguanine-DNA methyltransferase and possibly to inhibition of the cell cycle progression.

  11. Recovery of biological motion perception and network plasticity after cerebellar tumor removal.

    PubMed

    Sokolov, Arseny A; Erb, Michael; Grodd, Wolfgang; Tatagiba, Marcos S; Frackowiak, Richard S J; Pavlova, Marina A

    2014-10-01

    Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition. PMID:25017648

  12. Efforts to improve the diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration for pancreatic tumors

    PubMed Central

    Yamabe, Akane; Irisawa, Atsushi; Bhutani, Manoop S.; Shibukawa, Goro; Fujisawa, Mariko; Sato, Ai; Yoshida, Yoshitsugu; Arakawa, Noriyuki; Ikeda, Tsunehiko; Igarashi, Ryo; Maki, Takumi; Yamamoto, Shogo

    2016-01-01

    Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is widely used to obtain a definitive diagnosis of pancreatic tumors. Good results have been reported for its diagnostic accuracy, with high sensitivity and specificity of around 90%; however, technological developments and adaptations to improve it still further are currently underway. The endosonographic technique can be improved when several tips and tricks useful to overcome challenges of EUS-FNA are known. This review provides various techniques and equipment for improvement in the diagnostic accuracy in EUS-FNA. PMID:27503153

  13. Clinical study on the influence of motion and other factors on stereotactic radiotherapy in the treatment of adrenal gland tumor

    PubMed Central

    Wang, Jingsheng; Li, Fengtong; Dong, Yang; Song, Yongchun; Yuan, Zhiyong

    2016-01-01

    Background The aim of this study was to investigate the adrenal tumor motion law and influence factors in the treatment of adrenal gland tumor and provide a reference value basis for determining the planning target volume margins for therapy. Materials and methods The subjects considered in this study were 38 adrenal tumor patients treated with CyberKnife with the placement of 45 gold fiducials. Fiducials were implanted into each adrenal tumor using β-ultrasonic guidance. Motion amplitudes of gold fiducials were measured with a Philips SLS simulator and motion data in the left–right, anterior–posterior, and cranio–caudal directions were obtained. Multiple linear regression models were used to analyze influencing factors. t-Test was used for motion amplitude comparison of different tumor locations along the z-axis. Results The motion distances were 0.1–0.4 cm (0.27±0.07 cm), 0.1–0.5 cm (0.31±0.11 cm), and 0.5–1.2 cm (0.87±0.21 cm) along the x-, y-, and z-axes, respectively. Motion amplitude along the z-axis may be affected by tumor location, but movement along the other axes was not affected by age, height, body mass, location, and size. Conclusion The maximum motion distance was along the z-axis. Therefore, this should be the main consideration when defining the planning target volume safety margin. Due to the proximity of the liver, adrenal gland tumor motion amplitude was smaller on the right than the left. This study analyzed adrenal tumor motion amplitude data to evaluate how motion and other factors influence the treatment of adrenal tumor with a goal of providing a reference for stereotactic radiotherapy boundary determination. PMID:27486331

  14. Quantifying Rigid and Nonrigid Motion of Liver Tumors During Stereotactic Body Radiation Therapy

    SciTech Connect

    Xu, Qianyi; Hanna, George; Grimm, Jimm; Kubicek, Gregory; Pahlajani, Niraj; Asbell, Sucha; Fan, Jiajin; Chen, Yan; LaCouture, Tamara

    2014-09-01

    Purpose: To quantify rigid and nonrigid motion of liver tumors using reconstructed 3-dimensional (3D) fiducials from stereo imaging during CyberKnife-based stereotactic body radiation therapy (SBRT). Methods and Materials: Twenty-three liver patients treated with 3 fractions of SBRT were used in this study. After 2 orthogonal kilovoltage images were taken during treatment, the 3D locations of the fiducials were generated by the CyberKnife system and validated using geometric derivations. A total of 4824 pairs of kilovoltage images from start to end of treatment were analyzed. For rigid motion, the rotational angles and translational shifts were reported by aligning 3D fiducial groups from different image pairs, using least-squares fitting. For nonrigid motion, we quantified interfractional tumor volume variations by using the proportional volume derived from the fiducials, which correlates to the sum of interfiducial distances. The individual fiducial displacements were also reported (1) after rigid corrections and (2) without angle corrections. Results: The proportional volume derived by the fiducials demonstrated a volume-increasing trend in the second (101.9% ± 3.6%) and third (101.0 ± 5.9%) fractions among most patients, possibly due to radiation-induced edema. For all patients, the translational shifts in left-right, anteroposterior, and superoinferior directions were 2.1 ± 2.3 mm, 2.9 ± 2.8 mm, and 6.4 ± 5.5 mm, respectively. The greatest translational shifts occurred in the superoinferior direction, likely due to respiratory motion from the diaphragm. The rotational angles in roll, pitch, and yaw were 1.2° ± 1.8°, 1.8° ± 2.4°, and 1.7° ± 2.1°, respectively. The 3D individual fiducial displacements with rigid corrections were 0.2 ± 0.2 mm and increased to 0.5 ± 0.4 mm without rotational corrections. Conclusions: Accurate 3D locations of internal fiducials can be reconstructed from stereo imaging during treatment. As an

  15. Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation

    PubMed Central

    Roy, Nilotpal; Malik, Shivani; Villanueva, Karina E.; Urano, Atsushi; Lu, Xinyuan; Von Figura, Guido; Seeley, E. Scott; Dawson, David W.; Collisson, Eric A.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDA) develops predominantly through pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) precursor lesions. Pancreatic acinar cells are reprogrammed to a “ductal-like” state during PanIN-PDA formation. Here, we demonstrate a parallel mechanism operative in mature duct cells during which functional cells undergo “ductal retrogression” to form IPMN-PDA. We further identify critical antagonistic roles for Brahma-related gene 1 (Brg1), a catalytic subunit of the SWI/SNF complexes, during IPMN-PDA development. In mature duct cells, Brg1 inhibits the dedifferentiation that precedes neoplastic transformation, thus attenuating tumor initiation. In contrast, Brg1 promotes tumorigenesis in full-blown PDA by supporting a mesenchymal-like transcriptional landscape. We further show that JQ1, a drug that is currently being tested in clinical trials for hematological malignancies, impairs PDA tumorigenesis by both mimicking some and inhibiting other Brg1-mediated functions. In summary, our study demonstrates the context-dependent roles of Brg1 and points to potential therapeutic treatment options based on epigenetic regulation in PDA. PMID:25792600

  16. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    SciTech Connect

    Park, Jong-Kook; Henry, Jon C.; Jiang, Jinmai; Esau, Christine; Gusev, Yuriy; Lerner, Megan R.; Postier, Russell G.; Brackett, Daniel J.; Schmittgen, Thomas D.

    2011-03-25

    Research highlights: {yields} The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. {yields} miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. {yields} miR-132 and miR-212 expression is increased by a {beta}2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G{sub 2}/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the {beta}2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The {beta}2 adrenergic pathway may play an important role in this novel mechanism.

  17. Assessment and optimization of electroporation-assisted tumoral nanoparticle uptake in a nude mouse model of pancreatic ductal adenocarcinoma.

    PubMed

    West, Derek Lamont; White, Sarah B; Zhang, Zhouli; Larson, Andrew C; Omary, Reed A

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a particularly lethal form of cancer. In 2012, the incidence of PDAC was 43,920. Five-year survival for patients with PDAC is around 6%, regardless of staging, making PDAC one of the deadliest forms of cancer. One reason for this dismal prognosis is chemoresistance to the current first-line therapy, gemcitabine. There are multiple factors that contribute to the chemoresistance observed in pancreatic cancer. Among them, desmoplasia has been increasingly seen as a significant contributor to chemoresistance. To overcome desmoplastic chemoresistance, several novel methods of treatment have been developed. Electroporation is one such novel treatment. High electrical fields are applied to cells to create pores that increase cell permeability. It has been previously demonstrated that electroporation enhances the therapeutic efficacy of anticancer drugs in pancreatic tumor models. Nanoparticle-based drug delivery systems constitute a second novel method to overcome desmoplastic chemoresistance. Due to their intrinsic design advantages, nanoparticles have been shown to increase the effectiveness of chemotherapeutic agents, while further reducing or even eliminating side effects. To date, there have been no studies evaluating the cumulative effect of combining both nanoparticle and electroporation strategies to overcome chemoresistance in PDAC. Our preliminary studies assessed the in vitro and in vivo uptake of doxorubicin-loaded iron oxide nanoparticles as a function of electroporation voltage and timing of administration in pancreatic adenocarcinoma cells. Our studies demonstrated that addition of electroporation to administration of nanoparticles significantly increased the amount of intracellular iron oxide nanoparticle uptake by a PANC-1 cell line in an athymic nude mouse model of PDAC. Further, electroporation-assisted nanoparticle uptake could be significantly altered by changing the timing of application of electroporation.

  18. SU-E-J-60: Evaluation of Temporal Lag in Radiotherapy Gating for Tumor Motion Trajectories

    SciTech Connect

    Belcher, AH; McCabe, B; Wiersma, RD

    2015-06-15

    Purpose: Evaluating timing differences between LINAC beam ON/OFF and the estimation of tumor positioning using gating systems is essential for establishing confidence when treating with gating during radiotherapy, and is an annual requirement of TG-142. Temporal discrepancies between the trajectories of external marker surrogates and beam delivery may vary depending upon the type of external marker motion, which is quantified in this work for several trajectories. Methods: A precise robotic 3D motion stage performed several trajectories typically used for gating phantoms, including sinusoidal and Lujan-type motion; a commercial respiratory motion simulator was also employed. The true motions were monitored using variable resistors. The beam ON/OFF was controlled separately by two RPM (Varian) systems, an integrated version delivered by a Varian Truebeam LINAC and version 1.6 delivered by a Varian Trilogy, and measured using a diode. The resistor and diode signals were read by a multichannel digital oscilloscope, and timing differences between beam ON/OFF as measured by the diode and the phantom motion were determined using a peak detection algorithm. Results: Timing differences between beam ON/OFF and 3D stage motion peaks (diode—true motion timing) were computed to be 79.4 & 57.7ms for sinusoidal motion and 109.1 & 63.6ms for Lujan-type motion on the Truebeam LINAC, for beam ON and OFF, respectively. Timing differences for the Trilogy LINAC were 34.4 & 55.2ms for the sinusoidal motion and 29.0 & 26.3ms for the Lujan-type motion, for beam ON and OFF, respectively. With the commercial motion simulator, the timing differences were found to be −9ms and −78ms for beam ON/OFF, respectively, with the Truebeam, and −97.6ms and −60.9ms for beam ON/OFF, respectively, with the Trilogy. Conclusion: Setup-dependent temporal lags were found using this methodology. These discrepancies have the potential to influence quality assurance on gating systems and ultimately

  19. Respiratory motion prediction for tumor following radiotherapy by using time-variant seasonal autoregressive techniques.

    PubMed

    Ichiji, Kei; Homma, Noriyasu; Sakai, Masao; Takai, Yoshihiro; Narita, Yuichiro; Abe, Mokoto; Sugita, Norihiro; Yoshizawa, Makoto

    2012-01-01

    We develop a new prediction method of respiratory motion for accurate dynamic radiotherapy, called tumor following radiotherapy. The method is based on a time-variant seasonal autoregressive (TVSAR) model and extended to further capture time-variant and complex nature of various respiratory patterns. The extended TVSAR can represent not only the conventional quasi-periodical nature, but also the residual components, which cannot be expressed by the quasi-periodical model. Then, the residuals are adaptively predicted by using another autoregressive model. The proposed method was tested on 105 clinical data sets of tumor motion. The average errors were 1.28 ± 0.87 mm and 1.75 ± 1.13 mm for 0.5 s and 1.0 s ahead prediction, respectively. The results demonstrate that the proposed method can outperform the state-of-the-art prediction methods. PMID:23367303

  20. Resolution of Hyperreninemia, Secondary Hyperaldosteronism, and Hypokalemia With 177Lu-DOTATATE Induction and Maintenance Peptide Receptor Radionuclide Therapy in a Patient With Pancreatic Neuroendocrine Tumor.

    PubMed

    Makis, William; McCann, Karey; Riauka, Terence A; McEwan, Alexander J B

    2015-11-01

    A 54-year-old woman presented with a history of nausea, vomiting, diarrhea, and recurrent episodes of severe hypokalemia requiring hospitalization. Imaging revealed a pancreatic mass with liver metastases, histologically confirmed to be a neuroendocrine tumor. Elevated active renin and aldosterone levels were identified, and the patient was treated with 4 induction cycles of Lu-DOTATATE, which resolved the diarrhea, nausea, and hypokalemia, and normalized the renin and aldosterone levels. After 3 additional maintenance Lu-DOTATATE treatments, the pancreatic tumor had decreased in size, was deemed operable, and was resected. She remains on maintenance Lu-DOTATATE therapy with progression-free survival of 45 months thus far.

  1. Pancreatic Cancer Genetics

    PubMed Central

    Amundadottir, Laufey T.

    2016-01-01

    Although relatively rare, pancreatic tumors are highly lethal [1]. In the United States, an estimated 48,960 individuals will be diagnosed with pancreatic cancer and 40,560 will die from this disease in 2015 [1]. Globally, 337,872 new pancreatic cancer cases and 330,391 deaths were estimated in 2012 [2]. In contrast to most other cancers, mortality rates for pancreatic cancer are not improving; in the US, it is predicted to become the second leading cause of cancer related deaths by 2030 [3, 4]. The vast majority of tumors arise in the exocrine pancreas, with pancreatic ductal adenocarcinoma (PDAC) accounting for approximately 95% of tumors. Tumors arising in the endocrine pancreas (pancreatic neuroendocrine tumors) represent less than 5% of all pancreatic tumors [5]. Smoking, type 2 diabetes mellitus (T2D), obesity and pancreatitis are the most consistent epidemiological risk factors for pancreatic cancer [5]. Family history is also a risk factor for developing pancreatic cancer with odds ratios (OR) ranging from 1.7-2.3 for first-degree relatives in most studies, indicating that shared genetic factors may play a role in the etiology of this disease [6-9]. This review summarizes the current knowledge of germline pancreatic cancer risk variants with a special emphasis on common susceptibility alleles identified through Genome Wide Association Studies (GWAS). PMID:26929738

  2. Six Degrees-of-Freedom Prostate and Lung Tumor Motion Measurements Using Kilovoltage Intrafraction Monitoring

    SciTech Connect

    Huang, Chen-Yu; Tehrani, Joubin Nasehi; Ng, Jin Aun; Booth, Jeremy; Keall, Paul

    2015-02-01

    Purpose: Tumor positional uncertainty has been identified as a major issue that deteriorates the efficacy of radiation therapy. Tumor rotational movement, which is not well understood, can result in significant geometric and dosimetric inaccuracies. The objective of this study was to measure 6 degrees-of-freedom (6 DoF) prostate and lung tumor motion, focusing on the more novel rotation, using kilovoltage intrafraction monitoring (KIM). Methods and Materials: Continuous kilovoltage (kV) projections of tumors with gold fiducial markers were acquired during radiation therapy for 267 fractions from 10 prostate cancer patients and immediately before or after radiation therapy for 50 fractions from 3 lung cancer patients. The 6 DoF motion measurements were determined from the individual 3-dimensional (3D) marker positions, after using methods to reject spurious and smooth noisy data, using an iterative closest point algorithm. Results: There were large variations in the magnitude of the tumor rotation among different fractions and patients. Various rotational patterns were observed. The average prostate rotation angles around the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) axes were 1.0 ± 5.0°, 0.6 ± 3.3°, and 0.3 ± 2.0°, respectively. For 35% of the time, the prostate rotated more than 5° about the LR axis, indicating the need for intrafractional adaptation during radiation delivery. For lung patients, the average LR, SI, and AP rotation angles were 0.8 ± 4.2°, −0.8 ± 4.5°, and 1.7 ± 3.1°, respectively. For about 30% of the time, the lung tumors rotated more than 5° around the SI axis. Respiration-induced rotation was detected in 2 of the 3 lung patients. Conclusions: The prostate and lung tumors were found to undergo rotations of more than 5° for about a third of the time. The lung tumor data represent the first 6 DoF tumor motion measured by kV images. The 6 DoF KIM method can enable rotational and translational

  3. Inflammatory myofibroblastic tumor of the pancreatic head – a case report of a 6 months old child and review of the literature

    PubMed Central

    Tomazic, Ales; Gvardijancic, Diana; Maucec, Joze; Homan, Matjaz

    2015-01-01

    Background Inflammatory myofibroblastic tumors are rare in the pediatric population. Most common localizations were reported in the lungs. A localization in the pancreas needs differentiation from other tumors and chronic pancreatitis. Treatment is surgical resection, although there are reports of treatment with oral steroids and radiation therapy. Case report. A 6-month-old child was treated due to a tumor in the head of the pancreas. On admission he was jaundiced with pruritus. US and MRI confirmed pancreatic tumor. Preoperative biopsy wasn’t conclusive regarding the nature of the tumor. Duodenopancreatectomy was performed. Postoperative course was uneventful. Histologic examination confirmed the diagnosis of inflammatory myofibroblastic tumor. On follow up, he remained with no evidence of recurrence. Conclusions A literature review revealed 10 cases of pancreatic inflammatory myofibroblastic tumors in the pediatric age group. Our patient is the youngest reported. Despite major resection, there were no complications. However, management of this child might be possible with steroids, but conservative treatment might be insufficient, especially in aggressive forms of tumors. PMID:26401132

  4. PASSIVE CAVITATION DETECTION DURING PULSED HIFU EXPOSURES OF EX VIVO TISSUES AND IN VIVO MOUSE PANCREATIC TUMORS

    PubMed Central

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-01-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rarefactional focal pressures (1–12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms, pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KPC mice and closely recapitulate human disease in their morphology. The cavitation threshold, defined at 50 % cavitation probability, was found to vary broadly among the investigated tissues (within 2.5–10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but ex vivo it decreased rapidly and stopped over the first few pulses

  5. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.

    PubMed

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-07-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped

  6. Unusual suspects: pulmonary opportunistic infections masquerading as tumor metastasis in a patient with adrenocorticotropic hormone-producing pancreatic neuroendocrine cancer.

    PubMed

    Chowdry, Rajasree P; Bhimani, Chandar; Delgado, Maria A; Lee, Daniel J; Dayamani, Priya; Sica, Gabriel L; Owonikoko, Taofeek K

    2012-11-01

    Pancreatic neuroendocrine tumors (p-NETs) are a rare group of neoplasms but with increasing incidence. The atypical complications that arise in the setting of functional endocrine tumors are underreported and therefore have not received sufficient attention and the necessary mention in the oncology literature. The clinical implications of these complications pose management challenges starting with the difficulty in establishing diagnosis, accurate staging and optimal treatment of the primary process. We present the case of a middle-aged woman diagnosed with adrenocorticotropic hormone-producing carcinoma arising from the pancreas whose case was complicated by excessive uncontrolled hypercortisolism and reactivation of pulmonary opportunistic infections that confounded her management. We believe that this case illustration will be of value to practicing oncologists and other groups of physicians who are called upon to participate in the multidisciplinary treatment of these relatively rare but highly challenging cases. PMID:23118805

  7. Unusual suspects: pulmonary opportunistic infections masquerading as tumor metastasis in a patient with adrenocorticotropic hormone-producing pancreatic neuroendocrine cancer

    PubMed Central

    Chowdry, Rajasree P.; Bhimani, Chandar; Delgado, Maria A.; Lee, Daniel J.; Dayamani, Priya; Sica, Gabriel L.

    2012-01-01

    Pancreatic neuroendocrine tumors (p-NETs) are a rare group of neoplasms but with increasing incidence. The atypical complications that arise in the setting of functional endocrine tumors are underreported and therefore have not received sufficient attention and the necessary mention in the oncology literature. The clinical implications of these complications pose management challenges starting with the difficulty in establishing diagnosis, accurate staging and optimal treatment of the primary process. We present the case of a middle-aged woman diagnosed with adrenocorticotropic hormone-producing carcinoma arising from the pancreas whose case was complicated by excessive uncontrolled hypercortisolism and reactivation of pulmonary opportunistic infections that confounded her management. We believe that this case illustration will be of value to practicing oncologists and other groups of physicians who are called upon to participate in the multidisciplinary treatment of these relatively rare but highly challenging cases. PMID:23118805

  8. Tumor Size on Abdominal MRI Versus Pathologic Specimen in Resected Pancreatic Adenocarcinoma: Implications for Radiation Treatment Planning

    SciTech Connect

    Hall, William A.; Mikell, John L.; Mittal, Pardeep; Colbert, Lauren; Prabhu, Roshan S.; Kooby, David A.; Nickleach, Dana; Hanley, Krisztina; Sarmiento, Juan M.; Ali, Arif N.; Landry, Jerome C.

    2013-05-01

    Purpose: We assessed the accuracy of abdominal magnetic resonance imaging (MRI) for determining tumor size by comparing the preoperative contrast-enhanced T1-weighted gradient echo (3-dimensional [3D] volumetric interpolated breath-hold [VIBE]) MRI tumor size with pathologic specimen size. Methods and Materials: The records of 92 patients who had both preoperative contrast-enhanced 3D VIBE MRI images and detailed pathologic specimen measurements were available for review. Primary tumor size from the MRI was independently measured by a single diagnostic radiologist (P.M.) who was blinded to the pathology reports. Pathologic tumor measurements from gross specimens were obtained from the pathology reports. The maximum dimensions of tumor measured in any plane on the MRI and the gross specimen were compared. The median difference between the pathology sample and the MRI measurements was calculated. A paired t test was conducted to test for differences between the MRI and pathology measurements. The Pearson correlation coefficient was used to measure the association of disparity between the MRI and pathology sizes with the pathology size. Disparities relative to pathology size were also examined and tested for significance using a 1-sample t test. Results: The median patient age was 64.5 years. The primary site was pancreatic head in 81 patients, body in 4, and tail in 7. Three patients were American Joint Commission on Cancer stage IA, 7 stage IB, 21 stage IIA, 58 stage IIB, and 3 stage III. The 3D VIBE MRI underestimated tumor size by a median difference of 4 mm (range, −34-22 mm). The median largest tumor dimensions on MRI and pathology specimen were 2.65 cm (range, 1.5-9.5 cm) and 3.2 cm (range, 1.3-10 cm), respectively. Conclusions: Contrast-enhanced 3D VIBE MRI underestimates tumor size by 4 mm when compared with pathologic specimen. Advanced abdominal MRI sequences warrant further investigation for radiation therapy planning in pancreatic adenocarcinoma before

  9. A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics

    PubMed Central

    Sadanandam, Anguraj; Wullschleger, Stephan; Lyssiotis, Costas A.; Grötzinger, Carsten; Barbi, Stefano; Bersani, Samantha; Körner, Jan; Wafy, Ismael; Mafficini, Andrea; Lawlor, Rita T.; Simbolo, Michele; Asara, John M.; Bläker, Hendrik; Cantley, Lewis C.; Wiedenmann, Bertram; Scarpa, Aldo; Hanahan, Douglas

    2016-01-01

    Seeking to assess the representative and instructive value of an engineered mouse model of pancreatic neuroendocrine tumors (PanNET) for its cognate human cancer, we profiled and compared mRNA and miRNA transcriptomes of tumors from both. Mouse PanNET tumors could be classified into two distinctive subtypes, well-differentiated islet/insulinoma tumors (IT) and poorly differentiated tumors associated with liver metastases, dubbed metastasis-like primary (MLP). Human PanNETs were independently classified into these same two subtypes, along with a third, specific gene mutation–enriched subtype. The MLP subtypes in human and mouse were similar to liver metastases in terms of miRNA and mRNA transcriptome profiles and signature genes. The human/mouse MLP subtypes also similarly expressed genes known to regulate early pancreas development, whereas the IT subtypes expressed genes characteristic of mature islet cells, suggesting different tumorigenesis pathways. In addition, these subtypes exhibit distinct metabolic profiles marked by differential pyruvate metabolism, substantiating the significance of their separate identities. SIGNIFICANCE This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy. PMID:26446169

  10. A Fast Neural Network Approach to Predict Lung Tumor Motion during Respiration for Radiation Therapy Applications

    PubMed Central

    Slama, Matous; Benes, Peter M.; Bila, Jiri

    2015-01-01

    During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time. PMID:25893194

  11. Targeting Epithelial-Mesenchymal Transition for Identification of Inhibitors for Pancreatic Cancer Cell Invasion and Tumor Spheres Formation

    PubMed Central

    Polireddy, Kishore; Dong, Ruochen; McDonald, Peter R.; Wang, Tao; Luke, Brendan; Chen, Ping; Broward, Melinda; Roy, Anuradha; Chen, Qi

    2016-01-01

    Background Pancreatic cancer has an enrichment of stem-like cancer cells (CSCs) that contribute to chemoresistant tumors prone to metastasis and recurrence. Drug screening assays based on cytotoxicity cannot identify specific CSC inhibitors, because CSCs comprise only a small portion of cancer cell population, and it is difficult to propagate stable CSC populations in vitro for high-throughput screening (HTS) assays. Based on the important role of cancer cell epithelial-to-mesenchymal transition (EMT) in promoting CSCs, we hypothesized that inhibition of EMT can be a useful strategy for inhibiting CSCs, and therefore a feasible approach for HTS can be built for identification of CSC inhibitors, based on assays detecting EMT inhibition. Methods An immunofluorescent assay was established and optimized for HTS to identify compounds that enhance E-cadherin expression, as a hallmark of inhibition of EMT. Four chemical libraries containing 41,472 compounds were screened in PANC-1 pancreatic cancer cell line. Positive hits were validated for EMT and CSC inhibition in vitro using sphere formation assay, western blotting, immune fluorescence, and scratch assay. Results Initial hits were refined to 73 compounds with a secondary screening, among which 17 exhibited concentration dependent induction of E-cadherin expression. Six compounds were selected for further study which belonged to 2 different chemical structural clusters. A novel compound 1-(benzylsulfonyl) indoline (BSI, Compound #38) significantly inhibited pancreatic cancer cell migration and invasion. BSI inhibited histone deacetylase, increased histone 4 acetylation preferably, resulting in E-cadherin up-regulation. BSI effectively inhibited tumor spheres formation. Six more analogues of BSI were tested for anti-migration and anti-CSC activities. Conclusion This study demonstrated a feasible approach for discovery of agents targeting EMT and CSCs using HTS, and identified a class of novel chemicals that could be

  12. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data

    SciTech Connect

    Yang Yin; Zhong Zichun; Guo Xiaohu; Wang Jing; Anderson, John; Solberg, Timothy; Mao Weihua

    2012-04-01

    Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

  13. High ROR2 expression in tumor cells and stroma is correlated with poor prognosis in pancreatic ductal adenocarcinoma

    PubMed Central

    Huang, Jianfei; Fan, Xiangjun; Wang, Xudong; Lu, Yuhua; Zhu, Huijun; Wang, Wei; Zhang, Shu; Wang, Zhiwei

    2015-01-01

    RTK-like orphan receptor 2 (ROR2) is overexpressed in several cancers and has tumorigenic activity. However, the expression of ROR2 and its functional and prognostic significance have yet to be evaluated in pancreatic ductal adenocarcinoma (PDAC). Quantitative real-time polymerase chain reaction was used to characterize the expression of ROR2 mRNA in PDAC, corresponding peritumoral tissues, and PDAC cell lines. Immunohistochemical analysis with tissue microarrays was used to evaluate ROR2 expression in PDAC and to investigate the relationship of this expression to clinicopathological factors and prognosis. The expression of ROR2 mRNA and protein was significantly higher in PDAC than in normal pancreatic tissues. High cytoplasmic ROR2 expression in cancer cells was significantly associated with a primary tumor, distant metastasis, and TNM stage, and high stromal ROR2 expression was significantly associated with regional lymph node metastasis and TNM stage. The Kaplan–Meier method and Cox regression analyses showed that high ROR2 expression in tumor cytoplasm or stromal cells was significantly associated with malignant attributes and reduced survival in PDAC. We present strong evidence that ROR2 could be used as an indicator of poor prognosis and could represent a novel therapeutic target for PDAC. PMID:26259918

  14. Distal Pancreatectomy With En Bloc Resection of the Celiac Trunk for Extended Pancreatic Tumor Disease: An Interdisciplinary Approach

    SciTech Connect

    Denecke, Timm; Andreou, Andreas; Podrabsky, Petr; Grieser, Christian; Warnick, Peter; Bahra, Marcus; Klein, Fritz; Hamm, Bernd; Neuhaus, Peter; Glanemann, Matthias

    2011-10-15

    Purpose: Infiltration of the celiac trunk by adenocarcinoma of the pancreatic body has been considered a contraindication for surgical treatment, thus resulting in a very poor prognosis. The concept of distal pancreatectomy with resection of the celiac trunk offers a curative treatment option but implies the risk of relevant hepatic or gastric ischemia. We describe initial experiences in a small series of patients with left celiacopancreatectomy with or without angiographic preconditioning of arterial blood flow to the stomach and the liver. Materials and Methods: Between January 2007 and October 2009, six patients underwent simultaneous resection of the celiac trunk for adenocarcinoma of the pancreatic body involving the celiac axis. In four of these cases, angiographic occlusion of the celiac trunk before surgery was performed to enhance collateral flow from the gastroduodenal artery. Radiologic and surgical procedures, findings, and outcome were analyzed retrospectively. Results: Complete tumor removal (R0) succeeded in two patients, whereas four patients underwent R1-tumor resection. After surgery, one of the two patients without angiographic preparation experienced an ischemic stomach perforation 1 week after surgery. The other patient died from severe bleeding from an ischemic gastric ulcer. Of the four patients with celiac trunk embolization, none presented ischemic complications after surgery. Mean survival was 371 days. Conclusion: In this small series, ischemic complications after celiacopancreatectomy occurred only in those patients who did not receive preoperative celiac trunk embolization.

