Sample records for pancreatic tumor motion

  1. Optimizing 4-Dimensional Magnetic Resonance Imaging Data Sampling for Respiratory Motion Analysis of Pancreatic Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stemkens, Bjorn, E-mail: b.stemkens@umcutrecht.nl; Tijssen, Rob H.N.; Senneville, Baudouin D. de

    2015-03-01

    Purpose: To determine the optimum sampling strategy for retrospective reconstruction of 4-dimensional (4D) MR data for nonrigid motion characterization of tumor and organs at risk for radiation therapy purposes. Methods and Materials: For optimization, we compared 2 surrogate signals (external respiratory bellows and internal MRI navigators) and 2 MR sampling strategies (Cartesian and radial) in terms of image quality and robustness. Using the optimized protocol, 6 pancreatic cancer patients were scanned to calculate the 4D motion. Region of interest analysis was performed to characterize the respiratory-induced motion of the tumor and organs at risk simultaneously. Results: The MRI navigator was foundmore » to be a more reliable surrogate for pancreatic motion than the respiratory bellows signal. Radial sampling is most benign for undersampling artifacts and intraview motion. Motion characterization revealed interorgan and interpatient variation, as well as heterogeneity within the tumor. Conclusions: A robust 4D-MRI method, based on clinically available protocols, is presented and successfully applied to characterize the abdominal motion in a small number of pancreatic cancer patients.« less

  2. Secretion of pancreatic polypeptide in patients with pancreatic endocrine tumors.

    PubMed

    Adrian, T E; Uttenthal, L O; Williams, S J; Bloom, S R

    1986-07-31

    Pancreatic polypeptide is often secreted by pancreatic endocrine tumors and is considered a marker for such tumors. To investigate the diagnostic value of this marker, we studied 323 patients with proved pancreatic endocrine tumors. We found plasma concentrations of pancreatic polypeptide to be elevated (more than 300 pmol per liter) in 144 patients (diagnostic sensitivity, 45 percent). However, plasma levels of pancreatic polypeptide can also be elevated in the absence of a pancreatic tumor. To ascertain whether the administration of atropine could distinguish between normal and tumor-associated polypeptide secretion, we studied 30 patients with pancreatic tumors and high plasma levels of pancreatic polypeptide, 18 patients without tumors who had elevated levels of pancreatic polypeptide, and eight normal controls. Polypeptide levels in the 18 patients without tumors were substantially lower than in the 30 patients with tumors. Atropine (1 mg intramuscularly) did not suppress polypeptide levels in patients with tumors, but did suppress plasma levels by more than 50 percent in all subjects without tumors. Thus, although its diagnostic sensitivity is low, pancreatic polypeptide appears to be a useful adjunctive marker of many pancreatic endocrine tumors, and the atropine suppression test can be used to distinguish normal from tumor-related secretion of the polypeptide. Identification of the type of pancreatic endocrine tumor still requires measurement of the hormone that is specific for the tumor.

  3. Harmonic Motion Imaging for Abdominal Tumor Detection and High-intensity Focused Ultrasound Ablation Monitoring: A Feasibility Study in a Transgenic Mouse Model of Pancreatic Cancer

    PubMed Central

    Chen, Hong; Hou, Gary Y.; Han, Yang; Payen, Thomas; Palermo, Carmine F.; Olive, Kenneth P.; Konofagou, Elisa E.

    2015-01-01

    Harmonic motion imaging (HMI) is a radiation force-based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess relative tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radiofrequency signals using a 1D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated with a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring. PMID:26415128

  4. Harmonic motion imaging for abdominal tumor detection and high-intensity focused ultrasound ablation monitoring: an in vivo feasibility study in a transgenic mouse model of pancreatic cancer.

    PubMed

    Chen, Hong; Hou, Gary Y; Han, Yang; Payen, Thomas; Palermo, Carmine F; Olive, Kenneth P; Konofagou, Elisa E

    2015-09-01

    Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radio-frequency signals using a 1-D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated at a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring.

  5. Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors.

    PubMed

    Hall, MacLean; Liu, Hao; Malafa, Mokenge; Centeno, Barbara; Hodul, Pamela J; Pimiento, José; Pilon-Thomas, Shari; Sarnaik, Amod A

    2016-01-01

    We evaluated whether tumor infiltrating lymphocytes (TIL) could be expanded from surgically resected tumors from pancreatic cancer patients. Tumors were resected from pancreatic cancer patients. Tumors were minced into fragments and cultured in media containing high dose interleukin-2 (IL-2) for up to 6 weeks. T cell phenotype, activation markers, and reactivity were measured. TIL expansion was measured in 19 patient samples. The majority of these TIL were CD4 + T cells and were highly activated. Purified CD8 + T cells produced IFN-γ in response to HLA-matched pancreatic tumor targets. PD-1 blockade and 4-1BB stimulation were demonstrated as effective strategies to improve effective TIL yield, including the production of tumor-reactive pancreatic TIL. TIL expanded from pancreatic tumors are functional and able to respond to pancreatic tumor associated antigens. PD-1 blockade, 41BB stimulation, and CD8 + T cell enrichment are effective strategies to improve TIL yield and tumor reactivity. These results support the development of adoptive cell therapy strategies using TIL for the treatment of pancreatic cancer.

  6. Recurrent pancreatitis in pregnancy after preconception Whipple for pseudopapillary pancreatic tumor.

    PubMed

    Dray, Danielle; Dahlke, Joshua D; Rouse, Dwight J

    2014-08-01

    Solid pseudopapillary pancreatic tumor is a rare tumor affecting young women. Case reports have presented pregnancy outcomes after pancreaticoduodenectomy (Whipple procedure) in pregnancy for this neoplasm. We report a case of a woman who underwent a preconception Whipple procedure for a solid pseudopapillary pancreatic tumor who experienced recurrent pancreatitis confined to pregnancy. A 28-year-old gravida 2 para 1 woman with a history of a Whipple procedure for a solid pseudopapillary pancreatic tumor 2 years prior had three episodes of severe pancreatitis in pregnancy. She was managed conservatively with each episode. She delivered at term and did not have a recurrence in the 8 months since her delivery. Recurrent pancreatitis in pregnancy after a preconception Whipple procedure can be managed conservatively without surgical intervention.

  7. Clinicopathological Features of Intraductal Pancreatic Neuroendocrine Tumors.

    PubMed

    Chang, Xiao-Yan; Jia, Cong-Wei; Meng, Yun-Xiao; Chen, Jie

    2016-10-10

    Objective To evaluate the clinical and pathologic characteristics of intraductal pancreatic neuroendocrine tumors (PanNETs). Methods Four cases of intraductal PanNETs were studied by light microscopy and immunohistochemistry with the analysis of morphologic features and review of relevant literatures. Results Two female patients and two male patients aged 41- 58 years were enrolled in this study. The chief complaint was abdominal pain in two patients,vomiting in one patient,and jaundice in the last patient. Imaging examination showed intraductal neoplasm with diagnosis as intraductal papillary mucinous neoplasm (IPMN) in case 1; space-occupying lesions were found in the head of pancreas in the other three cases with pancreatic ductal ectasia and distal pancreatic atrophy. Grossly the masses were located in pancreatic main duct and invaded into surrounding pancreatic parachyma. Microscopically the tumors arranged with solid pattern,with some trabecular structures in the last two cases. Small duct and ductules were seen in intraductal PanNETs. The immunohistochemical expression showed that SYN and CgA were positive in neoplastic cells and negative in small duct and ductules.Conclusions Intraductal PanNETs are rare conditions. The clinical symptoms and imaging findings are similar to IPMN or pancreatic carcinoma. The tumors are located within pancreatic duct partly and can invade the pancreatic parenchyma. Microscopically the neuroendocrine tumors mix with small duct and forms ductulo-insular structure,which should be differentiated with mixed ductal endocrine carcinoma. The grade and prognosis are similar to those of classical neuroendocrine tumors.

  8. Robotic enucleation of benign pancreatic tumors

    PubMed Central

    Ore, Ana Sofia; Barrows, Courtney E.; Solis-Velasco, Monica; Shaker, Jessica

    2017-01-01

    Robot-assisted enucleation provides the dual benefits of a minimally-invasive technique and pancreatic parenchymal conservation to selected patients with functional pancreatic neuroendocrine tumors (F-pNETs) and serous cystadenomas. Insulinomas, the most common F-pNETs, are ideal candidates for enucleation when <2 cm given the 80% probability of being benign. Current evidence suggests enucleation for the following: benign, isolated lesions with a distance between tumor and main pancreatic duct ≥3 mm (no focal stricture or dilation), insulinomas, gastrinomas <2 cm, and nonfunctional pancreatic neuroendocrine tumors (NF-pNETs) <1–2 cm and low Ki67 mitotic index. Minimally-invasive enucleation is an imaging-dependent procedure that requires recognizable anatomic landmarks for successful completion, including tumor proximity to the pancreatic duct as well as localization relative to major structures such as the gastroduodenal artery, bile duct, and portal vein. Tumor localization often mandates intraoperative ultrasound aided by duplex studies of intratumoral blood flow and frozen section confirmation. Five patients have undergone robot-assisted enucleation at Beth Israel Deaconess Medical Center between January 2014 and January 2017 with median tumor diameter of 1.3 cm (0.9–1.7 cm) located in the pancreatic head [2] and tail [3]. Surgical indications included insulinoma [2] and NF-pNETs [3]. Median operative time was 204 min (range, 137–347 min) and estimated blood loss of 50 mL. There were no conversions to open or transfusions. Robotic enucleation is a safe and feasible technique that allows parenchymal conservation in a minimally-invasive setting, reducing operative time and length of stay with equivalent pathological outcomes compared to open surgery. PMID:29302427

  9. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    PubMed

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  10. Long-term follow-up of nutritional status, pancreatic function, and morphological changes of the pancreatic remnant after pancreatic tumor resection in children.

    PubMed

    Sugito, Kiminobu; Furuya, Takeshi; Kaneda, Hide; Masuko, Takayuki; Ohashi, Kensuke; Inoue, Mikiya; Ikeda, Taro; Koshinaga, Tsugumichi; Tomita, Ryouichi; Maebayashi, Toshiya

    2012-05-01

    The objectives of the present study were to determine nutritional status, pancreatic function, and morphological changes of the pancreatic remnant after pancreatic tumor resection in children. The nutritional status was evaluated by the patterns of growth. Pancreatic function was evaluated by using a questionnaire, the Bristol stool form chart, the serum levels of fasting blood glucose, and hemoglobin A1c (HbA1c). Morphological changes of the pancreatic remnant were evaluated by computed tomography, magnetic resonance image, or magnetic resonance cholangiopancreatography. The present study consisted of 6 patients with pancreatic tumor (5 solid pseudopapillary tumors of the pancreas and 1 pancreatoblastoma) who underwent the following operations: tumor enucleation (3), distal pancreatectomy with splenectomy (1), and pylorus-preserving pancreatoduodenectomy (PPPD [2]). The serum levels of HbA1c have been gradually elevated in 2 patients with PPPD. A significant decrease in pancreatic parenchymal thickness and dilatation of the main pancreatic duct were observed in 2 patients with PPPD. Endocrine pancreatic insufficiency after PPPD may be explainable by obstructive pancreatitis after operation. Taking together the results of pancreatic endocrine function and morphological changes of pancreatic remnant after PPPD, tumor enucleation should be considered as surgical approach in children with pancreas head tumor whenever possible.

  11. Potential dosimetric benefits of adaptive tumor tracking over the internal target volume concept for stereotactic body radiation therapy of pancreatic cancer.

    PubMed

    Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie

    2017-11-09

    Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.

  12. Intravital characterization of tumor cell migration in pancreatic cancer

    PubMed Central

    Beerling, Evelyne; Oosterom, Ilse; Voest, Emile; Lolkema, Martijn; van Rheenen, Jacco

    2016-01-01

    ABSTRACT Curing pancreatic cancer is difficult as metastases often determine the poor clinical outcome. To gain more insight into the metastatic behavior of pancreatic cancer cells, we characterized migratory cells in primary pancreatic tumors using intravital microscopy. We visualized the migratory behavior of primary tumor cells of a genetically engineered pancreatic cancer mouse model and found that pancreatic tumor cells migrate with a mesenchymal morphology as single individual cells or collectively as a stream of non-cohesive single motile cells. These findings may improve our ability to conceive treatments that block metastatic behavior. PMID:28243522

  13. General Information about Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)

    MedlinePlus

    ... Islet Cell Tumors) Treatment (PDQ®)–Patient Version General Information About Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Go ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  14. [Chronic Pancreatitis and Pancreatic Cancer - Tumor Risk and Screening].

    PubMed

    Beyer, Georg; D'Haese, Jan G; Ormanns, Steffen; Mayerle, Julia

    2018-06-01

    Chronic pancreatitis is a fibroinflammatory syndrome of the exocrine pancreas, which is characterized by an increasing incidence, high morbidity and lethality. Common etiologies besides alcohol and nicotine consumption include genetic causes and risk factors. The life time risk for the development of pancreatic cancer is elevated 13- to 45-fold depending on the underlying etiology. In patients with chronic pancreatitis clinical, laboratory and imaging surveillance for early detection of complications, including pancreatic cancer, is recommended, although the available methods lack the desired sensitivity and specificity. In this article we review the epidemiology, etiologies and risk factors for chronic pancreatitis and pancreatic cancer and discuss current recommendations for screening and management of patients at risk for tumor development. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Nuclear receptors in pancreatic tumor cells.

    PubMed

    Damaskos, Christos; Garmpis, Nikolaos; Karatzas, Theodore; Kostakis, Ioannis D; Nikolidakis, Lampros; Kostakis, Alkiviadis; Kouraklis, Gregory

    2014-12-01

    This review focuses on nuclear receptors expressed in pancreatic cancer. An extensive search of articles published up to March 2013 was conducted using the MEDLINE database. The key words used were "pancreatic cancer", "molecular receptors" and "growth factors". A total of 112 articles referred to pancreatic cancer, molecular receptors and/or growth factors were included. Receptors of growth factors, such as the epithelial growth factor receptor, insulin-like growth factor-1 receptor, vascular endothelial growth factor receptor and others, such as integrin α5β1, somatostatin receptors, the death receptor 5, claudin, notch receptors, mesothelin receptors, follicle-stimulating hormone receptors, the MUC1 receptor, the adrenomedullin receptor, the farnesoid X receptor, the transferrin receptor, sigma-2 receptors, the chemokine receptor CXCR4, the urokinase plasminogen activator receptor, the ephrine A2 receptor, the GRIA3 receptor, the RON receptor and the angiotensin II receptor AT-1 are expressed in pancreatic tumor cells. These molecules are implicated in tumor growth, apoptosis, angiogenesis, metastasis etc. After identifying the molecular receptors associated with the pancreatic cancer, many more target molecules playing important roles in tumor pathophysiology and senescence-associated signal transduction in cancer cells will be identified. This may have a significant influence on diagnosis, therapy and prognosis of pancreatic cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. A Retroperitoneal Neuroendocrine Tumor in Ectopic Pancreatic Tissue

    PubMed Central

    Okasha, Hussein Hassan; Al-Bassiouni, Fahim; El-Ela, Monir Abo; Al-Gemeie, Emad Hamza; Ezzat, Reem

    2013-01-01

    Ectopic pancreas is the relatively uncommon presence of pancreatic tissue outside the normal location of the pancreas. We report a case of abdominal pain due to retroperitoneal neuroendocrine tumor arising from heterotopic pancreatic tissue between the duodenal wall and the head of the pancreas. Patient underwent surgical enucleation of the tumor. PMID:24949389

  17. Targeting pancreatic expressed PAX genes for the treatment of diabetes mellitus and pancreatic neuroendocrine tumors.

    PubMed

    Martin-Montalvo, Alejandro; Lorenzo, Petra I; López-Noriega, Livia; Gauthier, Benoit R

    2017-01-01

    Four members of the PAX family, PAX2, PAX4, PAX6 and PAX8 are known to be expressed in the pancreas. Accumulated evidences indicate that several pancreatic expressed PAX genes play a significant role in pancreatic development/functionality and alterations in these genes are involved in the pathogenesis of pancreatic diseases. Areas covered: In this review, we summarize the ongoing research related to pancreatic PAX genes in diabetes mellitus and pancreatic neuroendocrine tumors. We dissect the current knowledge at different levels; from mechanistic studies in cell lines performed to understand the molecular processes controlled by pancreatic PAX genes, to in vivo studies using rodent models that over-express or lack specific PAX genes. Finally, we describe human studies associating variants on pancreatic-expressed PAX genes with pancreatic diseases. Expert opinion: Based on the current literature, we propose that future interventions to treat pancreatic neuroendocrine tumors and diabetes mellitus could be developed via the modulation of PAX4 and/or PAX6 regulated pathways.

  18. Pancreatic tumor detection using hypericin-based fluorescence spectroscopy and cytology

    NASA Astrophysics Data System (ADS)

    Lavu, Harish; Geary, Kevin; Fetterman, Harold R.; Saxton, Romaine E.

    2005-04-01

    Hypericin is a novel, highly fluorescent photosensitizer that exhibits selective tumor cell uptake properties and is particularly resistant to photobleaching. In this study, we have characterized hypericin uptake in human pancreatic tumor cells with relation to incubation time, cell number, and drug concentration. Ex vivo hypericin based fluorescence spectroscopy was performed to detect the presence of MIA PaCa-2 pancreatic tumor cells in the peritoneal cavity of BALB/c nude mice, as well as to quantify gross tumor burden. Hypericin based cytology of peritoneal lavage samples, using both one and two photon laser confocal microscopy, demonstrated more than a two-fold increase in fluorescence emission of pancreatic tumor cells as compared to control samples. In vitro treatment of pancreatic cancer cells with hypericin based photodynamic therapy showed tumor cell cytotoxicity in a drug dose, incident laser power, and time dependent manner. For these experiments, a continuous wavelength solid-state laser source (532 nm) was operated at power levels in the range of 100-400 mW. Potential applications of hypericin in tumor diagnosis, staging, and therapy will be presented.

  19. A rare case with synchronous gastric gastrointestinal stromal tumor, pancreatic neuroendocrine tumor, and uterine leiomyoma.

    PubMed

    Arabadzhieva, Elena; Yonkov, Atanas; Bonev, Sasho; Bulanov, Dimitar; Taneva, Ivanka; Vlahova, Alexandrina; Dikov, Tihomir; Dimitrova, Violeta

    2016-11-15

    Although gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract, they comprise less than 1% of all gastrointestinal tumors. Neuroendocrine tumors (NET) of the gastro-enteropancreatic system are also rare, representing about 2% of all gastrointestinal neoplasms. Pancreatic localization of NET is extremely uncommon-these tumors are only 1-5% of all pancreatic cancers. We describe an unusual case with triple tumor localization-a gastric tumor, a formation in the pancreas, which involves the retroperitoneal space, and a uterine leiomyoma. The exact diagnosis was confirmed with immunohistochemical study after surgical treatment of the patient. Distal pancreatic resection, splenectomy, partial gastrectomy, omentectomy, and hysterectomy were performed. The histological examination proved an epithelioid type of gastric GIST. Immunostaining showed focal positive expression of c-kit and no mitotic figures per 50 HPF. Histology of the pancreatic and retroperitoneal formation proved a well-differentiated NET with origin from the islets of Langerhans. The immunohistochemical study demonstrated co-expression of chromogranin A and synaptophysin. This is the fourth case published so far of a patient with synchronous pancreatic NET and gastric GIST. The main objective of the study is to present a unique case because we have not found any reports for coexistence of the described three types of neoplasm, as in our patient, and we hope that it will be valuable in the future investigations about the genesis, diagnosis, and treatment of these types of tumors.

  20. CHIP is a novel tumor suppressor in pancreatic cancer and inhibits tumor growth through targeting EGFR

    PubMed Central

    Wang, Tianxiao; Yang, Jingxuan; Xu, Jianwei; Li, Jian; Cao, Zhe; Zhou, Li; You, Lei; Shu, Hong; Lu, Zhaohui; Li, Huihua; Li, Min; Zhang, Taiping; Zhao, Yupei

    2014-01-01

    Carboxyl terminus of heat shock protein 70-interacting protein (CHIP) is an E3 ubiquitin ligase that is involved in protein quality control and mediates several tumor-related proteins in many cancers, but the function of CHIP in pancreatic cancer is not known. Here we show that CHIP interacts and ubiquitinates epidermal growth factor receptor (EGFR) for proteasome-mediated degradation in pancreatic cancer cells, thereby inhibiting the activation of EGFR downstream pathways. CHIP suppressed cell proliferation, anchor-independent growth, invasion and migration, as well as enhanced apoptosis induced by erlotinib in vitro and in vivo. The expression of CHIP was decreased in pancreatic cancer tissues or sera. Low CHIP expression in tumor tissues was correlated with tumor differentiation and shorter overall survival. These observations indicate that CHIP serves as a novel tumor suppressor by down-regulating EGFR pathway in pancreatic cancer cells, decreased expression of CHIP was associated with poor prognosis in pancreatic cancer. PMID:24722501

  1. SU-E-J-07: A Functional MR Protocol for the Pancreatic Tumor Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreychenko, A; Heerkens, H; Meijer, G

    2014-06-01

    Purpose: Pancreatic cancer is one of the cancers with the poorest survival prognosis. At the time of diagnosis most of pancreatic cancers are unresectable and those patients can be treated by radiotherapy. Radiotherapy for pancreatic cancer is limited due to uncertainties in CT-based delineations. MRI provides an excellent soft tissue contrast. Here, an MR protocol is developed to improve delineations for radiotherapy treatment of pancreatic cancer. In a later stage this protocol can also be used for on-line visualization of the pancreas during MRI guided treatments. Methods: Nine pancreatic cancer patients were included. The MR protocol included T2 weighted(T2w), T1more » weighted(T1w), diffusion weighted(DWI) and dynamic contrast enhanced(DCE) techniques. The tumor was delineated on T2w and T1w MRI by an experienced radiation oncologist. Healthy pancreas or pancreatitis (assigned by the oncologist based on T2w) areas were also delineated. Apparent diffusion coefficient(ADC), and area under the curve(AUC)/time to peak(TTP) maps were obtained from DWI and DCE scans, respectively. Results: A clear demarcation of tumor area was visible on b800 DWI images in 5 patients. ADC maps of those patients characterized tumor as an area with restricted water diffusion. Tumor delineations based on solely DCE were possible in 7 patients. In 6 of those patients AUC maps demonstrated tumor heterogeneity: a hypointense area with a hyperintense ring. TTP values clearly discriminated the tumor and the healthy pancreas but could not distinguish tumor and the pancreatitis accurately. Conclusion: MR imaging results in a more pronounced tumor contrast than contrast enhanced CT. The addition of quantitative, functional MRI provides valuable, additional information to the radiation oncologist on the spatial tumor extent by discriminating tumor from the healthy pancreas(TTP, DWI) and characterizing the tumor(ADC). Our findings indicate that tumor delineation in pancreatic cancer can

  2. Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Pancreatic neuroendocrine tumors (islet cell tumors) treatment includes surgery with curative intent and surgery for metastatic disease. Hormone therapy, chemotherapy and targeted therapy are sometimes used. Get detailed information on the treatment of this disease in this clinician summary.

  3. Clinical applications of circulating tumor DNA and circulating tumor cells in pancreatic cancer.

    PubMed

    Riva, Francesca; Dronov, Oleksii I; Khomenko, Dmytro I; Huguet, Florence; Louvet, Christophe; Mariani, Pascale; Stern, Marc-Henri; Lantz, Olivier; Proudhon, Charlotte; Pierga, Jean-Yves; Bidard, Francois-Clement

    2016-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the most frequent pancreatic cancer type and is characterized by a dismal prognosis due to late diagnosis, local tumor invasion, frequent distant metastases and poor sensitivity to current therapy. In this context, circulating tumor cells and circulating tumor DNA constitute easily accessible blood-borne tumor biomarkers that may prove their clinical interest for screening, early diagnosis and metastatic risk assessment of PDAC. Moreover these markers represent a tool to assess PDAC mutational landscape. In this review, together with key biological findings, we summarize the clinical results obtained using "liquid biopsies" at the different stages of the disease, for early and metastatic diagnosis as well as monitoring during therapy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Endoscopic ultrasound-guided radiofrequency ablation for management of benign solid pancreatic tumors.

    PubMed

    Choi, Jun-Ho; Seo, Dong-Wan; Song, Tae Jun; Park, Do Hyun; Lee, Sang Soo; Lee, Sung Koo; Kim, Myung-Hwan

    2018-05-04

     Radiofrequency ablation (RFA) has been increasingly employed in experimental and clinical settings for the management of pancreatic lesions. This study aimed to assess the safety and efficacy of endoscopic ultrasound (EUS)-guided RFA for benign solid pancreatic tumors.  In a single-center, prospective study, 10 patients with benign solid pancreatic tumors underwent EUS-RFA. After the RFA electrode had been inserted into the pancreatic mass, the radiofrequency generator was activated to deliver 50 W of ablation power.  Among the 10 patients, 16 sessions of EUS-RFA were successfully performed. Diagnoses included nonfunctioning neuroendocrine tumor (n = 7), solid pseudopapillary neoplasm (n = 2), and insulinoma (n = 1); the median largest diameter of the tumors was 20 mm (range 8 - 28 mm). During follow-up (median 13 months), radiologic complete response was achieved in seven patients. Two adverse events (12.4 %; 1 moderate and 1 mild) occurred.  EUS-RFA may be a safe and potentially effective treatment option in selected patients with benign solid pancreatic tumors. Multiple sessions may be required if there is a remnant tumor, and adverse events must be carefully monitored. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    PubMed

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras G12D/+ /Trp53 R172H/+ /Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels

  6. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Juan; School of Information Science and Engineering, Shandong University, Jinan, Shandong; Cai, Jing

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff).more » The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.« less

  7. Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk.

    PubMed

    Orozco, Carlos A; Martinez-Bosch, Neus; Guerrero, Pedro E; Vinaixa, Judith; Dalotto-Moreno, Tomás; Iglesias, Mar; Moreno, Mireia; Djurec, Magdolna; Poirier, Françoise; Gabius, Hans-Joachim; Fernandez-Zapico, Martin E; Hwang, Rosa F; Guerra, Carmen; Rabinovich, Gabriel A; Navarro, Pilar

    2018-04-17

    Pancreatic ductal adenocarcinoma (PDA) remains one of the most lethal tumor types, with extremely low survival rates due to late diagnosis and resistance to standard therapies. A more comprehensive understanding of the complexity of PDA pathobiology, and especially of the role of the tumor microenvironment in disease progression, should pave the way for therapies to improve patient response rates. In this study, we identify galectin-1 (Gal1), a glycan-binding protein that is highly overexpressed in PDA stroma, as a major driver of pancreatic cancer progression. Genetic deletion of Gal1 in a Kras -driven mouse model of PDA ( Ela-Kras G12V p53 -/- ) results in a significant increase in survival through mechanisms involving decreased stroma activation, attenuated vascularization, and enhanced T cell infiltration leading to diminished metastasis rates. In a human setting, human pancreatic stellate cells (HPSCs) promote cancer proliferation, migration, and invasion via Gal1-driven pathways. Moreover, in vivo orthotopic coinjection of pancreatic tumor cells with Gal1-depleted HPSCs leads to impaired tumor formation and metastasis in mice. Gene-expression analyses of pancreatic tumor cells exposed to Gal1 reveal modulation of multiple regulatory pathways involved in tumor progression. Thus, Gal1 hierarchically regulates different events implicated in PDA biology including tumor cell proliferation, invasion, angiogenesis, inflammation, and metastasis, highlighting the broad therapeutic potential of Gal1-specific inhibitors, either alone or in combination with other therapeutic modalities.

  8. Clobenpropit enhances anti-tumor effect of gemcitabine in pancreatic cancer

    PubMed Central

    Paik, Woo Hyun; Ryu, Ji Kon; Jeong, Kyoung-Sin; Park, Jin Myung; Song, Byeong Jun; Lee, Sang Hyub; Kim, Yong-Tae; Yoon, Yong Bum

    2014-01-01

    AIM: To evaluate the anti-tumor effect of clobenpropit, which is a specific H3 antagonist and H4 agonist, in combination with gemcitabine in a pancreatic cancer cell line. METHODS: Three kinds of human pancreatic cancer cell lines (Panc-1, MiaPaCa-2, and AsPC-1) were used in this study. Expression of H3 and H4 receptors in pancreatic cancer cells was identified with Western blotting. Effects of clobenpropit on cell proliferation, migration and apoptosis were evaluated. Alteration of epithelial and mesenchymal markers after administration of clobenpropit was analyzed. An in vivo study with a Panc-1 xenograft mouse model was also performed. RESULTS: H4 receptors were present as 2 subunits in human pancreatic cancer cells, while there was no expression of H3 receptor. Clobenpropit inhibited cell migration and increased apoptosis of pancreatic cancer cells in combination with gemcitabine. Clobenpropit up-regulated E-cadherin, but down-regulated vimentin and matrix metalloproteinase 9 in real-time polymerase chain reaction. Also, clobenpropit inhibited tumor growth (gemcitabine 294 ± 46 mg vs combination 154 ± 54 mg, P = 0.02) and enhanced apoptosis in combination with gemcitabine (control 2.5%, gemcitabine 25.8%, clobenpropit 9.7% and combination 40.9%, P = 0.001) by up-regulation of E-cadherin and down-regulation of Zeb1 in Panc-1 xenograft mouse. CONCLUSION: Clobenpropit enhanced the anti-tumor effect of gemcitabine in pancreatic cancer cells through inhibition of the epithelial-mesenchymal transition process. PMID:25024609

  9. Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors.

    PubMed

    Bonnavion, Rémy; Teinturier, Romain; Jaafar, Rami; Ripoche, Doriane; Leteurtre, Emmanuelle; Chen, Yuan-Jia; Rehfeld, Jens F; Lepinasse, Florian; Hervieu, Valérie; Pattou, François; Vantyghem, Marie-Christine; Scoazec, Jean-Yves; Bertolino, Philippe; Zhang, Chang Xian

    2015-10-01

    The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have migrated from the duodenum. In the current study, we further characterized previously described transient pancreatic gastrin-expressing cells using cell lineage tracing in a pan-pancreatic progenitor and a pancreatic endocrine progenitor model. We provide evidence showing that pancreatic gastrin-expressing cells, found from embryonic day 12.5 until postnatal day 7, are derived from pancreatic Ptf1a(+) and neurogenin 3-expressing (Ngn3(+)) progenitors. Importantly, the majority of them coexpress glucagon, with 4% coexpressing insulin, indicating that they are a temporary subpopulation of both alpha and beta cells. Interestingly, Men1 disruption in both Ngn3 progenitors and beta and alpha cells resulted in the development of pancreatic gastrin-expressing tumors, suggesting that the latter developed from islet cells. Finally, we detected gastrin expression using three human cohorts with pancreatic endocrine tumors (pNETs) that have not been diagnosed as gastrinomas (in 9/34 pNETs from 6/14 patients with multiple endocrine neoplasia type 1, in 5/35 sporadic nonfunctioning pNETs, and in 2/20 sporadic insulinomas), consistent with observations made in mouse models. Our work provides insight into the histogenesis of pancreatic gastrin-expressing tumors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors

    PubMed Central

    Bonnavion, Rémy; Teinturier, Romain; Jaafar, Rami; Ripoche, Doriane; Leteurtre, Emmanuelle; Chen, Yuan-Jia; Rehfeld, Jens F.; Lepinasse, Florian; Hervieu, Valérie; Pattou, François; Vantyghem, Marie-Christine; Scoazec, Jean-Yves; Bertolino, Philippe

    2015-01-01

    The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have migrated from the duodenum. In the current study, we further characterized previously described transient pancreatic gastrin-expressing cells using cell lineage tracing in a pan-pancreatic progenitor and a pancreatic endocrine progenitor model. We provide evidence showing that pancreatic gastrin-expressing cells, found from embryonic day 12.5 until postnatal day 7, are derived from pancreatic Ptf1a+ and neurogenin 3-expressing (Ngn3+) progenitors. Importantly, the majority of them coexpress glucagon, with 4% coexpressing insulin, indicating that they are a temporary subpopulation of both alpha and beta cells. Interestingly, Men1 disruption in both Ngn3 progenitors and beta and alpha cells resulted in the development of pancreatic gastrin-expressing tumors, suggesting that the latter developed from islet cells. Finally, we detected gastrin expression using three human cohorts with pancreatic endocrine tumors (pNETs) that have not been diagnosed as gastrinomas (in 9/34 pNETs from 6/14 patients with multiple endocrine neoplasia type 1, in 5/35 sporadic nonfunctioning pNETs, and in 2/20 sporadic insulinomas), consistent with observations made in mouse models. Our work provides insight into the histogenesis of pancreatic gastrin-expressing tumors. PMID:26169832

  11. Pancreatic neuroendocrine tumor with splenic vein tumor thrombus: A case report.

    PubMed

    Rodriguez, Rodrigo A; Overton, Heidi; Morris, Katherine T

    2014-01-01

    Pancreatic neuroendocrine tumors (PNET) are rare, often indolent malignancies. PNET are classified as functional or nonfunctional based on the secretion of hormones without a negative feedback loop; the latter account for up to 60% of PNET. Although PNET are associated with a better prognosis compared to pancreatic adenocarcinomas, they are often diagnosed in advanced stages, making them a significant source of morbidity for patients. Here we present a rare case of venous tumor thrombus arising from a nonfunctional PNET. A 44-year-old woman was referred for evaluation and treatment of a possible tail of pancreas PNET discovered during work-up for a 9 year history of intermittent subcostal pain. Previous endoscopic ultrasound with fine needle aspiration revealed a 3.5cm×3cm mass, with cytological diagnosis of neuroendocrine tumor. Patient was scheduled for laparoscopic distal pancreatectomy. During surgery the mass was found to encase the splenic vein leading the surgeon to perform an en bloc distal pancreatectomy and splenectomy. Pathologic analysis revealed a 1.8cm×5cm tumor thrombus lodged in the splenic vein. Nonfunctional PNET usually present in advanced stages and can be associated with venous tumor thrombi. Preoperative imaging may not accurately predict the presence of venous tumor thrombi. En bloc resection of primary tumor, involved organs and thrombus is the recommended treatment option and often results in long term survival. New multi-modality strategies are needed for detection of venous involvement in nonfunctional PNET to better assist with preoperative planning and counseling. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth.

    PubMed

    Shukla, Surendra K; Dasgupta, Aneesha; Mehla, Kamiya; Gunda, Venugopal; Vernucci, Enza; Souchek, Joshua; Goode, Gennifer; King, Ryan; Mishra, Anusha; Rai, Ibha; Nagarajan, Sangeetha; Chaika, Nina V; Yu, Fang; Singh, Pankaj K

    2015-12-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the US. Cancer-associated cachexia is present in up to 80% of PDAC patients and is associated with aggressive disease and poor prognosis. In the present studies we evaluated an anti-cancer natural product silibinin for its effectiveness in targeting pancreatic cancer aggressiveness and the cachectic properties of pancreatic cancer cells and tumors. Our results demonstrate that silibinin inhibits pancreatic cancer cell growth in a dose-dependent manner and reduces glycolytic activity of cancer cells. Our LC-MS/MS based metabolomics data demonstrates that silibinin treatment induces global metabolic reprogramming in pancreatic cancer cells. Silibinin treatment diminishes c-MYC expression, a key regulator of cancer metabolism. Furthermore, we observed reduced STAT3 signaling in silibinin-treated cancer cells. Overexpression of constitutively active STAT3 was sufficient to substantially revert the silibinin-induced downregulation of c-MYC and the metabolic phenotype. Our in vivo investigations demonstrate that silibinin reduces tumor growth and proliferation in an orthotopic mouse model of pancreatic cancer and prevents the loss of body weight and muscle. It also improves physical activity including grip strength and latency to fall in tumor-bearing mice. In conclusion, silibinin-induced metabolic reprogramming diminishes cell growth and cachectic properties of pancreatic cancer cells and animal models.

  13. Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth

    PubMed Central

    Shukla, Surendra K.; Dasgupta, Aneesha; Mehla, Kamiya; Gunda, Venugopal; Vernucci, Enza; Souchek, Joshua; Goode, Gennifer; King, Ryan; Mishra, Anusha; Rai, Ibha; Nagarajan, Sangeetha; Chaika, Nina V.; Yu, Fang; Singh, Pankaj K.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the US. Cancer-associated cachexia is present in up to 80% of PDAC patients and is associated with aggressive disease and poor prognosis. In the present studies we evaluated an anti-cancer natural product silibinin for its effectiveness in targeting pancreatic cancer aggressiveness and the cachectic properties of pancreatic cancer cells and tumors. Our results demonstrate that silibinin inhibits pancreatic cancer cell growth in a dose-dependent manner and reduces glycolytic activity of cancer cells. Our LC-MS/MS based metabolomics data demonstrates that silibinin treatment induces global metabolic reprogramming in pancreatic cancer cells. Silibinin treatment diminishes c-MYC expression, a key regulator of cancer metabolism. Furthermore, we observed reduced STAT3 signaling in silibinin-treated cancer cells. Overexpression of constitutively active STAT3 was sufficient to substantially revert the silibinin-induced downregulation of c-MYC and the metabolic phenotype. Our in vivo investigations demonstrate that silibinin reduces tumor growth and proliferation in an orthotopic mouse model of pancreatic cancer and prevents the loss of body weight and muscle. It also improves physical activity including grip strength and latency to fall in tumor-bearing mice. In conclusion, silibinin-induced metabolic reprogramming diminishes cell growth and cachectic properties of pancreatic cancer cells and animal models. PMID:26510913

  14. Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer.

    PubMed

    Hwang, Rosa F; Moore, Todd T; Hattersley, Maureen Mertens; Scarpitti, Meghan; Yang, Bin; Devereaux, Erik; Ramachandran, Vijaya; Arumugam, Thiruvengadam; Ji, Baoan; Logsdon, Craig D; Brown, Jeffrey L; Godin, Robert

    2012-09-01

    The Hedgehog (Hh) pathway has emerged as an important pathway in multiple tumor types and is thought to be dependent on a paracrine signaling mechanism. The purpose of this study was to determine the role of pancreatic cancer-associated fibroblasts (human pancreatic stellate cells, HPSCs) in Hh signaling. In addition, we evaluated the efficacy of a novel Hh antagonist, AZD8542, on tumor progression with an emphasis on the role of the stroma compartment. Expression of Hh pathway members and activation of the Hh pathway were analyzed in both HPSCs and pancreatic cancer cells. We tested the effects of Smoothened (SMO) inhibition with AZD8542 on tumor growth in vivo using an orthotopic model of pancreatic cancer containing varying amounts of stroma. HPSCs expressed high levels of SMO receptor and low levels of Hh ligands, whereas cancer cells showed the converse expression pattern. HPSC proliferation was stimulated by Sonic Hedgehog with upregulation of downstream GLI1 mRNA. These effects were abrogated by AZD8542 treatment. In an orthotopic model of pancreatic cancer, AZD8542 inhibited tumor growth only when HPSCs were present, implicating a paracrine signaling mechanism dependent on stroma. Further evidence of paracrine signaling of the Hh pathway in prostate and colon cancer models is provided, demonstrating the broader applicability of our findings. Based on the use of our novel human-derived pancreatic cancer stellate cells, our results suggest that Hh-targeted therapies primarily affect the tumor-associated stroma, rather than the epithelial compartment.

  15. Preliminary results on the feasibility of using ultrasound to monitor intrafractional motion during radiation therapy for pancreatic cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omari, Eenas A.; Erickson, Beth; Noid, George

    Purpose: Substantial intrafraction organ motion during radiation therapy (RT) for pancreatic cancer is well recognized as a major limiting factor for accurate delivery of RT. The aim of this work is to determine the feasibility of monitoring the intrafractional motion of the pancreas or surrounding structures using ultrasound for RT delivery. Methods: Transabdominal ultrasound (TAUS) and 4DCT data were acquired on ten pancreatic cancer patients during radiation therapy process in a prospective study. In addition, TAUS and MRI were collected for five healthy volunteers. The portal vein (PV) and the head of the pancreas (HP) along with other structures weremore » contoured on these images. Volume changes, distance between the HP and PV, and motion difference between the HP and PV were measured to examine whether PV can be used as a motion surrogate for HP. TAUS images were acquired and processed using a research version of the Clarity autoscan ultrasound system (CAUS). Motion monitoring was performed with the ultrasound probe mounted on an arm fixed to the couch. Video segments of the monitoring sessions were captured. Results: On TAUS, PV is better visualized than HP. The measured mean volume deviation for all patients for the HP and PV was 1.4 and 0.6 ml, respectively. The distance between the HP and PV was close to a constant with 0.22 mm mean deviation throughout the ten breathing phases. The mean of the absolute motion difference for all patients was 1.7 ± 0.8 mm in LR, 1.5 ± 0.5 mm in AP, and 2.3 ± 0.7 mm in SI, suggesting that the PV is a good surrogate for HP motion estimation. By using this surrogate, the HP motion tracking using TAUS was demonstrated. Conclusions: Large intrafractional organ motion due to respiratory and/or bowel motion is a limiting factor in administering curative radiation doses to pancreatic tumors. The authors investigate the use of real-time ultrasound to track pancreas motion. Due to the poor visibility of the pancreas head on

  16. Audiovisual biofeedback improves the correlation between internal/external surrogate motion and lung tumor motion.

    PubMed

    Lee, Danny; Greer, Peter B; Paganelli, Chiara; Ludbrook, Joanna Jane; Kim, Taeho; Keall, Paul

    2018-03-01

    Breathing management can reduce breath-to-breath (intrafraction) and day-by-day (interfraction) variability in breathing motion while utilizing the respiratory motion of internal and external surrogates for respiratory guidance. Audiovisual (AV) biofeedback, an interactive personalized breathing motion management system, has been developed to improve reproducibility of intra- and interfraction breathing motion. However, the assumption of the correlation of respiratory motion between surrogates and tumors is not always verified during medical imaging and radiation treatment. Therefore, the aim of the study was to test the hypothesis that the correlation of respiratory motion between surrogates and tumors is the same under free breathing without guidance (FB) and with AV biofeedback guidance for voluntary motion management. For 13 lung cancer patients receiving radiotherapy, 2D coronal and sagittal cine-MR images were acquired across two MRI sessions (pre- and mid-treatment) with two breathing conditions: (a) FB and (b) AV biofeedback, totaling 88 patient measurements. Simultaneously, the external respiratory motion of the abdomen was measured. The internal respiratory motion of the diaphragm and lung tumor was retrospectively measured from 2D coronal and sagittal cine-MR images. The correlation of respiratory motion between surrogates and tumors was calculated using Pearson's correlation coefficient for: (a) abdomen to tumor (abdomen-tumor) and (b) diaphragm to tumor (diaphragm-tumor). The correlations were compared between FB and AV biofeedback using several metrics: abdomen-tumor and diaphragm-tumor correlations with/without ≥5 mm tumor motion range and with/without adjusting for phase shifts between the signals. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 11% (p = 0.12) from 0.53 to 0.59 and diaphragm-tumor correlation by 13% (p = 0.02) from 0.55 to 0.62. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 17% (p = 0

  17. microRNA-137 modulates pancreatic cancer cells tumor growth, invasion and sensitivity to chemotherapy

    PubMed Central

    Xiao, Jie; Peng, Feng; Yu, Chao; Wang, Min; Li, Xu; Li, Zhipeng; Jiang, Jianxin; Sun, Chengyi

    2014-01-01

    Background: We intended to investigate the role of microRNA 137 (miR-137) in regulating pancreatic cancer cells’ growth in vitro and tumor development in vivo. Methods: QTR-PCR was used to examine the expression of miR-137 in pancreatic cancer cell lines and tumor cells from human patients. Lentivirual vector containing miR-137 mimic was used to overexpress miR-137 in PANC-1 and MIA PaCa-2 cells. The effects of overexpressing miR-137 on pancreatic cancer cell invasion and chemo-sensitivity to 5-fluorouracil (5-FU) were examined by cell migration and survival essays in vitro. The molecular target of miR-137, pleiotropic growth factor (PTN), was down-regulated by siRNA to examine its effects on cancer cell invasion. MIA PaCa-2 cells with endogenously overexpressed miR-137 were transplanted into null mice to examine tumor growth in vivo. Results: We found miR-137 was markedly underexpressed in both pancreatic cancer cell lines and tumor cells from patients. In cancer cells, transfection of lentivirus containing miR-137 mimic was able to markedly upregulate endogenous expression of miR-137, inhibited cancer cell invasion and increased sensitivities to chemotherapy reagent 5-FU. PTN was significantly down-regulated by overexpressing miR-137 in pancreatic cancer cells, and knocking down PTN was effective to rescue the reduced cancer cell invasion ability caused by miR-137 overexpression. More importantly, overexpressing miR-137 led to significant inhibition on tumor formation, including reductions in tumor weight and tumor size in vivo. Conclusion: Our study demonstrated that miR-137 played an important role in pancreatic cancer development. It may become a new therapeutic target for gene therapy in patients suffered from pancreatic cancer. PMID:25550779

  18. SU-D-201-04: Study On the Impact of Tumor Shape and Size On Drug Delivery to Pancreatic Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani, M; Bazmara, H; Sefidgar, M

    Purpose: Drug delivery to solid tumors can be expressed physically using transport phenomena such as convection and diffusion for the drug of interest within extracellular matrices. We aimed to carefully model these phenomena, and to investigate the effect of tumor shape and size on drug delivery to solid tumors in the pancreas. Methods: In this study, multiple tumor geometries as obtained from clinical PET/CT images were considered. An advanced numerical method was used to simultaneously solve fluid flow and solute transport equations. Data from n=45 pancreatic cancer patients with non-resectable locoregional disease were analyzed, and geometrical information from the tumorsmore » including size, shape, and aspect ratios were classified. To investigate effect of tumor shape, tumors with similar size but different shapes were selected and analyzed. Moreover, to investigate effect of tumor size, tumors with similar shapes but different sizes, ranging from 1 to 77 cm{sup 3}, were selected and analyzed. A hypothetical tumor similar to one of the analyzed tumors, but scaled to reduce its size below 0.2 cm{sup 3}, was also analyzed. Results: The results showed relatively similar average drug concentration profiles in tumors with different sizes. Generally, smaller tumors had higher absolute drug concentration. In the hypothetical tumor, with volume less than 0.2 cm{sup 3}, the average drug concentration was 20% higher in comparison to its counterparts. For the various real tumor geometries, however, the maximum difference between average drug concentrations was 10% for the smallest and largest tumors. Moreover, the results demonstrated that for pancreatic tumors the shape is not significant. The negligible difference of drug concentration in different tumor shapes was due to the minimum effect of convection in pancreatic tumors. Conclusion: In tumors with different sizes, smaller tumors have higher drug delivery; however, the impact of tumor shape in the case of

  19. Pancreatic neuroendocrine tumor with splenic vein tumor thrombus: A case report

    PubMed Central

    Rodriguez, Rodrigo A.; Overton, Heidi; Morris, Katherine T.

    2014-01-01

    INTRODUCTION Pancreatic neuroendocrine tumors (PNET) are rare, often indolent malignancies. PNET are classified as functional or nonfunctional based on the secretion of hormones without a negative feedback loop; the latter account for up to 60% of PNET. Although PNET are associated with a better prognosis compared to pancreatic adenocarcinomas, they are often diagnosed in advanced stages, making them a significant source of morbidity for patients. Here we present a rare case of venous tumor thrombus arising from a nonfunctional PNET. PRESENTATION OF CASE A 44-year-old woman was referred for evaluation and treatment of a possible tail of pancreas PNET discovered during work-up for a 9 year history of intermittent subcostal pain. Previous endoscopic ultrasound with fine needle aspiration revealed a 3.5 cm × 3 cm mass, with cytological diagnosis of neuroendocrine tumor. Patient was scheduled for laparoscopic distal pancreatectomy. During surgery the mass was found to encase the splenic vein leading the surgeon to perform an en bloc distal pancreatectomy and splenectomy. Pathologic analysis revealed a 1.8 cm × 5 cm tumor thrombus lodged in the splenic vein. DISCUSSION Nonfunctional PNET usually present in advanced stages and can be associated with venous tumor thrombi. Preoperative imaging may not accurately predict the presence of venous tumor thrombi. CONCLUSION En bloc resection of primary tumor, involved organs and thrombus is the recommended treatment option and often results in long term survival. New multi-modality strategies are needed for detection of venous involvement in nonfunctional PNET to better assist with preoperative planning and counseling. PMID:25460491

  20. uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors.

    PubMed

    Sobrevals, Luciano; Mato-Berciano, Ana; Urtasun, Nerea; Mazo, Adela; Fillat, Cristina

    2014-01-01

    Pancreatic tumors contain cancer stem cells highly resistant to chemotherapy. The identification of therapies that can eliminate this population of cells might provide with more effective treatments. In the current work we evaluated the potential of oncolytic adenoviruses to act against pancreatic cancer stem cells (PCSC). PCSC from two patient-derived xenograft models were isolated from orthotopic pancreatic tumors treated with saline, or with the chemotherapeutic agent gemcitabine. An enrichment in the number of PCSC expressing the cell surface marker CD133 and a marked enhancement on tumorsphere formation was observed in gemcitabine treated tumors. No significant increase in the CD44, CD24, and epithelial-specific antigen (ESA) positive cells was observed. Neoplastic sphere-forming cells were susceptible to adenoviral infection and exposure to oncolytic adenoviruses resulted in elevated cytotoxicity with both Adwt and the tumor specific AduPARE1A adenovirus. In vivo, intravenous administration of a single dose of AduPARE1A in human-derived pancreatic xenografts led to a remarkable anti-tumor effect. In contrast to gemcitabine AduPARE1A treatment did not result in PCSC enrichment. No enrichment on tumorspheres neither on the CD133(+) population was detected. Therefore our data provide evidences of the relevance of uPAR-controlled oncolytic adenoviruses for the elimination of pancreatic cancer stem cells. © 2013.

  1. [DIAGNOSIS OF VASCULAR INVASION BY PANCREATIC TUMORS].

    PubMed

    Dronov, O I; Zemskov, S V; Bakunets, P P

    2016-02-01

    Basing on analysis of own material (84 patients) and data of literature there was established, that vascular invasion by pancreatic tumors constitutes the main obstacle for conduction of the patients' radical treatment. Early diagnosis permits radical resectability of the patients, what constitutes the only one effective method of treatment. In vascular invasion by tumor a surgeon experience and professional preparation determines possibility of the extended operation performance with intervention on affected main vessel, enhancing the treatment radicalism.

  2. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    PubMed

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  3. Determinants of surgical resection for pancreatic neuroendocrine tumors.

    PubMed

    Doi, Ryuichiro

    2015-08-01

    Pancreatic neuroendocrine tumors (pNETs) include functioning and non-functional tumors. Functioning tumors consist of tumors that produce a variety of hormones and their clinical effects. Therefore, determinants of resection of pNETs should be discussed for each group of tumors. Less than 10% of insulinomas are malignant, therefore more than 90% of the cases can be cured by surgical resection. Lymphadenectomy is generally not necessary in insulinoma operation. If preoperative localization of the insulinoma is completed, enucleation from the pancreatic body or tail, and distal pancreatectomy can be performed safely by laparoscopy. When preoperative localization of a sporadic insulinoma is not confirmed, surgical exploration is needed. Intraoperative localization of a tumor, intraoperative insulin sampling and frozen section are required. The crucial purpose of surgical resection is to control inappropriate insulin secretion by removing all insulinomas. Gastrinomas are usually located in the duodenum or pancreas, which secrete gastrin and cause Zollinger-Ellison syndrome (ZES). Duodenal gastrinomas are usually small, therefore they are not seen on preoperative imaging studies or endoscopic ultrasound, and can be found only at surgery if a duodenotomy is performed. In addition, lymph node metastasis is found in 40-60% of cases. Therefore, the experienced surgeons should direct operation for gastrinomas. Surgical exploration with duodenotomy should be performed at a laparotomy. Other functioning pNETs can occur in the pancreas or in other locations. Curative resection is always recommended whenever possible after optimal symptomatic control of the clinical syndrome by medical treatment. Indications for surgery depend on clinical symptom control, tumor size, location, extent, malignancy and presence of metastasis. A lot of non-functioning pNETs are found incidentally according to the quality improvement of imaging techniques. Localized, small, malignant non

  4. Postoperative Outcomes of Enucleation and Standard Resections in Patients with a Pancreatic Neuroendocrine Tumor.

    PubMed

    Jilesen, Anneke P J; van Eijck, Casper H J; Busch, Olivier R C; van Gulik, Thomas M; Gouma, Dirk J; van Dijkum, Els J M Nieveen

    2016-03-01

    Either enucleation or more extended resection is performed to treat patients with pancreatic neuroendocrine tumor (pNET). Aim was to analyze the postoperative complications for each operation separately. Furthermore, independent risk factors for complications and incidence of pancreatic insufficiency were analyzed. Retrospective all resected patients from two academic hospitals in The Netherlands between 1992 and 2013 were included. Postoperative complications were scored by both ISGPS and Clavien-Dindo criteria. Based on tumor location, operations were compared. Independent risk factors for overall complications were identified. During long-term follow-up, pancreatic insufficiency and recurrent disease were analyzed. Tumor enucleation was performed in 60/205 patients (29%), pancreatoduodenectomy in 65/205 (31%), distal pancreatectomy in 72/205 (35%) and central pancreatectomy in 8/205 (4%) patients. Overall complications after tumor enucleation of the pancreatic head and pancreatoduodenectomy were comparable, 24/35 (69%) versus 52/65 (80%). The same was found after tumor enucleation and resection of the pancreatic tail (36 vs.58%). Number of re-interventions and readmissions were comparable between all operations. After pancreatoduodenectomy, 33/65 patients had lymph node metastasis and in patients with tumor size ≤2 cm, 55% had lymph node metastasis. Tumor in the head and BMI ≥25 kg/m(2) were independent risk factors for complications after enucleation. During follow-up, incidence of exocrine and endocrine insufficiency was significant higher after pancreatoduodenectomy (resp. 55 and 19%) compared to the tumor enucleation and distal pancreatectomy (resp. 5 and 7% vs. 8 and 13%). After tumor enucleation 19% developed recurrent disease. Since the complication rate, need for re-interventions and readmissions were comparable for all resections, tumor enucleation may be regarded as high risk. Appropriate operation should be based on tumor size, location, and

  5. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity.

    PubMed

    Katsiougiannis, Stergios; Chia, David; Kim, Yong; Singh, Ram P; Wong, David T W

    2017-03-01

    Tumor exosomes are emerging as antitumor immunity regulators; however, their effects on secondary exosome secretion by distal organs have not been explored. We have previously demonstrated that suppression of exosomes at the distal tumor site of pancreatic ductal adenocarcinoma (PDAC) ablated the development of salivary biomarker profile. Here, we explore the function of salivary exosomes from tumor-bearing mice in immune surveillance. We provide evidence that salivary exosomes from mice with PDAC exhibit a suppressive effect that results in reduced tumor-killing capacity by NK cells. Salivary exosomes from mice with PDAC where pancreatic tumors were engineered to suppress exosome biogenesis failed to suppress NK cell cytotoxic potential against tumor cells, as opposed to salivary exosomes from mice with PDAC with normal tumor exosome biogenesis. These results reveal an important and previously unknown mechanism of antitumor immune regulation and provide new insights into our understanding of the alterations of this biofluid during tumor development.-Katsiougiannis, S., Chia, D., Kim, Y., Singh, R. P., Wong, D. T. W. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity. © FASEB.

  6. State-of-the-art pancreatic MRI.

    PubMed

    Sandrasegaran, Kumaresan; Lin, Chen; Akisik, Fatih M; Tann, Mark

    2010-07-01

    The purpose of this article is to discuss the most current techniques used for pancreatic imaging, highlighting the advantages and disadvantages of state-of-the-art and emerging pulse sequences and their application to pancreatic disease. Given the technologic advances of the past decade, pancreatic MRI protocols have evolved. Most sequences can now be performed in one or a few breath-holds; 3D sequences with thin, contiguous slices offer improved spatial resolution; and better fat and motion suppression allow improved contrast resolution and image quality. The diagnostic potential of MRCP is now almost as good as ERCP, with pancreatic MRI as the main imaging technique to investigate biliopancreatic pain, chronic pancreatitis, and cystic pancreatic tumors at many institutions. In addition, functional information is provided with secretin-enhanced MRCP.

  7. Somatostatin Receptor-1 Induces Cell Cycle Arrest and Inhibits Tumor Growth in Pancreatic Cancer

    PubMed Central

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F. Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E.

    2010-01-01

    Functional somatostatin receptors (SSTRs) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G0/G1 growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n=5, p<0.05, t-test), and inhibited tumor weight by 69% and 47%, (n=5, p<0.05, t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  8. Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Koay, Eugene J.; Baio, Flavio E.; Ondari, Alexander; Truty, Mark J.; Cristini, Vittorio; Thomas, Ryan M.; Chen, Rong; Chatterjee, Deyali; Kang, Ya'an; Zhang, Joy; Court, Laurence; Bhosale, Priya R.; Tamm, Eric P.; Qayyum, Aliya; Crane, Christopher H.; Javle, Milind; Katz, Matthew H.; Gottumukkala, Vijaya N.; Rozner, Marc A.; Shen, Haifa; Lee, Jeffrey E.; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L.; Wolff, Robert A.; Maitra, Anirban; Ferrari, Mauro; Varadhachary, Gauri R.; Fleming, Jason B.

    2014-12-01

    There is substantial heterogeneity in the clinical behavior of pancreatic cancer and in its response to therapy. Some of this variation may be due to differences in delivery of cytotoxic therapies between patients and within individual tumors. Indeed, in 12 patients with resectable pancreatic cancer, we previously demonstrated wide inter-patient variability in the delivery of gemcitabine as well as in the mass transport properties of tumors as measured by computed tomography (CT) scans. However, the variability of drug delivery and transport properties within pancreatic tumors is currently unknown. Here, we analyzed regional measurements of gemcitabine DNA incorporation in the tumors of the same 12 patients to understand the degree of intra-tumoral heterogeneity of drug delivery. We also developed a volumetric segmentation approach to measure mass transport properties from the CT scans of these patients and tested inter-observer agreement with this new methodology. Our results demonstrate significant heterogeneity of gemcitabine delivery within individual pancreatic tumors and across the patient cohort, with gemcitabine DNA incorporation in the inner portion of the tumors ranging from 38 to 74% of the total. Similarly, the CT-derived mass transport properties of the tumors had a high degree of heterogeneity, ranging from minimal difference to almost 200% difference between inner and outer portions of the tumor. Our quantitative method to derive transport properties from CT scans demonstrated less than 5% difference in gemcitabine prediction at the average CT-derived transport value across observers. These data illustrate significant inter-patient and intra-tumoral heterogeneity in the delivery of gemcitabine, and highlight how this variability can be reproducibly accounted for using principles of mass transport. With further validation as a biophysical marker, transport properties of tumors may be useful in patient selection for therapy and prediction of

  9. Duodenum-preserving resection and Roux-en-Y pancreatic jejunostomy in benign pancreatic head tumors.

    PubMed

    Yuan, Chun-Hui; Tao, Ming; Jia, Yi-Mu; Xiong, Jing-Wei; Zhang, Tong-Lin; Xiu, Dian-Rong

    2014-11-28

    This study was conducted to explore the feasibility of partial pancreatic head resection and Roux-en-Y pancreatic jejunostomy for the treatment of benign tumors of the pancreatic head (BTPH). From November 2006 to February 2009, four patients (three female and one male) with a mean age of 34.3 years (range: 21-48 years) underwent partial pancreatic head resection and Roux-en-Y pancreatic jejunostomy for the treatment of BTPH (diameters of 3.2-4.5 cm) using small incisions (5.1-7.2 cm). Preoperative symptoms include one case of repeated upper abdominal pain, one case of drowsiness and two cases with no obvious preoperative symptoms. All four surgeries were successfully performed. The mean operative time was 196.8 min (range 165-226 min), and average blood loss was 138.0 mL (range: 82-210 mL). The mean postoperative hospital stay was 7.5 d (range: 7-8 d). In one case, the main pancreatic duct was injured. Pathological examination confirmed that one patient suffered from mucinous cystadenoma, one exhibited insulinoma, and two patients had solid-pseudopapillary neoplasms. There were no deaths or complications observed during the perioperative period. All patients had no signs of recurrence of the BTPH within a follow-up period of 48-76 mo and had good quality of life without diabetes. Partial pancreatic head resection with Roux-en-Y pancreatic jejunostomy is feasible in selected patients with BTPH.

  10. MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma.

    PubMed

    Tinder, Teresa L; Subramani, Durai B; Basu, Gargi D; Bradley, Judy M; Schettini, Jorge; Million, Arefayene; Skaar, Todd; Mukherjee, Pinku

    2008-09-01

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic adenocarcinoma. However, the role of MUC1 in pancreatic cancer has been elusive, partly due to the lack of an appropriate model. We report the characterization of a novel mouse model that expresses human MUC1 as a self molecule (PDA.MUC1 mice). Pancreatic tumors arise in an appropriate MUC1-tolerant background within an immune-competent host. Significant enhancement in the development of pancreatic intraepithelial preneoplastic lesions and progression to adenocarcinoma is observed in PDA.MUC1 mice, possibly due to increased proliferation. Tumors from PDA.MUC1 mice express higher levels of cyclooxygenase-2 and IDO compared with PDA mice lacking MUC1, especially during early stages of tumor development. The increased proinflammatory milieu correlates with an increased percentage of regulatory T cells and myeloid suppressor cells in the pancreatic tumor and tumor draining lymph nodes. Data shows that during pancreatic cancer progression, MUC1-mediated mechanisms enhance the onset and progression of the disease, which in turn regulate the immune responses. Thus, the mouse model is ideally suited for testing novel chemopreventive and therapeutic strategies against pancreatic cancer.

  11. MUC1 enhances tumor progression and contributes towards immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma

    PubMed Central

    Tinder, Teresa L.; Subramani, Durai B.; Basu, Gargi D.; Bradley, Judy M.; Schettini, Jorge; Million, Arefayene; Skaar, Todd

    2008-01-01

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic adenocarcinoma. However, the role of MUC1 in pancreatic cancer has been elusive, partly due to the lack of an appropriate model. We report the characterization of a novel mouse model that expresses human MUC1 as a self molecule (PDA.MUC1 mice). Pancreatic tumors arise in an appropriate MUC1-tolerant background within an immune competent host. Significant enhancement in the development of pancreatic intraepithelial pre-neoplastic lesions (PanINs) and progression to adenocarcinoma is observed in PDA.MUC1 mice, possibly due to increased proliferation. Tumors from PDA.MUC1 mice express higher levels of cyclooxygenase-2 and indoleamine 2,3, dioxygenase compared to PDA mice lacking MUC1, especially during early stages of tumor development. The increased pro-inflammatory milieu correlates with an increased percentage of regulatory T cells and myeloid suppressor cells in the pancreatic tumor and tumor draining lymph nodes. Data shows that during pancreatic cancer progression, MUC1-mediated mechanisms enhance the onset and progression of the disease which in turn regulate the immune responses. Thus, the mouse model is ideally-suited for testing novel chemopreventive and therapeutic strategies against pancreatic cancer. PMID:18713982

  12. Pancreatic Neuroendocrine Tumor with Atypical Radiologic Presentation.

    PubMed

    Singh, Ramandeep; Calhoun, Sean; Shin, Minchul; Katz, Robert

    2008-01-01

    An atypical radiographic presentation of a rare non-functional pancreatic neuroendocrine tumor as seen on US, CT and MRI is described. Radiographic-pathologic correlation via gross autopsy specimens and immuno-histochemical staining demonstrates the pancreas to be markedly enlarged with extensive calcifications and numerous tiny cysts secondary to diffuse neoplastic infiltration without a focal mass.

  13. Opportunities and Challenges for Pancreatic Circulating Tumor Cells.

    PubMed

    Nagrath, Sunitha; Jack, Rhonda M; Sahai, Vaibhav; Simeone, Diane M

    2016-09-01

    Sensitive and reproducible platforms have been developed for detection, isolation, and enrichment of circulating tumor cells (CTCs)-rare cells that enter the blood from solid tumors, including those of the breast, prostate gland, lung, pancreas, and colon. These might be used as biomarkers in diagnosis or determination of prognosis. CTCs are no longer simply detected and quantified; they are now used in ex vivo studies of anticancer agents and early detection. We review what we have recently learned about CTCs from pancreatic tumors, describing advances in their isolation and analysis and challenges to their clinical utility. We summarize technologies used to isolate CTCs from blood samples of patients with pancreatic cancer, including immunoaffinity and label-free physical attribute-based capture. We explain methods of CTC analysis and how findings from these studies might be used to detect cancer at earlier stages, monitor disease progression, and determine prognosis. We review studies that have expanded CTCs for testing of anticancer agents and how these approaches might be used to personalize treatment. Advances in the detection, isolation, and analysis of CTCs have increased our understanding of the dissemination and progression of pancreatic cancer. However, standardization of methodologies and prospective studies are needed for this emerging technology to have a significant effect on clinical care. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Extended pancreatectomy as defined by the ISGPS: useful in selected cases of pancreatic cancer but invaluable in other complex pancreatic tumors.

    PubMed

    Mitra, Abhishek; Pai, Esha; Dusane, Rohit; Ranganathan, Priya; DeSouza, Ashwin; Goel, Mahesh; Shrikhande, Shailesh V

    2018-03-01

    Extended pancreatectomy aimed at R0 resection of pancreatic tumors with adjacent vessel and organ involvement may be the only option for cure. This study was done with an objective to analyze the short- and long-term outcomes of extended pancreatic resections. All pancreatectomies performed between 2006 and 2015 were included. The pancreatectomies were classified as standard or extended, as per the International Study Group for Pancreatic Surgery. All surgical complications and terminologies were according to Clavien-Dindo classification and International Study Group for Pancreatic Surgery guidelines. Morbidity and mortality were primary outcomes and disease-free survival was a secondary outcome. Sixty-three extended and 620 standard pancreatectomies were performed. Major morbidity (Clavien grades III, IV and V) (37 vs. 29%, p = 0.21) and mortality (6 vs. 4%, p = 0.3) for extended pancreatectomies were comparable to those for standard pancreatectomies. Blood loss > 855 ml, need for blood transfusion, and tumor size were independent risk factors for morbidity, and the latter two for mortality. Standard pancreatectomies were associated with better 3-year disease-free survival than extended pancreatectomies (67 vs. 41%, p < 0.001). Extended pancreatectomies resulted in a significantly better median disease-free survival for non-pancreatic adenocarcinoma vs. pancreatic adenocarcinoma (33.3 vs. 9.5 months, p = 0.01). Extended pancreatectomies resulted in similar peri-operative morbidity and mortality compared to standard pancreatectomies. Although the survival of patients undergoing these complex procedures is inferior to standard pancreatectomies, they should be undertaken not only in selected cases of pancreatic cancer but even more so in other complex pancreatic tumors.

  15. Gastrointestinal Neuroendocrine Tumors: Pancreatic Endocrine Tumors

    PubMed Central

    Metz, David C.

    2008-01-01

    Pancreatic endocrine tumors (PETs) have long fascinated clinicians and investigators despite their relative rarity. Their clinical presentation varies depending upon whether the tumor is functional or not and also according to the specific hormonal syndrome produced. Tumors may be sporadic or inherited but little is known about their molecular pathology, especially the sporadic forms. Chromogranin A appears to be the most useful serum marker for diagnosis, staging and monitoring. Initially, therapy should be directed at the hormonal syndrome as this has the major initial impact on the patient's health. Most PETs are relatively indolent but ultimately malignant, except for insulinomas which are predominantly benign. Surgery is the only modality that offers the possibility of cure although it is generally noncurative in patients with Zollinger-Ellison syndrome or nonfunctional PETs with MEN1. Preoperative staging of disease extent is necessary to determine the likelihood of complete resection though debulking surgery is often felt to be useful in unresectable patients. Once metastatic, biotherapy is usually the first modality employed because it is generally well tolerated. Systemic or regional therapies are generally reserved until symptoms occur or tumor growth is rapid. Recently a number of newer agents, as well as receptor-directed radiotherapy, are being evalulated for patients with advanced disease. This review addresses a number of recent advances regarding the molecular pathology, diagnosis, localization and management of PETs including discussion of peptide receptor radionuclide therapy and other novel antitumor approaches. We conclude with a discussion of future directions and unsettled problems in the field. PMID:18703061

  16. Clinical impact of circulating tumor cells and therapy response in pancreatic cancer.

    PubMed

    Okubo, K; Uenosono, Y; Arigami, T; Mataki, Y; Matsushita, D; Yanagita, S; Kurahara, H; Sakoda, M; Kijima, Y; Maemura, K; Natsugoe, S

    2017-06-01

    Among gastrointestinal cancers, the prognosis of pancreatic cancer is one of the poorest, with a large number of patients being diagnosed with unresectable tumors at the first visit to a doctor. The aims of the present study were to investigate the circulating tumor cells (CTC) in peripheral blood in order to assess their clinical significance in patients with pancreatic cancer. Sixty-five patients with advanced pancreatic cancer were enrolled. Borderline resectable pancreatic tumor patients were 9, and Unresectable patients were 56. The CellSearch system was used to isolate and enumerate CTCs. CTCs were identified in 21 out of 65 patients (32.3%) with only unresectable tumors. The overall survival rate was significantly lower in unresectable patients with than in those without CTCs (P = 0.0051). CTC positivity was significantly higher in patients with than in those without liver metastasis. A multivariate analysis identified the presence or absence of CTCs as an independent prognostic factor. Follow-up blood specimens were obtained from 40 patients treated with chemotherapy or chemoradiotherapy. The incidences of CTC positivity at three months after beginning of treatments in patients with progressive disease and stable disease or a partial response were 45.4% and 24.1%, respectively. The overall survival rate was significantly lower in patients with than in those without CTCs even after treatments (P = 0.045). CTC numbers represents a useful tool for predicting prognoses and therapeutic responses to chemotherapy among patients with advanced pancreatic cancer. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  17. Carcinoma of the pancreatic head and periampullary region. Tumor staging with laparoscopy and laparoscopic ultrasonography.

    PubMed Central

    John, T G; Greig, J D; Carter, D C; Garden, O J

    1995-01-01

    OBJECTIVE: The authors performed a prospective evaluation of staging laparoscopy with laparoscopic ultrasonography in predicting surgical resectability in patients with carcinomas of the pancreatic head and periampullary region. SUMMARY BACKGROUND DATA: Pancreatic resection with curative intent is possible in a select minority of patients who have carcinomas of the pancreatic head and periampullary region. Patient selection is important to plan appropriate therapy and avoid unnecessary laparotomy in patients with unresectable disease. Laparoscopic ultrasonography is a novel technique that combines the proven benefits of staging laparoscopy with high resolution intraoperative ultrasound of the liver and pancreas, but which has yet to be evaluated critically in the staging of pancreatic malignancy. METHODS: A cohort of 40 consecutive patients referred to a tertiary referral center and with a diagnosis of potentially resectable pancreatic or periampullary cancer underwent staging laparoscopy with laparoscopic ultrasonography. The diagnostic accuracy of staging laparoscopy alone and in conjunction with laparoscopic ultrasonography was evaluated in predicting tumor resectability (absence of peritoneal or liver metastases; absence of malignant regional lymphadenopathy; tumor confined to pancreatic head or periampullary region). RESULTS: "Occult" metastatic lesions were demonstrated by staging laparoscopy in 14 patients (35%). Laparoscopic ultrasonography demonstrated factors confirming unresectable tumor in 23 patients (59%), provided staging information in addition to that of laparoscopy alone in 20 patients (53%), and changed the decision regarding tumor resectability in 10 patients (25%). Staging laparoscopy with laparoscopic ultrasonography was more specific and accurate in predicting tumor resectability than laparoscopy alone (88% and 89% versus 50% and 65%, respectively). CONCLUSIONS: Staging laparoscopy is indispensable in the detection of "occult" intra

  18. Nonlocal Means Denoising of Self-Gated and k-Space Sorted 4-Dimensional Magnetic Resonance Imaging Using Block-Matching and 3-Dimensional Filtering: Implications for Pancreatic Tumor Registration and Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jun; McKenzie, Elizabeth; Fan, Zhaoyang

    Purpose: To denoise self-gated k-space sorted 4-dimensional magnetic resonance imaging (SG-KS-4D-MRI) by applying a nonlocal means denoising filter, block-matching and 3-dimensional filtering (BM3D), to test its impact on the accuracy of 4D image deformable registration and automated tumor segmentation for pancreatic cancer patients. Methods and Materials: Nine patients with pancreatic cancer and abdominal SG-KS-4D-MRI were included in the study. Block-matching and 3D filtering was adapted to search in the axial slices/frames adjacent to the reference image patch in the spatial and temporal domains. The patches with high similarity to the reference patch were used to collectively denoise the 4D-MRI image. Themore » pancreas tumor was manually contoured on the first end-of-exhalation phase for both the raw and the denoised 4D-MRI. B-spline deformable registration was applied to the subsequent phases for contour propagation. The consistency of tumor volume defined by the standard deviation of gross tumor volumes from 10 breathing phases (σ-GTV), tumor motion trajectories in 3 cardinal motion planes, 4D-MRI imaging noise, and image contrast-to-noise ratio were compared between the raw and denoised groups. Results: Block-matching and 3D filtering visually and quantitatively reduced image noise by 52% and improved image contrast-to-noise ratio by 56%, without compromising soft tissue edge definitions. Automatic tumor segmentation is statistically more consistent on the denoised 4D-MRI (σ-GTV = 0.6 cm{sup 3}) than on the raw 4D-MRI (σ-GTV = 0.8 cm{sup 3}). Tumor end-of-exhalation location is also more reproducible on the denoised 4D-MRI than on the raw 4D-MRI in all 3 cardinal motion planes. Conclusions: Block-matching and 3D filtering can significantly reduce random image noise while maintaining structural features in the SG-KS-4D-MRI datasets. In this study of pancreatic tumor segmentation, automatic segmentation of GTV in the registered image sets is shown

  19. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors

    PubMed Central

    Krampitz, Geoffrey Wayne; George, Benson M.; Willingham, Stephen B.; Volkmer, Jens-Peter; Weiskopf, Kipp; Jahchan, Nadine; Newman, Aaron M.; Sahoo, Debashis; Zemek, Allison J.; Yanovsky, Rebecca L.; Nguyen, Julia K.; Schnorr, Peter J.; Mazur, Pawel K.; Sage, Julien; Longacre, Teri A.; Visser, Brendan C.; Poultsides, George A.; Norton, Jeffrey A.; Weissman, Irving L.

    2016-01-01

    Pancreatic neuroendocrine tumors (PanNETs) are a type of pancreatic cancer with limited therapeutic options. Consequently, most patients with advanced disease die from tumor progression. Current evidence indicates that a subset of cancer cells is responsible for tumor development, metastasis, and recurrence, and targeting these tumor-initiating cells is necessary to eradicate tumors. However, tumor-initiating cells and the biological processes that promote pathogenesis remain largely uncharacterized in PanNETs. Here we profile primary and metastatic tumors from an index patient and demonstrate that MET proto-oncogene activation is important for tumor growth in PanNET xenograft models. We identify a highly tumorigenic cell population within several independent surgically acquired PanNETs characterized by increased cell-surface protein CD90 expression and aldehyde dehydrogenase A1 (ALDHA1) activity, and provide in vitro and in vivo evidence for their stem-like properties. We performed proteomic profiling of 332 antigens in two cell lines and four primary tumors, and showed that CD47, a cell-surface protein that acts as a “don’t eat me” signal co-opted by cancers to evade innate immune surveillance, is ubiquitously expressed. Moreover, CD47 coexpresses with MET and is enriched in CD90hi cells. Furthermore, blocking CD47 signaling promotes engulfment of tumor cells by macrophages in vitro and inhibits xenograft tumor growth, prevents metastases, and prolongs survival in vivo. PMID:27035983

  20. CD133+ tumor initiating cells in a syngenic murine model of pancreatic cancer respond to Minnelide.

    PubMed

    Banerjee, Sulagna; Nomura, Alice; Sangwan, Veena; Chugh, Rohit; Dudeja, Vikas; Vickers, Selwyn M; Saluja, Ashok

    2014-05-01

    Pancreatic adenocarcinoma is the fourth leading cause for cancer-related mortality with a survival rate of less than 5%. Late diagnosis and lack of effective chemotherapeutic regimen contribute to these grim survival statistics. Relapse of any tumor is largely attributed to the presence of tumor-initiating cells (TIC) or cancer stem cells (CSC). These cells are considered as hurdles to cancer therapy as no known chemotherapeutic compound is reported to target them. Thus, there is an urgent need to develop a TIC-targeted therapy for pancreatic cancer. We isolated CD133(+) cells from a spontaneous pancreatic ductal adenocarcinoma mouse model and studied both surface expression, molecular markers of pancreatic TICs. We also studied tumor initiation properties by implanting low numbers of CD133(+) cells in immune competent mice. Effect of Minnelide, a drug currently under phase I clinical trial, was studied on the tumors derived from the CD133(+) cells. Our study showed for the first time that CD133(+) population demonstrated all the molecular markers for pancreatic TIC. These cells initiated tumors in immunocompetent mouse models and showed increased expression of prosurvival and proinvasive proteins compared to the CD133(-) non-TIC population. Our study further showed that Minnelide was very efficient in downregulating both CD133(-) and CD133(+) population in the tumors, resulting in a 60% decrease in tumor volume compared with the untreated ones. As Minnelide is currently under phase I clinical trial, its evaluation in reducing tumor burden by decreasing TIC as well as non-TIC population suggests its potential as an effective therapy. ©2014 AACR.

  1. Intraductal delivery of adenoviruses targets pancreatic tumors in transgenic Ela-myc mice and orthotopic xenografts.

    PubMed

    José, Anabel; Sobrevals, Luciano; Miguel Camacho-Sánchez, Juan; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.

  2. WE-G-18C-06: Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J; School of Information Science and Engineering, Shandong University, Jinan, Shandong; Cai, J

    2014-06-15

    Purpose: To investigate whether diaphragm motion is a good surrogate for liver tumor motion by comparing their motion trajectories obtained from cine-MRI. Methods: Fourteen patients with hepatocellular carcinoma (10/14) or liver metastases (4/14) undergoing radiation therapy were included in this study. All patients underwent single-slice 2D cine-MRI simulations across the center of the tumor in three orthogonal planes. Tumor and diaphragm motion trajectories in the superior-inferior (SI), anteriorposterior (AP), and medial-lateral (ML) directions were obtained using the normalized cross-correlation based tracking technique. Agreement between tumor and diaphragm motions was assessed by calculating the phase difference percentage (PDP), intra-class correlation coefficientmore » (ICC), Bland-Altman analysis (Diffs) and paired t-test. The distance (D) between tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between tumor and diaphragm motions. Results: Of all patients, the means (±standard deviations) of PDP were 7.1 (±1.1)%, 4.5 (±0.5)% and 17.5 (±4.5)% in the SI, AP and ML directions, respectively. The means of ICC were 0.98 (±0.02), 0.97 (±0.02), and 0.08 (±0.06) in the SI, AP and ML directions, respectively. The Diffs were 2.8 (±1.4) mm, 2.4 (±1.1) mm, and 2.2 (±0.5) mm in the SI, AP and ML directions, respectively. The p-values derived from the paired t-test were < 0.02 in SI and AP directions, whereas were > 0.58 in ML direction primarily due to the small motion in ML direction. Tumor and diaphragmatic motion had high concordance when the distance between the tumor and tracked diaphragm areas was small. Conclusion: Preliminary results showed that liver tumor motion had good correlations with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be a reliable surrogate for liver tumor motion. NIH (1R21CA165384-01A1), Golfers Against Cancer (GAC

  3. 99mTc-HYNIC-TOC imaging in the evaluation of pancreatic masses which are potential neuroendocrine tumors.

    PubMed

    Qiao, Zhen; Zhang, Jingjing; Jin, Xiaona; Huo, Li; Zhu, Zhaohui; Xing, Haiqun; Li, Fang

    2015-05-01

    The aim of this investigation was to determine the accuracy of the findings and the diagnoses of Tc-hydrazinonicotinyl-Tyr3-octreotide scan (Tc-HYNIC-TOC imaging) in patients with pancreatic masses which were potential neuroendocrine tumors. Records of total 20 patients with pancreatic masses were retrospectively reviewed. All of the patients had been revealed by abdominal contrast CT and possibility of neuroendocrine tumors could not be excluded by CT imaging before Tc-HYNIC-TOC imaging. Tc-HYNIC-TOC imaging was performed at 1 and 4 hours post-tracer injection, and SPECT/CT images of the abdomen were also acquired. The image findings were compared to final diagnoses which were made from pathological examination. Among all 20 pancreatic masses evaluated, there were 16 malignant lesions which included 1 ductal adenocarcinoma and 15 neuroendocrine tumors. Tc-HYNIC-TOC imaging identified 14 of 15 pancreatic neuroendocrine tumors and excluded 4 of 5 lesions which were not neuroendocrine tumors. The overall sensitivity, specificity, and accuracy was therefore 93.3% (14 of 15), 80% (4 of 5), and 90.0% (18 of 20), respectively, in our patient population. Tc-HYNIC-TOC imaging provides reasonable accuracy in the evaluation pancreatic mass suspected to be neuroendocrine tumors.

  4. Diabetic Ketoacidosis with Concurrent Pancreatitis, Pancreatic β Islet Cell Tumor, and Adrenal Disease in an Obese Ferret (Mustela putorius furo)

    PubMed Central

    Phair, Kristen A; Carpenter, James W; Schermerhorn, Thomas; Ganta, Chanran K; DeBey, Brad M

    2011-01-01

    A 5.5-y-old spayed female ferret (Mustela putorius furo) with a history of adrenal disease, respiratory disease, and chronic obesity was evaluated for progressive lethargy and ataxia, diminished appetite, and possible polyuria and polydipsia. Physical examination revealed obesity, lethargy, tachypnea, dyspnea, a pendulous abdomen, significant weakness and ataxia of the hindlimbs, prolonged skin tenting, and mild tail-tip alopecia. Clinicopathologic analysis revealed severe hyperglycemia, azotemia, an increased anion gap, glucosuria, ketonuria, proteinuria, and hematuria. Abdominal ultrasonography showed hyperechoic hepatomegaly, bilateral adrenomegaly, splenic nodules, mild peritoneal effusion, and thickened and mildly hypoechoic limbs of the pancreas with surrounding hyperechoic mesentery. Fine-needle aspirates of the liver were highly suggestive of hepatic lipidosis. In light of a diagnosis of concurrent diabetic ketoacidosis and pancreatitis, the ferret was treated with fluid therapy, regular and long-acting insulin administration, and pain medication. However, electrolyte derangements, metabolic acidosis, dyspnea, and the clinical appearance of the ferret progressively worsened despite treatment, and euthanasia was elected. Necropsy revealed severe hepatic lipidosis, severe suppurative pancreatitis and vacuolar degeneration of pancreatic islet cells, a pancreatic β islet cell tumor, bilateral adrenal cortical adenomas, and myocardial fibrosis. To our knowledge, this case represents the first report of concurrent diabetes mellitus, pancreatitis, pancreatic β islet cell tumor (insulinoma), and adrenal disease in a domestic ferret. The simultaneous existence of 3 endocrine diseases, pancreatitis, and their associated complications is a unique and clinically challenging situation. PMID:21838985

  5. 15-Lipoxygenase-1 Production is Lost in Pancreatic Cancer and Overexpression of the Gene Inhibits Tumor Cell Growth1

    PubMed Central

    Hennig, René; Kehl, Timo; Noor, Seema; Ding, Xian-Zhong; Rao, Sambasiva M; Bergmann, Frank; Fürstenberger, Gerhard; Büchler, Markus W; Friess, Helmut; Krieg, Peter; Adrian, Thomas E

    2007-01-01

    Pancreatic cancer patients have an abysmal prognosis because of late diagnosis and lack of therapeutic options. Pancreatic intraepithelial neoplasias (PanINs), the precursor lesions, are a potential target for chemoprevention. Targeting eicosanoid pathways is an obvious choice because 5-lipoxygenase (5-LOX) has been suggested as a tumor promoter in pancreatic carcinogenesis. Here we provide evidence that 15-lipoxygenase-1 (15-LOX-1) expression and activity may exert antitumorigenic effects in pancreatic cancer. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis showed absence or very weak expression of 15-LOX-1 in all pancreatic cancer cell lines tested. 15-LOX-1 was strongly stained in normal ductal cells, tubular complexes, and centroacinar cells, but no staining was seen in islets, cancer cells, PanIN lesions, or in tumor cells in lymph node metastases, indicating that 15-LOX-1 expression is lost during tumor development in human pancreas. Overexpression of 15-LOX-1 in pancreatic tumor cells or treatment with its arachidonic acid-derived metabolite resulted in decreased cell growth. These findings provide evidence that loss of 15-LOX-1 may play an important role in pancreatic carcinogenesis, possibly as a tumor suppressor gene. Thus, induction of 15-LOX-1 expression may be an attractive option for the prevention and treatment of pancreatic cancer. PMID:18030360

  6. Systematic review on the role of serum tumor markers in the detection of recurrent pancreatic cancer.

    PubMed

    Daamen, Lois A; Groot, Vincent P; Heerkens, Hanne D; Intven, Martijn P W; van Santvoort, Hjalmar C; Molenaar, I Quintus

    2018-04-01

    Biomarker testing can be helpful to monitor disease progression after resection of pancreatic cancer. This systematic review aims to give an overview of the literature on the diagnostic value of serum tumor markers for the detection of recurrent pancreatic cancer during follow-up. A systematic search was performed to 2 October 2017. All studies reporting on the diagnostic value of postoperatively measured serum biomarkers for the detection of pancreatic cancer recurrence were included. Data on diagnostic accuracy of tumor markers were extracted. Forest plots and pooled values of sensitivity and specificity were calculated. Four articles described test results of CA 19-9. A pooled sensitivity and specificity of respectively 0.73 (95% CI 0.66-0.80) and 0.83 (95% CI 0.73-0.91) were calculated. One article reported on CEA, showing a sensitivity of 50% and specificity of 65%. No other serum tumor markers were discussed for surveillance purposes in the current literature. Although testing of serum CA 19-9 has considerable limitations, CA 19-9 remains the most used serum tumor marker for surveillance after surgical resection of pancreatic cancer. Further studies are needed to assess the role of serum tumor marker testing in the detection of recurrent pancreatic cancer and to optimize surveillance strategies. Copyright © 2017 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  7. Acoustic radiation force impulse shear wave elastography (ARFI) of acute and chronic pancreatitis and pancreatic tumor.

    PubMed

    Goertz, Ruediger S; Schuderer, Johanna; Strobel, Deike; Pfeifer, Lukas; Neurath, Markus F; Wildner, Dane

    2016-12-01

    Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. A total of 195 patients were included in the study. Healthy parenchyma (n=21) and lipomatosis (n=30) showed similar shear wave velocities of about 1.3m/s. Acute pancreatitis (n=35), chronic pancreatitis (n=53) and adenocarcinoma (n=52) showed consecutively increasing ARFI values, respectively. NET (n=4) revealed the highest shear wave velocities amounting to 3.62m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Targeted Therapies Improve Survival for Patients with Pancreatic Neuroendocrine Tumors

    Cancer.gov

    In 2011, based on initial findings from two clinical trials, the Food and Drug Administration approved sunitinib and everolimus for patients with pancreatic neuroendocrine tumors. Updated results from the everolimus trial were published in September 2016.

  9. Metformin suppresses pancreatic tumor growth with inhibition of NFκB/STAT3 inflammatory signaling

    PubMed Central

    Tan, Xiang-Lin; Bhattacharyya, Kalyan K.; Dutta, Shamit K.; Bamlet, William R.; Rabe, Kari G.; Wang, Enfeng; Smyrk, Thomas C.; Oberg, Ann L.; Petersen, Gloria M.; Mukhopadhyay, Debabrata

    2015-01-01

    Objectives To further elucidate anti-cancer mechanisms of metformin again pancreatic cancer, we evaluated inhibitory effects of metformin on pancreatic tumorigenesis in a genetically-engineered mouse model, and investigated its possible anti-inflammatory and anti-angiogenesis effects. Methods Six-week old LSL-KrasG12D/+;Trp53F2-10 mice (10 per group) were administered once daily intraperitoneally with saline (control) for one week or metformin (125 mg/kg) for one week (Met_1wk) or three weeks (Met_3wk) prior to tumor initiation. All mice continued with their respective injections for six weeks post-tumor initiation. Molecular changes were evaluated by quantitative polymerase chain reaction (PCR), immunohistochemistry, and Western blotting. Results At euthanasia, pancreatic tumor volume in Met_1wk (median, 181.8 mm3) and Met_3wk (median, 137.9 mm3) groups was significantly lower than the control group (median, 481.1 mm3) (P = 0.001 and 0.0009, respectively). No significant difference was observed between Met_1wk and Met_3wk groups (P = 0.51). These results were further confirmed using tumor weight and tumor burden measurements. Furthermore, metformin treatment decreased the phosphorylation of nuclear factor κB (NFκB) and signal transducer and activator of transcription 3 (STAT3) as well as the expression of Sp1 transcription factor and several NFκB-regulated genes. Conclusions Metformin may inhibit pancreatic tumorigenesis by modulating multiple molecular targets in inflammatory pathways. PMID:25875801

  10. Genetic analysis of circulating tumor cells in pancreatic cancer patients: A pilot study.

    PubMed

    Görner, Karin; Bachmann, Jeannine; Holzhauer, Claudia; Kirchner, Roland; Raba, Katharina; Fischer, Johannes C; Martignoni, Marc E; Schiemann, Matthias; Alunni-Fabbroni, Marianna

    2015-07-01

    Pancreatic cancer is one of the most aggressive malignant tumors, mainly due to an aggressive metastasis spreading. In recent years, circulating tumor cells became associated to tumor metastasis. Little is known about their expression profiles. The aim of this study was to develop a complete workflow making it possible to isolate circulating tumor cells from patients with pancreatic cancer and their genetic characterization. We show that the proposed workflow offers a technical sensitivity and specificity high enough to detect and isolate single tumor cells. Moreover our approach makes feasible to genetically characterize single CTCs. Our work discloses a complete workflow to detect, count and genetically analyze individual CTCs isolated from blood samples. This method has a central impact on the early detection of metastasis development. The combination of cell quantification and genetic analysis provides the clinicians with a powerful tool not available so far. Copyright © 2015. Published by Elsevier Inc.

  11. A Mouse to Human Search for Plasma Proteome Changes Associated with Pancreatic Tumor Development

    PubMed Central

    Faca, Vitor M; Song, Kenneth S; Wang, Hong; Zhang, Qing; Krasnoselsky, Alexei L; Newcomb, Lisa F; Plentz, Ruben R; Gurumurthy, Sushma; Redston, Mark S; Pitteri, Sharon J; Pereira-Faca, Sandra R; Ireton, Renee C; Katayama, Hiroyuki; Glukhova, Veronika; Phanstiel, Douglas; Brenner, Dean E; Anderson, Michelle A; Misek, David; Scholler, Nathalie; Urban, Nicole D; Barnett, Matt J; Edelstein, Cim; Goodman, Gary E; Thornquist, Mark D; McIntosh, Martin W; DePinho, Ronald A; Bardeesy, Nabeel; Hanash, Samir M

    2008-01-01

    Background The complexity and heterogeneity of the human plasma proteome have presented significant challenges in the identification of protein changes associated with tumor development. Refined genetically engineered mouse (GEM) models of human cancer have been shown to faithfully recapitulate the molecular, biological, and clinical features of human disease. Here, we sought to exploit the merits of a well-characterized GEM model of pancreatic cancer to determine whether proteomics technologies allow identification of protein changes associated with tumor development and whether such changes are relevant to human pancreatic cancer. Methods and Findings Plasma was sampled from mice at early and advanced stages of tumor development and from matched controls. Using a proteomic approach based on extensive protein fractionation, we confidently identified 1,442 proteins that were distributed across seven orders of magnitude of abundance in plasma. Analysis of proteins chosen on the basis of increased levels in plasma from tumor-bearing mice and corroborating protein or RNA expression in tissue documented concordance in the blood from 30 newly diagnosed patients with pancreatic cancer relative to 30 control specimens. A panel of five proteins selected on the basis of their increased level at an early stage of tumor development in the mouse was tested in a blinded study in 26 humans from the CARET (Carotene and Retinol Efficacy Trial) cohort. The panel discriminated pancreatic cancer cases from matched controls in blood specimens obtained between 7 and 13 mo prior to the development of symptoms and clinical diagnosis of pancreatic cancer. Conclusions Our findings indicate that GEM models of cancer, in combination with in-depth proteomic analysis, provide a useful strategy to identify candidate markers applicable to human cancer with potential utility for early detection. PMID:18547137

  12. Pancreatic cystic tumors.

    PubMed

    Salvia, R; Festa, L; Butturini, G; Tonsi, A; Sartori, N; Biasutti, C; Capelli, P; Pederzoli, P

    2004-04-01

    Cystic tumors of the pancreas are less frequent than other tumors in neoplastic pancreatic pathology, but in recent years the literature has reported an increasing number. After the first report by Becourt in 1830, cystic tumors were classified into 2 different types by Compagno and Oertel in 1978: benign tumors with glycogen-rich cells and mucinous cystic neoplasms with overt and latent malignancy. The WHO classification of exocrine tumors of the pancreas, published in 1996, is based on the histopathological features of the epithelial wall, which are the main factor in differential diagnosis with cystic lesions of the pancreas. Thanks to the knowledge acquired up to now, a surgical procedure is not always required because the therapeutic choice is conditioned by the correct classification of this heterogeneous group of tumors. Clinical signs are not really useful in the clinical work up, most patients have no symptoms and when clinical signs are present, they may help us to pinpoint the organ of origin but never to identify the type of pathology. In the last few years, the great improvement in imaging has enabled us not only to discriminate cystic from solid lesions, but also to identify the features of the lesions and label them preoperatively. More invasive diagnostic procedures such as fine needle aspiration and intracystic fluid tumor marker level are not really useful because they are not sensitive and the cystic wall can show different degrees of dysplasia and de-epithelialization. These are the reasons for sending the entire specimen to pathology. Good cooperation between surgeons, pathologists, radiologists and gastroenterologists is mandatory to increase the chances of making a proper diagnosis. Therefore, we must analyze all the information we have, such as age, sex, clinical history, location of the tumor and radiological features, in order to avoid the mistake of treating a cystic neoplasm as a benign lesion or as a pseudocyst, as described in the

  13. Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice.

    PubMed

    Thakur, Archana; Bollig, Aliccia; Wu, Jiusheng; Liao, Dezhong J

    2008-01-24

    Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT) and liver metastatic lesions (LM) compared to normal pancreas (NP). In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1) and Serine proteinase inhibitor A1 (Serpina1), and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.

  14. APC promoter is frequently methylated in pancreatic juice of patients with pancreatic carcinomas or periampullary tumors.

    PubMed

    Ginesta, Mireia M; Diaz-Riascos, Zamira Vanessa; Busquets, Juli; Pelaez, Núria; Serrano, Teresa; Peinado, Miquel Àngel; Jorba, Rosa; García-Borobia, Francisco Javier; Capella, Gabriel; Fabregat, Joan

    2016-09-01

    Early detection of pancreatic and periampullary neoplasms is critical to improve their clinical outcome. The present authors previously demonstrated that DNA hypermethylation of adenomatous polyposis coli (APC), histamine receptor H2 (HRH2), cadherin 13 (CDH13), secreted protein acidic and cysteine rich (SPARC) and engrailed-1 (EN-1) promoters is frequently detected in pancreatic tumor cells. The aim of the present study was to assess their prevalence in pancreatic juice of carcinomas of the pancreas and periampullary area. A total of 135 pancreatic juices obtained from 85 pancreatic cancer (PC), 26 ampullary carcinoma (AC), 10 intraductal papillary mucinous neoplasm (IPMN) and 14 chronic pancreatitis (CP) patients were analyzed. The methylation status of the APC, HRH2, CDH13, SPARC and EN-1 promoters was analyzed using methylation specific-melting curve analysis (MS-MCA). Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were also tested with allele-specific quantitative polymerase chain reaction amplification. Out of the 5 promoters analyzed, APC (71%) and HRH2 (65%) were the most frequently methylated in PC juice. APC methylation was also detected at a high frequency in AC (76%) and IPMN (80%), but only occasionally observed in CP (7%). APC methylation had a high sensitivity (71-80%) for all types of cancer analyzed. The panel (where a sample scored as positive when ≥2 markers were methylated) did not outperform APC as a single marker. Finally, KRAS detection in pancreatic juice offered a lower sensitivity (50%) and specificity (71%) for detection of any cancer. APC hypermethylation in pancreatic juice, as assessed by MS-MCA, is a frequent event of potential clinical usefulness in the diagnosis of pancreatic and periampullary neoplasms.

  15. Maintaining tumor targeting accuracy in real-time motion compensation systems for respiration-induced tumor motion.

    PubMed

    Malinowski, Kathleen; McAvoy, Thomas J; George, Rohini; Dieterich, Sonja; D'Souza, Warren D

    2013-07-01

    To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥ 3 mm), and always (approximately once per minute). Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization.

  16. Acute pancreatitis associated with administration of a nitric oxide synthase inhibitor in tumor-bearing dogs.

    PubMed

    Poulson, J M; Dewhirst, M W; Gaskin, A A; Vujaskovic, Z; Samulski, T V; Prescott, D M; Meyer, R E; Page, R L; Thrall, D E

    2000-01-01

    Nitric oxide synthase (NOS) inhibitors have been investigated as potential cytotoxic agents to treat tumors lacking p53 function. Furthermore, their ability to reduce tumor blood flow can be combined with drugs that are specifically designed to kill cells that are hypoxic or to improve temperatures during local heat (hyperthermia) treatment of tumors. This paper reports the unexpected development of acute pancreatitis in two tumor-bearing pet dogs that were treated with the NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) during administration of local hyperthermia. Prior to the use of L-NAME in tumor-bearing dogs, purpose-bred beagles were studied. Following induction of inhalation anesthesia, local hyperthermia was applied to either normal thigh muscle (beagles) or tumors (tumor-bearing dogs). Once a thermal steady state was achieved, L-NAME was administered and temperature monitoring continued. Animals were observed after treatment for evidence of toxicity. The beagles tolerated the treatment well, with no side effects noted either clinically or by routine CBC or blood chemistry analyses. In contrast, the first two tumor-bearing dogs accrued onto the phase I study developed acute pancreatitis in the immediate post-treatment period which necessitated hospitalization and intensive care. The trial was stopped. Both dogs had intercurrent risk factors which predisposed them to development of pancreatitis, although neither had a history of symptoms of pancreatitis at the time the hyperthermia + L-NAME treatment was given. We conclude that caution should be exercised when considering NOS inhibition for cancer treatment. Careful evaluation of history and health status as well as recognition of potential risk factors may be key in avoiding potentially fatal complications. This study demonstrates the value of performing potentially harmful treatments in tumor-bearing dogs prior to introduction into the human clinic.

  17. Salinomycin nanoparticles interfere with tumor cell growth and the tumor microenvironment in an orthotopic model of pancreatic cancer.

    PubMed

    Daman, Zahra; Faghihi, Homa; Montazeri, Hamed

    2018-05-02

    Recently, salinomycin (SAL) has been reported to inhibit proliferation and induce apoptosis in various tumors. The aim of this study was to deliver SAL to orthotopic model of pancreatic cancer by the aid of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). The NPs were physico-chemically characterized and evaluated for cytotoxicity on luciferase-transduced AsPC-1 cells in vitro as well as implanted orthotopically into the pancreas of nude mice. SAL (3.5 mg/kg every other day) blocked tumor growth by 52% compared to the control group after 3 weeks of therapy. Western blotting of tumor protein extracts indicated that SAL treatment leads to up-regulation of E-cadherin, β-catenin, and transforming growth factor beta receptor (TGFβR) expressions in AsPC-1 orthotopic tumor. Noteworthy, immunofluorescence staining of adjacent tumor sections showed that treatment with SAL NPs cause significant apoptosis in the tumor cells rather than the stroma. Further investigations also revealed that TGFβR2 over-expression was induced in stroma cells after treatment with SAL NPs. These results highlight SAL-loaded PLGA NPs as a promising system for pancreatic cancer treatment, while the mechanistic questions need to be subsequently tested.

  18. Evaluation of diagnostic cytology via endoscopic naso-pancreatic drainage for pancreatic tumor

    PubMed Central

    Iwata, Tomoyuki; Kitamura, Katsuya; Yamamiya, Akira; Ishii, Yu; Sato, Yoshiki; Nomoto, Tomohiro; Ikegami, Akitoshi; Yoshida, Hitoshi

    2014-01-01

    AIM: To evaluate the usefulness of cytology of the pancreatic juice obtained via the endoscopic naso-pancreatic drainage tube (ENPD-C). METHODS: ENPD was performed in cases where a diagnosis could not be made other than by using endoscopic retrograde cholangiopancreatography and in cases of pancreatic neoplasms or cystic tumors, including intraductal papillary mucinous neoplasm (IPMN) suspected to have malignant potential. 35 patients (21 males and 14 females) underwent ENPD between January 2007 and June 2013. The pancreatic duct was imaged and the procedure continued in one of ENPD-C or ENPD-C plus brush cytology (ENPD-BC). We checked the cytology result and the final diagnosis. RESULTS: The mean patient age was 69 years (range, 48-86 years). ENPD-C was performed in 24 cases and ENPD-C plus brush cytology (ENPD-BC) in 11 cases. The ENPD tube was inserted for an average of 3.5 d. The final diagnosis was confirmed on the basis of the resected specimen in 18 cases and of follow-up findings at least 6 mo after ENPD in the 18 inoperable cases. Malignancy was diagnosed in 21 cases and 14 patients were diagnosed as having a benign condition. The ratios of class V/IV:III:II/I findings were 7:7:7 in malignant cases and 0:3:11 in benign cases. The sensitivity and specificity for all patients were 33.3% and 100%, respectively. The cytology-positive rate was 37.5% (6/16) for pancreatic cancer. For IPMN cases, the sensitivity and specificity were 33% and 100%, respectively. CONCLUSION: Sensitivity may be further increased by adding brush cytology. Although we can diagnosis cancer in cases of a positive result, the accuracy of ENPD-C remains unsatisfactory. PMID:25132920

  19. Clinical Use of High-Intensity Focused Ultrasound (HIFU) for Tumor and Pain Reduction in Advanced Pancreatic Cancer.

    PubMed

    Strunk, H M; Henseler, J; Rauch, M; Mücke, M; Kukuk, G; Cuhls, H; Radbruch, L; Zhang, L; Schild, H H; Marinova, M

    2016-07-01

    Evaluation of ultrasound-guided high-intensity focused ultrasound (HIFU) used for the first time in Germany in patients with inoperable pancreatic cancer for reduction of tumor volume and relief of tumor-associated pain. 15 patients with locally advanced inoperable pancreatic cancer and tumor-related pain symptoms were treated by HIFU (n = 6 UICC stage III, n = 9 UICC stage IV). 13 patients underwent simultaneous standard chemotherapy. Ablation was performed using the JC HIFU system (Chongqing, China HAIFU Company) with an ultrasonic device for real-time imaging. Imaging follow-up (US, CT, MRI) and clinical assessment using validated questionnaires (NRS, BPI) was performed before and up to 15 months after HIFU. Despite biliary or duodenal stents (4/15) and encasement of visceral vessels (15/15), HIFU treatment was performed successfully in all patients. Treatment time and sonication time were 111 min and 1103 s, respectively. The applied total energy was 386 768 J. After HIFU ablation, contrast-enhanced imaging showed devascularization of treated tumor regions with a significant average volume reduction of 63.8 % after 3 months. Considerable pain relief was achieved in 12 patients after HIFU (complete or partial pain reduction in 6 patients). US-guided HIFU with a suitable acoustic pathway can be used for local tumor control and relief of tumor-associated pain in patients with locally advanced pancreatic cancer. • US-guided HIFU allows an additive treatment of unresectable pancreatic cancer.• HIFU can be used for tumor volume reduction.• Using HIFU, a significant reduction of cancer-related pain was achieved.• HIFU provides clinical benefit in patients with pancreatic cancer. Citation Format: • Strunk HM, Henseler J, Rauch M et al. Clinical Use of High-Intensity Focused Ultrasound (HIFU) for Tumor and Pain Reduction in Advanced Pancreatic Cancer. Fortschr Röntgenstr 2016; 188: 662 - 670. © Georg Thieme Verlag KG

  20. Expression of MUC1, MUC2, MUC3 and MUC4 mucin mRNAs in human pancreatic and intestinal tumor cell lines.

    PubMed

    Hollingsworth, M A; Strawhecker, J M; Caffrey, T C; Mack, D R

    1994-04-15

    We examined the steady-state expression levels of mRNA for the MUC1, MUC2, MUC3 and MUC4 gene products in 12 pancreatic tumor cell lines, 6 colon tumor cell lines, and one ileocecal tumor cell line. The results showed that 10 of 12 pancreatic tumor cell lines expressed MUC1 mRNA and that 7 of these 12 lines also expressed relatively high levels of MUC4 mRNA. In contrast, MUC2 mRNA was expressed at only low levels and MUC3 was not detected in the pancreatic tumor cell lines. All 7 intestinal tumor cell lines examined expressed MUC2, and 5 of 7 expressed MUC3; however only one expressed significant levels of MUC1 and 2 expressed low levels of MUC4 mRNA. This report of high levels of MUC4 mRNA expression by pancreatic tumor cells raises the possibility that mucin carbohydrate epitopes defined by antibodies such as DuPan 2 may be expressed on a second mucin core protein produced by pancreatic tumor cells.

  1. Maintaining tumor targeting accuracy in real-time motion compensation systems for respiration-induced tumor motion

    PubMed Central

    Malinowski, Kathleen; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D’Souza, Warren D.

    2013-01-01

    Purpose: To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Methods: Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥3 mm), and always (approximately once per minute). Results: Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. Conclusions: The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization. PMID:23822413

  2. Abdominal organ motion during inhalation and exhalation breath-holds: pancreatic motion at different lung volumes compared.

    PubMed

    Lens, Eelco; Gurney-Champion, Oliver J; Tekelenburg, Daniël R; van Kesteren, Zdenko; Parkes, Michael J; van Tienhoven, Geertjan; Nederveen, Aart J; van der Horst, Astrid; Bel, Arjan

    2016-11-01

    Contrary to what is commonly assumed, organs continue to move during breath-holding. We investigated the influence of lung volume on motion magnitude during breath-holding and changes in velocity over the duration of breath-holding. Sixteen healthy subjects performed 60-second inhalation breath-holds in room-air, with lung volumes of ∼100% and ∼70% of the inspiratory capacity, and exhalation breath-holds, with lung volumes of ∼30% and ∼0% of the inspiratory capacity. During breath-holding, we obtained dynamic single-slice magnetic-resonance images with a time-resolution of 0.6s. We used 2-dimensional image correlation to obtain the diaphragmatic and pancreatic velocity and displacement during breath-holding. Organ velocity was largest in the inferior-superior direction and was greatest during the first 10s of breath-holding, with diaphragm velocities of 0.41mm/s, 0.29mm/s, 0.16mm/s and 0.15mm/s during BH 100% , BH 70% , BH 30% and BH 0% , respectively. Organ motion magnitudes were larger during inhalation breath-holds (diaphragm moved 9.8 and 9.0mm during BH 100% and BH 70% , respectively) than during exhalation breath-holds (5.6 and 4.3mm during BH 30% and BH 0% , respectively). Using exhalation breath-holds rather than inhalation breath-holds and delaying irradiation until after the first 10s of breath-holding may be advantageous for irradiation of abdominal tumors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer

    PubMed Central

    Tan, Marcus C. B.; Goedegebuure, Peter S.; Belt, Brian A.; Flaherty, Brian; Sankpal, Narendra; Gillanders, William E.; Eberlein, Timothy J.; Hsieh, Chyi-Song; Linehan, David C.

    2013-01-01

    Tumors evade immune destruction by actively inducing immune tolerance through the recruitment of CD4+CD25+Foxp3+ regulatory T cells (Treg). We have previously described increased prevalence of these cells in pancreatic adenocarcinoma, but it remains unclear what mechanisms are involved in recruiting Treg into the tumor microenvironment. Here, we postulated that chemokines might direct Treg homing to tumor. We show, in both human pancreatic adenocarcinoma and a murine pancreatic tumor model (Pan02), that tumor cells produce increased levels of ligands for the CCR5 chemokine receptor, and, reciprocally, that CD4+ Foxp3+ Treg, compared with CD4+ Foxp3− effector T cells, preferentially express CCR5. When CCR5/CCL5 signaling is disrupted, either by reducing CCL5 production by tumor cells or by systemic administration of a CCR5 inhibitor (TAK-779), Treg migration to tumors is reduced and tumors are smaller than in control mice. Thus, this study demonstrates the importance of Treg in immune evasion by tumors, how blockade of Treg migration may inhibit tumor growth, and, specifically in pancreatic adenocarcinoma, the role of CCR5 in the homing of tumor-associated Treg. Selective targeting of CCR5/CCL5 signaling may represent a novel immunomodulatory strategy for the treatment of cancer. PMID:19155524

  4. Telomerase activity is a useful marker to distinguish malignant pancreatic cystic tumors from benign neoplasms and pseudocysts.

    PubMed

    Yeh, T S; Cheng, A J; Chen, T C; Jan, Y Y; Hwang, T L; Jeng, L B; Chen, M F; Wang, T C

    1999-12-01

    Pancreatic serous cystadenoma, mucinous cystic neoplasms, ductal adenocarcinoma with cystic change, and pseudocysts are a spectrum of pancreatic cystic lesions. Their management strategy and prognosis are extremely diverse. Imaging study, cytology, and analysis of the tumor markers of cyst fluid are not always reliable in differentiation of these disease entities. Fifteen patients with pancreatic cystic neoplasms (including six mucinous cystadenocarcinomas, two mucinous cystic neoplasms with borderline malignancy, two mucinous cystadenomas, and five serous cystadenomas), 4 patients with pancreatic ductal adenocarcinomas with cystic change, and 10 patients with pseudocysts were studied. Echo-guided or computed tomography-guided biopsies of pancreatic cystic lesions and their normal counterparts were conducted on all patients prior to operation or other management. The specimens were assayed for telomerase activity by using TRAP (telomere repeat amplification protocol). The level of telomerase activity in each specimen was semiquantitated as strong, moderate, weak, and none. The final diagnoses were made from histopathological examination of surgically resected or biopsied specimens. The efficacy of telomerase activity as a tumor marker to predict malignancy of pancreatic cystic lesions was evaluated. Three of the four pancreatic ductal adenocarcinomas with cystic change had strong or moderate telomerase activity; four of the six mucinous cystadenocarcinomas had moderate or weak telomerase activity; one of the two mucinous cystadenomas with borderline malignancy had weak telomerase activity; and none of their normal counterparts had detectable telomerase activity. In contrast, none of the two mucinous cystadenomas, five serous cystadenomas, and 10 pseudocysts had detectable telomerase activity. Based on these results, the sensitivity of telomerase activity for prediction of malignancy or premalignancy of pancreatic cystic lesions was 67%, the specificity was 100

  5. Characterization of a pancreatic islet cell tumor in a polar bear (Ursus maritimus).

    PubMed

    Fortin, Jessica S; Benoit-Biancamano, Marie-Odile

    2014-01-01

    Herein, we report a 25-year-old male polar bear suffering from a pancreatic islet cell tumor. The aim of this report is to present a case of this rare tumor in a captive polar bear. The implication of potential risk factors such as high carbohydrate diet or the presence of amyloid fibril deposits was assessed. Necropsy examination revealed several other changes, including nodules observed in the liver, spleen, pancreas, intestine, and thyroid glands that were submitted for histopathologic analysis. Interestingly, the multiple neoplastic nodules were unrelated and included a pancreatic islet cell tumor. Immunohistochemistry of the pancreas confirmed the presence of insulin and islet amyloid polypeptide (IAPP) within the pancreatic islet cells. The IAPP gene was extracted from the paraffin-embedded liver tissue and sequenced. IAPP cDNA from the polar bear exhibits some differences as compared to the sequence published for several other species. Different factors responsible for neoplasms in bears such as diet, infectious agents, and industrial chemical exposure are reviewed. This case report raised several issues that further studies may address by evaluating the prevalence of cancers in captive or wild animals. © 2014 Wiley Periodicals, Inc.

  6. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells.

    PubMed

    Fielitz, Kathrin; Althoff, Kristina; De Preter, Katleen; Nonnekens, Julie; Ohli, Jasmin; Elges, Sandra; Hartmann, Wolfgang; Klöppel, Günter; Knösel, Thomas; Schulte, Marc; Klein-Hitpass, Ludger; Beisser, Daniela; Reis, Henning; Eyking, Annette; Cario, Elke; Schulte, Johannes H; Schramm, Alexander; Schüller, Ulrich

    2016-11-15

    Amplification or overexpression of MYCN is involved in development and maintenance of multiple malignancies. A subset of these tumors originates from neural precursors, including the most aggressive forms of the childhood tumors, neuroblastoma and medulloblastoma. In order to model the spectrum of MYCN-driven neoplasms in mice, we transgenically overexpressed MYCN under the control of the human GFAP-promoter that, among other targets, drives expression in neural progenitor cells. However, LSL-MYCN;hGFAP-Cre double transgenic mice did neither develop neural crest tumors nor tumors of the central nervous system, but presented with neuroendocrine tumors of the pancreas and, less frequently, the pituitary gland. Pituitary tumors expressed chromogranin A and closely resembled human pituitary adenomas. Pancreatic tumors strongly produced and secreted glucagon, suggesting that they derived from glucagon- and GFAP-positive islet cells. Interestingly, 3 out of 9 human pancreatic neuroendocrine tumors expressed MYCN, supporting the similarity of the mouse tumors to the human system. Serial transplantations of mouse tumor cells into immunocompromised mice confirmed their fully transformed phenotype. MYCN-directed treatment by AuroraA- or Brd4-inhibitors resulted in significantly decreased cell proliferation in vitro and reduced tumor growth in vivo. In summary, we provide a novel mouse model for neuroendocrine tumors of the pancreas and pituitary gland that is dependent on MYCN expression and that may help to evaluate MYCN-directed therapies.

  7. Targeted Disruption of Orchestration between Stroma and Tumor Cells in Pancreatic Cancer: Molecular Basis and Therapeutic Implications

    PubMed Central

    Kong, Xiangyu; Li, Lei; Li, Zhaoshen; Xie, Keping

    2012-01-01

    Pancreatic cancer is one of the most lethal malignancies, with a prominent desmoplastic reaction as the defining hallmark of the disease. The past several decades have seen dramatic progress in understanding of pancreatic cancer pathogenesis, including the identification of precursor lesions, sequential transformation from normal pancreas to invasive pancreatic cancer and corresponding signature genetic events, and the biological impact of those alterations on malignant behaviors. However, the current therapeutic strategies for epithelial tumor cells, which have exhibited potent antitumor activity in cell culture and animal models, have failed to have significant effects in the clinic. The desmoplastic stroma surrounding pancreatic cancer cells, which accounts for about 90% of a tumor’s mass, clearly is not a passive scaffold for cancer cells but an active contributor to carcinogenesis. Improved understanding of the dynamic interaction between cancer cells and their stroma will be important to designing new, effective therapeutic strategies for pancreatic cancer. This review focuses on the origination of stromal molecular and cellular components in pancreatic tumors, their biological effects on pancreatic cancer cells, and the orchestration between these two components. PMID:22749856

  8. Dual role of Ski in pancreatic cancer cells: tumor-promoting versus metastasis-suppressive function.

    PubMed

    Wang, Peng; Chen, Zhen; Meng, Zhi-Qiang; Fan, Jie; Luo, Jian-Min; Liang, Wang; Lin, Jun-Hua; Zhou, Zhen-Hua; Chen, Hao; Wang, Kun; Shen, Ye-Hua; Xu, Zu-De; Liu, Lu-Ming

    2009-09-01

    Ski used to be defined as an oncogene that contributes to the resistance of tumor cells to transforming growth factor-beta (TGF-beta)-induced growth arrest. As TGF-beta has a dual effect on tumor growth with both tumor-suppressing and -promoting activity depending on the stage of carcinogenesis and the cell type, the precise role of Ski in carcinogenesis remains unclear. In this study, we show that downregulation of Ski through lentivirus-mediated RNA interference decreases tumor growth both in vitro and in vivo, yet promotes cell invasiveness in vitro, and lung metastasis in vivo in the pancreatic cancer cell line SW1990, which contain wild-type Smad4 expression, and the BxPC3 cell line, which is Smad4 deficient. We also show that the downregulation of Ski increases TGF-beta-induced transcriptional activity, which is associated with increased TGF-beta-dependent Smad2/3 phosphorylation, and results in an altered expression profile of TGF-beta-inducible genes involved in metastasis, angiogenesis and cell proliferation and epithelial-mesenchymal transition. Immunohistochemical analysis of specimens from 71 patients with pancreatic adenocarcinoma showed a significant association between overexpression of Ski and decreased patient survival time (P = 0.0024). Our results suggest that Ski may act as a tumor proliferation-promoting factor or as a metastatic suppressor in human pancreatic cancer.

  9. Pancreatic Cancer Tumor Size on CT Scan Versus Pathologic Specimen: Implications for Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvold, Nils D.; Niemierko, Andrzej; Mamon, Harvey J.

    2011-08-01

    Purpose: Pancreatic cancer primary tumor size measurements are often discordant between computed tomography (CT) and pathologic specimen after resection. Dimensions of the primary tumor are increasingly relevant in an era of highly conformal radiotherapy. Methods and Materials: We retrospectively evaluated 97 consecutive patients with resected pancreatic cancer at two Boston hospitals. All patients had CT scans before surgical resection. Primary endpoints were maximum dimension (in millimeters) of the primary tumor in any direction as reported by the radiologist on CT and by the pathologist for the resected gross fresh specimen. Endoscopic ultrasound (EUS) findings were analyzed if available. Results: Ofmore » the patients, 87 (90%) had preoperative CT scans available for review and 46 (47%) had EUS. Among proximal tumors (n = 69), 40 (58%) had pathologic duodenal invasion, which was seen on CT in only 3 cases. The pathologic tumor size was a median of 7 mm larger compared with CT size for the same patient (range, -15 to 43 mm; p < 0.0001), with 73 patients (84%) having a primary tumor larger on pathology than CT. Endoscopic ultrasound was somewhat more accurate, with pathologic tumor size being a median of only 5 mm larger compared with EUS size (range, -15 to 35 mm; p = 0.0003). Conclusions: Computed tomography scans significantly under-represent pancreatic cancer tumor size compared with pathologic specimens in resectable cases. We propose a clinical target volume expansion formula for the primary tumor based on our data. The high rate of pathologic duodenal invasion suggests a risk of duodenal undercoverage with highly conformal radiotherapy.« less

  10. Dietary Fat Stimulates Pancreatic Cancer Growth and Promotes Fibrosis of the Tumor Microenvironment through the Cholecystokinin Receptor.

    PubMed

    Nadella, Sandeep; Burks, Julian; Al-Sabban, Abdulhameed; Inyang, Gloria; Wang, Juan; Tucker, Robin D; Zamanis, Marie E; Bukowski, William; Shivapurkar, Narayan; Smith, Jill P

    2018-06-21

    The gastrointestinal peptide cholecystokinin (CCK) is released from the duodenum in response to dietary fat to aid in digestion, and plasma CCK levels are elevated with the consumption of high fat diets. CCK is also a trophic peptide for the pancreas and has also been shown to stimulate growth of pancreatic cancer. In the current investigation, we studied the influence of a diet high in saturated fat on growth of pancreatic cancer in syngeneic murine models before the mice became obese to exclude the confounding factors associated with obesity. The high fat diet significantly increased growth and metastasis of pancreatic cancer compared to the control diet, and the stimulatory effect was blocked by the CCK-receptor antagonist proglumide. We then selectively knocked out the CCK receptor on the pancreatic cancer cells using CRISPR technology and showed that without CCK receptors, dietary fat was unable to stimulate cancer growth. Next we demonstrated that dietary fat failed to influence pancreatic cancer xenograft growth in genetically engineered CCK peptide knockout mice. The tumor associated fibrosis that is so prevalent in the pancreatic cancer microenvironment was significantly decreased with CCK receptor antagonist therapy since fibroblasts also have CCK receptors. The CCK receptor antagonist proglumide also altered tumor metalloprotease expression and increased tumor suppressor genes by a PCR array. Our studies confirm that a diet high in saturated fat promotes growth of pancreatic cancer and the action is mediated by the CCK- receptor pathway.

  11. [A Case of Pancreatic Neuroendocrine Tumor with Necrolytic Migratory Erythema].

    PubMed

    Hijikawa, Takeshi; Kitade, Hiroaki; Yanagida, Hidesuke; Yamada, Masanori; Yoshioka, Kazuhiko; Shijimaya, Takako; Kiyohara, Takahiro; Uemura, Yoshiko; Kon, Masanori

    2017-10-01

    A 45-year-old man was admitted because of necrolytic migratory erythema. A computed tomographic scan of the abdomen revealed a 4.5cm mass in the tail of the pancreas. We performed distal pancreatectomy and splenectomy, and a definitive diagnosis of pancreatic neuroendocrine tumor(WHO class grade 2)was made histopathologically.

  12. Pancreatic neuroendocrine tumor with complete replacement of the pancreas by serous cystic neoplasms in a patient with von Hippel-Lindau disease: a case report.

    PubMed

    Maeda, Shimpei; Motoi, Fuyuhiko; Oana, Shuhei; Ariake, Kyohei; Mizuma, Masamichi; Morikawa, Takanori; Hayashi, Hiroki; Nakagawa, Kei; Kamei, Takashi; Naitoh, Takeshi; Unno, Michiaki

    2017-09-25

    von Hippel-Lindau disease is a dominantly inherited multi-system syndrome with neoplastic hallmarks. Pancreatic lesions associated with von Hippel-Lindau include serous cystic neoplasms, simple cysts, and neuroendocrine tumors. The combination of pancreatic neuroendocrine tumors and serous cystic neoplasms is relatively rare, and the surgical treatment of these lesions must consider both preservation of pancreatic function and oncological clearance. We report a patient with von Hippel-Lindau disease successfully treated with pancreas-sparing resection of a pancreatic neuroendocrine tumor where the pancreas had been completely replaced by serous cystic neoplasms, in which pancreatic function was preserved. A 39-year-old female with von Hippel-Lindau disease was referred to our institution for treatment of a pancreatic neuroendocrine tumor. Abdominal computed tomography demonstrated a well-enhanced mass, 4 cm in diameter in the tail of the pancreas, and two multilocular tumors with several calcifications, 5 cm in diameter, in the head of the pancreas. There was complete replacement of the pancreas by multiple cystic lesions with diameters ranging from 1 to 3 cm. Magnetic resonance cholangiopancreatography showed innumerable cystic lesions on the whole pancreas and no detectable main pancreatic duct. Endoscopic ultrasound-guided fine-needle aspiration of the mass in the pancreatic tail showed characteristic features of a neuroendocrine tumor. A diagnosis of pancreatic neuroendocrine tumor in the tail of the pancreas and mixed-type serous cystic neoplasms replacing the whole pancreas was made and she underwent distal pancreatectomy while avoiding total pancreatectomy. The stump of the pancreas was sutured as firm as possible using a fish-mouth closure. The patient made a good recovery and was discharged on postoperative day 9. She is currently alive and well with no symptoms of endocrine or exocrine pancreatic insufficiency 8 months after surgery. A pancreas

  13. Lung tumor motion prediction during lung brachytherapy using finite element model

    NASA Astrophysics Data System (ADS)

    Shirzadi, Zahra; Sadeghi Naini, Ali; Samani, Abbas

    2012-02-01

    A biomechanical model is proposed to predict deflated lung tumor motion caused by diaphragm respiratory motion. This model can be very useful for targeting the tumor in tumor ablative procedures such as lung brachytherapy. To minimize motion within the target lung, these procedures are performed while the lung is deflated. However, significant amount of tissue deformation still occurs during respiration due to the diaphragm contact forces. In the absence of effective realtime image guidance, biomechanical models can be used to estimate tumor motion as a function of diaphragm's position. To develop this model, Finite Element Method (FEM) was employed. To demonstrate the concept, we conducted an animal study of an ex-vivo porcine deflated lung with a tumor phantom. The lung was deformed by compressing a diaphragm mimicking cylinder against it. Before compression, 3D-CT image of this lung was acquired, which was segmented and turned into FE mesh. The lung tissue was modeled as hyperelastic material with a contact loading to calculate the lung deformation and tumor motion during respiration. To validate the results from FE model, the motion of a small area on the surface close to the tumor was tracked while the lung was being loaded by the cylinder. Good agreement was demonstrated between the experiment results and simulation results. Furthermore, the impact of tissue hyperelastic parameters uncertainties in the FE model was investigated. For this purpose, we performed in-silico simulations with different hyperelastic parameters. This study demonstrated that the FEM was accurate and robust for tumor motion prediction.

  14. Pleiotrophin and N-syndecan promote perineural invasion and tumor progression in an orthotopic mouse model of pancreatic cancer.

    PubMed

    Yao, Jun; Zhang, Lu-Lin; Huang, Xu-Mei; Li, Wen-Yao; Gao, She-Gan

    2017-06-07

    To detect the expression of pleiotrophin (PTN) and N-syndecan in pancreatic cancer and analyze their association with tumor progression and perineural invasion (PNI). An orthotopic mouse model of pancreatic cancer was created by injecting tumor cells subcapsularly in a root region of the pancreas beneath the spleen. Pancreatic cancer tissues were taken from 36 mice that survived for more than 90 d. PTN and N-syndecan proteins were detected by immunohistochemistry and analyzed for their correlation with pathological features, PNI, and prognosis. The expression rates of PTN and N-syndecan proteins were 66.7% and 61.1%, respectively, in cancer tissue. PTN and N-syndecan expression was associated with PNI ( P = 0.019 and P = 0.032, respectively). High PTN expression was closely associated with large bloody ascites ( P = 0.009), liver metastasis ( P = 0.035), and decreased survival time ( P = 0.022). N-syndecan expression was significantly associated with tumor size ( P = 0.025), but not with survival time ( P = 0.539). High PTN and N-syndecan expression was closely associated with metastasis and poor prognosis, suggesting that they may promote tumor progression and PNI in the orthotopic mouse model of pancreatic cancer.

  15. Isolation of circulating tumor cells from pancreatic cancer by automated filtration

    PubMed Central

    Brychta, Nora; Drosch, Michael; Driemel, Christiane; Fischer, Johannes C.; Neves, Rui P.; Esposito, Irene; Knoefel, Wolfram; Möhlendick, Birte; Hille, Claudia; Stresemann, Antje; Krahn, Thomas; Kassack, Matthias U.; Stoecklein, Nikolas H.; von Ahsen, Oliver

    2017-01-01

    It is now widely recognized that the isolation of circulating tumor cells based on cell surface markers might be hindered by variability in their protein expression. Especially in pancreatic cancer, isolation based only on EpCAM expression has produced very diverse results. Methods that are independent of surface markers and therefore independent of phenotypical changes in the circulating cells might increase CTC recovery also in pancreatic cancer. We compared an EpCAM-dependent (IsoFlux) and a size-dependent (automated Siemens Healthineers filtration device) isolation method for the enrichment of pancreatic cancer CTCs. The recovery rate of the filtration based approach is dramatically superior to the EpCAM-dependent approach especially for cells with low EpCAM-expression (filtration: 52%, EpCAM-dependent: 1%). As storage and shipment of clinical samples is important for centralized analyses, we also evaluated the use of frozen diagnostic leukapheresis (DLA) as source for isolating CTCs and subsequent genetic analysis such as KRAS mutation detection analysis. Using frozen DLA samples of pancreatic cancer patients we detected CTCs in 42% of the samples by automated filtration. PMID:29156783

  16. Isolation of circulating tumor cells from pancreatic cancer by automated filtration.

    PubMed

    Brychta, Nora; Drosch, Michael; Driemel, Christiane; Fischer, Johannes C; Neves, Rui P; Esposito, Irene; Knoefel, Wolfram; Möhlendick, Birte; Hille, Claudia; Stresemann, Antje; Krahn, Thomas; Kassack, Matthias U; Stoecklein, Nikolas H; von Ahsen, Oliver

    2017-10-17

    It is now widely recognized that the isolation of circulating tumor cells based on cell surface markers might be hindered by variability in their protein expression. Especially in pancreatic cancer, isolation based only on EpCAM expression has produced very diverse results. Methods that are independent of surface markers and therefore independent of phenotypical changes in the circulating cells might increase CTC recovery also in pancreatic cancer. We compared an EpCAM-dependent (IsoFlux) and a size-dependent (automated Siemens Healthineers filtration device) isolation method for the enrichment of pancreatic cancer CTCs. The recovery rate of the filtration based approach is dramatically superior to the EpCAM-dependent approach especially for cells with low EpCAM-expression (filtration: 52%, EpCAM-dependent: 1%). As storage and shipment of clinical samples is important for centralized analyses, we also evaluated the use of frozen diagnostic leukapheresis (DLA) as source for isolating CTCs and subsequent genetic analysis such as KRAS mutation detection analysis. Using frozen DLA samples of pancreatic cancer patients we detected CTCs in 42% of the samples by automated filtration.

  17. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma.

    PubMed

    Zhao, Xianda; Fan, Wei; Xu, Zhigao; Chen, Honglei; He, Yuyu; Yang, Gui; Yang, Gang; Hu, Hanning; Tang, Shihui; Wang, Ping; Zhang, Zheng; Xu, Peipei; Yu, Mingxia

    2016-12-06

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancer death reasons. Anti-tumor necrosis factor-alpha (TNF-α) antibodies have shown promising effects in PDAC pre-clinical models. However, the prognostic values of TNF-α, underlying mechanisms by which anti-TNF-α treatments inhibit PDAC, and potential synergistic effects of anti-TNF-α treatments with chemotherapy are still unclear. To identify the targeting values of TNF-α in PDAC, we measured TNF-α expression in different stages of PDAC initiation and evaluated its prognostic significance in a pancreatic cancer cohort. We found that TNF-α expression elevated in PDAC initiation process, and high expression of TNF-α was an independent prognostic marker of poor survival. We further evaluated anti-tumor effects of anti-TNF-α treatments in PDAC. Anti-TNF-α treatments resulted in decreased cell viability in both PDAC tumor cells and pancreatic satellite cells in similar dose in vitro. In vivo, anti-TNF-α treatments showed effects in reducing desmoplasia and the tumor promoting inflammatory microenvironment in PDAC. Combination of anti-TNF-α treatments with chemotherapy partly overcame chemoresistance of PDAC tumor cells and prolonged the survival of PDAC mouse model. In conclusion, our findings indicated that TNF-α in PDAC can be a prognostic and therapeutic target. Inhibition of TNF-α synergized with chemotherapy in PDAC resulted in better pre-clinical responses via killing tumor cells as well as diminishing desmoplasia and inflammation in PDAC tumor stroma.

  18. A prospective assessment of the natural course of the exocrine pancreatic function in patients with a pancreatic head tumor.

    PubMed

    Sikkens, Edmée C M; Cahen, Djuna L; de Wit, Jill; Looman, Caspar W N; van Eijck, Casper; Bruno, Marco J

    2014-01-01

    In cancer of the pancreatic head region, exocrine insufficiency is a well-known complication, leading to steatorrhea, weight loss, and malnutrition. Its presence is frequently overlooked, however, because the primary attention is focused on cancer treatment. To date, the risk of developing exocrine insufficiency is unspecified. Therefore, we assessed this function in patients with tumors of the pancreatic head, distal common bile duct, or ampulla of Vater. Between March 2010 and August 2012, we prospectively included patients diagnosed with cancer of the pancreatic head region at our tertiary center. To preclude the effect of a resection, we excluded operated patients. Each month, the exocrine function was determined with a fecal elastase test. Furthermore, endocrine function, steatorrhea-related symptoms, and body weight were evaluated. Patients were followed for 6 months, or until death. Thirty-two patients were included. The tumor was located in the pancreas in 75%, in the bile duct in 16%, and in the ampullary region in 9%, with a median size of 2.5 cm. At diagnosis, the prevalence of exocrine insufficiency was 66%, which increased to 92% after a median follow-up of 2 months (interquartile range, 1 to 4 mo). Most patients with cancer of the pancreatic head region were already exocrine insufficient at diagnosis, and within several months, this function was impaired in almost all cases. Given this high prevalence, physicians should be focused on diagnosing and treating exocrine insufficiency, to optimize the nutritional status and physical condition, especially for those patients undergoing palliative chemotherapy and/or radiotherapy.