  15. Combined Inhibition of Cyclin-Dependent Kinases (Dinaciclib) and AKT (MK-2206) Blocks Pancreatic Tumor Growth and Metastases in Patient-Derived Xenograft Models.

    PubMed

    Hu, Chaoxin; Dadon, Tikva; Chenna, Venugopal; Yabuuchi, Shinichi; Bannerji, Rajat; Booher, Robert; Strack, Peter; Azad, Nilofer; Nelkin, Barry D; Maitra, Anirban

    2015-07-01

    KRAS is activated by mutation in the vast majority of cases of pancreatic cancer; unfortunately, therapeutic attempts to inhibit KRAS directly have been unsuccessful. Our previous studies showed that inhibition of cyclin-dependent kinase 5 (CDK5) reduces pancreatic cancer growth and progression, through blockage of the centrally important RAL effector pathway, downstream of KRAS. In the current study, the therapeutic effects of combining the CDK inhibitor dinaciclib (SCH727965; MK-7965) with the pan-AKT inhibitor MK-2206 were evaluated using orthotopic and subcutaneous patient-derived human pancreatic cancer xenograft models. The combination of dinaciclib (20 mg/kg, i.p., three times a week) and MK-2206 (60 mg/kg, orally, three times a week) dramatically blocked tumor growth and metastasis in all eight pancreatic cancer models examined. Remarkably, several complete responses were induced by the combination treatment of dinaciclib and MK-2206. The striking results obtained in these models demonstrate that the combination of dinaciclib with the pan-AKT inhibitor MK-2206 is promising for therapeutic evaluation in pancreatic cancer, and strongly suggest that blocking RAL in combination with other effector pathways downstream from KRAS may provide increased efficacy in pancreatic cancer. Based on these data, an NCI-CTEP-approved multicenter phase I clinical trial for pancreatic cancer of the combination of dinaciclib and MK-2206 (NCT01783171) has now been opened. PMID:25931518

  16. Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines

    SciTech Connect

    Mill, Christopher P.; Gettinger, Kathleen L.; Riese, David J.

    2011-02-15

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility, and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1{beta}. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.

  17. NOTE: Tumor motion prediction with the diaphragm as a surrogate: a feasibility study

    NASA Astrophysics Data System (ADS)

    Cerviño, Laura I.; Jiang, Yan; Sandhu, Ajay; Jiang, Steve B.

    2010-05-01

    We have previously assessed the use of the diaphragm as a surrogate for predicting real-time tumor position with linear models built with training data extracted from the same treatment fraction (Cerviño et al 2009 Phys. Med. Biol. 54 3529-41). However, practical use in the clinical setting requires the capability of predicting tumor position throughout the treatment course using a model built at the beginning of the course. We evaluate the inter-fraction applicability of linear models to predict superior-inferior tumor position based on diaphragm position using 21 fluoroscopic sequences from five lung cancer patients. Tumor position is predicted with models built during the first fluoroscopic sequence of each patient. Other fluoroscopic sets are registered to the first set with five different methods. The mean localization prediction error and maximum error at a 95% confidence level averaged over all patients are found to be 1.2 mm and 2.9 mm, respectively, for bony registration and 1.2 mm and 2.8 mm, respectively, for registration based on the mean position of the tumor in the first two breathing cycles. Other registration methods produce larger prediction errors. In the clinical setting, this prediction error could be added as a margin to the target volume. We therefore conclude that it is feasible to predict lung tumor motion with diaphragm with sufficient accuracy in the clinical setting.

  18. SU-E-J-182: Reproducibility of Tumor Motion Probability Distribution Function in Stereotactic Body Radiation Therapy of Lung Using Real-Time Tumor-Tracking Radiotherapy System

    SciTech Connect

    Shiinoki, T; Hanazawa, H; Park, S; Takahashi, T; Shibuya, K; Kawamura, S; Uehara, T; Yuasa, Y; Koike, M

    2015-06-15

    Purpose: We aim to achieve new four-dimensional radiotherapy (4DRT) using the next generation real-time tumor-tracking (RTRT) system and flattening-filter-free techniques. To achieve new 4DRT, it is necessary to understand the respiratory motion of tumor. The purposes of this study were: 1.To develop the respiratory motion analysis tool using log files. 2.To evaluate the reproducibility of tumor motion probability distribution function (PDF) during stereotactic body RT (SBRT) of lung tumor. Methods: Seven patients having fiducial markers closely implanted to the lung tumor were enrolled in this study. The positions of fiducial markers were measured using the RTRT system (Mitsubishi Electronics Co., JP) and recorded as two types of log files during the course of SBRT. For each patients, tumor motion range and tumor motion PDFs in left-right (LR), anterior-posterior (AP) and superior-inferior (SI) directions were calculated using log files of all beams per fraction (PDFn). Fractional PDF reproducibility (Rn) was calculated as Kullback-Leibler (KL) divergence between PDF1 and PDFn of tumor motion. The mean of Rn (Rm) was calculated for each patient and correlated to the patient’s mean tumor motion range (Am). The change of Rm during the course of SBRT was also evluated. These analyses were performed using in-house developed software. Results: The Rm were 0.19 (0.07–0.30), 0.14 (0.07–0.32) and 0.16 (0.09–0.28) in LR, AP and SI directions, respectively. The Am were 5.11 mm (2.58–9.99 mm), 7.81 mm (2.87–15.57 mm) and 11.26 mm (3.80–21.27 mm) in LR, AP and SI directions, respectively. The PDF reproducibility decreased as the tumor motion range increased in AP and SI direction. That decreased slightly through the course of RT in SI direction. Conclusion: We developed the respiratory motion analysis tool for 4DRT using log files and quantified the range and reproducibility of respiratory motion for lung tumors.

  19. Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer.

    PubMed

    Shain, A Hunter; Giacomini, Craig P; Matsukuma, Karen; Karikari, Collins A; Bashyam, Murali D; Hidalgo, Manuel; Maitra, Anirban; Pollack, Jonathan R

    2012-01-31

    Defining the molecular genetic alterations underlying pancreatic cancer may provide unique therapeutic insight for this deadly disease. Toward this goal, we report here an integrative DNA microarray and sequencing-based analysis of pancreatic cancer genomes. Notable among the alterations newly identified, genomic deletions, mutations, and rearrangements recurrently targeted genes encoding components of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex, including all three putative DNA binding subunits (ARID1A, ARID1B, and PBRM1) and both enzymatic subunits (SMARCA2 and SMARCA4). Whereas alterations of each individual SWI/SNF subunit occurred at modest-frequency, as mutational "hills" in the genomic landscape, together they affected at least one-third of all pancreatic cancers, defining SWI/SNF as a major mutational "mountain." Consistent with a tumor-suppressive role, re-expression of SMARCA4 in SMARCA4-deficient pancreatic cancer cell lines reduced cell growth and promoted senescence, whereas its overexpression in a SWI/SNF-intact line had no such effect. In addition, expression profiling analyses revealed that SWI/SNF likely antagonizes Polycomb repressive complex 2, implicating this as one possible mechanism of tumor suppression. Our findings reveal SWI/SNF to be a central tumor suppressive complex in pancreatic cancer.

  20. Sunitinib-associated Pancreatic Atrophy in Patients with Gastrointestinal Stromal Tumor: A Toxicity with Prognostic Implications Detected at Imaging.

    PubMed

    Shinagare, Atul B; Steele, Erin; Braschi-Amirfarzan, Marta; Tirumani, Sree Harsha; Ramaiya, Nikhil H

    2016-10-01

    Purpose To evaluate the effect and clinical importance of sunitinib on pancreatic volume in patients with gastrointestinal stromal tumor (GIST). Materials and Methods This retrospective study was approved by the institutional review board and compliant with HIPAA. The requirement to obtain informed consent was waived. The authors evaluated 65 patients with GIST treated with oral sunitinib and a control group of 30 patients with GIST who did not receive any therapy (mean age: 56 years [range, 29-75 years] vs 60 years [range, 27-78 years], respectively; P = .11) seen at their institution from January 2002 through December 2008. Segmented pancreatic volumes of study and control groups were measured with computed tomography by using commercial software by two independent readers who were blinded to study group and the timing of the scan at a median of 6.2 and 6.1 months, respectively. Pre- and posttreatment volumes (Wilcoxon signed rank test) and rate of volume change per month (Wilcoxon rank sum test) were compared. Interobserver agreement was calculated. Associations and prognostic importance of pancreatic atrophy were studied by using multivariate linear regression and Cox proportional analysis, respectively. Results Both readers recorded significant pancreatic volume loss in the study group (respective median pre- and posttreatment volume: 76.1 cm(3) and 58.4 cm(3) for reader 1 and 67.7 cm(3) and 59.0 cm(3) for reader 2; P < .0001 for both) but not in the control group (respective median pre- and posttreatment volume: 79.9 cm(3) and 83.8 cm(3) for reader 1 [P = .43] and 79.9 cm(3) and 84.8 cm(3) for reader 2 [P = .50]). The rate of volume loss per month was greater in the study group than in the control group (reader 1: -2.1% vs -0.1%, respectively, P = .003; reader 2: -2.0% vs -0.3%, P < .0001). Twenty-three of the 65 patients who received sunitinib (35%) showed at least 3% pancreatic volume loss per month, compared with only one of the 30 patients in the control

  1. Mechanoregulatory tumor-stroma crosstalk in pancreatic cancer: Measurements of the effects of extracellular matrix mechanics on tumor growth behavior, and vice-versa, to inform therapeutics

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan; Jones, Dustin; El-Hamidi, Hamid; Cramer, Gwendolyn; Hanna, William; Caide, Andrew; Jafari, Seyedehrojin

    The rheological properties of the extracellular matrix (ECM) have been shown to play key roles in regulating tumor growth behavior through mechanotranduction pathways. The role of the mechanical microenvironment may be particularly important tumors of the pancreas, noted for an abundance of rigid fibrotic stroma, implicated in therapeutic resistance. At the same time, cancer cells and their stromal partners (e.g. tumor associated fibroblasts) continually alter the mechanical microenvironment in response to extracellular physical and biochemical cues as part of a two-way mechanoregulatory dialog. Here, we describe experimental studies using 3D pancreatic cell cultures with customized mechanical properties, combined with optical microrheology to provide insight into tumor-driven matrix remodeling. Quantitative microscopy provides measurements of phenotypic changes accompanying systematic variation of ECM composition in collagen and laminin-rich basement membrane admixtures, while analysis of the trajectories of passive tracer particles embedded in ECM report dynamic changes in heterogeneity, microstructure and local shear modulus accompanying both ECM stiffening (fibrosis) processes, and ECM degradation near invading cells. We gratefully acknowledge funding from the National Cancer Institute, R00CA155045 (PI: Celli).

  2. Identification and characterization of a tumor infiltrating CD56(+)/CD16 (-) NK cell subset with specificity for pancreatic and prostate cancer cell lines.

    PubMed

    Frankel, Timothy L; Burns, William; Riley, John; Morgan, Richard A; Davis, Jeremy L; Hanada, Kenichi; Quezado, Martha; Rosenberg, Steven A; Royal, Richard E

    2010-12-01

    In a recent clinical trial, a patient exhibited regression of several pancreatic cancer metastases following the administration of the immune modulator Ipilimumab (anti-CTLA-4 antibody). We sought to characterize the immune cells responsible for this regression. Tumor infiltrating lymphocytes (TIL-2742) and an autologous tumor line (TC-2742) were expanded from a regressing metastatic lesion excised from this patient. Natural killer (NK) cells predominated in the TIL (92% CD56(+)) with few T cells (12% CD3(+)). A majority (88%) of the NK cells were CD56(bright)CD16(-). TIL-2742 secreted IFN-γ and GM-CSF following co-culture with TC-2742 and major histocompatibility complex mismatched pancreatic tumor lines. After sorting TIL-2742, the purified CD56(+)CD16(-)CD3(-) subset showed reactivity similar to TIL-2742 while the CD56(-)CD16(-)CD3(+) cells exhibited no tumor recognition. In co-culture assays, TIL-2742 and the NK subset expressed high reactivity to several pancreatic and prostate cancer cell lines and could lyse the autologous tumor as well as pancreas and prostate cancer lines. Reactivity was partially abrogated by blockade of TRAIL. We thus identified a unique subset of NK cells (CD56(bright)CD16(dim)) isolated from a regressing metastatic pancreatic cancer in a patient responding to Ipilimumab. This represents the first report of CD56(+)CD16(-) NK cells with apparent specificity for pancreatic and prostate cancer cell lines and associated with tumor regression following the treatment with an immune modulating agent. PMID:20734041

  3. SU-E-J-79: Internal Tumor Volume Motion and Volume Size Assessment Using 4D CT Lung Data

    SciTech Connect

    Jurkovic, I; Stathakis, S; Li, Y; Patel, A; Vincent, J; Papanikolaou, N; Mavroidis, P

    2014-06-01

    Purpose: To assess internal tumor volume change through breathing cycle and associated tumor motion using the 4DCT data. Methods: Respiration induced volume change through breathing cycle and associated motion was analyzed for nine patients that were scanned during the different respiratory phases. The examined datasets were the maximum and average intensity projections (MIP and AIP) and the 10 phases of the respiratory cycle. The internal target volume (ITV) was delineated on each of the phases and the planning target volume (PTV) was then created by adding setup margins to the ITV. Tumor motion through the phases was assessed using the acquired 4DCT dataset, which was then used to determine if the margins used for the ITV creation successfully encompassed the tumor in three dimensions. Results: Results showed that GTV motion along the superior inferior axes was the largest in all the cases independent of the tumor location and/or size or the use of abdomen compression. The extent of the tumor motion was found to be connected with the size of the GTV. The smallest GTVs exhibited largest motion vector independent of the tumor location. The motion vector size varied through the phases depending on the tumor size and location and it was smallest for phases 20 and 30. The smaller the volume of the delineated GTV, the greater its volume difference through the different respiratory phases was. The average GTV volume change was largest for the phases 60 and 70. Conclusion: Even if GTV is delineated using both AIP and MIP datasets, its motion extent will exceed the used margins especially for the very small GTV volumes. When the GTV size is less than 10 cc it is recommended to use fusion of the GTVs through all the phases to create the planning ITV.

  4. Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymer-coated magnetite nanoparticles with TGF-beta inhibitor.

    PubMed

    Kumagai, Michiaki; Kano, Mitsunobu R; Morishita, Yasuyuki; Ota, Motomi; Imai, Yutaka; Nishiyama, Nobuhiro; Sekino, Masaki; Ueno, Shoogo; Miyazono, Kohei; Kataoka, Kazunori

    2009-12-16

    Early detection of solid tumors, particularly pancreatic cancer, is of substantial importance in clinics. Enhanced magnetic resonance imaging (MRI) with iron oxide nanoparticles is an available way to detect the cancer. The effective and selective accumulation of these nanoparticles in the tumor tissue is needed for improved imaging, and in this regard, their longevity in the blood circulation time is crucial. We developed here block copolymer-coated magnetite nanoparticles for pancreatic cancer imaging, by means of a chelation between the carboxylic acid groups in poly(ethylene glycol)-poly(aspartic acid) block copolymer (PEG-PAsp) and Fe on the surface of the iron oxide nanoparticles. These nanoparticles had considerably narrow distribution, even upon increased ionic strength or in the presence of fetal bovine serum. The PEG-PAsp-coated nanoparticles were further shown to be potent as a contrast agent for enhanced MRI for an experimental pancreatic cancer, xenografts of the human-derived BxPC3 cell line in BALB/c nude mice, with combined administration of TGF-beta inhibitor. Iron staining of tumor tissue confirmed the accumulation of the nanoparticles in tumor tissue. Use of the PEG-PAsp-coated magnetite nanoparticles, combined with the TGF-beta inhibitor, is of promising clinical importance for the detection of intractable solid cancers, including pancreatic cancer.

  5. Probing tumor-stroma interactions and response to photodynamic therapy in a 3D pancreatic cancer-fibroblast co-culture model

    NASA Astrophysics Data System (ADS)

    Glidden, Michael D.; Massodi, Iqbal; Rizvi, Imran; Celli, Jonathan P.; Hasan, Tayyaba

    2012-02-01

    Pancreatic ductal adenocarcinoma is a lethal disease that is often unresectable by the time of diagnosis and is typically non-responsive to chemo- and radiotherapy, resulting in a five year survival of only 3%. Tumors of the pancreas are characterized by a dense fibrous stroma rich in extracellular matrix proteins, which is implicated in poor therapeutic response, though its precise roles remain poorly understood. Indeed, while the use of therapeutics that target the stroma is an emerging paradigm in the clinical management of this disease, the primary focus of such efforts is to enhance drug penetration through dense fibrous stroma and it is unclear to what extent the characteristically rigid stroma of pancreatic tumors imparts drug resistance by acting as a complex signaling partner, or merely as a physical barrier for drug delivery. Here we use 3D in vitro co-cultures of pancreatic cancer cells and normal human fibroblasts as a model system to study heterotypic interactions between these populations. Leveraging this in vitro model along with image-based methods for quantification of growth and therapeutic endpoints, we characterize these co-cultures and examine the role of verteporfin-based photodynamic therapy (PDT) for targeting tumor-fibroblast interactions in pancreatic tumors.

  6. Molecular characterization of patient-derived human pancreatic tumor xenograft models for preclinical and translational development of cancer therapeutics.

    PubMed

    Mattie, Mike; Christensen, Ashley; Chang, Mi Sook; Yeh, William; Said, Suzanne; Shostak, Yuriy; Capo, Linnette; Verlinsky, Alla; An, Zili; Joseph, Ingrid; Zhang, Yi; Kumar-Ganesan, Sathish; Morrison, Karen; Stover, David; Challita-Eid, Pia

    2013-10-01

    Preclinical evaluation of novel cancer agents requires models that accurately reflect the biology and molecular characteristics of human tumors. Molecular profiles of eight pancreatic ductal adenocarcinoma patient tumors were compared to corresponding passages of xenografts obtained by grafting tumor fragments into immunocompromised mice. Molecular characterization was performed by copy number analysis, gene expression and microRNA microarrays, mutation analysis, short tandem repeat (STR) profiling, and immunohistochemistry. Xenografts were found to be highly representative of their respective tumors, with a high degree of genetic stability observed by STR profiling and mutation analysis. Copy number variation (CNV) profiles of early and late xenograft passages were similar, with recurrent losses on chromosomes 1p, 3p, 4q, 6, 8p, 9, 10, 11q, 12p, 15q, 17, 18, 20p, and 21 and gains on 1q, 5p, 8q, 11q, 12q, 13q, 19q, and 20q. Pearson correlations of gene expression profiles of tumors and xenograft passages were above 0.88 for all models. Gene expression patterns between early and late passage xenografts were highly stable for each individual model. Changes observed in xenograft passages largely corresponded to human stromal compartment genes and inflammatory processes. While some differences exist between the primary tumors and corresponding xenografts, the molecular profiles remain stable after extensive passaging. Evidence for stability in molecular characteristics after several rounds of passaging lends confidence to clinical relevance and allows for expansion of models to generate the requisite number of animals required for cohorts used in drug screening and development studies.

  7. Differences and Similarities in the Clinicopathological Features of Pancreatic Neuroendocrine Tumors in China and the United States

    PubMed Central

    Zhu, Li-Ming; Tang, Laura; Qiao, Xin-Wei; Wolin, Edward; Nissen, Nicholas N.; Dhall, Deepti; Chen, Jie; Shen, Lin; Chi, Yihebali; Yuan, Yao-Zong; Ben, Qi-Wen; Lv, Bin; Zhou, Ya-Ru; Bai, Chun-Mei; Chen, Jie; Song, Yu-Li; Song, Tian-Tian; Lu, Chong-Mei; Yu, Run; Chen, Yuan-Jia

    2016-01-01

    Abstract The presentation, pathology, and prognosis of pancreatic neuroendocrine tumors (PNETs) in Asian patients have not been studied in large cohorts. We hypothesized that the clinicopathological features of PNETs of Chinese patients might be different from those of US patients. The objectives of this study were to address whether PNETs in Chinese patients exhibit unique clinicopathological features and natural history, and can be graded and staged using the WHO/ENETS criteria. This is a retrospective review of medical records of patients with PNETs in multiple academic medical centers in China (7) and the United States (2). Tumor grading and staging were based on WHO/ENETS criteria. The clinicopathological features of PNETs of Chinese and US patients were compared. Univariate and multivariate analyses were performed to find associations between survival and patient demographics, tumor grade and stage, and other clinicopathological characteristics. A total of 977 (527 Chinese and 450 US) patients with PNETs were studied. In general, Chinese patients were younger than US patients (median age 46 vs 56 years). In Chinese patients, insulinomas were the most common (52.2%), followed by nonfunctional tumors (39.7%), whereas the order was reversed in US patients. Tumor grade distribution was similar in the 2 countries (G1: 57.5% vs 55.0%; G2: 38.5% vs 41.3%; and G3: 4.0% vs 3.7%). However, age, primary tumor size, primary tumor location, grade, and stage of subtypes of PNETs were significantly different between the 2 countries. The Chinese nonfunctional tumors were significantly larger than US ones (median size 4 vs 3 cm) and more frequently located in the head/neck region (54.9% vs 34.8%). The Chinese and US insulinomas were similar in size (median 1.5 cm) but the Chinese insulinomas relatively more frequently located in the head/neck region (48.3% vs 26.1%). Higher grade, advanced stage, metastasis, and larger primary tumor size were significantly associated with

  8. Wilms Tumor Gene (WT1) Peptide–based Cancer Vaccine Combined With Gemcitabine for Patients With Advanced Pancreatic Cancer

    PubMed Central

    Nishida, Sumiyuki; Koido, Shigeo; Takeda, Yutaka; Homma, Sadamu; Komita, Hideo; Takahara, Akitaka; Morita, Satoshi; Ito, Toshinori; Morimoto, Soyoko; Hara, Kazuma; Tsuboi, Akihiro; Oka, Yoshihiro; Yanagisawa, Satoru; Toyama, Yoichi; Ikegami, Masahiro; Kitagawa, Toru; Eguchi, Hidetoshi; Wada, Hiroshi; Nagano, Hiroaki; Nakata, Jun; Nakae, Yoshiki; Hosen, Naoki; Oji, Yusuke; Tanaka, Toshio; Kawase, Ichiro; Kumanogoh, Atsushi; Sakamoto, Junichi; Doki, Yuichiro; Mori, Masaki; Ohkusa, Toshifumi; Tajiri, Hisao

    2014-01-01

    Wilms tumor gene (WT1) protein is an attractive target for cancer immunotherapy. We aimed to investigate the feasibility of a combination therapy consisting of gemcitabine and WT1 peptide–based vaccine for patients with advanced pancreatic cancer and to make initial assessments of its clinical efficacy and immunologic response. Thirty-two HLA-A*24:02+ patients with advanced pancreatic cancer were enrolled. Patients received HLA-A*24:02-restricted, modified 9-mer WT1 peptide (3 mg/body) emulsified with Montanide ISA51 adjuvant (WT1 vaccine) intradermally biweekly and gemcitabine (1000 mg/m2) on days 1, 8, and 15 of a 28-day cycle. This combination therapy was well tolerated. The frequencies of grade 3–4 adverse events for this combination therapy were similar to those for gemcitabine alone. Objective response rate was 20.0% (6/30 evaluable patients). Median survival time and 1-year survival rate were 8.1 months and 29%, respectively. The association between longer survival and positive delayed-type hypersensitivity to WT1 peptide was statistically significant, and longer survivors featured a higher frequency of memory-phenotype WT1-specific cytotoxic T lymphocytes both before and after treatment. WT1 vaccine in combination with gemcitabine was well tolerated for patients with advanced pancreatic cancer. Delayed-type hypersensitivity-positivity to WT1 peptide and a higher frequency of memory-phenotype WT1-specific cytotoxic T lymphocytes could be useful prognostic markers for survival in the combination therapy with gemcitabine and WT1 vaccine. Further clinical investigation is warranted to determine the effectiveness of this combination therapy. PMID:24509173

  9. Therapeutic designed poly (lactic-co-glycolic acid) cylindrical oseltamivir phosphate-loaded implants impede tumor neovascularization, growth and metastasis in mouse model of human pancreatic carcinoma

    PubMed Central

    Hrynyk, Michael; Ellis, Jordon P; Haxho, Fiona; Allison, Stephanie; Steele, Joseph AM; Abdulkhalek, Samar; Neufeld, Ronald J; Szewczuk, Myron R

    2015-01-01

    Poly (lactic-co-glycolic acid) (PLGA) copolymers have been extensively used in cancer research. PLGA can be chemically engineered for conjugation or encapsulation of drugs in a particle formulation. We reported that oseltamivir phosphate (OP) treatment of human pancreatic tumor-bearing mice disrupted the tumor vasculature with daily injections. Here, the controlled release of OP from a biodegradable PLGA cylinder (PLGA-OP) implanted at tumor site was investigated for its role in limiting tumor neovascularization, growth, and metastasis. PLGA-OP cylinders over 30 days in vitro indicated 20%–25% release profiles within 48 hours followed by a continuous metronomic low dose release of 30%–50% OP for an additional 16 days. All OP was released by day 30. Surgically implanted PLGA-OP containing 20 mg OP and blank PLGA cylinders at the tumor site of heterotopic xenografts of human pancreatic PANC1 tumors in RAGxCγ double mutant mice impeded tumor neovascularization, growth rate, and spread to the liver and lungs compared with the untreated cohort. Xenograft tumors from PLGA and PLGA-OP-treated cohorts expressed significant higher levels of human E-cadherin with concomitant reduced N-cadherin and host CD31+ endothelial cells compared with the untreated cohort. These results clearly indicate that OP delivered from PLGA cylinders surgically implanted at the site of the solid tumor show promise as an effective treatment therapy for cancer. PMID:26309402

  10. Changes in gene expression of tumor necrosis factor alpha and interleukin 6 in a canine model of caerulein-induced pancreatitis.

    PubMed

    Song, Ruhui; Yu, Dohyeon; Park, Jinho

    2016-07-01

    Acute pancreatitis is an inflammatory process that frequently involves peripancreatic tissues and remote organ systems. It has high morbidity and mortality rates in both human and veterinary patients. The severity of pancreatitis is generally determined by events that occur after acinar cell injury in the pancreas, resulting in elevated levels of various proinflammatory mediators, such as interleukin (IL) 1β and 6, as well as tumor necrosis factor alpha (TNF-α). When these mediators are excessively released into the systemic circulation, severe pancreatitis occurs with systemic complications. This pathophysiological process is similar to that of sepsis; thus, there are many striking clinical similarities between patients with septic shock and those with severe acute pancreatitis. We induced acute pancreatitis using caerulein in dogs and measured the change in the gene expression of proinflammatory cytokines. The levels of TNF-α and IL-6 mRNA peaked at 3 h, at twice the baseline levels, and the serum concentrations of amylase and lipase also increased. Histopathological examination revealed severe hyperemia of the pancreas and hyperemia in the duodenal villi and the hepatic sinusoid. Thus, pancreatitis can be considered an appropriate model to better understand the development of naturally occurring sepsis and to assist in the effective treatment and management of septic patients.

  11. A Method to Estimate Mean Position, Motion Magnitude, Motion Correlation, and Trajectory of a Tumor From Cone-Beam CT Projections for Image-Guided Radiotherapy

    SciTech Connect

    Poulsen, Per Rugaard Cho, Byungchul; Keall, Paul J.

    2008-12-01

    Purpose: To develop a probability-based method for estimating the mean position, motion magnitude, and trajectory of a tumor using cone-beam CT (CBCT) projections. Method and Materials: CBCT acquisition was simulated for more than 80 hours of patient-measured trajectories for thoracic/abdominal tumors and prostate. The trajectories were divided into 60-second segments for which CBCT was simulated by projecting the tumor position onto a rotating imager. Tumor (surrogate) visibility on all projections was assumed. The mean and standard deviation of the tumor position and motion correlation along the three axes were determined with maximum likelihood estimation based on the projection data, assuming a Gaussian spatial distribution. The unknown position component along the imager axis was approximated by its expectation value, determined by the Gaussian distribution. Transformation of the resulting three-dimensional position to patient coordinates provided the estimated trajectory. Two trajectories were experimentally investigated by CBCT acquisition of a phantom. Results: The root-mean-square error of the estimated mean position was 0.05 mm. The root-mean-square error of the trajectories was <1 mm in 99.1% of the thorax/abdomen cases and in 99.7% of the prostate cases. The experimental trajectory estimation agreed with the actual phantom trajectory within 0.44 mm in any direction. Clinical applicability was demonstrated by estimating the tumor trajectory for a pancreas cancer case. Conclusions: A method for estimation of mean position, motion magnitude, and trajectory of a tumor from CBCT projections has been developed. The accuracy was typically much better than 1 mm. The method is applicable to motion-inclusive, respiratory-gated, and tumor-tracking radiotherapy.

  12. Diverse effects of LPA4, LPA5 and LPA6 on the activation of tumor progression in pancreatic cancer cells.

    PubMed

    Ishii, Shuhei; Hirane, Miku; Fukushima, Kaori; Tomimatsu, Ayaka; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2015-05-22

    Lysophosphatidic acid (LPA) is an extracellular biological lipid which interacts with G protein-coupled LPA receptors (LPA1 to LPA6). LPA signaling via LPA receptors mediates several cellular responses. In the present study, to assess the roles of LPA4, LPA5 and LPA6 in cellular functions of pancreatic cancer cells, we generated LPA receptor knockdown cells from PANC-1 cells (PANC-sh4, PANC-sh5 and PANC-sh6 cells, respectively). In cell motility assay, PANC-sh4 and PANC-sh5 cells enhanced the cell motile activities, compared with control cells. In contrast, the cell motile activity of PANC-sh6 cells was suppressed. The invasive activities of PANC-sh4 and PANC-sh5 cells were markedly stimulated, while PANC-sh6 cells showed the low invasive activity. In colony assay, PANC-sh4 and PANC-sh5 cells formed the large sized colonies, but not PANC-sh6 cells. When endothelial cells were incubated with supernatants from PANC-sh4 and PANC-sh5 cells, the cell motility and tube formation of endothelial cells were significantly induced, but not PANC-sh6 cells. These results suggest that the diverse roles of LPA4, LPA5 and LPA6 are involved in the activation of tumor progression in pancreatic cancer cells. PMID:25849892

  13. Application of polarization for optical motion-registered SPECT functional imaging of tumors in mice

    NASA Astrophysics Data System (ADS)

    Baba, Justin S.; Gleason, Shaun S.; Goddard, James S.; Paulus, Michael J.

    2005-03-01

    The use of small animal models to investigate human diseases is an integral part of the development of new diagnostic and treatment regimens. Consequently, functional imaging modalities such as single photon emission computed tomography (SPECT) are increasingly being utilized to streamline the screening of animal phenotypes and to monitor disease states, progressions, and therapies. This paper focuses on the utilization of polarization filtering to minimize specular reflection from a glass tube used for holding live human-tumor-mice during functional imaging in a dedicated small animal SPECT system. The system presented is potentially useful for the real-time non-invasive investigation of diseases, such as cancer, and drug therapies in small animals because it utilizes optical motion-registered functional imaging that minimizes the effects of motion artifacts.

  14. Optical characterization of pancreatic normal and tumor tissues with double integrating sphere system

    NASA Astrophysics Data System (ADS)

    Kiris, Tugba; Akbulut, Saadet; Kiris, Aysenur; Gucin, Zuhal; Karatepe, Oguzhan; Bölükbasi Ates, Gamze; Tabakoǧlu, Haşim Özgür

    2015-03-01

    In order to develop minimally invasive, fast and precise diagnostic and therapeutic methods in medicine by using optical methods, first step is to examine how the light propagates, scatters and transmitted through medium. So as to find out appropriate wavelengths, it is required to correctly determine the optical properties of tissues. The aim of this study is to measure the optical properties of both cancerous and normal ex-vivo pancreatic tissues. Results will be compared to detect how cancerous and normal tissues respond to different wavelengths. Double-integrating-sphere system and computational technique inverse adding doubling method (IAD) were used in the study. Absorption and reduced scattering coefficients of normal and cancerous pancreatic tissues have been measured within the range of 500-650 nm. Statistical significant differences between cancerous and normal tissues have been obtained at 550 nm and 630 nm for absorption coefficients. On the other hand; there were no statistical difference found for scattering coefficients at any wavelength.

  15. A state-based probabilistic model for tumor respiratory motion prediction

    NASA Astrophysics Data System (ADS)

    Kalet, Alan; Sandison, George; Wu, Huanmei; Schmitz, Ruth

    2010-12-01

    This work proposes a new probabilistic mathematical model for predicting tumor motion and position based on a finite state representation using the natural breathing states of exhale, inhale and end of exhale. Tumor motion was broken down into linear breathing states and sequences of states. Breathing state sequences and the observables representing those sequences were analyzed using a hidden Markov model (HMM) to predict the future sequences and new observables. Velocities and other parameters were clustered using a k-means clustering algorithm to associate each state with a set of observables such that a prediction of state also enables a prediction of tumor velocity. A time average model with predictions based on average past state lengths was also computed. State sequences which are known a priori to fit the data were fed into the HMM algorithm to set a theoretical limit of the predictive power of the model. The effectiveness of the presented probabilistic model has been evaluated for gated radiation therapy based on previously tracked tumor motion in four lung cancer patients. Positional prediction accuracy is compared with actual position in terms of the overall RMS errors. Various system delays, ranging from 33 to 1000 ms, were tested. Previous studies have shown duty cycles for latencies of 33 and 200 ms at around 90% and 80%, respectively, for linear, no prediction, Kalman filter and ANN methods as averaged over multiple patients. At 1000 ms, the previously reported duty cycles range from approximately 62% (ANN) down to 34% (no prediction). Average duty cycle for the HMM method was found to be 100% and 91 ± 3% for 33 and 200 ms latency and around 40% for 1000 ms latency in three out of four breathing motion traces. RMS errors were found to be lower than linear and no prediction methods at latencies of 1000 ms. The results show that for system latencies longer than 400 ms, the time average HMM prediction outperforms linear, no prediction, and the more

  16. The fatal alliance of cancer and T cells: How pancreatic tumor cells gather immunosuppressive T cells.

    PubMed

    Grage-Griebenow, Evelin; Schäfer, Heiner; Sebens, Susanne

    2014-01-01

    Immune evasion is a hallmark of cancer. We recently identified the adhesion molecule L1CAM as biomarker of pancreatic ductal adenocarcinoma (PDAC) associated with poor prognosis. During inflammation-associated carcinogenesis, L1CAM drives the enrichment of highly immunosuppressive CD4(+)CD25(-)CD69(+) T cells. Thus, L1CAM may serve as a target in immunomodulatory therapy for PDAC. PMID:25114835

  17. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    SciTech Connect

    Bian, Yong; Yu, Yun; Wang, Shanshan; Li, Lin

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  18. A new immunohistochemistry prognostic score (IPS) for recurrence and survival in resected pancreatic neuroendocrine tumors (PanNET)

    PubMed Central

    Viúdez, Antonio; Carvalho, Filipe L.F.; Maleki, Zahra; Zahurak, Marianna; Laheru, Daniel; Stark, Alejandro; Azad, Nilofer Z.; Wolfgang, Christopher L.; Baylin, Stephen; Herman, James G.; De Jesus-Acosta, Ana

    2016-01-01

    Pancreatic neuroendocrine tumor (PanNET) is a neoplastic entity in which few prognostic factors are well-known. Here, we aimed to evaluate the prognostic significance of N-myc downstream-regulated gen-1 (NDRG-1), O6-methylguanine DNA methyltransferase (MGMT) and Pleckstrin homology-like domain family A member 3 (PHLDA-3) by immunohistochemistry (IHC) and methylation analysis in 92 patients with resected PanNET and follow-up longer than 24 months. In multivariate analyses, ki-67 and our immunohistochemistry prognostic score (IPS-based on MGMT, NDRG-1 and PHLDA-3 IHC expression) were independent prognostic factors for disease-free-survival (DFS), while age and IPS were independent prognostic factors for overall survival (OS). Our IPS could be a useful prognostic biomarker for recurrence and survival in patients following resection for PanNET. PMID:26894863

  19. Monitoring tumor motion with on-line mega-voltage cone-beam computed tomography imaging in a cine mode

    NASA Astrophysics Data System (ADS)

    Reitz, Bodo; Gayou, Olivier; Parda, David S.; Miften, Moyed

    2008-02-01

    Accurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes. In this work, the feasibility of using the MV-CBCT raw data as a fluoroscopic series of portal images to monitor tumor changes due to e.g. respiratory motion was investigated. A method was developed to read and convert the CB raw data into a cine. To improve the contrast-to-noise ratio on the MV-CB projection data, image post-processing with filtering techniques was investigated. Volumes of interest from the planning CT were projected onto the MV-cine. Because of the small exposure and the varying thickness of the patient depending on the projection angle, soft-tissue contrast was limited. Tumor visibility as a function of tumor size and projection angle was studied. The method was well suited in the upper chest, where motion of the tumor as well as of the diaphragm could be clearly seen. In the cases of patients with non-small cell lung cancer with medium or large tumor masses, we verified that the tumor mass was always located within the PTV despite respiratory motion. However for small tumors the method is less applicable, because the visibility of those targets becomes marginal. Evaluation of motion in non-superior-inferior directions might also be limited for small tumor masses. Viewing MV-CBCT data in a cine mode adds to the utility of MV-CBCT for verification of tumor motion and for deriving individualized treatment margins.

  20. Monitoring tumor motion with on-line mega-voltage cone-beam computed tomography imaging in a cine mode.

    PubMed

    Reitz, Bodo; Gayou, Olivier; Parda, David S; Miften, Moyed

    2008-02-21

    Accurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes. In this work, the feasibility of using the MV-CBCT raw data as a fluoroscopic series of portal images to monitor tumor changes due to e.g. respiratory motion was investigated. A method was developed to read and convert the CB raw data into a cine. To improve the contrast-to-noise ratio on the MV-CB projection data, image post-processing with filtering techniques was investigated. Volumes of interest from the planning CT were projected onto the MV-cine. Because of the small exposure and the varying thickness of the patient depending on the projection angle, soft-tissue contrast was limited. Tumor visibility as a function of tumor size and projection angle was studied. The method was well suited in the upper chest, where motion of the tumor as well as of the diaphragm could be clearly seen. In the cases of patients with non-small cell lung cancer with medium or large tumor masses, we verified that the tumor mass was always located within the PTV despite respiratory motion. However for small tumors the method is less applicable, because the visibility of those targets becomes marginal. Evaluation of motion in non-superior-inferior directions might also be limited for small tumor masses. Viewing MV-CBCT data in a cine mode adds to the utility of MV-CBCT for verification of tumor motion and for deriving individualized treatment margins.

  1. Marked differences in immunocytological localization of ( sup 3 H)estradiol-binding protein in rat pancreatic acinar tumor cells compared to normal acinar cells

    SciTech Connect

    Beaudoin, A.R.; Grondin, G.; St Jean, P.; Pettengill, O.; Longnecker, D.S.; Grossman, A. )

    1991-03-01

    ({sup 3}H)Estradiol can bind to a specific protein in normal rat pancreatic acinar cells. Electron microscopic immunocytochemical analysis has shown this protein to be localized primarily in the rough endoplasmic reticulum and mitochondria. Rat exocrine pancreatic tumor cell lines, whether grown in tissue culture (AR42J) or as a tumor mass after sc injection into rats (DSL-2), lacked detectable amounts of this ({sup 3}H)estradiol-binding protein (EBP), as determined by the dextran-coated charcoal assay. Furthermore, primary exocrine pancreatic neoplasms induced with the carcinogen azaserine contained little or no detectable ({sup 3}H)estradiol-binding activity. However, electron immunocytochemical studies of transformed cells indicated the presence of material that cross-reacted with antibodies prepared against the ({sup 3}H)EBP. The immunopositive reaction in transformed cells was localized almost exclusively in lipid granules. Such lipid organelles in normal acinar cells, although present less frequently than in transformed cells, have never been observed to contain EBP-like immunopositive material. Presumably, the aberrant localization of EBP in these acinar tumor cells results in loss of function of this protein, which in normal pancreatic acinar cells appears to exert a modulating influence on zymogen granule formation and the process of secretion.

  2. Assessment of different 3D culture systems to study tumor phenotype and chemosensitivity in pancreatic ductal adenocarcinoma.

    PubMed

    Zeeberg, Katrine; Cardone, Rosa Angela; Greco, Maria Raffaella; Saccomano, Mara; Nøhr-Nielsen, Asbjørn; Alves, Frauke; Pedersen, Stine Falsig; Reshkin, Stephan Joel

    2016-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a very poor prognosis, due to the influence of the tumor stroma, which promotes tumor growth, early invasion and chemoradiation resistance. Efforts to develop models for identifying novel anticancer therapeutic compounds have been hampered by the limited ability of in vitro models to mimic these in vivo tumor-stroma interactions. This has led to the development of various three-dimensional (3D) culture platforms recapitulating the in vivo tumor-stroma crosstalk and designed to better understand basic cancer processes and screen drug action. However, a consensus for different experimental 3D platforms is still missing in PDAC. We compared four PDAC cell lines of different malignancy grown in 2D monolayers to three of the more commonly used 3D techniques (ultralow adhesion concave microwells, Matrigel inclusion and organotypic systems) and to tumors derived from their orthotopic implantation in mice. In these 3D platforms, we observed that cells grow with very different tumor morphologies and the organotypic setting most closely resembles the tumor cytoarchitecture obtained by orthotopically implanting the four cell lines in mice. We then analyzed the molecular and cellular responses of one of these cell lines to epidermal growth factor receptor (EGFR) stimulation with EGF and inhibition with erlotinib and found that only in the 3D platforms, and especially the organotypic, cells: i) responded to EGF by changing the expression of signalling components underlying cell-stroma crosstalk and tissue architecture, growth, invasion and drug resistance (E-cadherin, EGFR, ezrin, β1 integrin, NHERF1 and HIF-1α) similar to those reported in vivo; ii) had stimulated growth and increased erlotinib sensitivity in response to EGF, more faithfully mimicking their known in vivo behaviour. Altogether, these results, indicate the organotypic as the most relevant physiological 3D system to study the

  3. Chronic pancreatitis

    MedlinePlus

    Chronic pancreatitis - chronic; Pancreatitis - chronic - discharge; Pancreatic insufficiency - chronic; Acute pancreatitis - chronic ... abuse over many years. Repeated episodes of acute pancreatitis can lead to chronic pancreatitis. Genetics may be ...

  4. Incidence of Changes in Respiration-Induced Tumor Motion and Its Relationship With Respiratory Surrogates During Individual Treatment Fractions

    SciTech Connect

    Malinowski, Kathleen; McAvoy, Thomas J.; George, Rohini; Dietrich, Sonja; D'Souza, Warren D.

    2012-04-01

    Purpose: To determine how frequently (1) tumor motion and (2) the spatial relationship between tumor and respiratory surrogate markers change during a treatment fraction in lung and pancreas cancer patients. Methods and Materials: A Cyberknife Synchrony system radiographically localized the tumor and simultaneously tracked three respiratory surrogate markers fixed to a form-fitting vest. Data in 55 lung and 29 pancreas fractions were divided into successive 10-min blocks. Mean tumor positions and tumor position distributions were compared across 10-min blocks of data. Treatment margins were calculated from both 10 and 30 min of data. Partial least squares (PLS) regression models of tumor positions as a function of external surrogate marker positions were created from the first 10 min of data in each fraction; the incidence of significant PLS model degradation was used to assess changes in the spatial relationship between tumors and surrogate markers. Results: The absolute change in mean tumor position from first to third 10-min blocks was >5 mm in 13% and 7% of lung and pancreas cases, respectively. Superior-inferior and medial-lateral differences in mean tumor position were significantly associated with the lobe of lung. In 61% and 54% of lung and pancreas fractions, respectively, margins calculated from 30 min of data were larger than margins calculated from 10 min of data. The change in treatment margin magnitude for superior-inferior motion was >1 mm in 42% of lung and 45% of pancreas fractions. Significantly increasing tumor position prediction model error (mean {+-} standard deviation rates of change of 1.6 {+-} 2.5 mm per 10 min) over 30 min indicated tumor-surrogate relationship changes in 63% of fractions. Conclusions: Both tumor motion and the relationship between tumor and respiratory surrogate displacements change in most treatment fractions for patient in-room time of 30 min.

  5. Preoperative Volume-Based PET Parameter, MTV2.5, as a Potential Surrogate Marker for Tumor Biology and Recurrence in Resected Pancreatic Cancer.

    PubMed

    Kang, Chang Moo; Lee, Sung Hwan; Hwang, Ho Kyoung; Yun, Mijin; Lee, Woo Jung

    2016-03-01

    This study aims to evaluate the role of volume-based positron emission tomography parameters as potential surrogate markers for tumor recurrence in resected pancreatic cancer. Between January 2008 and October 2012, medical records of patients who underwent surgical resection for pancreatic ductal adenocarcinoma and completed ¹⁸F-fluorodeoxyglucose positron emission tomography/CT as a part of preoperative staging work-up were retrospectively reviewed. Not only clinicopathologic variables but also positron emission tomography parameters such as SUVmax, MTV2.5 (metabolic tumor volume), and TLG (total lesion glycolysis) were obtained. Twenty-six patients were women and 31 were men with a mean age of 62.9 ± 9.1 years. All patients were preoperatively determined to resectable pancreatic cancer except 1 case with borderline resectability. R0 resection was achieved in all patients and 45 patients (78.9%) received postoperative adjuvant chemotherapy with or without radiation therapy. Median overall disease-free survival was 12.8 months with a median overall disease-specific survival of 25.1 months. SUVmax did not correlate with radiologic tumor size (P = 0.501); however, MTV2.5 (P = 0.001) and TLG (P = 0.009) were significantly associated with radiologic tumor size. In addition, MTV2.5 (P < 0.001) and TLG (P < 0.001) were significantly correlated with a tumor differentiation. There were no significant differences in TLG and SUVmax according to lymph node ratio; only MTV2.5 was related to lymph node ratio with marginal significance (P = 0.055). In multivariate analysis, lymph node ratio (Exp [β] = 2.425, P = 0.025) and MTV2.5 (Exp[β] = 2.273, P = 0.034) were identified as independent predictors of tumor recurrence following margin-negative resection. Even after tumor size-matched analysis, MTV2.5 was still identified as significant prognostic factor in resected pancreatic cancer (P < 0.05). However, preoperative

  6. Preoperative Volume-Based PET Parameter, MTV2.5, as a Potential Surrogate Marker for Tumor Biology and Recurrence in Resected Pancreatic Cancer.

    PubMed

    Kang, Chang Moo; Lee, Sung Hwan; Hwang, Ho Kyoung; Yun, Mijin; Lee, Woo Jung

    2016-03-01

    This study aims to evaluate the role of volume-based positron emission tomography parameters as potential surrogate markers for tumor recurrence in resected pancreatic cancer. Between January 2008 and October 2012, medical records of patients who underwent surgical resection for pancreatic ductal adenocarcinoma and completed ¹⁸F-fluorodeoxyglucose positron emission tomography/CT as a part of preoperative staging work-up were retrospectively reviewed. Not only clinicopathologic variables but also positron emission tomography parameters such as SUVmax, MTV2.5 (metabolic tumor volume), and TLG (total lesion glycolysis) were obtained. Twenty-six patients were women and 31 were men with a mean age of 62.9 ± 9.1 years. All patients were preoperatively determined to resectable pancreatic cancer except 1 case with borderline resectability. R0 resection was achieved in all patients and 45 patients (78.9%) received postoperative adjuvant chemotherapy with or without radiation therapy. Median overall disease-free survival was 12.8 months with a median overall disease-specific survival of 25.1 months. SUVmax did not correlate with radiologic tumor size (P = 0.501); however, MTV2.5 (P = 0.001) and TLG (P = 0.009) were significantly associated with radiologic tumor size. In addition, MTV2.5 (P < 0.001) and TLG (P < 0.001) were significantly correlated with a tumor differentiation. There were no significant differences in TLG and SUVmax according to lymph node ratio; only MTV2.5 was related to lymph node ratio with marginal significance (P = 0.055). In multivariate analysis, lymph node ratio (Exp [β] = 2.425, P = 0.025) and MTV2.5 (Exp[β] = 2.273, P = 0.034) were identified as independent predictors of tumor recurrence following margin-negative resection. Even after tumor size-matched analysis, MTV2.5 was still identified as significant prognostic factor in resected pancreatic cancer (P < 0.05). However, preoperative

  7. Preoperative Volume-Based PET Parameter, MTV2.5, as a Potential Surrogate Marker for Tumor Biology and Recurrence in Resected Pancreatic Cancer

    PubMed Central

    Kang, Chang Moo; Lee, Sung Hwan; Hwang, Ho Kyoung; Yun, Mijin; Lee, Woo Jung

    2016-01-01

    Abstract This study aims to evaluate the role of volume-based positron emission tomography parameters as potential surrogate markers for tumor recurrence in resected pancreatic cancer. Between January 2008 and October 2012, medical records of patients who underwent surgical resection for pancreatic ductal adenocarcinoma and completed 18F-fluorodeoxyglucose positron emission tomography/CT as a part of preoperative staging work-up were retrospectively reviewed. Not only clinicopathologic variables but also positron emission tomography parameters such as SUVmax, MTV2.5 (metabolic tumor volume), and TLG (total lesion glycolysis) were obtained. Twenty-six patients were women and 31 were men with a mean age of 62.9 ± 9.1 years. All patients were preoperatively determined to resectable pancreatic cancer except 1 case with borderline resectability. R0 resection was achieved in all patients and 45 patients (78.9%) received postoperative adjuvant chemotherapy with or without radiation therapy. Median overall disease-free survival was 12.8 months with a median overall disease-specific survival of 25.1 months. SUVmax did not correlate with radiologic tumor size (P = 0.501); however, MTV2.5 (P = 0.001) and TLG (P = 0.009) were significantly associated with radiologic tumor size. In addition, MTV2.5 (P < 0.001) and TLG (P < 0.001) were significantly correlated with a tumor differentiation. There were no significant differences in TLG and SUVmax according to lymph node ratio; only MTV2.5 was related to lymph node ratio with marginal significance (P = 0.055). In multivariate analysis, lymph node ratio (Exp [β] = 2.425, P = 0.025) and MTV2.5 (Exp[β] = 2.273, P = 0.034) were identified as independent predictors of tumor recurrence following margin-negative resection. Even after tumor size-matched analysis, MTV2.5 was still identified as significant prognostic factor in resected pancreatic cancer (P < 0.05). However, preoperative

  8. Epigenetic Regulation of the lncRNA MEG3 and Its Target c-MET in Pancreatic Neuroendocrine Tumors

    PubMed Central

    Modali, Sita D.; Parekh, Vaishali I.; Kebebew, Electron

    2015-01-01

    Biallelic inactivation of MEN1 encoding menin in pancreatic neuroendocrine tumors (PNETs) associated with the multiple endocrine neoplasia type 1 (MEN1) syndrome is well established, but how menin loss/inactivation initiates tumorigenesis is not well understood. We show that menin activates the long noncoding RNA maternally expressed gene 3 (Meg3) by histone-H3 lysine-4 trimethylation and CpG hypomethylation at the Meg3 promoter CRE site, to allow binding of the transcription factor cAMP response element-binding protein. We found that Meg3 has tumor-suppressor activity in PNET cells because the overexpression of Meg3 in MIN6 cells (insulin-secreting mouse PNET cell line) blocked cell proliferation and delayed cell cycle progression. Gene expression microarray analysis showed that Meg3 overexpression in MIN6 mouse insulinoma cells down-regulated the expression of the protooncogene c-Met (hepatocyte growth factor receptor), and these cells showed significantly reduced cell migration/invasion. Compared with normal islets, mouse or human MEN1-associated PNETs expressed less MEG3 and more c-MET. Therefore, a tumor-suppressor long noncoding RNA (MEG3) and suppressed protooncogene (c-MET) combination could elicit menin's tumor-suppressor activity. Interestingly, MEG3 and c-MET expression was also altered in human sporadic insulinomas (insulin secreting PNETs) with hypermethylation at the MEG3 promoter CRE-site coinciding with reduced MEG3 expression. These data provide insights into the β-cell proliferation mechanisms that could retain their functional status. Furthermore, in MIN6 mouse insulinoma cells, DNA-demethylating drugs blocked cell proliferation and activated Meg3 expression. Our data suggest that the epigenetic activation of lncRNA MEG3 and/or inactivation of c-MET could be therapeutic for treating PNETs and insulinomas. PMID:25565142

  9. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    NASA Astrophysics Data System (ADS)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H.; Meeks, Sanford L.; Kupelian, Patrick A.

    2010-09-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  10. Comparative Assessment of Liver Tumor Motion Using Cine–Magnetic Resonance Imaging Versus 4-Dimensional Computed Tomography

    SciTech Connect

    Fernandes, Annemarie T.; Apisarnthanarax, Smith; Yin, Lingshu; Zou, Wei; Rosen, Mark; Plastaras, John P.; Ben-Josef, Edgar; Metz, James M.; Teo, Boon-Keng

    2015-04-01

    Purpose: To compare the extent of tumor motion between 4-dimensional CT (4DCT) and cine-MRI in patients with hepatic tumors treated with radiation therapy. Methods and Materials: Patients with liver tumors who underwent 4DCT and 2-dimensional biplanar cine-MRI scans during simulation were retrospectively reviewed to determine the extent of target motion in the superior–inferior, anterior–posterior, and lateral directions. Cine-MRI was performed over 5 minutes. Tumor motion from MRI was determined by tracking the centroid of the gross tumor volume using deformable image registration. Motion estimates from 4DCT were performed by evaluation of the fiducial, residual contrast (or liver contour) positions in each CT phase. Results: Sixteen patients with hepatocellular carcinoma (n=11), cholangiocarcinoma (n=3), and liver metastasis (n=2) were reviewed. Cine-MRI motion was larger than 4DCT for the superior–inferior direction in 50% of patients by a median of 3.0 mm (range, 1.5-7 mm), the anterior–posterior direction in 44% of patients by a median of 2.5 mm (range, 1-5.5 mm), and laterally in 63% of patients by a median of 1.1 mm (range, 0.2-4.5 mm). Conclusions: Cine-MRI frequently detects larger differences in hepatic intrafraction tumor motion when compared with 4DCT most notably in the superior–inferior direction, and may be useful when assessing the need for or treating without respiratory management, particularly in patients with unreliable 4DCT imaging. Margins wider than the internal target volume as defined by 4DCT were required to encompass nearly all the motion detected by cine-MRI for some of the patients in this study.

  11. PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth

    PubMed Central

    Sharma, Narinder; Nanta, Rajesh; Sharma, Jay; Gunewardena, Sumedha; Singh, Karan P.; Shankar, Sharmila; Srivastava, Rakesh K.

    2015-01-01

    Cancer stem cells (CSCs) play major roles in cancer initiation, progression, and metastasis. It is evident from growing reports that PI3K/Akt/mTOR and Sonic Hedgehog (Shh) signaling pathways are aberrantly reactivated in pancreatic CSCs. Here, we examined the efficacy of combining NVP-LDE-225 (PI3K/mTOR inhibitor) and NVP-BEZ-235 (Smoothened inhibitor) on pancreatic CSCs characteristics, microRNA regulatory network, and tumor growth. NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting pancreatic CSC's characteristics and tumor growth in mice by acting at the level of Gli. Combination of NVP-LDE-225 and NVP-BEZ-235 inhibited self-renewal capacity of CSCs by suppressing the expression of pluripotency maintaining factors Nanog, Oct-4, Sox-2 and c-Myc, and transcription of Gli. NVP-LDE-225 co-operated with NVP-BEZ-235 to inhibit Lin28/Let7a/Kras axis in pancreatic CSCs. Furthermore, a superior interaction of these drugs was observed on spheroid formation by pancreatic CSCs isolated from Pankras/p53 mice. The combination of these drugs also showed superior effects on the expression of proteins involved in cell proliferation, survival and apoptosis. In addition, NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting EMT through modulation of cadherin, vimentin and transcription factors Snail, Slug and Zeb1. In conclusion, these data suggest that the combined inhibition of PI3K/Akt/mTOR and Shh pathways may be beneficial for the treatment of pancreatic cancer. PMID:26451606

  12. PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth.

    PubMed

    Sharma, Narinder; Nanta, Rajesh; Sharma, Jay; Gunewardena, Sumedha; Singh, Karan P; Shankar, Sharmila; Srivastava, Rakesh K

    2015-10-13

    Cancer stem cells (CSCs) play major roles in cancer initiation, progression, and metastasis. It is evident from growing reports that PI3K/Akt/mTOR and Sonic Hedgehog (Shh) signaling pathways are aberrantly reactivated in pancreatic CSCs. Here, we examined the efficacy of combining NVP-LDE-225 (PI3K/mTOR inhibitor) and NVP-BEZ-235 (Smoothened inhibitor) on pancreatic CSCs characteristics, microRNA regulatory network, and tumor growth. NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting pancreatic CSC's characteristics and tumor growth in mice by acting at the level of Gli. Combination of NVP-LDE-225 and NVP-BEZ-235 inhibited self-renewal capacity of CSCs by suppressing the expression of pluripotency maintaining factors Nanog, Oct-4, Sox-2 and c-Myc, and transcription of Gli. NVP-LDE-225 co-operated with NVP-BEZ-235 to inhibit Lin28/Let7a/Kras axis in pancreatic CSCs. Furthermore, a superior interaction of these drugs was observed on spheroid formation by pancreatic CSCs isolated from Pankras/p53 mice. The combination of these drugs also showed superior effects on the expression of proteins involved in cell proliferation, survival and apoptosis. In addition, NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting EMT through modulation of cadherin, vimentin and transcription factors Snail, Slug and Zeb1. In conclusion, these data suggest that the combined inhibition of PI3K/Akt/mTOR and Shh pathways may be beneficial for the treatment of pancreatic cancer. PMID:26451606

  13. Mid-Ventilation Concept for Mobile Pulmonary Tumors: Internal Tumor Trajectory Versus Selective Reconstruction of Four-Dimensional Computed Tomography Frames Based on External Breathing Motion

    SciTech Connect

    Guckenberger, Matthias Wilbert, Juergen; Krieger, Thomas; Richter, Anne; Baier, Kurt; Flentje, Michael

    2009-06-01

    Purpose: To evaluate the accuracy of direct reconstruction of mid-ventilation and peak-phase four-dimensional (4D) computed tomography (CT) frames based on the external breathing signal. Methods and Materials: For 11 patients with 15 pulmonary targets, a respiration-correlated CT study (4D CT) was acquired for treatment planning. After retrospective time-based sorting of raw projection data and reconstruction of eight CT frames equally distributed over the breathing cycle, mean tumor position (P{sub mean}), mid-ventilation frame, and breathing motion were evaluated based on the internal tumor trajectory. Analysis of the external breathing signal (pressure sensor around abdomen) with amplitude-based sorting of projections was performed for direct reconstruction of the mid-ventilation frame and frames at peak phases of the breathing cycle. Results: On the basis of the eight 4D CT frames equally spaced in time, tumor motion was largest in the craniocaudal direction, with 12 {+-} 7 mm on average. Tumor motion between the two frames reconstructed at peak phases was not different in the craniocaudal and anterior-posterior directions but was systematically smaller in the left-right direction by 1 mm on average. The 3-dimensional distance between P{sub mean} and the tumor position in the mid-ventilation frame based on the internal tumor trajectory was 1.2 {+-} 1 mm. Reconstruction of the mid-ventilation frame at the mean amplitude position of the external breathing signal resulted in tumor positions 2.0 {+-} 1.1 mm distant from P{sub mean}. Breathing-induced motion artifacts in mid-ventilation frames caused negligible changes in tumor volume and shape. Conclusions: Direct reconstruction of the mid-ventilation frame and frames at peak phases based on the external breathing signal was reliable. This makes the reconstruction of only three 4D CT frames sufficient for application of the mid-ventilation technique in clinical practice.