  19. Development of an endoluminal high-intensity ultrasound applicator for image-guided thermal therapy of pancreatic tumors

    NASA Astrophysics Data System (ADS)

    Adams, Matthew S.; Scott, Serena J.; Salgaonkar, Vasant A.; Jones, Peter D.; Plata-Camargo, Juan C.; Sommer, Graham; Diederich, Chris J.

    2015-03-01

    An ultrasound applicator for endoluminal thermal therapy of pancreatic tumors has been introduced and evaluated through acoustic/biothermal simulations and ex vivo experimental investigations. Endoluminal therapeutic ultrasound constitutes a minimally invasive conformal therapy and is compatible with ultrasound or MR-based image guidance. The applicator would be placed in the stomach or duodenal lumen, and sonication would be performed through the luminal wall into the tumor, with concurrent water cooling of the wall tissue to prevent its thermal injury. A finite-element (FEM) 3D acoustic and biothermal model was implemented for theoretical analysis of the approach. Parametric studies over transducer geometries and frequencies revealed that operating frequencies within 1-3 MHz maximize penetration depth and lesion volume while sparing damage to the luminal wall. Patient-specific FEM models of pancreatic head tumors were generated and used to assess the feasibility of performing endoluminal ultrasound thermal ablation and hyperthermia of pancreatic tumors. Results indicated over 80% of the volume of small tumors (~2 cm diameter) within 35 mm of the duodenum could be safely ablated in under 30 minutes or elevated to hyperthermic temperatures at steady-state. Approximately 60% of a large tumor (~5 cm diameter) model could be safely ablated by considering multiple positions of the applicator along the length of the duodenum to increase coverage. Prototype applicators containing two 3.2 MHz planar transducers were fabricated and evaluated in ex vivo porcine carcass heating experiments under MR temperature imaging (MRTI) guidance. The applicator was positioned in the stomach adjacent to the pancreas, and sonications were performed for 10 min at 5 W/cm2 applied intensity. MRTI indicated over 400C temperature rise in pancreatic tissue with heating penetration extending 3 cm from the luminal wall.

  20. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    PubMed Central

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs

  1. Pancreatic acinar cell carcinoma extending into the common bile and main pancreatic ducts.

    PubMed

    Yamaguchi, Rin; Okabe, Yoshinobu; Jimi, Atsuo; Shiota, Koji; Kodama, Takahito; Naito, Yoshiki; Yasunaga, Masafumi; Kinoshita, Hisafumi; Kojiro, Masamichi

    2006-10-01

    Acinar cell carcinoma (ACC) of the pancreas is relatively rare, accounting for only approximately 1% of all exocrine pancreatic tumors. A 69-year-old man was found to have a mass lesion measuring approximately 4 cm in diameter in the pancreatic head on ultrasound, abdominal dynamic CT, and percutaneous transhepatic cholangiography. Magnetic resonance cholangiopancreatography showed defect of the lower common bile duct (CBD) due to obstruction by the tumor cast. Histopathologically, the pancreatic head tumor invaded the main pancreatic duct (MPD) and CBD with extension into the CBD in a form of tumor cast. The tumor cells consisted of a solid proliferation with abundant eosinophilic cytoplasm and round nuclei in an acinar and trabecular fashion. A 55-year-old man with upper abdominal pain and nausea, had a cystic lesion approximately 3 cm in size in the pancreatic tail on CT. Histopathologically, the tumor was encapsulated by fibrous capsule and had extensive central necrosis with solid areas in the tumor periphery, and invaded with extension into the MPD in a form of tumor cast. The tumor cells resembled acinar cells in solid growths. Two resected cases of ACC with unusual tumor extension into the CBD and the MPD, respectively, are reported.

  2. MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment.

    PubMed

    Mukherjee, P; Ginardi, A R; Madsen, C S; Tinder, T L; Jacobs, F; Parker, J; Agrawal, B; Longenecker, B M; Gendler, S J

    2001-01-01

    Pancreatic cancer is a highly aggressive, treatment refractory disease and is the fourth leading cause of death in the United States. In humans, 90% of pancreatic adenocarcinomas over-express altered forms of a tumor-associated antigen, MUC1 (an epithelial mucin glycoprotein), which is a target for immunotherapy. Using a clinically relevant mouse model of pancreas cancer that demonstrates peripheral and central tolerance to human MUC1 and develops spontaneous tumors of the pancreas, we have previously reported the presence of functionally active, low affinity, MUC1-specific precursor cytotoxic T cells (pCTLs). Hypothesis for this study is that MUC1-based immunization may enhance the low level MUC1-specific immunity that may lead to an effective anti-tumor response. Data demonstrate that MUC1 peptide-based immunization elicits mature MUC1-specific CTLs in the peripheral lymphoid organs. The mature CTLs secrete IFN-gamma and are cytolytic against MUC1-expressing tumor cells in vitro. However, active CTLs that infiltrate the pancreas tumor microenvironment become cytolytically anergic and are tolerized to MUC1 antigen, allowing the tumor to grow. We demonstrate that the CTL tolerance could be reversed at least in vitro with the use of anti-CD40 co-stimulation. The pancreas tumor cells secrete immunosuppressive cytokines, including IL-10 and TGF-beta that are partly responsible for the down-regulation of CTL activity. In addition, they down-regulate their MHC class I molecules to avoid immune recognition. CD4+ CD25+ T regulatory cells, which secrete IL-10, were also found in the tumor environment. Together these data indicate the use of several immune evasion mechanisms by tumor cells to evade CTL killing. Thus altering the tumor microenvironment to make it more conducive to CTL killing may be key in developing a successful anti-cancer immunotherapy.

  3. The pancreatic niche inhibits the effectiveness of sunitinib treatment of pancreatic cancer

    PubMed Central

    Martínez-Bosch, Neus; Guerrero, Pedro Enrique; Moreno, Mireia; José, Anabel; Iglesias, Mar; Munné-Collado, Jessica; Anta, Héctor; Gibert, Joan; Orozco, Carlos Alberto; Vinaixa, Judith; Fillat, Cristina; Viñals, Francesc; Navarro, Pilar

    2016-01-01

    Current treatments for pancreatic ductal adenocarcinoma (PDA) are ineffective, making this the 4th leading cause of cancer deaths. Sunitinib is a broad-spectrum inhibitor of tyrosine kinase receptors mostly known for its anti-angiogenic effects. We tested the therapeutic effects of sunitinib in pancreatic cancer using the Ela-myc transgenic mouse model. We showed that Ela-myc pancreatic tumors express PDGFR and VEGFR in blood vessels and epithelial cells, rendering these tumors sensitive to sunitinib by more than only its anti-angiogenic activity. However, sunitinib treatment of Ela-myc mice with either early or advanced tumor progression had no impact on either survival or tumor burden. Further histopathological characterization of these tumors did not reveal differences in necrosis, cell differentiation, angiogenesis, apoptosis or proliferation. In stark contrast, in vitro sunitinib treatment of Ela-myc– derived cell lines showed high sensitivity to the drug, with increased apoptosis and reduced proliferation. Correspondingly, subcutaneous tumors generated from these cell lines completely regressed in vivo after sunitinib treatments. These data point at the pancreatic tumor microenvironment as the most likely barrier preventing sunitinib treatment efficiency in vivo. Combined treatments with drugs that disrupt tumor fibrosis may enhance sunitinib therapeutic effectiveness in pancreatic cancer treatment. PMID:27374084

  4. Human Pancreatic Cancer Cells Induce a MyD88-Dependent Stromal Response To Promote a Tumor-Tolerant Immune Microenvironment

    PubMed Central

    Delitto, Daniel; Delitto, Andrea E.; DiVita, Bayli B.; Pham, Kien; Han, Song; Hartlage, Emily R.; Newby, Brittney N.; Gerber, Michael H.; Behrns, Kevin E.; Moldawer, Lyle L.; Thomas, Ryan M.; George, Thomas J.; Brusko, Todd M.; Mathews, Clayton E.; Liu, Chen; Trevino, Jose G.; Hughes, Steven J.; Wallet, Shannon M.

    2016-01-01

    Cancer cells exert mastery over the local tumor-associated stroma (TAS) to configure protective immunity within the tumor microenvironment. The immunomodulatory character of pancreatic lysates of patients with cancer differs from those with pancreatitis. In this study, we evaluated the crosstalk between pancreatic cancer (PC) and its TAS in primary human cell culture models. Upon exposure of TAS to PC cell-conditioned media, we documented robust secretion of IL-6 and IL-8. This TAS response was MyD88-dependent and sufficient to directly suppress both CD4+ and CD8+ T cell proliferation, inducing Th17 polarization at the expense of Th1. We found that patients possessed a similar shift in circulating effector memory Th17:Th1 ratios compared to healthy controls. The TAS response also directly suppressed CD8+ T cell-mediated cytotoxicity. Overall, our results demonstrate how TAS contributes to the production of an immunosuppressive tumor microenvironment in pancreatic cancer. PMID:27864347

  5. Curcumin Analogue CDF Inhibits Pancreatic Tumor Growth by Switching on Suppressor microRNAs and Attenuating EZH2 Expression

    PubMed Central

    Bao, Bin; Ali, Shadan; Banerjee, Sanjeev; Wang, Zhiwei; Logna, Farah; Azmi, Asfar S.; Kong, Dejuan; Ahmad, Aamir; Li, Yiwei; Padhye, Subhash; Sarkar, Fazlul H.

    2013-01-01

    The histone methyltransferase EZH2 is a central epigenetic regulator of cell survival, proliferation, and cancer stem cell (CSC) function. EZH2 expression is increased in various human cancers, including highly aggressive pancreatic cancers, but the mechanisms underlying for its biologic effects are not yet well understood. In this study, we probed EZH2 function in pancreatic cancer using diflourinated-curcumin (CDF), a novel analogue of the turmeric spice component curcumin that has antioxidant properties. CDF decreased pancreatic cancer cell survival, clonogenicity, formation of pancreatospheres, invasive cell migration, and CSC function in human pancreatic cancer cells. These effects were associated with decreased expression of EZH2 and increased expression of a panel of tumor-suppressive microRNAs (miRNA), including let-7a,b,c,d, miR-26a, miR-101, miR-146a, and miR-200b,c that are typically lost in pancreatic cancer. Mechanistic investigations revealed that reexpression of miR-101 was sufficient to limit the expression of EZH2 and the proinvasive cell surface adhesion molecule EpCAM. In an orthotopic xenograft model of human pancreatic cancer, administration of CDF inhibited tumor growth in a manner associated with reduced expression of EZH2, Notch-1, CD44, EpCAM, and Nanog and increased expression of let-7, miR-26a, and miR-101. Taken together, our results indicated that CDF inhibited pancreatic cancer tumor growth and aggressiveness by targeting an EZH2-miRNA regulatory circuit for epigenetically controlled gene expression. PMID:22108826

  6. Pleiotrophin and N-syndecan promote perineural invasion and tumor progression in an orthotopic mouse model of pancreatic cancer

    PubMed Central

    Yao, Jun; Zhang, Lu-Lin; Huang, Xu-Mei; Li, Wen-Yao; Gao, She-Gan

    2017-01-01

    AIM To detect the expression of pleiotrophin (PTN) and N-syndecan in pancreatic cancer and analyze their association with tumor progression and perineural invasion (PNI). METHODS An orthotopic mouse model of pancreatic cancer was created by injecting tumor cells subcapsularly in a root region of the pancreas beneath the spleen. Pancreatic cancer tissues were taken from 36 mice that survived for more than 90 d. PTN and N-syndecan proteins were detected by immunohistochemistry and analyzed for their correlation with pathological features, PNI, and prognosis. RESULTS The expression rates of PTN and N-syndecan proteins were 66.7% and 61.1%, respectively, in cancer tissue. PTN and N-syndecan expression was associated with PNI (P = 0.019 and P = 0.032, respectively). High PTN expression was closely associated with large bloody ascites (P = 0.009), liver metastasis (P = 0.035), and decreased survival time (P = 0.022). N-syndecan expression was significantly associated with tumor size (P = 0.025), but not with survival time (P = 0.539). CONCLUSION High PTN and N-syndecan expression was closely associated with metastasis and poor prognosis, suggesting that they may promote tumor progression and PNI in the orthotopic mouse model of pancreatic cancer. PMID:28638231

  7. Middle-preserving pancreatectomy for advanced transverse colon cancer invading the duodenun and non-functioning endocrine tumor in the pancreatic tail.

    PubMed

    Noda, Hiroshi; Kato, Takaharu; Kamiyama, Hidenori; Toyama, Nobuyuki; Konishi, Fumio

    2011-02-01

    A 73-year-old female was referred to our hospital with a diagnosis of advanced transverse colon cancer with severe anemia and body weight loss. Preoperative evaluations, including colonoscopy, gastroduodenoscopy, and computed tomography, revealed not only a transverse colon cancer massively invading the duodenum, but also a non-functioning endocrine tumor in the pancreatic tail. We performed middle-preserving pancreatectomy (MPP) with right hemicolectomy for these tumors with a curative intent. After the resection, about 6 cm of the body of the pancreas was preserved, and signs of diabetes mellitus have not appeared. The postoperative course was complicated by a grade B pancreatic fistula, but this was successfully treated with conservative management. After a 33-day hospital stay, the patient returned to daily life without signs of pancreatic exocrine insufficiency. Although the long-term follow-up of the patient is indispensable, in this case, MPP might be able to lead to the curative resection of transverse colon cancer massively invading the duodenum and non-functioning endocrine tumor in the pancreatic tail with preservation of pancreatic function.

  8. c-Jun N-terminal kinase in pancreatic tumor stroma augments tumor development in mice.

    PubMed

    Sato, Takeshi; Shibata, Wataru; Hikiba, Yohko; Kaneta, Yoshihiro; Suzuki, Nobumi; Ihara, Sozaburo; Ishii, Yasuaki; Sue, Soichiro; Kameta, Eri; Sugimori, Makoto; Yamada, Hiroaki; Kaneko, Hiroaki; Sasaki, Tomohiko; Ishii, Tomohiro; Tamura, Toshihide; Kondo, Masaaki; Maeda, Shin

    2017-11-01

    Pancreatic ductal adenocarcinoma (PDAC) is a life-threatening disease and there is an urgent need to develop improved therapeutic approaches. The role of c-Jun N-terminal kinase (JNK) in PDAC stroma is not well defined even though dense desmoplastic reactions are characteristic of PDAC histology. We aimed to explore the role of JNK in PDAC stroma in mice. We crossed Ptf1a Cre/+ ;Kras G12D/+ mice with JNK1 -/- mice to generate Ptf1a Cre/+ ;Kras G12D/+ ;JNK1 -/- (Kras;JNK1 -/- ) mice. Tumor weight was significantly lower in Kras;JNK1 -/- mice than in Kras;JNK1 +/- mice, whereas histopathological features were similar. We also transplanted a murine PDAC cell line (mPC) with intact JNK1 s.c. into WT and JNK1 -/- mice. Tumor diameters were significantly smaller in JNK1 -/- mice. Phosphorylated JNK (p-JNK) was activated in α-smooth muscle actin (SMA)-positive cells in tumor stroma, and mPC-conditioned medium activated p-JNK in tumor-associated fibroblasts (TAF) in vitro. Relative expression of Ccl20 was downregulated in stimulated TAF. Ccl20 is an important chemokine that promotes CD8 + T-cell infiltration by recruitment of dendritic cells, and the number of CD8 + T cells was decreased in Kras;JNK1 +/- mice compared with Kras;JNK1 -/- mice. These results suggest that the cancer secretome decreases Ccl20 secretion from TAF by activation of JNK, and downregulation of Ccl20 secretion might be correlated with reduction of infiltrating CD8 + T cells. Therefore, we concluded that inhibition of activated JNK in pancreatic tumor stroma could be a potential therapeutic target to increase Ccl20 secretion from TAF and induce accumulation of CD8 + T cells, which would be expected to enhance antitumor immunity. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. Pancreatic non-functioning neuroendocrine tumor: a new entity genetically related to Lynch syndrome

    PubMed Central

    Serracant Barrera, Anna; Serra Pla, Sheila; Blázquez Maña, Carmen María; Salas, Rubén Carrera; García Monforte, Neus; Bejarano González, Natalia; Romaguera Monzonis, Andreu; Andreu Navarro, Francisco Javier; Bella Cueto, Maria Rosa

    2017-01-01

    Some pancreatic neuroendocrine tumors (P-NETs) are associated with hereditary syndromes. An association between Lynch syndrome (LS) and P-NETs has been suggested, however it has not been confirmed to date. We describe the first case associating LS and P-NETs. Here we report a 65-year-old woman who in the past 20 years presented two colorectal carcinomas (CRC) endometrial carcinoma (EC), infiltrating ductal breast carcinoma, small intestine adenocarcinoma, two non-functioning P-NETs and sebomatricoma. With the exception of one P-NET, all these conditions were associated with LS, as confirmed by immunohistochemistry (IHC) and polymerase chain reaction (PCR). LS is caused by a mutation of a mismatch repair (MMR) gene which leads to a loss of expression of its protein. CRC is the most common tumor, followed by EC. Pancreatic tumors have also been associated with LS. Diagnosis of LS is based on clinical criteria (Amsterdam II and Bethesda) and genetic study (MMR gene mutation). The association between LS and our patient’s tumors was confirmed by IHC (loss of expression of proteins MLH1 and its dimer PMS2) and the detection of microsatellite instability (MSI) using PCR. PMID:29184699

  10. Biochemical analysis of secretory proteins synthesized by normal rat pancreas and by pancreatic acinar tumor cells

    PubMed Central

    1982-01-01

    We have examined the secretogogue responsiveness and the pattern of secretory proteins produced by a transplantable rat pancreatic acinar cell tumor. Dispersed tumor cells were found to discharge secretory proteins in vitro when incubated with hormones that act on four different classes of receptors: carbamylcholine, caerulein, secretin- vasoactive intestinal peptide, and bombesin. With all hormones tested, maximal discharge from tumor cells was only about one-half that of control pancreatic lobules, but occurred at the same dose optima except for secretin, whose dose optimum was 10-fold higher. Biochemical analysis of secretory proteins discharged by the tumor cells was carried out by crossed immunoelectrophoresis and by two-dimensional isoelectric focusing-SDS polyacrylamide gel electrophoresis. To establish a baseline for comparison, secretory proteins from normal rat pancreas were identified according to enzymatic activity and correlated with migration position on two-dimensional gels. Our results indicate that a group of basic polypeptides including proelastase, basic trypsinogen, basic chymotrypsinogen, and ribonuclease, two out of three forms of procarboxypeptidase B, and the major lipase species were greatly reduced or absent in tumor cell secretion. In contrast, the amount of acidic chymotrypsinogen was notably increased compared with normal acinar cells. Although the acinar tumor cells are highly differentiated cytologically and express functional receptors for several classes of pancreatic secretagogues, they show quantitative and qualitative differences when compared with normal pancreas with regard to their production of secretory proteins. PMID:6185502

  11. Pancreatic tumor cell metabolism: focus on glycolysis and its connected metabolic pathways.

    PubMed

    Guillaumond, Fabienne; Iovanna, Juan Lucio; Vasseur, Sophie

    2014-03-01

    Because of lack of effective treatment, pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of death by cancer in Western countries, with a very weak improvement of survival rate over the last 40years. Defeat of numerous conventional therapies to cure this cancer makes urgent to develop new tools usable by clinicians for a better management of the disease. Aggressiveness of pancreatic cancer relies on its own hallmarks: a low vascular network as well as a prominent stromal compartment (desmoplasia), which creates a severe hypoxic environment impeding correct oxygen and nutrients diffusion to the tumoral cells. To survive and proliferate in those conditions, pancreatic cancer cells set up specific metabolic pathways to meet their tremendous energetic and biomass demands. However, as PDAC is a heterogenous tumor, a complex reprogramming of metabolic processes is engaged by cancer cells according to their level of oxygenation and nutrients supply. In this review, we focus on the glycolytic activity of PDAC and the glucose-connected metabolic pathways which contribute to the progression and dissemination of this disease. We also discuss possible therapeutic strategies targeting these pathways in order to cure this disease which still until now is resistant to numerous conventional treatments. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma

    PubMed Central

    Xu, Zhigao; Chen, Honglei; He, Yuyu; Yang, Gui; Yang, Gang; Hu, Hanning; Tang, Shihui; Wang, Ping; Zhang, Zheng; Xu, Peipei; Yu, Mingxia

    2016-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancer death reasons. Anti-tumor necrosis factor-alpha (TNF-α) antibodies have shown promising effects in PDAC pre-clinical models. However, the prognostic values of TNF-α, underlying mechanisms by which anti-TNF-α treatments inhibit PDAC, and potential synergistic effects of anti-TNF-α treatments with chemotherapy are still unclear. Results and Methods To identify the targeting values of TNF-α in PDAC, we measured TNF-α expression in different stages of PDAC initiation and evaluated its prognostic significance in a pancreatic cancer cohort. We found that TNF-α expression elevated in PDAC initiation process, and high expression of TNF-α was an independent prognostic marker of poor survival. We further evaluated anti-tumor effects of anti-TNF-α treatments in PDAC. Anti-TNF-α treatments resulted in decreased cell viability in both PDAC tumor cells and pancreatic satellite cells in similar dose in vitro. In vivo, anti-TNF-α treatments showed effects in reducing desmoplasia and the tumor promoting inflammatory microenvironment in PDAC. Combination of anti-TNF-α treatments with chemotherapy partly overcame chemoresistance of PDAC tumor cells and prolonged the survival of PDAC mouse model. Conclusions In conclusion, our findings indicated that TNF-α in PDAC can be a prognostic and therapeutic target. Inhibition of TNF-α synergized with chemotherapy in PDAC resulted in better pre-clinical responses via killing tumor cells as well as diminishing desmoplasia and inflammation in PDAC tumor stroma. PMID:27835602

  13. Strategies for Increasing Pancreatic Tumor Immunogenicity

    PubMed Central

    Johnson, Burles A.; Yarchoan, Mark; Lee, Valerie; Laheru, Daniel A.; Jaffee, Elizabeth M.

    2017-01-01

    Immunotherapy has changed the standard of care for multiple deadly cancers including lung, head and neck, gastric, and some colorectal cancers. However, single agent immunotherapy has had little effect in pancreatic adenocarcinoma (PDAC). Increasing evidence suggests that the PDAC microenvironment is comprised of an intricate network of signals between immune cells, PDAC cells, and stroma, resulting in an immunosuppressive environment resistant to single agent immunotherapies. In this review, we discuss differences between immunotherapy sensitive cancers and PDAC, the complex interactions between PDAC stroma and suppressive tumor infiltrating cells that facilitate PDAC development and progression, the immunologic targets within these complex networks that are drugable, and data supporting combination drug approaches that modulate multiple PDAC signals, which should lead to improved clinical outcomes. PMID:28373364

  14. Assessment of biophysical tumor response to PDT in pancreatic cancer using localized reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Isabelle, Martin; Klubben, William; He, Ting; Laughney, Ashley M.; Glaser, Adam; Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Hasan, Tayyaba; Pogue, Brian W.

    2011-02-01

    Biophysical changes such as inflammation and necrosis occur immediately following PDT and may be used to assess the treatment response to PDT treatment in-vivo. This study uses localized reflectance measurements to quantify the scatter changes in tumor tissue occurring in response to verteporfin-based PDT treatment in xenograft pancreas tumors. Nude mice were implanted with subcutaneous AsPC-1 pancreatic tumors cells in matrigel, and allowed to establish solid tumors near 100mm3 volume. The mice were sensitized with 1mg/kg of the active component of verteporfin (benzoporphryin derivative, BPD), one hour before light delivery. The optical irradiation was performed using a 1 cm cylindrical interstitial diffusing tip fiber with 20J of red light (690nm). Tumor tissue was excised progressively and imaged, from 1 day to 4 weeks, after PDT treatment. The tissue sections were stained and analyzed by an expert veterinary pathologist, who provided information on tissue regions of interest. This information was correlated with variations in scattering and absorption parameters elucidated from the spectral images and the degree of necrosis and inflammation involvement was identified. Areas of necrosis and dead cells exhibited the lowest average scatter irradiance signature (3.78 and 4.07 respectively) compared to areas of viable pancreatic tumor cells and areas of inflammation (5.81 and 7.19 respectively). Bilirubin absorbance parameters also showed a lower absorbance value in necrotic tissue and areas of dead cells (0.05 and 0.1 respectively) compared to tissue areas for viable pancreatic tumor cells and areas of inflammation (0.28 and 0.35). These results demonstrate that localized reflectance spectroscopy is an imaging modality that can be used to identify tissue features associated with PDT treatment (e.g. necrosis and inflammation) that can be correlated with histopathologically-reviewed H&E stained slides. Further study of this technique may provide means for automated

  15. Circulating tumor DNA as a liquid biopsy target for detection of pancreatic cancer.

    PubMed

    Takai, Erina; Yachida, Shinichi

    2016-10-14

    Most pancreatic cancer patients present with advanced metastatic disease, resulting in extremely poor 5-year survival, mainly because of the lack of a reliable modality for early detection and limited therapeutic options for advanced disease. Therefore, there is a need for minimally-invasive diagnostic tools for detecting pancreatic cancer at an early stage, when curative surgery and also novel therapeutic approaches including precision medicine may be feasible. The "liquid biopsy" addresses these unmet clinical needs based on the concept that simple peripheral blood sampling and detection of circulating tumor DNA (ctDNA) could provide diagnostic information. In this review, we provide an overview of the current status of blood-based tests for diagnosis of pancreatic cancer and the potential utility of ctDNA for precision medicine. We also discuss challenges that remain to be addressed in developing practical ctDNA-based liquid biopsy approaches for early diagnosis of pancreatic cancer.

  16. Isolation of circulating tumor cells in pancreatic cancer patients by immunocytochemical assay.

    PubMed

    Yang, Jing; Zhou, Ying; Zhao, Bin

    2018-01-01

    The patients diagnosed with pancreatic cancer have the possibilities of getting the cancer again even after resection. The tumor cells identified from blood can be related to different stages of tumor. In this study, we used an immunoassay to detect circulating tumor cells in blood and bone marrow samples. About 120 patients' blood and bone marrow samples were used in this study along with controls. The presence of tumor cells was evaluated with different stages of cancer classified by UICC. The survival rate at each stages of tumor was also analyzed. The tumor cells were isolated both in blood (29%) and bone marrow samples (25%). The prevalence of tumor cells increased with increase in stages of tumor in blood samples. The survival of the patients considerably related to different stages of tumor but it cannot be taken a parameter alone for the patients' survival. © 2017 Wiley Periodicals, Inc.

  17. Identification of novel serum autoantibodies against EID3 in non-functional pancreatic neuroendocrine tumors

    PubMed Central

    Hontani, Koji; Tsuchikawa, Takahiro; Hiwasa, Takaki; Nakamura, Toru; Ueno, Takashi; Kushibiki, Toshihiro; Takahashi, Mizuna; Inoko, Kazuho; Takano, Hironobu; Takeuchi, Satoshi; Dosaka-Akita, Hirotoshi; Kuwatani, Masaki; Sakamoto, Naoya; Hatanaka, Yutaka; Mitsuhashi, Tomoko; Shimada, Hideaki; Shichinohe, Toshiaki; Hirano, Satoshi

    2017-01-01

    Pancreatic neuroendocrine tumors (pNETs) are relatively rare heterogenous tumors, comprising only 1–2% of all pancreatic neoplasms. The majority of pNETs are non-functional tumors (NF-pNETs) that do not produce hormones, and as such, do not cause any hormone-related symptoms. As a result, these tumors are often diagnosed at an advanced stage because patients do not present with specific symptoms. Although tumor markers are used to help diagnosis and predict some types of cancers, chromogranin A, a widely used tumor marker of pNETs, has significant limitations. To identify novel NF-pNET-associated antigens, we performed serological identification of antigens by recombinant cDNA expression cloning (SEREX) and identified five tumor antigens (phosphatase and tensin homolog, EP300-interacting inhibitor of differentiation 3 [EID3], EH domain-containing protein 1, galactoside-binding soluble 9, and BRCA1-associated protein). Further analysis using the AlphaLISA® immunoassay to compare serum antibody levels revealed that antibody levels against the EID3 antigen was significantly higher in the patient group than in the healthy donor group (n = 25, both groups). In addition, higher serum anti-EID3 antibody levels in NF-pNET patients correlated with shorter disease-free survival. The AUC calculated by ROC analysis was 0.784 with moderate diagnostic accuracy. In conclusion, serum anti-EID3 antibody levels may be useful as a tumor marker for prediction of tumor recurrence in NF-pNETs. PMID:29290942

  18. Clinical Value of Dual-energy CT in Detection of Pancreatic Adenocarcinoma: Investigation of the Best Pancreatic Tumor Contrast to Noise Ratio.

    PubMed

    He, Yong-Lan; Zhang, Da-Ming; Xue, Hua-Dan; Jin, Zheng-Yu

    2013-01-01

    Objective To quantitatively compare and determine the best pancreatic tumor contrast to noise ratio (CNR) in different dual-energy derived datasets. Methods In this retrospective, single center study, 16 patients (9 male, 7 female, average age 59.4±13.2 years) with pathologically diagnosed pancreatic cancer were enrolled. All patients received an abdominal scan using a dual source CT scanner 7 to 31 days before biopsy or surgery. After injection of iodine contrast agent, arterial and pancreatic parenchyma phase were scanned consequently, using a dual-energy scan mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs) in the pancreatic parenchyma phase. A series of derived dual-energy datasets were evaluated including non-liner blending (non-linear blending width 0-500 HU; blending center -500 to 500 HU), mono-energetic (40-190 keV), 100 kVp and 140 kVp. On each datasets, mean CT values of the pancreatic parenchyma and tumor, as well as standard deviation CT values of subcutaneous fat and psoas muscle were measured. Regions of interest of cutaneous fat and major psoas muscle of 100 kVp and 140 kVp images were calculated. Best CNR of subcutaneous fat (CNRF) and CNR of the major psoas muscle (CNRM) of non-liner blending and mono-energetic datasets were calculated with the optimal mono-energetic keV setting and the optimal blending center/width setting for the best CNR. One Way ANOVA test was used for comparison of best CNR between different dual-energy derived datasets. Results The best CNRF (4.48±1.29) was obtained from the non-liner blending datasets at blending center -16.6±103.9 HU and blending width 12.3±10.6 HU. The best CNRF (3.28±0.97) was obtained from the mono-energetic datasets at 73.3±4.3 keV. CNRF in the 100 kVp and 140 kVp were 3.02±0.91 and 1.56±0.56 respectively. Using fat as the noise background, all of these images series showed significant differences (P<0.01) except best CNRF of mono-energetic image sets vs. CNRF of 100 kVp image (P=0.460). Similar

  19. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular-fibrosis and tumor progression

    PubMed Central

    Laklai, Hanane; Miroshnikova, Yekaterina A.; Pickup, Michael W.; Collisson, Eric A.; Kim, Grace E.; Barrett, Alex S.; Hill, Ryan C.; Lakins, Johnathon N.; Schlaepfer, David D.; Mouw, Janna K.; LeBleu, Valerie S.; Roy, Nilotpal; Novitskiy, Sergey V.; Johansen, Julia S.; Poli, Valeria; Kalluri, Raghu; Iacobuzio-Donahue, Christine A.; Wood, Laura D.; Hebrok, Matthias; Hansen, Kirk; Moses, Harold L.; Weaver, Valerie M.

    2016-01-01

    Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality yet anti-stromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor β (TGF-β) signaling have elevated epithelial Stat3 activity and develop a stiffer, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several Kras-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby Stat3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial Stat3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated Stat3 associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors, and highlight Stat3 and mechanics as key drivers of this phenotype. PMID:27089513

  20. Pancreatic Cancer—Health Professional Version

    Cancer.gov

    Exocrine pancreatic cancer is cancer of the exocrine gland of the pancreas, whereas cancer of the endocrine gland usually forms as a collection of tumor cell types referred to as pancreatic neuroendocrine tumors. Find evidence-based information on pancreatic cancer treatment, research, and statistics.

  1. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    PubMed

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  2. Circulating tumor DNA as a liquid biopsy target for detection of pancreatic cancer

    PubMed Central

    Takai, Erina; Yachida, Shinichi

    2016-01-01

    Most pancreatic cancer patients present with advanced metastatic disease, resulting in extremely poor 5-year survival, mainly because of the lack of a reliable modality for early detection and limited therapeutic options for advanced disease. Therefore, there is a need for minimally-invasive diagnostic tools for detecting pancreatic cancer at an early stage, when curative surgery and also novel therapeutic approaches including precision medicine may be feasible. The “liquid biopsy” addresses these unmet clinical needs based on the concept that simple peripheral blood sampling and detection of circulating tumor DNA (ctDNA) could provide diagnostic information. In this review, we provide an overview of the current status of blood-based tests for diagnosis of pancreatic cancer and the potential utility of ctDNA for precision medicine. We also discuss challenges that remain to be addressed in developing practical ctDNA-based liquid biopsy approaches for early diagnosis of pancreatic cancer. PMID:27784960

  3. Management of the Primary Tumor and Limited Metastases in Patients With Metastatic Pancreatic Cancer.

    PubMed

    Herman, Joseph M; Hoffman, John P; Thayer, Sarah P; Wolff, Robert A

    2015-05-01

    New combinations of cytotoxic chemotherapy have been proven to increase response rates and survival times compared with single-agent gemcitabine for patients with metastatic pancreatic cancer. These responses have been dramatic for a subset of patients, therefore raising questions about the management of limited metastatic disease with surgery or other ablative methods. Similarly, for patients having a complete radiographic response to chemotherapy in the metastatic compartment, whether to consider local therapy in the form of radiation or surgery for the primary tumor is now an appropriate question. Therefore, collaboration among experts in surgery, medical oncology, and radiation oncology has led to the development of guiding principles for local therapies to the primary intact pancreatic tumor for patients with limited metastatic disease and those who have had a significant response after systemic therapy.

  4. Thermal therapy of pancreatic tumors using endoluminal ultrasound: parametric and patient-specific modeling

    PubMed Central

    Adams, Matthew S.; Scott, Serena J.; Salgaonkar, Vasant A.; Sommer, Graham; Diederich, Chris J.

    2016-01-01

    Purpose To investigate endoluminal ultrasound applicator configurations for volumetric thermal ablation and hyperthermia of pancreatic tumors using 3D acoustic and biothermal finite element models. Materials and Methods Parametric studies compared endoluminal heating performance for varying applicator transducer configurations (planar, curvilinear-focused, or radial-diverging), frequencies (1–5 MHz), and anatomical conditions. Patient-specific pancreatic head and body tumor models were used to evaluate feasibility of generating hyperthermia and thermal ablation using an applicator positioned in the duodenal or stomach lumen. Temperature and thermal dose were calculated to define ablation (>240 EM43°C) and moderate hyperthermia (40–45 °C) boundaries, and to assess sparing of sensitive tissues. Proportional-integral control was incorporated to regulate maximum temperature to 70–80 °C for ablation and 45 °C for hyperthermia in target regions. Results Parametric studies indicated that 1–3 MHz planar transducers are most suitable for volumetric ablation, producing 5–8 cm3 lesion volumes for a stationary 5 minute sonication. Curvilinear-focused geometries produce more localized ablation to 20–45 mm depth from the GI tract and enhance thermal sparing (Tmax<42 °C) of the luminal wall. Patient anatomy simulations show feasibility in ablating 60.1–92.9% of head/body tumor volumes (4.3–37.2 cm3) with dose <15 EM43°C in the luminal wall for 18–48 min treatment durations, using 1–3 applicator placements in GI lumen. For hyperthermia, planar and radial-diverging transducers could maintain up to 8 cm3 and 15 cm3 of tissue, respectively, between 40–45 °C for a single applicator placement. Conclusions Modeling studies indicate the feasibility of endoluminal ultrasound for volumetric thermal ablation or hyperthermia treatment of pancreatic tumor tissue. PMID:27097663

  5. A model for cell migration in non-isotropic fibrin networks with an application to pancreatic tumor islets.

    PubMed

    Chen, Jiao; Weihs, Daphne; Vermolen, Fred J

    2018-04-01

    Cell migration, known as an orchestrated movement of cells, is crucially important for wound healing, tumor growth, immune response as well as other biomedical processes. This paper presents a cell-based model to describe cell migration in non-isotropic fibrin networks around pancreatic tumor islets. This migration is determined by the mechanical strain energy density as well as cytokines-driven chemotaxis. Cell displacement is modeled by solving a large system of ordinary stochastic differential equations where the stochastic parts result from random walk. The stochastic differential equations are solved by the use of the classical Euler-Maruyama method. In this paper, the influence of anisotropic stromal extracellular matrix in pancreatic tumor islets on T-lymphocytes migration in different immune systems is investigated. As a result, tumor peripheral stromal extracellular matrix impedes the immune response of T-lymphocytes through changing direction of their migration.

  6. Chronic stress accelerates pancreatic cancer growth and invasion: A critical role for beta-adrenergic signaling in the pancreatic microenvironment

    PubMed Central

    Kim-Fuchs, Corina; Le, Caroline P.; Pimentel, Matthew A.; Shackleford, David; Ferrari, Davide; Angst, Eliane; Hollande, Frédéric; Sloan, Erica K.

    2014-01-01

    Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer. PMID:24650449

  7. TH-CD-207A-04: Optimized Respiratory Gating for Abnormal Breathers in Pancreatic SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, W; Miften, M; Schefter, T

    Purpose: Pancreatic SBRT is uniquely challenging due to both the erratic/unstable motion of the pancreas and the close proximity of the radiosensitive small bowel. Respiratory gating can mitigate this effect, but the irregularity of motion severely affects traditional phase-based gating. The purpose of this study was to analyze real-time motion data of pancreatic tumors to optimize the efficacy and accuracy of respiratory gating, with the overall goal of enabling dose escalated pancreatic SBRT. Methods: Fifteen pancreatic SBRT patients received 30–33 Gy in 5 fractions on a Varian TrueBeam STx unit. Abdominal compression was used to reduce the amplitude of tumormore » motion, and daily cone-beam computed tomography (CBCT) scans were acquired prior to each treatment for target localization purposes. For this study, breathing data (phase and amplitude) were collected during each CBCT scan using Varian’s Real-Time Position Management system. An in-house template matching technique was used to track the superior-inferior motion of implanted fiducial markers in CBCT projection images. Using tumor motion and breathing data, phase-based or amplitude-based respiratory gating was simulated for all 75 fractions, targeting either end-exhalation or end-inhalation phases of breathing. Results: For the average patient, gating at end-exhalation offered the best reductions in effective motion for equal duty cycles. However, optimal central phase angle varied widely (range: 0–92%, mean±SD: 49±12%), and phase-based gating windows typically associated with end-exhalation (i.e., “30–70%”) were rarely ideal. Amplitude-based gating significantly outperformed phase-based gating, with average effective ranges for amplitude-based gating 25% lower than phase-based gating ranges (as much as 73% lower). Amplitude-based gating was consistently better suited to accommodate abnormal breathing patterns. For both phase-based and amplitude-based gating, end-exhalation provided

  8. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids.

    PubMed

    Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B; Crawford, Howard C; Arrowsmith, Cheryl; Kalloger, Steve E; Renouf, Daniel J; Connor, Ashton A; Cleary, Sean; Schaeffer, David F; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K

    2015-11-01

    There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53(R175H) induces cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. We also define culture conditions for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture and phenotypic heterogeneity of the primary tumor and retain patient-specific physiological changes, including hypoxia, oxygen consumption, epigenetic marks and differences in sensitivity to inhibition of the histone methyltransferase EZH2. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies.

  9. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell and patient-derived tumor organoids

    PubMed Central

    Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B.; Crawford, Howard C.; Arrowsmith, Cheryl; Kalloger, Steve E.; Renouf, Daniel J.; Connor, Ashton A; Cleary, Sean; Schaeffer, David F.; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K.

    2016-01-01

    There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells (PSCs) into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53R175H induced cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. Culture conditions are also defined for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture, phenotypic heterogeneity of the primary tumor, and retain patient-specific physiologic changes including hypoxia, oxygen consumption, epigenetic marks, and differential sensitivity to EZH2 inhibition. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies. PMID:26501191

  10. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression.

    PubMed

    Froeling, Fieke E M; Feig, Christine; Chelala, Claude; Dobson, Richard; Mein, Charles E; Tuveson, David A; Clevers, Hans; Hart, Ian R; Kocher, Hemant M

    2011-10-01

    Patients with pancreatic ductal adenocarcinoma are deficient in vitamin A, resulting in activation of pancreatic stellate cells (PSCs). We investigated whether restoration of retinol to PSCs restores their quiescence and affects adjacent cancer cells. PSCs and cancer cell lines (AsPc1 and Capan1) were exposed to doses and isoforms of retinoic acid (RA) in 2-dimensional and 3-dimensional culture conditions (physiomimetic organotypic culture). The effects of all-trans retinoic acid (ATRA) were studied in LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice, a model of human pancreatic ductal adenocarcinoma. After incubation with ATRA, PSCs were quiescent and had altered expression of genes that regulate proliferation, morphology, and motility; genes that encode cytoskeletal proteins and cytokines; and genes that control other functions, irrespective of culture conditions or dosage. In the organotypic model, and in mice, ATRA induced quiescence of PSCs and thereby reduced cancer cell proliferation and translocation of β-catenin to the nucleus, increased cancer cell apoptosis, and altered tumor morphology. ATRA reduced the motility of PSCs, so these cells created a "wall" at the junction between the tumor and the matrix that prevented cancer cell invasion. Restoring secreted frizzled-related protein 4 (sFRP4) secretion to quiescent PSCs reduced Wnt-β-catenin signaling in cancer cells and their invasive ability. Human primary and metastatic pancreatic tumor tissues stained strongly for cancer cell nuclear β-catenin but had low levels of sFRP4 (in cancer cells and PSCs). RA induces quiescence and reduces motility of PSCs, leading to reduced proliferation and increased apoptosis of surrounding pancreatic cancer cells. RA isoforms might be developed as therapeutic reagents for pancreatic cancer. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Effect of Audio Coaching on Correlation of Abdominal Displacement With Lung Tumor Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Mitsuhiro; Narita, Yuichiro; Matsuo, Yukinori

    2009-10-01

    Purpose: To assess the effect of audio coaching on the time-dependent behavior of the correlation between abdominal motion and lung tumor motion and the corresponding lung tumor position mismatches. Methods and Materials: Six patients who had a lung tumor with a motion range >8 mm were enrolled in the present study. Breathing-synchronized fluoroscopy was performed initially without audio coaching, followed by fluoroscopy with recorded audio coaching for multiple days. Two different measurements, anteroposterior abdominal displacement using the real-time positioning management system and superoinferior (SI) lung tumor motion by X-ray fluoroscopy, were performed simultaneously. Their sequential images were recorded using onemore » display system. The lung tumor position was automatically detected with a template matching technique. The relationship between the abdominal and lung tumor motion was analyzed with and without audio coaching. Results: The mean SI tumor displacement was 10.4 mm without audio coaching and increased to 23.0 mm with audio coaching (p < .01). The correlation coefficients ranged from 0.89 to 0.97 with free breathing. Applying audio coaching, the correlation coefficients improved significantly (range, 0.93-0.99; p < .01), and the SI lung tumor position mismatches became larger in 75% of all sessions. Conclusion: Audio coaching served to increase the degree of correlation and make it more reproducible. In addition, the phase shifts between tumor motion and abdominal displacement were improved; however, all patients breathed more deeply, and the SI lung tumor position mismatches became slightly larger with audio coaching than without audio coaching.« less

  12. Loss of Stromal Caveolin-1 Expression: A Novel Tumor Microenvironment Biomarker That Can Predict Poor Clinical Outcomes for Pancreatic Cancer

    PubMed Central

    Shan, Tao; Lu, Hongwei; Ji, Hong; Li, Yiming; Guo, Jian; Chen, Xi; Wu, Tao

    2014-01-01

    Aims Cancer development and progression is not only associated with the tumor cell proliferation but also depends on the interaction between tumor cells and the stromal microenvironment. A new understanding of the role of the tumor microenvironment suggests that the loss of stromal caveolin-1 (Cav-1) as a key regulator may become a potential therapy target. This study aims to elucidate whether stromal Cav-1 expression in pancreatic cancer can be a strong prognosis biomarker. Methods Tissue samples from 45 pancreatic cancer patients were studied. Parenchyma and stroma were separated and purified using laser capture microdissection. Stromal Cav-1 expression was measured from pancreatic cancer, paraneoplastic, and normal tissue using immunohistochemistry. We analyzed the correlation of stromal Cav-1 expression with clinicopathologic features and prognostic indicators, such as tumor marker HER-2/neu gene. Results Specimens from six patients (13.3%) showed high levels of stromal Cav-1 staining, those from eight patients (17.8%) showed a lower, intermediate level of staining, whereas those from 31 patients (68.9%) showed an absence of staining. Cav-1 expression in cancer-associated fibroblasts was lower than that in paracancer-associated and in normal fibroblasts. Stromal Cav-1 loss was associated with TNM stage (P = 0.018), lymph node metastasis (P = 0.014), distant metastasis (P = 0.027), and HER-2/neu amplification (P = 0.007). The relationships of age, sex, histological grade, and tumor size with stromal Cav-1 expression were not significant (P>0.05). A negative correlation was found between circulating tumor cells and stromal Cav-1 expression (P<0.05). Conclusion The loss of stromal Cav-1 in pancreatic cancer was an independent prognostic indicator, thus suggesting that stromal Cav-1 may be an effective therapeutic target for patients with pancreatic cancer. PMID:24949874

  13. HDAC gene expression in pancreatic tumor cell lines following treatment with the HDAC inhibitors panobinostat (LBH589) and trichostatine (TSA).

    PubMed

    Mehdi, Ouaïssi; Françoise, Silvy; Sofia, Costa Lima; Urs, Giger; Kevin, Zemmour; Bernard, Sastre; Igor, Sielezneff; Anabela, Cordeiro-da-Silva; Dominique, Lombardo; Eric, Mas; Ali, Ouaïssi

    2012-01-01

    In this study, the effect of LBH589 and trichostatin (TSA), a standard histone deacetylase inhibitor (HDACi) toward the growth of pancreatic cancer cell lines was studied. Thus, we examined for the first time, the HDAC family gene expression levels before and after drug treatment. Several human pancreatic cancer cell lines (Panc-1, BxPC-3, SOJ-6) and a normal human pancreatic duct immortalized epithelial cell line (HPDE/E6E7) were used as target cells. The cell growth was measured by MTT assay, cell cycle alteration, membrane phosphatidylserine exposure, DNA fragmentation, mitochondrial membrane potential loss, RT-PCR and Western blots were done using standard methods. The effect of drugs on tumor growth in vivo was studied using subcutaneous xenograft model. Except in the case of certain HDAC gene/tumor cell line couples: (SIRT1/HPDE-SOJ6/TSA- or LBH589-treated cells; LBH589-treated Panc-1 Cells; HDAC2/BxPC-3/LBH589-treated cells or TSA-treated SOJ-6-1 cells), there were no major significant changes of HDACs genes transcription in cells upon drug treatment. However, significant variation in HDACs and SIRTs protein expression levels could be seen among individual cell samples. The in vivo results showed that LBH589 formulation exhibited similar tumor reduction efficacy as the commercial drug gemcitabine. Our data demonstrate that LBH589 induced the death of pancreatic tumor cell by apoptosis. In line with its in vitro activity, LBH589 achieved a significant reduction in tumor growth in BxPC-3 pancreatic tumor cell line subcutaneous xenograft mouse model. Furthermore, exploring the impact of LBH589 on HDACs encoding genes expression revealed for the first time that some of them, depending on the cell line considered, seem to be regulated during translation. Copyright © 2012 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  14. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells

    PubMed Central

    Duewell, P; Steger, A; Lohr, H; Bourhis, H; Hoelz, H; Kirchleitner, S V; Stieg, M R; Grassmann, S; Kobold, S; Siveke, J T; Endres, S; Schnurr, M

    2014-01-01

    Pancreatic cancer is characterized by a microenvironment suppressing immune responses. RIG-I-like helicases (RLH) are immunoreceptors for viral RNA that induce an antiviral response program via the production of type I interferons (IFN) and apoptosis in susceptible cells. We recently identified RLH as therapeutic targets of pancreatic cancer for counteracting immunosuppressive mechanisms and apoptosis induction. Here, we investigated immunogenic consequences of RLH-induced tumor cell death. Treatment of murine pancreatic cancer cell lines with RLH ligands induced production of type I IFN and proinflammatory cytokines. In addition, tumor cells died via intrinsic apoptosis and displayed features of immunogenic cell death, such as release of HMGB1 and translocation of calreticulin to the outer cell membrane. RLH-activated tumor cells led to activation of dendritic cells (DCs), which was mediated by tumor-derived type I IFN, whereas TLR, RAGE or inflammasome signaling was dispensable. Importantly, CD8α+ DCs effectively engulfed apoptotic tumor material and cross-presented tumor-associated antigen to naive CD8+ T cells. In comparison, tumor cell death mediated by oxaliplatin, staurosporine or mechanical disruption failed to induce DC activation and antigen presentation. Tumor cells treated with sublethal doses of RLH ligands upregulated Fas and MHC-I expression and were effectively sensitized towards Fas-mediated apoptosis and cytotoxic T lymphocyte (CTL)-mediated lysis. Vaccination of mice with RLH-activated tumor cells induced protective antitumor immunity in vivo. In addition, MDA5-based immunotherapy led to effective tumor control of established pancreatic tumors. In summary, RLH ligands induce a highly immunogenic form of tumor cell death linking innate and adaptive immunity. PMID:25012502

  15. Current immunotherapeutic strategies in pancreatic cancer.

    PubMed

    Plate, Janet M D

    2007-10-01

    The immune systems of patients with newly diagnosed pancreatic cancers are functional, with T-cell responses capable of responding to tumor antigen presentation. Pancreatic tumors have been demonstrated to express tumor antigens as mutated, altered, underglycosylated and/or inappropriately overexpressed proteins. Considering these two facts, it should be possible for patients' bodies to recognize their tumors as foreign and to reject them. A number of clinical trials have been initiated to exploit this immune activation to eradicate or stabilize tumor growth. Immunotherapeutic trials include the specific testing of a variety of tumor vaccines, of cytokines as adjuvants or directed cytotoxicity, and of monoclonal antibodies to target specific molecules. This article reviews evidence for immune-cell activation and function in patients with pancreatic cancer, and evidence that pancreatic tumor cells express tumor antigens, or mutated (or altered) proteins. Nevertheless, tumors survive immune attacks by producing products that help them to circumvent effector T cells. The article thus examines complications of immune evasion by cancer cells, as well as the challenges of trying to exploit the immune system in solid tumors where tumor cell products can turn off invading immune T cells set to kill them. Finally, the article discusses the choices of a variety of clinical trials using immune modulation for patients with pancreatic cancer.

  16. A Case of a Composite Adrenal Medullary Tumor of Pheochromocytoma and Ganglioneuroma Masquerading as Acute Pancreatitis

    PubMed Central

    Choi, Eun-Kyoung; Kim, Wan-Ho

    2006-01-01

    Composite adrenal medullary tumors, composed of both pheochromocytoma and ganglioneuroma, are extremely rare, as are pheochromocytomas masquerading as acute relapsing pancreatitis. We recently experienced a case of a 48-year-old male with both these phenomena. The patient complained of an acute onset of intense abdominal discomfort. At the same time, pancreatic enzymes were increased in concentration. An abdominal computed tomographic scan revealed an enlarged pancreas and a 3-cm left adrenal incidentaloma. Biochemical and 131I-MIBG scintigraphic findings were compatible with a pheochromocytoma. Yet, he had no clinical manifestations suggesting pheochromocytoma. An adrenalectomy was performed and a composite adrenal medullary tumor of pheochromocytoma and ganglioneuroma was confirmed during a pathologic examination. This case illustrates two points: 1) acute abdominal intense discomfort and hyperamylasemia may be unusual presentations of pheochromocytomas; and 2) the possibility of the pheochromocytoma, albeit rare, should be considered when a relapsing pancreatitis of uncertain etiology develops. PMID:16913447

  17. Short- and long-term outcomes after enucleation of pancreatic tumors: An evidence-based assessment.

    PubMed

    Zhou, Yanming; Zhao, Min; Wu, Lupeng; Ye, Feng; Si, Xiaoying

    Enucleation of pancreatic tumors is rarely performed. The aim of this study was to evaluate the published evidence for its short- and long-term outcomes. PubMed (MEDLINE) and EMBASE databases were searched from 1990 to March 2016. Studies including at least ten patients who underwent enucleation of pancreatic lesions were included. Data on the outcomes were synthesized and meta-analyzed where appropriate. Twenty-seven studies involving 1316 patients were included in the systematic review. The postoperative mortality was 0.3%, and the postoperative morbidity was 50.3%, mainly represented by pancreatic fistula (38.1%). Endocrine insufficiency, exocrine insufficiency and tumor recurrence was observed in 2.4%, 1.1% and 2.3% of the patients respectively. Compared with typical resection, the operation time, blood loss, length of hospital stay, and the incidence of endocrine and exocrine insufficiency were all significantly reduced after enucleation. The occurrence of pancreatic fistula was significantly higher in enucleation group, but overall morbidity, the reoperation rate and mortality were comparable between the two groups. There was no significant difference in disease recurrence between the two groups. Compared with central pancreatectomy, enucleation had a shorter operation time, lower blood loss, less morbidity, and better pancreatic function. Compared with open enucleation, minimally invasive enucleation had a shorter operation time and a shorter length of hospital stay. Enucleation is an appropriate surgical procedure in selected patients with benign or low-malignant lesions of the pancreas. The benefits of minimally invasive approach need to be validated in further investigations with larger groups of patients. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  18. Zyflamend Suppresses Growth and Sensitizes Human Pancreatic Tumors to Gemcitabine in an Orthotopic Mouse Model Through Modulation of Multiple Targets

    PubMed Central

    Kunnumakkara, Ajaikumar B.; Sung, Bokyung; Ravindran, Jayaraj; Diagaradjane, Parmeswaran; Deorukhkar, Amit; Dey, Sanjit; Koca, Cemile; Tong, Zhimin; Gelovani, Juri G.; Guha, Sushovan; Krishnan, Sunil; Aggarwal, Bharat B.

    2011-01-01

    Agents that can potentiate the efficacy of standard chemotherapy against pancreatic cancer are of great interest. Because of their low cost and safety, patients commonly use a variety of dietary supplements, although evidence of their efficacy is often lacking. One such commonly used food supplement, Zyflamend, is a polyherbal preparation with potent anti-inflammatory activities, and preclinical efficacy against prostate and oral cancer. Whether Zyflamend has any efficacy against human pancreatic cancer alone or in combination with gemcitibine, a commonly used agent, was examined in cell cultures and in an orthotopic mouse model. In vitro, Zyflamend inhibited the proliferation of pancreatic cancer cell lines regardless of p53 status and also enhanced gemcitabine-induced apoptosis. This finding correlated with inhibition of NF-κB activation by Zyflamend and suppression of cyclin D1, c-myc, COX-2, Bcl-2, IAP, survivin, VEGF, ICAM-1, and CXCR4. In nude mice, oral administration of Zyflamend alone significantly inhibited the growth of orthotopically transplanted human pancreatic tumors, and when combined with gemcitabine, further enhanced the antitumor effects. Immunohistochemical and Western blot analyses of tumor tissue showed that the suppression of pancreatic cancer growth correlated with inhibition of proliferation index marker (Ki-67), COX-2, MMP-9, NF-κB, and VEGF. Overall, these results suggest that the concentrated multiherb product Zyflamend alone can inhibit the growth of human pancreatic tumors and, in addition, can sensitize pancreatic cancers to gemcitabine through the suppression of multiple targets linked to tumorigenesis. PMID:21935918

  19. A practical approach to pancreatic cancer immunotherapy using resected tumor lysate vaccines processed to express α-gal epitopes

    PubMed Central

    Miyoshi, Eiji; Eguchi, Hidetoshi; Nagano, Hiroaki; Matsunami, Katsuyoshi; Nagaoka, Satoshi; Yamada, Daisaku; Asaoka, Tadafumi; Noda, Takehiro; Wada, Hiroshi; Kawamoto, Koichi; Goto, Kunihito; Taniyama, Kiyomi; Mori, Masaki; Doki, Yuichiro

    2017-01-01

    Objectives Single-agent immunotherapy is ineffective against poorly immunogenic cancers, including pancreatic ductal adenocarcinoma (PDAC). The aims of this study were to demonstrate the feasibility of production of novel autologous tumor lysate vaccines from resected PDAC tumors, and verify vaccine safety and efficacy. Methods Fresh surgically resected tumors obtained from human patients were processed to enzymatically synthesize α-gal epitopes on the carbohydrate chains of membrane glycoproteins. Processed membranes were analyzed for the expression of α-gal epitopes and the binding of anti-Gal, and vaccine efficacy was assessed in vitro and in vivo. Results Effective synthesis of α-gal epitopes was demonstrated after processing of PDAC tumor lysates from 10 different patients, and tumor lysates readily bound an anti-Gal monoclonal antibody. α-gal(+) PDAC tumor lysate vaccines elicited strong antibody production against multiple tumor-associated antigens and activated multiple tumor-specific T cells. The lysate vaccines stimulated a robust immune response in animal models, resulting in tumor suppression and a significant improvement in survival without any adverse events. Conclusions Our data suggest that α-gal(+) PDAC tumor lysate vaccination may be a practical and effective new immunotherapeutic approach for treating pancreatic cancer. PMID:29077749

  20. A practical approach to pancreatic cancer immunotherapy using resected tumor lysate vaccines processed to express α-gal epitopes.

    PubMed

    Furukawa, Kenta; Tanemura, Masahiro; Miyoshi, Eiji; Eguchi, Hidetoshi; Nagano, Hiroaki; Matsunami, Katsuyoshi; Nagaoka, Satoshi; Yamada, Daisaku; Asaoka, Tadafumi; Noda, Takehiro; Wada, Hiroshi; Kawamoto, Koichi; Goto, Kunihito; Taniyama, Kiyomi; Mori, Masaki; Doki, Yuichiro

    2017-01-01

    Single-agent immunotherapy is ineffective against poorly immunogenic cancers, including pancreatic ductal adenocarcinoma (PDAC). The aims of this study were to demonstrate the feasibility of production of novel autologous tumor lysate vaccines from resected PDAC tumors, and verify vaccine safety and efficacy. Fresh surgically resected tumors obtained from human patients were processed to enzymatically synthesize α-gal epitopes on the carbohydrate chains of membrane glycoproteins. Processed membranes were analyzed for the expression of α-gal epitopes and the binding of anti-Gal, and vaccine efficacy was assessed in vitro and in vivo. Effective synthesis of α-gal epitopes was demonstrated after processing of PDAC tumor lysates from 10 different patients, and tumor lysates readily bound an anti-Gal monoclonal antibody. α-gal(+) PDAC tumor lysate vaccines elicited strong antibody production against multiple tumor-associated antigens and activated multiple tumor-specific T cells. The lysate vaccines stimulated a robust immune response in animal models, resulting in tumor suppression and a significant improvement in survival without any adverse events. Our data suggest that α-gal(+) PDAC tumor lysate vaccination may be a practical and effective new immunotherapeutic approach for treating pancreatic cancer.

  1. Immune cell functions in pancreatic cancer.

    PubMed

    Plate, J M; Harris, J E

    2000-01-01

    Pancreatic cancer kills nearly 29,000 people in the United States annually-as many people as are diagnosed with the disease. Chemotherapeutic treatment is ineffective in halting progression of the disease. Yet, specific immunity to pancreatic tumor cells in subjects with pancreatic cancer has been demonstrated repeatedly during the last 24 years. Attempts to expand and enhance tumor-specific immunity with biotherapy, however, have not met with success. The question remains, "Why can't specific immunity regulate pancreatic cancer growth?" The idea that tumor cells have evolved protective mechanisms against immunity was raised years ago and has recently been revisited by a number of research laboratories. In pancreatic cancer, soluble factors produced by and for the protection of the tumor environment have been detected and are often distributed to the victim's circulatory system where they may effect a more generalized immunosuppression. Yet the nature of these soluble factors remains controversial, since some also serve as tumor antigens that are recognized by the same T cells that may become inactivated by them. Unless the problem of tumor-derived immunosuppressive products is addressed directly through basic and translational research studies, successful biotherapeutic treatment for pancreatic cancer may not be forthcoming.

  2. Simulation of dosimetric consequences of 4D-CT-based motion margin estimation for proton radiotherapy using patient tumor motion data

    NASA Astrophysics Data System (ADS)

    Koybasi, Ozhan; Mishra, Pankaj; St. James, Sara; Lewis, John H.; Seco, Joao

    2014-02-01

    For the radiation treatment of lung cancer patients, four-dimensional computed tomography (4D-CT) is a common practice used clinically to image tumor motion and subsequently determine the internal target volume (ITV) from the maximum intensity projection (MIP) images. ITV, which is derived from short pre-treatment 4D-CT scan (<6 s per couch position), may not adequately cover the extent of tumor motion during the treatment, particularly for patients that exhibit a large respiratory variability. Inaccurate tumor localization may result in under-dosage of the tumor or over-dosage of the surrounding tissues. The purpose of this study is therefore to assess the degree of tumor under-dosage in case of regular and irregular breathing for proton radiotherapy using ITV-based treatment planning. We place a spherical lesion into a modified XCAT phantom that is also capable of producing 4D images based on irregular breathing, and move the tumor according to real tumor motion data, which is acquired over multiple days by tracking gold fiducial markers implanted into the lung tumors of patients. We derive ITVs by taking the union of all tumor positions during 6 s of tumor motion in the phantom using the first day patient tumor tracking data. This is equivalent to ITVs generated clinically from cine-mode 4D-CT MIP images. The treatment plans created for different ITVs are then implemented on dynamic phantoms with tumor motion governed by real tumor tracking data from consecutive days. By comparing gross tumor volume dose distribution on days of ‘treatment’ with the ITV dose distribution, we evaluate the deviation of the actually delivered dose from the predicted dose. Our results have shown that the proton treatment planning on ITV derived from pre-treatment cine-mode 4D-CT can result in under-dosage (dose covering 95% of volume) of the tumor by up to 25.7% over 3 min of treatment for the patient with irregular respiratory motion. Tumor under-dosage is less significant for

  3. Development of a novel preclinical pancreatic cancer research model: bioluminescence image-guided focal irradiation and tumor monitoring of orthotopic xenografts.

    PubMed

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; Deweese, Theodore L; Herman, Joseph M

    2012-04-01

    We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response.

  4. “Stealth dissemination” of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma

    USDA-ARS?s Scientific Manuscript database

    Circulating tumor cells (CTCs) appear to be involved in early dissemination of many cancers, although which characteristics are important in metastatic spread are not clear. Here we describe isolation and characterization of macrophage-tumor cell fusions (MTFs) from the blood of pancreatic ductal a...

  5. Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer

    PubMed Central

    Kang, Rui; Xie, Yangchun; Zhang, Qiuhong; Hou, Wen; Jiang, Qingping; Zhu, Shan; Liu, Jinbao; Zeng, Dexing; Wang, Haichao; Bartlett, David L; Billiar, Timothy R; Zeh, Herbert J; Lotze, Michael T; Tang, Daolin

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) driven by oncogenic K-Ras remains among the most lethal human cancers despite recent advances in modern medicine. The pathogenesis of PDAC is partly attributable to intrinsic chromosome instability and extrinsic inflammation activation. However, the molecular link between these two events in pancreatic tumorigenesis has not yet been fully established. Here, we show that intracellular high mobility group box 1 (HMGB1) remarkably suppresses oncogenic K-Ras-driven pancreatic tumorigenesis by inhibiting chromosome instability-mediated pro-inflammatory nucleosome release. Conditional genetic ablation of either single or both alleles of HMGB1 in the pancreas renders mice extremely sensitive to oncogenic K-Ras-driven initiation of precursor lesions at birth, including pancreatic intraepithelial neoplasms, intraductal papillary mucinous neoplasms, and mucinous cystic neoplasms. Loss of HMGB1 in the pancreas is associated with oxidative DNA damage and chromosomal instability characterized by chromosome rearrangements and telomere abnormalities. These lead to inflammatory nucleosome release and propagate K-Ras-driven pancreatic tumorigenesis. Extracellular nucleosomes promote interleukin 6 (IL-6) secretion by infiltrating macrophages/neutrophils and enhance oncogenic K-Ras signaling activation in pancreatic lesions. Neutralizing antibodies to IL-6 or histone H3 or knockout of the receptor for advanced glycation end products all limit K-Ras signaling activation, prevent cancer development and metastasis/invasion, and prolong animal survival in Pdx1-Cre;K-RasG12D/+;Hmgb1−/− mice. Pharmacological inhibition of HMGB1 loss by glycyrrhizin limits oncogenic K-Ras-driven tumorigenesis in mice under inflammatory conditions. Diminished nuclear and total cellular expression of HMGB1 in PDAC patients correlates with poor overall survival, supporting intracellular HMGB1 as a novel tumor suppressor with prognostic and therapeutic relevance in

  6. A Novel Deletion Mutation in the MEN1 Gene in a Patient with Prolactinoma and a Family History of Pancreatic Tumors.

    PubMed

    Kageyama, Kazunori; Usui, Takeshi; Yoshizawa, Kaori; Daimon, Makoto

    2014-09-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant tumor syndrome caused by mutations in the MEN1 gene. Mutations in this tumor suppressor gene are often associated with neuroendocrine tumors. Here we describe a novel deletion mutation at codon 304 in the MEN1 gene of a patient with a prolactinoma and strong family history of pancreatic tumors. We describe the patient's clinical course and mutational analysis and review the relevant literature. A 30-year-old pregnant female was referred to our institution's psychological department for treatment of depression. She had developed a prolactinoma at age 17 and was being treated with 1 mg/week of cabergoline. A medical interview revealed a family history of pancreatic islet cell and other tumors; her mother died of pancreatic cancer, her brother is living with gastrinoma, and her sister died of leiomyosarcoma. Extensive examinations performed after delivery, including laboratory tests and computed tomography (CT) scans, did not reveal any other tumors. Mutational analysis of the MEN1 gene identified a heterozygous deletion mutation (c911_914delAGGT) at codon 304. This mutation produces a frameshift at p.304Lys and might disturb the splicing of intron 6 due to the lack of a donor site. The predicted menin protein from the mutated allele is truncated at amino acid 328. We report a novel deletion mutation (c911_914delAGGT) in the MEN1 gene that was likely associated with the patient's prolactinoma and her strong family history of pancreatic tumors.