  14. Correlation between ultrasound reflection intensity and tumor ablation ratio of late-stage pancreatic carcinoma in HIFU therapy: dynamic observation on ultrasound reflection intensity.

    PubMed

    Ge, Hui-Yu; Miao, Li-Ying; Wang, Jin-Rui; Xiong, Liu-Lin; Yan, Fang; Zheng, Cui-Shan; Jia, Jian-Wen; Cui, Li-Gang; Chen, Wen

    2013-01-01

    The minimally invasive high-intensity focused ultrasound (HIFU) therapy is thermal ablation treatment for late-stage pancreatic carcinoma with widely recognized safety and effectiveness, but there are currently no instant assessment methods for its ablation effect. It is vital to find a real-time high-sensitive assessment method. This research aims to dynamically observe the variation rules of ultrasound reflection intensity, analyze the correlation between ultrasound reflection intensity and tumor ablation ratio, and find out the value of ultrasound reflection intensity in prognosis of HIFU ablation effect. HIFU intermittent therapies were retrospectively analyzed for 31 subjects with late-stage pancreatic carcinoma from March 2007 to December 2009 in the study. The variation rules of the ultrasound reflection intensity during HIFU therapy were summarized and the correlation between ultrasound reflection intensity and tumor ablation ratio was analyzed based on the tumor ablation ratio indicated by CT scanning. The conclusion is that variation of ultrasound reflection intensity can be used for initial assessment of tumor ablation in HIFU therapy and early prognosis of overall HIFU ablation, providing important clinical basis for improving safety and effectiveness of HIFU therapy. Ultrasound can work as a real-time imaging instrument for observation of HIFU ablation effect in treating late-stage pancreatic carcinoma.

  15. Detection of circulating tumor cells in patients with esophagogastric or pancreatic adenocarcinoma using the CellSearch® system: An observational feasibility study

    PubMed Central

    Piegeler, Tobias; Winder, Thomas; Kern, Sabine; Pestalozzi, Bernhard; Schneider, Paul Magnus; Beck-Schimmer, Beatrice

    2016-01-01

    Circulating tumor cells (CTCs) in the blood of cancer patients have been demonstrated to be of prognostic value regarding metastasis and survival. The CellSearch® system has been certified for the detection of CTCs and as a prognostic tool in patients with metastatic breast, colon and prostate cancer. Few studies have evaluated the detection of CTCs originating from esophagogastric or pancreatic cancer with the CellSearch® system. In the present small pilot study, a total of 16 patients with either esophagogastric (n=8) or pancreatic (n=8) adenocarcinomas at various disease stages were randomly screened and included. A total of 7.5 ml of blood was drawn from each patient and analyzed for CTCs using the CellSearch® device. CTCs could be detected in 1 out of 8 patients (12.5%) with esophagogastric and in 7 out of 8 patients (87.5%) with pancreatic cancer. The preliminary data obtained from this observational feasibility study suggested that the CellSearch® system may become a valuable tool for the detection of CTCs in patients with pancreatic adenocarcinoma, whereas the usefulness in patients with early-stage esophagogastric adenocarcinoma may be limited. This study clearly points towards a requirement for larger studies focusing on patients with pancreatic adenocarcinoma at various disease stages and assessing CTCs, whereas patients with esophagogastric adenocarcinomas should be part of further pilot studies. PMID:27446462

  16. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    SciTech Connect

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S.; Rimner, Andreas

    2014-10-15

    Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image

  17. SU-C-210-06: Quantitative Evaluation of Dosimetric Effects Resulting From Positional Variations of Pancreatic Tumor Volumes

    SciTech Connect

    Yu, S; Sehgal, V; Wei, R; Lawrenson, L; Kuo, J; Hanna, N; Ramsinghani, N; Daroui, P; Al-Ghazi, M

    2015-06-15

    Purpose: The aim of this study is to quantify dosimetric effects resulting from variation in pancreatic tumor position assessed by bony anatomy and implanted fiducial markers Methods: Twelve pancreatic cancer patients were retrospectively analyzed for this study. All patients received modulated arc therapy (VMAT) treatment using fiducial-based Image Guided Radiation Therapy (IGRT) to the intact pancreas. Using daily orthogonal kV and/or Cone beam CT images, the shift needed to co-register the daily pre-treatment images to reference CT from fiducial to bone (Fid-Bone) were recorded as Left-Right (LR), Anterior-Posterior (AP) and Superior-Inferior (SI). The original VMAT plan iso-center was shifted based on KV bone matching positions at 5 evenly spaced fractions. Dose coverage of the planning target volumes (PTVs) (V100%), mean dose to liver, kidney and stomach/duodenum were assessed in the modified plans. Results: A total of 306 fractions were analyzed. The absolute fiducial-bone positional shifts were greatest in the SI direction, (AP = 2.7 ± 3.0, LR = 2.8 ± 2.8, and SI 6.3 ± 7.9 mm, mean ± SD). The V100% was significantly reduced by 13.5%, (Fid-Bone = 95.3 ± 2.0 vs. 82.3 ± 11.8%, p=0.02). This varied widely among patients (Fid-Bone V100% Range = 2–60%), where 33% of patients had a reduction in V100% of more than 10%. The impact on OARs was greatest to the liver (Fid-Bone= 14.6 vs. 16.1 Gy, 10%), and stomach, (Fid-Bone = 23.9 vx. 25.5 Gy, 7%), however was not statistically significant (p=0.10 both). Conclusion: Compared to matching by fiducial markers, matching by bony anatomy would have substantially reduced the PTV coverage by 13.5%. This reinforces the importance of online position verification based on fiducial markers. Hence, implantation of fiducial markers is strongly recommended for pancreatic cancer patients undergoing intensity modulated radiation therapy treatments.

  18. Interfractional Position Variation of Pancreatic Tumors Quantified Using Intratumoral Fiducial Markers and Daily Cone Beam Computed Tomography

    SciTech Connect

    Horst, Astrid van der; Wognum, Silvia; Dávila Fajardo, Raquel; Jong, Rianne de; Hooft, Jeanin E. van; Fockens, Paul; Tienhoven, Geertjan van; Bel, Arjan

    2013-09-01

    Purpose: The aim of this study was to quantify interfractional pancreatic position variation using fiducial markers visible on daily cone beam computed tomography (CBCT) scans. In addition, we analyzed possible migration of the markers to investigate their suitability for tumor localization. Methods and Materials: For 13 pancreatic cancer patients with implanted Visicoil markers, CBCT scans were obtained before 17 to 25 fractions (300 CBCTs in total). Image registration with the reference CT was used to determine the displacement of the 2 to 3 markers relative to bony anatomy and to each other. We analyzed the distance between marker pairs as a function of time to identify marker registration error (SD of linear fit residuals) and possible marker migration. For each patient, we determined the mean displacement of markers relative to the reference CT (systematic position error) and the spread in displacements (random position error). From this, we calculated the group systematic error, Σ, and group random error, σ. Results: Marker pair distances showed slight trends with time (range, −0.14 to 0.14 mm/day), possibly due to tissue deformation, but no shifts that would indicate marker migration. The mean SD of the fit residuals was 0.8 mm. We found large interfractional position variations, with for 116 of 300 (39%) fractions a 3-dimensional vector displacement of >10 mm. The spread in displacement varied significantly (P<.01) between patients, from a vector range of 9.1 mm to one of 24.6 mm. For the patient group, Σ was 3.8, 6.6, and 3.5 mm; and σ was 3.6, 4.7 and 2.5 mm, in left–right, superior–inferior, and anterior–posterior directions, respectively. Conclusions: We found large systematic displacements of the fiducial markers relative to bony anatomy, in addition to wide distributions of displacement. These results for interfractional position variation confirm the potential benefit of using fiducial markers rather than bony anatomy for daily online

  19. Using an external surrogate for predictor model training in real-time motion management of lung tumors

    SciTech Connect

    Rottmann, Joerg; Berbeco, Ross

    2014-12-15

    Purpose: Precise prediction of respiratory motion is a prerequisite for real-time motion compensation techniques such as beam, dynamic couch, or dynamic multileaf collimator tracking. Collection of tumor motion data to train the prediction model is required for most algorithms. To avoid exposure of patients to additional dose from imaging during this procedure, the feasibility of training a linear respiratory motion prediction model with an external surrogate signal is investigated and its performance benchmarked against training the model with tumor positions directly. Methods: The authors implement a lung tumor motion prediction algorithm based on linear ridge regression that is suitable to overcome system latencies up to about 300 ms. Its performance is investigated on a data set of 91 patient breathing trajectories recorded from fiducial marker tracking during radiotherapy delivery to the lung of ten patients. The expected 3D geometric error is quantified as a function of predictor lookahead time, signal sampling frequency and history vector length. Additionally, adaptive model retraining is evaluated, i.e., repeatedly updating the prediction model after initial training. Training length for this is gradually increased with incoming (internal) data availability. To assess practical feasibility model calculation times as well as various minimum data lengths for retraining are evaluated. Relative performance of model training with external surrogate motion data versus tumor motion data is evaluated. However, an internal–external motion correlation model is not utilized, i.e., prediction is solely driven by internal motion in both cases. Results: Similar prediction performance was achieved for training the model with external surrogate data versus internal (tumor motion) data. Adaptive model retraining can substantially boost performance in the case of external surrogate training while it has little impact for training with internal motion data. A minimum

  20. Developing a multivariable prognostic model for pancreatic endocrine tumors using the clinical data warehouse resources of a single institution.

    PubMed

    Botsis, Taxiarchis; Anagnostou, Valsamo K; Hartvigsen, Gunnar; Hripcsak, George; Weng, Chunhua

    2010-01-01

    OBJECTIVE: Current staging systems are not accurate for classifying pancreatic endocrine tumors (PETs) by risk. Here, we developed a prognostic model for PETs and compared it to the WHO classification system. METHODS: We identified 98 patients diagnosed with PET at NewYork-Presbyterian Hospital/Columbia University Medical Center (1999 to 2009). Tumor and clinical characteristics were retrieved and associations with survival were assessed by univariate Cox analysis. A multivariable model was constructed and a risk score was calculated; the prognostic strength of our model was assessed with the concordance index. RESULTS: Our cohort had median age of 60 years and consisted of 61.2% women; median follow-up time was 10.4 months (range: 0.1-99.6) with a 5-year survival of 61.5%. The majority of PETs were non-functional and no difference was observed between functional and non-functional tumors with respect to WHO stage, age, pathologic characteristics or survival. Distant metastases, aspartate aminotransferase-AST and surgical resection (HR=3.39, 95% CI: 1.38-8.35, p=0.008, HR=3.73, 95% CI: 1.20-11.57, p=0.023 and HR=0.20, 95% CI: 0.08-0.51, p<0.001 respectively) were the strongest predictors in the univariate analysis. Age, perineural and/or lymphovascular invasion, distant metastases and AST were the independent prognostic factors in the final multivariable model; a risk score was calculated and classified patients into low (n=40), intermediate (n=48) and high risk (n=10) groups. The concordance index of our model was 0.93 compared to 0.72 for the WHO system. CONCLUSION: Our prognostic model was highly accurate in stratifying patients by risk; novel approaches as such could thus be incorporated into clinical decisions.

  1. An Increased Abundance of Tumor-Infiltrating Regulatory T Cells Is Correlated with the Progression and Prognosis of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Tang, Yichen; Xu, Xuejun; Guo, Shixiang; Zhang, Chaobin; Tang, Yan; Tian, Yi; Ni, Bing; Lu, Binfeng; Wang, Huaizhi

    2014-01-01

    CD4+CD25+Foxp3+ regulatory T cells (Tregs) can inhibit cytotoxic responses. Though several studies have analyzed Treg frequency in the peripheral blood mononuclear cells (PBMCs) of pancreatic ductal adenocarcinoma (PDA) patients using flow cytometry (FCM), few studies have examined how intratumoral Tregs might contribute to immunosuppression in the tumor microenvironment. Thus, the potential role of intratumoral Tregs in PDA patients remains to be elucidated. In this study, we found that the percentages of Tregs, CD4+ T cells and CD8+ T cells were all increased significantly in tumor tissue compared to control pancreatic tissue, as assessed via FCM, whereas the percentages of these cell types in PBMCs did not differ between PDA patients and healthy volunteers. The percentages of CD8+ T cells in tumors were significantly lower than in PDA patient PBMCs. In addition, the relative numbers of CD4+CD25+Foxp3+ Tregs and CD8+ T cells were negatively correlated in the tissue of PDA patients, and the abundance of Tregs was significantly correlated with tumor differentiation. Additionally, Foxp3+ T cells were observed more frequently in juxtatumoral stroma (immediately adjacent to the tumor epithelial cells). Patients showing an increased prevalence of Foxp3+ T cells had a poorer prognosis, which was an independent factor for patient survival. These results suggest that Tregs may promote PDA progression by inhibiting the antitumor immunity of CD8+ T cells at local intratumoral sites. Moreover, a high proportion of Tregs in tumor tissues may reflect suppressed antitumor immunity. PMID:24637664

  2. Tumor Tracking Method Based on a Deformable 4D CT Breathing Motion Model Driven by an External Surface Surrogate

    SciTech Connect

    Fassi, Aurora; Schaerer, Joël; Fernandes, Mathieu; Riboldi, Marco; Sarrut, David; Baroni, Guido

    2014-01-01

    Purpose: To develop a tumor tracking method based on a surrogate-driven motion model, which provides noninvasive dynamic localization of extracranial targets for the compensation of respiration-induced intrafraction motion in high-precision radiation therapy. Methods and Materials: The proposed approach is based on a patient-specific breathing motion model, derived a priori from 4-dimensional planning computed tomography (CT) images. Model parameters (respiratory baseline, amplitude, and phase) are retrieved and updated at each treatment fraction according to in-room radiography acquisition and optical surface imaging. The baseline parameter is adapted to the interfraction variations obtained from the daily cone beam (CB) CT scan. The respiratory amplitude and phase are extracted from an external breathing surrogate, estimated from the displacement of the patient thoracoabdominal surface, acquired with a noninvasive surface imaging device. The developed method was tested on a database of 7 lung cancer patients, including the synchronized information on internal and external respiratory motion during a CBCT scan. Results: About 30 seconds of simultaneous acquisition of CBCT and optical surface images were analyzed for each patient. The tumor trajectories identified in CBCT projections were used as reference and compared with the target trajectories estimated from surface displacement with the a priori motion model. The resulting absolute differences between the reference and estimated tumor motion along the 2 image dimensions ranged between 0.7 and 2.4 mm; the measured phase shifts did not exceed 7% of the breathing cycle length. Conclusions: We investigated a tumor tracking method that integrates breathing motion information provided by the 4-dimensional planning CT with surface imaging at the time of treatment, representing an alternative approach to point-based external–internal correlation models. Although an in-room radiograph-based assessment of the

  3. Interfractional Reproducibility of Lung Tumor Location Using Various Methods of Respiratory Motion Mitigation

    SciTech Connect

    Starkschall, George; Balter, Peter; Britton, Keith; McAleer, Mary F.; Cox, James D.; Mohan, Radhe

    2011-02-01

    Purpose: To determine interfractional reproducibility of the location of lung tumors using respiratory motion mitigation. Methods and Materials: Free-breathing four-dimensional computed tomography (CT) data sets and CT data sets during breath hold were acquired weekly for 17 patients undergoing treatment for non-small-cell lung cancer. Distances between the center of the gross tumor volume (GTV) and a reproducible bony reference point under conditions of breath hold on end inspiration (EI) and end expiration (EE) and during free breathing on the 0% phase (corresponding to EI) and 50% phase (corresponding to EE) were analyzed for interfractional reproducibility. Systematic uncertainties in tumor location were determined as the difference in distance between the GTV center on the first CT data set and the mean location of GTV centers on the subsequent data sets. Random uncertainties in tumor location were determined as the standard deviation of the distances between the GTV centers and the bony reference points. Margins to account for systematic and random interfractional variations were estimated based on these uncertainties. Results: Mean values of interfractional setup uncertainties were as follows: systematic uncertainties-EI, 0.3 cm; EE, 0.2 cm; 0% phase, 0.3 cm; and 50% phase, 0.3 cm; and random uncertainties-EI, 0.3 cm; EE, 0.3 cm; 0% phase, 0.3 cm; and 50% phase, 0.3 cm. There does not appear to be any correlation between uncertainties and GTV size, but there appears to be a weak positive correlation between uncertainties and the magnitude of GTV excursion. Conclusions: Voluntary breath hold and gating on either EI or EE appear to be equally reliable methods of ensuring the reproducibility of lung tumor position. We recommend setup margins of 0.3 cm if using cone-beam CT or kilovoltage X-ray with fiducials and aligning directly to the tumor and 0.8 cm when aligning to a nearby bony surrogate using cone-beam CT or kilovoltage X-ray.

  4. Pancreatic tau related maps: biochemical and immunofluorescence analysis in a tumoral cell line.

    PubMed

    Michalik, L; Neuville, P; Vanier, M T; Launay, J F

    1995-02-23

    In the present study, we report the existence of four tau-related microtubule-associated proteins (MAPs) of 48, 50, 55 and 58 kDa in a pancreatic exocrine cell line (AR4-2J). Using immunofluorescence, we demonstrate that these tau-related MAPs are associated with microtubules in AR4-2J cells. That colocalization is particularly striking on microtubules bundles in cellular extensions and is the first evidence for tau-related MAPs colocalization with microtubules in non-neuronal cells. As it has been often discussed for neuronal tau, the localization of tau-related proteins in AR4-2J cells suggests that these proteins may be involved in microtubule bundling.

  5. A glucagon-secreting pancreatic alpha islet cell tumor presenting as spinal cord compression.

    PubMed

    Staren, E D; Steinecker, G A; Gould, V E

    1987-08-01

    We describe a patient with a pancreatic islet carcinoma presenting with spinal cord compression owing to vertebral metastases. Subsequent studies demonstrated a typical islet cell carcinoma by light microscopy. By electron microscopy, the neurosecretory granules were morphologically suggestive of glucagon production. Radioimmunoassay studies revealed markedly elevated levels of serum glucagon. Notably, the patient did not exhibit the characteristic glucagonoma syndrome. This case exemplifies clearly that elevated levels of immunoreactive neuropeptide hormones are not necessarily associated with overt hormonal syndromes. Possible mechanisms for explaining this apparent discrepancy include the production of immunoreactive molecules with weak or absent systemic biological activity. Nevertheless, the determination of immunoreactive hormone levels in neuroendocrine neoplasms is an extremely effective adjunct method for their diagnosis and monitoring.

  6. Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer

    SciTech Connect

    Liu, H. Helen . E-mail: hliu@mdanderson.org; Balter, Peter; Tutt, Teresa; Choi, Bum; Zhang, Joy; Wang, Catherine; Chi, Melinda; Luo Dershan; Pan Tinsu; Hunjan, Sandeep; Starkschall, George; Rosen, Isaac; Prado, Karl; Liao Zhongxing; Chang, Joe; Komaki, Ritsuko; Cox, James D.; Mohan, Radhe; Dong Lei

    2007-06-01

    Purpose: To assess three-dimensional tumor motion caused by respiration and internal target volume (ITV) for radiotherapy of lung cancer. Methods and Materials: Respiration-induced tumor motion was analyzed for 166 tumors from 152 lung cancer patients, 57.2% of whom had Stage III or IV non-small-cell lung cancer. All patients underwent four-dimensional computed tomography (4DCT) during normal breathing before treatment. The expiratory phase of 4DCT images was used as the reference set to delineate gross tumor volume (GTV). Gross tumor volumes on other respiratory phases and resulting ITVs were determined using rigid-body registration of 4DCT images. The association of GTV motion with various clinical and anatomic factors was analyzed statistically. Results: The proportions of tumors that moved >0.5 cm along the superior-inferior (SI), lateral, and anterior-posterior (AP) axes during normal breathing were 39.2%, 1.8%, and 5.4%, respectively. For 95% of the tumors, the magnitude of motion was less than 1.34 cm, 0.40 cm, and 0.59 cm along the SI, lateral, and AP directions. The principal component of tumor motion was in the SI direction, with only 10.8% of tumors moving >1.0 cm. The tumor motion was found to be associated with diaphragm motion, the SI tumor location in the lung, size of the GTV, and disease T stage. Conclusions: Lung tumor motion is primarily driven by diaphragm motion. The motion of locally advanced lung tumors is unlikely to exceed 1.0 cm during quiet normal breathing except for small lesions located in the lower half of the lung.

  7. Magnetic resonance-guided regional gene delivery strategy using a tumor stroma-permeable nanocarrier for pancreatic cancer

    PubMed Central

    Wang, Qingbing; Li, Jianfeng; An, Sai; Chen, Yi; Jiang, Chen; Wang, Xiaolin

    2015-01-01

    Background Gene therapy is a very promising technology for treatment of pancreatic ductal adenocarcinoma (PDAC). However, its application has been limited by the abundant stromal response in the tumor microenvironment. The aim of this study was to prepare a dendrimer-based gene-free loading vector with high permeability in the tumor stroma and explore an imaging-guided local gene delivery strategy for PDAC to promote the efficiency of targeted gene delivery. Methods The experimental protocol was approved by the animal ethics committee of Zhongshan Hospital, Fudan University. Third-generation dendrigraft poly-L-lysines was selected as the nanocarrier scaffold, which was modified by cell-penetrating peptides and gadolinium (Gd) chelates. DNA plasmids were loaded with these nanocarriers via electrostatic interaction. The cellular uptake and loaded gene expression were examined in MIA PaCa-2 cell lines in vitro. Permeability of the nanoparticles in the tumor stroma and transfected gene distribution in vivo were studied using a magnetic resonance imaging-guided delivery strategy in an orthotopic nude mouse model of PDAC. Results The nanocarriers were synthesized with a dendrigraft poly-L-lysine to polyethylene glycol to DTPA ratio of 1:3.4:8.3 and a mean diameter of 110.9±7.7 nm. The luciferases were strictly expressed in the tumor, and the luminescence intensity in mice treated by Gd-DPT/plasmid luciferase (1.04×104±9.75×102 p/s/cm2/sr) was significantly (P<0.05) higher than in those treated with Gd-DTPA (9.56×102±6.15×10 p/s/cm2/sr) and Gd-DP (5.75×103± 7.45×102 p/s/cm2/sr). Permeability of the nanoparticles modified by cell-penetrating peptides was superior to that of the unmodified counterpart, demonstrating the improved capability of nanoparticles for diffusion in tumor stroma on magnetic resonance imaging. Conclusion This study demonstrated that an image-guided gene delivery system with a stroma-permeable gene vector could be a potential clinically

  8. SU-E-J-175: Comparison of the Treatment Reproducibility of Tumors Affected by Breathing Motion

    SciTech Connect

    Adamczyk, M; Piotrowski, T; Adamczyk, S

    2015-06-15

    Purpose: The aim of the dose distribution simulations was to form a global idea of intensity-modulated radiation therapy (IMRT) realization, by its comparison to three-dimensional conformal radiation therapy (3DCRT) delivery for tumors affected by respiratory motion. Methods: In the group of 10patients both 3DCRT and IMRT plans were prepared.For each field the motion kernel was generated with the largest movement amplitude of 4;6 and 8mm.Additionally,the sets of reference measurements were made in no motion conditions(0 mm).The evaluation of plan delivery,using a diode array placed on moving platform,was based on the Gamma Index analysis with distance to agreement of 3mm and dose difference of 3%. Results: IMRT plans tended to spare doses delivered to lungs compared to 3DCRT.Nonetheless,analyzed volumes showed no significant difference between the static and dynamic techniques,except for the volumes of both lungs receiving 10 and 15Gy.After adding the components associated with the respiratory movement,all IMRT lung parameters evaluated for the ipsilateral,contralateral and both lungs together,revealed considerable differences between the 0vs.6, 0vs.8 and 4vs.8-mm amplitudes.Similar results were obtained for the 3DCRT lung measurements,but without significance between the 0vs.6-mm amplitude.Taking into account the CTV score parameter in 3DCRT and IMRT plans,there was no statistically significant difference between the motion patterns with the smallest amplitudes.The differences were found for the 8-mm amplitude when it was compared both with static conditions and 4-mm amplitude (for 3DCRT) and between 0vs.6, 0vs.8 and 4vs.8-mm amplitudes (for IMRT).All accepted and measured 3DCRT and IMRT doses to spinal cord,esophagus and heart were always below the QUANTEC limits. Conclusion: The application of IMRT technique in lung radiotherapy affords possibilities for reducing the lung doses.For maximal amplitudes of breathing trajectory below 4mm,the disagreement between CTV

  9. Hotspot detection in pancreatic neuroendocrine tumors: density approximation by α-shape maps

    NASA Astrophysics Data System (ADS)

    Niazi, M. K. K.; Hartman, Douglas J.; Pantanowitz, Liron; Gurcan, Metin N.

    2016-03-01

    The grading of neuroendocrine tumors of the digestive system is dependent on accurate and reproducible assessment of the proliferation with the tumor, either by counting mitotic figures or counting Ki-67 positive nuclei. At the moment, most pathologists manually identify the hotspots, a practice which is tedious and irreproducible. To better help pathologists, we present an automatic method to detect all potential hotspots in neuroendocrine tumors of the digestive system. The method starts by segmenting Ki-67 positive nuclei by entropy based thresholding, followed by detection of centroids for all Ki-67 positive nuclei. Based on geodesic distance, approximated by the nuclei centroids, we compute two maps: an amoeba map and a weighted amoeba map. These maps are later combined to generate the heat map, the segmentation of which results in the hotspots. The method was trained on three and tested on nine whole slide images of neuroendocrine tumors. When evaluated by two expert pathologists, the method reached an accuracy of 92.6%. The current method does not discriminate between tumor, stromal and inflammatory nuclei. The results show that α-shape maps may represent how hotspots are perceived.

  10. [Pancreatic ultrasonography].

    PubMed

    Fernández-Rodríguez, T; Segura-Grau, A; Rodríguez-Lorenzo, A; Segura-Cabral, J M

    2015-04-01

    Despite the recent technological advances in imaging, abdominal ultrasonography continues to be the first diagnostic test indicated in patients with a suspicion of pancreatic disease, due to its safety, accessibility and low cost. It is an essential technique in the study of inflammatory processes, since it not only assesses changes in pancreatic parenchyma, but also gives an indication of the origin (bile or alcoholic). It is also essential in the detection and tracing of possible complications as well as being used as a guide in diagnostic and therapeutic punctures. It is also the first technique used in the study of pancreatic tumors, detecting them with a sensitivity of around 70% and a specificity of 90%.

  11. [Pancreatic pseudocysts].