  7. SU-G-JeP1-06: Correlation of Lung Tumor Motion with Tumor Location Using Electromagnetic Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muccigrosso, D; Maughan, N; Parikh, P

    Purpose: It is well known that lung tumors move with respiration. However, most measurements of lung tumor motion have studied long treatment times with intermittent imaging; those populations may not necessarily represent conventional LINAC patients. We summarized the correlation between tumor motion and location in a multi-institutional trial with electromagnetic tracking, and identified the patient cohort that would most benefit from respiratory gating. Methods: Continuous electromagnetic transponder data (Varian Medical, Seattle, WA) of lung tumor motion was collected from 14 patients (214 total fractions) across 3 institutions during external beam radiation therapy in a prospective clinical trial (NCT01396551). External interventionmore » from the clinician, such as couch shifts, instructed breath-holds, and acquisition pauses, were manually removed from the 10 Hz tracking data according to recorded notes. The average three-dimensional displacement from the breathing cycle’s end-expiratory to end-inhalation phases (peak-to-peak distance) of the transponders’ isocenter was calculated for each patient’s treatment. A weighted average of each isocenter was used to assess the effects of location on motion. A total of 14 patients were included in this analysis, grouped by their transponders’ location in the lung: upper, medial, and lower. Results: 8 patients had transponders in the upper lung, and 3 patients each in the medial lobe and lower lung. The weighted average ± standard deviation of all peak-to-peak distances for each group was: 1.04 ± 0.39 cm in the lower lung, 0.56 ± 0.14 cm in the medial lung, and 0.30 ± 0.06 cm in the upper lung. Conclusion: Tumors in the lower lung are most susceptible to excessive motion and daily variation, and would benefit most from continuous motion tracking and gating. Those in the medial lobe might be at moderate risk. The upper lobes have limited motion. These results can guide different motion management

  8. Hypoxia Responsive, Tumor Penetrating Lipid Nanoparticles for Delivery of Chemotherapeutics to Pancreatic Cancer Cell Spheroids.

    PubMed

    Kulkarni, Prajakta; Haldar, Manas K; Katti, Preeya; Dawes, Courtney; You, Seungyong; Choi, Yongki; Mallik, Sanku

    2016-08-17

    Solid tumors are often poorly irrigated due to structurally compromised microcirculation. Uncontrolled multiplication of cancer cells, insufficient blood flow, and the lack of enough oxygen and nutrients lead to the development of hypoxic regions in the tumor tissues. As the partial pressure of oxygen drops below the necessary level (10 psi), the cancer cells modulate their genetic makeup to survive. Hypoxia triggers tumor progression by enhancing angiogenesis, cancer stem cell production, remodeling of the extracellular matrix, and epigenetic changes in the cancer cells. However, the hypoxic regions are usually located deep in the tumors and are usually inaccessible to the intravenously injected drug carrier or the drug. Considering the designs of the reported nanoparticles, it is likely that the drug is delivered to the peripheral tumor tissues, close to the blood vessels. In this study, we prepared lipid nanoparticles (LNs) comprising the synthesized hypoxia-responsive lipid and a peptide-lipid conjugate. We observed that the resultant LNs penetrated to the hypoxic regions of the tumors. Under low oxygen partial pressure, the hypoxia-responsive lipid undergoes reduction, destabilizing the lipid membrane, and releasing encapsulated drugs from the nanoparticles. We demonstrated the results employing spheroidal cultures of the pancreatic cancer cells BxPC-3. We observed that the peptide-decorated, drug encapsulated LNs reduced the viability of pancreatic cancer cells of the spheroids to 35% under hypoxic conditions.

  9. Pancreatic neuroendocrine tumors: the basics, the gray zone, and the target.

    PubMed

    Kelgiorgi, Dionysia; Dervenis, Christos

    2017-01-01

    Pancreatic neuroendocrine tumors (PanNETs) manifest with a range of symptoms and pose a therapeutic challenge. A team approach, in which many specialists come together, is necessary in the quest for the best patient-tailored treatment. Disciplines such as oncology, surgery, basic science, endocrinology, radiology, and nuclear medicine need to work side by side, equally contributing to patient care and to advancing our better understanding of this fascinating disease.

  10. Real-time tumor motion estimation using respiratory surrogate via memory-based learning

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Berbeco, Ross I.; Xing, Lei

    2012-08-01

    Respiratory tumor motion is a major challenge in radiation therapy for thoracic and abdominal cancers. Effective motion management requires an accurate knowledge of the real-time tumor motion. External respiration monitoring devices (optical, etc) provide a noninvasive, non-ionizing, low-cost and practical approach to obtain the respiratory signal. Due to the highly complex and nonlinear relations between tumor and surrogate motion, its ultimate success hinges on the ability to accurately infer the tumor motion from respiratory surrogates. Given their widespread use in the clinic, such a method is critically needed. We propose to use a powerful memory-based learning method to find the complex relations between tumor motion and respiratory surrogates. The method first stores the training data in memory and then finds relevant data to answer a particular query. Nearby data points are assigned high relevance (or weights) and conversely distant data are assigned low relevance. By fitting relatively simple models to local patches instead of fitting one single global model, it is able to capture highly nonlinear and complex relations between the internal tumor motion and external surrogates accurately. Due to the local nature of weighting functions, the method is inherently robust to outliers in the training data. Moreover, both training and adapting to new data are performed almost instantaneously with memory-based learning, making it suitable for dynamically following variable internal/external relations. We evaluated the method using respiratory motion data from 11 patients. The data set consists of simultaneous measurement of 3D tumor motion and 1D abdominal surface (used as the surrogate signal in this study). There are a total of 171 respiratory traces, with an average peak-to-peak amplitude of ∼15 mm and average duration of ∼115 s per trace. Given only 5 s (roughly one breath) pretreatment training data, the method achieved an average 3D error of 1.5 mm and 95

  11. The Somatostatin Analog Rhenium Re-188-P2045 Inhibits the Growth of AR42J Pancreatic Tumor-xenografts

    PubMed Central

    Nelson, Carol A.; Azure, Michael T.; Adams, Christopher T.; Zinn, Kurt R.

    2015-01-01

    P2045 is a peptide analog of somatostatin with picomolar affinity for the somatostatin receptor subtype 2 (SSTR2) upregulated in some pancreatic tumors. Studies were conducted in rat AR42J pancreatic tumor-xenograft mice to determine if Re-188-P2045 could inhibit the growth of pancreatic cancer in an animal model. Methods Re-188-P2045 was intravenously administered every 3 days for 16 days to nude mice with AR42J tumor-xenografts that were ≈ 20 mm3 at study initiation. Tumor volumes were recorded throughout the dosing period. At necropsy all tissues were assessed for levels of radioactivity and evaluated for histological abnormalities. Clinical chemistry and hematology parameters were determined from terminal blood samples. The affinity of non-radioactive Re-185/187-P2045 for somatostatin receptors was compared in human NCI-H69 and rat AR42J tumor-cell membranes expressing predominantly SSTR2. Results In the 1.85 and 5.55 mBq groups tumor growth was inhibited in a dose-dependent fashion. In the 11.1 mBq group tumor growth was completely inhibited throughout the dosing period and for 12 days after the last administered dose. The radioactivity level in tumors 4 hours post-injection was 10%ID/g, which was 2-fold higher than in the kidneys. Re-188-P2045 was well tolerated in all dose-groups with no adverse clinical, histological, or hematological findings. The non-radioactive Re-185/187-P2045 bound more avidly (0.2 nM) to SSTR2 in human than rat tumor membranes suggesting that these studies are relevant to human studies. Conclusion Re-188-P2045 is a promising therapeutic candidate for patients with somatostatin-receptor-positive cancer. PMID:25359879

  12. CDDO-Me inhibits tumor growth and prevents recurrence of pancreatic ductal adenocarcinoma.

    PubMed

    Gao, Xiaohua; Deeb, Dorrah; Liu, Yongbo; Liu, Patricia; Zhang, Yiguan; Shaw, Jiajiu; Gautam, Subhash C

    2015-12-01

    Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) has shown potent antitumorigenic activity against a wide range of cancer cell lines in vitro and inhibited the growth of liver, lung and prostate cancer in vivo. In the present study, we examined the antitumor activity of CDDO-Me for pancreatic ductal adenocarcinoma (PDAC) cells with and without activating K-ras mutations. Treatment of K-ras mutant MiaPaCa-2 and K-ras normal BxPC-3 cells with CDDO-Me elicited strong antiproliferative and proapoptopic responses in both cell lines in culture. The inhibition of cell proliferation and induction of apoptosis was accompanied by the inhibition of antiapoptotic/prosurvival p-Akt, NF-кB and p-mTOR signaling proteins. For testing efficacy of CDDO-Me in vivo heterotopic and orthotopic xenografts were generated by implanting BxPC-3 and MiaPaCa-2 cells subcutaneously and in the pancreatic tail, respectively. Treatment with CDDO-Me significantly inhibited the growth of BxPC-3 xenografts and reduced the levels of p-Akt and p-mTOR in tumor tissue. In mice with orthotopic MiaPaCa-2 xenografts, treatment with CDDO-Me prolonged the survival of mice when administered following the surgical resection of tumors. The latter was attributed to the eradication of residual PDAC remaining after resection of tumors. These preclinical data demonstrate the potential of CDDO-Me for treating primary PDAC tumors and for preventing relapse/recurrence through the destruction of residual disease.

  13. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future.

  14. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis.

    PubMed

    Besmer, Dahlia M; Curry, Jennifer M; Roy, Lopamudra D; Tinder, Teresa L; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y; Gendler, Sandra J; Mukherjee, Pinku

    2011-07-01

    MUC1 is overexpressed and aberrantly glycosylated in more than 60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In this study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared with both KC and KCM. Cell lines derived from KCKO tumors have significantly less tumorigenic capacity compared with cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared with mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor, platelet-derived growth factor, or matrix metalloproteinase 9. Further, significantly less KCKO cells entered the G(2)-M phase of the cell cycle compared with the KCM cells. Proteomics and Western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of mitogen-activated protein kinase (MAPK), as well as a significant decrease in nestin and tubulin-α2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. ©2011 AACR

  15. SU-E-J-133: Evaluation of Inter- and Intra-Fractional Pancreas Tumor Residual Motions with Abdominal Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Shi, F; Tian, Z

    2014-06-01

    Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motionmore » pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be

  16. Screening for Pancreatic Cancer

    PubMed Central

    Brand, Randall E.

    2007-01-01

    Despite improvements in the clinical and surgical management of pancreatic cancer, limited strides have been made in the early detection of this highly lethal malignancy. The majority of localized pancreatic tumors are asymptomatic, and the recognized presenting symptoms of pancreatic adenocarcinoma are often vague and heterogeneous in nature. These factors, coupled with the lack of a sensitive and noninvasive screening method, have made population-based screening for pancreatic cancer impossible. Nevertheless, at least two large institutions have performed multimodality-screening protocols for individuals with high risk of pancreatic cancer based on genetic predisposition and strong family history. Abnormalities noted during these screening protocols prompted further investigation or surgery that resulted in the discovery of benign, potentially malignant, and malignant pancreatic lesions. In addition to ductal epithelial pancreatic intraepithelial neoplasia, greater sensitivity has recently been achieved in the identification and characterization of precancerous mucinous pancreatic tumors. Advancements in proteomics and DNA microarray technology may confirm serum-based biomarkers that could be incorporated into future screening algorithms for pancreatic cancer. PMID:21960811

  17. Four-Dimensional Magnetic Resonance Imaging With 3-Dimensional Radial Sampling and Self-Gating–Based K-Space Sorting: Early Clinical Experience on Pancreatic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wensha, E-mail: wensha.yang@cshs.org; Fan, Zhaoyang; Tuli, Richard

    2015-12-01

    Purpose: To apply a novel self-gating k-space sorted 4-dimensional MRI (SG-KS-4D-MRI) method to overcome limitations due to anisotropic resolution and rebinning artifacts and to monitor pancreatic tumor motion. Methods and Materials: Ten patients were imaged using 4D-CT, cine 2-dimensional MRI (2D-MRI), and the SG-KS-4D-MRI, which is a spoiled gradient recalled echo sequence with 3-dimensional radial-sampling k-space projections and 1-dimensional projection-based self-gating. Tumor volumes were defined on all phases in both 4D-MRI and 4D-CT and then compared. Results: An isotropic resolution of 1.56 mm was achieved in the SG-KS-4D-MRI images, which showed superior soft-tissue contrast to 4D-CT and appeared to be free of stitchingmore » artifacts. The tumor motion trajectory cross-correlations (mean ± SD) between SG-KS-4D-MRI and cine 2D-MRI in superior–inferior, anterior–posterior, and medial–lateral directions were 0.93 ± 0.03, 0.83 ± 0.10, and 0.74 ± 0.18, respectively. The tumor motion trajectories cross-correlations between SG-KS-4D-MRI and 4D-CT in superior–inferior, anterior–posterior, and medial–lateral directions were 0.91 ± 0.06, 0.72 ± 0.16, and 0.44 ± 0.24, respectively. The average standard deviation of gross tumor volume calculated from the 10 breathing phases was 0.81 cm{sup 3} and 1.02 cm{sup 3} for SG-KS-4D-MRI and 4D-CT, respectively (P=.012). Conclusions: A novel SG-KS-4D-MRI acquisition method capable of reconstructing rebinning artifact–free, high-resolution 4D-MRI images was used to quantify pancreas tumor motion. The resultant pancreatic tumor motion trajectories agreed well with 2D-cine-MRI and 4D-CT. The pancreatic tumor volumes shown in the different phases for the SG-KS-4D-MRI were statistically significantly more consistent than those in the 4D-CT.« less

  18. A pancreatic tumor-specific biomarker characterized in humans and mice as an immunogenic onco-glycoprotein is efficient in dendritic cell vaccination

    PubMed Central

    Collignon, Aurélie; Perles-Barbacaru, Adriana Teodora; Robert, Stéphane; Silvy, Françoise; Martinez, Emmanuelle; Crenon, Isabelle; Germain, Sébastien; Garcia, Stéphane; Viola, Angèle; Lombardo, Dominique

    2015-01-01

    Oncofetal fucose-rich glycovariants of the pathological bile salt-dependent lipase (pBSDL) appear during human pancreatic oncogenesis and are detected by themonoclonal antibody J28 (mAbJ28). We aimed to identify murine counterparts onpancreatic ductal adenocarcinoma (PDAC) cells and tissue and investigate the potential of dendritic cells (DC) loaded with this unique pancreatic tumor antigen to promote immunotherapy in preclinical trials. Pathological BSDLs purified from pancreatic juices of patients with PDAC were cleaved to generate glycosylated C-terminal moieties (C-ter) containing mAbJ28-reactive glycoepitopes. Immunoreactivity of the murine PDAC line Panc02 and tumor tissue to mAbJ28 was detected by immunohistochemistry and flow cytometry. C-ter-J28+ immunization promoted Th1-dominated immune responses. In vitro C-ter-J28+-loaded DCskewed CD3+ T-cells toward Th1 polarization. C-ter-J28+-DC-vaccinations selectively enhanced cell immunoreactivity to Panc02, as demonstrated by CD4+- and CD8+-T-cell activation, increased percentages of CD4+- and CD8+-T-cells and NK1.1+ cells expressing granzyme B, and T-cell cytotoxicity. Prophylactic and therapeutic C-ter-J28+-DC-vaccinations reduced ectopic Panc02-tumor growth, provided long-lasting protection from Panc02-tumor development in 100% of micebut not from melanoma, and attenuated progression of orthotopic tumors as revealed by MRI. Thusmurine DC loaded with pancreatic tumor-specific glycoepitope C-ter-J28+ induce efficient anticancer adaptive immunity and represent a potential adjuvant therapy for patients afflicted with PDAC. PMID:26405163

  19. Quantitative CT analysis for the preoperative prediction of pathologic grade in pancreatic neuroendocrine tumors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayasree; Pulvirenti, Alessandra; Yamashita, Rikiya; Midya, Abhishek; Gönen, Mithat; Klimstra, David S.; Reidy, Diane L.; Allen, Peter J.; Do, Richard K. G.; Simpson, Amber L.

    2018-02-01

    Pancreatic neuroendocrine tumors (PanNETs) account for approximately 5% of all pancreatic tumors, affecting one individual per million each year.1 PanNETs are difficult to treat due to biological variability from benign to highly malignant, indolent to very aggressive. The World Health Organization classifies PanNETs into three categories based on cell proliferative rate, usually detected using the Ki67 index and cell morphology: low-grade (G1), intermediate-grade (G2) and high-grade (G3) tumors. Knowledge of grade prior to treatment would select patients for optimal therapy: G1/G2 tumors respond well to somatostatin analogs and targeted or cytotoxic drugs whereas G3 tumors would be targeted with platinum or alkylating agents.2, 3 Grade assessment is based on the pathologic examination of the surgical specimen, biopsy or ne-needle aspiration; however, heterogeneity in the proliferative index can lead to sampling errors.4 Based on studies relating qualitatively assessed shape and enhancement characteristics on CT imaging to tumor grade in PanNET,5 we propose objective classification of PanNET grade with quantitative analysis of CT images. Fifty-five patients were included in our retrospective analysis. A pathologist graded the tumors. Texture and shape-based features were extracted from CT. Random forest and naive Bayes classifiers were compared for the classification of G1/G2 and G3 PanNETs. The best area under the receiver operating characteristic curve (AUC) of 0:74 and accuracy of 71:64% was achieved with texture features. The shape-based features achieved an AUC of 0:70 and accuracy of 78:73%.

  20. Management of Respiration-Induced Motion With 4-Dimensional Computed Tomography (4DCT) for Pancreas Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, An, E-mail: atai@mcw.edu; Liang, Zhiwen; Radiation Oncology Center, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan

    2013-08-01

    Purpose: The purposes of this study were to quantify respiration-induced organ motions for pancreatic cancer patients and to explore strategies to account for these motions. Methods and Materials: Both 3-dimensional computed tomography (3DCT) and 4-dimensional computed tomography (4DCT) scans were acquired sequentially for 15 pancreatic cancer patients, including 10 randomly selected patients and 5 patients selected from a subgroup of patients with large tumor respiratory motions. 3DCTs were fused with 2 sets of 4DCT data at the end of exhale phase (50%) and the end of inhale phase (0%). The target was delineated on the 50% and 0% phase CTmore » sets, and the organs at risk were drawn on the 3DCT. These contours were populated to the CT sets at other respiratory phases based on deformable image registration. Internal target volumes (ITV) were generated by tracing the target contours of all phases (ITV{sub 10}), 3 phases of 0%, 20% and 50% (ITV{sub 3}), and 2 phases of 0% and 50% (ITV{sub 2}). ITVs generated from phase images were compared using percentage of volume overlap, Dice coefficient, geometric centers, and average surface distance. Results: Volume variations of pancreas, kidneys, and liver as a function of respiratory phases were small (<5%) during respiration. For the 10 randomly selected patients, peak-to-peak amplitudes of liver, left kidney, right kidney, and the target along the superior-inferior (SI) direction were 7.9 ± 3.2 mm, 7.1 ± 3.1 mm, 5.7 ± 3.2 mm, and 5.9 ± 2.8 mm, respectively. The percentage of volume overlap and Dice coefficient were 92% ± 1% and 96% ± 1% between ITV{sub 10} and ITV{sub 2} and 96% ± 1% and 98% ± 1% between ITV{sub 10} and ITV{sub 3}, respectively. The percentage of volume overlap between ITV{sub 10} and ITV{sub 3} was 93.6 ± 1.1 for patients with tumor motion >8 mm. Conclusions: Appropriate motion management strategies are proposed for radiation treatment planning of pancreatic tumors based on magnitudes of

  1. Cystic pancreatic tumors (CPT): predictors of malignant behavior.

    PubMed

    Javle, Milind; Shah, Pankaj; Yu, Jihnhee; Bhagat, Vishal; Litwin, Alan; Iyer, Renuka; Gibbs, John

    2007-03-01

    Due to widespread use of imaging studies, increasing cystic pancreatic tumor (CPT) cases are being detected. The diagnosis of malignancy in CPT cases requires pancreatectomy. Clinical and laboratory characteristics of CPT may predict underlying malignancy. CPT cases treated between 1994 and 2004 at our institution were included. Pseudocysts were excluded. Serous cystadenoma (SCA), mucinous cystadenoma (MCA), intrapapillary mucinous tumor, cystic endocrine tumor, and lymphoepithelial cysts were classified as benign or pre-malignant. Serous cystadenocarcinoma (SCACA), mucinous cystadenocarcinoma (MCACA), and adenocarcinoma (ACA) were classified as malignant. Thirty-five patients had histological confirmation. Median age was 65 years. Male/female ratio was higher in malignant group (P = 0.0284). Weight loss and abdominal mass were more prevalent in malignant group (P = 0.042 and 0.028, respectively). Malignant lesions were larger, associated with local invasion (superior mesenteric artery (SMA), superior mesenteric vein (SMV), portal vein (PV) complex or celiac encasement) and CA 19-9 elevation. On univariate analyses, local invasion (P = 0.0029), negative surgical intervention (P = 0.0010), presence of ACA (P = 0.0044), or malignant CPT (P = 0.0018) were associated with shorter survival. On a multivariate analysis, local invasion was associated with shorter survival [Hazard ratio (HR) = 4.322, P = 0.0218], while surgical intervention was associated with improved survival (HR = 0.179, P = 0.0124). Male sex, abdominal mass, weight loss, larger tumor size, local invasion, and elevated CA 19-9 were associated with malignant CPT.

  2. Radio frequency-mediated local thermotherapy for destruction of pancreatic tumors using Ni-Au core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Hopkins, Xiaoping; Gill, Waqas Amin; Kringel, Rosemarie; Wang, Guankui; Hass, Jamie; Acharya, Suresh; Park, Jungrae; Tak Jeon, In; An, Boo Hyun; Lee, Ji Sung; Ryu, Jong Eun; Hill, Rod; McIlroy, David; Kim, Young Keun; Choi, Daniel S.

    2017-01-01

    We present a novel method of radio frequency (RF)-mediated thermotherapy in tumors by remotely heating nickel (Ni)-gold (Au) core-shell nanowires (CSNWs). Ectopic pancreatic tumors were developed in nude mice to evaluate the thermotherapeutic effects on tumor progression. Tumor ablation was produced by RF-mediated thermotherapy via activation of the paramagnetic properties of the Ni-Au CSNWs. Histopathology demonstrated that heat generated by RF irradiation caused significant cellular death with pyknotic nuclei and nuclear fragmentation dispersed throughout the tumors. These preliminary results suggest that thermotherapy ablation induced via RF activation of nanowires provides a potential alternative therapy for cancer treatment.

  3. Real-time tracking of respiratory-induced tumor motion by dose-rate regulation

    NASA Astrophysics Data System (ADS)

    Han-Oh, Yeonju Sarah

    We have developed a novel real-time tumor-tracking technology, called Dose-Rate-Regulated Tracking (DRRT), to compensate for tumor motion caused by breathing. Unlike other previously proposed tumor-tracking methods, this new method uses a preprogrammed dynamic multileaf collimator (MLC) sequence in combination with real-time dose-rate control. This new scheme circumvents the technical challenge in MLC-based tumor tracking, that is to control the MLC motion in real time, based on real-time detected tumor motion. The preprogrammed MLC sequence describes the movement of the tumor, as a function of breathing phase, amplitude, or tidal volume. The irregularity of tumor motion during treatment is handled by real-time regulation of the dose rate, which effectively speeds up or slows down the delivery of radiation as needed. This method is based on the fact that all of the parameters in dynamic radiation delivery, including MLC motion, are enslaved to the cumulative dose, which, in turn, can be accelerated or decelerated by varying the dose rate. Because commercially available MLC systems do not allow the MLC delivery sequence to be modified in real time based on the patient's breathing signal, previously proposed tumor-tracking techniques using a MLC cannot be readily implemented in the clinic today. By using a preprogrammed MLC sequence to handle the required motion, the task for real-time control is greatly simplified. We have developed and tested the pre- programmed MLC sequence and the dose-rate regulation algorithm using lung-cancer patients breathing signals. It has been shown that DRRT can track the tumor with an accuracy of less than 2 mm for a latency of the DRRT system of less than 0.35 s. We also have evaluated the usefulness of guided breathing for DRRT. Since DRRT by its very nature can compensate for breathing-period changes, guided breathing was shown to be unnecessary for real-time tracking when using DRRT. Finally, DRRT uses the existing dose-rate control

  4. The usefulness of (18)F-FDG PET/MRI fusion image in diagnosing pancreatic tumor: comparison with (18)F-FDG PET/CT.

    PubMed

    Nagamachi, Shigeki; Nishii, Ryuichi; Wakamatsu, Hideyuki; Mizutani, Youichi; Kiyohara, Shogo; Fujita, Seigo; Futami, Shigemi; Sakae, Tatefumi; Furukoji, Eiji; Tamura, Shozo; Arita, Hideo; Chijiiwa, Kazuo; Kawai, Keiichi

    2013-07-01

    This study aimed at demonstrating the feasibility of retrospectively fused (18)F FDG-PET and MRI (PET/MRI fusion image) in diagnosing pancreatic tumor, in particular differentiating malignant tumor from benign lesions. In addition, we evaluated additional findings characterizing pancreatic lesions by FDG-PET/MRI fusion image. We analyzed retrospectively 119 patients: 96 cancers and 23 benign lesions. FDG-PET/MRI fusion images (PET/T1 WI or PET/T2WI) were made by dedicated software using 1.5 Tesla (T) MRI image and FDG-PET images. These images were interpreted by two well-trained radiologists without knowledge of clinical information and compared with FDG-PET/CT images. We compared the differential diagnostic capability between PET/CT and FDG-PET/MRI fusion image. In addition, we evaluated additional findings such as tumor structure and tumor invasion. FDG-PET/MRI fusion image significantly improved accuracy compared with that of PET/CT (96.6 vs. 86.6 %). As additional finding, dilatation of main pancreatic duct was noted in 65.9 % of solid types and in 22.6 % of cystic types, on PET/MRI-T2 fusion image. Similarly, encasement of adjacent vessels was noted in 43.1 % of solid types and in 6.5 % of cystic types. Particularly in cystic types, intra-tumor structures such as mural nodule (35.4 %) or intra-cystic septum (74.2 %) were detected additionally. Besides, PET/MRI-T2 fusion image could detect extra benign cystic lesions (9.1 % in solid type and 9.7 % in cystic type) that were not noted by PET/CT. In diagnosing pancreatic lesions, FDG-PET/MRI fusion image was useful in differentiating pancreatic cancer from benign lesions. Furthermore, it was helpful in evaluating relationship between lesions and surrounding tissues as well as in detecting extra benign cysts.

  5. Vitamin E δ-Tocotrienol Augments the Anti-tumor Activity of Gemcitabine and Suppresses Constitutive NF-κB Activation in Pancreatic Cancer

    PubMed Central

    Husain, Kazim; Francois, Rony A.; Yamauchi, Teruo; Perez, Marta; Sebti, Said M.; Malafa, Mokenge P.

    2011-01-01

    The nuclear factor-κB (NF-κB) transcription factor functions as a crucial regulator of cell survival and chemoresistance in pancreatic cancer. Recent studies suggest that tocotrienols, which are the unsaturated forms of vitamin E, are a promising class of anti-cancer compounds that inhibit the growth and survival of many cancer cells, including pancreatic cancer. Here, we show that tocotrienols inhibited NF-κB activity and the survival of human pancreatic cancer cells in vitro and in vivo. Importantly, we found the bioactivity of the 4 natural tocotrienol compounds (α-, β-, δ-, and γ-tocotrienol) to be directly related to their ability to suppress NF-κB activity in vitro and in vivo. The most bioactive tocotrienol for pancreatic cancer, δ-tocotrienol, significantly enhanced the efficacy of gemcitabine to inhibit pancreatic cancer growth and survival in vitro and in vivo. Moreover, we found that δ-tocotrienol augmentation of gemcitabine activity in pancreatic cancer cells and tumors is associated with significant suppression of NF-κB activity and the expression of NF-κB transcriptional targets [Bcl-XL, X-linked inhibitor of apoptosis (XIAP), and survivin]. Our study represents the first comprehensive pre-clinical evaluation of the activity of natural vitamin E compounds in pancreatic cancer. Given these results, we are conducting a phase I trial of δ-tocotrienol in patients with pancreatic cancer utilizing pancreatic tumor cell survival and NF-κB signaling components as intermediate biomarkers. Our data also support future clinical investigation of δ-tocotrienol to augment gemcitabine activity in pancreatic cancer. PMID:21971120

  6. Surgical and molecular pathology of pancreatic neoplasms.

    PubMed

    Hackeng, Wenzel M; Hruban, Ralph H; Offerhaus, G Johan A; Brosens, Lodewijk A A

    2016-06-07

    Histologic characteristics have proven to be very useful for classifying different types of tumors of the pancreas. As a result, the major tumor types in the pancreas have long been classified based on their microscopic appearance. Recent advances in whole exome sequencing, gene expression profiling, and knowledge of tumorigenic pathways have deepened our understanding of the underlying biology of pancreatic neoplasia. These advances have not only confirmed the traditional histologic classification system, but also opened new doors to early diagnosis and targeted treatment. This review discusses the histopathology, genetic and epigenetic alterations and potential treatment targets of the five major malignant pancreatic tumors - pancreatic ductal adenocarcinoma, pancreatic neuroendocrine tumor, solid-pseudopapillary neoplasm, acinar cell carcinoma and pancreatoblastoma.

  7. Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mill, Christopher P.; Auburn University Harrison School of Pharmacy, Auburn, AL 36849-5501; Gettinger, Kathleen L.

    2011-02-15

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility,more » and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1{beta}. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.« less

  8. Development of a Novel Preclinical Pancreatic Cancer Research Model: Bioluminescence Image-Guided Focal Irradiation and Tumor Monitoring of Orthotopic Xenografts1

    PubMed Central

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; DeWeese, Theodore L; Herman, Joseph M

    2012-01-01

    PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS: Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. RESULTS: Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. CONCLUSIONS: We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response. PMID:22496923

  9. Pancreatic Gastrointestinal Stromal Tumor after Upper Gastrointestinal Hemorrhage and Performance of Whipple Procedure: A Case Report and Literature Review.

    PubMed

    Aziret, Mehmet; Çetinkünar, Süleyman; Aktaş, Elife; İrkörücü, Oktay; Bali, İlhan; Erdem, Hasan

    2015-08-03

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal system. These types of tumors originate from any part of the tract as well as from the intestine, colon, omentum, mesentery or retroperitoneum. GIST is a rare tumor compared to other types of tumors, accounting for less than 1% of all gastrointestinal tumors. A 56-year-old male patient was hospitalized due to an upper gastrointestinal hemorrhage and the start of abdominal pain on the same day. In the upper gastrointestinal endoscopy that was performed, a solitary mass was found in the second section of the duodenum and a blood vessel (Forrest type 2a) was seen. The extent and location of the mass was detected by abdominal tomography. After hemodynamic recovery, a Whipple procedure was performed without any complications. A subsequent histopathological examination detected a c-kit-positive (CD117) pancreatic GIST with high mitotic index. The most effective treatment method for GISTs is surgical resection. In patients with a head of pancreatic GIST, the Whipple procedure can be used more safely and effectively.

  10. Advances in therapeutic vaccines for pancreatic cancer.

    PubMed

    Plate, Janet M D

    2012-08-01

    Pancreatic cancer is one of the most difficult-to-treat cancers. Despite surgical resection, radiation and/or chemotherapy, greater than 94% of people with pancreatic cancer do not survive beyond 5 years. In fact, median survival after diagnosis of metastatic pancreatic cancer is 4.5 months. The majority of patients are diagnosed with nonresectable, metastatic disease, and chemotherapy only extends their median survival by less than 2 months with only 18% of those treated surviving beyond 1 year. Despite the severity of their disease, most patients exhibit tumor specific cellular immunity to their pancreatic cancer antigens. Obviously their immunity is ineffective in preventing tumor growth. Recent studies have demonstrated that the tumor microenvironment may hold the key to determining the nature of the tumors' ability to escape from immune attack. Preliminary clinical trials have suggested that blocking these escape mechanisms may result in survival benefit to the patients, and phase I and II clinical trials with tumor vaccines have led to some survival benefits. Perhaps combining therapies directed against immune escape mechanisms with tumor vaccines will result in even greater survival benefit for patients with pancreatic cancer. While therapeutic vaccines for pancreatic cancers have been reviewed previously (Plate, 2011), updates on recent preliminary reports of two clinical vaccine trials are worthy of our attention.

  11. Pancreatic Ductal Adenocarcinoma (PDA) mice lacking Mucin 1 have a profound defect in tumor growth and metastasis

    PubMed Central

    Besmer, Dahlia M.; Curry, Jennifer M.; Roy, Lopamudra D.; Tinder, Teresa L.; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y.; Gendler, Sandra J.; Mukherjee, Pinku

    2011-01-01

    MUC1 is over expressed and aberrantly glycosolated in >60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In the present study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared to both KC and KCM. Cell lines derived from KCKO tumors have significantly lower tumorigenic capacity compared to cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared to mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), or matrix metalloproteinase-9 (MMP9). Further, significantly fewer KCKO cells entered the G2M phase of the cell cycle compared to the KCM cells. Proteomics and western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of MAPK, as well as a significant decrease in Nestin and Tubulin α-2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse in order to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. PMID:21558393

  12. [Duodenum-preserving total pancreatic head resection and pancreatic head resection with segmental duodenostomy].

    PubMed

    Takada, Tadahiro; Yasuda, Hideki; Nagashima, Ikuo; Amano, Hodaka; Yoshiada, Masahiro; Toyota, Naoyuki

    2003-06-01

    A duodenum-preserving pancreatic head resection (DPPHR) was first reported by Beger et al. in 1980. However, its application has been limited to chronic pancreatitis because of it is a subtotal pancreatic head resection. In 1990, we reported duodenum-preserving total pancreatic head resection (DPTPHR) in 26 cases. This opened the way for total pancreatic head resection, expanding the application of this approach to tumorigenic morbidities such as intraductal papillary mucinous tumor (IMPT), other benign tumors, and small pancreatic cancers. On the other hand, Nakao et al. reported pancreatic head resection with segmental duodenectomy (PHRSD) as an alternative pylorus-preserving pancreatoduodenectomy technique in 24 cases. Hirata et al. also reported this technique as a new pylorus-preserving pancreatoduodenostomy with increased vessel preservation. When performing DPTPHR, the surgeon should ensure adequate duodenal blood supply. Avoidance of duodenal ischemia is very important in this operation, and thus it is necessary to maintain blood flow in the posterior pancreatoduodenal artery and to preserve the mesoduodenal vessels. Postoperative pancreatic functional tests reveal that DPTPHR is superior to PPPD, including PHSRD, because the entire duodenum and duodenal integrity is very important for postoperative pancreatic function.

  13. Gene expression analysis of pancreatic cell lines reveals genes overexpressed in pancreatic cancer.

    PubMed

    Alldinger, Ingo; Dittert, Dag; Peiper, Matthias; Fusco, Alberto; Chiappetta, Gennaro; Staub, Eike; Lohr, Matthias; Jesnowski, Ralf; Baretton, Gustavo; Ockert, Detlef; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2005-01-01

    Pancreatic cancer is one of the leading causes of cancer-related death. Using DNA gene expression analysis based on a custom made Affymetrix cancer array, we investigated the expression pattern of both primary and established pancreatic carcinoma cell lines. We analyzed the gene expression of 5 established pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-1, Capan-2 and HPAF II) and 5 primary isolates, 1 of them derived from benign pancreatic duct cells. Out of 1,540 genes which were expressed in at least 3 experiments, we found 122 genes upregulated and 18 downregulated in tumor cell lines compared to benign cells with a fold change >3. Several of the upregulated genes (like Prefoldin 5, ADAM9 and E-cadherin) have been associated with pancreatic cancer before. The other differentially regulated genes, however, play a so far unknown role in the course of human pancreatic carcinoma. By means of immunohistochemistry we could show that thymosin beta-10 (TMSB10), upregulated in tumor cell lines, is expressed in human pancreatic carcinoma, but not in non-neoplastic pancreatic tissue, suggesting a role for TMSB10 in the carcinogenesis of pancreatic carcinoma. Using gene expression profiling of pancreatic cell lines we were able to identify genes differentially expressed in pancreatic adenocarcinoma, which might contribute to pancreatic cancer development. Copyright 2005 S. Karger AG, Basel.

  14. Pancreatic Cancer—Patient Version

    Cancer.gov

    Pancreatic cancer can form in exocrine cells and neuroendocrine cells. The exocrine type is more common and is usually found at an advanced stage. Pancreatic neuroendocrine tumors are less common but have a better prognosis. Start here to find information on pancreatic cancer treatment, research, and statistics.

  15. Genetics of pancreatic neuroendocrine tumors: implications for the clinic

    PubMed Central

    Pea, Antonio; Hruban, Ralph H.; Wood, Laura D.

    2016-01-01

    Pancreatic neuroendocrine tumors (PanNETs) are a common and deadly neoplasm of the pancreas. Although the importance of genetic alterations in PanNETs has been known for many years, recent comprehensive sequencing studies have greatly expanded our knowledge of neuroendocrine tumorigenesis in the pancreas. These studies have identified specific cellular processes that are altered in PanNETs, highlighted alterations with prognostic implications, and pointed to pathways for targeted therapies. In this review, we will discuss the genetic alterations that play a key role in PanNET tumorigenesis, with a specific focus on those alterations with the potential to change the way patients with these neoplasms are diagnosed and treated. PMID:26413978

  16. Pancreatic Lipomatous Hamartoma: A Hitherto Unrecognized Variant.

    PubMed

    Tanaka, Mariko; Ushiku, Tetsuo; Ikemura, Masako; Takazawa, Yutaka; Igari, Toru; Shimizu, Michio; Yamaguchi, Hiroshi; Fukushima, Noriyoshi; Sakuma, Kei; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Watadani, Takeyuki; Nakai, Yousuke; Koike, Kazuhiko; Fukayama, Masashi

    2018-05-04

    Pancreatic masses consisting of lipomatous components clinically include lipoma, liposarcoma, lipomatous pseudohypertrophy of the pancreas, fat-containing neoplasms such as perivascular epithelioid cell tumor, and malignant neoplasm with lipoid degeneration. We present pancreatic lipomatous hamartoma, which has not been reported hitherto. A solid pancreatic mass was detected from a computed tomographic scan check-up in each of 3 cases of Japanese men. Macroscopically, well-demarcated solid lipomatous masses were detected at the uncus, body, and tail of the pancreas, respectively. Microscopically, the masses predominantly consisted of mature adipocytes with no atypia, but contained characteristics components of pancreatic hamartoma, such as small ducts, a well-preserved acinar structure, and/or fibrous stroma. On the basis of the unique features, lack of islets and absence of periductal elastic fibers, these tumors are a distinct variant of pancreatic hamartoma. Furthermore, high-mobility group AT-hook 2 expression in the fibro-adipocytes of this tumor indicated that these cells are an integral component of the pancreatic lipomatous hamartoma. Consequently, the unique tumors described herein are pancreatic lipomatous hamartoma, which must be discriminated from other lipomatous lesions of the pancreas.

  17. Laser immunotherapy for metastatic pancreatic cancer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan

    2017-02-01

    Pancreatic cancer is an extremely malignant disease with high mortality rate. Currently there is no effective therapeutic strategy for highly metastatic pancreatic cancers. Laser immunotherapy (LIT) is a combination therapeutic approach of targeted phototherapy and immunotherapy, which could destroy treated primary tumors with elimination of untreated metastases. LIT affords a remarkable efficacy in suppressing tumor growth in pancreatic tumors in mice, and results in complete tumor regression in many cases. LIT could synergize targeted phototherapy and immunological effects of immunoadjuvant, which represent a promising treatment modality to induce systemic antitumor response through a local intervention, paving the way for the treatment of highly metastatic pancreatic cancers.

  18. Comparison of Liver Tumor Motion With and Without Abdominal Compression Using Cine-Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccles, Cynthia L.; Patel, Ritesh; Simeonov, Anna K.

    2011-02-01

    Purpose: Abdominal compression (AC) can be used to reduce respiratory liver motion in patients undergoing liver stereotactic body radiotherapy. The purpose of the present study was to measure the changes in three-dimensional liver tumor motion with and without compression using cine-magnetic resonance imaging. Patients and Methods: A total of 60 patients treated as a part of an institutional research ethics board-approved liver stereotactic body radiotherapy protocol underwent cine T2-weighted magnetic resonance imaging through the tumor centroid in the coronal and sagittal planes. A total of 240 cine-magnetic resonance imaging sequences acquired at one to three images each second for 30-60more » s were evaluated using an in-house-developed template matching tool (based on the coefficient correlation) to measure the magnitude of the tumor motion. The average tumor edge displacements were used to determine the magnitude of changes in the caudal-cranial (CC) and anteroposterior (AP) directions, with and without AC. Results: The mean tumor motion without AC of 11.7 mm (range, 4.8-23.3) in the CC direction was reduced to 9.4 mm (range, 1.6-23.4) with AC. The tumor motion was reduced in both directions (CC and AP) in 52% of the patients and in a single direction (CC or AP) in 90% of the patients. The mean decrease in tumor motion with AC was 2.3 and 0.6 mm in the CC and AP direction, respectively. Increased motion occurred in one or more directions in 28% of patients. Clinically significant (>3 mm) decreases were observed in 40% and increases in <2% of patients in the CC direction. Conclusion: AC can significantly reduce three-dimensional liver tumor motion in most patients, although the magnitude of the reduction was smaller than previously reported.« less

  19. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    PubMed

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  20. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Azusa; Department of Medical Biophysics, University of Toronto, Toronto, Ontario; Chen, Yonghong

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularitymore » for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.« less

  1. Pancreatic islet cell tumor metastasis in multiple endocrine neoplasia type 1: correlation with primary tumor size.

    PubMed

    Lowney, J K; Frisella, M M; Lairmore, T C; Doherty, G M

    1998-12-01

    Islet cell tumor (ICT) metastasis is one of the potentially lethal outcomes of multiple endocrine neoplasia type 1 (MEN 1). Management of ICT in patients with MEN 1 is controversial; some advocate resection based on biochemical evidence of progression, whereas others use tumor size to predict the risk of metastasis and the need for resection. This study correlates the size of primary ICT with the presence of metastases. Forty-eight patients with MEN 1 with ICT, from 34 kindreds followed up in our multiple endocrine neoplasia program, were evaluated; 43 of the 48 have been explored for ICT. Metastases to the lymph nodes and liver were documented. Thirty-three percent of patients with pancreatic tumors less than 1 cm in greatest diameter had metastatic disease at surgery and in follow-up, whereas 34.8% of patients with tumors greater than 2 cm in diameter had metastases to lymph nodes or liver. The 2 patients with liver metastases each had primary tumors greater than 2 cm. Follow-up revealed subsequent metastasis in 1 patient. The size of primary tumors in MEN 1 does not correlate with metastatic potential. This is not a good criterion for exploration. Continued follow-up of these patients will be necessary to define the effect of operation on the course of ICT in MEN 1.

  2. Preclinical fluorescent mouse models of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Bouvet, Michael; Hoffman, Robert M.

    2007-02-01

    Here we describe our cumulative experience with the development and preclinical application of several highly fluorescent, clinically-relevant, metastatic orthotopic mouse models of pancreatic cancer. These models utilize the human pancreatic cancer cell lines which have been genetically engineered to selectively express high levels of the bioluminescent green fluorescent (GFP) or red fluorescent protein (RFP). Fluorescent tumors are established subcutaneously in nude mice, and tumor fragments are then surgically transplanted onto the pancreas. Locoregional tumor growth and distant metastasis of these orthotopic implants occurs spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time visualization of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. We have shown a high correlation between florescent optical imaging and magnetic resonance imaging in these models. Alternatively, transplantation of RFP-expressing tumor fragments onto the pancreas of GFP-expressing transgenic mice may be used to facilitate visualization of tumor-host interaction between the pancreatic tumor fragments and host-derived stroma and vasculature. Such in vivo models have enabled us to serially visualize and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of several novel therapeutic strategies on pancreatic malignancy. These fluorescent models are therefore powerful and reliable tools with which to investigate human pancreatic cancer and therapeutic strategies directed against it.

  3. Development of a mucin4-targeting SPIO contrast agent for effective detection of pancreatic tumor cells in vitro and in vivo.

    PubMed

    Wu, Shou-Cheng; Chen, Yu-Jen; Lin, Yi-Jan; Wu, Tung-Ho; Wang, Yun-Ming

    2013-11-27

    In search of a unique and reliable contrast agent targeting pancreatic adenocarcinoma, new multifunctional nanoparticles (MnMEIO-silane-NH2-(MUC4)-mPEG NPs) were successfully developed in this study. Mucin4-expression levels were determined through different imaging studies in a panel of pancreatic tumor cells (HPAC, BxPC-3, and Panc-1) both in vitro and in vivo studies. The in vitro T2-weighted MR imaging study in HPAC and Panc-1 tumor cells treated with NPs showed -89.1 ± 5.7% and -0.9 ± 0.2% contrast enhancement, whereas in in vivo study, it is found to be -81.5 ± 4.5% versus -19.6 ± 5.2% (24 h postinjection, 7.0 T), respectively. The T2-weighted MR and optical imaging studies revealed that the novel contrast agent can specifically and effectively target to mucin4-expressing tumors in nude mice. Hence, it is suggested that MnMEIO-silane-NH2-(MUC4)-mPEG NPs are able to provide an efficient and targeted delivery of MUC4 antibodies to mucin4-expressing pancreatic tumors.

  4. Diagnosis of metastatic pancreatic mesenchymal tumors by endoscopic ultrasound-guided fine-needle aspiration.

    PubMed

    Varghese, Linda; Ngae, Min Yi; Wilson, Andrew P; Crowder, Clinton D; Gulbahce, H Evin; Pambuccian, Stefan E

    2009-11-01

    Involvement of the pancreas by metastatic sarcoma is rare, and can prove challenging to differentiate from sarcomatoid carcinomas which occur more commonly. The endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) technique has been successfully used for the diagnosis of pancreatic carcinomas whether primary or metastatic, and is now considered the most effective noninvasive method for the identification of pancreatic metastases. However, to date very few reports detail the diagnosis of mesenchymal neoplasms by EUS-FNA. Herein, we report a series of four patients who underwent EUS-FNA of the pancreas, where the diagnosis of metastatic sarcoma was made based on morphology and ancillary studies. The cases include metastases of leiomyosarcoma, liposarcoma, alveolar rhabdomyosarcoma, and solitary fibrous tumor. The history of a primary sarcoma of the chest wall, mediastinum, and respectively lower extremity was known for the first three of these patients while in the case of the solitary fibrous tumor a remote history of a paraspinal "hemangiopericytoma" was only elicited after the EUS-FNA diagnosis was made. We conclude that EUS-FNA is efficient and accurate in providing a diagnosis of sarcoma, even in patients without a known primary sarcoma, thus allowing institution of therapy without additional biopsies.

  5. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer.

    PubMed

    Karamitopoulou, Eva

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  6. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery.

    PubMed

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-09-01

    To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  7. Sensitivity of Tumor Motion Simulation Accuracy to Lung Biomechanical Modeling Approaches and Parameters

    PubMed Central

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the Neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. PMID:26531324

  8. Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lens, Eelco, E-mail: e.lens@amc.uva.nl; Horst, Astrid van der; Versteijne, Eva

    2015-07-01

    Purpose: The midventilation (midV) approach can be used to take respiratory-induced pancreatic tumor motion into account during radiation therapy. In this study, the dosimetric consequences for organs at risk and tumor coverage of using a midV approach compared with using an internal target volume (ITV) were investigated. Methods and Materials: For each of the 18 patients, 2 treatment plans (25 × 2.0 Gy) were created, 1 using an ITV and 1 using a midV approach. The midV dose distribution was blurred using the respiratory-induced motion from 4-dimensional computed tomography. The resulting planning target volume (PTV) coverage for this blurred dosemore » distribution was analyzed; PTV coverage was required to be at least V{sub 95%} >98%. In addition, the change in PTV size and the changes in V{sub 10Gy}, V{sub 20Gy}, V{sub 30Gy}, V{sub 40Gy}, D{sub mean} and D{sub 2cc} for the stomach and for the duodenum were analyzed; differences were tested for significance using the Wilcoxon signed-rank test. Results: Using a midV approach resulted in sufficient target coverage. A highly significant PTV size reduction of 13.9% (P<.001) was observed. Also, all dose parameters for the stomach and duodenum, except the D{sub 2cc} of the duodenum, improved significantly (P≤.002). Conclusions: By using the midV approach to account for respiratory-induced tumor motion, a significant PTV reduction and significant dose reductions to the stomach and to the duodenum can be achieved when irradiating pancreatic tumors.« less

  9. SU-E-J-182: Reproducibility of Tumor Motion Probability Distribution Function in Stereotactic Body Radiation Therapy of Lung Using Real-Time Tumor-Tracking Radiotherapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiinoki, T; Hanazawa, H; Park, S

    2015-06-15

    Purpose: We aim to achieve new four-dimensional radiotherapy (4DRT) using the next generation real-time tumor-tracking (RTRT) system and flattening-filter-free techniques. To achieve new 4DRT, it is necessary to understand the respiratory motion of tumor. The purposes of this study were: 1.To develop the respiratory motion analysis tool using log files. 2.To evaluate the reproducibility of tumor motion probability distribution function (PDF) during stereotactic body RT (SBRT) of lung tumor. Methods: Seven patients having fiducial markers closely implanted to the lung tumor were enrolled in this study. The positions of fiducial markers were measured using the RTRT system (Mitsubishi Electronics Co.,more » JP) and recorded as two types of log files during the course of SBRT. For each patients, tumor motion range and tumor motion PDFs in left-right (LR), anterior-posterior (AP) and superior-inferior (SI) directions were calculated using log files of all beams per fraction (PDFn). Fractional PDF reproducibility (Rn) was calculated as Kullback-Leibler (KL) divergence between PDF1 and PDFn of tumor motion. The mean of Rn (Rm) was calculated for each patient and correlated to the patient’s mean tumor motion range (Am). The change of Rm during the course of SBRT was also evluated. These analyses were performed using in-house developed software. Results: The Rm were 0.19 (0.07–0.30), 0.14 (0.07–0.32) and 0.16 (0.09–0.28) in LR, AP and SI directions, respectively. The Am were 5.11 mm (2.58–9.99 mm), 7.81 mm (2.87–15.57 mm) and 11.26 mm (3.80–21.27 mm) in LR, AP and SI directions, respectively. The PDF reproducibility decreased as the tumor motion range increased in AP and SI direction. That decreased slightly through the course of RT in SI direction. Conclusion: We developed the respiratory motion analysis tool for 4DRT using log files and quantified the range and reproducibility of respiratory motion for lung tumors.« less

  10. A study of longitudinal tumor motion in helical tomotherapy using a cylindrical phantom

    PubMed Central

    Klein, Michael; Gaede, Stewart

    2013-01-01

    Tumor motion during radiation treatment on a helical tomotherapy unit may create problems due to interplay with motion of the multileaf collimator, gantry rotation, and patient couch translation through the gantry. This study evaluated this interplay effect for typical clinical parameters using a cylindrical phantom consisting of 1386 diode detectors placed on a respiratory motion platform. All combinations of radiation field widths (1, 2.5, and 5 cm) and gantry rotation periods (16, 30, and 60 s) were considered for sinusoidal motions with a period of 4 s and amplitudes of 5, 6, 7, 8, 9, and 10 mm, as well as real patient breathing pattern. Gamma comparisons with 2% dose difference and 2 mm distance to agreement and dose profiles were used for evaluation. The required motion margins were determined for each set of parameters. The required margin size increased with decreasing field width and increasing tumor motion amplitude, but was not affected by rotation period. The plans with the smallest field width of 1 cm have required motion margins approximately equal to the amplitude of motion (±25%), while those with the largest field width of 5 cm had required motion margins approximately equal to 20% of the motion amplitude (±20%). For tumor motion amplitudes below 6 mm and field widths above 1 cm, the required additional motion margins were very small, at a maximum of 2.5 mm for sinusoidal breathing patterns and 1.2 mm for the real patient breathing pattern. PACS numbers: 87.55.km, 87.55.Qr, 87.56.Fc

  11. Pancreatic islet cell tumor

    MedlinePlus

    ... JH, Kastan MB, Tepper JE, eds. Abeloff's Clinical Oncology . 5th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap ... Cancer Network website. NCCN clinical practice guidelines in oncology (NCCN guidelines): pancreatic adenocarcinoma. Version 3.2017. www. ...

  12. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knybel, Lukas; VŠB-Technical University of Ostrava, Ostrava; Cvek, Jakub, E-mail: Jakub.cvek@fno.cz

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, andmore » sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in

  13. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion.

    PubMed

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  14. Targeting inflammation in pancreatic cancer: Clinical translation

    PubMed Central

    Steele, Colin William; Kaur Gill, Nina Angharad; Jamieson, Nigel Balfour; Carter, Christopher Ross

    2016-01-01

    Preclinical modelling studies are beginning to aid development of therapies targeted against key regulators of pancreatic cancer progression. Pancreatic cancer is an aggressive, stromally-rich tumor, from which few people survive. Within the tumor microenvironment cellular and extracellular components exist, shielding tumor cells from immune cell clearance, and chemotherapy, enhancing progression of the disease. The cellular component of this microenvironment consists mainly of stellate cells and inflammatory cells. New findings suggest that manipulation of the cellular component of the tumor microenvironment is possible to promote immune cell killing of tumor cells. Here we explore possible immunogenic therapeutic strategies. Additionally extracellular stromal elements play a key role in protecting tumor cells from chemotherapies targeted at the pancreas. We describe the experimental findings and the pitfalls associated with translation of stromally targeted therapies to clinical trial. Finally, we discuss the key inflammatory signal transducers activated subsequent to driver mutations in oncogenic Kras in pancreatic cancer. We present the preclinical findings that have led to successful early trials of STAT3 inhibitors in pancreatic adenocarcinoma. PMID:27096033

  15. Pancreatic Cancer: Multicenter Prospective Data Collection and Analysis by the Hungarian Pancreatic Study Group.

    PubMed

    Lakatos, Gábor; Balázs, Anita; Kui, Balázs; Gódi, Szilárd; Szücs, Ákos; Szentesi, Andrea; Szentkereszty, Zsolt; Szmola, Richárd; Kelemen, Dezső; Papp, Róbert; Vincze, Áron; Czimmer, József; Pár, Gabriella; Bajor, Judit; Szabó, Imre; Izbéki, Ferenc; Halász, Adrienn; Leindler, László; Farkas, Gyula; Takács, Tamás; Czakó, László; Szepes, Zoltán; Hegyi, Péter; Kahán, Zsuzsanna

    2016-06-01

    Pancreatic cancer is a devastating disease with poor prognosis. There is very limited information available regarding the epidemiology and treatment strategies of pancreatic cancer in Central Europe. The purpose of the study was to prospectively collect and analyze data of pancreatic cancer in the Hungarian population. The Hungarian Pancreatic Study Group (HPSG) organized prospective, uniform data collection. Altogether 354 patients were enrolled from 14 Hungarian centers. Chronic pancreatitis was present in 3.7% of the cases, while 33.7% of the patients had diabetes. Family history for pancreatic cancer was positive in 4.8%. The most frequent presenting symptoms included pain (63.8%), weight loss (63%) and jaundice (52.5%). The reported frequency of smoking and alcohol consumption was lower than expected (28.5% and 27.4%, respectively). The majority of patients (75.6%) were diagnosed with advanced disease. Most patients (83.6%) had a primary tumor located in the pancreatic head. The histological diagnosis was ductal adenocarcinoma in 90.7% of the cases, while neuroendocrine tumor was present in 5.3%. Biliary stent implantation was performed in 166 patients, 59.2% of them received metal stents. Primary tumor resection was performed in 60 (16.9%) patients. Enteral or biliary bypass was done in 35 and 49 patients, respectively. In a multivariate Cox-regression model, smoking status and presence of gemcitabine-based chemotherapy were identified as independent predictors for overall survival. We report the first data from a large cohort of Hungarian pancreatic cancer patients. We identified smoking status and chemotherapy as independent predictors in this cohort.

  16. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    PubMed Central

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-01-01

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time. PMID:24007146

  17. Rare case of pancreatic cancer with leptomeningeal carcinomatosis

    PubMed Central

    Yoo, In Kyung; Lee, Hong Sik; Kim, Chang Duk; Chun, Hoon Jai; Jeen, Yoon Tae; Keum, Bora; Kim, Eun Sun; Choi, Hyuk Soon; Lee, Jae Min; Kim, Seung Han; Nam, Seung Joo; Hyun, Jong Jin

    2015-01-01

    Leptomeningeal carcinomatosis occurs very rarely in patients with pancreatic cancer. Leptomeningeal carcinomatosis is characterized by multifocal seeding of the leptomeninges by malignant cells that originate from a solid tumor. To the best of our knowledge, brain metastasis from pancreatic cancer is extremely rare. Leptomeningeal carcinomatosis is estimated to occur in 3% to 8% of cases of solid tumors. The clinical manifestation usually involves neurological symptoms, including dizziness, headache, vomiting, nausea, and hemiparesis, symptoms similar to those of meningitis or brain tumors. Diagnostic methods for leptomeningeal carcinomatosis include brain magnetic resonance imaging and cerebrospinal fluid examination. Here, we describe a case of leptomeningeal carcinomatosis in which the primary tumor was later determined to be pancreatic cancer. Brain magnetic resonance imaging findings showed mild enhancement of the leptomeninges, and cerebrospinal fluid cytology was negative at first. However, after repeated spinal taps, atypical cells were observed on cerebrospinal fluid analysis and levels of tumor markers such as carbohydrate antigen 19-9 in cerebrospinal fluid were elevated. Abdominal computed tomography, performed to determine the presence of extracerebral tumors, revealed pancreatic cancer. Pancreatic cancer was confirmed histopathologically on examination of an endoscopic ultrasound-guided fine needle aspiration specimen. PMID:25624740

  18. Tumor-Targeting Salmonella typhimurium A1-R Promotes Tumoricidal CD8+ T Cell Tumor Infiltration and Arrests Growth and Metastasis in a Syngeneic Pancreatic-Cancer Orthotopic Mouse Model.

    PubMed

    Murakami, Takashi; Hiroshima, Yukihiko; Zhang, Yong; Zhao, Ming; Kiyuna, Tasuku; Hwang, Ho Kyoung; Miyake, Kentaro; Homma, Yuki; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Ichikawa, Yasushi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2018-01-01

    The present study determined the effect of the tumor-targeting strain Salmonella typhimurium A1-R (S. typhimurium A1-R) on CD8 + tumor-infiltrating lymphocytes (TILs) in a syngeneic pancreatic-cancer orthotopic mouse model. The effect of tumor-targeting S. typhimurium A1-R on CD8 + TILs was determined on the Pan02 murine pancreatic-adenocarcinoma implanted orthotopically in the pancreatic tail of C57BL/6 immunocompromised mice. Three weeks after orthotopic implantation, mice were randomized as follows G1: untreated control group (n = 8); and G2: S. typhimurium A1-R-treatment group (n = 8, 1 × 10 7 colony forming units [CFU]/body, iv, weekly, 3 weeks). On the 22nd day from initial treatment, all mice were sacrificed and tumors were harvested. The tumor-volume ratio was defined as ratio of tumor volume on the 22nd day relative to the 1st day. The tumor volume ratio was significantly lower in the S. typhimurium A1-R-treated group (G2) (3.0 ± 2.8) than the untreated control (G1) (39.9 ± 30.7, P < 0.01). Hematoxylin and easin (H&E) staining on tumor sections was performed to evaluate tumor destruction which was classified according to the Evans grading system and found to be much greater in the S. typhimurium A1-R-treated mice (G2). Six mice in G1 had peritoneal dissemination, whereas no mice showed peritoneal dissemination in G2 (P < 0.01). Immunohistochemical staining with anti-mouse CD8 + antibody was performed in order to detect TILs determined by calculating the average number of CD8 + cells in three high power fields (200×) in the treated and untreated tumors. The TIL score was significantly higher in G2 (133.5 ± 32.2) than G1 (45.1 ± 19.4, P < 0.001). The present study demonstrates that S. typhimurium A1-R promotes CD8 + T cell infiltration and inhibition of tumor growth and metastasis. J. Cell. Biochem. 119: 634-639, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Signal Transducer and Activator of Transcription 3, Mediated Remodeling of the Tumor Microenvironment Results in Enhanced Tumor Drug Delivery in a Mouse Model of Pancreatic Cancer.

    PubMed

    Nagathihalli, Nagaraj S; Castellanos, Jason A; Shi, Chanjuan; Beesetty, Yugandhar; Reyzer, Michelle L; Caprioli, Richard; Chen, Xi; Walsh, Alex J; Skala, Melissa C; Moses, Harold L; Merchant, Nipun B

    2015-12-01

    A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the presence of a dense desmoplastic reaction (stroma) that impedes drug delivery to the tumor. Attempts to deplete the tumor stroma have resulted in formation of more aggressive tumors. We have identified signal transducer and activator of transcription (STAT) 3 as a biomarker of resistance to cytotoxic and molecularly targeted therapy in PDAC. The purpose of this study is to investigate the effects of targeting STAT3 on the PDAC stroma and on therapeutic resistance. Activated STAT3 protein expression was determined in human pancreatic tissues and tumor cell lines. In vivo effects of AZD1480, a JAK/STAT3 inhibitor, gemcitabine or the combination were determined in Ptf1a(cre/+);LSL-Kras(G12D/+);Tgfbr2(flox/flox) (PKT) mice and in orthotopic tumor xenografts. Drug delivery was analyzed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Collagen second harmonic generation imaging quantified tumor collagen alignment and density. STAT3 activation correlates with decreased survival and advanced tumor stage in patients with PDAC. STAT3 inhibition combined with gemcitabine significantly inhibits tumor growth in both an orthotopic and the PKT mouse model of PDAC. This combined therapy attenuates in vivo expression of SPARC, increases microvessel density, and enhances drug delivery to the tumor without depletion of stromal collagen or hyaluronan. Instead, the PDAC tumors demonstrate vascular normalization, remodeling of the tumor stroma, and down-regulation of cytidine deaminase. Targeted inhibition of STAT3 combined with gemcitabine enhances in vivo drug delivery and therapeutic response in PDAC. These effects occur through tumor stromal remodeling and down-regulation of cytidine deaminase without depletion of tumor stromal content. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice.

    PubMed

    He, Ping; Yang, Jong Won; Yang, Vincent W; Bialkowska, Agnieszka B

    2018-04-01

    Activating mutations in KRAS are detected in most pancreatic ductal adenocarcinomas (PDACs). Expression of an activated form of KRAS (KrasG12D) in pancreata of mice is sufficient to induce formation of pancreatic intraepithelial neoplasia (PanINs)-a precursor of PDAC. Pancreatitis increases formation of PanINs in mice that express KrasG12D by promoting acinar-to-ductal metaplasia (ADM). We investigated the role of the transcription factor Krüppel-like factor 5 (KLF5) in ADM and KRAS-mediated formation of PanINs. We performed studies in adult mice with conditional disruption of Klf5 (Klf5 fl/fl ) and/or expression of Kras G12D (LSL-Kras G12D ) via Cre ERTM recombinase regulated by an acinar cell-specific promoter (Ptf1a). Activation of Kras G12D and loss of KLF5 was achieved by administration of tamoxifen. Pancreatitis was induced in mice by administration of cerulein; pancreatic tissues were collected, analyzed by histology and immunohistochemistry, and transcriptomes were compared between mice that did or did not express KLF5. We performed immunohistochemical analyses of human tissue microarrays, comparing levels of KLF5 among 96 human samples of PDAC. UN-KC-6141 cells (pancreatic cancer cells derived from Pdx1-Cre;LSL-Kras G12D mice) were incubated with inhibitors of different kinases and analyzed in proliferation assays and by immunoblots. Expression of KLF5 was knocked down with small hairpin RNAs or CRISPR/Cas9 strategies; cells were analyzed in proliferation and gene expression assays, and compared with cells expressing control vectors. Cells were subcutaneously injected into flanks of syngeneic mice and tumor growth was assessed. Of the 96 PDAC samples analyzed, 73% were positive for KLF5 (defined as nuclear staining in more than 5% of tumor cells). Pancreata from Ptf1a-Cre ERTM ;LSL-Kras G12D mice contained ADM and PanIN lesions, which contained high levels of nuclear KLF5 within these structures. In contrast, Ptf1a-Cre ERTM ;LSL-Kras G12D ;Klf5 fl

  1. Investigation into metastatic processes and the therapeutic effects of gemcitabine on human pancreatic cancer using an orthotopic SUIT-2 pancreatic cancer mouse model

    PubMed Central

    Higuchi, Tamami; Yokobori, Takehiko; Naito, Tomoharu; Kakinuma, Chihaya; Hagiwara, Shinji; Nishiyama, Masahiko; Asao, Takayuki

    2018-01-01

    Prognosis of pancreatic cancer is poor, thus the development of novel therapeutic drugs is necessary. During preclinical studies, appropriate models are essential for evaluating drug efficacy. The present study sought to determine the ideal pancreatic cancer mouse model for reliable preclinical testing. Such a model could accurately reflect human pancreatic cancer phenotypes and predict future clinical trial results. Systemic pathology analysis was performed in an orthotopic transplantation model to prepare model mice for use in preclinical studies, mimicking the progress of human pancreatic cancer. The location and the timing of inoculated cancer cell metastases, pathogenesis and cause of fatality were analyzed. Furthermore, the efficacy of gemcitabine, a key pancreatic cancer drug, was evaluated in this model where liver metastasis and peritoneal dissemination occur. Results indicated that the SUIT-2 orthotopic pancreatic cancer model was similar to the phenotypic sequential progression of human pancreatic cancer, with extra-pancreatic invasion, intra-peritoneal dissemination and other hematogenous organ metastases. Notably, survival was prolonged by administering gemcitabine to mice with metastasized pancreatic cancer. Furthermore, the detailed effects of gemcitabine on the primary tumor and metastatic tumor lesions were pathologically evaluated in mice. The present study indicated the model accurately depicted pancreatic cancer development and metastasis. Furthermore, the detailed effects of pancreatic cancer drugs on the primary tumor and on metastatic tumor lesions. We present this model as a potential new standard for new drug development in pancreatic cancer. PMID:29435042

  2. Holoclone Forming Cells from Pancreatic Cancer Cells Enrich Tumor Initiating Cells and Represent a Novel Model for Study of Cancer Stem Cells

    PubMed Central

    Tan, Lei; Sui, Xin; Deng, Hongkui; Ding, Mingxiao

    2011-01-01

    Background Pancreatic cancer is one of the direct causes of cancer-related death. High level of chemoresistance is one of the major obstacles of clinical treatment. In recent years, cancer stem cells have been widely identified and indicated as the origin of chemoresistance in multi-types of solid tumors. Increasing evidences suggest that cancer stem cells reside in the cells capable of forming holoclones continuously. However, in pancreatic cancer, holoclone-forming cells have not been characterized yet. Therefore, the goal of our present study was to indentify the holoclone-forming pancreatic cancer stem cells and develop an in vitro continuous colony formation system, which will greatly facilitate the study of pancreatic cancer stem cells. Methodology/Principal Findings Pancreatic cancer cell line BxPC3 was submitted to monoclonal cultivation to generate colonies. Based on the morphologies, colonies were classified and analyzed for their capacities of secondary colony formation, long-term survival in vitro, tumor formation in vivo, and drug resistance. Flowcytometry and quantitative RT-PCR were performed to detect the expression level of cancer stem cells associated cell surface markers, regulatory genes and microRNAs in distinct types of colonies. Three types of colonies with distinct morphologies were identified and termed as holo-, mero-, and paraclones, in which only holoclones generated descendant colonies of all three types in further passages. Compared to mero- and paraclones, holoclones possessed higher capacities of long-term survival, tumor initiation, and chemoresistance. The preferential expression of cancer stem cells related marker (CXCR4), regulatory genes (BMI1, GLI1, and GLI2) and microRNAs (miR-214, miR-21, miR-221, miR-222 and miR-155) in holoclones were also highlighted. Conclusions/Significance Our results indicate that the pancreatic tumor-initiating cells with high level of chemoresistance were enriched in holoclones derived from BxPC3

  3. Pancreatic Cancer

    PubMed Central

    Maitra, Anirban; Hruban, Ralph H.