    PubMed

    Stăncescu, M; Ciurea, S

    1989-01-01

    Clinical, evolutive and therapeutical aspects were studied, of 66 cases of patients with pancreatic pseudocysts hospitalized in the clinic over a period of 27 years. Particular modalities of onset were, those of patients with duodenal stenosis, mechanical jaundice, ascites and pleurisy, those in whom symptomatology suggested kidney or cholecystic disease. The intraoperative diagnosis raises the problem of differentiating a retroperitoneal tumor, identifying the possible association with a pancreatic cancer, and the condition when the pseudocysts are found at a certain distance from the pancreas itself. The therapeutical methods are codified, but recidives are possible. Cholecystectomy removes the biliary cause of pancreatitis which can determine the development of pseudocysts. The death rate of these cases was 6.3%.

  12. SU-E-J-61: Monitoring Tumor Motion in Real-Time with EPID Imaging During Cervical Cancer Treatment

    SciTech Connect

    Mao, W; Hrycushko, B; Yan, Y; Foster, R; Albuquerque, K

    2015-06-15

    Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internal markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long

  13. K-Ras mutation detection in liquid biopsy and tumor tissue as prognostic biomarker in patients with pancreatic cancer: a systematic review with meta-analysis.

    PubMed

    Li, Tao; Zheng, Yuanting; Sun, Hong; Zhuang, Rongyuan; Liu, Jing; Liu, Tianshu; Cai, Weimin

    2016-07-01

    K-Ras gene mutations have been found in most pancreatic cancers; however, conflicting data on the prognostic value of K-Ras mutations in pancreatic cancer have been published. We conducted a meta-analysis to assess its prognostic significance. Literature searches of PubMed, EMBASE, Cochrane Library, Web of Science and Google Scholar were performed through December 2015 to identify publications exploring the association of K-Ras mutation with overall survival. Forty eligible studies involving 3427 patients with pancreatic cancer were included in the present meta-analysis. Our analysis showed a hazard ratio (HR) of negative association with survival of 1.61 [95 % confidence interval (CI) 1.36-1.90; p < 0.01] in K-Ras mutant pancreatic cancer patients. In subgroup analyses, K-Ras mutations detected in tumor tissues and in liquid biopsies had HRs of 1.37 (95 % CI 1.20-1.57; p < 0.01) and 3.16 (95 % CI 2.1-4.71; p < 0.01), respectively. In addition, the HR was higher when K-Ras mutations were detected in fresh frozen samples (HR = 2.01, 95 % CI 1.28-3.16, p = 0.002) than in formalin-fixed, paraffin-embedded (FFPE) samples (HR = 1.29, 95 % CI 1.12-1.49, p < 0.01). Though K-Ras alterations are more frequent among non-East Asian individuals than East Asian individuals, there were no significant differences in HRs of survival between the two ethnic subgroups. In conclusion, this meta-analysis suggests that K-Ras mutations are associated with a worse overall survival in pancreatic cancer patients, especially when mutations are detected in liquid biopsies or fresh frozen tumor tissue samples.

  14. K-Ras mutation detection in liquid biopsy and tumor tissue as prognostic biomarker in patients with pancreatic cancer: a systematic review with meta-analysis.

    PubMed

    Li, Tao; Zheng, Yuanting; Sun, Hong; Zhuang, Rongyuan; Liu, Jing; Liu, Tianshu; Cai, Weimin

    2016-07-01

    K-Ras gene mutations have been found in most pancreatic cancers; however, conflicting data on the prognostic value of K-Ras mutations in pancreatic cancer have been published. We conducted a meta-analysis to assess its prognostic significance. Literature searches of PubMed, EMBASE, Cochrane Library, Web of Science and Google Scholar were performed through December 2015 to identify publications exploring the association of K-Ras mutation with overall survival. Forty eligible studies involving 3427 patients with pancreatic cancer were included in the present meta-analysis. Our analysis showed a hazard ratio (HR) of negative association with survival of 1.61 [95 % confidence interval (CI) 1.36-1.90; p < 0.01] in K-Ras mutant pancreatic cancer patients. In subgroup analyses, K-Ras mutations detected in tumor tissues and in liquid biopsies had HRs of 1.37 (95 % CI 1.20-1.57; p < 0.01) and 3.16 (95 % CI 2.1-4.71; p < 0.01), respectively. In addition, the HR was higher when K-Ras mutations were detected in fresh frozen samples (HR = 2.01, 95 % CI 1.28-3.16, p = 0.002) than in formalin-fixed, paraffin-embedded (FFPE) samples (HR = 1.29, 95 % CI 1.12-1.49, p < 0.01). Though K-Ras alterations are more frequent among non-East Asian individuals than East Asian individuals, there were no significant differences in HRs of survival between the two ethnic subgroups. In conclusion, this meta-analysis suggests that K-Ras mutations are associated with a worse overall survival in pancreatic cancer patients, especially when mutations are detected in liquid biopsies or fresh frozen tumor tissue samples. PMID:27225938

  15. Altered PTEN, ATRX, CHGA, CHGB, and TP53 expression are associated with aggressive VHL-associated pancreatic neuroendocrine tumors.

    PubMed

    Weisbrod, Allison B; Zhang, Lisa; Jain, Meenu; Barak, Stephanie; Quezado, Martha M; Kebebew, Electron

    2013-06-01

    Von Hippel-Lindau (VHL) syndrome is an inherited cancer syndrome in which 8-17 % of germline mutation carriers develop pancreatic neuroendocrine tumors (PNETs). There is limited data on prognostic markers for PNETs other than Ki-67, which is included in the World Health Organization classification system. Recently, specific genes and pathways have been identified by whole exome sequencing which may be involved in the tumorigenesis of PNETs and may be markers of disease aggressiveness. The objective of this study was to identify molecular markers of aggressive disease in VHL-associated PNETs. The protein expression of eight genes (PTEN, CHGA, CHGB, ATRX, DAXX, CC-3, VEGF, and TP53) was analyzed in PNETs by immunohistochemistry and compared to clinical data, VHL genotype, functional imaging results, and pathologic findings. Subcellular distribution of phosphatase and tensin (PTEN), chromogranin A (CHGA), and alpha thalassemia/mental retardation syndrome X-linked (ATRX) were significantly different by WHO classifications (p ≤ 0.05). There was decreased PTEN nuclear to cytoplasmic ratio (p < 0.01) and decreased CHGA nuclear expression (p = 0.03) in malignant samples as compared to benign. Lower cytoplasmic chromogranin B (CHGB) expression (p = 0.03) was associated with malignant tumors and metastasis. Higher nuclear expression of PTEN was associated with VHL mutations in exon 3 (p = 0.04). Higher PTEN and CHGB expression was associated with higher FDG-PET avidity (p < 0.05). Cytoplasmic expression of CC-3 was associated with higher serum chromogranin A levels (ρ = 0.72, p = 0.02). Lastly, greater cytoplasmic expression of p53 was associated with metastasis. Our findings suggest that altered PTEN, ATRX, CHGA, and CHGB expression are associated with aggressive PNET phenotype in VHL and may serve as useful adjunct prognostic markers to Ki-67 in PNETs.

  16. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine

    PubMed Central

    Kang, Seung-gu; Zhou, Guoqiang; Yang, Ping; Liu, Ying; Sun, Baoyun; Huynh, Tien; Meng, Huan; Zhao, Lina; Xing, Gengmei; Chen, Chunying; Zhao, Yuliang; Zhou, Ruhong

    2012-01-01

    Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth-leading cause of cancer-related death in North America. Matrix metalloproteinases (MMPs) have long been targeted as a potential anticancer therapy because of their seminal role in angiogenesis and extracellular matrix (ECM) degradation of tumor survival and invasion. However, the inhibition specificity to MMPs and the molecular-level understanding of the inhibition mechanism remain largely unresolved. Here, we found that endohedral metallofullerenol Gd@C82(OH)22 can successfully inhibit the neoplastic activity with experiments at animal, tissue, and cellular levels. Gd@C82(OH)22 effectively blocks tumor growth in human pancreatic cancer xenografts in a nude mouse model. Enzyme activity assays also show Gd@C82(OH)22 not only suppresses the expression of MMPs but also significantly reduces their activities. We then applied large-scale molecular-dynamics simulations to illustrate the molecular mechanism by studying the Gd@C82(OH)22–MMP-9 interactions in atomic detail. Our data demonstrated that Gd@C82(OH)22 inhibits MMP-9 mainly via an exocite interaction, whereas the well-known zinc catalytic site only plays a minimal role. Steered by nonspecific electrostatic, hydrophobic, and specific hydrogen-bonding interactions, Gd@C82(OH)22 exhibits specific binding modes near the ligand-specificity loop S1′, thereby inhibiting MMP-9 activity. Both the suppression of MMP expression and specific binding mode make Gd@C82(OH)22 a potentially more effective nanomedicine for pancreatic cancer than traditional medicines, which usually target the proteolytic sites directly but fail in selective inhibition. Our findings provide insights for de novo design of nanomedicines for fatal diseases such as pancreatic cancer. PMID:22949663

  17. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine

    SciTech Connect

    Kang, S. -g.; Zhou, G.; Yang, P.; Liu, Y.; Sun, B.; Huynh, T.; Meng, H.; Zhao, L.; Xing, G.; Chen, C.; Zhao, Y.; Zhou, R.

    2012-09-18

    Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth-leading cause of cancer-related death in North America. Matrix metalloproteinases (MMPs) have long been targeted as a potential anticancer therapy because of their seminal role in angiogenesis and extracellular matrix (ECM) degradation of tumor survival and invasion. However, the inhibition specificity to MMPs and the molecular-level understanding of the inhibition mechanism remain largely unresolved. Here, we found that endohedral metallofullerenol Gd@C82(OH)22 can successfully inhibit the neoplastic activity with experiments at animal, tissue, and cellular levels. Gd@C82(OH)22 effectively blocks tumor growth in human pancreatic cancer xenografts in a nude mouse model. Enzyme activity assays also show Gd@C82(OH)22 not only suppresses the expression of MMPs but also significantly reduces their activities. We then applied large-scale molecular-dynamics simulations to illustrate the molecular mechanism by studying the Gd@C82(OH)22–MMP-9 interactions in atomic detail. Our data demonstrated that Gd@C82(OH)22 inhibits MMP-9 mainly via an exocite interaction, whereas the well-known zinc catalytic site only plays a minimal role. Steered by nonspecific electrostatic, hydrophobic, and specific hydrogen-bonding interactions, Gd@C82(OH)22 exhibits specific binding modes near the ligand-specificity loop S1', thereby inhibiting MMP-9 activity. Both the suppression of MMP expression and specific binding mode make Gd@C82(OH)22 a potentially more effective nanomedicine for pancreatic cancer than traditional medicines, which usually target the proteolytic sites directly but fail in selective inhibition. Finally, our findings provide insights for de novo design of nanomedicines for fatal diseases such as pancreatic cancer.

  18. Pretreatment Carbohydrate Antigen 19-9 Level Indicates Tumor Response, Early Distant Metastasis, Overall Survival, and Therapeutic Selection in Localized and Unresectable Pancreatic Cancer

    SciTech Connect

    Yoo, Tae; Lee, Woo Jin; Woo, Sang Myung; Kim, Tae Hyun; Han, Sung-Sik; Park, Sang-Jae; Moon, Sung Ho; Shin, Kyung Hwan; Kim, Sang Soo; Hong, Eun Kyung; Kim, Dae Yong; Park, Joong-Won

    2011-11-15

    Purpose: The use of chemoradiotherapy (CRT) for localized and unresectable pancreatic cancer has been disputed because of high probability of distant metastasis. Thus, we analyzed the effect of clinical parameters on tumor response, early distant metastasis within 3 months (DM{sup 3m}), and overall survival to identify an indicator for selecting patients who would benefit from CRT. Methods and Materials: This study retrospectively analyzed the data from 84 patients with localized and unresectable pancreatic cancer who underwent CRT between August 2002 and October 2009. Sex, age, tumor size, histological differentiation, N classification, pre- and post-treatment carbohydrate antigen (CA) 19-9 level, and CA 19-9 percent decrease were analyzed to identify risk factors associated with tumor response, DM{sup 3m}, and overall survival. Results: For all 84 patients, the median survival time was 12.5 months (range, 2-31.9 months), objective response (complete response or partial response) to CRT was observed in 28 patients (33.3%), and DM{sup 3m} occurred in 24 patients (28.6%). Multivariate analysis showed that pretreatment CA 19-9 level ({<=}400 vs. >400 U/ml) was significantly associated with tumor response (45.1% vs. 15.2%), DM{sup 3m} (19.6% vs. 42.4%), and median overall survival time (15.1 vs. 9.7 months) (p < 0.05 for all three parameters). Conclusion: For patients with localized and unresectable pancreatic cancer, pretreatment CA 19-9 level could be helpful in predicting tumor response, DM{sup 3m}, and overall survival and identifying patients who will benefit from CRT.

  19. Residual motion of lung tumors in end-of-inhale respiratory gated radiotherapy based on external surrogates

    SciTech Connect

    Berbeco, Ross I.; Nishioka, Seiko; Shirato, Hiroki; Jiang, Steve B.

    2006-11-15

    It has been noted that some lung tumors exhibit large periodic motion due to respiration. To limit the amount of dose to healthy lung tissues, many clinics have begun gating radiotherapy treatment using externally placed surrogates. It has been observed by several institutions that the end-of-exhale (EOE) tumor position is more reproducible than other phases of the breathing cycle, so the gating window is often set there. From a treatment planning perspective, end-of-inhale (EOI) phase might be preferred for gating because the expanded lungs will further decrease the healthy tissue within the treatment field. We simulate gated treatment at the EOI phase, using a set of recently measured internal/external anatomy patient data. This paper attempts to answer three questions: (1) How much is the tumor residual motion when we use an external surrogate gating window at EOI? (2) How could we reduce the residual motion in the EOI gating window? (3) Is there a preference for amplitude- versus phase-based gating at EOI? We found that under free breathing conditions the residual motion of the tumors is much larger for EOI phase than for EOE phase. The mean values of residual motion at EOI were found to be 2.2 and 2.7 mm for amplitude- and phase-based gating, respectively, and, at EOE, 1.0 and 1.2 mm for amplitude- and phase-based gating, respectively. However, we note that the residual motion in the EOI gating window is correlated well with the reproducibility of the external surface position in the EOI phase. Using the results of a published breath-coaching study, we deduce that the residual motion of a lung tumor at EOI would approach that at EOE, with the same duty cycle (30%), under breath-coaching conditions. Additionally, we found that under these same conditions, phase-based gating approaches the same residual motion as amplitude-based gating, going from a 28% difference to 11%, for the patient with the largest difference between the two gating modalities. We conclude

  20. Technical Note: Intrafractional changes in time lag relationship between anterior–posterior external and superior–inferior internal motion signals in abdominal tumor sites

    SciTech Connect

    Regmi, Rajesh; Lovelock, D. Michael; Zhang, Pengpeng; Pham, Hai; Xiong, Jianping; Yorke, Ellen D.; Mageras, Gig S.; Goodman, Karyn A.; Wu, Abraham J.

    2015-06-15

    Purpose: To investigate constancy, within a treatment session, of the time lag relationship between implanted markers in abdominal tumors and an external motion surrogate. Methods: Six gastroesophageal junction and three pancreatic cancer patients (IRB-approved protocol) received two cone-beam CTs (CBCT), one before and one after treatment. Time between scans was less than 30 min. Each patient had at least one implanted fiducial marker near the tumor. In all scans, abdominal displacement (Varian RPM) was recorded as the external motion signal. Purpose-built software tracked fiducials, representing internal signal, in CBCT projection images. Time lag between superior–inferior (SI) internal and anterior–posterior external signals was found by maximizing the correlation coefficient in each breathing cycle and averaging over all cycles. Time-lag-induced discrepancy between internal SI position and that predicted from the external signal (external prediction error) was also calculated. Results: Mean ± standard deviation time lag, over all scans and patients, was 0.10 ± 0.07 s (range 0.01–0.36 s). External signal lagged the internal in 17/18 scans. Change in time lag between pre- and post-treatment CBCT was 0.06 ± 0.07 s (range 0.01–0.22 s), corresponding to 3.1% ± 3.7% (range 0.6%–10.8%) of gate width (range 1.6–3.1 s). In only one patient, change in time lag exceeded 10% of the gate width. External prediction error over all scans of all patients varied from 0.1 ± 0.1 to 1.6 ± 0.4 mm. Conclusions: Time lag between internal motion along SI and external signals is small compared to the treatment gate width of abdominal patients examined in this study. Change in time lag within a treatment session, inferred from pre- to post-treatment measurements is also small, suggesting that a single measurement of time lag at the session start is adequate. These findings require confirmation in a larger number of patients.

  1. Technical Note: Intrafractional changes in time lag relationship between anterior–posterior external and superior–inferior internal motion signals in abdominal tumor sites

    PubMed Central

    Regmi, Rajesh; Lovelock, D. Michael; Zhang, Pengpeng; Pham, Hai; Xiong, Jianping; Yorke, Ellen D.; Goodman, Karyn A.; Wu, Abraham J.; Mageras, Gig S.

    2015-01-01

    Purpose: To investigate constancy, within a treatment session, of the time lag relationship between implanted markers in abdominal tumors and an external motion surrogate. Methods: Six gastroesophageal junction and three pancreatic cancer patients (IRB-approved protocol) received two cone-beam CTs (CBCT), one before and one after treatment. Time between scans was less than 30 min. Each patient had at least one implanted fiducial marker near the tumor. In all scans, abdominal displacement (Varian RPM) was recorded as the external motion signal. Purpose-built software tracked fiducials, representing internal signal, in CBCT projection images. Time lag between superior–inferior (SI) internal and anterior–posterior external signals was found by maximizing the correlation coefficient in each breathing cycle and averaging over all cycles. Time-lag-induced discrepancy between internal SI position and that predicted from the external signal (external prediction error) was also calculated. Results: Mean ± standard deviation time lag, over all scans and patients, was 0.10 ± 0.07 s (range 0.01–0.36 s). External signal lagged the internal in 17/18 scans. Change in time lag between pre- and post-treatment CBCT was 0.06 ± 0.07 s (range 0.01–0.22 s), corresponding to 3.1% ± 3.7% (range 0.6%–10.8%) of gate width (range 1.6–3.1 s). In only one patient, change in time lag exceeded 10% of the gate width. External prediction error over all scans of all patients varied from 0.1 ± 0.1 to 1.6 ± 0.4 mm. Conclusions: Time lag between internal motion along SI and external signals is small compared to the treatment gate width of abdominal patients examined in this study. Change in time lag within a treatment session, inferred from pre- to post-treatment measurements is also small, suggesting that a single measurement of time lag at the session start is adequate. These findings require confirmation in a larger number of patients. PMID:26127033

  2. Applications of a novel tumor-grading-metastasis staging system for pancreatic neuroendocrine tumors: An analysis of surgical patients from a Chinese institution.

    PubMed

    Yang, Min; Tan, Chun-Lu; Zhang, Yi; Ke, Neng-Wen; Zeng, Lin; Li, Ang; Zhang, Hao; Xiong, Jun-Jie; Guo, Zi-Heng; Tian, Bo-Le; Liu, Xu-Bao

    2016-07-01

    The ability to stratify patients with pancreatic neuroendocrine tumors (p-NETs) into prognostic groups has been hindered by the absence of a commonly accepted staging system. Both the 7th tumor-node-metastasis (TNM) staging guidelines by the American Joint Committee on Cancer (AJCC) and the 2010 grading classifications by the World Health Organization (WHO) were validated to be unsatisfactory.We aim to evaluate the feasibility of combining the latest AJCC and WHO criteria to devise a novel tumor-grading-metastasis (TGM) staging system. We also sought to examine the stage-specific survival rates and the prognostic value of this new TGM system for p-NETs.Data of 120 patients with surgical resection and histopathological diagnosis of p-NETs from January 2004 to February 2014 in our institution were retrospectively collected and analyzed. Based on the AJCC and WHO criteria, we replaced the stage N0 and N1 with stage Ga (NET G1 and NET G2) and Gb (NET G3 and MANEC) respectively, without changes of the definition of T or M stage. The present novel TGM staging system was grouped as follows: stage I was defined as T1-2, Ga, M0; stage II as T3, Ga, M0 or as T1-3, Gb, M0; stage III as T4, Ga-b, M0 and stage IV as any T, M1.The new TGM staging system successfully distributed 55, 42, 12, and 11 eligible patients in stage I to IV, respectively. Differences of survival compared stage I with III and IV for patients with p-NETs were both statistically significant (P < 0.001), as well as those of stage II with III and IV (P < 0.001). Patients in stage I showed better a survival than those in stage II, whereas difference between stages III and IV was not notable (P = 0.001, P = 0.286, respectively). In multivariate models, when the TGM staging system was evaluated in place of the individual T, G, and M variables, this new criteria were proven to be an independent predictor of survival for surgically resected p-NETs (P < 0.05).Stratifying patients well, the current

  3. Applications of a novel tumor-grading-metastasis staging system for pancreatic neuroendocrine tumors: An analysis of surgical patients from a Chinese institution.

    PubMed

    Yang, Min; Tan, Chun-Lu; Zhang, Yi; Ke, Neng-Wen; Zeng, Lin; Li, Ang; Zhang, Hao; Xiong, Jun-Jie; Guo, Zi-Heng; Tian, Bo-Le; Liu, Xu-Bao

    2016-07-01

    The ability to stratify patients with pancreatic neuroendocrine tumors (p-NETs) into prognostic groups has been hindered by the absence of a commonly accepted staging system. Both the 7th tumor-node-metastasis (TNM) staging guidelines by the American Joint Committee on Cancer (AJCC) and the 2010 grading classifications by the World Health Organization (WHO) were validated to be unsatisfactory.We aim to evaluate the feasibility of combining the latest AJCC and WHO criteria to devise a novel tumor-grading-metastasis (TGM) staging system. We also sought to examine the stage-specific survival rates and the prognostic value of this new TGM system for p-NETs.Data of 120 patients with surgical resection and histopathological diagnosis of p-NETs from January 2004 to February 2014 in our institution were retrospectively collected and analyzed. Based on the AJCC and WHO criteria, we replaced the stage N0 and N1 with stage Ga (NET G1 and NET G2) and Gb (NET G3 and MANEC) respectively, without changes of the definition of T or M stage. The present novel TGM staging system was grouped as follows: stage I was defined as T1-2, Ga, M0; stage II as T3, Ga, M0 or as T1-3, Gb, M0; stage III as T4, Ga-b, M0 and stage IV as any T, M1.The new TGM staging system successfully distributed 55, 42, 12, and 11 eligible patients in stage I to IV, respectively. Differences of survival compared stage I with III and IV for patients with p-NETs were both statistically significant (P < 0.001), as well as those of stage II with III and IV (P < 0.001). Patients in stage I showed better a survival than those in stage II, whereas difference between stages III and IV was not notable (P = 0.001, P = 0.286, respectively). In multivariate models, when the TGM staging system was evaluated in place of the individual T, G, and M variables, this new criteria were proven to be an independent predictor of survival for surgically resected p-NETs (P < 0.05).Stratifying patients well, the current

  4. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  5. MR guided thermal therapy of pancreatic tumors with endoluminal, intraluminal and interstitial catheter-based ultrasound devices: preliminary theoretical and experimental investigations

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Salgaonkar, Vasant A.; Scott, Serena J.; Jones, Peter; Hensley, Daniel; Holbrook, Andrew; Plata, Juan; Sommer, Graham; Diederich, Chris J.

    2013-02-01

    Image-guided thermal interventions have been proposed for potential palliative and curative treatments of pancreatic tumors. Catheter-based ultrasound devices offer the potential for temporal and 3D spatial control of the energy deposition profile. The objective of this study was to apply theoretical and experimental techniques to investigate the feasibility of endogastric, intraluminal and transgastric catheter-based ultrasound for MR guided thermal therapy of pancreatic tumors. The transgastric approach involves insertion of a catheter-based ultrasound applicator (array of 1.5 mm OD x 10 mm transducers, 360° or sectored 180°, ~7 MHz frequency, 13-14G cooling catheter) directly into the pancreas, either endoscopically or via image-guided percutaneous placement. An intraluminal applicator, of a more flexible but similar construct, was considered for endoscopic insertion directly into the pancreatic or biliary duct. An endoluminal approach was devised based on an ultrasound transducer assembly (tubular, planar, curvilinear) enclosed in a cooling balloon which is endoscopically positioned within the stomach or duodenum, adjacent to pancreatic targets from within the GI tract. A 3D acoustic bio-thermal model was implemented to calculate acoustic energy distributions and used a FEM solver to determine the transient temperature and thermal dose profiles in tissue during heating. These models were used to determine transducer parameters and delivery strategies and to study the feasibility of ablating 1-3 cm diameter tumors located 2-10 mm deep in the pancreas, while thermally sparing the stomach wall. Heterogeneous acoustic and thermal properties were incorporated, including approximations for tumor desmoplasia and dynamic changes during heating. A series of anatomic models based on imaging scans of representative patients were used to investigate the three approaches. Proof of concept (POC) endogastric and transgastric applicators were fabricated and experimentally

  6. Association between Genetic Subgroups of Pancreatic Ductal Adenocarcinoma Defined by High Density 500 K SNP-Arrays and Tumor Histopathology

    PubMed Central

    Gutiérrez, María Laura; Muñoz-Bellvis, Luís; Abad, María del Mar; Bengoechea, Oscar; González-González, María

    2011-01-01

    The specific genes and genetic pathways associated with pancreatic ductal adenocarcinoma are still largely unknown partially due to the low resolution of the techniques applied so far to their study. Here we used high-density 500 K single nucleotide polymorphism (SNP)-arrays to define those chromosomal regions which most commonly harbour copy number (CN) alterations and loss of heterozygozity (LOH) in a series of 20 PDAC tumors and we correlated the corresponding genetic profiles with the most relevant clinical and histopathological features of the disease. Overall our results showed that primary PDAC frequently display (>70%) extensive gains of chromosomes 1q, 7q, 8q and 20q, together with losses of chromosomes 1p, 9p, 12q, 17p and 18q, such chromosomal regions harboring multiple cancer- and PDAC-associated genes. Interestingly, these alterations clustered into two distinct genetic profiles characterized by gains of the 2q14.2, 3q22.1, 5q32, 10q26.13, 10q26.3, 11q13.1, 11q13.3, 11q13.4, 16q24.1, 16q24.3, 22q13.1, 22q13.31 and 22q13.32 chromosomal regions (group 1; n = 9) versus gains at 1q21.1 and losses of the 1p36.11, 6q25.2, 9p22.1, 9p24.3, 17p13.3 and Xp22.33 chromosomal regions (group 2; n = 11). From the clinical and histopathological point of view, group 1 cases were associated with smaller and well/moderately-differentiated grade I/II PDAC tumors, whereas and group 2 PDAC displayed a larger size and they mainly consisted of poorly-differentiated grade III carcinomas. These findings confirm the cytogenetic complexity and heterogenity of PDAC and provide evidence for the association between tumor cytogenetics and its histopathological features. In addition, we also show that the altered regions identified harbor multiple cancer associate genes that deserve further investigation to determine their relevance in the pathogenesis of PDAC. PMID:21811587

  7. Surgery for Pancreatic Cancer

    MedlinePlus

    ... the abdomen. The surgeon can look at the pancreas and other organs for tumors and take biopsy ... pancreatic cancers appear to be confined to the pancreas at the time they are found. Even then, ...

  8. Robustness of external/internal correlation models for real-time tumor tracking to breathing motion variations

    NASA Astrophysics Data System (ADS)

    Seregni, M.; Cerveri, P.; Riboldi, M.; Pella, A.; Baroni, G.

    2012-11-01

    In radiotherapy, organ motion mitigation by means of dynamic tumor tracking requires continuous information about the internal tumor position, which can be estimated relying on external/internal correlation models as a function of external surface surrogates. In this work, we propose a validation of a time-independent artificial neural networks-based tumor tracking method in the presence of changes in the breathing pattern, evaluating the performance on two datasets. First, simulated breathing motion traces were specifically generated to include gradually increasing respiratory irregularities. Then, seven publically available human liver motion traces were analyzed for the assessment of tracking accuracy, whose sensitivity with respect to the structural parameters of the model was also investigated. Results on simulated data showed that the proposed method was not affected by hysteretic target trajectories and it was able to cope with different respiratory irregularities, such as baseline drift and internal/external phase shift. The analysis of the liver motion traces reported an average RMS error equal to 1.10 mm, with five out of seven cases below 1 mm. In conclusion, this validation study proved that the proposed method is able to deal with respiratory irregularities both in controlled and real conditions.

  9. Maximum Standard Uptake Value as a Clinical Biomarker for Detecting Loss of SMAD4 Expression and Early Systemic Tumor Recurrence in Resected Left-Sided Pancreatic Cancer

    PubMed Central

    Kang, Chang Moo; Hwang, Ho Kyoung; Park, Jiae; Kim, Changsoo; Cho, Seong-Kyoung; Yun, Mijin; Lee, Woo Jung

    2016-01-01

    Abstract This study investigated the oncologic impact of loss of SMAD4 expression in resected left-sided pancreatic cancer and its correlation with tumor metabolism. From 2005 to 2011, the medical records of patients who underwent radical distal pancreatectomy for resectable pancreatic cancer were retrospectively reviewed. Formalin-fixed, paraffin embedded tissue from 32 patients was investigated. Clinicopathological characteristics, immunostaining of SMAD4, and positron emission tomography-based parameters were analyzed in relation to oncologic outcomes. Thirteen patients were women and 19 were men, with a mean age of 63 ± 9.4 years. Mean resected tumor size was 3.3 ± 1.5 cm. Ten patients (31.3%) showed loss of SMAD4 expression. No significant clinicopathological differences were noted according to SMAD4 expression (P > 0.05); however, patients with loss of SMAD4 showed significantly poorer disease-free survival (mean 57.4 months vs mean 17.6 months, P = 0.006). As a cut-off value, a SUVmax of 4.5 was found to be predictive of loss of SMAD4 with a sensitivity of 75% and a specificity of 84.6%. In logistic regression analysis, SUVmax>4.5 was found to infer a 16-fold higher risk for loss of SMAD4 in resected left-sided pancreatic cancers (Exp[β] = 16.5, P = 0.012, 95% confidence interval: 1.832–148.606). Loss of SMAD4 is associated with poor oncologic outcomes. SUVmax can predict loss of SMAD4 in resected left-sided pancreatic cancer. SUVmax may be a clinical biomarker for detecting loss of SMAD4 expression and predicting early systemic metastasis. PMID:27124039

  10. CA19-9-related tumor kinetics after first-line chemotherapy of patients with advanced pancreatic cancer: a monoinstitutional experience.

    PubMed

    Colloca, Giuseppe; Venturino, Antonella; Guarneri, Domenico

    2016-09-01

    The absolute value of carbohydrate antigen 19-9 (CA19-9) pretreatment and its reduction after chemotherapy are established prognostic variables for patients with advanced pancreatic cancer. The present study is a retrospective monoinstitutional evaluation of the prognostic role of the CA19-9 reduction and some CA19-9-related tumor kinetics parameters, such as tumor growth rate constant (G), kinetic tumor response and log ratio. Forty-one cases met the selection criteria. After 8 weeks only G reported an inverse relationship with OS (r = -0.494) that was confirmed by regression analysis (R (2) = 0.192). G after 8 weeks of chemotherapy appears as a possible surrogate end point of overall survival. PMID:27522503

  11. Maximum-Intensity Volumes for Fast Contouring of Lung Tumors Including Respiratory Motion in 4DCT Planning

    SciTech Connect

    Rietzel, Eike Liu, Arthur K.; Chen, George T.Y.; Choi, Noah C.

    2008-07-15

    Purpose: To assess the accuracy of maximum-intensity volumes (MIV) for fast contouring of lung tumors including respiratory motion. Methods and Materials: Four-dimensional computed tomography (4DCT) data of 10 patients were acquired. Maximum-intensity volumes were constructed by assigning the maximum Hounsfield unit in all CT volumes per geometric voxel to a new, synthetic volume. Gross tumor volumes (GTVs) were contoured on all CT volumes, and their union was constructed. The GTV with all its respiratory motion was contoured on the MIV as well. Union GTVs and GTVs including motion were compared visually. Furthermore, planning target volumes (PTVs) were constructed for the union of GTVs and the GTV on MIV. These PTVs were compared by centroid position, volume, geometric extent, and surface distance. Results: Visual comparison of GTVs demonstrated failure of the MIV technique for 5 of 10 patients. For adequate GTV{sub MIV}s, differences between PTVs were <1.0 mm in centroid position, 5% in volume, {+-}5 mm in geometric extent, and {+-}0.5 {+-} 2.0 mm in surface distance. These values represent the uncertainties for successful MIV contouring. Conclusion: Maximum-intensity volumes are a good first estimate for target volume definition including respiratory motion. However, it seems mandatory to validate each individual MIV by overlaying it on a movie loop displaying the 4DCT data and editing it for possible inadequate coverage of GTVs on additional 4DCT motion states.

  12. Hormonally defined pancreatic and duodenal neuroendocrine tumors differ in their transcription factor signatures: expression of ISL1, PDX1, NGN3, and CDX2.

    PubMed

    Hermann, Gratiana; Konukiewitz, Björn; Schmitt, Anja; Perren, Aurel; Klöppel, Günter

    2011-08-01

    We recently identified the transcription factor (TF) islet 1 gene product (ISL1) as a marker for well-differentiated pancreatic neuroendocrine tumors (P-NETs). In order to better understand the expression of the four TFs, ISL1, pancreatico-duodenal homeobox 1 gene product (PDX1), neurogenin 3 gene product (NGN3), and CDX-2 homeobox gene product (CDX2), that mainly govern the development and differentiation of the pancreas and duodenum, we studied their expression in hormonally defined P-NETs and duodenal (D-) NETs. Thirty-six P-NETs and 14 D-NETs were immunostained with antibodies against the four pancreatic hormones, gastrin, serotonin, calcitonin, ISL1, PDX1, NGN3, and CDX2. The TF expression pattern of each case was correlated with the tumor's hormonal profile. Insulin-positive NETs expressed only ISL1 (10/10) and PDX1 (9/10). Glucagon-positive tumors expressed ISL1 (7/7) and were almost negative for the other TFs. Gastrin-positive NETs, whether of duodenal or pancreatic origin, frequently expressed PDX1 (17/18), ISL1 (14/18), and NGN3 (14/18). CDX2 was mainly found in the gastrin-positive P-NETs (5/8) and rarely in the D-NETs (1/10). Somatostatin-positive NETs, whether duodenal or pancreatic in origin, expressed ISL1 (9/9), PDX1 (3/9), and NGN3 (3/9). The remaining tumors showed labeling for ISL1 in addition to NGN3. There was no association between a particular TF pattern and NET features such as grade, size, location, presence of metastases, and functional activity. We conclude from our data that there is a correlation between TF expression patterns and certain hormonally defined P-NET and D-NET types, suggesting that most of the tumor types originate from embryologically determined precursor cells. The observed TF signatures do not allow us to distinguish P-NETs from D-NETs. PMID:21739268

  13. NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone

    PubMed Central

    Moore, Z; Chakrabarti, G; Luo, X; Ali, A; Hu, Z; Fattah, F J; Vemireddy, R; DeBerardinis, R J; Brekken, R A; Boothman, D A

    2015-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (e.g., FK866) target the most active pathway of NAD+ synthesis in tumor cells, but lack tumor-selectivity for use as a single agent. Reducing NAD+ pools by inhibiting NAMPT primed pancreatic ductal adenocarcinoma (PDA) cells for poly(ADP ribose) polymerase (PARP1)-dependent cell death induced by the targeted cancer therapeutic, β-lapachone (β-lap, ARQ761), independent of poly(ADP ribose) (PAR) accumulation. β-Lap is bioactivated by NADPH:quinone oxidoreductase 1 (NQO1) in a futile redox cycle that consumes oxygen and generates high levels of reactive oxygen species (ROS) that cause extensive DNA damage and rapid PARP1-mediated NAD+ consumption. Synergy with FK866+β-lap was tumor-selective, only occurring in NQO1-overexpressing cancer cells, which is noted in a majority (∼85%) of PDA cases. This treatment strategy simultaneously decreases NAD+ synthesis while increasing NAD+ consumption, reducing required doses and treatment times for both drugs and increasing potency. These complementary mechanisms caused profound NAD(P)+ depletion and inhibited glycolysis, driving down adenosine triphosphate levels and preventing recovery normally observed with either agent alone. Cancer cells died through an ROS-induced, μ-calpain-mediated programmed cell death process that kills independent of caspase activation and is not driven by PAR accumulation, which we call NAD+-Keresis. Non-overlapping specificities of FK866 for PDA tumors that rely heavily on NAMPT-catalyzed NAD+ synthesis and β-lap for cancer cells with elevated NQO1 levels affords high tumor-selectivity. The concept of reducing NAD+ pools in cancer cells to sensitize them to ROS-mediated cell death by β-lap is a novel strategy with potential application for pancreatic and other types of NQO1+ solid tumors. PMID:25590809

  14. [Primary pancreatic plasmacytoma].

    PubMed

    Sánchez Acevedo, Z; Pomares Rey, B; Alpera Tenza, M R; Andrada Becerra, E

    2014-01-01

    Extramedullary plasmacytomas are uncommon malignant plasma cell tumors that present outside the bone marrow; 80% of extramedullary plasmacytomas are located in the upper respiratory tract, and gastrointestinal plasmacytomas are rare. We present the case of an asymptomatic 65-year-old man in whom a pancreatic mass was found incidentally. The lesion was determined to be a pancreatic plasmacytoma after fine-needle aspiration cytology and surgical resection. No clinical, laboratory, or imaging findings indicative of multiple myeloma or association with other plasmacytomas were found, so the tumor was considered to be a primary pancreatic plasmacytoma. PMID:22738942

  15. Pancreatitis - discharge

    MedlinePlus

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... fluids through an intravenous (IV) tube in your vein and nutrition through a feeding tube or IV. ...

  16. New Blocking Antibodies against Novel AGR2-C4.4A Pathway Reduce Growth and Metastasis of Pancreatic Tumors and Increase Survival in Mice

    PubMed Central

    Arumugam, Thiruvengadam; Deng, Defeng; Bover, Laura; Wang, Huamin; Logsdon, Craig D.; Ramachandran, Vijaya

    2015-01-01

    Anterior gradient 2 (AGR2) promotes cancer growth, metastasis and resistance to therapy via unknown mechanisms. We investigated the effects of extracellular AGR2 signaling through the orphan GPI-linked receptor C4.4A in pancreatic ductal adenocarcinoma (PDAC). Proliferation, migration and invasion and apoptosis were measured using colorimetric, Boyden chamber, and fluorescence-activated cell sorting analyses. We developed blocking monoclonal antibodies against AGR2 and C4.4A and tested their effects, along with siRNAs, on cancer cell functions and on orthotopic tumors in nude mice. Extracellular AGR2 stimulated proliferation, migration, invasion and chemoresistance of PDAC cell lines. AGR2 interacted with C4.4A in cell lysates and mixtures of recombinant proteins. Knockdown of C4.4A reduced migration and resistance to gemcitabine. PDAC tissues, but not adjacent healthy pancreatic tissues, expressed high levels of AGR2 and C4.4A. AGR2 signaling through C4.4A required laminins 1 or 5 and integrin β1. Administration of antibodies against AGR2 and C4.4A reduced growth and metastasis and caused regression of aggressive xenograft tumors leading to increased survival of mice. These data support a model in which AGR2 binds and signals via C4.4A in an autocrine loop and promotes the growth of pancreas tumors in mice. Blocking monoclonal antibodies against AGR2 and C4.4A may have therapeutic potential against PDAC. PMID:25646014

  17. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models.

    PubMed

    Zhu, Yu; Knolhoff, Brett L; Meyer, Melissa A; Nywening, Timothy M; West, Brian L; Luo, Jingqin; Wang-Gillam, Andrea; Goedegebuure, S Peter; Linehan, David C; DeNardo, David G

    2014-09-15

    Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of immune escape in the tumor microenvironment include tumor-associated macrophages and myeloid-derived suppressor cells, which not only mediate immune suppression, but also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, strategies to ablate the effects of these myeloid cell populations may offer great therapeutic potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive antitumor T-cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T-cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single agents to restrain PDAC growth, but that combining these agents with CSF1R blockade potently elicited tumor regressions, even in larger established tumors. Taken together, our findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the tumor microenvironment under conditions that can significantly empower the therapeutic effects of checkpoint-based immunotherapeutics.

  18. Two Chitotriose-Specific Lectins Show Anti-Angiogenesis, Induces Caspase-9-Mediated Apoptosis and Early Arrest of Pancreatic Tumor Cell Cycle

    PubMed Central

    Sarkar, Dhiman; Suresh, C. G.

    2016-01-01

    The antiproliferative activity of two chito- specific agglutinins purified from Benincasa hispida (BhL) and Datura innoxia (DiL9) of different plant family origin was investigated on various cancer cell lines. Both lectins showed chitotriose specificity, by inhibiting lectin hemagglutinating activity. On further studies, it was revealed that these agglutinins caused remarkable concentration-dependent antiproliferative effect on human pancreatic cancerous cells but not on the normal human umbilical vein endothelial cells even at higher doses determined using MTT assay. The GI50 values were approximately 8.4 μg ml-1 (0.247 μM) and 142 μg ml-1(14.8 μM) for BhL and DiL9, respectively, against PANC-1 cells. The growth inhibitory effect of these lectins on pancreatic cancer cells were shown to be a consequence of lectin cell surface binding and triggering G0/G1 arrest, mitochondrial membrane depolarization, sustained increase of the intracellular calcium release and the apoptotic signal is amplified by activation of caspases executing cell death. Interestingly, these lectins also showed anti-angiogenic activity by disrupting the endothelial tubulogenesis. Therefore, we report for the first time two chito-specific lectins specifically binding to tumor glycans; they can be considered to be a class of molecules with antitumor activity against pancreatic cancer cells mediated through caspase dependent mitochondrial apoptotic pathway. PMID:26795117

  19. Two Chitotriose-Specific Lectins Show Anti-Angiogenesis, Induces Caspase-9-Mediated Apoptosis and Early Arrest of Pancreatic Tumor Cell Cycle.

    PubMed

    Singh, Ruby; Nawale, Laxman; Sarkar, Dhiman; Suresh, C G

    2016-01-01

    The antiproliferative activity of two chito-specific agglutinins purified from Benincasa hispida (BhL) and Datura innoxia (DiL9) of different plant family origin was investigated on various cancer cell lines. Both lectins showed chitotriose specificity, by inhibiting lectin hemagglutinating activity. On further studies, it was revealed that these agglutinins caused remarkable concentration-dependent antiproliferative effect on human pancreatic cancerous cells but not on the normal human umbilical vein endothelial cells even at higher doses determined using MTT assay. The GI50 values were approximately 8.4 μg ml(-1) (0.247 μM) and 142 μg ml(-1) (14.8 μM) for BhL and DiL9, respectively, against PANC-1 cells. The growth inhibitory effect of these lectins on pancreatic cancer cells were shown to be a consequence of lectin cell surface binding and triggering G0/G1 arrest, mitochondrial membrane depolarization, sustained increase of the intracellular calcium release and the apoptotic signal is amplified by activation of caspases executing cell death. Interestingly, these lectins also showed anti-angiogenic activity by disrupting the endothelial tubulogenesis. Therefore, we report for the first time two chito-specific lectins specifically binding to tumor glycans; they can be considered to be a class of molecules with antitumor activity against pancreatic cancer cells mediated through caspase dependent mitochondrial apoptotic pathway. PMID:26795117

  20. Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B.

    2009-08-01

    Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.

  1. [The epidemiology of pancreatic cancer].

    PubMed

    Lakatos, Gábor; Tulassay, Zsolt

    2010-10-31

    Pancreatic cancer is a relatively uncommon tumor, but even with early diagnosis, mortality rates are high, explaining why this form of cancer has now become a common cause of cancer mortality. There are no screening tests for early detection of pancreatic cancer. It is more common in men than women and is predominantly a disease of elderly people. There is wide variation in the incidence of pancreatic cancer around the world, suggesting that environmental factors are important in the pathogenesis. Smoking is the major known risk factor for pancreatic cancer, while dietary factors seem to be less important. Other possible risk factors include chronic pancreatitis, obesity and type 2 diabetes. Numerous inherited germ line mutations are associated with pancreatic cancer. Of these, hereditary pancreatitis confers the greatest risk, while BRCA2 mutations are the commonest inherited disorder. Polymorphisms in genes that control detoxification of environmental carcinogens and metabolic pathways may alter the risk of pancreatic cancer.

  2. Pancreatic adenocarcinoma: Outstanding problems

    PubMed Central

    Zakharova, Olga P; Karmazanovsky, Grigory G; Egorov, Viacheslav I

    2012-01-01

    Pancreatic adenocarcinoma remains the fourth leading cause of cancer-related death and is one of the most aggressive malignant tumors with an overall 5-year survival rate of less than 4%. Surgical resection remains the only potentially curative treatment but is only possible for 15%-20% of patients with pancreatic adenocarcinoma. About 40% of patients have locally advanced nonresectable disease. In the past, determination of pancreatic cancer resectability was made at surgical exploration. The development of modern imaging techniques has allowed preoperative staging of patients. Institutions disagree about the criteria used to classify patients. Vascular invasion in pancreatic cancers plays a very important role in determining treatment and prognosis. There is no evidence-based consensus on the optimal preoperative imaging assessment of patients with suspected pancreatic cancer and a unified definition of borderline resectable pancreatic cancer is also lacking. Thus, there is much room for improvement in all aspects of treatment for pancreatic cancer. Multi-detector computed tomography has been widely accepted as the imaging technique of choice for diagnosing and staging pancreatic cancer. With improved surgical techniques and advanced perioperative management, vascular resection and reconstruction are performed more frequently; patients thought once to be unresectable are undergoing radical surgery. However, when attempting heroic surgery, a realistic approach concerning the patient’s age and health status, probability of recovery after surgery, perioperative morbidity and mortality and life quality after tumor resection is necessary. PMID:22655124

  3. KRAS and PIK3CA mutation frequencies in patient-derived xenograft models of pancreatic and colorectal cancer are reflective of patient tumors and stable across passages.

    PubMed

    Tignanelli, Christopher J; Herrera Loeza, Silvia G; Yeh, Jen Jen

    2014-09-01

    One obstacle in the translation of advances in cancer research into the clinic is a deficiency of adequate preclinical models that recapitulate human disease. Patient-derived xenograft (PDX) models are established by engrafting patient tumor tissue into mice and are advantageous because they capture tumor heterogeneity. One concern with these models is that selective pressure could lead to mutational drift and thus be an inaccurate reflection of patient tumors. Therefore, we evaluated if mutational frequency in PDX models is reflective of patient populations and if crucial mutations are stable across passages. We examined KRAS and PIK3CA gene mutations from pancreatic ductal adenocarcinoma (PDAC) (n = 30) and colorectal cancer (CRC) (n = 37) PDXs for as many as eight passages. DNA was isolated from tumors and target sequences were amplified by polymerase chain reaction. KRAS codons 12/13 and PIK3CA codons 542/545/1047 were examined using pyrosequencing. Twenty-three of 30 (77%) PDAC PDXs had KRAS mutations and one of 30 (3%) had PIK3CA mutations. Fifteen of 37 (41%) CRC PDXs had KRAS mutations and three of 37 (8%) had PIK3CA mutations. Mutations were 100 per cent preserved across passages. We found that the frequency of KRAS (77%) and PIK3CA (3%) mutations in PDAC PDX was similar to frequencies in patient tumors (71 to 100% KRAS, 0 to 11% PIK3CA). Similarly, KRAS (41%) and PIK3CA (8%) mutations in CRC PDX closely paralleled patient tumors (35 to 51% KRAS, 12 to 21% PIK3CA). The accurate mirroring and stability of genetic changes in PDX models compared with patient tumors suggest that these models are good preclinical surrogates for patient tumors.

  4. Postoperative Complications, In-Hospital Mortality and 5-Year Survival After Surgical Resection for Patients with a Pancreatic Neuroendocrine Tumor: A Systematic Review.

    PubMed

    Jilesen, Anneke P J; van Eijck, Casper H J; in't Hof, K H; van Dieren, S; Gouma, Dirk J; van Dijkum, Els J M Nieveen

    2016-03-01

    Studies on postoperative complications and survival in patients with pancreatic neuroendocrine tumors (pNET) are sparse and randomized controlled trials are not available. We reviewed all studies on postoperative complications and survival after resection of pNET. A systematic search was performed in the Cochrane Central Register of Controlled Trials, MEDLINE and EMBASE from 2000-2013. Inclusion criteria were studies of resected pNET, which described postoperative complications separately for each surgical procedure and/or 5-year survival after resection. Prospective and retrospective studies were pooled separately and overall pooled if heterogeneity was below 75%. The random-effect model was used. Overall, 2643 studies were identified and after full-text analysis 62 studies were included. Pancreatic fistula (PF) rate of the prospective studies after tumor enucleation was 45%; PF-rates after distal pancreatectomy, pancreatoduodenectomy, or central pancreatectomy were, respectively, 14-14-58%. Delayed gastric emptying rates were, respectively, 5-5-18-16%. Postoperative hemorrhage rates were, respectively, 6-1-7-4%. In-hospital mortality rates were, respectively, 3-4-6-4%. The 5-year overall survival (OS) and disease-specific survival (DSS) of resected pNET without synchronous resected liver metastases were, respectively, 85-93%. Heterogeneity between included studies on 5-year OS in patients with synchronous resected liver metastases was too high to pool all studies. The 5-year DSS in patients with liver metastases was 80%. Morbidity after pancreatic resection for pNET was mainly caused by PF. Liver resection in patients with liver metastases seems to have a positive effect on DSS. To reduce heterogeneity, ISGPS criteria and uniform patient groups should be used in the analysis of postoperative outcome and survival.

  5. Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors

    PubMed Central

    Wong, Oi Lei; Lo, Gladys G.; Chan, Helen H. L.; Wong, Ting Ting; Cheung, Polly S. Y.

    2016-01-01

    Background The purpose of this study is to statistically assess whether bi-exponential intravoxel incoherent motion (IVIM) model better characterizes diffusion weighted imaging (DWI) signal of malignant breast tumor than mono-exponential Gaussian diffusion model. Methods 3 T DWI data of 29 malignant breast tumors were retrospectively included. Linear least-square mono-exponential fitting and segmented least-square bi-exponential fitting were used for apparent diffusion coefficient (ADC) and IVIM parameter quantification, respectively. F-test and Akaike Information Criterion (AIC) were used to statistically assess the preference of mono-exponential and bi-exponential model using region-of-interests (ROI)-averaged and voxel-wise analysis. Results For ROI-averaged analysis, 15 tumors were significantly better fitted by bi-exponential function and 14 tumors exhibited mono-exponential behavior. The calculated ADC, D (true diffusion coefficient) and f (pseudo-diffusion fraction) showed no significant differences between mono-exponential and bi-exponential preferable tumors. Voxel-wise analysis revealed that 27 tumors contained more voxels exhibiting mono-exponential DWI decay while only 2 tumors presented more bi-exponential decay voxels. ADC was consistently and significantly larger than D for both ROI-averaged and voxel-wise analysis. Conclusions Although the presence of IVIM effect in malignant breast tumors could be suggested, statistical assessment shows that bi-exponential fitting does not necessarily better represent the DWI signal decay in breast cancer under clinically typical acquisition protocol and signal-to-noise ratio (SNR). Our study indicates the importance to statistically examine the breast cancer DWI signal characteristics in practice. PMID:27709078

  6. Exosomal lipids induce human pancreatic tumoral MiaPaCa-2 cells resistance through the CXCR4-SDF-1α signaling axis

    PubMed Central

    Beloribi-Djefaflia, Sadia; Siret, Carole; Lombardo, Dominique

    2015-01-01

    We previously reported that exosomes secreted by human pancreatic tumor cells induce cell death through the inhibition of the Notch-1 survival pathway (Ristorcelli et al., 2009). We demonstrated that exosomal lipids evoked apoptosis of human pancreatic cancer SOJ-6 cells. Based on the lipid composition of efficient exosomes we designed Synthetic Exosome-Like Nanoparticles (SELN) in which the ratio ordered lipids versus disordered lipids was equal to 6.0 (SELN6.0). These SELN decreased SOJ-6 cells survival by inhibiting the Notch-1 pathway. However MiaPaCa-2 cells were resistant to exosomes (Ristorcelli et al., 2008) and to SELN6.0 (Beloribi et al.,2012). In this paper we aimed at deciphering the reason(s) of this resistance. We observed, in presence of SELN6.0, that the expression of the Notch IntraCytoplasmic Domain (NICD) decreases in MiaPaCa-2 cells but neither Hes-1, the nuclear target of NICD, nor the ratio Bax/Bcl-2 were affected. We further showed that in MiaPaCa-2 cells SELN6.0 induced the activation of NF-kB, which promotes the expression and the secretion of SDF-1α. This chemokine interacts with its receptor CXCR4 on MiaPaCa-2 cells and activates the Akt survival pathway protecting cells from death. This activation process promoted by exosomal lipids could have implications in tumor progression and drug resistance. PMID:25821841

  7. Heteroclitic XBP1 peptides evoke tumor-specific memory cytotoxic T lymphocytes against breast cancer, colon cancer, and pancreatic cancer cells

    PubMed Central

    Bae, Jooeun; Samur, Mehmet; Munshi, Aditya; Hideshima, Teru; Keskin, Derin; Kimmelman, Alec; Lee, Ann-Hwee; Dranoff, Glen; Anderson, Kenneth C; Munshi, Nikhil C

    2015-01-01

    XBP1 is a critical transcriptional activator of the unfolded protein response (UPR), which increases tumor cell survival under prolonged endoplasmic reticulum (ER) stress and hypoxic conditions.This study was designed to evaluate the immunogenicity of heteroclitic XBP1 unspliced (US)184–192 (YISPWILAV) and heteroclictic XBP1 spliced (SP)367–375 (YLFPQLISV) HLA-A2 peptides, and to characterize the specific activities of XBP1 peptides-specific cytotoxic T lymphocytes (XBP1-CTL) against breast cancer, colon cancer, and pancreatic cancer cells.The XBP1-CTL had upregulated expression of critical T cell markers and displayed HLA-A2-restricted and antigen-specific activities against breast cancer, colon cancer and pancreatic cancer cells. XBP1-CTL were enriched withCD45RO+ memory CTL, which showed high expression of critical T cell markers (CD28, ICOS, CD69, CD40L), cell proliferation and antitumor activities as compared to CD45RO− non-memory CTL. The effector memory (EM: CD45RO+CCR7−) subset had the highest level of cell proliferation while the central memory (CM: CD45RO+CCR7+) subset demonstrated enhanced functional activities (CD107a degranulation, IFNγ/IL-2 production) upon recognition of the respective tumor cells. Furthermore, both the EM and CM XBP1-CTL subsets expressed high levels of Th1 transcription regulators Tbet and Eomes. The highest frequencies of IFNγ or granzyme B producing cells were detected within CM XBP1-CTL subset that were either Tbet+ or Eomes+ in responding to the tumor cells.These results demonstrate the immunotherapeutic potential of a cocktail of immunogenic HLA-A2 specific heteroclitic XBP1 US184–192 and heteroclictic XBP1 SP367–375 peptides to induce CD3+CD8+ CTL enriched for CM and EM cells with specific antitumor activities against a variety of solid tumors. PMID:25941601

  8. Impact of PET - CT motion correction in minimizing the gross tumor volume in non-small cell lung cancer

    PubMed Central

    Masoomi, Michael A; McLean, Anne H; Bouchareb, Yassine; Ryder, Will; Robinson, Andy

    2013-01-01

    Objective(s): To investigate the impact of respiratory motion on localization, and quantification of lung lesions for the Gross Tumor Volume utilizing a fully automated Auto3Dreg program and dynamic NURBS-based cardiac-torso digitized phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumor lesions. The motion correction technique adopted in this study was an image-based motion correction approach using, a voxel-intensity-based and a multi-resolution multi-optimization (MRMO) algorithm. The NCAT phantom was used to generate CT attenuation maps and activity distribution volumes for the lung regions. All the generated frames were co-registered to a reference frame using a time efficient scheme. Quantitative assessment including Region of Interest (ROI), image fidelity and image correlation techniques, as well as semi-quantitative line profile analysis and qualitatively overlaying non-motion and motion corrected image frames were performed. Results: The largest motion was observed in the Z-direction. The greatest translation was for the frame 3, end inspiration, and the smallest for the frame 5 which was closet frame to the reference frame at 67% expiration. Visual assessment of the lesion sizes, 20-60mm at 3 different locations, apex, mid and base of lung showed noticeable improvement for all the foci and their locations. The maximum improvements for the image fidelity were from 0.395 to 0.930 within the lesion volume of interest. The greatest improvement in activity concentration underestimation was 7.7% below the true activity for the 20 mm lesion in comparison to 34.4% below, prior to correction. The discrepancies in activity underestimation were reduced with increasing the lesion sizes. Overlaying activity distribution on the attenuation map showed improved localization of the PET metabolic information to the anatomical CT images. Conclusion: The respiratory motion correction for the

  9. Comparison between target margins derived from 4DCT scans and real-time tumor motion tracking: Insights from lung tumor patients treated with robotic radiosurgery

    SciTech Connect

    Descovich, Martina McGuinness, Christopher; Kannarunimit, Danita; Chen, Josephine; Pinnaduwage, Dilini; Pouliot, Jean; Kased, Norbert; Gottschalk, Alexander R.; Yom, Sue S.