    2009-01-01

    The past two decades have witnessed an explosion in our understanding of pancreatic cancer, and it is now clear that pancreatic cancer is a disease of inherited (germ-line) and somatic gene mutations. The genes mutated in pancreatic cancer include KRAS2, p16/CDKN2A, TP53, and SMAD4/DPC4, and these are accompanied by a substantial compendium of genomic and transcriptomic alterations that facilitate cell cycle deregulation, cell survival, invasion, and metastases. Pancreatic cancers do not arise de novo, and three distinct precursor lesions have been identified. Experimental models of pancreatic cancer have been developed in genetically engineered mice, which recapitulate the multistep progression of the cognate human disease. Although the putative cell of origin for pancreatic cancer remains elusive, minor populations of cells with stem-like properties have been identified that appear responsible for tumor initiation, metastases, and resistance of pancreatic cancer to conventional therapies. PMID:18039136

  4. CD40 Agonists Alter Tumor Stroma and Show Efficacy Against Pancreatic Carcinoma in Mice and Humans

    PubMed Central

    Beatty, Gregory L.; Chiorean, Elena G.; Fishman, Matthew P.; Saboury, Babak; Teitelbaum, Ursina R.; Sun, Weijing; Huhn, Richard D.; Song, Wenru; Li, Dongguang; Sharp, Leslie L.; Torigian, Drew A.; O’Dwyer, Peter J.; Vonderheide, Robert H.

    2012-01-01

    Immunosuppressive tumor microenvironments can restrain antitumor immunity, particularly in pancreatic ductal adenocarcinoma (PDA). Because CD40 activation can reverse immune suppression and drive antitumor T cell responses, we tested the combination of an agonist CD40 antibody with gemcitabine chemotherapy in a small cohort of patients with surgically incurable PDA and observed tumor regressions in some patients. We reproduced this treatment effect in a genetically engineered mouse model of PDA and found unexpectedly that tumor regression required macrophages but not T cells or gemcitabine. CD40-activated macrophages rapidly infiltrated tumors, became tumoricidal, and facilitated the depletion of tumor stroma. Thus, cancer immune surveillance does not necessarily depend on therapy-induced T cells; rather, our findings demonstrate a CD40-dependent mechanism for targeting tumor stroma in the treatment of cancer. PMID:21436454

  5. Pharmacokinetically Guided Everolimus in Patients With Breast Cancer, Pancreatic Neuroendocrine Tumors, or Kidney Cancer

    ClinicalTrials.gov

    2016-12-09

    Estrogen Receptor-positive Breast Cancer; Gastrinoma; Glucagonoma; HER2-negative Breast Cancer; Insulinoma; Mucositis; Oral Complications; Pancreatic Polypeptide Tumor; Progesterone Receptor-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Islet Cell Carcinoma; Recurrent Renal Cell Cancer; Somatostatinoma; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Renal Cell Cancer

  6. Percutaneous ablation of pancreatic cancer

    PubMed Central

    D’Onofrio, Mirko; Ciaravino, Valentina; De Robertis, Riccardo; Barbi, Emilio; Salvia, Roberto; Girelli, Roberto; Paiella, Salvatore; Gasparini, Camilla; Cardobi, Nicolò; Bassi, Claudio

    2016-01-01

    Pancreatic ductal adenocarcinoma is a highly aggressive tumor with an overall 5-year survival rate of less than 5%. Prognosis and treatment depend on whether the tumor is resectable or not, which mostly depends on how quickly the diagnosis is made. Chemotherapy and radiotherapy can be both used in cases of non-resectable pancreatic cancer. In cases of pancreatic neoplasm that is locally advanced, non-resectable, but non-metastatic, it is possible to apply percutaneous treatments that are able to induce tumor cytoreduction. The aim of this article will be to describe the multiple currently available treatment techniques (radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation), their results, and their possible complications, with the aid of a literature review. PMID:27956791

  7. A biomechanical approach for in vivo lung tumor motion prediction during external beam radiation therapy

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2015-03-01

    Lung Cancer is the leading cause of cancer death in both men and women. Among various treatment methods currently being used in the clinic, External Beam Radiation Therapy (EBRT) is used widely not only as the primary treatment method, but also in combination with chemotherapy and surgery. However, this method may lack desirable dosimetric accuracy because of respiration induced tumor motion. Recently, biomechanical modeling of the respiratory system has become a popular approach for tumor motion prediction and compensation. This approach requires reasonably accurate data pertaining to thoracic pressure variation, diaphragm position and biomechanical properties of the lung tissue in order to predict the lung tissue deformation and tumor motion. In this paper, we present preliminary results of an in vivo study obtained from a Finite Element Model (FEM) of the lung developed to predict tumor motion during respiration.

  8. Ultrasound-enhanced nanotherapy of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Rapoport, N.; Nam, K.-H.; Christensen, D. A.; Kennedy, A. M.; Shea, J. E.; Scaife, C. L.

    2010-03-01

    The paper reports in vivo results of ultrasonic nanotherapy of orthotopically grown pancreatic cancer. Phase-shift paclitaxel (PTX) loaded perfluoropentane (PFP) nanoemusions combined with tumor-directed ultrasound have been used with a considerable success for tumor-targeted chemotherapy of gemcitabin (GEM)-refractory pancreatic cancer (PC). The GEM-resistant pancreatic cancer proved sensitive to treatment by a micellar PTX formulation Genexol PM (GEN) andor nanodroplet PTX formulation ndGEN. Due to increased permeability of tumor blood vessels, drug-loaded nanodroplets accumulated in the tumor via passive targeting, which was confirmed by ultrasound imaging. Nanodroplets converted into microbubbles in situ under the action of tumor-directed 1-MHz therapeutic ultrasound. The strongest therapeutic effect was observed for the combination therapy by PTX-loaded nanodroplets, GEM and ultrasound (ndGEN+GEM+ultrasound). This combination therapy resulted in a spectacular tumor regression and in some cases complete tumor resolution. Moreover, formation of metastases was dramatically decreased and ascitis generation was completely suppressed. However for all animal groups, local tumor recurrence was observed after the completion of the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more resistant to the repeated therapy than initial tumors.

  9. Von Hippel–Lindau and myotonic dystrophy of Steinert along with pancreatic neuroendocrine tumor and renal clear cell carcinomal neoplasm: Case report and review of the literature

    PubMed Central

    Addeo, A.; Bini, R.; Viora, T.; Bonaccorsi, L.; Leli, R.

    2013-01-01

    INTRODUCTION Myotonic dystrophy of Steinert, DM1, is the most common adult muscular dystrophy and generally is not associated to development on multiple site neoplasm. Von Hippel-Lindau (VHL) disease is a dominantly inherited familial cancer syndrome that is associated to tumors such as hemangioblastoma of the retina or central nervous system, clear-cell renal carcinoma (RCC) and endocrine tumors, most commonly pheochromocytoma and non-secretory pancreatic islet cell cancers. No data exist in literature describing the coexistence of both DM1 and VHL. PRESENTATION OF CASE Herein we report a case of renal and pancreatic neoplasm in a young adult female affected by DM1 and VHL simultaneously. DISCUSSION DM1 is due to an unstable trinucleotide (CTG) expansion in the 30 antranslated region of the dystrophia myotonica-protein kinase (DMPK) gene, located on chromosome 19q13.3. Several molecular mechanisms thought to be determining the classical DM phenotype have been shown. VHL disease is characterized by marked phenotypic variability and the most common tumors are hemangioblastomas of the retina or central nervous system, clear-cell renal carcinoma (RCC) and endocrine tumors, most commonly pheochromocytoma and non-secretory pancreatic islet cell cancers. The pancreatic manifestations seen in patients with VHL disease are divided into 2 categories: pancreatic neuroendocrine tumor (PNET) as solid tumors, and cystic lesions, including a simple cyst and serous cystadenoma. The surgical approach for these cistic lesions is to consider as golden standard. Blansfield has proposed 3 criteria to predict metastatic disease of PNET in patients with VHL disease: (1) tumor size greater than or equal to 3 cm; (2) presence of a mutation in exon 3; and (3) tumor doubling time less than 500 d. If the patient has none of these criteria the patient could be followed with physical examination and radiological surveillance on a 2/3 years base.4 If the patient has 1 criterion, the patient

  10. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung

    Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A secondmore » study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image

  11. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: prospective study in lung.

    PubMed

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S

    2014-10-01

    Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was

  12. Correlation of monoclonal and polyclonal somatostatin receptor 5 antibodies in pancreatic neuroendocrine tumors

    PubMed Central

    Kaemmerer, Daniel; Lupp, Amelie; Peter, Luisa; Fischer, Elke; Schulz, Stefan; Klöppel, Günter; Hommann, Merten

    2013-01-01

    Aims: To evaluate the frequency of somatostatin-receptor 5 (SSTR 5) in pancreatic neuroendocrine tumors by using monoclonal and polyclonal antibodies. Material and Method: we analyzed 66 proven pancreatic neuroendocrine tumors immunohistochemically with monoclonal (clone UMB-4) and polyclonal SSTR 5-antibodies. Immunoreactive score (IRS) and DAKO-score Her2/neu were evaluated. Results: Immunohistochemistry analysis demonstrated for the IRS a significant higher staining of all specimen using the monoclonal antibodies ( IRS SSTR5 poly vs IRS SSTR 5 mono; 20.0% vs 30.3% p < 0.001) by a correlation of 0.21; p = 0.04. For the HER2 score there was also a significant higher staining in the monoclonal group (Her2 SSTR 5 poly vs Her2 SSTR 5 mono; 21.5% vs 28.8% p < 0.001) by a correlation of 0.20; p = 0.08. Conclusion: Both antibodies are useful in staining of SSTR, although UMB-4 demonstrated a 10% higher SSTR 5 staining. Due to the previous underestimated expression rate of SSTR 5, current standards in diagnostics and therapy should be reconsidered. The increasing usage of long-acting pansomatostatin receptor analogues will rise the adverse effects connected to SSTR5 binding. PMID:23236542

  13. IL2RG, identified as overexpressed by RNA-seq profiling of pancreatic intraepithelial neoplasia, mediates pancreatic cancer growth

    PubMed Central

    Ayars, Michael; O’Sullivan, Eileen; Macgregor-Das, Anne; Shindo, Koji; Kim, Haeryoung; Borges, Michael; Yu, Jun; Hruban, Ralph H.; Goggins, Michael

    2017-01-01

    Pancreatic ductal adenocarcinoma evolves from precursor lesions, the most common of which is pancreatic intraepithelial neoplasia (PanIN). We performed RNA-sequencing analysis of laser capture microdissected PanINs and normal pancreatic duct cells to identify differentially expressed genes between PanINs and normal pancreatic duct, and between low-grade and high-grade PanINs. One of the most highly overexpressed transcripts identified in PanIN is interleukin-2 receptor subunit gamma (IL2RG) encoding the common gamma chain, IL2Rγ. CRISPR-mediated knockout of IL2RG in orthotopically implanted pancreatic cancer cells resulted in attenuated tumor growth in mice and reduced JAK3 expression in orthotopic tumors. These results indicate that IL2Rγ/JAK3 signaling contributes to pancreatic cancer cell growth in vivo. PMID:29137350

  14. Evaluation of lung tumor motion management in radiation therapy with dynamic MRI

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon

    2017-03-01

    Surrogate-based tumor motion estimation and tracing methods are commonly used in radiotherapy despite the lack of continuous real time 3D tumor and surrogate data. In this study, we propose a method to simultaneously track the tumor and external surrogates with dynamic MRI, which allows us to evaluate their reproducible correlation. Four MRIcompatible fiducials are placed on the patient's chest and upper abdomen, and multi-slice 2D cine MRIs are acquired to capture the lung and whole tumor, followed by two-slice 2D cine MRIs to simultaneously track the tumor and fiducials, all in sagittal orientation. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and group-wise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model to the fiducial segmentations on the 2D cine MRIs. We tested our method on five lung cancer patients. Internal target volume from 4D-CT showed average sensitivity of 86.5% compared to the actual tumor motion for 5 min. 3D tumor motion correlated with the external surrogate signal, but showed a noticeable phase mismatch. The 3D tumor trajectory showed significant cycle-to-cycle variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from fiducials at different locations.

  15. Duct- and Acinar-Derived Pancreatic Ductal Adenocarcinomas Show Distinct Tumor Progression and Marker Expression.

    PubMed

    Ferreira, Rute M M; Sancho, Rocio; Messal, Hendrik A; Nye, Emma; Spencer-Dene, Bradley; Stone, Richard K; Stamp, Gordon; Rosewell, Ian; Quaglia, Alberto; Behrens, Axel

    2017-10-24

    The cell of origin of pancreatic ductal adenocarcinoma (PDAC) has been controversial. Here, we show that identical oncogenic drivers trigger PDAC originating from both ductal and acinar cells with similar histology but with distinct pathophysiology and marker expression dependent on cell of origin. Whereas acinar-derived tumors exhibited low AGR2 expression and were preceded by pancreatic intraepithelial neoplasias (PanINs), duct-derived tumors displayed high AGR2 and developed independently of a PanIN stage via non-mucinous lesions. Using orthotopic transplantation and chimera experiments, we demonstrate that PanIN-like lesions can be induced by PDAC as bystanders in adjacent healthy tissues, explaining the co-existence of mucinous and non-mucinous lesions and highlighting the need to distinguish between true precursor PanINs and PanIN-like bystander lesions. Our results suggest AGR2 as a tool to stratify PDAC according to cell of origin, highlight that not all PanIN-like lesions are precursors of PDAC, and add an alternative progression route to the current model of PDAC development. Copyright © 2017 Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  16. Type I Interferon Receptor Expression in Human Pancreatic and Periampullary Cancer Tissue.

    PubMed

    Booy, Stephanie; Hofland, Leo J; Waaijers, A Marlijn; Croze, Ed; van Koetsveld, Peter M; de Vogel, Lisette; Biermann, Katharina; van Eijck, Casper H J

    2015-01-01

    Interferons (IFNs) have several anticancer mechanisms. A number of clinical trials have been conducted regarding adjuvant IFN-α therapy in pancreatic cancer. Type I IFNs exert their effect via the type I IFN receptor (IFNAR-1, IFNAR-2c). The aims of the present study were to determine the type I IFN receptor expression in pancreatic and periampullary cancer tissues and to study its relation with clinicopathological factors. Receptor expression was determined by immunohistochemistry in paraffin-embedded cancer tissue of 47 pancreatic and 54 periampullary cancer patients. The results demonstrated that 91.5% of the pancreatic tumors and 88.9% of the periampullary tumors showed expression of IFNAR-1, of which 23.4% and 13.0% were strongly positive, respectively. Regarding IFNAR-2c expression, 68.1% of the pancreatic tumors and 68.5% of the periampullary tumors were positive, of which 4.3% of the pancreatic tumors and none of the periampullary tumors had a strong expression. No statistically significant associations were found between type I IFN receptor expression and clinicopathological factors or survival. Type I IFN receptors are expressed in pancreatic and periampullary cancer tissues although with great intertumoral and intratumoral variability. A small proportion of both tumors showed a strong expression of the IFNAR-1; only a very small percentage of the pancreatic tumors showed strong expression of the IFNAR-2c.

  17. miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer.

    PubMed

    Lahdaoui, F; Delpu, Y; Vincent, A; Renaud, F; Messager, M; Duchêne, B; Leteurtre, E; Mariette, C; Torrisani, J; Jonckheere, N; Van Seuningen, I

    2015-02-05

    Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers in the world with one of the worst outcome. The oncogenic mucin MUC4 has been identified as an actor of pancreatic carcinogenesis as it is involved in many processes regulating pancreatic cancer cell biology. MUC4 is not expressed in healthy pancreas whereas it is expressed very early in pancreatic carcinogenesis. Targeting MUC4 in these early steps may thus appear as a promising strategy to slow-down pancreatic tumorigenesis. miRNA negative regulation of MUC4 could be one mechanism to efficiently downregulate MUC4 gene expression in early pancreatic neoplastic lesions. Using in silico studies, we found two putative binding sites for miR-219-1-3p in the 3'-UTR of MUC4 and showed that miR-219-1-3p expression is downregulated both in PDAC-derived cell lines and human PDAC tissues compared with their normal counterparts. We then showed that miR-219-1-3p negatively regulates MUC4 mucin expression via its direct binding to MUC4 3'-UTR. MiR-219-1-3p overexpression (transient and stable) in pancreatic cancer cell lines induced a decrease of cell proliferation associated with a decrease of cyclin D1 and a decrease of Akt and Erk pathway activation. MiR-219-1-3p overexpression also decreased cell migration. Furthermore, miR-219-1-3p expression was found to be conversely correlated with Muc4 expression in early pancreatic intraepithelial neoplasia lesions of Pdx1-Cre;LSL-Kras(G12D) mice. Most interestingly, in vivo studies showed that miR-219-1-3p injection in xenografted pancreatic tumors in mice decreased both tumor growth and MUC4 mucin expression. Altogether, these results identify miR-219-1-3p as a new negative regulator of MUC4 oncomucin that possesses tumor-suppressor activity in PDAC.

  18. Histone deacetylase (HDAC)-1, -2, -4 and -6 expression in human pancreatic adenocarcinoma: associations with clinicopathological parameters, tumor proliferative capacity and patients' survival.

    PubMed

    Giaginis, Constantinos; Damaskos, Christos; Koutsounas, Ioannis; Zizi-Serbetzoglou, Adamantia; Tsoukalas, Nicolaos; Patsouris, Efstratios; Kouraklis, Gregorios; Theocharis, Stamatios

    2015-10-26

    Histone deacetylases (HDACs) have been associated with malignant tumor development and progression in humans. HDAC inhibitors (HDACIs) are currently being explored as anti-cancer agents in clinical trials. The present study aimed to evaluate the clinical significance of HDAC-1, -2, -4 and -6 protein expression in pancreatic adenocarcinoma. HDAC-1, -2, -4 and -6 protein expression was assessed immunohistochemically on 70 pancreatic adenocarcinoma tissue specimens and was statistically analyzed with clinicopathological characteristics and patients' survival. Enhanced HDAC-1 expression was significantly associated with increased tumor proliferative capacity (p = 0.0238) and borderline with the absence of lymph node metastases (p = 0.0632). Elevated HDAC-4 expression was significantly associated with the absence of organ metastases (p = 0.0453) and borderline with the absence of lymph node metastases (p = 0.0571) and tumor proliferative capacity (p = 0.0576). Enhanced HDAC-6 expression was significantly associated with earlier histopathological stage (p = 0.0115) and borderline with smaller tumor size (p = 0.0864). Pancreatic adenocarcinoma patients with enhanced HDAC-1 and -6 expression showed significantly longer survival times compared to those with low expression (p = 0.0022 and p = 0.0113, respectively), while a borderline association concerning HDAC-2 expression was noted (p = 0.0634). The present study suggested that HDACs may be implicated in pancreatic malignant disease progression, being considered of clinical utility with potential use as therapeutic targets.

  19. New Onset of Diabetes and Pancreatic Exocrine Insufficiency After Pancreaticoduodenectomy for Benign and Malignant Tumors: A Systematic Review and Meta-analysis of Long-term Results.

    PubMed

    Beger, Hans G; Poch, Bertram; Mayer, Benjamin; Siech, Marco

    2018-02-01

    The aim of this study was to assess the frequency and severity of new onset of diabetes mellitus (NODM) and pancreatic exocrine insufficiency (PEI) after pancreaticoduodenectomy (PD) for benign and malignant tumors. When PD is performed on patients for benign tumors, the question of long-term metabolic dysfunctions becomes of importance. Medline/PubMed, Embase, and Cochrane Library were searched for articles reporting results of measuring endocrine and exocrine pancreatic functions after PD. The methodological quality of 19 studies was assessed by means of the Newcastle-Ottawa scale and Moga-Score. The mean weighted overall percentages of NODM and PEI after PD were calculated with a 95% confidence interval (CI). Of 1295 patients, data valid-for-efficacy-analysis are based on 845 patients measuring pancreatic endocrine and on 964 patients determining exocrine functions after PD. The cumulative incidence of NODM was 40 of 275 patients (14.5%; 95% CI: 10.3-18.7) in the benign tumor group, 25 of 161 (15.5%; 95% CI: 9.9-21.2) in the malignant tumor group, and 91 of 409 patients (22.2%; 95% CI: 18.2-26.3) in the benign and malignant tumor group. Comparing the frequency of NODM after PD revealed significant differences between the groups (benign vs benign and malignant P < 0.0121; malignant vs benign and malignant P < 0.0017). Exocrine pancreatic insufficiency was found in the benign tumor group in 76 of 301 patients (25.2%; 95% CI: 20.3-30.7) and in the malignant tumor group in 80 of 163 patients (49.1%, 95% CI: 41.4-56.8) (P < 0.0001). The results of a significant increase of NODM after PD for benign and malignant tumors and a significant decrease of exocrine functions contribute to a rational weighting of metabolic long-term risks following PD.

  20. Four-dimensional multislice computed tomography for determination of respiratory lung tumor motion in conformal radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leter, Edward M.; Cademartiri, Filippo; Levendag, Peter C.

    2005-07-01

    Purpose: We used four-dimensional multislice spiral computed tomography (MSCT) to determine respiratory lung-tumor motion and compared this strategy to common clinical practice in conformal radiotherapy treatment-planning imaging. Methods and Materials: The entire lung volume of 10 consecutive patients with 14 lung metastases were scanned by a 16-slice MSCT. During the scans, patients were instructed to breathe through a spirometer that was connected to a laptop computer. For each patient, 10 stacks of 1.5-mm slices, equally distributed throughout the respiratory cycle, were reconstructed from the acquired MSCT data. The lung tumors were manually contoured in each data set. For each patient,more » the tumor-volume contours of all data sets were copied to 1 data set, which allowed determination of the volume that encompassed all 10 lung-tumor positions (i.e., the tumor-traversed volume [TTV]) during the respiratory cycle. The TTV was compared with the 10 tumor volumes contoured for each patient, to which an empiric respiratory-motion margin was added. The latter target volumes were designated internal-motion included tumor volume (IMITV). Results: The TTV measurements were significantly smaller than the reference IMITV measurements (5.2 {+-} 10.2 cm{sup 3} and 10.1 {+-} 13.7 cm{sup 3}, respectively). All 10 IMITVs for 2 of the 4 tumors in 1 subject completely encompassed the TTV. All 10 IMITVs for 3 tumors in 2 patients did not show overlap with up to 35% of the corresponding TTV. The 10 IMITVs for the remaining tumors either completely encompassed the corresponding TTV or did not show overlap with up to 26% of the corresponding TTV. Conclusions: We found that individualized determination of respiratory lung-tumor motion by four-dimensional respiratory-gated MSCT represents a better and simple strategy to incorporate periodic physiologic motion compared with a generalized approach. The former strategy can, therefore, improve common and state-of-the-art clinical

  1. PET/CT incidental detection of second tumor in patients investigated for pancreatic neoplasms.

    PubMed

    Moletta, Lucia; Bissoli, Sergio; Fantin, Alberto; Passuello, Nicola; Valmasoni, Michele; Sperti, Cosimo

    2018-05-04

    Positron Emission Tomography/computed tomography (PET/CT) is an imaging technique which has a role in the detection and staging malignancies (both in first diagnosis and follow-up). The finding of an unexpected region of FDG (Fluorodeoxyglucose) uptake can occur when performing whole-body FDG-PET, raising the possibility of a second primary tumor. The aim of this study was to evaluate our experience of second primary cancer incidentally discovered during PET/CT examination performed for pancreatic diseases, during the initial work-up or follow-up after surgical resection. In this study, a retrospective evaluation of a prospectively collected data base was performed. Three hundred ninety- nine patients with pancreatic pathology were evaluated by whole body PET/CT imaging from January 2004 to December 2014. Among them, 348 patients were scanned before surgical resection and 51 during the course of their follow-up (pancreatic cancer). Median follow-up time was 29 months (range 14-124). Fifty-six patients (14%) had incidental uptake of FDG in their organs: 31 patients had focal uptake and 25 showed diffuse with or without focal uptake. All patients with focal uptake were investigated, and invasive malignancy was diagnosed in 22 patients: 14 colon, 4 lung, 1 larynx, 1 urothelial, 1 breast cancer, and 1 colon metastasis from pancreatic cancer. Twenty patients underwent resection, and 6 endoscopic removal of colonic polyps. Three patients were not operated for advanced disease, and two patients did not show any pathology (PET/CT false positive). Of the 10 patients investigated for diffuse uptake, no malignancy was found; none of these patients developed a second cancer during the follow-up. As in other malignancies, unexpected FDG uptake can occur in patients having PET/CT investigation for pancreatic diseases. Focal uptake is likely to be a malignancy and deserves further investigations, although the stage and the poor prognosis of primary pancreatic cancer should be

  2. Suppression of Tumor Growth and Muscle Wasting in a Transgenic Mouse Model of Pancreatic Cancer by the Novel Histone Deacetylase Inhibitor AR-42.

    PubMed

    Henderson, Sally E; Ding, Li-Yun; Mo, Xiaokui; Bekaii-Saab, Tanios; Kulp, Samuel K; Chen, Ching-Shih; Huang, Po-Hsien

    2016-12-01

    Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. This study was aimed at evaluating the efficacy of AR-42 (formerly OSU-HDAC42), a novel histone deacetylase (HDAC) inhibitor currently in clinical trials, in suppressing tumor growth and/or cancer-induced muscle wasting in murine models of PDAC. The in vitro antiproliferative activity of AR-42 was evaluated in six human pancreatic cancer cell lines (AsPC-1, COLO-357, PANC-1, MiaPaCa-2, BxPC-3, SW1990). AsPC-1 subcutaneous xenograft and transgenic KP fl/fl C (LSL-Kras G12D ;Trp53 flox/flox ;Pdx-1-Cre) mouse models of pancreatic cancer were used to evaluate the in vivo efficacy of AR-42 in suppressing tumor growth and/or muscle wasting. Growth suppression in AR-42-treated cells was observed in all six human pancreatic cancer cell lines with dose-dependent modulation of proliferation and apoptotic markers, which was associated with the hallmark features of HDAC inhibition, including p21 upregulation and histone H3 hyperacetylation. Oral administration of AR-42 at 50 mg/kg every other day resulted in suppression of tumor burden in the AsPC-1 xenograft and KP fl/fl C models by 78% and 55%, respectively, at the end of treatment. Tumor suppression was associated with HDAC inhibition, increased apoptosis, and inhibition of proliferation. Additionally, AR-42 as a single agent preserved muscle size and increased grip strength in KP fl/fl C mice. Finally, the combination of AR-42 and gemcitabine in transgenic mice demonstrated a significant increase in survival than either agent alone. These results suggest that AR-42 represents a therapeutically promising strategy for the treatment of pancreatic cancer. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures.

    PubMed

    Mohamed, Amira; Blanchard, Marie-Pierre; Albertelli, Manuela; Barbieri, Federica; Brue, Thierry; Niccoli, Patricia; Delpero, Jean-Robert; Monges, Genevieve; Garcia, Stephane; Ferone, Diego; Florio, Tullio; Enjalbert, Alain; Moutardier, Vincent; Schonbrunn, Agnes; Gerard, Corinne; Barlier, Anne; Saveanu, Alexandru

    2014-10-01

    Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) raise difficult therapeutic problems despite the emergence of targeted therapies. Somatostatin analogs (SSA) remain pivotal therapeutic drugs. However, the tachyphylaxis and the limited antitumoral effects observed with the classical somatostatin 2 (sst2) agonists (octreotide and lanreotide) led to the development of new SSA, such as the pan sst receptor agonist pasireotide. Our aim was to compare the effects of pasireotide and octreotide on cell survival, chromogranin A (CgA) secretion, and sst2 phosphorylation/trafficking in pancreatic NET (pNET) primary cells from 15 tumors. We established and characterized the primary cultures of human pancreatic tumors (pNETs) as powerful preclinical models for understanding the biological effects of SSA. At clinically relevant concentrations (1-10 nM), pasireotide was at least as efficient as octreotide in inhibiting CgA secretion and cell viability through caspase-dependent apoptosis during short treatments, irrespective of the expression levels of the different sst receptors or the WHO grade of the parental tumor. Interestingly, unlike octreotide, which induces a rapid and persistent partial internalization of sst2 associated with its phosphorylation on Ser341/343, pasireotide did not phosphorylate sst2 and induced a rapid and transient internalization of the receptor followed by a persistent recycling at the cell surface. These results provide the first evidence, to our knowledge, of striking differences in the dynamics of sst2 trafficking in pNET cells treated with the two SSAs, but with similar efficiency in the control of CgA secretion and cell viability. © 2014 Society for Endocrinology.

  4. Pancreatic surgery.

    PubMed

    Donahue, Timothy R; Reber, Howard A

    2013-09-01

    To summarize published research on pancreatic surgery over the past year. A number of studies aiming to reduce the costs associated with pancreatic surgery were reported. Retrospective analyses confirmed previous findings that neither the routine use of pancreatic duct stents decreases the rate of fistula formation nor does placement of a drain at the time of surgery change the morbidity in patients who develop one. Minimally invasive approaches, both laparoscopic and robot-assisted, are being performed more frequently to remove pancreatic cancers. A randomized trial confirmed that reinforcement of stapled closure during distal pancreatectomy reduces the rate of fistula formation. Controversy remains over whether small pancreatic neuroendocrine tumors need to be surgically resected or can be treated nonoperatively. Patients with chronic pancreatitis should be screened thoroughly before being offered surgical treatment; two studies reported preoperative factors that can be used to identify those most likely to experience pain relief. Studies published on pancreatic surgery last year focused on a wide-range of topics. The morbidity and mortality of patients undergoing pancreatic surgery continues to improve, and we anticipate that incorporation of these new findings will lead to even better outcomes.

  5. Extracellular matrix composition and rigidity regulate invasive behavior and response to PDT in 3D pancreatic tumor models

    NASA Astrophysics Data System (ADS)

    Cramer, Gwendolyn; El-Hamidi, Hamid; Jafari, Seyedehrojin; Jones, Dustin P.; Celli, Jonathan P.

    2016-03-01

    The composition and mechanical compliance of the extracellular matrix (ECM) have been shown to serve as regulators of tumor growth and invasive behavior. These effects may be particularly relevant in tumors of the pancreas, noted for a profound desmoplastic reaction and an abundance of stroma rich in ECM. In view of recent progress in the clinical implementation of photodynamic therapy (PDT) for pancreatic tumors, in this report we examine how ECM composition and rheological properties impact upon invasive behavior and response to PDT in 3D multicellular pancreatic tumor spheroids in ECM environments with characterized rheological properties. Tumor spheroids were cultured initially in attachment-free conditions to form millimeter-sized spheroids that were transplanted into reconstituted ECM microenvironments (Matrigel and Type I Collagen) that were characterized using bulk oscillatory shear rheology. Analysis of growth behavior shows that the soft collagen ECM promoted growth and extensive invasion and this microenvironment was used in subsequent assessment of PDT and chemotherapy response. Evaluation of treatment response revealed that primary tumor nodule growth is inhibited more effectively with PDT, while verteporfin PDT response is significantly enhanced in the ECM-infiltrating populations that are non-responsive to oxaliplatin chemotherapy. This finding is potentially significant, suggesting the potential for PDT to target these clinically problematic invasive populations that are associated with aggressive metastatic progression and chemoresistance. Experiments to further validate and identify the mechanistic basis of this observation are ongoing.

  6. Orchestrating the Tumor Microenvironment to Improve Survival for Patients With Pancreatic Cancer: Normalization, Not Destruction.

    PubMed

    Whatcott, Clifford J; Han, Haiyong; Von Hoff, Daniel D

    2015-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. The microenvironment of pancreatic cancer could be one of the "perfect storms" that support the growth of a cancer. Indeed, pancreatic cancer may be the poster child of a problem with the microenvironment. In this article, we review the rationale and attempts to date on modifying or targeting structural proteins in the microenvironment including hyaluronan (HA) (in primary and metastases), collagen, and SPARC (secreted protein, acidic, and rich in cysteine). Indeed, working in this area has produced a regimen that improves survival for patients with advanced pancreatic cancer (nab-paclitaxel + gemcitabine). In addition, in initial clinical trials, PEGylated hyaluronidase appears promising. We also review a new approach that is different than targeting/destroying the microenvironment and that is orchestrating, reengineering, reprogramming, or normalizing the microenvironment (including normalizing structural proteins, normalizing an immunologically tumor-friendly environment to a less friendly environment, reversing epithelial-to-mesenchymal transition, and so on). We believe this will be most effectively done by agents that have global effects on transcription. There is initial evidence that this can be done by agents such as vitamin D derivatives and other new agents. There is no doubt these opportunities can now be tried in the clinic with hopefully beneficial effects.

  7. Losartan Slows Pancreatic Tumor Progression and Extends Survival of SPARC-Null Mice by Abrogating Aberrant TGFβ Activation

    PubMed Central

    Arnold, Shanna A.; Rivera, Lee B.; Carbon, Juliet G.; Toombs, Jason E.; Chang, Chi-Lun; Bradshaw, Amy D.; Brekken, Rolf A.

    2012-01-01

    Pancreatic adenocarcinoma, a desmoplastic disease, is the fourth leading cause of cancer-related death in the Western world due, in large part, to locally invasive primary tumor growth and ensuing metastasis. SPARC is a matricellular protein that governs extracellular matrix (ECM) deposition and maturation during tissue remodeling, particularly, during wound healing and tumorigenesis. In the present study, we sought to determine the mechanism by which lack of host SPARC alters the tumor microenvironment and enhances invasion and metastasis of an orthotopic model of pancreatic cancer. We identified that levels of active TGFβ1 were increased significantly in tumors grown in SPARC-null mice. TGFβ1 contributes to many aspects of tumor development including metastasis, endothelial cell permeability, inflammation and fibrosis, all of which are altered in the absence of stromal-derived SPARC. Given these results, we performed a survival study to assess the contribution of increased TGFβ1 activity to tumor progression in SPARC-null mice using losartan, an angiotensin II type 1 receptor antagonist that diminishes TGFβ1 expression and activation in vivo. Tumors grown in SPARC-null mice progressed more quickly than those grown in wild-type littermates leading to a significant reduction in median survival. However, median survival of SPARC-null animals treated with losartan was extended to that of losartan-treated wild-type controls. In addition, losartan abrogated TGFβ induced gene expression, reduced local invasion and metastasis, decreased vascular permeability and altered the immune profile of tumors grown in SPARC-null mice. These data support the concept that aberrant TGFβ1-activation in the absence of host SPARC contributes significantly to tumor progression and suggests that SPARC, by controlling ECM deposition and maturation, can regulate TGFβ availability and activation. PMID:22348081

  8. Radiosensitizing Pancreatic Cancer Xenografts by an Implantable Micro-Oxygen Generator.

    PubMed

    Cao, Ning; Song, Seung Hyun; Maleki, Teimour; Shaffer, Michael; Stantz, Keith M; Cao, Minsong; Kao, Chinghai; Mendonca, Marc S; Ziaie, Babak; Ko, Song-Chu

    2016-04-01

    Over the past decades, little progress has been made to improve the extremely low survival rates in pancreatic cancer patients. Extreme hypoxia observed in pancreatic tumors contributes to the aggressive and metastatic characteristics of this tumor and can reduce the effectiveness of conventional radiation therapy and chemotherapy. In an attempt to reduce hypoxia-induced obstacles to effective radiation treatment, we used a novel device, the implantable micro-oxygen generator (IMOG), for in situ tumor oxygenation. After subcutaneous implantation of human pancreatic xenograft tumors in athymic rats, the IMOG was wirelessly powered by ultrasonic waves, producing 30 μA of direct current (at 2.5 V), which was then utilized to electrolyze water and produce oxygen within the tumor. Significant oxygen production by the IMOG was observed and corroborated using the NeoFox oxygen sensor dynamically. To test the radiosensitization effect of the newly generated oxygen, the human pancreatic xenograft tumors were subcutaneously implanted in nude mice with either a functional or inactivated IMOG device. The tumors in the mice were then exposed to ultrasonic power for 10 min, followed by a single fraction of 5 Gy radiation, and tumor growth was monitored thereafter. The 5 Gy irradiated tumors containing the functional IMOG exhibited tumor growth inhibition equivalent to that of 7 Gy irradiated tumors that did not contain an IMOG. Our study confirmed that an activated IMOG is able to produce sufficient oxygen to radiosensitize pancreatic tumors, enhancing response to single-dose radiation therapy.

  9. COMPARING THE ENZYME REPLACEMENT THERAPY COST IN POST PANCREATECTOMY PATIENTS DUE TO PANCREATIC TUMOR AND CHRONIC PANCREATITIS.

    PubMed

    Fragoso, Anna Victoria; Pedroso, Martha Regina; Herman, Paulo; Montagnini, André Luis

    2016-01-01

    Among late postoperative complications of pancreatectomy are the exocrine and endocrine pancreatic insufficiencies. The presence of exocrine pancreatic insufficiency imposes, as standard treatment, pancreatic enzyme replacement. Patients with chronic pancreatitis, with intractable pain or any complications with surgical treatment, are likely to present exocrine pancreatic insufficiency or have this condition worsened requiring adequate dose of pancreatic enzymes. The aim of this study is to compare the required dose of pancreatic enzyme and the enzyme replacement cost in post pancreatectomy patients with and without chronic pancreatitis. Observational cross-sectional study. In the first half of 2015 patients treated at the clinic of the Department of Gastrointestinal Surgery at Hospital das Clínicas, Universidade de São Paulo, Brazil, who underwent pancreatectomy for at least 6 months and in use of enzyme replacement therapy were included in this series. The study was approved by the Research Ethics Committee. The patients were divided into two groups according to the presence or absence of chronic pancreatitis prior to pancreatic surgery. For this study, P<0.05 was considered statistically significant. The annual cost of the treatment was R$ 2150.5 ± 729.39; R$ 2118.18 ± 731.02 in patients without pancreatitis and R$ 2217.74 ± 736.30 in patients with pancreatitis. There was no statistically significant difference in the cost of treatment of enzyme replacement post pancreatectomy in patients with or without chronic pancreatitis prior to surgical indication.

  10. Pancreatic neuroendocrine tumors containing areas of iso- or hypoattenuation in dynamic contrast-enhanced computed tomography: Spectrum of imaging findings and pathological grading.

    PubMed

    Hyodo, Ryota; Suzuki, Kojiro; Ogawa, Hiroshi; Komada, Tomohiro; Naganawa, Shinji

    2015-11-01

    To evaluate dynamic contrast-enhanced computed tomography (CT) features of pancreatic neuroendocrine tumors (PNETs) containing areas of iso- or hypoattenuation and the relationship with pathological grading. Between June 2006 and March 2014, 61 PNETs in 58 consecutive patients (29 male, 29 female; median-age 55 years), which were surgically diagnosed, underwent preoperative dynamic contrast-enhanced CT. PNETs were classified based on contrast enhancement patterns in the pancreatic phase: iso/hypo-PNETs were defined as tumors containing areas of iso- or hypoattenuation except for cystic components, and hyper-PNETs were tumors showing hyperattenuation over the whole area. CT findings and contrast-enhancement patterns of the tumors were evaluated retrospectively by two radiologists and compared with the pathological grading. Iso/hypo-PNETs comprised 26 tumors, and hyper-PNETs comprised 35 tumors. Not only hyper-PNETs but also most iso/hypo-PNETs showed peak enhancement in the pancreatic phase and a washout from the portal venous phase to the delayed phase. Iso/hypo-PNETs showed larger tumor size than the hyper-PNETs (mean, 3.7 cm vs. 1.6 cm; P<0.001), and were significantly correlated with unclear tumor margins (n=4 vs. n=0; P=0.029), the existence of cystic components (n=10 vs. n=3; P=0.006), intratumoral blood vessels in the early arterial phase (n=13 vs. n=3; P<0.001), and a smooth rim enhancement in the delayed phase (n=12 vs. n=6; P=0.019). Iso/hypo-PNETs also showed significantly higher pathological grading (WHO 2010 classification; iso/hypo, G1=14, G2=11, G3=1; hyper, G1=34, G2=1; P<0.001). PNETs containing iso/hypo-areas showed a rapid enhancement pattern as well as hyper-PNETs, various radiological features and higher malignant potential. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Early Therapy Evaluation of Combined Anti-DR5 Antibody and Gemcitabine in Orthotopic Pancreatic Tumor Xenografts by Diffusion Weighted Magnetic Resonance Imaging

    PubMed Central

    Kim, Hyunki; Morgan, Desiree E.; Buchsbaum, Donald J.; Zeng, Huadong; Grizzle, William E.; Warram, Jason M.; Stockard, Cecil R.; McNally, Lacey R.; Long, Joshua W.; Sellers, Jeffrey C.; Forero, Andres; Zinn, Kurt R.

    2008-01-01

    Early therapeutic efficacy of anti-DR5 antibody (TRA-8) combined with gemcitabine was measured using diffusion-weighted magnetic resonance imaging (DWI) in an orthotopic pancreatic tumor model. Groups 1–4 of SCID mice (n=5–7/group) bearing orthotopically implanted, luciferase-positive human pancreatic tumors (MIA PaCa-2) were subsequently (4–5 weeks thereafter) injected with saline (control), gemcitabine (120mg/kg), TRA-8 (200μg), or TRA-8 combined with gemcitabine, respectively, on day 0. DWI, anatomical MRI, and bioluminescence imaging were performed on days 0, 1, 2, and 3 after treatment. Three tumors from each group were collected randomly on day 3 after imaging, and TUNEL staining was performed to quantify apoptotic cellularity. At just 1 day after starting therapy, the changes of apparent diffusion coefficient (ADC) in tumor regions for groups 3 (TRA-8) and 4 (TRA-8/Gem) were 21±9% (mean±SE) and 27±3%, respectively, significantly higher (p <0.05) than those of groups 1 (−1±5%) and 2 (−2±4%). There was no statistical difference in tumor volumes for the groups at this time. The mean ADC values of groups 2–4 gradually increased over 3 days, which were concurrent with tumor-volume regressions and bioluminescence-signal decreases. Apoptotic-cell densities of tumors in groups 1–4 were 0.7±0.4%, 0.6±0.2%, 3.1±0.9%, and 4.7±1.0%, respectively, linearly proportional to the ADC changes on day 1. Further, the ADC changes were highly correlated with the previously reported mean survival times of animals treated with the same agents and doses. This study supports the clinical use of DWI for pancreatic tumor patients for early assessment of drug efficacy. PMID:18922909

  12. Poster - 51: A tumor motion-compensating system with tracking and prediction – a proof-of-concept study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Kaiming; Teo, Peng; Kawalec, Philip

    2016-08-15

    Purpose: This work reports on the development of a mechanical slider system for the counter-steering of tumor motion in adaptive Radiation Therapy (RT). The tumor motion was tracked using a weighted optical flow algorithm and its position is being predicted with a neural network (NN). Methods: The components of the proposed mechanical counter-steering system includes: (1) an actuator which provides the tumor motion, (2) the motion detection using an optical flow algorithm, (3) motion prediction using a neural network, (4) a control module and (5) a mechanical slider to counter-steer the anticipated motion of the tumor phantom. An asymmetrical cosinemore » function and five patient traces (P1–P5) were used to evaluate the tracking of a 3D printed lung tumor. In the proposed mechanical counter-steering system, both actuator (Zaber NA14D60) and slider (Zaber A-BLQ0070-E01) were programed to move independently with LabVIEW and their positions were recorded by 2 potentiometers (ETI LCP12S-25). The accuracy of this counter-steering system is given by the difference between the two potentiometers. Results: The inherent accuracy of the system, measured using the cosine function, is −0.15 ± 0.06 mm. While the errors when tracking and prediction were included, is (0.04 ± 0.71) mm. Conclusion: A prototype tumor motion counter-steering system with tracking and prediction was implemented. The inherent errors are small in comparison to the tracking and prediction errors, which in turn are small in comparison to the magnitude of tumor motion. The results show that this system is suited for evaluating RT tracking and prediction.« less

  13. Quantification of Esophageal Tumor Motion on Cine-Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, Frederiek M.; Lips, Irene M.; Crijns, Sjoerd P.M.

    2014-02-01

    Purpose: To quantify the movement of esophageal tumors noninvasively on cine-magnetic resonance imaging (MRI) by use of a semiautomatic method to visualize tumor movement directly throughout multiple breathing cycles. Methods and Materials: Thirty-six patients with esophageal tumors underwent MRI. Tumors were located in the upper (8), middle (7), and lower (21) esophagus. Cine-MR images were collected in the coronal and sagittal plane during 60 seconds at a rate of 2 Hz. An adaptive correlation filter was used to automatically track a previously marked reference point. Tumor movement was measured in the craniocaudal (CC), left–right (LR), and anteroposterior (AP) directions andmore » its relationship along the longitudinal axis of the esophagus was investigated. Results: Tumor registration within the individual images was typically done at a millisecond time scale. The mean (SD) peak-to-peak displacements in the CC, AP, and LR directions were 13.3 (5.2) mm, 4.9 (2.5) mm, and 2.7 (1.2) mm, respectively. The bandwidth to cover 95% of excursions from the mean position (c95) was also calculated to exclude outliers caused by sporadic movements. The mean (SD) c95 values were 10.1 (3.8) mm, 3.7 (1.9) mm, and 2.0 (0.9) mm in the CC, AP, and LR dimensions. The end-exhale phase provided a stable position in the respiratory cycle, compared with more variety in the end-inhale phase. Furthermore, lower tumors showed more movement than did higher tumors in the CC and AP directions. Conclusions: Intrafraction tumor movement was highly variable between patients. Tumor position proved the most stable during the respiratory cycle in the end-exhale phase. A better understanding of tumor motion makes it possible to individualize radiation delivery strategies accordingly. Cine-MRI is a successful noninvasive modality to analyze motion for this purpose in the future.« less

  14. Engineered Resistant-Starch (ERS) Diet Shapes Colon Microbiota Profile in Parallel with the Retardation of Tumor Growth in In Vitro and In Vivo Pancreatic Cancer Models.

    PubMed

    Panebianco, Concetta; Adamberg, Kaarel; Adamberg, Signe; Saracino, Chiara; Jaagura, Madis; Kolk, Kaia; Di Chio, Anna Grazia; Graziano, Paolo; Vilu, Raivo; Pazienza, Valerio

    2017-03-27

    Pancreatic cancer (PC) is ranked as the fourth leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, a modest impact on the outcome of the disease is observed so far. We have previously demonstrated that short-term fasting cycles have the potential to improve the efficacy of chemotherapy against PC. The aim of this study was to assess the effect of an engineered resistant-starch (ERS) mimicking diet on the growth of cancer cell lines in vitro, on the composition of fecal microbiota, and on tumor growth in an in vivo pancreatic cancer mouse xenograft model. BxPC-3, MIA PaCa-2 and PANC-1 cells were cultured in the control, and in the ERS-mimicking diet culturing condition, to evaluate tumor growth and proliferation pathways. Pancreatic cancer xenograft mice were subjected to an ERS diet to assess tumor volume and weight as compared to mice fed with a control diet. The composition and activity of fecal microbiota were further analyzed in growth experiments by isothermal microcalorimetry. Pancreatic cancer cells cultured in an ERS diet-mimicking medium showed decreased levels of phospho-ERK1/2 (extracellular signal-regulated kinase proteins) and phospho-mTOR (mammalian target of rapamycin) levels, as compared to those cultured in standard medium. Consistently, xenograft pancreatic cancer mice subjected to an ERS diet displayed significant retardation in tumor growth. In in vitro growth experiments, the fecal microbial cultures from mice fed with an ERS diet showed enhanced growth on residual substrates, higher production of formate and lactate, and decreased amounts of propionate, compared to fecal microbiota from mice fed with the control diet. A positive effect of the ERS diet on composition and metabolism of mouse fecal microbiota shown in vitro is associated with the decrease of tumor progression in the in vivo PC xenograft mouse model. These results suggest that engineered dietary interventions could be supportive as a

  15. Engineered Resistant-Starch (ERS) Diet Shapes Colon Microbiota Profile in Parallel with the Retardation of Tumor Growth in In Vitro and In Vivo Pancreatic Cancer Models

    PubMed Central

    Panebianco, Concetta; Adamberg, Kaarel; Adamberg, Signe; Saracino, Chiara; Jaagura, Madis; Kolk, Kaia; Di Chio, Anna Grazia; Graziano, Paolo; Vilu, Raivo; Pazienza, Valerio

    2017-01-01

    Background/aims: Pancreatic cancer (PC) is ranked as the fourth leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, a modest impact on the outcome of the disease is observed so far. We have previously demonstrated that short-term fasting cycles have the potential to improve the efficacy of chemotherapy against PC. The aim of this study was to assess the effect of an engineered resistant-starch (ERS) mimicking diet on the growth of cancer cell lines in vitro, on the composition of fecal microbiota, and on tumor growth in an in vivo pancreatic cancer mouse xenograft model. Materials and Methods: BxPC-3, MIA PaCa-2 and PANC-1 cells were cultured in the control, and in the ERS-mimicking diet culturing condition, to evaluate tumor growth and proliferation pathways. Pancreatic cancer xenograft mice were subjected to an ERS diet to assess tumor volume and weight as compared to mice fed with a control diet. The composition and activity of fecal microbiota were further analyzed in growth experiments by isothermal microcalorimetry. Results: Pancreatic cancer cells cultured in an ERS diet-mimicking medium showed decreased levels of phospho-ERK1/2 (extracellular signal-regulated kinase proteins) and phospho-mTOR (mammalian target of rapamycin) levels, as compared to those cultured in standard medium. Consistently, xenograft pancreatic cancer mice subjected to an ERS diet displayed significant retardation in tumor growth. In in vitro growth experiments, the fecal microbial cultures from mice fed with an ERS diet showed enhanced growth on residual substrates, higher production of formate and lactate, and decreased amounts of propionate, compared to fecal microbiota from mice fed with the control diet. Conclusion: A positive effect of the ERS diet on composition and metabolism of mouse fecal microbiota shown in vitro is associated with the decrease of tumor progression in the in vivo PC xenograft mouse model. These results suggest that

  16. Individually optimized contrast-enhanced 4D-CT for radiotherapy simulation in pancreatic ductal adenocarcinoma

    PubMed Central

    Xue, Ming; Lane, Barton F.; Kang, Min Kyu; Patel, Kruti; Regine, William F.; Klahr, Paul; Wang, Jiahui; Chen, Shifeng; D’Souza, Warren; Lu, Wei

    2016-01-01

    Purpose: To develop an individually optimized contrast-enhanced (CE) 4D-computed tomography (CT) for radiotherapy simulation in pancreatic ductal adenocarcinomas (PDA). Methods: Ten PDA patients were enrolled. Each underwent three CT scans: a 4D-CT immediately following a CE 3D-CT and an individually optimized CE 4D-CT using test injection. Three physicians contoured the tumor and pancreatic tissues. Image quality scores, tumor volume, motion, tumor-to-pancreas contrast, and contrast-to-noise ratio (CNR) were compared in the three CTs. Interobserver variations were also evaluated in contouring the tumor using simultaneous truth and performance level estimation. Results: Average image quality scores for CE 3D-CT and CE 4D-CT were comparable (4.0 and 3.8, respectively; P = 0.082), and both were significantly better than that for 4D-CT (2.6, P < 0.001). Tumor-to-pancreas contrast results were comparable in CE 3D-CT and CE 4D-CT (15.5 and 16.7 Hounsfield units (HU), respectively; P = 0.21), and the latter was significantly higher than in 4D-CT (9.2 HU, P = 0.001). Image noise in CE 3D-CT (12.5 HU) was significantly lower than in CE 4D-CT (22.1 HU, P = 0.013) and 4D-CT (19.4 HU, P = 0.009). CNRs were comparable in CE 3D-CT and CE 4D-CT (1.4 and 0.8, respectively; P = 0.42), and both were significantly better in 4D-CT (0.6, P = 0.008 and 0.014). Mean tumor volumes were significantly smaller in CE 3D-CT (29.8 cm3, P = 0.03) and CE 4D-CT (22.8 cm3, P = 0.01) than in 4D-CT (42.0 cm3). Mean tumor motion was comparable in 4D-CT and CE 4D-CT (7.2 and 6.2 mm, P = 0.17). Interobserver variations were comparable in CE 3D-CT and CE 4D-CT (Jaccard index 66.0% and 61.9%, respectively) and were worse for 4D-CT (55.6%) than CE 3D-CT. Conclusions: CE 4D-CT demonstrated characteristics comparable to CE 3D-CT, with high potential for simultaneously delineating the tumor and quantifying tumor motion with a single scan. PMID:27782710

  17. Using an external surrogate for predictor model training in real-time motion management of lung tumors.

    PubMed

    Rottmann, Joerg; Berbeco, Ross

    2014-12-01

    Precise prediction of respiratory motion is a prerequisite for real-time motion compensation techniques such as beam, dynamic couch, or dynamic multileaf collimator tracking. Collection of tumor motion data to train the prediction model is required for most algorithms. To avoid exposure of patients to additional dose from imaging during this procedure, the feasibility of training a linear respiratory motion prediction model with an external surrogate signal is investigated and its performance benchmarked against training the model with tumor positions directly. The authors implement a lung tumor motion prediction algorithm based on linear ridge regression that is suitable to overcome system latencies up to about 300 ms. Its performance is investigated on a data set of 91 patient breathing trajectories recorded from fiducial marker tracking during radiotherapy delivery to the lung of ten patients. The expected 3D geometric error is quantified as a function of predictor lookahead time, signal sampling frequency and history vector length. Additionally, adaptive model retraining is evaluated, i.e., repeatedly updating the prediction model after initial training. Training length for this is gradually increased with incoming (internal) data availability. To assess practical feasibility model calculation times as well as various minimum data lengths for retraining are evaluated. Relative performance of model training with external surrogate motion data versus tumor motion data is evaluated. However, an internal-external motion correlation model is not utilized, i.e., prediction is solely driven by internal motion in both cases. Similar prediction performance was achieved for training the model with external surrogate data versus internal (tumor motion) data. Adaptive model retraining can substantially boost performance in the case of external surrogate training while it has little impact for training with internal motion data. A minimum adaptive retraining data length of

  18. Molecular biology of pancreatic cancer.

    PubMed

    Zavoral, Miroslav; Minarikova, Petra; Zavada, Filip; Salek, Cyril; Minarik, Marek

    2011-06-28

    In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple mole melanoma, and Peutz-Jeghers and Lynch syndromes. Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancreatic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect oncogenes and tumor-suppressor genes within RAS, AKT and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.

  19. Stages of Pancreatic Neuroendocrine Tumors

    MedlinePlus

    ... Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All Cancer ... also called nuclear magnetic resonance imaging (NMRI). Somatostatin receptor scintigraphy : A type of radionuclide scan that may ...

  20. Comparison of cytotoxic T lymphocyte responses against pancreatic cancer induced by dendritic cells transfected with total tumor RNA and fusion hybrided with tumor cell

    PubMed Central

    Chen, Jiang; Li, Hong-Yu; Wang, Di; Shao, Xiao-Dong

    2015-01-01

    Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination. PMID:25736302

  1. CXCL12 Chemokine Expression Suppresses Human Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Roy, Ishan; Zimmerman, Noah P.; Mackinnon, A. Craig; Tsai, Susan; Evans, Douglas B.; Dwinell, Michael B.

    2014-01-01

    Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites. PMID:24594697

  2. Inhibition of NFκB and Pancreatic Cancer Cell and Tumor Growth by Curcumin Is Dependent on Specificity Protein Down-regulation*

    PubMed Central

    Jutooru, Indira; Chadalapaka, Gayathri; Lei, Ping; Safe, Stephen

    2010-01-01

    Curcumin activates diverse anticancer activities that lead to inhibition of cancer cell and tumor growth, induction of apoptosis, and antiangiogenic responses. In this study, we observed that curcumin inhibits Panc28 and L3.6pL pancreatic cancer cell and tumor growth in nude mice bearing L3.6pL cells as xenografts. In addition, curcumin decreased expression of p50 and p65 proteins and NFκB-dependent transactivation and also decreased Sp1, Sp3, and Sp4 transcription factors that are overexpressed in pancreatic cancer cells. Because both Sp transcription factors and NFκB regulate several common genes such as cyclin D1, survivin, and vascular endothelial growth factor that contribute to the cancer phenotype, we also investigated interactions between Sp and NFκB transcription factors. Results of Sp1, Sp3, and Sp4 knockdown by RNA interference demonstrate that both p50 and p65 are Sp-regulated genes and that inhibition of constitutive or tumor necrosis factor-induced NFκB by curcumin is dependent on down-regulation of Sp1, Sp3, and Sp4 proteins by this compound. Curcumin also decreased mitochondrial membrane potential and induced reactive oxygen species in pancreatic cancer cells, and this pathway is required for down-regulation of Sp proteins in these cells, demonstrating that the mitochondriotoxic effects of curcumin are important for its anticancer activities. PMID:20538607

  3. Reproducibility of Tumor Motion Probability Distribution Function in Stereotactic Body Radiation Therapy of Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Fan; Medical Physics Graduate Program, Duke University, Durham, North Carolina; Hu Jing

    2012-11-01

    Purpose: To evaluate the reproducibility of tumor motion probability distribution function (PDF) in stereotactic body radiation therapy (SBRT) of lung cancer using cine megavoltage (MV) images. Methods and Materials: Cine MV images of 20 patients acquired during three-dimensional conformal (6-11 beams) SBRT treatments were retrospectively analyzed to extract tumor motion trajectories. For each patient, tumor motion PDFs were generated per fraction (PDF{sub n}) using three selected 'usable' beams. Patients without at least three usable beams were excluded from the study. Fractional PDF reproducibility (R{sub n}) was calculated as the Dice similarity coefficient between PDF{sub n} to a 'ground-truth' PDF (PDF{submore » g}), which was generated using the selected beams of all fractions. The mean of R{sub n}, labeled as R{sub m}, was calculated for each patient and correlated to the patient's mean tumor motion rang (A{sub m}). Change of R{sub m} during the course of SBRT treatments was also evaluated. Intra- and intersubject coefficient of variation (CV) of R{sub m} and A{sub m} were determined. Results: Thirteen patients had at least three usable beams and were analyzed. The mean of R{sub m} was 0.87 (range, 0.84-0.95). The mean of A{sub m} was 3.18 mm (range, 0.46-7.80 mm). R{sub m} was found to decrease as A{sub m} increases following an equation of R{sub m} = 0.17e{sup -0.9Am} + 0.84. R{sub m} also decreased slightly throughout the course of treatments. Intersubject CV of R{sub m} (0.05) was comparable to intrasubject CV of R{sub m} (range, 0.02-0.09); intersubject CV of A{sub m} (0.73) was significantly greater than intrasubject CV of A{sub m} (range, 0.09-0.24). Conclusions: Tumor motion PDF can be determined using cine MV images acquired during the treatments. The reproducibility of lung tumor motion PDF decreased exponentially as the tumor motion range increased and decreased slightly throughout the course of the treatments.« less

  4. Planning 4-Dimensional Computed Tomography (4DCT) Cannot Adequately Represent Daily Intrafractional Motion of Abdominal Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Jiajia; Santanam, Lakshmi; Noel, Camille

    2013-03-15

    Purpose: To evaluate whether planning 4-dimensional computed tomography (4DCT) can adequately represent daily motion of abdominal tumors in regularly fractionated and stereotactic body radiation therapy (SBRT) patients. Methods and Materials: Intrafractional tumor motion of 10 patients with abdominal tumors (4 pancreas-fractionated and 6 liver-stereotactic patients) with implanted fiducials was measured based on daily orthogonal fluoroscopic movies over 38 treatment fractions. The needed internal margin for at least 90% of tumor coverage was calculated based on a 95th and fifth percentile of daily 3-dimensional tumor motion. The planning internal margin was generated by fusing 4DCT motion from all phase bins. The disagreementmore » between needed and planning internal margin was analyzed fraction by fraction in 3 motion axes (superior-inferior [SI], anterior-posterior [AP], and left-right [LR]). The 4DCT margin was considered as an overestimation/underestimation of daily motion when disagreement exceeded at least 3 mm in the SI axis and/or 1.2 mm in the AP and LR axes (4DCT image resolution). The underlying reasons for this disagreement were evaluated based on interfractional and intrafractional breathing variation. Results: The 4DCT overestimated daily 3-dimensional motion in 39% of the fractions in 7 of 10 patients and underestimated it in 53% of the fractions in 8 of 10 patients. Median underestimation was 3.9 mm, 3.0 mm, and 1.7 mm in the SI axis, AP axis, and LR axis, respectively. The 4DCT was found to capture irregular deep breaths in 3 of 10 patients, with 4DCT motion larger than mean daily amplitude by 18 to 21 mm. The breathing pattern varied from breath to breath and day to day. The intrafractional variation of amplitude was significantly larger than intrafractional variation (2.7 mm vs 1.3 mm) in the primary motion axis (ie, SI axis). The SBRT patients showed significantly larger intrafractional amplitude variation than fractionated patients (3.0

  5. Calcified pancreatic and peripancreatic neoplasms: spectrum of pathologies.

    PubMed

    Verde, Franco; Fishman, Elliot K

    2017-11-01

    A variety of pancreatic and peripancreatic neoplasms may contain calcifications. We present a review of common to uncommon pancreatic neoplasms that may contain calcifications to include ductal adenocarcinoma, pancreatic neuroendocrine tumors, serous cystadenomas, solid pseudopapillary tumors, intraductal papillary mucinous neoplasms, mucinous cystic neoplasms, and lymphoepithelial cysts. In addition, duodenal mucinous adenocarcinoma can present as a peripancreatic mass that may contain calcification. Knowledge of the spectrum of calcification patterns can help the interpreting radiologist provide a meaningful differential.

  6. Reproducibility of tumor motion probability distribution function in stereotactic body radiation therapy of lung cancer.

    PubMed

    Zhang, Fan; Hu, Jing; Kelsey, Chris R; Yoo, David; Yin, Fang-Fang; Cai, Jing

    2012-11-01

    To evaluate the reproducibility of tumor motion probability distribution function (PDF) in stereotactic body radiation therapy (SBRT) of lung cancer using cine megavoltage (MV) images. Cine MV images of 20 patients acquired during three-dimensional conformal (6-11 beams) SBRT treatments were retrospectively analyzed to extract tumor motion trajectories. For each patient, tumor motion PDFs were generated per fraction (PDF(n)) using three selected "usable" beams. Patients without at least three usable beams were excluded from the study. Fractional PDF reproducibility (R(n)) was calculated as the Dice similarity coefficient between PDF(n) to a "ground-truth" PDF (PDF(g)), which was generated using the selected beams of all fractions. The mean of R(n), labeled as R(m), was calculated for each patient and correlated to the patient's mean tumor motion rang (A(m)). Change of R(m) during the course of SBRT treatments was also evaluated. Intra- and intersubject coefficient of variation (CV) of R(m) and A(m) were determined. Thirteen patients had at least three usable beams and were analyzed. The mean of R(m) was 0.87 (range, 0.84-0.95). The mean of A(m) was 3.18 mm (range, 0.46-7.80 mm). R(m) was found to decrease as A(m) increases following an equation of R(m) = 0.17e(-0.9Am) + 0.84. R(m) also decreased slightly throughout the course of treatments. Intersubject CV of R(m) (0.05) was comparable to intrasubject CV of R(m) (range, 0.02-0.09); intersubject CV of A(m) (0.73) was significantly greater than intrasubject CV of A(m) (range, 0.09-0.24). Tumor motion PDF can be determined using cine MV images acquired during the treatments. The reproducibility of lung tumor motion PDF decreased exponentially as the tumor motion range increased and decreased slightly throughout the course of the treatments. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302.

    PubMed

    Wojtkowiak, Jonathan W; Cornnell, Heather C; Matsumoto, Shingo; Saito, Keita; Takakusagi, Yoichi; Dutta, Prasanta; Kim, Munju; Zhang, Xiaomeng; Leos, Rafael; Bailey, Kate M; Martinez, Gary; Lloyd, Mark C; Weber, Craig; Mitchell, James B; Lynch, Ronald M; Baker, Amanda F; Gatenby, Robert A; Rejniak, Katarzyna A; Hart, Charles; Krishna, Murali C; Gillies, Robert J

    2015-01-01

    Hypoxic niches in solid tumors harbor therapy-resistant cells. Hypoxia-activated prodrugs (HAPs) have been designed to overcome this resistance and, to date, have begun to show clinical efficacy. However, clinical HAPs activity could be improved. In this study, we sought to identify non-pharmacological methods to acutely exacerbate tumor hypoxia to increase TH-302 activity in pancreatic ductal adenocarcinoma (PDAC) tumor models. Three human PDAC cell lines with varying sensitivity to TH-302 (Hs766t > MiaPaCa-2 > SU.86.86) were used to establish PDAC xenograft models. PDAC cells were metabolically profiled in vitro and in vivo using the Seahorse XF system and hyperpolarized (13)C pyruvate MRI, respectively, in addition to quantitative immunohistochemistry. The effect of exogenous pyruvate on tumor oxygenation was determined using electroparamagnetic resonance (EPR) oxygen imaging. Hs766t and MiaPaCa-2 cells exhibited a glycolytic phenotype in comparison to TH-302 resistant line SU.86.86. Supporting this observation is a higher lactate/pyruvate ratio in Hs766t and MiaPaCa xenografts as observed during hyperpolarized pyruvate MRI studies in vivo. Coincidentally, response to exogenous pyruvate both in vitro (Seahorse oxygen consumption) and in vivo (EPR oxygen imaging) was greatest in Hs766t and MiaPaCa models, possibly due to a higher mitochondrial reserve capacity. Changes in oxygen consumption and in vivo hypoxic status to pyruvate were limited in the SU.86.86 model. Combination therapy of pyruvate plus TH-302 in vivo significantly decreased tumor growth and increased survival in the MiaPaCa model and improved survival in Hs766t tumors. Using metabolic profiling, functional imaging, and computational modeling, we show improved TH-302 activity by transiently increasing tumor hypoxia metabolically with exogenous pyruvate. Additionally, this work identified a set of biomarkers that may be used clinically to predict which tumors will be most responsive to

  8. PASSIVE CAVITATION DETECTION DURING PULSED HIFU EXPOSURES OF EX VIVO TISSUES AND IN VIVO MOUSE PANCREATIC TUMORS

    PubMed Central

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-01-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rarefactional focal pressures (1–12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms, pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KPC mice and closely recapitulate human disease in their morphology. The cavitation threshold, defined at 50 % cavitation probability, was found to vary broadly among the investigated tissues (within 2.5–10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but ex vivo it decreased rapidly and stopped over the first few pulses

  9. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.

    PubMed

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-07-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped

  10. In vivo SPECT imaging with 111In-DOTA-c(RGDfK) to detect early pancreatic cancer in a hamster pancreatic carcinogenesis model.

    PubMed

    Yoshimoto, Mitsuyoshi; Hayakawa, Takuya; Mutoh, Michihiro; Imai, Toshio; Tsuda, Keisuke; Kimura, Sadaaki; Umeda, Izumi O; Fujii, Hirofumi; Wakabayashi, Keiji

    2012-05-01

    Early detection of pancreatic cancer is key to overcoming its poor prognosis. α(v)β(3)-integrin is often overexpressed in pancreatic tumor cells, whereas it is scarcely expressed in normal pancreatic cells. In this study, we investigated the usefulness of SPECT imaging with (111)In-1,4,7,10-tetraazacylododecane-N,N',N″,N'''-tetraacetic acid-cyclo-(Arg-Gly-Asp-d-Phe-Lys) [(111)In-DOTA-c(RGDfK)], an imaging probe of α(v)β(3)-integrin, for the early detection of pancreatic cancer in a hamster pancreatic carcinogenesis model. Hamsters were subcutaneously injected with the pancreatic duct carcinogen N-nitrosobis(2-oxopropyl)amine to induce pancreatic cancer. N-nitrosobis(2-oxopropyl)amine-treated hamsters underwent in vivo SPECT with (111)In-DOTA-c(RGDfK). After imaging, the tumor-to-normal pancreatic tissue radioactivity ratios in excised pancreatic samples were measured with autoradiography (ARG) and compared with the immunopathologic findings for α(v)β(3)-integrin. In a mouse model in which inflammation was induced with turpentine, the uptake of (111)In-DOTA-c(RGDfK) in inflammatory regions was evaluated with ARG and compared with that of (18)F-FDG. (111)In-DOTA-c(RGDfK) was clearly visualized in pancreatic cancer lesions as small as 3 mm in diameter. ARG analysis revealed high tumor-to-normal pancreatic tissue radioactivity ratios (4.6 ± 1.0 [mean ± SD] in adenocarcinoma and 3.3 ± 1.4 in atypical hyperplasia). The uptake of (111)In-DOTA-c(RGDfK) strongly correlated with α(v)β(3)-integrin expression. In the inflammatory model, inflammation-to-muscle ratios for (18)F-FDG and (111)In-DOTA-c(RGDfK) were 8.37 ± 4.37 and 1.98 ± 0.60, respectively. These results imply that (111)In-DOTA-c(RGDfK) has a lower rate of false-positive tumor detection than (18)F-FDG. Our findings suggest that SPECT with (111)In-DOTA-c(RGDfK) has great potential for the early and accurate detection of pancreatic cancer.

  11. EFFECTS OF TUMORS ON INHALED PHARMACOLOGIC DRUGS: II. PARTICLE MOTION

    EPA Science Inventory

    ABSTRACT

    Computer simulations were conducted to describe drug particle motion in human lung bifurcations with tumors. The computations used FIDAP with a Cray T90 supercomputer. The objective was to better understand particle behavior as affected by particle characteristics...

  12. Pancreatic endocrine tumor with neoplastic venous thrombus and bilobar liver metastasis. A case report.

    PubMed

    Barbier, L; Turrini, O; Sarran, A; Delpero, J-R

    2010-02-01

    We report the case of an asymptomatic 56-year-old woman with a metastatic pancreatic endocrine tumor, fortuitously discovered by abdominal imaging. A CT-scan showed a large mass in the pancreatic tail invading the spleen and stomach; in addition, there was neoplastic thrombus within the spleno-mesentericoportal venous confluence and bilobar liver metastases. Surgical resection was performed in two stages. The first procedure was an extended left pancreatectomy with venous thrombectomy and "clearance" of the left hepatic lobe. During the interval, embolization of the right portal vein was carried out. Right hepatectomy and radiofrequency destruction of residual metastases was then performed. On the basis of completeness of the resection and the histopathological data, the patient did not undergo any adjuvant therapy, in accordance with French guidelines. At 1 year of follow-up, there was no evidence of recurrence. (c) 2010 Elsevier Masson SAS. All rights reserved.

  13. Quantifying Rigid and Nonrigid Motion of Liver Tumors During Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qianyi, E-mail: xuqianyi@gmail.com; Hanna, George; Grimm, Jimm

    2014-09-01

    Purpose: To quantify rigid and nonrigid motion of liver tumors using reconstructed 3-dimensional (3D) fiducials from stereo imaging during CyberKnife-based stereotactic body radiation therapy (SBRT). Methods and Materials: Twenty-three liver patients treated with 3 fractions of SBRT were used in this study. After 2 orthogonal kilovoltage images were taken during treatment, the 3D locations of the fiducials were generated by the CyberKnife system and validated using geometric derivations. A total of 4824 pairs of kilovoltage images from start to end of treatment were analyzed. For rigid motion, the rotational angles and translational shifts were reported by aligning 3D fiducial groupsmore » from different image pairs, using least-squares fitting. For nonrigid motion, we quantified interfractional tumor volume variations by using the proportional volume derived from the fiducials, which correlates to the sum of interfiducial distances. The individual fiducial displacements were also reported (1) after rigid corrections and (2) without angle corrections. Results: The proportional volume derived by the fiducials demonstrated a volume-increasing trend in the second (101.9% ± 3.6%) and third (101.0 ± 5.9%) fractions among most patients, possibly due to radiation-induced edema. For all patients, the translational shifts in left-right, anteroposterior, and superoinferior directions were 2.1 ± 2.3 mm, 2.9 ± 2.8 mm, and 6.4 ± 5.5 mm, respectively. The greatest translational shifts occurred in the superoinferior direction, likely due to respiratory motion from the diaphragm. The rotational angles in roll, pitch, and yaw were 1.2° ± 1.8°, 1.8° ± 2.4°, and 1.7° ± 2.1°, respectively. The 3D individual fiducial displacements with rigid corrections were 0.2 ± 0.2 mm and increased to 0.5 ± 0.4 mm without rotational corrections. Conclusions: Accurate 3D locations of internal fiducials can be reconstructed from stereo imaging during treatment. As

  14. Verteporfin heterogeneity in pancreatic adenocarcinoma and the relationship to tumor vasculature and collagen distribution

    NASA Astrophysics Data System (ADS)

    Vincent, Phuong; Xie, Rui; Nieskoski, Michael; Marra, Kayla; Gunn, Jason; Pogue, Brian W.

    2018-02-01

    Photodynamic therapy (PDT) has emerged as one promising treatment regimen for several cancer types, with a clinical trial ongoing in pancreatic adenocarcinoma (PDAC). PDT treatment efficacy mainly depends on the combination of light delivery, oxygen availability and photosensitizer uptake, each of which can be limited in pancreas cancer. Therefore, increasing drug uptake in the tumor would make an important impact on treatment outcome. This study was conducted to focus on the issue with drug resistance by examining the relationship between photosensitizer verteporfin and tissue parameters such as collagen and vascular patency. Verteporfin uptake in the tumors was assessed by fluorescence imaging while collagen content and patent vessel area fraction were quantified by evaluating Masson's Trichrome and Lectin pathology staining images. Two tumor cell lines - AsPC-1 and BxPC-3 - were modeled in nude mice to investigate the impact of different tumor microenvironments. Experimental results highlighted the correlation between vascular patency and verteporfin uptake. Collagen content was found to be an independent factor within each tumor line, but a comparison across two tumor types suggested that collagen area of greater than 10% of tumor cross section reflected a lower verteporfin uptake. It was observed that whole-slice tumor quantifications have showcased some interesting trends which could be greatly enhanced and further supported by regional analysis.

  15. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    PubMed

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  16. Various diffusion magnetic resonance imaging techniques for pancreatic cancer

    PubMed Central

    Tang, Meng-Yue; Zhang, Xiao-Ming; Chen, Tian-Wu; Huang, Xiao-Hua

    2015-01-01

    Pancreatic cancer is one of the most common malignant tumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging (MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging (DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed. PMID:26753059

  17. Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon

    2018-01-01

    Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient’s chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.

  18. A state-based probabilistic model for tumor respiratory motion prediction

    NASA Astrophysics Data System (ADS)

    Kalet, Alan; Sandison, George; Wu, Huanmei; Schmitz, Ruth

    2010-12-01

    This work proposes a new probabilistic mathematical model for predicting tumor motion and position based on a finite state representation using the natural breathing states of exhale, inhale and end of exhale. Tumor motion was broken down into linear breathing states and sequences of states. Breathing state sequences and the observables representing those sequences were analyzed using a hidden Markov model (HMM) to predict the future sequences and new observables. Velocities and other parameters were clustered using a k-means clustering algorithm to associate each state with a set of observables such that a prediction of state also enables a prediction of tumor velocity. A time average model with predictions based on average past state lengths was also computed. State sequences which are known a priori to fit the data were fed into the HMM algorithm to set a theoretical limit of the predictive power of the model. The effectiveness of the presented probabilistic model has been evaluated for gated radiation therapy based on previously tracked tumor motion in four lung cancer patients. Positional prediction accuracy is compared with actual position in terms of the overall RMS errors. Various system delays, ranging from 33 to 1000 ms, were tested. Previous studies have shown duty cycles for latencies of 33 and 200 ms at around 90% and 80%, respectively, for linear, no prediction, Kalman filter and ANN methods as averaged over multiple patients. At 1000 ms, the previously reported duty cycles range from approximately 62% (ANN) down to 34% (no prediction). Average duty cycle for the HMM method was found to be 100% and 91 ± 3% for 33 and 200 ms latency and around 40% for 1000 ms latency in three out of four breathing motion traces. RMS errors were found to be lower than linear and no prediction methods at latencies of 1000 ms. The results show that for system latencies longer than 400 ms, the time average HMM prediction outperforms linear, no prediction, and the more

  19. Pancreatic perivascular epithelioid cell tumor: A case report with clinicopathological features and a literature review.

    PubMed

    Jiang, Hui; Ta, Na; Huang, Xiao-Yi; Zhang, Ming-Hua; Xu, Jing-Jing; Zheng, Kai-Lian; Jin, Gang; Zheng, Jian-Ming

    2016-04-07

    Perivascular epithelioid cell tumor (PEComa) of the pancreas is an unusual tumor deriving from mesenchyma. This paper described a case of pancreatic PEComa, which was initially suspected as neuroendocrine carcinoma by biopsy, and therefore surgical treatment was recommended due to undetermined diagnosis. Examination of the surgical specimen under a microscope showed that the tumor cell's morphology was epithelioid or spindle-shaped, and ranged in a nested pattern. Additionally, these cells had a large extent of acidophilic cytoplasm, no mitotic figures, and expressed HMB-45, melan-p, and smooth muscle actin immunohistochemically. Pathological examination indicated that PEComa originated from the pancreas, but symptoms related to tuberous sclerosis were absent. Since PEComa is extremely rare in the pancreas, it is likely to be ignored in differential diagnosis. In conclusion, our article highlighted the clinicopathological features of PEComa, and we conducted a literature review focusing on PEComa so as to deepen the understanding of this tumor type.

  20. Pancreatic perivascular epithelioid cell tumor: A case report with clinicopathological features and a literature review

    PubMed Central

    Jiang, Hui; Ta, Na; Huang, Xiao-Yi; Zhang, Ming-Hua; Xu, Jing-Jing; Zheng, Kai-Lian; Jin, Gang; Zheng, Jian-Ming

    2016-01-01

    Perivascular epithelioid cell tumor (PEComa) of the pancreas is an unusual tumor deriving from mesenchyma. This paper described a case of pancreatic PEComa, which was initially suspected as neuroendocrine carcinoma by biopsy, and therefore surgical treatment was recommended due to undetermined diagnosis. Examination of the surgical specimen under a microscope showed that the tumor cell’s morphology was epithelioid or spindle-shaped, and ranged in a nested pattern. Additionally, these cells had a large extent of acidophilic cytoplasm, no mitotic figures, and expressed HMB-45, melan-p, and smooth muscle actin immunohistochemically. Pathological examination indicated that PEComa originated from the pancreas, but symptoms related to tuberous sclerosis were absent. Since PEComa is extremely rare in the pancreas, it is likely to be ignored in differential diagnosis. In conclusion, our article highlighted the clinicopathological features of PEComa, and we conducted a literature review focusing on PEComa so as to deepen the understanding of this tumor type. PMID:27053862

  1. Strategies for early detection of resectable pancreatic cancer

    PubMed Central

    Okano, Keiichi; Suzuki, Yasuyuki

    2014-01-01

    Pancreatic cancer is difficult to diagnose at an early stage and generally has a poor prognosis. Surgical resection is the only potentially curative treatment for pancreatic carcinoma. To improve the prognosis of this disease, it is essential to detect tumors at early stages, when they are resectable. The optimal approach to screening for early pancreatic neoplasia has not been established. The International Cancer of the Pancreas Screening Consortium has recently finalized several recommendations regarding the management of patients who are at an increased risk of familial pancreatic cancer. In addition, there have been notable advances in research on serum markers, tissue markers, gene signatures, and genomic targets of pancreatic cancer. To date, however, no biomarkers have been established in the clinical setting. Advancements in imaging modalities touch all aspects of the clinical management of pancreatic diseases, including the early detection of pancreatic masses, their characterization, and evaluations of tumor resectability. This article reviews strategies for screening high-risk groups, biomarkers, and current advances in imaging modalities for the early detection of resectable pancreatic cancer. PMID:25170207

  2. Tumor Size on Abdominal MRI Versus Pathologic Specimen in Resected Pancreatic Adenocarcinoma: Implications for Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, William A., E-mail: whall4@emory.edu; Winship Cancer Institute, Emory University, Atlanta, Georgia; Mikell, John L.

    2013-05-01

    Purpose: We assessed the accuracy of abdominal magnetic resonance imaging (MRI) for determining tumor size by comparing the preoperative contrast-enhanced T1-weighted gradient echo (3-dimensional [3D] volumetric interpolated breath-hold [VIBE]) MRI tumor size with pathologic specimen size. Methods and Materials: The records of 92 patients who had both preoperative contrast-enhanced 3D VIBE MRI images and detailed pathologic specimen measurements were available for review. Primary tumor size from the MRI was independently measured by a single diagnostic radiologist (P.M.) who was blinded to the pathology reports. Pathologic tumor measurements from gross specimens were obtained from the pathology reports. The maximum dimensions ofmore » tumor measured in any plane on the MRI and the gross specimen were compared. The median difference between the pathology sample and the MRI measurements was calculated. A paired t test was conducted to test for differences between the MRI and pathology measurements. The Pearson correlation coefficient was used to measure the association of disparity between the MRI and pathology sizes with the pathology size. Disparities relative to pathology size were also examined and tested for significance using a 1-sample t test. Results: The median patient age was 64.5 years. The primary site was pancreatic head in 81 patients, body in 4, and tail in 7. Three patients were American Joint Commission on Cancer stage IA, 7 stage IB, 21 stage IIA, 58 stage IIB, and 3 stage III. The 3D VIBE MRI underestimated tumor size by a median difference of 4 mm (range, −34-22 mm). The median largest tumor dimensions on MRI and pathology specimen were 2.65 cm (range, 1.5-9.5 cm) and 3.2 cm (range, 1.3-10 cm), respectively. Conclusions: Contrast-enhanced 3D VIBE MRI underestimates tumor size by 4 mm when compared with pathologic specimen. Advanced abdominal MRI sequences warrant further investigation for radiation therapy planning in pancreatic adenocarcinoma

  3. Penfluridol induces endoplasmic reticulum stress leading to autophagy in pancreatic cancer.

    PubMed

    Ranjan, Alok; German, Nadezhda; Mikelis, Constantinos; Srivenugopal, Kalkunte; Srivastava, Sanjay K

    2017-06-01

    Pancreatic cancer is one of the most aggressive and difficult to treat cancers. Experimental and clinical evidence suggests that high basal state autophagy in pancreatic tumors could induce resistance to chemotherapy. Recently, we have demonstrated that penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis both in vitro and in vivo; however, the mechanism of autophagy induction by penfluridol was not clear. Several studies have established that endoplasmic reticulum stress could lead to autophagy and inhibit tumor progression. In this study, we demonstrated that penfluridol induced endoplasmic reticulum stress in BxPC-3, AsPC-1, and Panc-1 pancreatic cancer cell lines as indicated by upregulation of endoplasmic reticulum stress markers such as binding protein (BIP), C/EBP homologous protein (CHOP) and inositol requiring 1α (IRE1α) after treatment with penfluridol in a concentration-dependent manner. Inhibiting endoplasmic reticulum stress by pretreatment with pharmacological inhibitors such as sodium phenylbutyrate and mithramycin or by silencing CHOP using CHOP small interfering RNA, blocked penfluridol-induced autophagy. These results clearly indicate that penfluridol-induced endoplasmic reticulum stress lead to autophagy in our model. Western blot analysis of subcutaneously implanted AsPC-1 and BxPC-3 tumors as well as orthotopically implanted Panc-1 tumors demonstrated upregulation of BIP, CHOP, and IRE1α expression in the tumor lysates from penfluridol-treated mice as compared to tumors from control mice. Altogether, our study establishes that penfluridol-induced endoplasmic reticulum stress leads to autophagy resulting in reduced pancreatic tumor growth. Our study opens a new therapeutic target for advanced chemotherapies against pancreatic cancer.

  4. Treatment Option Overview (Pancreatic Neuroendocrine Tumors / Islet Cell Tumors)

    MedlinePlus

    ... Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All Cancer ... also called nuclear magnetic resonance imaging (NMRI). Somatostatin receptor scintigraphy : A type of radionuclide scan that may ...

  5. Harmonic Motion Imaging (HMI) for Tumor Imaging and Treatment Monitoring.

    PubMed

    Konofagou, Elisa E; Maleke, Caroline; Vappou, Jonathan

    2012-01-01

    Palpation is an established screening procedure for the detection of several superficial cancers including breast, thyroid, prostate, and liver tumors through both self and clinical examinations. This is because solid masses typically have distinct stiffnesses compared to the surrounding normal tissue. In this paper, the application of Harmonic Motion Imaging (HMI) for tumor detection based on its stiffness as well as its relevance in thermal treatment is reviewed. HMI uses a focused ultrasound (FUS) beam to generate an oscillatory acoustic radiation force for an internal, non-contact palpation to internally estimate relative tissue hardness. HMI studies have dealt with the measurement of the tissue dynamic motion in response to an oscillatory acoustic force at the same frequency, and have been shown feasible in simulations, phantoms, ex vivo human and bovine tissues as well as animals in vivo. Using an FUS beam, HMI can also be used in an ideal integration setting with thermal ablation using high-intensity focused ultrasound (HIFU), which also leads to an alteration in the tumor stiffness. In this paper, a short review of HMI is provided that encompasses the findings in all the aforementioned areas. The findings presented herein demonstrate that the HMI displacement can accurately depict the underlying tissue stiffness, and the HMI image of the relative stiffness could accurately detect and characterize the tumor or thermal lesion based on its distinct properties. HMI may thus constitute a non-ionizing, cost-efficient and reliable complementary method for noninvasive tumor detection, localization, diagnosis and treatment monitoring.

  6. Harmonic Motion Imaging (HMI) for Tumor Imaging and Treatment Monitoring

    PubMed Central

    Maleke, Caroline; Vappou, Jonathan

    2014-01-01

    Palpation is an established screening procedure for the detection of several superficial cancers including breast, thyroid, prostate, and liver tumors through both self and clinical examinations. This is because solid masses typically have distinct stiffnesses compared to the surrounding normal tissue. In this paper, the application of Harmonic Motion Imaging (HMI) for tumor detection based on its stiffness as well as its relevance in thermal treatment is reviewed. HMI uses a focused ultrasound (FUS) beam to generate an oscillatory acoustic radiation force for an internal, non-contact palpation to internally estimate relative tissue hardness. HMI studies have dealt with the measurement of the tissue dynamic motion in response to an oscillatory acoustic force at the same frequency, and have been shown feasible in simulations, phantoms, ex vivo human and bovine tissues as well as animals in vivo. Using an FUS beam, HMI can also be used in an ideal integration setting with thermal ablation using high-intensity focused ultrasound (HIFU), which also leads to an alteration in the tumor stiffness. In this paper, a short review of HMI is provided that encompasses the findings in all the aforementioned areas. The findings presented herein demonstrate that the HMI displacement can accurately depict the underlying tissue stiffness, and the HMI image of the relative stiffness could accurately detect and characterize the tumor or thermal lesion based on its distinct properties. HMI may thus constitute a non-ionizing, cost-efficient and reliable complementary method for noninvasive tumor detection, localization, diagnosis and treatment monitoring. PMID:25364321

  7. Pleiotrophin promotes perineural invasion in pancreatic cancer.

    PubMed

    Yao, Jun; Hu, Xiu-Feng; Feng, Xiao-Shan; Gao, She-Gan

    2013-10-21

    Perineural invasion (PNI) in pancreatic cancer is an important cause of local recurrence, but little is known about its mechanism. Pleiotrophin (PTN) is an important neurotrophic factor. It is of interest that our recent experimental data showed its involvement in PNI of pancreatic cancer. PTN strongly presents in the cytoplasm of pancreatic cancer cells, and high expression of PTN and its receptor may contribute to the high PNI of pancreatic cancer. Correspondingly, PNI is prone to happen in PTN-positive tumors. We thus hypothesize that, as a neurite growth-promoting factor, PTN may promote PNI in pancreatic cancer. PTN is released at the time of tumor cell necrosis, and binds with its high-affinity receptor, N-syndecan on pancreatic nerves, to promote neural growth in pancreatic cancer. Furthermore, neural destruction leads to a distorted neural homeostasis. Neurons and Schwann cells produce more N-syndecan in an effort to repair the pancreatic nerves. However, the abundance of N-syndecan attracts further PTN-positive cancer cells to the site of injury, creating a vicious cycle. Ultimately, increased PTN and N-syndecan levels, due to the continuous nerve injury, may promote cancer invasion and propagation along the neural structures. Therefore, it is meaningful to discuss the relationship between PTN/N-syndecan signaling and PNI in pancreatic cancer, which may lead to a better understanding of the mechanism of PNI in pancreatic cancer.

  8. Pleiotrophin promotes perineural invasion in pancreatic cancer

    PubMed Central

    Yao, Jun; Hu, Xiu-Feng; Feng, Xiao-Shan; Gao, She-Gan

    2013-01-01

    Perineural invasion (PNI) in pancreatic cancer is an important cause of local recurrence, but little is known about its mechanism. Pleiotrophin (PTN) is an important neurotrophic factor. It is of interest that our recent experimental data showed its involvement in PNI of pancreatic cancer. PTN strongly presents in the cytoplasm of pancreatic cancer cells, and high expression of PTN and its receptor may contribute to the high PNI of pancreatic cancer. Correspondingly, PNI is prone to happen in PTN-positive tumors. We thus hypothesize that, as a neurite growth-promoting factor, PTN may promote PNI in pancreatic cancer. PTN is released at the time of tumor cell necrosis, and binds with its high-affinity receptor, N-syndecan on pancreatic nerves, to promote neural growth in pancreatic cancer. Furthermore, neural destruction leads to a distorted neural homeostasis. Neurons and Schwann cells produce more N-syndecan in an effort to repair the pancreatic nerves. However, the abundance of N-syndecan attracts further PTN-positive cancer cells to the site of injury, creating a vicious cycle. Ultimately, increased PTN and N-syndecan levels, due to the continuous nerve injury, may promote cancer invasion and propagation along the neural structures. Therefore, it is meaningful to discuss the relationship between PTN/N-syndecan signaling and PNI in pancreatic cancer, which may lead to a better understanding of the mechanism of PNI in pancreatic cancer. PMID:24151381

  9. Expression of HOXB2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia.

    PubMed

    Segara, Davendra; Biankin, Andrew V; Kench, James G; Langusch, Catherine C; Dawson, Amanda C; Skalicky, David A; Gotley, David C; Coleman, Maxwell J; Sutherland, Robert L; Henshall, Susan M

    2005-05-01

    Despite significant progress in understanding the molecular pathology of pancreatic cancer and its precursor lesion: pancreatic intraepithelial neoplasia (PanIN), there remain no molecules with proven clinical utility as prognostic or therapeutic markers. Here, we used oligonucleotide microarrays to interrogate mRNA expression of pancreatic cancer tissue and normal pancreas to identify novel molecular pathways dysregulated in the development and progression of pancreatic cancer. RNA was hybridized to Affymetrix Genechip HG-U133 oligonucleotide microarrays. A relational database integrating data from publicly available resources was created to identify candidate genes potentially relevant to pancreatic cancer. The protein expression of one candidate, homeobox B2 (HOXB2), in PanIN and pancreatic cancer was assessed using immunohistochemistry. We identified aberrant expression of several components of the retinoic acid (RA) signaling pathway (RARalpha, MUC4, Id-1, MMP9, uPAR, HB-EGF, HOXB6, and HOXB2), many of which are known to be aberrantly expressed in pancreatic cancer and PanIN. HOXB2, a downstream target of RA, was up-regulated 6.7-fold in pancreatic cancer compared with normal pancreas. Immunohistochemistry revealed ectopic expression of HOXB2 in 15% of early PanIN lesions and 48 of 128 (38%) pancreatic cancer specimens. Expression of HOXB2 was associated with nonresectable tumors and was an independent predictor of poor survival in resected tumors. We identified aberrant expression of RA signaling components in pancreatic cancer, including HOXB2, which was expressed in a proportion of PanIN lesions. Ectopic expression of HOXB2 was associated with a poor prognosis for all patients with pancreatic cancer and was an independent predictor of survival in patients who underwent resection.

  10. Analysis of MUC4 expression in human pancreatic cancer xenografts in immunodeficient mice.

    PubMed

    Ansari, Daniel; Bauden, Monika P; Sasor, Agata; Gundewar, Chinmay; Andersson, Roland

    2014-08-01

    Mucin 4 (MUC4) is a cell surface glycoprotein that is overexpressed in most pancreatic tumors. The aim of the present study was to characterize MUC4 expression in experimental pancreatic cancer in order to clarify the correlation between MUC4 and pancreatic cancer histology in vivo. Pancreatic xenograft tumors were generated in immunodeficient mice (n=15) by subcutaneous injection of MUC4(+) human pancreatic cancer cell lines Capan-1, HPAF-II or CD18/HPAF. MUC4 immunoreactivity was compared between the cancer models. Alpha-smooth muscle actin (α-SMA) was used to identify cancer-associated fibroblasts and the amount of collagen fibers was quantified with sirius red. Tumor incidence was 100%. Tumor size showed no difference across groups (p=0.796). The median MUC4 count was highest in Capan-1 tumors (p=0.002). α-SMA and collagen extent were also highest in Capan-1 tumors (p=0.018). The Capan-1 xenograft model could serve as a valuable resource to test new therapeutic strategies targeting MUC4 in pancreatic cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Outcomes analysis of laparoscopic resection of pancreatic neoplasms.

    PubMed

    Pierce, R A; Spitler, J A; Hawkins, W G; Strasberg, S M; Linehan, D C; Halpin, V J; Eagon, J C; Brunt, L M; Frisella, M M; Matthews, B D

    2007-04-01

    Experience with laparoscopic resection of pancreatic neoplasms remains limited. The purpose of this study is to critically analyze the indications for and outcomes after laparoscopic resection of pancreatic neoplasms. The medical records of all patients undergoing laparoscopic resection of pancreatic neoplasms from July 2000 to February 2006 were reviewed. Data are expressed as mean +/- standard deviation. Laparoscopic pancreatic resection was performed in 22 patients (M:F, 8:14) with a mean age of 56.3 +/- 15.1 years and mean body mass index (BMI) of 26.3 +/- 4.5 kg/m2. Nine patients had undergone previous intra-abdominal surgery. Indications for pancreatic resection were cyst (1), glucagonoma (1), gastrinoma (2), insulinoma (3), metastatic tumor (2), IPMT (4), nonfunctioning neuroendocrine tumor (3), and mucinous/serous cystadenoma (6). Mean tumor size was 2.4 +/- 1.6 cm. Laparoscopic distal pancreatectomy was attempted in 18 patients and completed in 17, and enucleation was performed in 4 patients. Laparoscopic ultrasound (n = 10) and a hand-assisted technique (n = 4) were utilized selectively. Mean operative time was 236 +/- 60 min and mean blood loss was 244 +/- 516 ml. There was one conversion to an open procedure because of bleeding from the splenic vein. The mean postoperative LOS was 4.5 +/- 2.0 days. Seven patients experienced a total of ten postoperative complications, including a urinary tract infection (UTI) (1), lower-extremity deep venous thrombosis (DVT) and pulmonary embolus (1), infected peripancreatic fluid collection (1), pancreatic pseudocyst (1), and pancreatic fistula (6). Five pancreatic fistulas were managed by percutaneous drainage. The reoperation rate was 4.5% and the overall pancreatic-related complication rate was 36.4%. One patient developed pancreatitis and a pseudocyst 5 months postoperatively, which was managed successfully with a pancreatic duct stent. There was no 30-day mortality. Laparoscopic pancreatic resection is safe and

  12. P-HPB-21: Isolated pancreatic tuberculosis mimicking inoperable pancreatic cancer

    PubMed Central

    Sahu, Manoj Kumar; Singh, Ayashkanta; Behera, Debasmita; Behera, Manas; Narayan, Jimmy

    2017-01-01

    Background: Pancreatic tuberculosis is an uncommon disease, presenting as hypoechoic mass on imaging mimicking malignancy. Consequently, it represents a diagnostic challenge necessitating a tissue diagnosis. Case Report: A 75-year-old female presented with progressive jaundice and weight loss; imaging with computed tomography (CT) showed a large (5.8 cm × 4.6 cm) pancreatic head mass with encasement of portal and superior mesenteric veins, peripancreatic nodes, atrophic pancreatic parenchyma, and dilated main pancreatic duct. Cancer antigen 19-9 was moderately elevated. With a diagnosis of inoperable pancreatic malignancy, she was planned for tissue diagnosis and palliative chemotherapy. Endoscopic ultrasonography (EUS) showed a heterogeneous mass with vascular invasion as in the CT. Fine needle aspiration (FNA) and biliary decompression with a plastic stent performed in the same sitting. Cytology demonstrated granuloma with caseous necrosis and presence of acid-fast bacilli. Antituberculosis treatment was started, and repeat CT after 6 months showed resolution of the mass. Discussion and Conclusion: A diagnosis of isolated pancreatic tuberculosis is rare and is difficult by clinical presentation alone; in India, it should be considered as a differential diagnosis of a pancreatic tumor. Benign lesions can also present with vascular invasions mimicking inoperable malignancy. EUS FNA is a very useful tool in accurate diagnosis of pancreatic head mass avoiding unnecessary surgeries.

  13. Differential Motion Between Mediastinal Lymph Nodes and Primary Tumor in Radically Irradiated Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaake, Eva E.; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam; Rossi, Maddalena M.G.

    2014-11-15

    Purpose/Objective: In patients with locally advanced lung cancer, planning target volume margins for mediastinal lymph nodes and tumor after a correction protocol based on bony anatomy registration typically range from 1 to 1.5 cm. Detailed information about lymph node motion variability and differential motion with the primary tumor, however, is lacking from large series. In this study, lymph node and tumor position variability were analyzed in detail and correlated to the main carina to evaluate possible margin reduction. Methods and Materials: Small gold fiducial markers (0.35 × 5 mm) were placed in the mediastinal lymph nodes of 51 patients with non-small cell lung cancermore » during routine diagnostic esophageal or bronchial endoscopic ultrasonography. Four-dimensional (4D) planning computed tomographic (CT) and daily 4D cone beam (CB) CT scans were acquired before and during radical radiation therapy (66 Gy in 24 fractions). Each CBCT was registered in 3-dimensions (bony anatomy) and 4D (tumor, marker, and carina) to the planning CT scan. Subsequently, systematic and random residual misalignments of the time-averaged lymph node and tumor position relative to the bony anatomy and carina were determined. Additionally, tumor and lymph node respiratory amplitude variability was quantified. Finally, required margins were quantified by use of a recipe for dual targets. Results: Relative to the bony anatomy, systematic and random errors ranged from 0.16 to 0.32 cm for the markers and from 0.15 to 0.33 cm for the tumor, but despite similar ranges there was limited correlation (0.17-0.71) owing to differential motion. A large variability in lymph node amplitude between patients was observed, with an average motion of 0.56 cm in the cranial-caudal direction. Margins could be reduced by 10% (left-right), 27% (cranial-caudal), and 10% (anteroposterior) for the lymph nodes and −2%, 15%, and 7% for the tumor if an online carina registration protocol replaced

  14. Dendritic Cells Promote Pancreatic Viability in Mice with Acute Pancreatitis

    PubMed Central

    Bedrosian, Andrea S.; Nguyen, Andrew H.; Hackman, Michael; Connolly, Michael K.; Malhotra, Ashim; Ibrahim, Junaid; Cieza-Rubio, Napoleon E.; Henning, Justin R.; Barilla, Rocky; Rehman, Adeel; Pachter, H. Leon; Medina-Zea, Marco V.; Cohen, Steven M.; Frey, Alan B.; Acehan, Devrim; Miller, George

    2011-01-01

    Background & Aims Acute pancreatitis increases morbidity and mortality from organ necrosis by mechanisms that are incompletely understood. Dendritic cells (DCs) can promote or suppress inflammation, depending on their subtype and context. We investigated the roles of DC in development of acute pancreatitis. Methods Acute pancreatitis was induced in CD11c.DTR mice using caerulein or L-arginine; DCs were depleted by administration of diphtheria toxin. Survival was analyzed using Kaplan-Meier analysis. Results Numbers of MHC II+CD11c+DC increased 100-fold in pancreas of mice with acute pancreatitis, to account for nearly 15% of intra-pancreatic leukocytes. Intra-pancreatic DC acquired an immune phenotype in mice with acute pancreatitis; they expressed higher levels of MHC II and CD86 and increased production of interleukin-6, membrane cofactor protein (MCP)-1, and tumor necrosis factor (TNF)-α. However, rather than inducing an organ-destructive inflammatory process, DC were required for pancreatic viability; the exocrine pancreas died in mice that were depleted of DC and challenged with caerulein or L-arginine. All mice with pancreatitis that were depleted of DC died from acinar cell death within 4 days. Depletion of DC from mice with pancreatitis resulted in neutrophil infiltration and increased levels of systemic markers of inflammation. However, the organ necrosis associated with depletion of DC did not require infiltrating neutrophils, activation of NF-κB, or signaling by mitogen-activated protein kinase or TNF-α. Conclusions DC are required for pancreatic viability in mice with acute pancreatitis and might protect organs against cell stress. PMID:21801698

  15. ATM-deficiency increases genomic instability and metastatic potential in a mouse model of pancreatic cancer.

    PubMed

    Drosos, Yiannis; Escobar, David; Chiang, Ming-Yi; Roys, Kathryn; Valentine, Virginia; Valentine, Marc B; Rehg, Jerold E; Sahai, Vaibhav; Begley, Lesa A; Ye, Jianming; Paul, Leena; McKinnon, Peter J; Sosa-Pineda, Beatriz

    2017-09-11

    Germline mutations in ATM (encoding the DNA-damage signaling kinase, ataxia-telangiectasia-mutated) increase Familial Pancreatic Cancer (FPC) susceptibility, and ATM somatic mutations have been identified in resected human pancreatic tumors. Here we investigated how Atm contributes to pancreatic cancer by deleting this gene in a murine model of the disease expressing oncogenic Kras (Kras G12D ). We show that partial or total ATM deficiency cooperates with Kras G12D to promote highly metastatic pancreatic cancer. We also reveal that ATM is activated in pancreatic precancerous lesions in the context of DNA damage and cell proliferation, and demonstrate that ATM deficiency leads to persistent DNA damage in both precancerous lesions and primary tumors. Using low passage cultures from primary tumors and liver metastases we show that ATM loss accelerates Kras-induced carcinogenesis without conferring a specific phenotype to pancreatic tumors or changing the status of the tumor suppressors p53, p16 Ink4a and p19 Arf . However, ATM deficiency markedly increases the proportion of chromosomal alterations in pancreatic primary tumors and liver metastases. More importantly, ATM deficiency also renders murine pancreatic tumors highly sensitive to radiation. These and other findings in our study conclusively establish that ATM activity poses a major barrier to oncogenic transformation in the pancreas via maintaining genomic stability.

  16. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jong-Kook; Henry, Jon C.; Jiang, Jinmai

    2011-03-25

    Research highlights: {yields} The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. {yields} miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. {yields} miR-132 and miR-212 expression is increased by a {beta}2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target themore » retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G{sub 2}/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the {beta}2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The {beta}2 adrenergic pathway may play an important role in this novel mechanism.« less

  17. Cystic pancreatic neoplasms evaluation by CT and magnetic resonance cholangiopancreatography.

    PubMed

    Sahani, Dushyant; Prasad, Srinivasa; Saini, Sanjay; Mueller, Peter

    2002-10-01

    CT provides limited assistance in the differentiation between serous and mucinous neoplasms. Because of the variability in the radiographic appearance of serous cystadenomas and overlap in CT characteristics with mucinous neoplasms, most serous neoplasms still require ancillary testing such as biopsy to reach a definitive diagnosis. MRCP is useful in differentiating benign and malignant mucinous tumors including IPMT of the pancreas. The presence of mural nodules is suggestive of malignancy; however, the absence of mural nodules does not indicate that the tumor is benign. A maximum main pancreatic duct diameter of greater than 15 mm and diffuse dilatation of the main pancreatic duct are suggestive of malignancy in main duct-type tumors. Among branch duct-type tumors, malignant tumors tend to be larger than benign tumors; however, this finding is variable. The presence of main pancreatic duct dilatation may be helpful in determining malignancy of branch duct-type tumors.

  18. Role of endoscopic ultrasound in the molecular diagnosis of pancreatic cancer

    PubMed Central

    Bournet, Barbara; Gayral, Marion; Torrisani, Jérôme; Selves, Janick; Cordelier, Pierre; Buscail, Louis

    2014-01-01

    Pancreatic ductal adenocarcinoma remains one of the most deadly types of tumor. Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is a safe, cost-effective, and accurate technique for evaluating and staging pancreatic tumors. However, EUS-FNA may be inconclusive or doubtful in up to 20% of cases. This review underlines the clinical interest of the molecular analysis of samples obtained by EUS-FNA in assessing diagnosis or prognosis of pancreatic cancer, especially in locally advanced tumors. On EUS-FNA materials DNA, mRNA and miRNA can be extracted, amplified, quantified and subjected to methylation assay. Kras mutation assay, improves diagnosis of pancreatic cancer. When facing to clinical and radiological presentations of pseudo-tumorous chronic pancreatitis, wild-type Kras is evocative of benignity. Conversely, in front of a pancreatic mass suspected of malignancy, a mutated Kras is highly evocative of pancreatic adenocarcinoma. This strategy can reduce false-negative diagnoses, avoids the delay of making decisions and reduces loss of surgical resectability. Similar approaches are conducted using analysis of miRNA expression as well as Mucin or markers of invasion (S100P, S100A6, PLAT or PLAU). Beyond the diagnosis approach, the prediction of response to treatment can be also investigated form biomarkers expression within EUS-FNA materials. PMID:25152579

  19. Silencing of ATF2 inhibits growth of pancreatic cancer cells and enhances sensitivity to chemotherapy.

    PubMed

    Li, Mu; Wu, Xingda; Liu, Ning; Li, Xiaoying; Meng, Fanbin; Song, Shaowei

    2017-06-01

    Pancreatic cancer is one of the leading causes of cancer-related death worldwide. Activating transcription factor 2 (ATF2) is a multifunctional transcription factor, and is implicated in tumor progress, yet its role in pancreatic cancer remains unclear. In the present study, the level of ATF2 in pancreatic cancer tissues and the adjacent non-tumorous tissues was detected by quantitative real-time PCR and Western blot. The roles of ATF2 in the proliferation, cell cycle, and apoptosis of pancreatic cancer cells were investigated through ATF2 silencing, and the effect of ATF2 shRNA on the sensitivity of pancreatic cancer cells to gemcitabine, an anti-tumor drug, was explored. The results of our study showed that the ATF2 level in the pancreatic cancer tissues was higher than that in the adjacent non-tumorous tissues. Silencing of ATF2 was found to inhibit proliferation, arrest cell cycle at G1 phase and induce apoptosis in pancreatic cancer cells. Moreover, ATF2 silencing enhanced gemcitabine-induced growth-inhibition and apoptosis-induction effects in pancreatic cancer cells. In summary, silencing of ATF2 inhibited the growth of pancreatic cancer cells and enhanced the anti-tumor effects of gemcitabine, suggesting that ATF2 plays a pro-survival role in pancreatic cancer. Our results also propose that a high level of ATF2 may serve as a potential biomarker of pancreatic cancer, and that ATF2 may become a potential target for anti-tumor therapy. © 2017 International Federation for Cell Biology.

  20. Role of Endogenous Cholecystokinin on Growth of Human Pancreatic Cancer

    PubMed Central

    Matters, Gail L.; McGovern, Christopher; Harms, John F.; Markovic, Kevin; Anson, Krystal; Jayakumar, Calpurnia; Martenis, Melissa; Awad, Christina; Smith, Jill P.

    2012-01-01

    Cholecystokinin (CCK) and gastrin stimulate growth of pancreatic cancer. Although down regulation of gastrin inhibits growth of pancreatic cancer, the contribution of endogenous CCK to tumor growth is unknown. The purpose of this study was to evaluate the role of endogenous CCK on autocrine growth of pancreatic cancer. Pancreatic cancer cell lines were analyzed for CCK mRNA and peptide expression by real time RT-PCR and radioimmunoassay, respectively. The effect of endogenous CCK on growth was evaluated by treating cancer cells with CCK neutralizing antibodies and by down regulating CCK mRNA by RNAi. Wild type pancreatic cancer cells expressed significantly lower CCK mRNA and peptide levels than gastrin. Neither treatment of pancreatic cancer cells with CCK antibodies nor the down regulation of CCK mRNA and peptide by shRNAs altered growth in vitro or in vivo. Conversely, when gastrin mRNA expression was down regulated, the same cells failed to produce tumors in spite of having sustained levels of endogenous CCK. Pancreatic cancer cells produce CCK and gastrin; however, the autocrine production of gastrin is more important for stimulating tumor growth. PMID:21186400

  1. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD.

    PubMed

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K; Miyazaki, Hideki; Michael, Iacovos P; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-02-16

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis.

  2. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD

    PubMed Central

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K.; Miyazaki, Hideki; Michael, Iacovos P.; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-01-01

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis. PMID:26831065

  3. Dosimetric evaluation of intrafractional tumor motion by means of a robot driven phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Anne; Wilbert, Juergen; Flentje, Michael

    2011-10-15

    Purpose: The aim of the work was to investigate the influence of intrafractional tumor motion to the accumulated (absorbed) dose. The accumulated dose was determined by means of calculations and measurements with a robot driven motion phantom. Methods: Different motion scenarios and compensation techniques were realized in a phantom study to investigate the influence of motion on image acquisition, dose calculation, and dose measurement. The influence of motion on the accumulated dose was calculated by employing two methods (a model based and a voxel based method). Results: Tumor motion resulted in a blurring of steep dose gradients and a reductionmore » of dose at the periphery of the target. A systematic variation of motion parameters allowed the determination of the main influence parameters on the accumulated dose. The key parameters with the greatest influence on dose were the mean amplitude and the pattern of motion. Investigations on necessary safety margins to compensate for dose reduction have shown that smaller safety margins are sufficient, if the developed concept with optimized margins (OPT concept) was used instead of the standard internal target volume (ITV) concept. Both calculation methods were a reasonable approximation of the measured dose with the voxel based method being in better agreement with the measurements. Conclusions: Further evaluation of available systems and algorithms for dose accumulation are needed to create guidelines for the verification of the accumulated dose.« less

  4. Glypican-1 is enriched in circulating-exosomes in pancreatic cancer and correlates with tumor burden.

    PubMed

    Frampton, Adam E; Prado, Mireia Mato; López-Jiménez, Elena; Fajardo-Puerta, Ana Belen; Jawad, Zaynab A R; Lawton, Phillip; Giovannetti, Elisa; Habib, Nagy A; Castellano, Leandro; Stebbing, Justin; Krell, Jonathan; Jiao, Long R

    2018-04-10

    Glypican-1 (GPC1) is expressed in pancreatic ductal adenocarcinoma (PDAC) cells and adjacent stromal fibroblasts. Recently, GPC1 circulating exosomes (crExos) have been shown to be able to detect early stages of PDAC. In this study, we investigated the usefulness of crExos GPC1 as a biomarker for PDAC. Plasma was obtained from patients with benign pancreatic disease ( n = 16) and PDAC ( n = 27) prior to pancreatectomy, and crExos were isolated by ultra-centrifugation. Protein was extracted from surgical specimens (adjacent normal pancreas, n = 13; and PDAC, n = 17). GPC1 levels were measured using enzyme-linked immunosorbent assay (ELISA). There was no significant difference in GPC1 levels between normal pancreas and PDAC tissues. This was also true when comparing matched pairs. However, GPC1 levels were enriched in PDAC crExos ( n = 11), compared to the source tumors ( n = 11; 97 ± 54 vs. 20.9 ± 12.3 pg/mL; P < 0.001). In addition, PDACs with high GPC1 expression tended to have crExos with higher GPC1 levels. Despite these findings, we were unable to distinguish PDAC from benign pancreatic disease using crExos GPC1 levels. Interestingly, we found that in matched pre and post-operative plasma samples there was a significant drop in crExos GPC1 levels after surgical resection for PDAC ( n = 11 vs. 11; 97 ± 54 vs. 77.8 ± 32.4 pg/mL; P = 0.0428). Furthermore, we found that patients with high crExos GPC1 levels have significantly larger PDACs (>4 cm; P = 0.012). High GPC1 crExos may be able to determine PDAC tumor size and disease burden. However, further efforts are needed to elucidate its role as a diagnostic and/or prognostic biomarker using larger cohorts of PDAC patients.

  5. Capture, Release and Culture of Circulating Tumor Cells from Pancreatic Cancer Patients using an Enhanced Mixing Chip

    PubMed Central

    Sheng, Weian; Ogunwobi, Olorunseun O.; Chen, Tao; Zhang, Jinling; George, Thomas J.; Liu, Chen; Fan, Z. Hugh

    2013-01-01

    Circulating tumor cells (CTCs) from peripheral blood hold important information for cancer diagnosis and disease monitoring. Analysis of this “liquid biopsy” holds the promise to usher in a new era of personalized therapeutic treatments and real-time monitoring for cancer patients. But the extreme rarity of CTCs in blood makes their isolation and characterization technologically challenging. This paper reports the development of a geometrically enhanced mixing (GEM) chip for high-efficiency and high-purity tumor cell capture. We also successfully demonstrated the release and culture of the captured tumor cells, as well as the isolation of CTCs from cancer patients. The high-performance microchip is based on geometrically optimized micromixer structures, which enhance the transverse flow and flow folding, maximizing the interaction between CTCs and antibody-coated surfaces. With the optimized channel geometry and flow rate, the capture efficiency reached >90% with a purity of >84% when capturing spiked tumor cells in buffer. The system was further validated by isolating a wide range of spiked tumor cells (50–50,000) in 1 mL of lysed blood and whole blood. With the combination of trypsinization and high flow rate washing, captured tumor cells were efficiently released. The released cells were viable and able to proliferate, and showed no difference compared with intact cells that were not subjected to the capture and release process. Furthermore, we applied the device for detecting CTCs from metastatic pancreatic cancer patients’ blood; and CTCs were found from 17 out of 18 samples (>94%). We also tested the potential utility of the device in monitoring the response to anti-cancer drug treatment in pancreatic cancer patients, and the CTC numbers correlated with the clinical computed tomograms (CT scans) of tumors. The presented technology shows great promise for accurate CTC enumeration, biological studies of CTCs and cancer metastasis, as well as for cancer

  6. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy.

    PubMed

    Arai, Tatsuya J; Nofiele, Joris; Madhuranthakam, Ananth J; Yuan, Qing; Pedrosa, Ivan; Chopra, Rajiv; Sawant, Amit

    2016-06-01

    Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of "true" information due to greater reliance on a priori information. Lung tumor motion trajectories in the superior-inferior direction, previously recorded from ten lung cancer patients, were replayed using a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3-0.4 mm, which was smaller than the

  7. Hypermutation In Pancreatic Cancer.

    PubMed

    Humphris, Jeremy L; Patch, Ann-Marie; Nones, Katia; Bailey, Peter J; Johns, Amber L; McKay, Skye; Chang, David K; Miller, David K; Pajic, Marina; Kassahn, Karin S; Quinn, Michael C J; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Stone, Andrew; Wilson, Peter J; Anderson, Matthew; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Mead, Ronald S; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Nagrial, Adnan M; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Rooman, Ilse; Giry-Laterriere, Marc; Samra, Jaswinder S; Kench, James G; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; McKay, Colin J; Carter, C Ross; Dickson, Euan J; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Morton, Jennifer P; Sansom, Owen J; Grützmann, Robert; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Rusev, Borislav; Corbo, Vincenzo; Salvia, Roberto; Cataldo, Ivana; Tortora, Giampaolo; Tempero, Margaret A; Hofmann, Oliver; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Gill, Anthony J; Pearson, John V; Grimmond, Sean M; Waddell, Nicola; Biankin, Andrew V

    2017-01-01

    Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function

    PubMed Central

    Osterman, Carlos J. Diaz; Lynch, James C.; Leaf, Patrick; Gonda, Amber; Ferguson Bennit, Heather R.; Griffiths, Duncan; Wall, Nathan R.

    2015-01-01

    Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin’s effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through

  9. Pancreatic cancer: Advances in treatment

    PubMed Central

    Mohammed, Somala; Van Buren II, George; Fisher, William E

    2014-01-01

    Pancreatic cancer is a leading cause of cancer mortality and the incidence of this disease is expected to continue increasing. While patients with pancreatic cancer have traditionally faced a dismal prognosis, over the past several years various advances in diagnosis and treatment have begun to positively impact this disease. Identification of effective combinations of existing chemotherapeutic agents, such as the FOLFIRINOX and the gemcitabine + nab-paclitaxel regimen, has improved survival for selected patients although concerns regarding their toxicity profiles remain. A better understanding of pancreatic carcinogenesis has identified several pre-malignant precursor lesions, such as pancreatic intraepithelial neoplasias, intraductal papillary mucinous neoplasms, and cystic neoplasms. Imaging technology has also evolved dramatically so as to allow early detection of these lesions and thereby facilitate earlier management. Surgery remains a cornerstone of treatment for patients with resectable pancreatic tumors, and advances in surgical technique have allowed patients to undergo resection with decreasing perioperative morbidity and mortality. Surgery has also become feasible in selected patients with borderline resectable tumors as a result of neoadjuvant therapy. Furthermore, pancreatectomy involving vascular reconstruction and pancreatectomy with minimally invasive techniques have demonstrated safety without significantly compromising oncologic outcomes. Lastly, a deeper understanding of molecular aberrations contributing to the development of pancreatic cancer shows promise for future development of more targeted and safe therapeutic agents. PMID:25071330

  10. Pancreatic cancer: advances in treatment.

    PubMed

    Mohammed, Somala; Van Buren, George; Fisher, William E

    2014-07-28

    Pancreatic cancer is a leading cause of cancer mortality and the incidence of this disease is expected to continue increasing. While patients with pancreatic cancer have traditionally faced a dismal prognosis, over the past several years various advances in diagnosis and treatment have begun to positively impact this disease. Identification of effective combinations of existing chemotherapeutic agents, such as the FOLFIRINOX and the gemcitabine + nab-paclitaxel regimen, has improved survival for selected patients although concerns regarding their toxicity profiles remain. A better understanding of pancreatic carcinogenesis has identified several pre-malignant precursor lesions, such as pancreatic intraepithelial neoplasias, intraductal papillary mucinous neoplasms, and cystic neoplasms. Imaging technology has also evolved dramatically so as to allow early detection of these lesions and thereby facilitate earlier management. Surgery remains a cornerstone of treatment for patients with resectable pancreatic tumors, and advances in surgical technique have allowed patients to undergo resection with decreasing perioperative morbidity and mortality. Surgery has also become feasible in selected patients with borderline resectable tumors as a result of neoadjuvant therapy. Furthermore, pancreatectomy involving vascular reconstruction and pancreatectomy with minimally invasive techniques have demonstrated safety without significantly compromising oncologic outcomes. Lastly, a deeper understanding of molecular aberrations contributing to the development of pancreatic cancer shows promise for future development of more targeted and safe therapeutic agents.

  11. Pathology and Molecular Genetics of Pancreatic Neoplasms

    PubMed Central

    Wood, Laura D.; Hruban, Ralph H.

    2014-01-01

    Cancer is fundamentally a genetic disease caused by the ac cumulation of somatic mutations in oncogenes and tumor suppressor genes. In the last decade, rapid advances in sequencing and bioinformatic technology led to an explosion in sequencing studies of cancer genomes, greatly expanding our knowledge of the genetic changes underlying a variety of tumor types. Several of these studies of cancer genomes have focused on pancreatic neoplasms, and cancers from the pancreas are some of the best characterized tumors at the genetic level. Pancreatic neoplasms encompass a wide array of clinical diseases, from benign cysts to deadly cancers, and the genetic alterations underlying neoplasms of the pancreas are similarly diverse. This new knowledge of pancreatic cancer genomes has deepened our understanding of tumorigenesis in the pancreas and has opened several promising new avenues for novel diagnostics and therapeutics. PMID:23187835

  12. Macrophage migration inhibitory factor induces epithelial to mesenchymal transition, enhances tumor aggressiveness and predicts clinical outcome in resected pancreatic ductal adenocarcinoma.

    PubMed

    Funamizu, Naotake; Hu, Chaoxin; Lacy, Curtis; Schetter, Aaron; Zhang, Geng; He, Peijun; Gaedcke, Jochen; Ghadimi, Michael B; Ried, Thomas; Yfantis, Harris G; Lee, Dong H; Subleski, Jeffrey; Chan, Tim; Weiss, Jonathan M; Back, Timothy C; Yanaga, Katsuhiko; Hanna, Nader; Alexander, H Richard; Maitra, Anirban; Hussain, S Perwez

    2013-02-15

    MIF is a proinflammatory cytokine and is implicated in cancer. A higher MIF level is found in many human cancer and cancer-prone inflammatory diseases, including chronic pancreatitis and pancreatic cancer. We tested the hypothesis that MIF contributes to pancreatic cancer aggressiveness and predicts disease outcome in resected cases. Consistent with our hypothesis we found that an elevated MIF mRNA expression in tumors was significantly associated with poor outcome in resected cases. Multivariate Cox-regression analysis further showed that MIF is independently associated with patients' survival (HR = 2.26, 95% CI = 1.17-4.37, p = 0.015). Mechanistic analyses revealed that MIF overexpression decreased E-cadherin and increased vimentin mRNA and protein levels in pancreatic cancer cell lines, consistent with the features of epithelial-to-mesenchymal transition (EMT). Furthermore, MIF-overexpression significantly increased ZEB1/2 and decreased miR-200b expression, while shRNA-mediated inhibition of MIF increased E-cadherin and miR-200b expression, and reduced the expression of ZEB1/2 in Panc1 cells. Re-expression of miR-200b in MIF overexpressing cells restored the epithelial characteristics, as indicated by an increase in E-cadherin and decrease in ZEB1/2 and vimentin expression. A reduced sensitivity to the chemotherapeutic drug, gemcitabine, occurred in MIF-overexpressing cells. Indicative of an increased malignant potential, MIF over-expressing cells showed significant increase in their invasion ability in vitro, and tumor growth and metastasis in an orthotopic xenograft mouse model. These results support a role of MIF in disease aggressiveness, indicating its potential usefulness as a candidate target for designing improved treatment in pancreatic cancer. Copyright © 2012 UICC.

  13. Solitary pancreatic head metastasis from tibial adamantinoma: a rare indication to pancreaticoduodenectomy

    PubMed Central

    Silvestri, S; Sandrucci, S; Comandone, A; Molinaro, L; Chiusa, L; Fronda, G R; Franchello, A

    2018-01-01

    Abstract Pancreatic metastases are rare, <2% of all pancreatic neoplasia. This is the first case of pancreatic metastasis from adamantinoma, a rare, low grade and slow growing tumor which is frequently localized in long bones. We describe a case of a 45-year-old woman presenting with increased bilirubin level. Computed tomography and ecoendoscopic ultra sonography revealed a pancreatic head mass. Fine-needle aspiration biopsy was consistent with metastatic adamantinoma. The patient was submitted to a standard pancreaticoduodenectomy. As in the case presented, standard pancreatic resections are safe and feasible options to treat non-pancreatic primary tumor improving patient’s survival and quality of life. PMID:29479415

  14. TGF-β in pancreatic cancer initiation and progression: two sides of the same coin.

    PubMed

    Shen, Wei; Tao, Guo-Qing; Zhang, Yu; Cai, Bing; Sun, Jian; Tian, Zhi-Qiang

    2017-01-01

    Pancreatic cancer is highly lethal malignant tumor with characterised rapid progression, invasiveness and resistance to radiochemotherapy. Transforming growth factor-β (TGF-β) signaling plays a dual role in both pro-tumorigenic and tumor suppressive of pancreatic cancer, depending on tumor stage and microenvironment. TGF-β signaling components alteration are common in pancreatic cancer, and its leading role in tumor formation and metastases has received increased attention. Many therapies have investigated to target TGF-β signaling in the preclinical and clinical setting. In this review, we highlight the dual roles of TGF-β and touch upon the perspectives on therapeutic target of TGF-β signaling in pancreatic cancer.

  15. Local pressure and matrix component effects on verteporfin distribution in pancreatic tumors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nieskoski, Michael D.; Marra, Kayla; Gunn, Jason R.; Doyley, Marvin; Samkoe, Kimberly S.; Pereira, Stephen P.; Trembly, B. Stuart; Pogue, Brian W.

    2017-02-01

    Pancreatic tumors are characterized by large interstitial hypertension from enhanced deposition of extracellular matrix components, resulting in widespread vascular collapse and reduced molecular uptake of systemically delivered therapies. Although the origins of hypoperfusion is debated amongst researchers, spatial distribution of collagen density and hyaluronic acid content have shown to be a key metric in understanding the lack of efficacy for both acute and chronic therapies in these tumors. In this study, the AsPC-1 tumor model was used both subcutaneously and orthotopically to study the measurable factors which are related to this. A conventional piezoelectric pressure catheter was used to measure total tissue pressure (TTP), defined as a combination of solid stress (SS) and interstitial fluid pressure (IFP), TTP = SS + IFP, in multiple locations within the tumor interstitium. Matrix components such as collagen and hyaluronic acid were scored using masson's trichrome stain and hyaluronic acid binding protein (HABP), respectively, and co-registered with values of TTP. The results show that these key measurements are related to the spatial distribution of verteporfin in the same tumors. Photodynamic treatment with verteporfin is known to ablate large regions of tumor tissue and also allow better permeability for chemotherapies. The study of spatial distribution of verteporfin in relation to stromal content and TTP will help us better control these types of combination therapies.

  16. Pretreatment Carbohydrate Antigen 19-9 Level Indicates Tumor Response, Early Distant Metastasis, Overall Survival, and Therapeutic Selection in Localized and Unresectable Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Tae; Lee, Woo Jin; Woo, Sang Myung

    2011-11-15

    Purpose: The use of chemoradiotherapy (CRT) for localized and unresectable pancreatic cancer has been disputed because of high probability of distant metastasis. Thus, we analyzed the effect of clinical parameters on tumor response, early distant metastasis within 3 months (DM{sup 3m}), and overall survival to identify an indicator for selecting patients who would benefit from CRT. Methods and Materials: This study retrospectively analyzed the data from 84 patients with localized and unresectable pancreatic cancer who underwent CRT between August 2002 and October 2009. Sex, age, tumor size, histological differentiation, N classification, pre- and post-treatment carbohydrate antigen (CA) 19-9 level, andmore » CA 19-9 percent decrease were analyzed to identify risk factors associated with tumor response, DM{sup 3m}, and overall survival. Results: For all 84 patients, the median survival time was 12.5 months (range, 2-31.9 months), objective response (complete response or partial response) to CRT was observed in 28 patients (33.3%), and DM{sup 3m} occurred in 24 patients (28.6%). Multivariate analysis showed that pretreatment CA 19-9 level ({<=}400 vs. >400 U/ml) was significantly associated with tumor response (45.1% vs. 15.2%), DM{sup 3m} (19.6% vs. 42.4%), and median overall survival time (15.1 vs. 9.7 months) (p < 0.05 for all three parameters). Conclusion: For patients with localized and unresectable pancreatic cancer, pretreatment CA 19-9 level could be helpful in predicting tumor response, DM{sup 3m}, and overall survival and identifying patients who will benefit from CRT.« less

  17. Treatment Options for Pancreatic Neuroendocrine Tumors

    MedlinePlus

    ... Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All Cancer ... also called nuclear magnetic resonance imaging (NMRI). Somatostatin receptor scintigraphy : A type of radionuclide scan that may ...

  18. TH-EF-BRA-04: Individually Optimized Contrast-Enhanced 4D-CT for Radiotherapy Simulation in Pancreatic Ductal Adenocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W; Xue, M; Lane, B

    Purpose: To develop an individually optimized contrast-enhanced (CE) 4D-CT for radiotherapy simulation in pancreatic ductal adenocarcinomas (PDA). Methods: Ten PDA patients were enrolled. Each underwent 3 CT scans: a 4D-CT immediately following a CE 3D-CT and an individually optimized CE 4D-CT using test injection. Three physicians contoured the tumor and pancreatic tissues. We compared image quality scores, tumor volume, motion, tumor-to-pancreas contrast, and contrast-to-noise ratio (CNR) in the 3 CTs. We also evaluated interobserver variations in contouring the tumor using simultaneous truth and performance level estimation (STAPLE). Results: Average image quality scores for CE 3DCT and CE 4D-CT were comparablemore » (4.0 and 3.8, respectively; P=0.47), and both were significantly better than that for 4D-CT (2.6, P<0.001). Tumor-to-pancreas contrast results were comparable in CE 3D-CT and CE 4D-CT (15.5 and 16.7 HU, respectively; P=0.71), and the latter was significantly higher than in 4D-CT (9.2 HU, P=0.03). Image noise in CE 3D-CT (12.5 HU) was significantly lower than in CE 4D-CT (22.1 HU, P<0.001) and 4D-CT (19.4 HU, P=0.005). CNRs were comparable in CE 3D-CT and CE 4DCT (1.4 and 0.8, respectively; P=0.23), and the former was significantly better than in 4D-CT (0.6, P = 0.04). Mean tumor volumes were smaller in CE 3D-CT (29.8 cm{sup 3}) and CE 4D-CT (22.8 cm{sup 3}) than in 4D-CT (42.0 cm{sup 3}), although these differences were not statistically significant. Mean tumor motion was comparable in 4D-CT and CE 4D-CT (7.2 and 6.2 mm, P=0.23). Interobserver variations were comparable in CE 3D-CT and CE 4D-CT (Jaccard index 66.0% and 61.9%, respectively) and were worse for 4D-CT (55.6%) than CE 3D-CT. Conclusion: CE 4D-CT demonstrated characteristics comparable to CE 3D-CT, with high potential for simultaneously delineating the tumor and quantifying tumor motion with a single scan. Supported in part by Philips Healthcare.« less

  19. [Advance in the biology of pancreatic of cancer].