    2015-03-15

    Purpose: A unique capability of the CyberKnife system is dynamic target tracking. However, not all patients are eligible for this approach. Rather, their tumors are tracked statically using the vertebral column for alignment. When using static tracking, the internal target volume (ITV) is delineated on the four-dimensional (4D) CT scan and an additional margin is added to account for setup uncertainty [planning target volume (PTV)]. Treatment margins are difficult to estimate due to unpredictable variations in tumor motion and respiratory pattern during the course of treatment. The inability to track the target and detect changes in respiratory characteristics might result in geographic misses and local tumor recurrences. The purpose of this study is to develop a method to evaluate the adequacy of ITV-to-PTV margins for patients treated in this manner. Methods: Data from 24 patients with lesions in the upper lobe (n = 12), middle lobe (n = 3), and lower lobe (n = 9) were included in this study. Each patient was treated with dynamic tracking and underwent 4DCT scanning at the time of simulation. Data including the 3D coordinates of the target over the course of treatment were extracted from the treatment log files and used to determine actual target motion in the superior–inferior (S–I), anterior–posterior (A–P), and left–right (L–R) directions. Different approaches were used to calculate anisotropic and isotropic margins, assuming that the tumor moves as a rigid body. Anisotropic margins were calculated by separating target motion in the three anatomical directions, and a uniform margin was calculated by shifting the gross tumor volume contours in the 3D space and by computing the percentage of overlap with the PTV. The analysis was validated by means of a theoretical formulation. Results: The three methods provided consistent results. A uniform margin of 4.5 mm around the ITV was necessary to assure 95% target coverage for 95% of the fractions included

  10. Sorafenib Tosylate in Treating Patients With Progressive Metastatic Neuroendocrine Tumors

    ClinicalTrials.gov

    2014-11-14

    Gastrinoma; Glucagonoma; Insulinoma; Metastatic Gastrointestinal Carcinoid Tumor; Neuroendocrine Tumor; Pancreatic Polypeptide Tumor; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Somatostatinoma; WDHA Syndrome

  11. Regorafenib in Treating Patients With Advanced or Metastatic Neuroendocrine Tumors

    ClinicalTrials.gov

    2015-08-29

    Gastrinoma; Glucagonoma; Insulinoma; Metastatic Gastrointestinal Carcinoid Tumor; Pancreatic Polypeptide Tumor; Pulmonary Carcinoid Tumor; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Somatostatinoma

  12. SU-C-17A-05: Quantification of Intra-Fraction Motion of Breast Tumors Using Cine-MRI

    SciTech Connect

    Heijst, T van; Philippens, M; Bongard, D van den; Asselen, B van; Lagendijk, J; Kleijnen, J; Hartogh, M den

    2014-06-01

    Purpose: Magnetic resonance imaging (MRI) enables direct characterization of intra-fraction motion ofbreast tumors, due to high softtissue contrast and geometric accuracy. The purpose is to analyzethis motion in early-stage breast-cancer patients using pre-operative supine cine-MRI. Methods: MRI was performed in 12 female early-stage breast-cancer patients on a 1.5-T Ingenia (Philips)wide-bore scanner in supine radiotherapy (RT) position, prior to breast-conserving surgery. Twotwodimensional (2D) T2-weighted balanced fast-field echo (cine-MRI) sequences were added tothe RT protocol, oriented through the tumor. They were alternately acquired in the transverse andsagittal planes, every 0.3 s during 1 min. A radiation oncologist delineated gross target volumes(GTVs) on 3D contrast-enhanced MRI. Clinical target volumes (CTV = GTV + 15 mm isotropic)were generated and transferred onto the fifth time-slice of the time-series, to which subsequents lices were registered using a non-rigid Bspline algorithm; delineations were transformed accordingly. To evaluate intra-fraction CTV motion, deformation fields between the transformed delineations were derived to acquire the distance ensuring 95% surface coverage during scanning(P95%), for all in-plane directions: anteriorposterior (AP), left-right (LR), and caudal-cranial(CC). Information on LR was derived from transverse scans, CC from sagittal scans, AP fromboth sets. Results: Time-series with registration errors - induced by motion artifacts - were excluded by visual inspection. For our analysis, 11 transverse, and 8 sagittal time-series were taken into account. Themedian P95% calculated in AP (19 series), CC (8), and LR (11) was 1.8 mm (range: 0.9–4.8), 1.7mm (0.8–3.6), and 1.0 mm (0.6–3.5), respectively. Conclusion: Intra-fraction motion analysis of breast tumors was achieved using cine-MRI. These first results show that in supine RT position, motion amplitudes are limited. This information can be used for adaptive RT

  13. Romidepsin in Treating Patients With Locally Advanced or Metastatic Neuroendocrine Tumors

    ClinicalTrials.gov

    2013-06-03

    Gastrinoma; Glucagonoma; Insulinoma; Metastatic Gastrointestinal Carcinoid Tumor; Pancreatic Polypeptide Tumor; Pulmonary Carcinoid Tumor; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Regional Gastrointestinal Carcinoid Tumor; Somatostatinoma

  14. Boswellic Acid Suppresses Growth and Metastasis of Human Pancreatic Tumors in an Orthotopic Nude Mouse Model through Modulation of Multiple Targets

    PubMed Central

    Park, Byoungduck; Prasad, Sahdeo; Yadav, Vivek; Sung, Bokyung; Aggarwal, Bharat B.

    2011-01-01

    Pancreatic cancer (PaCa) is one of the most lethal cancers, with an estimated 5-year survival of <5% even when patients are given the best treatment available. In addition, these treatments are often toxic and expensive, thus new agents which are safe, affordable and effective are urgently needed. We describe here the results of our study with acetyl-11-keto-β-boswellic acid (AKBA), an agent obtained from an Ayurvedic medicine, gum resin of Boswellia serrata. Whether AKBA has an activity against human PaCa, was examined in in vitro models and in an orthotopic nude mouse model of PaCa. We found that AKBA inhibited the proliferation of four different PaCa cell lines (AsPC-1, PANC-28, and MIA PaCa-2 with K-Ras and p53 mutations, and BxPC-3 with wild-type K-Ras and p53 mutation). These effects correlated with an inhibition of constitutively active NF-κB and suppression of NF-κB regulating gene expression. AKBA also induced apoptosis, and sensitized the cells to apoptotic effects of gemcitabine. In the orthotopic nude mouse model of PaCa, p.o. administration of AKBA alone (100 mg/kg) significantly inhibited the tumor growth; this activity was enhanced by gemcitabine. In addition, AKBA inhibited the metastasis of the PaCa to spleen, liver, and lungs. This correlated with decreases in Ki-67, a biomarker of proliferation, and CD31, a biomarker of microvessel density, in the tumor tissue. AKBA produced significant decreases in the expression of NF-κB regulating genes in the tissues. Immunohistochemical analysis also showed AKBA downregulated the expression of COX-2, MMP-9, CXCR4, and VEGF in the tissues. Overall these results demonstrate that AKBA can suppress the growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model that correlates with modulation of multiple targets. PMID:22066019

  15. A method of surface marker location optimization for tumor motion estimation in lung stereotactic body radiation therapy

    SciTech Connect

    Lu, Bo Park, Justin C.; Fan, Qiyong; Kahler, Darren; Liu, Chihray; Chen, Yunmei

    2015-01-15

    Purpose: Accurately localizing lung tumor localization is essential for high-precision radiation therapy techniques such as stereotactic body radiation therapy (SBRT). Since direct monitoring of tumor motion is not always achievable due to the limitation of imaging modalities for treatment guidance, placement of fiducial markers on the patient’s body surface to act as a surrogate for tumor position prediction is a practical alternative for tracking lung tumor motion during SBRT treatments. In this work, the authors propose an innovative and robust model to solve the multimarker position optimization problem. The model is able to overcome the major drawbacks of the sparse optimization approach (SOA) model. Methods: The principle-component-analysis (PCA) method was employed as the framework to build the authors’ statistical prediction model. The method can be divided into two stages. The first stage is to build the surrogate tumor matrix and calculate its eigenvalues and associated eigenvectors. The second stage is to determine the “best represented” columns of the eigenvector matrix obtained from stage one and subsequently acquire the optimal marker positions as well as numbers. Using 4-dimensional CT (4DCT) and breath hold CT imaging data, the PCA method was compared to the SOA method with respect to calculation time, average prediction accuracy, prediction stability, noise resistance, marker position consistency, and marker distribution. Results: The PCA and SOA methods which were both tested were on all 11 patients for a total of 130 cases including 4DCT and breath-hold CT scenarios. The maximum calculation time for the PCA method was less than 1 s with 64 752 surface points, whereas the average calculation time for the SOA method was over 12 min with 400 surface points. Overall, the tumor center position prediction errors were comparable between the two methods, and all were less than 1.5 mm. However, for the extreme scenarios (breath hold), the

  16. Diagnostic Management of Pancreatic Cancer

    PubMed Central

    Dabizzi, Emanuele; Assef, Mauricio Saab; Raimondo, Massimo

    2011-01-01

    Pancreatic cancer is one of the most deadly solid tumors, with an overall 5-year survival rate of less than 5%. Due to a non-specific clinical presentation, it is often diagnosed at an advanced stage and is rarely amenable for curative treatment. Therefore early diagnosis and appropriate staging are still essential to define the best care and to improve patient survival. Several imaging modalities are currently available for the evaluation of pancreatic cancer. This review focuses on different techniques and discusses the diagnostic management of patients with pancreatic cancer. This review was conducted utilizing Pubmed and was limited to papers published within the last 5 years. The search key words pancreatic cancer, pancreatic adenocarcinoma, pancreatic tumors, diagnosis, radiology, imaging, nuclear imaging, endoscopy, endoscopic ultrasound and biochemical markers were used. PMID:24212626

  17. Micropallet arrays for the capture, isolation and culture of circulating tumor cells from whole blood of mice engrafted with primary human pancreatic adenocarcinoma.

    PubMed

    Gach, Philip C; Attayek, Peter J; Whittlesey, Rebecca L; Yeh, Jen Jen; Allbritton, Nancy L

    2014-04-15

    Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization.

  18. Pancreatic Cancer

    MedlinePlus

    ... hormones that help control blood sugar levels. Pancreatic cancer usually begins in the cells that produce the juices. Some risk factors for developing pancreatic cancer include Smoking Long-term diabetes Chronic pancreatitis Certain ...

  19. SU-E-J-156: Preclinical Inverstigation of Dynamic Tumor Tracking Using Vero SBRT Linear Accelerator: Motion Phantom Dosimetry Study

    SciTech Connect

    Mamalui-Hunter, M; Wu, J; Li, Z; Su, Z

    2014-06-01

    Purpose: Following the ‘end-to-end testing’ paradigm of Dynamic Target Tracking option in our Image-Guided dedicated SBRT VeroTM linac, we verify the capability of the system to deliver planned dose to moving targets in the heterogeneous thorax phantom (CIRSTM). The system includes gimbaled C-band linac head, robotic 6 degree of freedom couch and a tumor tracking method based on predictive modeling of target position using fluoroscopically tracked implanted markers and optically tracked infrared reflecting external markers. Methods: 4DCT scan of the motion phantom with the VisicoilTM implanted marker in the close vicinity of the target was acquired, the ‘exhale’=most prevalent phase was used for planning (iPlan by BrainLabTM). Typical 3D conformal SBRT treatment plans aimed to deliver 6-8Gy/fx to two types of targets: a)solid water-equivalent target 3cm in diameter; b)single VisicoilTM marker inserted within lung equivalent material. The planning GTV/CTV-to-PTV margins were 2mm, the block margins were 3 mm. The dose calculated by MonteCarlo algorithm with 1% variance using option Dose-to-water was compared to the ion chamber (CC01 by IBA Dosimetry) measurements in case (a) and GafchromicTM EBT3 film measurements in case (b). During delivery, the target 6 motion patterns available as a standard on CIRSTM motion phantom were investigated: in case (a), the target was moving along the designated sine or cosine4 3D trajectory; in case (b), the inserted marker was moving sinusoidally in 1D. Results: The ion chamber measurements have shown the agreement with the planned dose within 1% under all the studied motion conditions. The film measurements show 98.1% agreement with the planar calculated dose (gamma criteria: 3%/3mm). Conclusion: We successfully verified the capability of the SBRT VeroTM linac to perform real-time tumor tracking and accurate dose delivery to the target, based on predictive modeling of the correlation between implanted marker motion and

  20. TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells.

    PubMed

    Ohara-Imaizumi, Mica; Nishiwaki, Chiyono; Kikuta, Toshiteru; Nagai, Shintaro; Nakamichi, Yoko; Nagamatsu, Shinya

    2004-07-01

    We imaged and analysed the motion of single insulin secretory granules near the plasma membrane in live pancreatic beta-cells, from normal and diabetic Goto-Kakizaki (GK) rats, using total internal reflection fluorescence microscopy (TIRFM). In normal rat primary beta-cells, the granules that were fusing during the first phase originate from previously docked granules, and those during the second phase originate from 'newcomers'. In diabetic GK rat beta-cells, the number of fusion events from previously docked granules were markedly reduced, and, in contrast, the fusion from newcomers was still preserved. The dynamic change in the number of docked insulin granules showed that, in GK rat beta-cells, the total number of docked insulin granules was markedly decreased to 35% of the initial number after glucose stimulation. Immunohistochemistry with anti-insulin antibody observed by TIRFM showed that GK rat beta-cells had a marked decline of endogenous insulin granules docked to the plasma membrane. Thus our results indicate that the decreased number of docked insulin granules accounts for the impaired insulin release during the first phase of insulin release in diabetic GK rat beta-cells.

  1. SU-E-J-253: Evaluation of 4DCT Images with Correlation of RPM Signals to Tumor Motion for Respiratory-Gated Radiotherapy

    SciTech Connect

    Lee, TK; Ewald, A; Schultz, T; Park, SY

    2014-06-01

    Purpose: The amplitudes of lung tumor target motion and RPM signals are different from each other. Also, RPM system does not have in-depth RPM signal analysis tool. We have developed an algorithm that analyzes RPM signals for its stability as well as correlativity to the tumor motion. Methods: We used a Philips Big Bore CT scanner with a Varian Real-Time Position Management™ (RPM) system attached. 4DCT images were reviewed and tumor motion amplitudes of full breathing in superior-inferior, anterior-posterior, and left-right directions were measured. RPM signals were analyzed with the algorithm developed with Matlab. Average signal period, amplitude and statistical stability of the full breathing pattern as well as the pattern around full expiration were calculated. RPM signal amplitudes were normalized to measured tumor motion amplitudes so that selected gating phases (30%–70% or 40%–60%) allow tumor motion under 5.0mm. Results: Twelve patient cases were analyzed in this study with GTV sizes ranged from 1.0cm to 3.0cm diameter. The periods and amplitudes of RPM signal ranged from 3.1seconds to 6.5seconds and from 0.2cm to 1.7cm, respectively. RPM signals were most stable at full expiration. The standard deviation of the RPM signal peaks at full expiration was <0.11cm, and that of gated amplitudes was <0.25cm. Tumor motion amplitudes were primary in superior-inferior direction and minor (<=0.2cm) in other directions on all analyzed cases, ranged from 0.2cm to 2.5cm. The amplitudes increases with the tumor located toward the diaphragm. The gated phases were selected so that the average gated tumor motion amplitude as well as that plus deviation became under 0.5cm in superior-inferior direction. Conclusion: We were able to determine the respiratory-gated phases in RPM signals employing measured tumor motion amplitudes as well as developed RPM signal analyzer through correlation process. The RPM signal amplitudes do not represent tumor motion because of its

  2. Targeted Delivery of C/EBPα -saRNA by Pancreatic Ductal Adenocarcinoma-specific RNA Aptamers Inhibits Tumor Growth In Vivo

    PubMed Central

    Yoon, Sorah; Huang, Kai-Wen; Reebye, Vikash; Mintz, Paul; Tien, Yu-Wen; Lai, Hong-Shiee; Sætrom, Pål; Reccia, Isabella; Swiderski, Piotr; Armstrong, Brian; Jozwiak, Agnieszka; Spalding, Duncan; Jiao, Long; Habib, Nagy; Rossi, John J

    2016-01-01

    The 5-year survival rate for pancreatic ductal adenocarcinoma (PDAC) remains dismal despite current chemotherapeutic agents and inhibitors of molecular targets. As the incidence of PDAC constantly increases, more effective multidrug approaches must be made. Here, we report a novel method of delivering antitumorigenic therapy in PDAC by upregulating the transcriptional factor CCAAT/enhancer-binding protein-α (C/EBPα), recognized for its antiproliferative effects. Small activating RNA (saRNA) duplexes designed to increase C/EBPα expression were linked onto PDAC-specific 2′-Fluropyrimidine RNA aptamers (2′F-RNA) - P19 and P1 for construction of a cell type–specific delivery vehicle. Both P19- and P1-C/EBPα-saRNA conjugates increased expression of C/EBPα and significantly suppressed cell proliferation. Tail vein injection of the saRNA/aptamer conjugates in PANC-1 and in gemcitabine-resistant AsPC-1 mouse-xenografts led to reduced tumor size with no observed toxicity. To exploit the specificity of the P19/P1 aptamers for PDAC cells, we also assessed if conjugation with Cy3 would allow it to be used as a diagnostic tool on archival human pancreatic duodenectomy tissue sections. Scoring pattern from 72 patients suggested a positive correlation between high fluorescent signal in the high mortality patient groups. We propose a novel aptamer-based strategy for delivery of targeted molecular therapy in advanced PDAC where current modalities fail. PMID:26983359

  3. A compensating system of respiratory motion for tumor tracking: design and verification.

    PubMed

    Chuang, Ho-Chiao; Chiou, Chun-Yang; Tien, Der-Chi; Huang, Ding-Yang; Wu, Ren-Hong; Hsu, Chung-Hsien

    2012-01-01

    Using the reverse motion of the treatment couch, this study offset the organ displacement generated by respiratory motion to solve the current clinical problem of increasing field sizes and safety margin expansions. This study used the self-designed simulated respiratory system (SRS) coupled with radiochromic EBT film to verify the self-developed respiratory compensation system. Pressure signals were generated from SRS to simulate abdomen movements during respiratory motion. The respiratory compensation system takes the phase of the pressure signals as the respiratory motion phase and adjusts the pressure signal gain to make the compensation signal amplitude close to the displacement of the target region. A linear accelerator is used to irradiate a 300 cGy dose on the EBT film. The experimental results suggested that the average dose percentage in the target region for the sine-wave amplitudes of 5, 10 and 15 mm with compensation improved by 6.9 ∼ 20.3% over the cases without compensation. The 80% isodose area with compensation improved by 22.8 ∼ 77.2% over the cases without compensation. The average dose percentage in the target region with compensation for respiratory motion distances of 5, 10 and 15 mm improved by 10.3 ∼ 18.7%. The 80% isodose area improved by 22.4 ∼ 55.1% after compensation. The average dose percentage of the compensated target region indicates that the proposed respiratory compensation system could improve the issue of the inability to constantly irradiate the target region caused by respiratory motion.

  4. Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors.

    PubMed

    Ge, Zhishen; Chen, Qixian; Osada, Kensuke; Liu, Xueying; Tockary, Theofilus A; Uchida, Satoshi; Dirisala, Anjaneyulu; Ishii, Takehiko; Nomoto, Takahiro; Toh, Kazuko; Matsumoto, Yu; Oba, Makoto; Kano, Mitsunobu R; Itaka, Keiji; Kataoka, Kazunori

    2014-03-01

    Adequate retention in systemic circulation is the preliminary requirement for systemic gene delivery to afford high bioavailability into the targeted site. Polyplex micelle formulated through self-assembly of oppositely-charged poly(ethylene glycol) (PEG)-polycation block copolymer and plasmid DNA has gained tempting perspective upon its advantageous core-shell architecture, where outer hydrophilic PEG shell offers superior stealth behaviors. Aiming to promote these potential characters toward systemic applications, we strategically introduced hydrophobic cholesteryl moiety at the ω-terminus of block copolymer, anticipating to promote not only the stability of polyplex structure but also the tethered PEG crowdedness. Moreover, Mw of PEG in the PEGylated polyplex micelle was elongated up to 20 kDa for expecting further enhancement in PEG crowdedness. Furthermore, cyclic RGD peptide as ligand molecule to integrin receptors was installed at the distal end of PEG in order for facilitating targeted delivery to the tumor site as well as promoting cellular uptake and intracellular trafficking behaviors. Thus constructed cRGD conjugated polyplex micelle with the elevated PEG shielding was challenged to a modeled intractable pancreatic cancer in mice, achieving potent tumor growth suppression by efficient gene expression of antiangiogenic protein (sFlt-1) at the tumor site.

  5. Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors.

    PubMed

    Ge, Zhishen; Chen, Qixian; Osada, Kensuke; Liu, Xueying; Tockary, Theofilus A; Uchida, Satoshi; Dirisala, Anjaneyulu; Ishii, Takehiko; Nomoto, Takahiro; Toh, Kazuko; Matsumoto, Yu; Oba, Makoto; Kano, Mitsunobu R; Itaka, Keiji; Kataoka, Kazunori

    2014-03-01

    Adequate retention in systemic circulation is the preliminary requirement for systemic gene delivery to afford high bioavailability into the targeted site. Polyplex micelle formulated through self-assembly of oppositely-charged poly(ethylene glycol) (PEG)-polycation block copolymer and plasmid DNA has gained tempting perspective upon its advantageous core-shell architecture, where outer hydrophilic PEG shell offers superior stealth behaviors. Aiming to promote these potential characters toward systemic applications, we strategically introduced hydrophobic cholesteryl moiety at the ω-terminus of block copolymer, anticipating to promote not only the stability of polyplex structure but also the tethered PEG crowdedness. Moreover, Mw of PEG in the PEGylated polyplex micelle was elongated up to 20 kDa for expecting further enhancement in PEG crowdedness. Furthermore, cyclic RGD peptide as ligand molecule to integrin receptors was installed at the distal end of PEG in order for facilitating targeted delivery to the tumor site as well as promoting cellular uptake and intracellular trafficking behaviors. Thus constructed cRGD conjugated polyplex micelle with the elevated PEG shielding was challenged to a modeled intractable pancreatic cancer in mice, achieving potent tumor growth suppression by efficient gene expression of antiangiogenic protein (sFlt-1) at the tumor site. PMID:24439417

  6. A Case Report: Cavitary Infarction Caused by Pulmonary Tumor Thrombotic Microangiopathy in a Patient with Pancreatic Intraductal Papillary Mucinous Neoplasm.

    PubMed

    Bae, Kyoungkyg; Kwon, Woon-Jung; Choi, Seong Hoon; Lee, Jong Hwa; Cha, Hee Jeong

    2015-01-01

    Pulmonary tumor embolism is commonly discovered at autopsy, but is rarely suspected ante-mortem. Microangiopathy is an uncommon and distinct form of simple tumor pulmonary embolism. Here, we present a 52-year-old male with tumor thrombotic microangiopathy and pulmonary infarction, which might have originated from intraductal papillary mucinous tumor of the pancreas. Multiple wedge-shaped consolidations were found initially and aggravated with cavitation. These CT features of pulmonary infarction were pathologically confirmed to result from pulmonary tumor thrombotic microangiopathy. PMID:26175596

  7. IL-1α Expression in Pancreatic Ductal Adenocarcinoma Affects the Tumor Cell Migration and Is Regulated by the p38MAPK Signaling Pathway

    PubMed Central

    Tjomsland, Vegard; Bojmar, Linda; Sandström, Per; Bratthäll, Charlotte; Messmer, Davorka; Spångeus, Anna; Larsson, Marie

    2013-01-01

    The interplay between the tumor cells and the surrounding stroma creates inflammation, which promotes tumor growth and spread. The inflammation is a hallmark for pancreatic adenocarcinoma (PDAC) and is to high extent driven by IL-1α. IL-1α is expressed and secreted by the tumor cells and exerting its effect on the stroma, i.e. cancer associated fibroblasts (CAF), which in turn produce massive amount of inflammatory and immune regulatory factors. IL-1 induces activation of transcription factors such as nuclear factor-κβ (NF-κβ), but also activator protein 1 (AP-1) via the small G-protein Ras. Dysregulation of Ras pathways are common in cancer as this oncogene is the most frequently mutated in many cancers. In contrast, the signaling events leading up to the expression of IL-1α by tumor cells are not well elucidated. Our aim was to examine the signaling cascade involved in the induction of IL-1α expression in PDAC. We found p38MAPK, activated by the K-Ras signaling pathway, to be involved in the expression of IL-1α by PDAC as blocking this pathway decreased both the gene and protein expression of IL-1α. Blockage of the P38MAPK signaling in PDAC also dampened the ability of the tumor cell to induce inflammation in CAFs. In addition, the IL-1α autocrine signaling regulated the migratory capacity of PDAC cells. Taken together, the blockage of signaling pathways leading to IL-1α expression and/or neutralization of IL-1α in the PDAC microenvironment should be taken into consideration as possible treatment or complement to existing treatment of this cancer. PMID:23951028

  8. Overcoming therapeutic resistance in pancreatic cancer is not a simple mix of PDT and chemotherapy: Evaluation of PDT-chemotherapy combinations in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan P.; Petrovic, Ljubica; Massdodi, Iqbal; Rizvi, Imran; Hasan, Tayyaba

    2013-03-01

    The dismal survival statistics for pancreatic cancer are due in large part to the notoriously poor response of these tumors to conventional therapies. Here we examine the ability of photodynamic therapy (PDT), using the photosensitizer verteporfin to enhance of the efficacy of traditional chemotherapy agents and/or eradicate populations that are nonresponsive to these agents. Using an in vitro 3D tumor model of pancreatic cancer combined with an imaging-based methodology for quantifying therapeutic response, we specifically examine PDT combination treatments with gemcitabine and oxaliplatin. We show that our 3D cell culture model recapitulates a more clinically-relevant dose response to gemcitabine, with minimal cytotoxic response even at high doses. The same cultures exhibit modest response to PDT treatments, but are also less responsive to this modality relative to our previous reports of monolayer dose response in the same cells. In combination we found no evidence of any enhancement in efficacy of either PDT or gemcitabine treatment regardless of dose or sequence (PDT before gemcitabine, or gemcitabine before PDT). However, when oxaliplatin chemotherapy was administered immediately after treatment with 2.5J/cm2 verteporfin PDT, there was an observable enhancement in response that appears to exceed the additive combination of either treatment alone and suggesting there may be a synergistic interaction. This observation is consistent with previous reports of enhanced efficacy in combinations of PDT with platinum-based chemotherapy. The contrast in results between the combinations examined here underscores the need for rational design of mechanism-based PDT combinations.

  9. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers.

    PubMed

    Bao, Bin; Azmi, Asfar S; Ali, Shadan; Zaiem, Feras; Sarkar, Fazlul H

    2014-06-01

    Metformin is one of the most used diabetic drugs for the management of type II diabetes mellitus (DM) in the world. Increased numbers of epidemiological and clinical studies have provided convincing evidence supporting the role of metformin in the development and progression of a variety of human tumors including breast and pancreatic cancer. Substantial pre-clinical evidence from in vitro and in vivo experimental studies strongly suggests that metformin has an anti-cancer activity mediated through the regulation of several cell signaling pathways including activation of AMP kinase (AMPK), and other direct and indirect mechanisms; however, the detailed mechanism(s) has not yet been fully understood. The concept of cancer stem cells (CSCs) has gained significant attention in recent years due its identification and defining its clinical implications in many different tumors including breast cancer and pancreatic cancer. In this review, we will discuss the protective role of metformin in the development of breast and pancreatic cancers. We will further discuss the role of metformin as an anti-cancer agent, which is in part mediated through targeting CSCs. Finally, we will discuss the potential role of metformin in the modulation of tumor-associated or CSC-associated microRNAs (miRNAs) as part of the novel mechanism of action of metformin in the development and progression of breast and pancreatic cancers. PMID:25333034

  10. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers

    PubMed Central

    Bao, Bin; Azmi, Asfar S.; Ali, Shadan; Zaiem, Feras

    2014-01-01

    Metformin is one of the most used diabetic drugs for the management of type II diabetes mellitus (DM) in the world. Increased numbers of epidemiological and clinical studies have provided convincing evidence supporting the role of metformin in the development and progression of a variety of human tumors including breast and pancreatic cancer. Substantial pre-clinical evidence from in vitro and in vivo experimental studies strongly suggests that metformin has an anti-cancer activity mediated through the regulation of several cell signaling pathways including activation of AMP kinase (AMPK), and other direct and indirect mechanisms; however, the detailed mechanism(s) has not yet been fully understood. The concept of cancer stem cells (CSCs) has gained significant attention in recent years due its identification and defining its clinical implications in many different tumors including breast cancer and pancreatic cancer. In this review, we will discuss the protective role of metformin in the development of breast and pancreatic cancers. We will further discuss the role of metformin as an anti-cancer agent, which is in part mediated through targeting CSCs. Finally, we will discuss the potential role of metformin in the modulation of tumor-associated or CSC-associated microRNAs (miRNAs) as part of the novel mechanism of action of metformin in the development and progression of breast and pancreatic cancers. PMID:25333034

  11. SU-E-J-31: Monitor Interfractional Variation of Tumor Respiratory Motion Using 4D KV Conebeam Computed Tomography for Stereotactic Body Radiation Therapy of Lung Cancer

    SciTech Connect

    Tai, A; Prior, P; Gore, E; Johnstone, C; Li, X

    2015-06-15

    Purpose: 4DCT has been widely used to generate internal tumor volume (ITV) for a lung tumor for treatment planning. However, lung tumors may show different respiratory motion on the treatment day. The purpose of this study is to evaluate 4D KV conebeam computed tomography (CBCT) for monitoring tumor interfractional motion variation between simulation and each fraction of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: 4D KV CBCT was acquired with the Elekta XVI system. The accuracy of 4D KV CBCT for image-guided radiation therapy (IGRT) was tested with a dynamic thorax motion phantom (CIRS, Virginia) with a linear amplitude of 2 cm. In addition, an adult anthropomorphic phantom (Alderson, Rando) with optically stimulated luminescence (OSL) dosimeters embedded at the center and periphery of a slab of solid water was used to measure the dose of 4D KV CBCT and to compare it with the dose with 3D KV CBCT. The image registration was performed by aligning\\ each phase images of 4D KV CBCT to the planning images and the final couch shifts were calculated as a mean of all these individual shifts along each direction.A workflow was established based on these quality assurance tests for lung cancer patients. Results: 4D KV CBCT does not increase imaging dose in comparison to 3D KV CBCT. Acquisition of 4D KV CBCT is 4 minutes as compared to 2 minutes for 3D KV CBCT. Most of patients showed a small daily variation of tumor respiratory motion about 2 mm. However, some patients may have more than 5 mm variations of tumor respiratory motion. Conclusion: The radiation dose does not increase with 4D KV CBCT. 4D KV CBCT is a useful tool for monitoring interfractional variations of tumor respiratory motion before SBRT of lung cancer patients.

  12. Baseline Metabolic Tumor Volume and Total Lesion Glycolysis Are Associated With Survival Outcomes in Patients With Locally Advanced Pancreatic Cancer Receiving Stereotactic Body Radiation Therapy

    SciTech Connect

    Dholakia, Avani S.; Chaudhry, Muhammad; Leal, Jeffrey P.; Chang, Daniel T.; Raman, Siva P.; Hacker-Prietz, Amy; Su, Zheng; Pai, Jonathan; Oteiza, Katharine E.; Griffith, Mary E.; Wahl, Richard L.; Tryggestad, Erik; Pawlik, Timothy; Laheru, Daniel A.; Wolfgang, Christopher L.; Koong, Albert C.; and others

    2014-07-01

    Purpose: Although previous studies have demonstrated the prognostic value of positron emission tomography (PET) parameters in other malignancies, the role of PET in pancreatic cancer has yet to be well established. We analyzed the prognostic utility of PET for patients with locally advanced pancreatic cancer (LAPC) undergoing fractionated stereotactic body radiation therapy (SBRT). Materials and Methods: Thirty-two patients with LAPC in a prospective clinical trial received up to 3 doses of gemcitabine, followed by 33 Gy in 5 fractions of 6.6 Gy, using SBRT. All patients received a baseline PET scan prior to SBRT (pre-SBRT PET). Metabolic tumor volume (MTV), total lesion glycolysis (TLG), and maximum and peak standardized uptake values (SUV{sub max} and SUV{sub peak}) on pre-SBRT PET scans were calculated using custom-designed software. Disease was measured at a threshold based on the liver SUV, using the equation Liver{sub mean} + [2 × Liver{sub sd}]. Median values of PET parameters were used as cutoffs when assessing their prognostic potential through Cox regression analyses. Results: Of the 32 patients, the majority were male (n=19, 59%), 65 years or older (n=21, 66%), and had tumors located in the pancreatic head (n=27, 84%). Twenty-seven patients (84%) received induction gemcitabine prior to SBRT. Median overall survival for the entire cohort was 18.8 months (95% confidence interval [CI], 15.7-22.0). An MTV of 26.8 cm{sup 3} or greater (hazard ratio [HR] 4.46, 95% CI 1.64-5.88, P<.003) and TLG of 70.9 or greater (HR 3.08, 95% CI 1.18-8.02, P<.021) on pre-SBRT PET scan were associated with inferior overall survival on univariate analysis. Both pre-SBRT MTV (HR 5.13, 95% CI 1.19-22.21, P=.029) and TLG (HR 3.34, 95% CI 1.07-10.48, P=.038) remained independently associated with overall survival in separate multivariate analyses. Conclusions: Pre-SBRT MTV and TLG are potential predictive factors for overall survival in patients with LAPC and may assist in

  13. Development of a Synthetic Adaptive Neuro-Fuzzy Prediction Model for Tumor Motion Tracking in External Radiotherapy by Evaluating Various Data Clustering Algorithms.

    PubMed

    Ghorbanzadeh, Leila; Torshabi, Ahmad Esmaili; Nabipour, Jamshid Soltani; Arbatan, Moslem Ahmadi

    2016-04-01

    In image guided radiotherapy, in order to reach a prescribed uniform dose in dynamic tumors at thorax region while minimizing the amount of additional dose received by the surrounding healthy tissues, tumor motion must be tracked in real-time. Several correlation models have been proposed in recent years to provide tumor position information as a function of time in radiotherapy with external surrogates. However, developing an accurate correlation model is still a challenge. In this study, we proposed an adaptive neuro-fuzzy based correlation model that employs several data clustering algorithms for antecedent parameters construction to avoid over-fitting and to achieve an appropriate performance in tumor motion tracking compared with the conventional models. To begin, a comparative assessment is done between seven nuero-fuzzy correlation models each constructed using a unique data clustering algorithm. Then, each of the constructed models are combined within an adaptive sevenfold synthetic model since our tumor motion database has high degrees of variability and that each model has its intrinsic properties at motion tracking. In the proposed sevenfold synthetic model, best model is selected adaptively at pre-treatment. The model also updates the steps for each patient using an automatic model selectivity subroutine. We tested the efficacy of the proposed synthetic model on twenty patients (divided equally into two control and worst groups) treated with CyberKnife synchrony system. Compared to Cyberknife model, the proposed synthetic model resulted in 61.2% and 49.3% reduction in tumor tracking error in worst and control group, respectively. These results suggest that the proposed model selection program in our synthetic neuro-fuzzy model can significantly reduce tumor tracking errors. Numerical assessments confirmed that the proposed synthetic model is able to track tumor motion in real time with high accuracy during treatment. PMID:25765021

  14. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors

    NASA Astrophysics Data System (ADS)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ({{\\overline{V}}95} was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  15. Robustness of Target Dose Coverage to Motion Uncertainties for Scanned Carbon Ion Beam Tracking Therapy of Moving Tumors

    PubMed Central

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-01-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from 6 lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high (V̄95 was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15 degree delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems. PMID:25650520

  16. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors.

    PubMed

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-21

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  17. SU-E-J-268: Is It Necessary to Account for Organs at Risk Respiratory Induced Motion Effects in Radiotherapy Planning with Tumor Tracking?

    SciTech Connect

    Gilles, M; Boussion, N; Visvikis, D; Fayad, H; Pradier, O

    2014-06-01

    Purpose: The objective of this study was to evaluate the necessity to account for the organs at risk (OARs) respiratory induced motion in addition to the tumor displacement when planning a radiotherapy treatment that accounts for tumor motion. Methods: For 18 lung cancer patients, conformational radiotherapy treatment plans were generated using 3 different CT volumes: the two extreme respiratory phases corresponding to either the full inspiration (plan 1) or expiration (plan 3), as well as a manually deformed phase consisting in full inspiration combined with the full expiration tumor location (plan 2) simulating a tumor tracking plan without addressing OARs motion. Treatment plans were initially created on plan 1 and then transferred to plan 2 and 3 which represent respectively the tumor displacement only and the whole anatomic variations due to breathing. The dose coverage and the dose delivered to the OARs were compared using conformational indexes and generalized equivalent uniform dose. Results: The worst conformational indexes were obtained for plans with all anatomic deformations (Table 1) with an underestimation of the 95% isodose spreading on healthy tissue compared to plans considering the tumor displacement only. Furthermore, mean doses to the OARs when accounting for all the anatomic changes were always higher than those associated with the tumor displacement only: the mean difference between these two plans was 1±1.37 Gy (maximum of 3.8 Gy) for the heart and 1.4±1.42 Gy (maximum of 4.1 Gy) for the lung in which the tumor was located (Figure 1). Conclusion: OARs deformations due to breathing motion should be included in the treatment planning in order to avoid unnecessary OARs dose and/or allow for a tumor dose escalation. This is even more important for treatments like stereotactic radiation therapy which necessitates a high precision ballistic and dose control.

  18. Chronic pancreatitis.

    PubMed

    Chari, S T; DiMagno, E P

    2000-09-01

    In the past year, there has been at least one important clinical paper that sheds light on the character and natural history of painful chronic pancreatitis, which has important clinical implications. In addition, several novel mutations have been described in the cationic trypsinogen gene in patients with hereditary pancreatitis. The mechanism by which these mutations cause pancreatic disease remains speculative. The diagnosis of early chronic pancreatitis is controversial. A novel noninvasive pancreatic function test (measurement of postprandial APOB-48) was reported but is unlikely to be a sensitive test of pancreatic function. Pancreatic fibrosis is frequently seen in alcoholics without chronic pancreatitis, and this makes it difficult to interpret the findings on endoscopic ultrasonogram. Recent studies highlight the difficulty in abolishing pancreatic steatorrhea. Recently fibrosing colonopathy in adult patients has been reported. Extracorporeal shockwave lithotripsy combined with endoscopic therapy failed to benefit patients with calcific chronic pancreatitis.

  19. PTCH 1 staining of pancreatic neuroendocrine tumor (PNET) samples from patients with and without multiple endocrine neoplasia (MEN-1) syndrome reveals a potential therapeutic target.

    PubMed

    Gurung, Buddha; Hua, Xianxin; Runske, Melissa; Bennett, Bonita; LiVolsi, Virginia; Roses, Robert; Fraker, Douglas A; Metz, David C

    2015-01-01

    Pancreatic neuroendocrine tumors (PNETs) are rare, indolent tumors that may occur sporadically or develop in association with well-recognized hereditary syndromes, particularly multiple endocrine neoplasia type 1 (MEN-1). We previously demonstrated that the hedgehog (HH) signaling pathway was aberrantly up-regulated in a mouse model that phenocopies the human MEN-1 syndrome, Men1l/l;RipCre, and that inhibition of this pathway suppresses MEN-1 tumor cell proliferation. We hypothesized that the HH signaling pathway is similarly upregulated in human PNETs. We performed immunohistochemical (IHC) staining for PTCH1 in human fresh and archival PNET specimens to examine whether human sporadic and MEN-1-associated PNETs revealed similar abnormalities as in our mouse model and correlated the results with clinical and demographic factors of the study cohort. PTCH1 staining was positive in 12 of 22 PNET patients (55%). Four of 5 MEN-1 patients stained for PTCH1 (p = 0.32 as compared with sporadic disease patients). Nine of 16 patients with metastatic disease stained for PTCH1 as compared with zero of 3 with localized disease only (p = 0.21). No demographic or clinical features appeared to be predictive of PTCH 1 positivity and PTCH 1 positivity per se was not predictive of clinical outcome. PTCH1, a marker of HH pathway up regulation, is detectable in both primary and metastatic tumors in more than 50% of PNET patients. Although no clinical or demographic factors predict PTCH1 positivity and PTCH1 positivity does not predict clinical outcome, the frequency of expression alone indicates that perturbation of this pathway with agents such as Vismodegib, an inhibitor of Smoothened (SMO), should be examined in future clinical trials. PMID:25482929

  20. TNM staging of pancreatic neuroendocrine tumors: an observational analysis and comparison by both AJCC and ENETS systems from 1 single institution.

    PubMed

    Yang, Min; Zeng, Lin; Zhang, Yi; Wang, Wei-guo; Wang, Li; Ke, Neng-wen; Liu, Xu-bao; Tian, Bo-le

    2015-03-01

    We aimed to analyze the clinical characteristics and compare the surgical outcome of pancreatic neuroendocrine tumors (p-NETs) using the 2 tumor-node-metastasis (TNM) systems by both the American Joint Committee on Cancer (AJCC) Staging Manual (seventh edition) and the European Neuroendocrine Tumor Society (ENETS). Moreover, we sought to validate the prognostic value of the new AJCC criterion. Data of 145 consecutive patients who were all surgically treated and histologically diagnosed as p-NETs from January 2002 to June 2013 in our single institution were retrospectively collected and analyzed. The 5-year overall survival (OS) rates for AJCC classifications of stages I, II, III, and IV were 79.5%, 63.1%, 15.0%, and NA, respectively, (P < 0.005). As for the ENETS system, the OS rates at 5 years for stages I, II, III, and IV were 75.5%, 72.7%, 29.0%, and NA, respectively, (P < 0.005). Both criteria present no statistically notable difference between stage I and stage II (P > 0.05) but between stage I and stages III and IV (P < 0.05), as well as those between stage II and stages III and IV (P < 0.05). Difference between stage III and IV by ENETS was significant (P = 0.031), whereas that by the AJCC was not (P = 0.144). What's more, the AJCC Staging Manual (seventh edition) was statistically significant in both uni- and multivariate analyses by Cox regression (P < 0.005 and P = 0.025, respectively). Our study indicated that the ENETS TNM staging system might be superior to the AJCC Staging Manual (seventh edition) for the clinical practice of p-NETs. Together with tumor grade and radical resection, the new AJCC system was also validated to be an independent predictor for p-NETs. PMID:25816036

  1. Ki-67 cytological index can distinguish well-differentiated from poorly differentiated pancreatic neuroendocrine tumors: a comparative cytohistological study of 53 cases.

    PubMed

    Carlinfante, Gabriele; Baccarini, Paola; Berretti, Debora; Cassetti, Tiziana; Cavina, Maurizio; Conigliaro, Rita; De Pellegrin, Alessandro; Di Tommaso, Luca; Fabbri, Carlo; Fornelli, Adele; Frasoldati, Andrea; Gardini, Giorgio; Losi, Luisa; Maccio, Livia; Manta, Raffaele; Pagano, Nico; Sassatelli, Romano; Serra, Silvia; Camellini, Lorenzo

    2014-07-01

    The Ki-67 labeling index has been found to bear prognostic significance in gastrointestinal neuroendocrine tumors (NETs), and it was recently incorporated in NET histological grading. Nevertheless, a reliable preoperative determination of NET grading could be useful in clinical practice. The aim of this study is to compare the results of Ki-67 labeling index, as measured on cytological samples and on surgical specimens of patients with pancreatic NETs (P-NETs). We also investigated whether concordance might be improved, using a 5 % (instead of 2 %) cutoff value for defining G2 tumors. We retrospectively identified 48 consecutive patients with 53 P-NETs, from our five institutions, and we measured Ki-67 labeling index on their cytological samples and surgical specimens. The traditional 2 % and the alternative 5 % cutoff values were used to classify G2 tumors. The concordance rate between cytological and histological grading was 46/53 (86.8 %; weighted κ statistic 0.77; 95 % confidence interval (95 % CI) 0.60-0.94). No cases of cytological G1-G2 NETs were upgraded to G3 neuroendocrine carcinoma (NEC) at histological grading. Cytology was found to be highly specific in the diagnosis of both G2 (94.1 %; 95 % CI 80.3-99.3) and G3 tumors (100.0 %; 95 % CI 92.8-100), but the sensitivity was poor for G2 NETs (66.7 %; 95 % CI 38.4-88.2) and high for the prediction of G3 NECs (100 %; 95 % CI 39.8-100.0). When the 5 % cutoff value was adopted, concordance rate was 49/53 (92.4 %; weighted κ 0.82; 95 % CI 0.64-1.00). In conclusion, Ki-67 cytological expression can distinguish well-differentiated (both G1 and G2) from poorly differentiated P-NETs, and it may be useful for their preoperative classification. PMID:24807732

  2. Quantifying Interfraction and Intrafraction Tumor Motion in Lung Stereotactic Body Radiotherapy Using Respiration-Correlated Cone Beam Computed Tomography

    SciTech Connect

    Bissonnette, Jean-Pierre; Franks, Kevin N.; Purdie, Thomas G.; Moseley, Douglas J.; Sonke, Jan-Jakob; Jaffray, David A.; Dawson, Laura A.; Bezjak, Andrea

    2009-11-01

    Purpose: Stereotactic body radiation therapy (SBRT) is an effective treatment for medically inoperable Stage I non-small-cell lung cancer. However, changes in the patient's breathing patterns during the course of SBRT may result in a geographic miss or an overexposure of healthy tissues to radiation. However, the precise extent of these changes in breathing pattern is not well known. We evaluated the inter- and intrafractional changes in tumor motion amplitude (DELTAM) over an SBRT course. Methods and Materials: Eighteen patients received image-guided SBRT delivered in three fractions; this therapy was done with abdominal compression in four patients. For each fraction, cone beam computed tomography (CBCT) was performed for tumor localization (+- 3-mm tolerance) and then repeated to confirm geometric accuracy. Additional CBCT images were acquired at the midpoint and end of each SBRT fraction. Respiration-correlated CBCT (rcCBCT) reconstructions allowed retrospective assessment of inter- and intrafractional DELTAM by a comparison of tumor displacements in all four-dimensional CT and rcCBCT scans. The DELTAM was measured in mediolateral, superior-inferior, and anterior-posterior directions. Results: A total of 201 rcCBCT images were analyzed. The mean time from localization of the tumor to the end-fraction CBCT was 35 +- 7 min. Compared with the motion recorded on four-dimensional CT, the mean DELTAM was 0.4, 1.0, and 0.4 mm, respectively, in the mediolateral, superior-inferior, and anterior-posterior directions. On treatment, the observed DELTAM was, on average, <1 mm; no DELTAM was statistically different with respect to the initial rcCBCT. However, patients in whom abdominal compression was used showed a statistically significant difference (p < 0.05) in the variance of DELTAM with respect to the initial rcCBCT in the superior-inferior direction. Conclusions: The inter- and intrafractional DELTAM that occur during a course of lung SBRT are small. However

  3. Current Knowledge on Pancreatic Cancer

    PubMed Central

    Iovanna, Juan; Mallmann, Maria Cecilia; Gonçalves, Anthony; Turrini, Olivier; Dagorn, Jean-Charles

    2012-01-01

    Pancreatic cancer is the fourth leading cause of cancer death with a median survival of 6 months and a dismal 5-year survival rate of 3–5%. The development and progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes, and the deregulation of many signaling pathways. Therefore, the strategies targeting these molecules as well as their downstream signaling could be promising for the prevention and treatment of pancreatic cancer. However, although targeted therapies for pancreatic cancer have yielded encouraging results in vitro and in animal models, these findings have not been translated into improved outcomes in clinical trials. This failure is due to an incomplete understanding of the biology of pancreatic cancer and to the selection of poorly efficient or imperfectly targeted agents. In this review, we will critically present the current knowledge regarding the molecular, biochemical, clinical, and therapeutic aspects of pancreatic cancer. PMID:22655256

  4. RABL6A promotes G1-S phase progression and pancreatic neuroendocrine tumor cell proliferation in an Rb1-dependent manner.

    PubMed

    Hagen, Jussara; Muniz, Viviane P; Falls, Kelly C; Reed, Sara M; Taghiyev, Agshin F; Quelle, Frederick W; Gourronc, Francoise A; Klingelhutz, Aloysius J; Major, Heather J; Askeland, Ryan W; Sherman, Scott K; O'Dorisio, Thomas M; Bellizzi, Andrew M; Howe, James R; Darbro, Benjamin W; Quelle, Dawn E

    2014-11-15

    Mechanisms of neuroendocrine tumor (NET) proliferation are poorly understood, and therapies that effectively control NET progression and metastatic disease are limited. We found amplification of a putative oncogene, RABL6A, in primary human pancreatic NETs (PNET) that correlated with high-level RABL6A protein expression. Consistent with those results, stable silencing of RABL6A in cultured BON-1 PNET cells revealed that it is essential for their proliferation and survival. Cells lacking RABL6A predominantly arrested in G1 phase with a moderate mitotic block. Pathway analysis of microarray data suggested activation of the p53 and retinoblastoma (Rb1) tumor-suppressor pathways in the arrested cells. Loss of p53 had no effect on the RABL6A knockdown phenotype, indicating that RABL6A functions independent of p53 in this setting. By comparison, Rb1 inactivation partially restored G1 to S phase progression in RABL6A-knockdown cells, although it was insufficient to override the mitotic arrest and cell death caused by RABL6A loss. Thus, RABL6A promotes G1 progression in PNET cells by inactivating Rb1, an established suppressor of PNET proliferation and development. This work identifies RABL6A as a novel negative regulator of Rb1 that is essential for PNET proliferation and survival. We suggest RABL6A is a new potential biomarker and target for anticancer therapy in PNET patients.

  5. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway.

    PubMed

    Jiang, Weiliang; Zhao, Senlin; Jiang, Xiaohua; Zhang, Erquan; Hu, Guoyong; Hu, Bin; Zheng, Ping; Xiao, Junhua; Lu, Zhanjun; Lu, Yingying; Ni, Jianbo; Chen, Congying; Wang, Xingpeng; Yang, Lijuan; Wan, Rong

    2016-02-28

    Disruption of the circadian clock has been shown to be associated with tumor development. This study aimed to investigate the role of the core circadian gene Bmal1 in pancreatic cancer (PC). We first found that the levels of Bmal1 were downregulated in PC samples and were closely correlated with the clinicopathological features of patients. To dissect the underlying mechanism, we performed a RNA-seq assay followed by systematic gene function and pathway enrichment analyses. We detected an anti-apoptotic and pro-proliferative transcriptome profile after Bmal1 knockdown in PC cells. Further in vitro and in vivo studies confirmed that Bmal1 overexpression significantly inhibited cell proliferation and invasion and induced G2/M cell cycle arrest, whereas Bmal1 knockdown promoted PC growth, as demonstrated in Bmal1-manipulated AsPC-1 and BxPC-3 cell lines. Our mechanistic studies indicated that Bmal1 could directly bind to the p53 gene promoter and thereby transcriptionally activate the downstream tumor suppressor pathway in a p53-dependent manner. In sum, our findings suggest that Bmal1 acts as an anti-oncogene in PC and represents a potential biomarker for its diagnosis.

  6. RABL6A promotes G1-S phase progression and pancreatic neuroendocrine tumor cell proliferation in an Rb1-dependent manner

    PubMed Central

    Hagen, Jussara; Muniz, Viviane P.; Falls, Kelly; Reed, Sara M.; Taghiyev, Agshin F.; Quelle, Frederick W.; Gourronc, Francoise; Klingelhutz, Aloysius J.; Major, Heather J.; Askeland, Ryan; Sherman, Scott K.; O'Dorisio, Thomas M.; Bellizzi, Andrew M.; Howe, James R.; Darbro, Benjamin W.; Quelle, Dawn E.

    2014-01-01

    Mechanisms of neuroendocrine tumor (NET) proliferation are poorly understood and therapies that effectively control NET progression and metastatic disease are limited. We found amplification of a putative oncogene, RABL6A, in primary human pancreatic NETs(PNETs) that correlated with high level RABL6A protein expression. Consistent with those results, stable silencing of RABL6A in cultured BON-1 PNET cells revealed that it is essential for their proliferation and survival. Cells lacking RABL6A predominantly arrested in G1 phase with a moderate mitotic block. Pathway analysis of microarray data suggested activation of the p53 and retinoblastoma (Rb1) tumor suppressor pathways in the arrested cells. Loss of p53 had no effect on the RABL6A knockdown phenotype, indicating RABL6A functions independent of p53 in this setting. By comparison, Rb1 inactivation partially restored G1 to S phase progression in RABL6A knockdown cells although it was insufficient to override the mitotic arrest and cell death caused by RABL6A loss. Thus, RABL6A promotes G1 progression in PNET cells by inactivating Rb1, an established suppressor of PNET proliferation and development. This work identifies RABL6A as a novel negative regulator of Rb1 that is essential for PNET proliferation and survival. We suggest RABL6A is a new potential biomarker and target for anticancer therapy in PNET patients. PMID:25273089

  7. Clinicopathologic Review of 31 Cases of Solid Pseudopapillary Pancreatic Tumors: Can We Use the Scoring System of Microscopic Features for Suggesting Clinically Malignant Potential?

    PubMed

    Kim, Jang-Hee; Lee, Jae-Myeong

    2016-04-01

    A solid pseudopapillary tumor (SPT) is a pancreatic neoplasm of low malignant potential. The potentially malignant pathologic features of SPTs were regarded as angioinvasion, perineural invasion, deep invasion of the surrounding acinar tissue, and nuclear pleomorphism. We retrospectively reviewed 31 cases of SPTs (25 female and 6 male patients, with an average age of 35 ± 14 years). The mean follow-up period was 132.0 ± 55.9 months. To evaluate the clinical impact of above pathological parameters, we analyzed their correlation with actually observed clinical malignancy. In three cases, the SPTs were clearly clinically malignant: one patient had recurrences three times, one showed lymph node metastases, and one deep soft tissue invasion around the gastroduodenal artery. Tumor infiltration to the peripancreatic soft tissue was observed in 17 cases (54.8%). The pathologic features considered suggestive of malignant potential were angioinvasion (25.8%), perineural invasion (6.5%), presence of mitosis in 10 high-power fields (16.1%), and moderate nuclear pleomorphism (19.4%). The presence of at least three of these features was not correlated with clinically confirmed malignant behavior (P = 0.570). Microscopic pathologic features of SPTs cannot be reliably associated with aggressive clinical behavior. Moreover, the absence of these microscopic features cannot exclude clinical malignancy. PMID:27097622

  8. Palliative Care in Improving Quality of Life and Symptoms in Patients With Stage III-IV Pancreatic or Ovarian Cancer

    ClinicalTrials.gov

    2014-12-18

    Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer

  9. Phase 1 Study of PLX7486 as Single Agent and With Gemcitabine Plus Nab-Paclitaxel in Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2016-06-07

    Solid Tumors; Untreated Pancreatic Adenocarcinoma; Pancreatic Cancer Non-resectable; Metastatic Pancreatic Adenocarcinoma; Tumors of Any Histology With Activating Trk (NTRK) Point or NTRK Fusion Mutations; Tenosynovial Giant Cell Tumor

  10. Familial pancreatic cancer.

    PubMed

    Klein, A P; Hruban, R H; Brune, K A; Petersen, G M; Goggins, M

    2001-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in both men and women in the United States and will be responsible for an estimated 28,900 deaths in 2001. Relatively little is known of its etiology, and the only well-established risk factor is cigarette smoking. Studies over the past 3 decades have shown that 4%-16% of patients with pancreatic cancer have a family history of the disease. A small fraction of this aggregation can be accounted for in inherited cancer syndromes, including familial atypical multiple-mole melanoma, Peutz-Jeghers syndrome, hereditary breast-ovarian cancer, hereditary pancreatitis, and hereditary nonpolyposis colorectal cancer. These syndromes arise as a result of germline mutations in the BRCA2, pl6 (familial atypical multiple-mole melanoma), mismatch repair (hereditary nonpolyposis colorectal cancer), and STK11 (Peutz-Jeghers syndrome) genes. In addition, hereditary plays a role in predisposing certain patients with apparently sporadic pancreatic cancer. Many patients with pancreatic cancers caused by a germline mutation in a cancer-causing gene do not have a pedigree that is suggestive of a familial cancer syndrome. A recent prospective analysis of the pedigrees in the National Familial Pancreatic Tumor Registry found that individuals with a family history of pancreatic cancer in multiple first-degree relatives have a high risk of pancreatic cancer themselves. The identification of such high-risk individuals will help clinicians target screening programs and develop preventive interventions with the hope of reducing the mortality of pancreatic cancer in these families.

  11. Tumor necrosis factor alpha induces the expression of transforming growth factor alpha and the epidermal growth factor receptor in human pancreatic cancer cells.

    PubMed Central

    Schmiegel, W; Roeder, C; Schmielau, J; Rodeck, U; Kalthoff, H

    1993-01-01

    Recombinant human tumor necrosis factor (TNF)-alpha increased the expression of epidermal growth factor receptor (EGFR) mRNA and protein in all of six human pancreatic carcinoma cell lines tested. In addition, TNF-alpha increased the expression of an EGFR ligand, transforming growth factor (TGF)-alpha, at the mRNA and protein level in all cell lines. Increased expression of EGFR protein was associated with elevated steady-state EGFR mRNA levels. Nuclear run-on analysis showed that increase in EGFR mRNA was due to an increased rate of transcription. Induction of EGFR mRNA expression by TNF-alpha was abrogated by cycloheximide but occurred independently of TNF-alpha-induced production of TGF-alpha protein. Protein kinase A or Gi-type guanine nucleotide-binding proteins were not involved in this process as assessed by using appropriate stimulators and inhibitors of these signal transduction pathways. By contrast, staurosporine, an inhibitor of protein kinase C, partially inhibited, and 4-bromophenacyl bromide, a phospholipase inhibitor, completely inhibited TNF-alpha-dependent EGFR mRNA expression. The phospholipase C-specific inhibitor tricyclodecan-9-yl xanthogenate did not alter TNF-alpha-dependent EGFR mRNA expression, suggesting that phospholipase A2 is involved in the modulation of EGFR expression by TNF-alpha. The simultaneous induction of a ligand/receptor system by TNF-alpha suggests that this cytokine modulates autocrine growth-regulatory pathways in pancreatic cancer cells. Images PMID:8430098

  12. [Pancreatic Diseases].

    PubMed

    Schöfl, Rainer

    2016-06-22

    The author presents his personal choice of practical relevant papers of pancreatic diseases from 2014 to 2015. Nutritional factors and hypertriglycidemia are discussed as causes of acute pancreatitis. Tools to avoid post-ERCP(endoscopic retrograde c