    PubMed

    Buscail, Louis; Bournet, Barbara; Dufresne, Marlène; Torrisani, Jérôme; Cordelier, Pierre

    2015-06-01

    The understanding of the biology of pancreatic carcinoma has greatly benefited from studies of genetic/epigenetic alterations and molecular expression in experimental models as well as precancerous and cancerous tissues by mean of molecular amplification and large-scale transcriptoma analysis. P16, TP53, DPC4/Smad4 tumor suppressor pathways are genetically inactivated in the majority of pancreatic carcinomas, whereas oncogenic k-ras is activated. The activating point mutation of the KRAS oncogene on codon 12 is the major event and occurs early in pancreatic carcinogenesis. At a late stage of tumor development, an increase of telomerase activity, an over expression of growth factors and/or their receptors (EGF, Nerve Growth Factor, gastrin), of pro-angiogenic factors (VEGF, FGF, PDGF), of invasiveness factors (metalloproteinases, tissue plasminogen activators) occurs. The microenvironment plays also a key role in the invasive and metastatic process of pancreatic carcinoma with a strong relationship between cancerous cells and pancreatic stellate cells as well as extracellular matrix. This microenvironment strongly participates to the tumor fibrosis, hypoxia and hypovascularization inducing an inaccessibility of drugs. Nowadays, the targeting of microenvironment takes a special place in the new therapeutic strategies of pancreatic cancer in combination with chemotherapy. Copyright © 2015 Société Françise du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés. Published by Elsevier Masson SAS. All rights reserved.

  20. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Tatsuya J.; Nofiele, Joris; Yuan, Qing

    Purpose: Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of “true” information due to greater reliance on a priori information. Methods: Lung tumor motion trajectories in the superior–inferior direction, previously recorded from ten lung cancer patients, were replayed usingmore » a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. Results: In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0

  1. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy

    PubMed Central

    Arai, Tatsuya J.; Nofiele, Joris; Madhuranthakam, Ananth J.; Yuan, Qing; Pedrosa, Ivan; Chopra, Rajiv; Sawant, Amit

    2016-01-01

    Purpose: Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of “true” information due to greater reliance on a priori information. Methods: Lung tumor motion trajectories in the superior–inferior direction, previously recorded from ten lung cancer patients, were replayed using a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. Results: In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3–0

  2. Biodistribution and Pharmacokinetics of EGFR-Targeted Thiolated Gelatin Nanoparticles Following Systemic Administration in Pancreatic Tumor-Bearing Mice

    PubMed Central

    Xu, Jing; Gattacceca, Florence; Amiji, Mansoor

    2013-01-01

    The objective of this study was to evaluate qualitative and quantitative biodistribution of epidermal growth factor receptor (EGFR)-targeted thiolated type B gelatin nanoparticles in vivo in a subcutaneous human pancreatic adenocarcinoma (Panc-1) bearing female SCID Beige mice. EGFR-targeted nanoparticles showed preferential and sustained accumulation in the tumor mass, especially at early time points. Higher blood concentrations and higher tumor accumulations were observed with PEG-modified and EGFR-targeted nanoparticles during the study (AUClast: 17.38 and 19.56 %ID/mL*h in blood, 187 and 322 %ID/g*h in tumor for PEG-modified and EGFR-targeted nanoparticles, respectively), as compared to control, unmodified particles (AUClast: 10.71 %ID/mL*h in blood and 138 %ID/g*h in tumor). EGFR-targeted nanoparticles displayed almost twice tumor targeting efficiency than either PEG-modified or the unmodified nanoparticles, highlighting the efficacy of the active targeting strategy. In conclusion, this study shows that EGFR-targeted and PEG-modified nanoparticles were suitable vehicles for specific systemic delivery in subcutaneous Panc-1 tumor xenograft models. PMID:23544877

  3. Biodistribution and pharmacokinetics of EGFR-targeted thiolated gelatin nanoparticles following systemic administration in pancreatic tumor-bearing mice.

    PubMed

    Xu, Jing; Gattacceca, Florence; Amiji, Mansoor

    2013-05-06

    The objective of this study was to evaluate qualitative and quantitative biodistribution of epidermal growth factor receptor (EGFR)-targeted thiolated type B gelatin nanoparticles in vivo in subcutaneous human pancreatic adenocarcinoma (Panc-1) bearing female SCID Beige mice. EGFR-targeted nanoparticles showed preferential and sustained accumulation in the tumor mass, especially at early time points. Higher blood concentrations and higher tumor accumulations were observed with PEG-modified and EGFR-targeted nanoparticles during the study (AUClast: 17.38 and 19.56%ID/mL·h in blood, 187 and 322%ID/g·h in tumor for PEG-modified and EGFR-targeted nanoparticles, respectively), as compared to control, unmodified particles (AUClast: 10.71%ID/mL·h in blood and 138%ID/g·h in tumor). EGFR-targeted nanoparticles displayed almost twice tumor targeting efficiency than either PEG-modified or the unmodified nanoparticles, highlighting the efficacy of the active targeting strategy. In conclusion, this study shows that EGFR-targeted and PEG-modified nanoparticles were suitable vehicles for specific systemic delivery in subcutaneous Panc-1 tumor xenograft models.

  4. A Novel Microfluidic Device for Isolation of Circulating Tumor Cells from Pancreatic Cancer Blood Samples.

    PubMed

    Varillas, Jose I; Chen, Kangfu; Zhang, Jinling; George, Thomas J; Hugh Fan, Z

    2017-01-01

    Enumeration of circulating tumor cells (CTCs) can provide valuable prognostic information to guide cancer treatment as well as help monitor disease progression. Analysis of these rare malignant cells has the potential to further our understanding of cancer metastasis by gaining insights into CTC characteristics and properties. Microfluidics presents a unique platform to isolate and study CTCs. In this chapter, we describe the detailed procedures for the fabrication and use of a microfluidic device to detect CTCs from the blood of pancreatic cancer patients.

  5. The miR-24-Bim pathway promotes tumor growth and angiogenesis in pancreatic carcinoma.

    PubMed

    Liu, Rui; Zhang, Haiyang; Wang, Xia; Zhou, Likun; Li, Hongli; Deng, Ting; Qu, Yanjun; Duan, Jingjing; Bai, Ming; Ge, Shaohua; Ning, Tao; Zhang, Le; Huang, Dingzhi; Ba, Yi

    2015-12-22

    miRNAs are a group of small RNAs that have been reported to play a key role at each stage of tumorigenesis and are believed to have future practical value. We now demonstrate that Bim, which stimulates cell apoptosis, is obviously down-regulated in pancreatic cancer (PaC) tissues and cell lines. And Bim-related miR-24 is significantly up-regulated in PaC. The repressed expression of Bim is proved to be a result of miR-24, thus promoting cell growth of both cancer and vascular cells, and accelerating vascular ring formation. By using mouse tumor model, we clearly showed that miR-24 promotes tumor growth and angiogenesis by suppressing Bim expression in vivo. Therefore, a new pathway comprising miR-24 and Bim can be used in the exploration of drug-target therapy of PaC.

  6. Robustness of external/internal correlation models for real-time tumor tracking to breathing motion variations

    NASA Astrophysics Data System (ADS)

    Seregni, M.; Cerveri, P.; Riboldi, M.; Pella, A.; Baroni, G.

    2012-11-01

    In radiotherapy, organ motion mitigation by means of dynamic tumor tracking requires continuous information about the internal tumor position, which can be estimated relying on external/internal correlation models as a function of external surface surrogates. In this work, we propose a validation of a time-independent artificial neural networks-based tumor tracking method in the presence of changes in the breathing pattern, evaluating the performance on two datasets. First, simulated breathing motion traces were specifically generated to include gradually increasing respiratory irregularities. Then, seven publically available human liver motion traces were analyzed for the assessment of tracking accuracy, whose sensitivity with respect to the structural parameters of the model was also investigated. Results on simulated data showed that the proposed method was not affected by hysteretic target trajectories and it was able to cope with different respiratory irregularities, such as baseline drift and internal/external phase shift. The analysis of the liver motion traces reported an average RMS error equal to 1.10 mm, with five out of seven cases below 1 mm. In conclusion, this validation study proved that the proposed method is able to deal with respiratory irregularities both in controlled and real conditions.

  7. Quantitative evaluation of pancreatic tumor fibrosis using shear wave elastography.

    PubMed

    Kuwahara, Takamichi; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Sugimoto, Hiroyuki; Hayashi, Daijuro; Morishima, Tomomasa; Kawai, Manabu; Suhara, Hiroki; Takeyama, Tomoaki; Yamamura, Takeshi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Watanabe, Osamu; Ishigami, Masatoshi; Shimoyama, Yoshie; Nakamura, Shigeo; Hashimoto, Senju; Goto, Hidemi

    There is no established non-invasive method for diagnosis of pancreatic fibrosis. Shear wave elastography (SW-EG) may be a candidate for this purpose. The aims of this study were to assess the reproducibility of SW-EG in the normal imaging pancreas (Phase 1) and to evaluate the diagnostic performance of SW-EG for pancreatic fibrosis classified histologically (Phase 2). Phase 1: This included 127 cases that underwent SW-EG of the normal imaging pancreas. SW-EG was measured at least five times in the pancreatic parenchyma and the median of repeated measurements was defined as the pancreatic elastic modulus (PEM). Phase 2: This included 53 cases that underwent SW-EG of the pancreatic parenchyma preoperatively and in which pancreas parenchyma were evaluated histologically. Histological fibrosis was graded in 4 stages: normal, mild, moderate, and severe. Phase 1: Median PEM in the head, body, and tail of the pancreas were 3.23, 3.17, and 2.91 kPa, respectively, with no significant difference among regions (P = 0.554). The intraclass correlation coefficient showed good reproducibility (ρ = 0.71) after 5 measurements. Phase 2: There was a significant positive correlation between PEM and the histological pancreatic fibrosis stage (r s  = 0.63, P < 0.001). Areas under the receiver operating characteristic curve for the accuracy of SW-EG for diagnosis of pancreatic fibrosis were 0.85 (≥mild), 0.84 (≥moderate), and 0.87 (severe). SW-EG can be used to determine the stage of pancreatic fibrosis non-invasively with high accuracy and reproducibility. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  8. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C 82(OH) 22 and its implication for de novo design of nanomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, S. -g.; Zhou, G.; Yang, P.

    2012-09-18

    Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth-leading cause of cancer-related death in North America. Matrix metalloproteinases (MMPs) have long been targeted as a potential anticancer therapy because of their seminal role in angiogenesis and extracellular matrix (ECM) degradation of tumor survival and invasion. However, the inhibition specificity to MMPs and the molecular-level understanding of the inhibition mechanism remain largely unresolved. Here, we found that endohedral metallofullerenol Gd@C 82(OH) 22 can successfully inhibit the neoplastic activity with experiments at animal, tissue, and cellular levels. Gd@C 82(OH) 22 effectively blocks tumor growth in human pancreatic cancermore » xenografts in a nude mouse model. Enzyme activity assays also show Gd@C 82(OH) 22 not only suppresses the expression of MMPs but also significantly reduces their activities. We then applied large-scale molecular-dynamics simulations to illustrate the molecular mechanism by studying the Gd@C 82(OH) 22–MMP-9 interactions in atomic detail. Our data demonstrated that Gd@C 82(OH) 22 inhibits MMP-9 mainly via an exocite interaction, whereas the well-known zinc catalytic site only plays a minimal role. Steered by nonspecific electrostatic, hydrophobic, and specific hydrogen-bonding interactions, Gd@C 82(OH) 22 exhibits specific binding modes near the ligand-specificity loop S1', thereby inhibiting MMP-9 activity. Both the suppression of MMP expression and specific binding mode make Gd@C 82(OH) 22 a potentially more effective nanomedicine for pancreatic cancer than traditional medicines, which usually target the proteolytic sites directly but fail in selective inhibition. Finally, our findings provide insights for de novo design of nanomedicines for fatal diseases such as pancreatic cancer.« less

  9. [Autoimmune pancreatitis. Evidence based management guidelines of the Hungarian Pancreatic Study Group].

    PubMed

    Dubravcsik, Zsolt; Farkas, Gyula; Hegyi, Péter; Hritz, István; Kelemen, Dezső; Lásztity, Natália; Morvay, Zita; Oláh, Attila; Pap, Ákos; Párniczky, Andrea; Sahin-Tóth, Miklós; Szentkereszti, Zsolt; Szmola, Richárd; Takács, Tamás; Tiszlavicz, László; Szücs, Ákos; Czakó, László

    2015-02-22

    Autoimmune pancreatitis is a rare disease which can even mimic pancreatic tumor, however, unlike the latter, it requires not surgical but conservative management. Correct diagnosis and differential diagnosis of autoimmune pancreatitis and treatment of these patients requires up-to-date and evidence based management guidelines. The Hungarian Pancreatic Study Group proposed to prepare an evidence based guideline based on the available international guidelines and evidences. The preparatory and consultation task force appointed by the Hungarian Pancreatic Study Group translated and complemented and/or modified the international guidelines if it was necessary. 29 relevant clinical questions in 4 topics were defined (Basics; Diagnosis; Differential diagnostics; Therapy). Evidence was classified according to the UpToDate(®) grading system. The draft of the guidelines was presented and discussed at the consensus meeting on September 12, 2014. All clinial questions were accepted with almost total (more than 95%) agreement. The present guideline is the first evidence based autoimmune pancreatitis guideline in Hungary. The guideline may provide very important and helpful data for tuition of autoimmune pancreatitis, for everyday practice and for establishing proper finance. Therefore, the authors believe that these guidelines will widely become a basic reference in Hungary.

  10. Pancreatic sarcoidosis discovered during Whipple procedure.

    PubMed

    Cook, Jonathan; Spees, Tanner; Telefus, Phillip; Ranaudo, Jeffrey M; Carryl, Stephen; Xiao, Philip

    2013-04-04

    Pancreatic sarcoidosis is a rare variant of systemic sarcoidosis, with cases described in literature as recently as January 2010. We present here a case of pancreatic involvement with non-caseating granulomas discovered on laparotomy in a patient with a preoperative diagnosis of pancreatic carcinoma. Computer tomography scan without contrast revealed a well-marginated smooth-shaped tumor in the head of the pancreas morphologically consistent with malignancy. During Whipple procedure, the mass was found to be a large lymph node that contained numerous non-caseating granulomas. Radiologically and clinically, non-caseating granulomas of the pancreas are often misdiagnosed as malignant tumor. Special attention given to this differential diagnosis by surgeons, pathologists and clinicians can avoid misdiagnosis and unnecessary treatment. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2013.

  11. The effectiveness of a pneumatic compression belt in reducing respiratory motion of abdominal tumors in patients undergoing stereotactic body radiotherapy.

    PubMed

    Lovelock, D Michael; Zatcky, Joan; Goodman, Karyn; Yamada, Yoshiya

    2014-06-01

    Abdominal compression using a pneumatic abdominal compression belt developed in-house has been used to reduce respiratory motion of patients undergoing hypo-fractionated or single fraction stereotactic radio-ablative therapy for abdominal cancers. The clinical objective of belt usage was to reduce the cranial-caudal (CC) respiratory motion of the tumor to 5 mm or less during both CT simulation and treatment. A retrospective analysis was done to determine the effectiveness of the device and associated clinical procedures to reduce the CC respiratory motion of the tumor. 42 patients treated for tumors in the liver (30), adrenal glands (6), pancreas (3) and lymph nodes (3) using high dose hypofractionated radiotherapy between 2004 and the present were eligible for analysis. All patients had 2-3 radiopaque fiducial markers implanted near the tumor prior to simulation, or had clips from prior surgery. Integral to the belt is an inflatable air bladder that is positioned over the abdomen. The pneumatic pressure was set to a level in consultation with the patient. The CC motion was measured fluoroscopically with and without pneumatic pressure. Pneumatic pressure was used at all treatments to reduce to CC motion to that achieved at simulation. The mean CC motion with the belt in place, but no additional air pressure was 11.4 mm with a range of 5-20 mm. With the pressure applied, the mean CC motion was reduced to 4.4 mm with a range of 1-8 mm (P-value < 0.001). The clinical objective of reducing the CC motion of the tumor to a maximum excursion of 5 mm or less was achieved in 93% of cases. The use of a pneumatic compression belt and associated clinical procedures was found to result in a significant and frequently substantial reduction in the CC motion of the tumor.

  12. SU-E-J-253: Evaluation of 4DCT Images with Correlation of RPM Signals to Tumor Motion for Respiratory-Gated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, TK; Ewald, A; Schultz, T

    2014-06-01

    Purpose: The amplitudes of lung tumor target motion and RPM signals are different from each other. Also, RPM system does not have in-depth RPM signal analysis tool. We have developed an algorithm that analyzes RPM signals for its stability as well as correlativity to the tumor motion. Methods: We used a Philips Big Bore CT scanner with a Varian Real-Time Position Management™ (RPM) system attached. 4DCT images were reviewed and tumor motion amplitudes of full breathing in superior-inferior, anterior-posterior, and left-right directions were measured. RPM signals were analyzed with the algorithm developed with Matlab. Average signal period, amplitude and statisticalmore » stability of the full breathing pattern as well as the pattern around full expiration were calculated. RPM signal amplitudes were normalized to measured tumor motion amplitudes so that selected gating phases (30%–70% or 40%–60%) allow tumor motion under 5.0mm. Results: Twelve patient cases were analyzed in this study with GTV sizes ranged from 1.0cm to 3.0cm diameter. The periods and amplitudes of RPM signal ranged from 3.1seconds to 6.5seconds and from 0.2cm to 1.7cm, respectively. RPM signals were most stable at full expiration. The standard deviation of the RPM signal peaks at full expiration was <0.11cm, and that of gated amplitudes was <0.25cm. Tumor motion amplitudes were primary in superior-inferior direction and minor (<=0.2cm) in other directions on all analyzed cases, ranged from 0.2cm to 2.5cm. The amplitudes increases with the tumor located toward the diaphragm. The gated phases were selected so that the average gated tumor motion amplitude as well as that plus deviation became under 0.5cm in superior-inferior direction. Conclusion: We were able to determine the respiratory-gated phases in RPM signals employing measured tumor motion amplitudes as well as developed RPM signal analyzer through correlation process. The RPM signal amplitudes do not represent tumor motion because of

  13. New insights into pancreatic cancer biology.

    PubMed

    Hidalgo, M

    2012-09-01

    Pancreatic cancer remains a devastating disease. Over the last few years, there have been important advances in the molecular and biological understanding of pancreatic cancer. This included understanding of the genomic complexity of the disease, the role of pancreatic cancer stem cells, the relevance of the tumor microenvironment, and the unique metabolic adaptation of pancreas cancer cells to obtain nutrients under hypoxic environment. In this paper, we review the most salient developments in these few areas.

  14. A tissue-engineered subcutaneous pancreatic cancer model for antitumor drug evaluation.

    PubMed

    He, Qingyi; Wang, Xiaohui; Zhang, Xing; Han, Huifang; Han, Baosan; Xu, Jianzhong; Tang, Kanglai; Fu, Zhiren; Yin, Hao

    2013-01-01

    The traditional xenograft subcutaneous pancreatic cancer model is notorious for its low incidence of tumor formation, inconsistent results for the chemotherapeutic effects of drug molecules of interest, and a poor predictive capability for the clinical efficacy of novel drugs. These drawbacks are attributed to a variety of factors, including inoculation of heterogeneous tumor cells from patients with different pathological histories, and use of poorly defined Matrigel(®). In this study, we aimed to tissue-engineer a pancreatic cancer model that could readily cultivate a pancreatic tumor derived from highly homogenous CD24(+)CD44(+) pancreatic cancer stem cells delivered by a well defined electrospun scaffold of poly(glycolide-co-trimethylene carbonate) and gelatin. The scaffold supported in vitro tumorigenesis from CD24(+)CD44(+) cancer stem cells for up to 7 days without inducing apoptosis. Moreover, CD24(+)CD44(+) cancer stem cells delivered by the scaffold grew into a native-like mature pancreatic tumor within 8 weeks in vivo and exhibited accelerated tumorigenesis as well as a higher incidence of tumor formation than the traditional model. In the scaffold model, we discovered that oxaliplatin-gemcitabine (OXA-GEM), a chemotherapeutic regimen, induced tumor regression whereas gemcitabine alone only capped tumor growth. The mechanistic study attributed the superior antitumorigenic performance of OXA-GEM to its ability to induce apoptosis of CD24(+)CD44(+) cancer stem cells. Compared with the traditional model, the scaffold model demonstrated a higher incidence of tumor formation and accelerated tumor growth. Use of a tiny population of highly homogenous CD24(+)CD44(+) cancer stem cells delivered by a well defined scaffold greatly reduces the variability associated with the traditional model, which uses a heterogeneous tumor cell population and poorly defined Matrigel. The scaffold model is a robust platform for investigating the antitumorigenesis mechanism of

  15. Compensating for Tumor Motion by a 6-Degree-of-Freedom Treatment Couch: Is Patient Tolerance an Issue?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Reinhart A.; Arnold, Winfried; Steixner, Eva

    2009-05-01

    Purpose: To determine whether patients could tolerate the motion of a robotic couch that compensates for breathing-induced tumor motion. Methods and Materials: A total of 10 healthy subjects and 23 radio-oncology patients underwent simulated extracranial stereotactic radiotherapy (two 30-min sessions) on a robotic couch programmed to follow a fictitious tumor trajectory of 20x5x5 mm (cranio-caudal, left-right, and anterior-posterior directions, respectively) while rotating 2 deg. around a cranio-caudal axis at a frequency of 5 seconds per loop. Results: No session had to be interrupted and no nausea was induced. However, one patient refused the second session due to general deterioration andmore » not all patients could keep their arms elevated for the entire session. Conclusions: Our findings showed that most patients tolerated compensatory couch motion and that motion sickness should not pose a problem in the investigation of this tumor-tracking method.« less

  16. Hormone profiling, WHO 2010 grading, and AJCC/UICC staging in pancreatic neuroendocrine tumor behavior

    PubMed Central

    Morin, Emilie; Cheng, Sonia; Mete, Ozgur; Serra, Stefano; Araujo, Paula B; Temple, Sara; Cleary, Sean; Gallinger, Steven; Greig, Paul D; McGilvray, Ian; Wei, Alice; Asa, Sylvia L; Ezzat, Shereen

    2013-01-01

    Pancreatic neuroendocrine tumors (pNETs) are the second most common pancreatic neoplasms, exhibiting a complex spectrum of clinical behaviors. To examine the clinico-pathological characteristics associated with long-term prognosis we reviewed 119 patients with pNETs treated in a tertiary referral center using the WHO 2010 grading and the American Joint Committee on Cancer/International Union Against Cancer (AJCC/UICC) staging systems, with a median follow-up of 38 months. Tumor size, immunohistochemistry (IHC) profiling and patient characteristics-determining stage were analyzed. Primary clinical outcomes were disease progression or death. The mean age at presentation was 52 years; 55% were female patients, 11% were associated with MEN1 (multiple endocrine neoplasia 1) or VHL (Von Hippel–Lindau); mean tumor diameter was 3.3 cm (standard deviation, SD) (2.92). The clinical presentation was incidental in 39% with endocrine hypersecretion syndromes in only 24% of cases. Nevertheless, endocrine hormone tissue immunoreactivity was identified in 67 (56.3%) cases. According to WHO 2010 grading, 50 (42%), 38 (31.9%), and 3 (2.5%) of tumors were low grade (G1), intermediate grade (G2), and high grade (G3), respectively. Disease progression occurred more frequently in higher WHO grades (G1: 6%, G2: 10.5%, G3: 67%, P = 0.026) and in more advanced AJCC stages (I: 2%, IV: 63%, P = 0.033). Shorter progression free survival (PFS) was noted in higher grades (G3 vs. G2; 21 vs. 144 months; P = 0.015) and in more advanced AJCC stages (stage I: 218 months, IV: 24 months, P < 0.001). Liver involvement (20 vs. 173 months, P < 0.001) or histologically positive lymph nodes (33 vs. 208 months, P < 0.001) were independently associated with shorter PFS. Conversely, tissue endocrine hormone immunoreactivity, independent of circulating levels was significantly associated with less aggressive disease. Age, gender, number of primary tumors, and heredity were not

  17. Pancreatic cancer stromal biology and therapy

    PubMed Central

    Xie, Dacheng; Xie, Keping

    2015-01-01

    Pancreatic cancer is one of the most lethal malignancies. Significant progresses have been made in understanding of pancreatic cancer pathogenesis, including appreciation of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and identification of major genetic and epigenetic events and the biological impact of those events on malignant behavior. However, the currently used therapeutic strategies targeting tumor epithelial cells, which are potent in cell culture and animal models, have not been successful in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to pancreatic cancer development and progression. Improved understanding of the dynamic interaction between cancer cells and the stroma is important to better understanding pancreatic cancer biology and to designing effective intervention strategies. This review focuses on the origination, evolution and disruption of stromal molecular and cellular components in pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis. PMID:26114155

  18. Mid-Ventilation Concept for Mobile Pulmonary Tumors: Internal Tumor Trajectory Versus Selective Reconstruction of Four-Dimensional Computed Tomography Frames Based on External Breathing Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guckenberger, Matthias; Wilbert, Juergen; Krieger, Thomas

    2009-06-01

    Purpose: To evaluate the accuracy of direct reconstruction of mid-ventilation and peak-phase four-dimensional (4D) computed tomography (CT) frames based on the external breathing signal. Methods and Materials: For 11 patients with 15 pulmonary targets, a respiration-correlated CT study (4D CT) was acquired for treatment planning. After retrospective time-based sorting of raw projection data and reconstruction of eight CT frames equally distributed over the breathing cycle, mean tumor position (P{sub mean}), mid-ventilation frame, and breathing motion were evaluated based on the internal tumor trajectory. Analysis of the external breathing signal (pressure sensor around abdomen) with amplitude-based sorting of projections was performedmore » for direct reconstruction of the mid-ventilation frame and frames at peak phases of the breathing cycle. Results: On the basis of the eight 4D CT frames equally spaced in time, tumor motion was largest in the craniocaudal direction, with 12 {+-} 7 mm on average. Tumor motion between the two frames reconstructed at peak phases was not different in the craniocaudal and anterior-posterior directions but was systematically smaller in the left-right direction by 1 mm on average. The 3-dimensional distance between P{sub mean} and the tumor position in the mid-ventilation frame based on the internal tumor trajectory was 1.2 {+-} 1 mm. Reconstruction of the mid-ventilation frame at the mean amplitude position of the external breathing signal resulted in tumor positions 2.0 {+-} 1.1 mm distant from P{sub mean}. Breathing-induced motion artifacts in mid-ventilation frames caused negligible changes in tumor volume and shape. Conclusions: Direct reconstruction of the mid-ventilation frame and frames at peak phases based on the external breathing signal was reliable. This makes the reconstruction of only three 4D CT frames sufficient for application of the mid-ventilation technique in clinical practice.« less

  19. Pancreatic tissue assessment using fluorescence and reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandra, Malavika; Heidt, David; Simeone, Diane; McKenna, Barbara; Scheiman, James; Mycek, Mary-Ann

    2007-07-01

    The ability of multi-modal optical spectroscopy to detect signals from pancreatic tissue was demonstrated by studying human pancreatic cancer xenografts in mice and freshly excised human pancreatic tumor tissue. Measured optical spectra and fluorescence decays were correlated with tissue morphological and biochemical properties. The measured spectral features and decay times correlated well with expected pathological differences in normal, pancreatitis and adenocarcinoma tissue states. The observed differences between the fluorescence and reflectance properties of normal, pancreatitis and adenocarcinoma tissue indicate a possible application of multi-modal optical spectroscopy to differentiating between the three tissue classifications.

  20. [Pancreatic ultrasonography].

    PubMed

    Fernández-Rodríguez, T; Segura-Grau, A; Rodríguez-Lorenzo, A; Segura-Cabral, J M

    2015-04-01

    Despite the recent technological advances in imaging, abdominal ultrasonography continues to be the first diagnostic test indicated in patients with a suspicion of pancreatic disease, due to its safety, accessibility and low cost. It is an essential technique in the study of inflammatory processes, since it not only assesses changes in pancreatic parenchyma, but also gives an indication of the origin (bile or alcoholic). It is also essential in the detection and tracing of possible complications as well as being used as a guide in diagnostic and therapeutic punctures. It is also the first technique used in the study of pancreatic tumors, detecting them with a sensitivity of around 70% and a specificity of 90%. Copyright © 2014 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  1. Extended versus peripancreatic lymph node dissection for the treatment of left-sided pancreatic cancer

    PubMed Central

    Lee, Huisong; Choi, Seong Ho; Choi, Dong Wook

    2017-01-01

    Purpose The pathways of lymphatic metastases differ according to the tumor location in pancreatic cancer patients. However, it is unclear whether extended lymph node dissection (LND) is essential for all left-sided pancreatic cancer. The aim of this study is to evaluate the survival outcomes according to the extent of LND and tumor location in patients with left-sided pancreatic cancer. Methods January 2005 to December 2013, we retrospectively identified 107 patients who underwent curative intent surgery for left-sided pancreatic cancer. The left-sided pancreatic cancer was defined as a tumor located in pancreatic body or tail. The extent of LND was divided into 2 groups: extended LND and peripancreatic LND. The extended LND group included celiac and superior mesenteric LNs. Results We included 107 patients with left-sided pancreatic cancer; 59 patients with pancreatic body cancer and 48 patients with pancreatic tail cancer. The median follow-up period was 17 months (range, 3–110 months). Fifty patients with pancreatic body cancer and 30 patients with pancreatic tail cancer underwent extended LND. In patients with pancreatic body cancer, extended LND was associated with improved disease-free survival (DFS) (P = 0.010) and overall survival (P = 0.014). However, extended LND was not associated with DFS in patients with pancreatic tail cancer. Conclusion Extended LND could improve survival in patients with pancreatic body cancer. However, extended LND had no survival benefit for the treatment of pancreatic tail cancer. PMID:28580345

  2. Extended versus peripancreatic lymph node dissection for the treatment of left-sided pancreatic cancer.

    PubMed

    Lee, Huisong; Heo, Jin Seok; Choi, Seong Ho; Choi, Dong Wook

    2017-06-01

    The pathways of lymphatic metastases differ according to the tumor location in pancreatic cancer patients. However, it is unclear whether extended lymph node dissection (LND) is essential for all left-sided pancreatic cancer. The aim of this study is to evaluate the survival outcomes according to the extent of LND and tumor location in patients with left-sided pancreatic cancer. January 2005 to December 2013, we retrospectively identified 107 patients who underwent curative intent surgery for left-sided pancreatic cancer. The left-sided pancreatic cancer was defined as a tumor located in pancreatic body or tail. The extent of LND was divided into 2 groups: extended LND and peripancreatic LND. The extended LND group included celiac and superior mesenteric LNs. We included 107 patients with left-sided pancreatic cancer; 59 patients with pancreatic body cancer and 48 patients with pancreatic tail cancer. The median follow-up period was 17 months (range, 3-110 months). Fifty patients with pancreatic body cancer and 30 patients with pancreatic tail cancer underwent extended LND. In patients with pancreatic body cancer, extended LND was associated with improved disease-free survival (DFS) (P = 0.010) and overall survival (P = 0.014). However, extended LND was not associated with DFS in patients with pancreatic tail cancer. Extended LND could improve survival in patients with pancreatic body cancer. However, extended LND had no survival benefit for the treatment of pancreatic tail cancer.

  3. Palliative Care in Improving Quality of Life and Symptoms in Patients With Stage III-IV Pancreatic or Ovarian Cancer

    ClinicalTrials.gov

    2014-12-18

    Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer

  4. Targeting EGF-receptor(s) - STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer

    PubMed Central

    Seshacharyulu, Parthasarathy; Ponnusamy, Moorthy P.; Rachagani, Satyanarayana; Lakshmanan, Imayavaramban; Haridas, Dhanya; Yan, Ying; Ganti, Apar K.; Batra, Surinder K.

    2015-01-01

    Transmembrane proteins MUC4, EGFR and HER2 are shown to be critical in invasion and metastasis of pancreatic cancer. Besides, we and others have demonstrated de novo expression of MUC4 in ~70-90% of pancreatic cancer patients and its stabilizing effects on HER2 downstream signaling in pancreatic cancer. Here, we found that use of canertinib or afatinib resulted in reduction of MUC4 and abrogation of in vitro and in vivo oncogenic functions of MUC4 in pancreatic cancer cells. Notably, silencing of EGFR family member in pancreatic cancer cells decreased MUC4 expression through reduced phospho-STAT1. Furthermore, canertinib and afatinib treatment also inhibited proliferation, migration and survival of pancreatic cancer cells by attenuation of signaling events including pERK1/2 (T202/Y204), cyclin D1, cyclin A, pFAK (Y925) and pAKT (Ser473). Using in vivo bioluminescent imaging, we demonstrated that canertinib treatment significantly reduced tumor burden (P=0.0164) and metastasis to various organs. Further, reduced expression of MUC4 and EGFR family members were confirmed in xenografts. Our results for the first time demonstrated the targeting of EGFR family members along with MUC4 by using pan-EGFR inhibitors. In conclusion, our studies will enhance the translational acquaintance of pan-EGFR inhibitors for combinational therapies to combat against lethal pancreatic cancer. PMID:25686822

  5. Targeting EGF-receptor(s) - STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer.

    PubMed

    Seshacharyulu, Parthasarathy; Ponnusamy, Moorthy P; Rachagani, Satyanarayana; Lakshmanan, Imayavaramban; Haridas, Dhanya; Yan, Ying; Ganti, Apar K; Batra, Surinder K

    2015-03-10

    Transmembrane proteins MUC4, EGFR and HER2 are shown to be critical in invasion and metastasis of pancreatic cancer. Besides, we and others have demonstrated de novo expression of MUC4 in ~70-90% of pancreatic cancer patients and its stabilizing effects on HER2 downstream signaling in pancreatic cancer. Here, we found that use of canertinib or afatinib resulted in reduction of MUC4 and abrogation of in vitro and in vivo oncogenic functions of MUC4 in pancreatic cancer cells. Notably, silencing of EGFR family member in pancreatic cancer cells decreased MUC4 expression through reduced phospho-STAT1. Furthermore, canertinib and afatinib treatment also inhibited proliferation, migration and survival of pancreatic cancer cells by attenuation of signaling events including pERK1/2 (T202/Y204), cyclin D1, cyclin A, pFAK (Y925) and pAKT (Ser473). Using in vivo bioluminescent imaging, we demonstrated that canertinib treatment significantly reduced tumor burden (P=0.0164) and metastasis to various organs. Further, reduced expression of MUC4 and EGFR family members were confirmed in xenografts. Our results for the first time demonstrated the targeting of EGFR family members along with MUC4 by using pan-EGFR inhibitors. In conclusion, our studies will enhance the translational acquaintance of pan-EGFR inhibitors for combinational therapies to combat against lethal pancreatic cancer.

  6. Homozygous KSR1 deletion attenuates morbidity but does not prevent tumor development in a mouse model of RAS-driven pancreatic cancer

    PubMed Central

    Germino, Elizabeth A.; Miller, Joseph P.; Diehl, Lauri; Durinck, Steffen; Modrusan, Zora; Miner, Jeffrey H.

    2018-01-01

    Given the frequency with which MAP kinase signaling is dysregulated in cancer, much effort has been focused on inhibiting RAS signaling for therapeutic benefit. KSR1, a pseudokinase that interacts with RAF, is a potential target; it was originally cloned in screens for suppressors of constitutively active RAS, and its deletion prevents RAS-mediated transformation of mouse embryonic fibroblasts. In this work, we used a genetically engineered mouse model of pancreatic cancer to assess whether KSR1 deletion would influence tumor development in the setting of oncogenic RAS. We found that Ksr1-/- mice on this background had a modest but significant improvement in all-cause morbidity compared to Ksr1+/+ and Ksr1+/- cohorts. Ksr1-/- mice, however, still developed tumors, and precursor pancreatic intraepithelial neoplastic (PanIN) lesions were detected within a similar timeframe compared to Ksr1+/+ mice. No significant differences in pERK expression or in proliferation were noted. RNA sequencing also did not reveal any unique genetic signature in Ksr1-/- tumors. Further studies will be needed to determine whether and in what settings KSR inhibition may be clinically useful. PMID:29596465

  7. Infracolic Approach to the Superior Mesenteric Vessels for a Large Pancreatic Tumor with Right Colon Invasion - A Case Report and Literature Review.

    PubMed

    Bacalbasa, Nicolae; Balescu, Irina

    2017-05-01

    Pancreatic cancer remains one of the most aggressive malignancies and is frequently diagnosed in advanced stages when local invasion is already present. In such cases, curative resection is often not possible; however, in certain cases, local invasion will not preclude radical surgery. We present the case of a 63-year-old patient who was diagnosed with a large pancreatic tumor with right colonic invasion in whom a pancreatoduodenectomy en bloc with right colectomy was successfully performed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Collagen triple helix repeat containing-1 promotes pancreatic cancer progression by regulating migration and adhesion of tumor cells.

    PubMed

    Park, Eun Hye; Kim, Seokho; Jo, Ji Yoon; Kim, Su Jin; Hwang, Yeonsil; Kim, Jin-Man; Song, Si Young; Lee, Dong-Ki; Koh, Sang Seok

    2013-03-01

    Collagen triple helix repeat containing-1 (CTHRC1) is a secreted protein involved in vascular remodeling, bone formation and developmental morphogenesis. CTHRC1 has recently been shown to be expressed in human cancers such as breast cancer and melanoma. In this study, we show that CTHRC1 is highly expressed in human pancreatic cancer tissues and plays a role in the progression and metastasis of the disease. CTHRC1 promoted primary tumor growth and metastatic spread of cancer cells to distant organs in orthotopic xenograft tumor mouse models. Overexpression of CTHRC1 in cancer cells resulted in increased motility and adhesiveness, whereas these cellular activities were diminished by down-regulation of the protein. CTHRC1 activated several key signaling molecules, including Src, focal adhesion kinase, paxillin, mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase and Rac1. Treatment with chemical inhibitors of Src, MEK or Rac1 and expression of dominant-negative Rac1 attenuated CTHRC1-induced cell migration and adhesion. Collectively, our results suggest that CTHRC1 has a role in pancreatic cancer progression and metastasis by regulating migration and adhesion activities of cancer cells.

  9. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans

    PubMed Central

    Ochi, Atsuo; Graffeo, Christopher S.; Zambirinis, Constantinos P.; Rehman, Adeel; Hackman, Michael; Fallon, Nina; Barilla, Rocky M.; Henning, Justin R.; Jamal, Mohsin; Rao, Raghavendra; Greco, Stephanie; Deutsch, Michael; Medina-Zea, Marco V.; Saeed, Usama Bin; Ego-Osuala, Melvin O.; Hajdu, Cristina; Miller, George

    2012-01-01

    Pancreatic ductal adenocarcinoma is an aggressive cancer that interacts with stromal cells to produce a highly inflammatory tumor microenvironment that promotes tumor growth and invasiveness. The precise interplay between tumor and stroma remains poorly understood. TLRs mediate interactions between environmental stimuli and innate immunity and trigger proinflammatory signaling cascades. Our finding that TLR7 expression is upregulated in both epithelial and stromal compartments in human and murine pancreatic cancer led us to postulate that carcinogenesis is dependent on TLR7 signaling. In a mouse model of pancreatic cancer, TLR7 ligation vigorously accelerated tumor progression and induced loss of expression of PTEN, p16, and cyclin D1 and upregulation of p21, p27, p53, c-Myc, SHPTP1, TGF-β, PPARγ, and cyclin B1. Furthermore, TLR7 ligation induced STAT3 activation and interfaced with Notch as well as canonical NF-κB and MAP kinase pathways, but downregulated expression of Notch target genes. Moreover, blockade of TLR7 protected against carcinogenesis. Since pancreatic tumorigenesis requires stromal expansion, we proposed that TLR7 ligation modulates pancreatic cancer by driving stromal inflammation. Accordingly, we found that mice lacking TLR7 exclusively within their inflammatory cells were protected from neoplasia. These data suggest that targeting TLR7 holds promise for treatment of human pancreatic cancer. PMID:23023703

  10. Pathogenic mechanisms of pancreatitis

    PubMed Central

    Manohar, Murli; Verma, Alok Kumar; Venkateshaiah, Sathisha Upparahalli; Sanders, Nathan L; Mishra, Anil

    2017-01-01

    Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pancreatitis characterized by marked stroma formation with a high number of infiltrating granulocytes (such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells (PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in promoting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways (i.e., Transforming growth factor-β/SMAD, mitogen-activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin (IL)-1, IL-1β, IL-6, IL-8 IL-10, IL-18, IL-33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for

  11. Changing the course of pancreatic cancer--Focus on recent translational advances.

    PubMed

    Javle, Milind; Golan, Talia; Maitra, Anirban

    2016-03-01

    In the past decade, insightful preclinical research has led to important breakthroughs in our understanding of pancreatic cancer. Even though the vast majority of pancreatic cancers are KRAS mutated, not all pancreatic cancer tumors are "KRAS equal"; there seems to be varying dependencies on the KRAS pathway. While KRAS-targeting therapies have been disappointing in the clinic, 'synthetic lethal' approaches hold promise in this setting. The pancreatic cancer stromal microenvironment appears to have contradictory roles. While there is evidence to suggest that stromal barrier prevents drug delivery, in other circumstances, stroma can play a protective role and its disruption enhances tumor dissemination. Clinical trials aimed at manipulating the various stromal components are in progress. BRCA mutation-related pancreatic tumors illustrate a unique subtype with enhanced susceptibility to DNA damaging agents and PARP-inhibition. DNA repair defects in cancer extend beyond germ line BRCA mutation and may extend the indications for DNA repair-targeting agents. Immune strategies are an area of active investigation in pancreatic cancer. Although the initial trials of single-agent checkpoint inhibitors have been negative, combinational approaches using immune-modifying agents and vaccines appear promising and goal is to identify an 'immune-therapy responsive' profile in pancreatic cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Herpes simplex virus amplicon delivery of a hypoxia-inducible soluble vascular endothelial growth factor receptor (sFlk-1) inhibits angiogenesis and tumor growth in pancreatic adenocarcinoma.

    PubMed

    Reinblatt, Maura; Pin, Richard H; Bowers, William J; Federoff, Howard J; Fong, Yuman

    2005-12-01

    Tumor hypoxia induces vascular endothelial growth factor (VEGF) expression, which stimulates angiogenesis and tumor proliferation. The VEGF signaling pathway is inhibited by soluble VEGF receptors (soluble fetal liver kinase 1; sFlk-1), which bind VEGF and block its interaction with endothelial cells. Herpes simplex virus (HSV) amplicons are replication-incompetent viruses used for gene delivery. We attempted to attenuate angiogenesis and inhibit pancreatic tumor growth through HSV amplicon-mediated expression of sFlk-1 under hypoxic control. A multimerized hypoxia-responsive enhancer (10 x HRE) was cloned upstream of the sFlk-1 gene (10 x HRE/sFlk-1). A novel HSV amplicon expressing 10 x HRE/sFlk-1 was genetically engineered (HSV10 x HRE/sFlk-1).Human pancreatic adenocarcinoma cells (AsPC1) were transduced with HSV10 x HRE/sFlk-1 and incubated in normoxia (21% oxygen) or hypoxia (1% oxygen). Capillary inhibition was evaluated by human umbilical vein endothelial cell assay. Western blot assessed sFlk-1 expression. AsPC1 flank tumor xenografts (n = 24) were transduced with HSV10 x HRE/sFlk-1. Media from normoxic AsPC1 transduced with HSV10 x HRE/sFlk-1 yielded a 36% reduction in capillary formation versus controls (P < .05), whereas hypoxic AsPC1 yielded a 76% reduction (P < .005). Western blot of AsPC1 transduced with HSV10 x HRE/sFlk-1 demonstrated greater sFlk-1 expression in hypoxia versus normoxia. AsPC1 flank tumors treated with HSV10 x HRE/sFlk-1 exhibited a 59% reduction in volume versus controls (P < .000001). HSV amplicon delivery of a hypoxia-inducible soluble VEGF receptor significantly reduces new vessel formation and tumor growth. Tumor hypoxia can thus be used to direct antiangiogenic therapy to pancreatic adenocarcinoma.

  13. Effects of emodin on the demethylation of tumor-suppressor genes in pancreatic cancer PANC-1 cells.

    PubMed

    Zhang, Hao; Chen, Liang; Bu, He-Qi; Yu, Qing-Jiang; Jiang, Dan-Dan; Pan, Feng-Ping; Wang, Yu; Liu, Dian-Lei; Lin, Sheng-Zhang

    2015-06-01

    Emodin, a natural anthraquinone derivative isolated from Rheum palmatum, has been reported to inhibit the growth of pancreatic cancer cells through different modes of action; yet, the detailed mechanism remains unclear. In the present study, we hypothesized that emodin exerts its antitumor effect by participating in the regulation of the DNA methylation level. Our research showed that emodin inhibited the growth of pancreatic cancer PANC-1 cells in a dose- and time-dependent manner. Dot-blot results showed that 40 µM emodin significantly inhibited genomic 5 mC expression in the PANC-1 cells, and mRNA-Seq showed that different concentrations of emodin could alter the gene expression profile in the PANC-1 cells. BSP confirmed that the methylation levels of P16, RASSF1A and ppENK were decreased, while concomitantly the unmethylated status was increased. RT-PCR and western blotting results confirmed that the low expression or absence of expression of mRNA and protein in the PANC-1 cells was re-expressed following treatment with emodin. In conclusion, our study for the first time suggests that emodin inhibits pancreatic cancer cell growth, which may be related to the demethylation of tumor-suppressor genes. The related mechanism may be through the inhibition of methyltransferase expression.

  14. Double immunohistochemical staining with MUC4/p53 is useful in the distinction of pancreatic adenocarcinoma from chronic pancreatitis: a tissue microarray-based study.

    PubMed

    Bhardwaj, Atul; Marsh, William L; Nash, Jason W; Barbacioru, Catalin C; Jones, Susie; Frankel, Wendy L

    2007-04-01

    Immunohistochemical stains have been used for the distinction of pancreatic adenocarcinoma from chronic pancreatitis. To determine if a double stain for MUC/p53 improved specificity and sensitivity for distinction of pancreatic adenocarcinoma from chronic pancreatitis by comparing maspin, mucin 4 (MUC4), p53, Smad4, and the double stain MUC4/p53. Seventy-four pancreatic adenocarcinomas and 19 chronic pancreatitis cases were retrieved from archival files. Tissue cores were arrayed to create a tissue microarray of 2-mm cores. Sections were stained with antibodies against maspin, MUC4, p53, and Smad4. Additionally, a 2-color, double stain for MUC4 and p53 was developed and evaluated. Five percent or greater staining in either of the cores was considered positive. Intensity (0, 1, 2) and extent (%) of tumor cells staining was also determined. The sensitivity for distinction of pancreatic adenocarcinoma from chronic pancreatitis with maspin, MUC4, p53, and Smad4 was 90%, 77%, 60%, and 63%, respectively; the specificity was 67%, 78%, 88%, and 88%, respectively. When MUC4 and p53 were combined in a double stain, and positive staining for either considered a positive result, the sensitivity increased to 96% but specificity was 73%. When immunoreactivity for both antibodies was necessary for a positive result, sensitivity fell to 39% but specificity was 100%. No correlation was found between intensity or extent of staining with any of the individual stains and tumor differentiation. The double immunohistochemical stain for MUC4/p53 can be a useful diagnostic tool in conjunction with the hematoxylin-eosin-stained section for pancreatic adenocarcinoma, particularly when limited tumor is available for multiple stains.

  15. IGRT/ART phantom with programmable independent rib cage and tumor motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Olivier C. L., E-mail: o.haas@coventry.ac.uk; Mills, John A.; Land, Imke

    2014-02-15

    Purpose: This paper describes the design and experimental evaluation of the Methods and Advanced Equipment for Simulation and Treatment in Radiation Oncology (MAESTRO) thorax phantom, a new anthropomorphic moving ribcage combined with a 3D tumor positioning system to move target inserts within static lungs. Methods: The new rib cage design is described and its motion is evaluated using Vicon Nexus, a commercial 3D motion tracking system. CT studies at inhale and exhale position are used to study the effect of rib motion and tissue equivalence. Results: The 3D target positioning system and the rib cage have millimetre accuracy. Each axismore » of motion can reproduce given trajectories from files or individually programmed sinusoidal motion in terms of amplitude, period, and phase shift. The maximum rib motion ranges from 7 to 20 mm SI and from 0.3 to 3.7 mm AP with LR motion less than 1 mm. The repeatability between cycles is within 0.16 mm root mean square error. The agreement between CT electron and mass density for skin, ribcage, spine hard and inner bone as well as cartilage is within 3%. Conclusions: The MAESTRO phantom is a useful research tool that produces programmable 3D rib motions which can be synchronized with 3D internal target motion. The easily accessible static lungs enable the use of a wide range of inserts or can be filled with lung tissue equivalent and deformed using the target motion system.« less

  16. Current Knowledge on Pancreatic Cancer

    PubMed Central

    Iovanna, Juan; Mallmann, Maria Cecilia; Gonçalves, Anthony; Turrini, Olivier; Dagorn, Jean-Charles

    2012-01-01

    Pancreatic cancer is the fourth leading cause of cancer death with a median survival of 6 months and a dismal 5-year survival rate of 3–5%. The development and progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes, and the deregulation of many signaling pathways. Therefore, the strategies targeting these molecules as well as their downstream signaling could be promising for the prevention and treatment of pancreatic cancer. However, although targeted therapies for pancreatic cancer have yielded encouraging results in vitro and in animal models, these findings have not been translated into improved outcomes in clinical trials. This failure is due to an incomplete understanding of the biology of pancreatic cancer and to the selection of poorly efficient or imperfectly targeted agents. In this review, we will critically present the current knowledge regarding the molecular, biochemical, clinical, and therapeutic aspects of pancreatic cancer. PMID:22655256

  17. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis.

    PubMed

    Qian, Jiaying; Niu, Jiangong; Li, Ming; Chiao, Paul J; Tsao, Ming-Sound

    2005-06-15

    Genetic analysis of pancreatic ductal adenocarcinomas and their putative precursor lesions, pancreatic intraepithelial neoplasias (PanIN), has shown a multistep molecular paradigm for duct cell carcinogenesis. Mutational activation or inactivation of the K-ras, p16(INK4A), Smad4, and p53 genes occur at progressive and high frequencies in these lesions. Oncogenic activation of the K-ras gene occurs in >90% of pancreatic ductal carcinoma and is found early in the PanIN-carcinoma sequence, but its functional roles remain poorly understood. We show here that the expression of K-ras(G12V) oncogene in a near diploid HPV16-E6E7 gene immortalized human pancreatic duct epithelial cell line originally derived from normal pancreas induced the formation of carcinoma in 50% of severe combined immunodeficient mice implanted with these cells. A tumor cell line established from one of these tumors formed ductal cancer when implanted orthotopically. These cells also showed increased activation of the mitogen-activated protein kinase, AKT, and nuclear factor-kappaB pathways. Microarray expression profiling studies identified 584 genes whose expression seemed specifically up-regulated by the K-ras oncogene expression. Forty-two of these genes have been reported previously as differentially overexpressed in pancreatic cancer cell lines or primary tumors. Real-time PCR confirmed the overexpression of a large number of these genes. Immunohistochemistry done on tissue microarrays constructed from PanIN and pancreatic cancer samples showed laminin beta3 overexpression starting in high-grade PanINs and occurring in >90% of pancreatic ductal carcinoma. The in vitro modeling of human pancreatic duct epithelial cell transformation may provide mechanistic insights on gene expression changes that occur during multistage pancreatic duct cell carcinogenesis.

  18. Liquid biopsy in pancreatic cancer: the beginning of a new era

    PubMed Central

    Yadav, Dipesh Kumar; Bai, Xueli; Yadav, Rajesh Kumar; Singh, Alina; Li, Guogang; Ma, Tao; Chen, Wei; Liang, Tingbo

    2018-01-01

    With dismal survival rate pancreatic cancer remains one of the most aggressive and devastating malignancy. Predominantly, due to the absence of a dependable methodology for early identification and limited therapeutic options for advanced disease. However, it takes over 17 years to develop pancreatic cancer from initiation of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall survival dramatically, thus, providing a window of opportunity for early detection. Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based on mutated genes. Hence, we need simple and standard, minimally invasive test that can monitor those altered genes or their associated pathways in time for the success of precision medicine, and liquid biopsy seems to be one answer to all these questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, liquid biopsy based development of circulating tumor cells derived xenografts, 3D organoids system, real-time monitoring of genetic mutations by circulating tumor DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer is frantically done on the premise of CA19-9 and radiological features only, which doesn't give a picture of genetic mutations and epigenetic alteration involved. In this manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences low diagnostic accuracy. This review article discusses the current state of liquid biopsy in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of research in the light of circulating tumor cells, circulating tumor DNA and exosomes.

  19. Stimulation of islet cell proliferation enhances pancreatic ductal carcinogenesis in the hamster model.

    PubMed Central

    Pour, P. M.; Kazakoff, K.

    1996-01-01

    Previous studies have shown that some N-nitrosobis (2-oxopropyl)amine (BOP)-induced ductal/ductular pancreatic cancers in the hamster model develop within islets and that streptozotocin (SZ) pretreatment that caused islet degeneration and atrophy inhibits pancreatic cancer induction. Hence, it appears that in this model islets play a significant role in exocrine pancreatic carcinogenesis. To examine whether stimulation of islet cell proliferation (nesidioblastosis) enhances pancreatic exocrine cancer development, we tested the effect of the pancreatic carcinogen BOP in hamsters after induction of nesidioblastosis by cellophane wrapping. Before wrapping, hamsters were treated with SZ to inhibit pancreatic tumor induction in the unwrapped pancreatic tissues. Control groups with a wrapped pancreas did not receive SZ. Six weeks after SZ treatment, all hamsters were treated with BOP (10 mg/kg body weight) weekly for 10 weeks and the experiment was terminated 38 weeks after the last BOP treatment. Many animals recovered from their diabetes at the time when BOP was injected and many more after BOP treatment. Only nine hamsters remained diabetic until the end of the experiment. Both SZ-treated and control groups developed proliferative and malignant pancreatic ductal-type lesions primarily in the wrapped area (47%) but less frequently in the larger segments of the pancreas, including the splenic lobe (34%), gastric lobe (13%), and duodenal lobe (6%). Only a few lesions developed in the unwrapped pancreatic region of nine diabetic hamsters with atrophic islets, whereas seven of these hamsters had tumors in the wrapped area. Histologically, most tumors appeared to originate from islets, many invasive carcinomas had foci of islets, and some tumor cells showed reactivity with anti-insulin. The results show that, in the BOP hamster model, islets are the site of formation of the major fraction of exocrine pancreatic cancer and that induction of nesidioblastosis enhances

  20. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia.

    PubMed

    Badea, Liviu; Herlea, Vlad; Dima, Simona Olimpia; Dumitrascu, Traian; Popescu, Irinel

    2008-01-01

    The precise details of pancreatic ductal adenocarcinoma (PDAC) pathogenesis are still insufficiently known, requiring the use of high-throughput methods. However, PDAC is especially difficult to study using microarrays due to its strong desmoplastic reaction, which involves a hyperproliferating stroma that effectively "masks" the contribution of the minoritary neoplastic epithelial cells. Thus it is not clear which of the genes that have been found differentially expressed between normal and whole tumor tissues are due to the tumor epithelia and which simply reflect the differences in cellular composition. To address this problem, laser microdissection studies have been performed, but these have to deal with much smaller tissue sample quantities and therefore have significantly higher experimental noise. In this paper we combine our own large sample whole-tissue study with a previously published smaller sample microdissection study by Grützmann et al. to identify the genes that are specifically overexpressed in PDAC tumor epithelia. The overlap of this list of genes with other microarray studies of pancreatic cancer as well as with the published literature is impressive. Moreover, we find a number of genes whose over-expression appears to be inversely correlated with patient survival: keratin 7, laminin gamma 2, stratifin, platelet phosphofructokinase, annexin A2, MAP4K4 and OACT2 (MBOAT2), which are all specifically upregulated in the neoplastic epithelia, rather than the tumor stroma. We improve on other microarray studies of PDAC by putting together the higher statistical power due to a larger number of samples with information about cell-type specific expression and patient survival.

  1. Preventive medicine for von Hippel-Lindau disease-associated pancreatic neuroendocrine tumors.

    PubMed

    Krauss, Tobias; Ferrara, Alfonso Massimiliano; Links, Thera P; Wellner, Ulrich; Bancos, Irina; Kvachenyuk, Andrey; Villar Gómez de Las Heras, Karina; Yukina, Marina; Petrov, Roman; Bullivant, Garrett; von Duecker, Laura; Jadhav, Swati S; Ploeckinger, Ursula; Welin, Staffan; Schalin-Jantti, Camilla; Gimm, Oliver; Pfeifer, Marija; Ngeow, Joanne; Hasse-Lazar, Kornelia; Sanso, Gabriela; Qi, Xiao-Ping; Ugurlu, Umit; Diaz, Rene Eduardo; Wohllk, Nelson; Peczkowska, Mariola; Aberle, Jens; Lourenço, Delmar Muniz; Pereira, Maria Adelaide; Fragoso, Maria Candida Barisson Villares; Hoff, Ana O; Almeida, Madson Queiroz; Violante, Alice H D; Quidute, Ana R P; Zhang, Zheiwei; Recasens, Monica; Robles Diaz, Luis; Kunavisarut, Tada; Wannachalee, Taweesak; Sirinvaravong, Sirinart; Jonasch, Eric; Grozinsky-Glasberg, Simona; Fraenkel, Merav; Beltsevich, Dmitry; Egorov, Viacheslav I; Bausch, Dirk; Schott, Matthias; Tiling, Nikolaus; Pennelli, Gianmaria; Zschiedrich, Stefan; Därr, Roland; Ruf, Juri; Denecke, Timm; Link, Karl-Heinrich; Zovato, Stefania; von Dobschuetz, Ernst; Yaremchuk, Svetlana; Amthauer, Holger; Makay, Ozer; Patocs, Attila; Walz, Martin K; Huber, Tobias B; Seufert, Jochen; Hellman, Per; Kim, Raymond H; Kuchinskaya, Ekaterina; Schiavi, Francesca; Malinoc, Angelica; Reisch, Nicole; Jarzab, Barbara; Barontini, Marta; Januszewicz, Andrzej; Shah, Nalini; Young, William; Opocher, Giuseppe; Eng, Charis; Neumann, Hartmut P H; Bausch, Birke

    2018-05-10

    Pancreatic neuroendocrine tumors (PanNETs) are rare in von Hippel-Lindau disease (VHL) but cause serious morbidity and mortality. Management guidelines for VHL-PanNETs continue to be based on limited evidence, and survival data to guide surgical management are lacking. We established the European-American-Asian-VHL-PanNET-Registry to assess data for risks for metastases, survival and long-term outcomes to provide best management recommendations. Of 2,330 VHL patients, 273 had a total of 484 PanNETs. Median age at diagnosis of PanNET was 35 years (range 10-75). Fifty-five (20%) patients had metastatic PanNETs. Metastatic PanNETs were significantly larger (median size 5 vs 2 cm; P<0.001) and tumor volume doubling time (TVDT) was faster (22 vs 126 months; P=0.001). All metastatic tumors were ≥2.8 cm. Codons 161 and 167 were hotspots for VHL germline mutations with enhanced risk for metastatic PanNETs. Multivariate prediction modeling disclosed maximum tumor diameter and TVDT as significant predictors for metastatic disease (positive and negative predictive values of 51% and 100% for diameter cutoff ≥2.8 cm, 44% and 91% for TVDT cutoff of ≤24 months). In 117/273 patients, PanNETs >1.5 cm in diameter were operated. Ten-year survival was significantly longer in operated vs non-operated patients, in particular for PanNETs <2.8cm vs ≥2.8 cm (94% vs 85% by 10 years; P=0.020; 80% vs 50% at 10 years; P=0.030). This study demonstrates that patients with PanNET approaching the cut-off diameter of 2.8 cm should be operated. Mutations in exon 3, especially of codons 161/167 are at enhanced risk for metastatic PanNETs. Survival is significantly longer in operated non-metastatic VHL-PanNETs.

  2. Six Degrees-of-Freedom Prostate and Lung Tumor Motion Measurements Using Kilovoltage Intrafraction Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chen-Yu; Tehrani, Joubin Nasehi; Ng, Jin Aun

    2015-02-01

    Purpose: Tumor positional uncertainty has been identified as a major issue that deteriorates the efficacy of radiation therapy. Tumor rotational movement, which is not well understood, can result in significant geometric and dosimetric inaccuracies. The objective of this study was to measure 6 degrees-of-freedom (6 DoF) prostate and lung tumor motion, focusing on the more novel rotation, using kilovoltage intrafraction monitoring (KIM). Methods and Materials: Continuous kilovoltage (kV) projections of tumors with gold fiducial markers were acquired during radiation therapy for 267 fractions from 10 prostate cancer patients and immediately before or after radiation therapy for 50 fractions from 3more » lung cancer patients. The 6 DoF motion measurements were determined from the individual 3-dimensional (3D) marker positions, after using methods to reject spurious and smooth noisy data, using an iterative closest point algorithm. Results: There were large variations in the magnitude of the tumor rotation among different fractions and patients. Various rotational patterns were observed. The average prostate rotation angles around the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) axes were 1.0 ± 5.0°, 0.6 ± 3.3°, and 0.3 ± 2.0°, respectively. For 35% of the time, the prostate rotated more than 5° about the LR axis, indicating the need for intrafractional adaptation during radiation delivery. For lung patients, the average LR, SI, and AP rotation angles were 0.8 ± 4.2°, −0.8 ± 4.5°, and 1.7 ± 3.1°, respectively. For about 30% of the time, the lung tumors rotated more than 5° around the SI axis. Respiration-induced rotation was detected in 2 of the 3 lung patients. Conclusions: The prostate and lung tumors were found to undergo rotations of more than 5° for about a third of the time. The lung tumor data represent the first 6 DoF tumor motion measured by kV images. The 6 DoF KIM method can enable rotational and

  3. Anti-Hu paraneoplastic brainstem encephalitis caused by a pancreatic neuroendocrine tumor presenting with central hypoventilation.

    PubMed

    Najjar, Marc; Taylor, Andrew; Agrawal, Surbhi; Fojo, Tito; Merkler, Alexander E; Rosenblum, Marc K; Lennihan, Laura; Kluger, Michael D

    2017-06-01

    Paraneoplastic neurological syndromes are rare autoimmune manifestations of malignancies associated with specific antibodies. Anti-Hu associated brainstem encephalitis, a well-described syndrome, usually presents subacutely with preferential involvement of the medulla. Anti-Hu antibodies target intraneuronal antigens and are therefore highly correlated with neurological syndromes when present concomitantly with a neoplasm. Reported is a case of anti-Hu brainstem encephalitis associated with a pancreatic neuroendocrine tumor (PNET) presenting with central hypoventilation. This is the first described case of brainstem encephalitis associated with a well-differentiated PNET as well as the first case of Anti-Hu antibodies associated with a PNET. There are no standardized protocols for the treatment of paraneoplastic brainstem encephalitis however, as in the present case, surgical resection and oncological treatment of the tumor is the first line treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Improved Pancreatic Adenocarcinoma Diagnosis in Jaundiced and Non-Jaundiced Pancreatic Adenocarcinoma Patients through the Combination of Routine Clinical Markers Associated to Pancreatic Adenocarcinoma Pathophysiology.

    PubMed

    Ferri, María José; Saez, Marc; Figueras, Joan; Fort, Esther; Sabat, Miriam; López-Ben, Santiago; de Llorens, Rafael; Aleixandre, Rosa Núria; Peracaula, Rosa

    2016-01-01

    There is still no reliable biomarker for the diagnosis of pancreatic adenocarcinoma. Carbohydrate antigen 19-9 (CA 19-9) is a tumor marker only recommended for pancreatic adenocarcinoma follow-up. One of the clinical problems lies in distinguishing between this cancer and other benign pancreatic diseases such as chronic pancreatitis. In this study we will assess the value of panels of serum molecules related to pancreatic cancer physiopathology to determine whether alone or in combination could help to discriminate between these two pathologies. CA 19-9, carcinoembryonic antigen (CEA), C-reactive protein, albumin, insulin growth factor-1 (IGF-1) and IGF binding protein-3 were measured using routine clinical analyzers in a cohort of 47 pancreatic adenocarcinoma, 20 chronic pancreatitis and 15 healthy controls. The combination of CA 19-9, IGF-1 and albumin resulted in a combined area under the curve (AUC) of 0.959 with 93.6% sensitivity and 95% specificity, much higher than CA 19-9 alone. An algorithm was defined to classify the patients as chronic pancreatitis or pancreatic cancer with the above specificity and sensitivity. In an independent validation group of 20 pancreatic adenocarcinoma and 13 chronic pancreatitis patients, the combination of the four molecules classified correctly all pancreatic adenocarcinoma and 12 out of 13 chronic pancreatitis patients. Although this panel of markers should be validated in larger cohorts, the high sensitivity and specificity values and the convenience to measure these parameters in clinical laboratories shows great promise for improving pancreatic adenocarcinoma diagnosis.

  5. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis

    PubMed Central

    Zambirinis, Constantinos P.; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H.; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D.; Tuveson, David

    2015-01-01

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. PMID:26481685

  6. [Pancreatic cancer. Epidemiology, etiology, diagnosis and therapy].

    PubMed

    Weber, W; von Essen, C F; Metzger, U; Stalder, G A

    1983-03-26

    The prognosis of pancreatic adenocarcinoma is still very poor. Research activities have, however, been instituted recently in all fields. Epidemiologic studies indicate etiologic roles of diabetes mellitus, smoking, and meat and coffee consumption. Sonography of the pancreas is at present the best screening method. The significance of computerized tomography, endoscopic retrograde cholangiopancreatography (ERCP), arteriography and tumor markers is discussed. A TNM staging system and prognostic factors are presented. Resection is the treatment of choice for organ-limited pancreatic cancer. The development of new radiation modalities (e.g. pi-mesons) promises improved loco-regional tumor control. The most effective chemotherapy consists of combinations containing 5-fluorouracil, adriamycin and mitomycin-C. Intensive future research in the field of pancreatic cancer is essential if the prognosis of this devastating disease is to be improved.

  7. Mutant KRAS Circulating Tumor DNA Is an Accurate Tool for Pancreatic Cancer Monitoring.

    PubMed

    Perets, Ruth; Greenberg, Orli; Shentzer, Talia; Semenisty, Valeria; Epelbaum, Ron; Bick, Tova; Sarji, Shada; Ben-Izhak, Ofer; Sabo, Edmond; Hershkovitz, Dov

    2018-05-01

    Many new pancreatic cancer treatment combinations have been discovered in recent years, yet the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains grim. The advent of new treatments highlights the need for better monitoring tools for treatment response, to allow a timely switch between different therapeutic regimens. Circulating tumor DNA (ctDNA) is a tool for cancer detection and characterization with growing clinical use. However, currently, ctDNA is not used for monitoring treatment response. The high prevalence of KRAS hotspot mutations in PDAC suggests that mutant KRAS can be an efficient ctDNA marker for PDAC monitoring. Seventeen metastatic PDAC patients were recruited and serial plasma samples were collected. CtDNA was extracted from the plasma, and KRAS mutation analysis was performed using next-generation sequencing and correlated with serum CA19-9 levels, imaging, and survival. Plasma KRAS mutations were detected in 5/17 (29.4%) patients. KRAS ctDNA detection was associated with shorter survival (8 vs. 37.5 months). Our results show that, in ctDNA positive patients, ctDNA is at least comparable to CA19-9 as a marker for monitoring treatment response. Furthermore, the rate of ctDNA change was inversely correlated with survival. Our results confirm that mutant KRAS ctDNA detection in metastatic PDAC patients is a poor prognostic marker. Additionally, we were able to show that mutant KRAS ctDNA analysis can be used to monitor treatment response in PDAC patients and that ctDNA dynamics is associated with survival. We suggest that ctDNA analysis in metastatic PDAC patients is a readily available tool for disease monitoring. Avoiding futile chemotherapy in metastatic pancreatic ductal adenocarcinoma (PDAC) patients by monitoring response to treatment is of utmost importance. A novel biomarker for monitoring treatment response in PDAC, using mutant KRAS circulating tumor DNA (ctDNA), is proposed. Results, although limited by small sample numbers

  8. Pancreatoduodenectomy for circumportal pancreas accompanying the retroportal pancreatic duct: a case report and review of the literature.

    PubMed

    Shonaka, Tatsuya; Inagaki, Mitsuhiro; Akabane, Hiromitsu; Yanagida, Naoyuki; Shomura, Hiroki; Kudo, Takeaki; Orimo, Tatsuya; Oikawa, Futoshi; Aiyama, Takeshi; Yanagawa, Nobuyuki; Oikawa, Kensuke; Nakano, Shiro

    2012-10-01

    Circumportal pancreas (CP) is an extremely rare pancreatic fusion anomaly which is usually asymptomatic. This report presents the case of a patient with a tumor in the head of a CP and the retroportal accessory pancreatic duct in the pancreatic tissue behind the portal vein. A 53-year-old male was diagnosed with a nonfunctioning neuroendocrine tumor of the pancreas and resection of the tumor was scheduled. The patient was revealed to have CP on preoperative computed tomography and endoscopic retrograde cholangiopancreatography, which showed the pancreatic tissue encircling the portal vein and the retroportal accessory pancreatic duct. The patient safely underwent pylorus-preserving pancreatoduodenectomy reconstructed with pancreaticogastrostomy.

  9. Antitumor Activities of Rauwolfia vomitoria Extract and Potentiation of Gemcitabine Effects Against Pancreatic Cancer.

    PubMed

    Yu, Jun; Chen, Qi

    2014-05-01

    Pancreatic cancer is one of the most lethal malignancies with very limited treatment option. In the effort of enhancing the effect of the conventional chemotherapeutic drug gemcitabine against pancreatic cancer, we investigatedin vitroandin vivothe anticancer effect of a β-carboline-enriched extract from the plantRauwolfia vomitoria(Rau), either alone or in combination with gemcitabine, in preclinical pancreatic cancer models. Rau induced apoptosis in pancreatic cancer cells in a concentration-dependent manner, and completely inhibited colony formation of PANC-1 cells in soft agar. The combination of Rau and gemcitabine had synergistic effect in inhibiting cell growth with dose reduction effect for gemcitabine. In an orthotopic pancreatic cancer mouse model, PANC-1 tumor growth was significantly suppressed by Rau treatment. Metastasis was inhibited by Rau. Adding Rau to gemcitabine treatment reduced tumor burden and metastatic potential in the gemcitabine non-responsive tumor. These data suggest that Rau possesses anti-pancreatic cancer activity and could improve effect of gemcitabine. © The Author(s) 2014.

  10. Multimodality Management of "Borderline Resectable" Pancreatic Neuroendocrine Tumors: Report of a Single-Institution Experience.

    PubMed

    Ambe, Chenwi M; Nguyen, Phuong; Centeno, Barbara A; Choi, Junsung; Strosberg, Jonathan; Kvols, Larry; Hodul, Pamela; Hoffe, Sarah; Malafa, Mokenge P

    2017-01-01

    Pancreatic neuroendocrine tumors (PanNETs) constitute approximately 3% of pancreatic neoplasms. Like patients with pancreatic ductal adenocarcinoma (PDAC), some of these patients present with "borderline resectable disease." For these patients, an optimal treatment approach is lacking. We report our institution's experience with borderline resectable PanNETs using multimodality treatment. We identified patients with borderline resectable PanNETs who had received neoadjuvant therapy at our institution between 2000 and 2013. The definition of borderline resectability was based on National Comprehensive Cancer Network criteria for PDAC. Neoadjuvant regimen, radiographic response, pathologic response, surgical margins, nodal retrieval, number of positive nodes, and recurrence were documented. Statistics were descriptive. Of 112 patients who underwent surgical resection for PanNETs during the study period, 23 received neoadjuvant therapy, 6 of whom met all inclusion criteria and had borderline resectable disease. These 6 patients received at least 1 cycle of temozolomide and capecitabine, with 3 also receiving radiation. All had radiographic evidence of treatment response. Four (67%) had negative-margin resections. Four patients had histologic evidence of a moderate response. Follow-up (3.0-4.3 years) indicated that all patients were alive, with 5/6 free of disease (1 patient with metastatic disease still on treatment without progression). A multimodality treatment strategy (neoadjuvant temozolomide and capecitabine ± radiation) can be successfully applied to patients with PanNETs who meet NCCN borderline resectable criteria for PDAC. To our knowledge, this is the first report of the use of a multimodality protocol in the treatment of patients with borderline resectable PanNETs.

  11. Technical Note: Intrafractional changes in time lag relationship between anterior-posterior external and superior-inferior internal motion signals in abdominal tumor sites.

    PubMed

    Regmi, Rajesh; Lovelock, D Michael; Zhang, Pengpeng; Pham, Hai; Xiong, Jianping; Yorke, Ellen D; Goodman, Karyn A; Wu, Abraham J; Mageras, Gig S

    2015-06-01

    To investigate constancy, within a treatment session, of the time lag relationship between implanted markers in abdominal tumors and an external motion surrogate. Six gastroesophageal junction and three pancreatic cancer patients (IRB-approved protocol) received two cone-beam CTs (CBCT), one before and one after treatment. Time between scans was less than 30 min. Each patient had at least one implanted fiducial marker near the tumor. In all scans, abdominal displacement (Varian RPM) was recorded as the external motion signal. Purpose-built software tracked fiducials, representing internal signal, in CBCT projection images. Time lag between superior-inferior (SI) internal and anterior-posterior external signals was found by maximizing the correlation coefficient in each breathing cycle and averaging over all cycles. Time-lag-induced discrepancy between internal SI position and that predicted from the external signal (external prediction error) was also calculated. Mean ± standard deviation time lag, over all scans and patients, was 0.10 ± 0.07 s (range 0.01-0.36 s). External signal lagged the internal in 17/18 scans. Change in time lag between pre- and post-treatment CBCT was 0.06 ± 0.07 s (range 0.01-0.22 s), corresponding to 3.1% ± 3.7% (range 0.6%-10.8%) of gate width (range 1.6-3.1 s). In only one patient, change in time lag exceeded 10% of the gate width. External prediction error over all scans of all patients varied from 0.1 ± 0.1 to 1.6 ± 0.4 mm. Time lag between internal motion along SI and external signals is small compared to the treatment gate width of abdominal patients examined in this study. Change in time lag within a treatment session, inferred from pre- to post-treatment measurements is also small, suggesting that a single measurement of time lag at the session start is adequate. These findings require confirmation in a larger number of patients.

  12. Technical Note: Intrafractional changes in time lag relationship between anterior–posterior external and superior–inferior internal motion signals in abdominal tumor sites

    PubMed Central

    Regmi, Rajesh; Lovelock, D. Michael; Zhang, Pengpeng; Pham, Hai; Xiong, Jianping; Yorke, Ellen D.; Goodman, Karyn A.; Wu, Abraham J.; Mageras, Gig S.

    2015-01-01

    Purpose: To investigate constancy, within a treatment session, of the time lag relationship between implanted markers in abdominal tumors and an external motion surrogate. Methods: Six gastroesophageal junction and three pancreatic cancer patients (IRB-approved protocol) received two cone-beam CTs (CBCT), one before and one after treatment. Time between scans was less than 30 min. Each patient had at least one implanted fiducial marker near the tumor. In all scans, abdominal displacement (Varian RPM) was recorded as the external motion signal. Purpose-built software tracked fiducials, representing internal signal, in CBCT projection images. Time lag between superior–inferior (SI) internal and anterior–posterior external signals was found by maximizing the correlation coefficient in each breathing cycle and averaging over all cycles. Time-lag-induced discrepancy between internal SI position and that predicted from the external signal (external prediction error) was also calculated. Results: Mean ± standard deviation time lag, over all scans and patients, was 0.10 ± 0.07 s (range 0.01–0.36 s). External signal lagged the internal in 17/18 scans. Change in time lag between pre- and post-treatment CBCT was 0.06 ± 0.07 s (range 0.01–0.22 s), corresponding to 3.1% ± 3.7% (range 0.6%–10.8%) of gate width (range 1.6–3.1 s). In only one patient, change in time lag exceeded 10% of the gate width. External prediction error over all scans of all patients varied from 0.1 ± 0.1 to 1.6 ± 0.4 mm. Conclusions: Time lag between internal motion along SI and external signals is small compared to the treatment gate width of abdominal patients examined in this study. Change in time lag within a treatment session, inferred from pre- to post-treatment measurements is also small, suggesting that a single measurement of time lag at the session start is adequate. These findings require confirmation in a larger number of patients. PMID:26127033

  13. Ultrasound-guided direct delivery of 3-bromopyruvate blocks tumor progression in an orthotopic mouse model of human pancreatic cancer.

    PubMed

    Ota, Shinichi; Geschwind, Jean-Francois H; Buijs, Manon; Wijlemans, Joost W; Kwak, Byung Kook; Ganapathy-Kanniappan, Shanmugasundaram

    2013-06-01

    Studies in animal models of cancer have demonstrated that targeting tumor metabolism can be an effective anticancer strategy. Previously, we showed that inhibition of glucose metabolism by the pyruvate analog, 3-bromopyruvate (3-BrPA), induces anticancer effects both in vitro and in vivo. We have also documented that intratumoral delivery of 3-BrPA affects tumor growth in a subcutaneous tumor model of human liver cancer. However, the efficacy of such an approach in a clinically relevant orthotopic tumor model has not been reported. Here, we investigated the feasibility of ultrasound (US) image-guided delivery of 3-BrPA in an orthotopic mouse model of human pancreatic cancer and evaluated its therapeutic efficacy. In vitro, treatment of Panc-1 cells with 3-BrPA resulted in a dose-dependent decrease in cell viability. The loss of viability correlated with a dose-dependent decrease in the intracellular ATP level and lactate production confirming that disruption of energy metabolism underlies these 3-BrPA-mediated effects. In vivo, US-guided delivery of 3-BrPA was feasible and effective as demonstrated by a marked decrease in tumor size on imaging. Further, the antitumor effect was confirmed by (1) a decrease in the proliferative potential by Ki-67 immunohistochemical staining and (2) the induction of apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphospate nick end labeling staining. We therefore demonstrate the technical feasibility of US-guided intratumoral injection of 3-BrPA in a mouse model of human pancreatic cancer as well as its therapeutic efficacy. Our data suggest that this new therapeutic approach consisting of a direct intratumoral injection of antiglycolytic agents may represent an exciting opportunity to treat patients with pancreas cancer.

  14. Pancreatic cancer ascites xenograft–an expeditious model mirroring advanced therapeutic resistant disease

    PubMed Central

    Schvimer, Michael; Atias, Dikla; Halperin, Sharon; Buzhor, Ella; Raitses-Gurevich, Maria; Cohen, Keren; Pri-Chen, Sara; Wilson, Julie; Denroche, Robert E.; Lungu, Ilinca; Bartlett, John M.S.; Mbabaali, Faridah; Yarden, Yosef; Nataraj, Nishanth Belugali; Gallinger, Steven; Berger, Raanan

    2017-01-01

    Pancreatic ductal adenocarcinoma has limited treatment options. There is an urgent need for developing appropriate pre-clinical models recapitulating metastatic disease, the most common clinical scenario at presentation. Ascites accumulation occurs in up to 20–30% of patients with pancreatic cancer; this milieu represents a highly cellular research resource of metastatic peritoneal spread. In this study, we utilized pancreatic ascites/pleural effusion cancer cells to establish patient derived xenografts. Ascites/pleural effusion-patient derived xenografts were established from twelve independent cases. Xenografts were serially passed in nude mice and tissue bio-specimen banking has been established. Histopathology of emergent tumors demonstrates poorly to moderately differentiated, glandular and mucin producing tumors, mirroring morphology of primary pancreatic cancer tumors. Whole genome sequencing of six patient derived xenografts samples demonstrates common mutations and structural variations similar to those reported in primary pancreatic cancer. Xenograft tumors were dissociated to single-cells and in-vitro drug sensitivity screen assays demonstrated chemo-resistance, correlating with patient clinical scenarios, thus serving as a platform for clinically relevant translational research. Therefore, establishment of this novel ascites/pleural effusion patient derived xenograft model, with extensive histopathology and genomic characterization, opens an opportunity for the study of advanced aggressive pancreatic cancer. Characterization of metastatic disease and mechanisms of resistance to therapeutics may lead to the development of novel drug combinations. PMID:28489577

  15. Broncho-biliary fistula secondary to biliary obstruction and lung abscess in a patient with pancreatic neuro-endocrine tumor.

    PubMed

    Panda, Dipanjan; Aggarwal, Mayank; Yadav, Vikas; Kumar, Sachin; Mukund, Amar; Baghmar, Saphalta

    2016-06-01

    We present a case report of broncho-biliary fistula that developed due to the blockage of biliary stent placed during the management of pancreatic neuroendocrine tumor (pNET); diagnosed on high clinical suspicion, percutaneous cholangiogram and contrast enhanced computed tomography (CECT); and successfully treated with percutaneous transhepatic biliary drainage (PTBD). Copyright © 2016 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

  16. Hyaluronic acid-coated, prodrug-based nanostructured lipid carriers for enhanced pancreatic cancer therapy.

    PubMed

    Lu, Zhihe; Su, Jingrong; Li, Zhengrong; Zhan, Yuzhu; Ye, Decai

    2017-01-01

    Gemcitabine (GEM) and Baicalein (BCL) are reported to have anti-tumor effects including pancreatic cancer. Hyaluronic acid (HA) can bind to over-expressed receptors in various kinds of cancer cells. The aim of this study is to develop prodrugs containing HA, BCL and GEM, and construct nanomedicine incorporate GEM and BCL in the core and HA on the surface. This system could target the cancer cells and co-deliver the drugs. GEM-stearic acid lipid prodrug (GEM-SA) and hyaluronic acid-amino acid-baicalein prodrug (HA-AA-BCL) were synthesized. Then, GEM and BCL prodrug-based targeted nanostructured lipid carriers (HA-GEM-BCL NLCs) were prepared by the nanoprecipitation technique. The in vitro cytotoxicity studies of the NLCs were evaluated on AsPC1 pancreatic cancer cell line. In vivo anti-tumor effects were observed on the murine-bearing pancreatic cancer model. HA-GEM-BCL NLCs were effective in entering pancreatic cancer cells over-expressing HA receptors, and showed cytotoxicity of tumor cells in vitro. In vivo study revealed significant tumor growth inhibition ability of HA-GEM-BCL NLCs in murine pancreatic cancer model. It could be concluded that HA-GEM-BCL NLCs could be featured as promising co-delivery, tumor-targeted nanomedicine for the treatment of cancers.

  17. Mechanoregulatory tumor-stroma crosstalk in pancreatic cancer: Measurements of the effects of extracellular matrix mechanics on tumor growth behavior, and vice-versa, to inform therapeutics

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan; Jones, Dustin; El-Hamidi, Hamid; Cramer, Gwendolyn; Hanna, William; Caide, Andrew; Jafari, Seyedehrojin

    The rheological properties of the extracellular matrix (ECM) have been shown to play key roles in regulating tumor growth behavior through mechanotranduction pathways. The role of the mechanical microenvironment may be particularly important tumors of the pancreas, noted for an abundance of rigid fibrotic stroma, implicated in therapeutic resistance. At the same time, cancer cells and their stromal partners (e.g. tumor associated fibroblasts) continually alter the mechanical microenvironment in response to extracellular physical and biochemical cues as part of a two-way mechanoregulatory dialog. Here, we describe experimental studies using 3D pancreatic cell cultures with customized mechanical properties, combined with optical microrheology to provide insight into tumor-driven matrix remodeling. Quantitative microscopy provides measurements of phenotypic changes accompanying systematic variation of ECM composition in collagen and laminin-rich basement membrane admixtures, while analysis of the trajectories of passive tracer particles embedded in ECM report dynamic changes in heterogeneity, microstructure and local shear modulus accompanying both ECM stiffening (fibrosis) processes, and ECM degradation near invading cells. We gratefully acknowledge funding from the National Cancer Institute, R00CA155045 (PI: Celli).

  18. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging

    PubMed Central

    Pysz, Marybeth A.; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Purpose To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. Materials and methods The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. Results MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Conclusion Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts. PMID:22535383

  19. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging.

    PubMed

    Pysz, Marybeth A; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K

    2012-09-01

    To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts.

  20. Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients.

    PubMed

    Chakraborty, Jayasree; Langdon-Embry, Liana; Cunanan, Kristen M; Escalon, Joanna G; Allen, Peter J; Lowery, Maeve A; O'Reilly, Eileen M; Gönen, Mithat; Do, Richard G; Simpson, Amber L

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in the United States with a five-year survival rate of 7.2% for all stages. Although surgical resection is the only curative treatment, currently we are unable to differentiate between resectable patients with occult metastatic disease from those with potentially curable disease. Identification of patients with poor prognosis via early classification would help in initial management including the use of neoadjuvant chemotherapy or radiation, or in the choice of postoperative adjuvant therapy. PDAC ranges in appearance from homogeneously isoattenuating masses to heterogeneously hypovascular tumors on CT images; hence, we hypothesize that heterogeneity reflects underlying differences at the histologic or genetic level and will therefore correlate with patient outcome. We quantify heterogeneity of PDAC with texture analysis to predict 2-year survival. Using fuzzy minimum-redundancy maximum-relevance feature selection and a naive Bayes classifier, the proposed features achieve an area under receiver operating characteristic curve (AUC) of 0.90 and accuracy (Ac) of 82.86% with the leave-one-image-out technique and an AUC of 0.80 and Ac of 75.0% with three-fold cross-validation. We conclude that texture analysis can be used to quantify heterogeneity in CT images to accurately predict 2-year survival in patients with pancreatic cancer. From these data, we infer differences in the biological evolution of pancreatic cancer subtypes measurable in imaging and identify opportunities for optimized patient selection for therapy.

  1. Pancreas tumor interstitial pressure catheter measurement

    NASA Astrophysics Data System (ADS)

    Nieskoski, Michael D.; Gunn, Jason; Marra, Kayla; Trembly, B. Stuart; Pogue, Brian W.

    2016-03-01

    This paper highlights the methodology in measuring interstitial pressure in pancreatic adenocarcinoma tumors. A Millar Mikrotip pressure catheter (SPR-671) was used in this study and a system was built to amplify and filter the output signal for data collection. The Millar pressure catheter was calibrated prior to each experiment in a water column at 37°C, range of 0 to 60 inH2O (112 mmHg), resulting in a calibration factor of 33 mV / 1 inH2O. The interstitial pressures measured in two orthotopically grown pancreatic adenocarcinoma tumor were 57 mmHg and 48 mmHg, respectively. Verteporfin uptake into the pancreatic adenocarcinoma tumor was measured using a probe-based experimental dosimeter.

  2. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Shin; Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp; Takikawa, Tetsuya

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression ofmore » pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.« less

  3. The anti-tumor effects of the recombinant toxin protein rLj-RGD3 from Lampetra japonica on pancreatic carcinoma Panc-1 cells in nude mice.

    PubMed

    Wang, Yue; Zheng, Yuanyuan; Tu, Zuoyu; Dai, Yongguo; Xu, Hong; Lv, Li; Wang, Jihong

    2017-02-01

    Recombinant Lampetra japonica RGD peptide (rLj-RGD3) is a soluble toxin protein with three RGD (Arg-Gly-Asp) motifs and a molecular weight of 13.5kDa. The aim of this study was to investigate the effects and mechanisms of rLj-RGD3 on tumor growth and survival in pancreatic carcinoma Panc-1 cell-bearing mice. A Panc-1 human pancreatic carcinoma-bearing nude mouse model was successfully generated, and the animals were treated with different doses of rLj-RGD3 for 3 weeks. The volume and weight of the subcutaneous tumors, the survival of the nude mice, histopathological changes, the intratumoral MVD, the number of apoptotic Panc-1 cells, and apoptosis-related proteins and gene expressions were determined. rLj-RGD3 significantly decreased the tumor volumes and weights, and the maximum tumor volume and weight IR values were 53.2% (p<0.001) and 55.9% (p<0.001), respectively. The life expectancy of Panc-1-bearing nude mice treated with rLj-RGD3 was increased by 56.3% (p<0.001). Meanwhile, rLj-RGD3 promoted the expression of Bax, caspase-3, and caspase-9 and inhibited Bcl-2 and VEGF expression. In addition, rLj-RGD3 did not change FAK, PI3K and Akt expression, but p-FAK, p-PI3K and p-Akt, levels were down-regulated. These results show that rLj-RGD3 induced potent anti-tumor activity in vivo and suppressed the growth of transplanted Panc-1 cells in a nude mouse model, implying that rLj-RGD3 may serve as a potent clinical therapeutic agent for human pancreatic carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors

    PubMed Central

    Campa, Daniele; Capurso, Gabriele; Pastore, Manuela; Talar-Wojnarowska, Renata; Milanetto, Anna Caterina; Landoni, Luca; Maiello, Evaristo; Lawlor, Rita T.; Malecka-Panas, Ewa; Funel, Niccola; Gazouli, Maria; De Bonis, Antonio; Klüter, Harald; Rinzivillo, Maria; Delle Fave, Gianfranco; Hackert, Thilo; Landi, Stefano; Bugert, Peter; Bambi, Franco; Archibugi, Livia; Scarpa, Aldo; Katzke, Verena; Dervenis, Christos; Liço, Valbona; Furlanello, Sara; Strobel, Oliver; Tavano, Francesca; Basso, Daniela; Kaaks, Rudolf; Pasquali, Claudio; Gentiluomo, Manuel; Rizzato, Cosmeri; Canzian, Federico

    2016-01-01

    Pancreatic neuroendocrine tumors (PNETs) are heterogeneous neoplasms which represent only 2% of all pancreatic neoplasms by incidence, but 10% by prevalence. Genetic risk factors could have an important role in the disease aetiology, however only a small number of case control studies have been performed yet. To further our knowledge, we genotyped 13 SNPs belonging to the pleiotropic CDKN2A/B gene region in 320 PNET cases and 4436 controls, the largest study on the disease so far. We observed a statistically significant association between the homozygotes for the minor allele of the rs2518719 SNP and an increased risk of developing PNET (ORhom = 2.08, 95% CI 1.05–4.11, p = 0.035). This SNP is in linkage disequilibrium with another polymorphic variant associated with increased risk of several cancer types. In silico analysis suggested that the SNP could alter the sequence recognized by the Neuron-Restrictive Silencer Factor (NRSF), whose deregulation has been associated with the development of several tumors. The mechanistic link between the allele and the disease has not been completely clarified yet but the epidemiologic evidences that link the DNA region to increased cancer risk are convincing. In conclusion, our results suggest rs2518719 as a pleiotropic CDKN2A variant associated with the risk of developing PNETs. PMID:28008994

  5. Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors.

    PubMed

    Campa, Daniele; Capurso, Gabriele; Pastore, Manuela; Talar-Wojnarowska, Renata; Milanetto, Anna Caterina; Landoni, Luca; Maiello, Evaristo; Lawlor, Rita T; Malecka-Panas, Ewa; Funel, Niccola; Gazouli, Maria; De Bonis, Antonio; Klüter, Harald; Rinzivillo, Maria; Delle Fave, Gianfranco; Hackert, Thilo; Landi, Stefano; Bugert, Peter; Bambi, Franco; Archibugi, Livia; Scarpa, Aldo; Katzke, Verena; Dervenis, Christos; Liço, Valbona; Furlanello, Sara; Strobel, Oliver; Tavano, Francesca; Basso, Daniela; Kaaks, Rudolf; Pasquali, Claudio; Gentiluomo, Manuel; Rizzato, Cosmeri; Canzian, Federico

    2016-12-23

    Pancreatic neuroendocrine tumors (PNETs) are heterogeneous neoplasms which represent only 2% of all pancreatic neoplasms by incidence, but 10% by prevalence. Genetic risk factors could have an important role in the disease aetiology, however only a small number of case control studies have been performed yet. To further our knowledge, we genotyped 13 SNPs belonging to the pleiotropic CDKN2A/B gene region in 320 PNET cases and 4436 controls, the largest study on the disease so far. We observed a statistically significant association between the homozygotes for the minor allele of the rs2518719 SNP and an increased risk of developing PNET (OR hom  = 2.08, 95% CI 1.05-4.11, p = 0.035). This SNP is in linkage disequilibrium with another polymorphic variant associated with increased risk of several cancer types. In silico analysis suggested that the SNP could alter the sequence recognized by the Neuron-Restrictive Silencer Factor (NRSF), whose deregulation has been associated with the development of several tumors. The mechanistic link between the allele and the disease has not been completely clarified yet but the epidemiologic evidences that link the DNA region to increased cancer risk are convincing. In conclusion, our results suggest rs2518719 as a pleiotropic CDKN2A variant associated with the risk of developing PNETs.

  6. Incidence of Changes in Respiration-Induced Tumor Motion and Its Relationship With Respiratory Surrogates During Individual Treatment Fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinowski, Kathleen; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD; McAvoy, Thomas J.

    2012-04-01

    Purpose: To determine how frequently (1) tumor motion and (2) the spatial relationship between tumor and respiratory surrogate markers change during a treatment fraction in lung and pancreas cancer patients. Methods and Materials: A Cyberknife Synchrony system radiographically localized the tumor and simultaneously tracked three respiratory surrogate markers fixed to a form-fitting vest. Data in 55 lung and 29 pancreas fractions were divided into successive 10-min blocks. Mean tumor positions and tumor position distributions were compared across 10-min blocks of data. Treatment margins were calculated from both 10 and 30 min of data. Partial least squares (PLS) regression models ofmore » tumor positions as a function of external surrogate marker positions were created from the first 10 min of data in each fraction; the incidence of significant PLS model degradation was used to assess changes in the spatial relationship between tumors and surrogate markers. Results: The absolute change in mean tumor position from first to third 10-min blocks was >5 mm in 13% and 7% of lung and pancreas cases, respectively. Superior-inferior and medial-lateral differences in mean tumor position were significantly associated with the lobe of lung. In 61% and 54% of lung and pancreas fractions, respectively, margins calculated from 30 min of data were larger than margins calculated from 10 min of data. The change in treatment margin magnitude for superior-inferior motion was >1 mm in 42% of lung and 45% of pancreas fractions. Significantly increasing tumor position prediction model error (mean {+-} standard deviation rates of change of 1.6 {+-} 2.5 mm per 10 min) over 30 min indicated tumor-surrogate relationship changes in 63% of fractions. Conclusions: Both tumor motion and the relationship between tumor and respiratory surrogate displacements change in most treatment fractions for patient in-room time of 30 min.« less

  7. Incidence of changes in respiration-induced tumor motion and its relationship with respiratory surrogates during individual treatment fractions.

    PubMed

    Malinowski, Kathleen; McAvoy, Thomas J; George, Rohini; Dietrich, Sonja; D'Souza, Warren D

    2012-04-01

    To determine how frequently (1) tumor motion and (2) the spatial relationship between tumor and respiratory surrogate markers change during a treatment fraction in lung and pancreas cancer patients. A Cyberknife Synchrony system radiographically localized the tumor and simultaneously tracked three respiratory surrogate markers fixed to a form-fitting vest. Data in 55 lung and 29 pancreas fractions were divided into successive 10-min blocks. Mean tumor positions and tumor position distributions were compared across 10-min blocks of data. Treatment margins were calculated from both 10 and 30 min of data. Partial least squares (PLS) regression models of tumor positions as a function of external surrogate marker positions were created from the first 10 min of data in each fraction; the incidence of significant PLS model degradation was used to assess changes in the spatial relationship between tumors and surrogate markers. The absolute change in mean tumor position from first to third 10-min blocks was >5 mm in 13% and 7% of lung and pancreas cases, respectively. Superior-inferior and medial-lateral differences in mean tumor position were significantly associated with the lobe of lung. In 61% and 54% of lung and pancreas fractions, respectively, margins calculated from 30 min of data were larger than margins calculated from 10 min of data. The change in treatment margin magnitude for superior-inferior motion was >1 mm in 42% of lung and 45% of pancreas fractions. Significantly increasing tumor position prediction model error (mean ± standard deviation rates of change of 1.6 ± 2.5 mm per 10 min) over 30 min indicated tumor-surrogate relationship changes in 63% of fractions. Both tumor motion and the relationship between tumor and respiratory surrogate displacements change in most treatment fractions for patient in-room time of 30 min. Copyright © 2012. Published by Elsevier Inc.

  8. Pancreatic head cryosurgery: safety and efficiency in vivo--a pilot study.

    PubMed

    Li, Jialiang; Zhou, Liang; Chen, Jibing; Wu, Binghui; Zeng, Jianying; Fang, Gang; Deng, Chunjuan; Huang, Shengquan; Yao, Fei; Chen, Zhixian; Leng, Yin; Deng, Min; Deng, Chunmei; Zhang, Bo; Zhou, Gang; He, Lihua; Liao, Maoxin; Chiu, David; Niu, Lizhi; Zuo, Jiansheng; Xu, Kecheng

    2012-11-01

    Pancreatic cancer is the fourth leading cause of cancer-related death. Cryosurgery has emerged as a promising new technique for treatment. Although 80% of pancreatic cancers are located in the pancreatic head, no research has been conducted on the safety and efficacy of cryosurgery for these tumors. Two groups of Tibetan miniature pigs (n = 4 per group) underwent cryosurgery to the pancreatic head with either the deep freezing protocol (100% argon output) or shallow freezing protocol (10% argon output), and compared to sham-operated pigs. Serum inflammatory factors and amylase increased during the 5 days after cryoablation in both groups but acute pancreatitis did not occur. Adhesions were observed between the pancreatic head and adjacent organs, and only minor trauma was caused to the stomach, duodenum, small intestine, and liver. Ice balls with a radius of 0.5 cm beyond the tumor edge were sufficient to cause complete necrosis of the pancreatic tissue, and decreased the degree of cold injury to surrounding tissues. Shallow freezing protocol seemed to be safer than, and just as effective as, the deep freezing protocol. This preliminary study suggests that cryosurgery could potentially be an effective treatment of cancer of the pancreatic head.

  9. Evaluation of expansile nanoparticle tumor localization and efficacy in a cancer stem cell-derived model of pancreatic peritoneal carcinomatosis

    PubMed Central

    Herrera, Victoria LM; Colby, Aaron H; Tan, Glaiza AL; Moran, Ann M; O’Brien, Michael J; Colson, Yolonda L; Ruiz-Opazo, Nelson; Grinstaff, Mark W

    2016-01-01

    Aim: To evaluate the tumor localization and efficacy pH-responsive expansile nanoparticles (eNPs) as a drug delivery system for pancreatic peritoneal carcinomatosis (PPC) modeled in nude rats. Methods & materials: A Panc-1-cancer stem cell xeno1graft model of PPC was validated in vitro and in vivo. Tumor localization was tracked via in situ imaging of fluorescent eNPs. Survival of animals treated with paclitaxel-loaded eNPs (PTX-eNPs) was evaluated in vivo. Results: The Panc-1-cancer stem cell xenograft model recapitulates significant features of PPC. Rhodamine-labeled eNPs demonstrate tumor-specific, dose- and time-dependent localization to macro- and microscopic tumors following intraperitoneal injection. PTX-eNPs are as effective as free PTX in treating established PPC; but, PTX-eNPs result in fewer side effects. Conclusion: eNPs are a promising tool for the detection and treatment of PPC. PMID:27078118

  10. Current and Future Clinical Applications of High-Intensity Focused Ultrasound (HIFU) for Pancreatic Cancer.

    PubMed

    Jang, Hyun Joo; Lee, Jae-Young; Lee, Don-Haeng; Kim, Won-Hong; Hwang, Joo Ha

    2010-09-01

    High-intensity focused ultrasound (HIFU) is a novel therapeutic modality that permits noninvasive treatment of various benign and malignant solid tumors, including prostatic cancer, uterine fibroids, hepatic tumors, renal tumors, breast cancers, and pancreatic cancers. Several preclinical and clinical studies have investigated the safety and efficacy of HIFU for treating solid tumors, including pancreatic cancer. The results of nonrandomized studies of HIFU therapy in patients with pancreatic cancer have suggested that HIFU treatment can effectively alleviate cancer-related pain without any significant complications. This noninvasive method of delivering ultrasound energy into the body has recently been evolving from a method for purely thermal ablation to harnessing the mechanical effects of HIFU to induce a systemic immune response and to enhance targeted drug delivery. This review provides a brief overview of HIFU, describes current clinical applications of HIFU for pancreatic cancer, and discusses future applications and challenges.

  11. Current and Future Clinical Applications of High-Intensity Focused Ultrasound (HIFU) for Pancreatic Cancer

    PubMed Central

    Jang, Hyun Joo; Lee, Jae-Young; Lee, Don-Haeng; Kim, Won-Hong

    2010-01-01

    High-intensity focused ultrasound (HIFU) is a novel therapeutic modality that permits noninvasive treatment of various benign and malignant solid tumors, including prostatic cancer, uterine fibroids, hepatic tumors, renal tumors, breast cancers, and pancreatic cancers. Several preclinical and clinical studies have investigated the safety and efficacy of HIFU for treating solid tumors, including pancreatic cancer. The results of nonrandomized studies of HIFU therapy in patients with pancreatic cancer have suggested that HIFU treatment can effectively alleviate cancer-related pain without any significant complications. This noninvasive method of delivering ultrasound energy into the body has recently been evolving from a method for purely thermal ablation to harnessing the mechanical effects of HIFU to induce a systemic immune response and to enhance targeted drug delivery. This review provides a brief overview of HIFU, describes current clinical applications of HIFU for pancreatic cancer, and discusses future applications and challenges. PMID:21103296

  12. A naive Bayes algorithm for tissue origin diagnosis (TOD-Bayes) of synchronous multifocal tumors in the hepatobiliary and pancreatic system.

    PubMed

    Jiang, Weiqin; Shen, Yifei; Ding, Yongfeng; Ye, Chuyu; Zheng, Yi; Zhao, Peng; Liu, Lulu; Tong, Zhou; Zhou, Linfu; Sun, Shuo; Zhang, Xingchen; Teng, Lisong; Timko, Michael P; Fan, Longjiang; Fang, Weijia

    2018-01-15

    Synchronous multifocal tumors are common in the hepatobiliary and pancreatic system but because of similarities in their histological features, oncologists have difficulty in identifying their precise tissue clonal origin through routine histopathological methods. To address this problem and assist in more precise diagnosis, we developed a computational approach for tissue origin diagnosis based on naive Bayes algorithm (TOD-Bayes) using ubiquitous RNA-Seq data. Massive tissue-specific RNA-Seq data sets were first obtained from The Cancer Genome Atlas (TCGA) and ∼1,000 feature genes were used to train and validate the TOD-Bayes algorithm. The accuracy of the model was >95% based on tenfold cross validation by the data from TCGA. A total of 18 clinical cancer samples (including six negative controls) with definitive tissue origin were subsequently used for external validation and 17 of the 18 samples were classified correctly in our study (94.4%). Furthermore, we included as cases studies seven tumor samples, taken from two individuals who suffered from synchronous multifocal tumors across tissues, where the efforts to make a definitive primary cancer diagnosis by traditional diagnostic methods had failed. Using our TOD-Bayes analysis, the two clinical test cases were successfully diagnosed as pancreatic cancer (PC) and cholangiocarcinoma (CC), respectively, in agreement with their clinical outcomes. Based on our findings, we believe that the TOD-Bayes algorithm is a powerful novel methodology to accurately identify the tissue origin of synchronous multifocal tumors of unknown primary cancers using RNA-Seq data and an important step toward more precision-based medicine in cancer diagnosis and treatment. © 2017 UICC.

  13. Surgical resection after TNFerade therapy for locally advanced pancreatic cancer.

    PubMed

    Chadha, Manpreet K; Litwin, Alan; Levea, Charles; Iyer, Renuka; Yang, Gary; Javle, Milind; Gibbs, John F

    2009-09-04

    Treatment of pancreatic cancer remains a major oncological challenge and survival is dismal. Most patients, present with advanced disease at diagnosis and are not candidates for curative resection. Preoperative chemoradiation may downstage and improve survival in locally advanced pancreatic cancer. This has prompted investigators to look for novel neoadjuvant therapies. Gene therapy for pancreatic cancer is a novel investigational approach that may have promise. TNFerade is a replication deficient adenovirus vector carrying the human tumor necrosis factor (TNF)-alpha gene regulated under control of a radiation-inducible gene promoter. Transfection of tumor cells with TNFerade maximizes the antitumor effect of TNF-alpha under influence of radiation leading to synergistic effects in preclinical studies. We describe a case of locally advanced unresectable pancreatic cancer treated with a novel multimodal approach utilizing gene therapy with TNFerade and concurrent chemoradiation that was followed by successful surgical resection. Neoadjuvant TNFerade based chemoradiation therapy may be a useful adjunct to treatment of locally advanced pancreatic cancer.

  14. Translating Discovery in Zebrafish Pancreatic Development to Human Pancreatic Cancer: Biomarkers, Targets, Pathogenesis, and Therapeutics

    PubMed Central

    Kazi, Abid A.; Yee, Rosemary K.

    2013-01-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer. PMID:23682805

  15. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics.

    PubMed

    Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K

    2013-06-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.

  16. BENIGN TUMORS AND TUMOR-LIKE LESIONS OF THE PANCREAS

    PubMed Central

    Basturk, Olca; Askan, Gokce

    2017-01-01

    Synopsis The pancreas is a complex organ that may give rise to large number of neoplasms and non-neoplastic lesions. This article will focus on benign neoplasms such as serous neoplasms as well as tumor-like (pseudotumoral) lesions that may be mistaken for neoplasm not only by clinicians and radiologists, but also by pathologists. The family of pancreatic pseudotumors, by a loosely defined conception of that term, includes a variety of lesions including heterotopia, hamartoma, and lipomatous pseudohypertrophy. Autoimmue pancreatitis (covered in chronic pancreatitis chapter) and paraduodenal (“groove”) pancreatitis may also lead to pseudotumor formation. Knowledge of these entities will help in making an accurate diagnosis. PMID:27926363

  17. Expression and clinical significance of glucose transporter-1 in pancreatic cancer

    PubMed Central

    LU, KAI; YANG, JIAN; LI, DE-CHUN; HE, SONG-BING; ZHU, DONG-MING; ZHANG, LI-FENG; ZHANG, XU; CHEN, XIAO-CHEN; ZHANG, BING; ZHOU, JIAN

    2016-01-01

    Increasing evidence has demonstrated that malignant cells exhibit increased glucose uptake, which facilitates survival and growth in a hypoxic environment. The glucose transporter-1 (GLUT-1) is overexpressed in a variety of malignant tumors. However, the association between GLUT-1 expression and clinicopathological factors, 18F-fluorodeoxyglucose uptake and tumor proliferation in pancreatic cancer has not been investigated to date. In the present study, the expression of GLUT-1 in 53 pancreatic cancer tissues was analyzed, which revealed that GLUT-1 was overexpressed in pancreatic tissue and correlated with poor prognosis and clinicopathological characteristics, including increased tumor size, clinical stage and lymph node metastasis, maximum standardized uptake value (SUVmax) and Ki-67 expression. The receiver operating characteristic curve analysis indicated that a cut-off SUVmax value of 4.830 was associated with optimal sensitivity (88%) and specificity (71.4%) for the detection of strong positive GLUT-1 expression. In addition, as the expression of GLUT-1 was found to correlate with Ki-67 expression, GLUT-1 may exhibit a significant effect on cell proliferation in pancreatic cancer. Overall, these findings indicate that GLUT-1 may represent a prognostic indicator, and a potential therapeutic target for pancreatic cancer. PMID:27347132

  18. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.

    PubMed

    Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George

    2015-11-16

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. © 2015 Zambirinis et al.

  19. CIP2A down regulation enhances the sensitivity of pancreatic cancer cells to gemcitabine.

    PubMed

    Xu, Peng; Yao, Jie; He, Jin; Zhao, Long; Wang, Xiaodong; Li, Zhennan; Qian, Jianjun

    2016-03-22

    Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein which participates in inhibiting tumor apoptosis in pancreatic cancer cells. Using immunohistochemical staining, we investigated the expression of CIP2A protein in 72 cases of human pancreatic ductal adenocarcinoma (PDAC) tissue and 27 cases of adjacent normal pancreatic tissue. The positive rate of CIP2A protein expression in pancreatic cancer tissue was70.83 %, which was significantly higher than that in adjacent non- cancerous pancreatic tissue (11.11%). The expression of CIP2A was found to be correlated with TNM stage, but not correlated with age, gender, tumor location, smoking status, alcohol consumption, diabetes, high blood pressure, BMI, tumor size, lymph node metastasis or distant metastases. Kaplan- Meier survival analysis showed that patients with positive CIP2A protein expression had a lower overall survival rate than patients without CIP2A expression. COX regression analysis indicated that expression of CIP2A was an independent prognostic factor for pancreatic ductal adenocarcinoma. In addition, down-regulation of CIP2A inhibited cell proliferation and increased sensitivity to gemcitabine in pancreatic cancer cells by decreasing AKT signaling pathway. Our results indicated that down-regulation of CIP2A could be a novel therapeutic strategy for pancreatic cancer.

  20. Biomarkers and Targeted Therapy in Pancreatic Cancer

    PubMed Central

    Karandish, Fataneh; Mallik, Sanku

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%–3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers. PMID:27147897

  1. Biomarkers and Targeted Therapy in Pancreatic Cancer.

    PubMed

    Karandish, Fataneh; Mallik, Sanku

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%-3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers.

  2. GROWTH OF HUMAN PANCREATIC CANCER IS INHIBITED BY DOWN-REGULATION OF GASTRIN GENE EXPRESSION

    PubMed Central

    Matters, Gail L.; Harms, John F.; McGovern, Christopher O.; Jayakumar, Calpurnia; Crepin, Keisha; Smith, Zachary P.; Nelson, Melissa C.; Stock, Heather; Fenn, Craig W.; Kaiser, James; Kester, Mark; Smith, Jill P.

    2009-01-01

    Objectives This study evaluated the effects of gastrin mRNA down-regulation on growth of human pancreatic cancer. Methods Gastrin expression was examined in human pancreatic cancer cell lines by RT-PCR and peptide expression was assessed by immunocytochemistry. Gastrin was down-regulated using either stable transfection of an antisense gastrin cDNA or one of three shRNA (short hairpin RNA) constructs. Tumor formation was evaluated following either subcutaneous or orthotopic injections into nude mice. The effect of nanoliposomes loaded with gastrin siRNA was tested in mice bearing pancreatic tumors. Results Stable transfection of gastrin antisense or shRNAs into BxPC-3 cells resulted in clones with >90% reduction in gastrin mRNA. Tumor growth rate and incidence of metastases in both wild type and transfected pancreatic cancer cells was directly proportional to the degrees of gastrin mRNA expression. Immunofluoresence analysis confirmed that gastrin peptide levels were decreased in antisense and shRNA tumors. Gastrin knockdown clones had lower Ki-67 and increased cleaved caspase-3 staining, consistent with known effects of gastrin on proliferation and apoptosis. Tumors in mice treated with gastrin siRNA were smaller than controls. Conclusions These results suggest that RNAi targeting of gastrin could serve as an effective treatment for pancreatic cancer. PMID:19465883

  3. Exosomes Derived From Pancreatic Stellate Cells: MicroRNA Signature and Effects on Pancreatic Cancer Cells.

    PubMed

    Takikawa, Tetsuya; Masamune, Atsushi; Yoshida, Naoki; Hamada, Shin; Kogure, Takayuki; Shimosegawa, Tooru

    2017-01-01

    Pancreatic stellate cells (PSCs) interact with pancreatic cancer cells in the tumor microenvironment. Cell constituents including microRNAs may be exported from cells within membranous nanovesicles termed exosomes. Exosomes might play a pivotal role in intercellular communication. This study aimed to clarify the microRNA signature of PSC-derived exosomes and their effects on pancreatic cancer cells. Exosomes were prepared from the conditioned medium of immortalized human PSCs. MicroRNAs were prepared from the exosomes and their source PSCs, and the microRNA expression profiles were compared by microarray. The effects of PSC-derived exosomes on proliferation, migration, and the mRNA expression profiles were examined in pancreatic cancer cells. Pancreatic stellate cell-derived exosomes contained a variety of microRNAs including miR-21-5p. Several microRNAs such as miR-451a were enriched in exosomes compared to their source PSCs. Pancreatic stellate cell-derived exosomes stimulated the proliferation, migration and expression of mRNAs for chemokine (C - X - C motif) ligands 1 and 2 in pancreatic cancer cells. The stimulation of proliferation, migration, and chemokine gene expression by the conditioned medium of PSCs was suppressed by GW4869, an exosome inhibitor. We clarified the microRNA expression profile in PSC-derived exosomes. Pancreatic stellate cell-derived exosomes might play a role in the interactions between PSCs and pancreatic cancer cells.

  4. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers.

    PubMed

    Cohen, Joshua D; Javed, Ammar A; Thoburn, Christopher; Wong, Fay; Tie, Jeanne; Gibbs, Peter; Schmidt, C Max; Yip-Schneider, Michele T; Allen, Peter J; Schattner, Mark; Brand, Randall E; Singhi, Aatur D; Petersen, Gloria M; Hong, Seung-Mo; Kim, Song Cheol; Falconi, Massimo; Doglioni, Claudio; Weiss, Matthew J; Ahuja, Nita; He, Jin; Makary, Martin A; Maitra, Anirban; Hanash, Samir M; Dal Molin, Marco; Wang, Yuxuan; Li, Lu; Ptak, Janine; Dobbyn, Lisa; Schaefer, Joy; Silliman, Natalie; Popoli, Maria; Goggins, Michael G; Hruban, Ralph H; Wolfgang, Christopher L; Klein, Alison P; Tomasetti, Cristian; Papadopoulos, Nickolas; Kinzler, Kenneth W; Vogelstein, Bert; Lennon, Anne Marie

    2017-09-19

    The earlier diagnosis of cancer is one of the keys to reducing cancer deaths in the future. Here we describe our efforts to develop a noninvasive blood test for the detection of pancreatic ductal adenocarcinoma. We combined blood tests for KRAS gene mutations with carefully thresholded protein biomarkers to determine whether the combination of these markers was superior to any single marker. The cohort tested included 221 patients with resectable pancreatic ductal adenocarcinomas and 182 control patients without known cancer. KRAS mutations were detected in the plasma of 66 patients (30%), and every mutation found in the plasma was identical to that subsequently found in the patient's primary tumor (100% concordance). The use of KRAS in conjunction with four thresholded protein biomarkers increased the sensitivity to 64%. Only one of the 182 plasma samples from the control cohort was positive for any of the DNA or protein biomarkers (99.5% specificity). This combinatorial approach may prove useful for the earlier detection of many cancer types.

  5. Trypsin-protease activated receptor-2 signaling contributes to pancreatic cancer pain

    PubMed Central

    Zhu, Jiao; Miao, Xue-Rong; Tao, Kun-Ming; Zhu, Hai; Liu, Zhi-Yun; Yu, Da-Wei; Chen, Qian-Bo; Qiu, Hai-Bo; Lu, Zhi-Jie

    2017-01-01

    Pain treatment is a critical aspect of pancreatic cancer patient clinical care. This study investigated the role of trypsin-protease activated receptor-2 (PAR-2) in pancreatic cancer pain. Pancreatic tissue samples were collected from pancreatic cancer (n=22) and control patients (n=22). Immunofluorescence analyses confirmed colocalization of PAR-2 and neuronal markers in pancreatic cancer tissues. Trypsin levels and protease activities were higher in pancreatic cancer tissue specimens than in the controls. Supernatants from cultured human pancreatic cancer tissues (PC supernatants) induced substance P and calcitonin gene-related peptide release in dorsal root ganglia (DRG) neurons, and FS-NH2, a selective PAR-2 antagonist, inhibited this effect. A BALB/c nude mouse orthotopic tumor model was used to confirm the role of PAR-2 signaling in pancreatic cancer visceral pain, and male Sprague-Dawley rats were used to assess ambulatory pain. FS-NH2 treatment decreased hunch scores, mechanical hyperalgesia, and visceromotor reflex responses in tumor-bearing mice. In rats, subcutaneous injection of PC supernatant induced pain behavior, which was alleviated by treatment with FS-NH2 or FUT-175, a broad-spectrum serine protease inhibitor. Our findings suggest that trypsin-PAR-2 signaling contributes to pancreatic cancer pain in vivo. Treatment strategies targeting PAR-2 or its downstream signaling molecules might effectively relieve pancreatic cancer pain. PMID:28977906

  6. Veliparib, Capecitabine, and Temozolomide in Patients With Advanced, Metastatic, and Recurrent Neuroendocrine Tumor

    ClinicalTrials.gov

    2017-09-26

    Functional Pancreatic Neuroendocrine Tumor; Malignant Somatostatinoma; Merkel Cell Carcinoma; Metastatic Adrenal Gland Pheochromocytoma; Metastatic Carcinoid Tumor; Multiple Endocrine Neoplasia Type 1; Multiple Endocrine Neoplasia Type 2A; Multiple Endocrine Neoplasia Type 2B; Neuroendocrine Neoplasm; Non-Functional Pancreatic Neuroendocrine Tumor; Pancreatic Glucagonoma; Pancreatic Insulinoma; Recurrent Adrenal Cortex Carcinoma; Recurrent Adrenal Gland Pheochromocytoma; Recurrent Merkel Cell Carcinoma; Somatostatin-Producing Neuroendocrine Tumor; Stage III Adrenal Cortex Carcinoma; Stage III Thyroid Gland Medullary Carcinoma; Stage IIIA Merkel Cell Carcinoma; Stage IIIB Merkel Cell Carcinoma; Stage IV Adrenal Cortex Carcinoma; Stage IV Merkel Cell Carcinoma; Stage IVA Thyroid Gland Medullary Carcinoma; Stage IVB Thyroid Gland Medullary Carcinoma; Stage IVC Thyroid Gland Medullary Carcinoma; Thymic Carcinoid Tumor; VIP-Producing Neuroendocrine Tumor; Well Differentiated Adrenal Cortex Carcinoma; Zollinger Ellison Syndrome

  7. Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice.

    PubMed

    Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y

    2014-05-22

    Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR-Ras-Raf-MEK-ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [(3)H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras-MAPK activity could be important in its anticancer activity.

  8. Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice

    PubMed Central

    Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y

    2014-01-01

    Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR–Ras–Raf–MEK–ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [3H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras–MAPK activity could be important in its anticancer activity. PMID:24853419

  9. TH-AB-202-01: Daily Lung Tumor Motion Characterization On EPIDs Using a Markerless Tiling Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozario, T; University of Texas at Dallas, Richardson, TX; Chiu, T

    Purpose: Tracking lung tumor motion in real time allows for target dose escalation while simultaneously reducing dose to sensitive structures, thus increasing local control without increasing toxicity. We present a novel intra-fractional markerless lung tumor tracking algorithm using MV treatment beam images acquired during treatment delivery. Strong signals superimposed on the tumor significantly reduced the soft tissue resolution; while different imaging modalities involved introduce global imaging discrepancies. This reduced the comparison accuracies. A simple yet elegant Tiling algorithm is reported to overcome the aforementioned issues. Methods: MV treatment beam images were acquired continuously in beam’s eye view (BEV) by anmore » electronic portal imaging device (EPID) during treatment and analyzed to obtain tumor positions on every frame. Every frame of the MV image was simulated by a composite of two components with separate digitally reconstructed radiographs (DRRs): all non-moving structures and the tumor. This Titling algorithm divides the global composite DRR and the corresponding MV projection into sub-images called tiles. Rigid registration is performed independently on tile-pairs in order to improve local soft tissue resolution. This enables the composite DRR to be transformed accurately to match the MV projection and attain a high correlation value through a pixel-based linear transformation. The highest cumulative correlation for all tile-pairs achieved over a user-defined search range indicates the 2-D coordinates of the tumor location on the MV projection. Results: This algorithm was successfully applied to cine-mode BEV images acquired during two SBRT plans delivered five times with different motion patterns to each of two phantoms. Approximately 15000 beam’s eye view images were analyzed and tumor locations were successfully identified on every projection with a maximum/average error of 1.8 mm / 1.0 mm. Conclusion: Despite the presence

  10. Overcoming Drug Resistance in Pancreatic Cancer

    PubMed Central

    Long, Jiang; Zhang, Yuqing; Yu, Xianjun; Yang, Jingxuan; LeBrun, Drake; Chen, Changyi; Yao, Qizhi; Li, Min

    2011-01-01

    Introduction Pancreatic cancer has the worst survival rate of all cancers. The current standard care for metastatic pancreatic cancer is gemcitabine, however, the success of this treatment is poor and overall survival has not improved for decades. Drug resistance (both intrinsic and acquired) is thought to be a major reason for the limited benefit of most pancreatic cancer therapies. Areas covered Previous studies have indicated various mechanisms of drug resistance in pancreatic cancer, including changes in individual genes or signaling pathways, the influence of the tumor microenvironment, and the presence of highly resistant stem cells. This review summarizes recent advances in the mechanisms of drug resistance in pancreatic cancer, and potential strategies to overcome this. Expert Opinion Increasing drug delivery efficiency and decreasing drug resistance is the current aim in pancreatic cancer treatment, and will also benefit the treatment of other cancers. Understanding the molecular and cellular basis of drug resistance in pancreatic cancer will lead to the development of novel therapeutic strategies with the potential to sensitize pancreatic cancer to chemotherapy, and to increase the efficacy of current treatments in a wide variety of human cancers. PMID:21391891

  11. Comparison of lung tumor motion measured using a model-based 4DCT technique and a commercial protocol.

    PubMed

    O'Connell, Dylan; Shaverdian, Narek; Kishan, Amar U; Thomas, David H; Dou, Tai H; Lewis, John H; Lamb, James M; Cao, Minsong; Tenn, Stephen; Percy, Lee P; Low, Daniel A

    To compare lung tumor motion measured with a model-based technique to commercial 4-dimensional computed tomography (4DCT) scans and describe a workflow for using model-based 4DCT as a clinical simulation protocol. Twenty patients were imaged using a model-based technique and commercial 4DCT. Tumor motion was measured on each commercial 4DCT dataset and was calculated on model-based datasets for 3 breathing amplitude percentile intervals: 5th to 85th, 5th to 95th, and 0th to 100th. Internal target volumes (ITVs) were defined on the 4DCT and 5th to 85th interval datasets and compared using Dice similarity. Images were evaluated for noise and rated by 2 radiation oncologists for artifacts. Mean differences in tumor motion magnitude between commercial and model-based images were 0.47 ± 3.0, 1.63 ± 3.17, and 5.16 ± 4.90 mm for the 5th to 85th, 5th to 95th, and 0th to 100th amplitude intervals, respectively. Dice coefficients between ITVs defined on commercial and 5th to 85th model-based images had a mean value of 0.77 ± 0.09. Single standard deviation image noise was 11.6 ± 9.6 HU in the liver and 6.8 ± 4.7 HU in the aorta for the model-based images compared with 57.7 ± 30 and 33.7 ± 15.4 for commercial 4DCT. Mean model error within the ITV regions was 1.71 ± 0.81 mm. Model-based images exhibited reduced presence of artifacts at the tumor compared with commercial images. Tumor motion measured with the model-based technique using the 5th to 85th percentile breathing amplitude interval corresponded more closely to commercial 4DCT than the 5th to 95th or 0th to 100th intervals, which showed greater motion on average. The model-based technique tended to display increased tumor motion when breathing amplitude intervals wider than 5th to 85th were used because of the influence of unusually deep inhalations. These results suggest that care must be taken in selecting the appropriate interval during image generation when using model-based 4DCT methods. Copyright © 2017

  12. Exosomes derived from pancreatic cancer cells induce activation and profibrogenic activities in pancreatic stellate cells.

    PubMed

    Masamune, Atsushi; Yoshida, Naoki; Hamada, Shin; Takikawa, Tetsuya; Nabeshima, Tatsuhide; Shimosegawa, Tooru

    2018-01-01

    Pancreatic cancer cells (PCCs) interact with pancreatic stellate cells (PSCs), which play a pivotal role in pancreatic fibrogenesis, to develop the cancer-conditioned tumor microenvironment. Exosomes are membrane-enclosed nanovesicles, and have been increasingly recognized as important mediators of cell-to-cell communications. The aim of this study was to clarify the effects of PCC-derived exosomes on cell functions in PSCs. Exosomes were isolated from the conditioned medium of Panc-1 and SUIT-2 PCCs. Human primary PSCs were treated with PCC-derived exosomes. PCC-derived exosomes stimulated the proliferation, migration, activation of ERK and Akt, the mRNA expression of α-smooth muscle actin (ACTA2) and fibrosis-related genes, and procollagen type I C-peptide production in PSCs. Ingenuity pathway analysis of the microarray data identified transforming growth factor β1 and tumor necrosis factor as top upstream regulators. PCCs increased the expression of miR-1246 and miR-1290, abundantly contained in PCC-derived exosomes, in PSCs. Overexpression of miR-1290 induced the expression of ACTA2 and fibrosis-related genes in PSCs. In conclusion, PCC-derived exosomes stimulate activation and profibrogenic activities in PSCs. Exosome-mediated interactions between PSCs and PCCs might play a role in the development of the tumor microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. K-Ras mutation detection in liquid biopsy and tumor tissue as prognostic biomarker in patients with pancreatic cancer: a systematic review with meta-analysis.

    PubMed

    Li, Tao; Zheng, Yuanting; Sun, Hong; Zhuang, Rongyuan; Liu, Jing; Liu, Tianshu; Cai, Weimin

    2016-07-01

    K-Ras gene mutations have been found in most pancreatic cancers; however, conflicting data on the prognostic value of K-Ras mutations in pancreatic cancer have been published. We conducted a meta-analysis to assess its prognostic significance. Literature searches of PubMed, EMBASE, Cochrane Library, Web of Science and Google Scholar were performed through December 2015 to identify publications exploring the association of K-Ras mutation with overall survival. Forty eligible studies involving 3427 patients with pancreatic cancer were included in the present meta-analysis. Our analysis showed a hazard ratio (HR) of negative association with survival of 1.61 [95 % confidence interval (CI) 1.36-1.90; p < 0.01] in K-Ras mutant pancreatic cancer patients. In subgroup analyses, K-Ras mutations detected in tumor tissues and in liquid biopsies had HRs of 1.37 (95 % CI 1.20-1.57; p < 0.01) and 3.16 (95 % CI 2.1-4.71; p < 0.01), respectively. In addition, the HR was higher when K-Ras mutations were detected in fresh frozen samples (HR = 2.01, 95 % CI 1.28-3.16, p = 0.002) than in formalin-fixed, paraffin-embedded (FFPE) samples (HR = 1.29, 95 % CI 1.12-1.49, p < 0.01). Though K-Ras alterations are more frequent among non-East Asian individuals than East Asian individuals, there were no significant differences in HRs of survival between the two ethnic subgroups. In conclusion, this meta-analysis suggests that K-Ras mutations are associated with a worse overall survival in pancreatic cancer patients, especially when mutations are detected in liquid biopsies or fresh frozen tumor tissue samples.

  14. The long- and short-term variability of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment.

    PubMed

    Dhont, Jennifer; Vandemeulebroucke, Jef; Burghelea, Manuela; Poels, Kenneth; Depuydt, Tom; Van Den Begin, Robbe; Jaudet, Cyril; Collen, Christine; Engels, Benedikt; Reynders, Truus; Boussaer, Marlies; Gevaert, Thierry; De Ridder, Mark; Verellen, Dirk

    2018-02-01

    To evaluate the short and long-term variability of breathing induced tumor motion. 3D tumor motion of 19 lung and 18 liver lesions captured over the course of an SBRT treatment were evaluated and compared to the motion on 4D-CT. An implanted fiducial could be used for unambiguous motion information. Fast orthogonal fluoroscopy (FF) sequences, included in the treatment workflow, were used to evaluate motion during treatment. Several motion parameters were compared between different FF sequences from the same fraction to evaluate the intrafraction variability. To assess interfraction variability, amplitude and hysteresis were compared between fractions and with the 3D tumor motion registered by 4D-CT. Population based margins, necessary on top of the ITV to capture all motion variability, were calculated based on the motion captured during treatment. Baseline drift in the cranio-caudal (CC) or anterior-poster (AP) direction is significant (ie. >5 mm) for a large group of patients, in contrary to intrafraction amplitude and hysteresis variability. However, a correlation between intrafraction amplitude variability and mean motion amplitude was found (Pearson's correlation coefficient, r = 0.72, p < 10 -4 ). Interfraction variability in amplitude is significant for 46% of all lesions. As such, 4D-CT accurately captures the motion during treatment for some fractions but not for all. Accounting for motion variability during treatment increases the PTV margins in all directions, most significantly in CC from 5 mm to 13.7 mm for lung and 8.0 mm for liver. Both short-term and day-to-day tumor motion variability can be significant, especially for lesions moving with amplitudes above 7 mm. Abandoning passive motion management strategies in favor of more active ones is advised. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. New targeted therapies in pancreatic cancer.

    PubMed

    Seicean, Andrada; Petrusel, Livia; Seicean, Radu

    2015-05-28

    Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.

  16. GLUT-1 Expression in Pancreatic Neoplasia

    PubMed Central

    Basturk, Olca; Singh, Rajendra; Kaygusuz, Ecmel; Balci, Serdar; Dursun, Nevra; Culhaci, Nil; Adsay, N. Volkan

    2011-01-01

    Objectives GLUT-1 has been found to have an important role in the upregulation of various cellular pathways and implicated in neoplastic transformation correlating with biological behavior in malignancies. However, literature regarding the significance of GLUT-1 expression in pancreatic neoplasia has been limited and controversial. Methods Immunohistochemical expression of GLUT-1 was tested in a variety of pancreatic neoplasia including ductal adenocarcinomas (DAs), pancreatic intraepithelial neoplasms (PanINs), intraductal papillary mucinous neoplasms (IPMNs), and serous cystadenomas. Results There was a progressive increase in the expression of GLUT-1 from low- to higher-grade dysplastic lesions: All higher-grade PanINs/IPMNs (the ones with moderate/high-grade dysplasia) revealed noticeable GLUT-1 expression. Among the 94 DAs analyzed, there were minimal/moderate expression in 46 and significant expression in 24 DAs. However, all 4 clear-cell variants of DAs revealed significant GLUT-1 immunolabeling, as did areas of clear-cell change seen in other DAs. Moreover, all 12 serous cystadenomas expressed significant GLUT-1. GLUT-1 expression was also directly correlated with DA histological grade (P = 0.016) and tumor size (P = 0.03). Conclusions GLUT-1 may give rise to the distinctive clear-cell appearance of these tumors by inducing the accumulation of glycogen in the cytoplasm. Additionally, because GLUT-1 expression was related to histological grade and tumor size of DA, further studies are warranted to investigate the association of GLUT-1 with prognosis and tumor progression. PMID:21206329

  17. Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors

    PubMed Central

    Ahmed, Muhammad S.; Rainer, Carolyn; Nielsen, Sebastian R.; Quaranta, Valeria; Weyer-Czernilofsky, Ulrike; Engle, Danielle D.; Perez-Mancera, Pedro A.; Coupland, Sarah E.; Taktak, Azzam; Bogenrieder, Thomas; Tuveson, David A.; Campbell, Fiona; Schmid, Michael C.; Mielgo, Ainhoa

    2017-01-01

    Tumor-associated macrophages (TAM) and myofibroblasts are key drivers in cancer that are associated with drug resistance in many cancers, including pancreatic ductal adenocarcinoma (PDAC). However, our understanding of the molecular mechanisms by which TAM and fibroblasts contribute to chemoresistance is unclear. In this study, we found that TAM and myofibroblasts directly support chemoresistance of pancreatic cancer cells by secreting insulin-like growth factors (IGF) 1 and 2, which activate insulin/IGF receptors on pancreatic cancer cells. Immunohistochemical analysis of biopsies from patients with pancreatic cancer revealed that 72% of the patients expressed activated insulin/IGF receptors on tumor cells, and this positively correlates with increased CD163+ TAM infiltration. In vivo, we found that TAM and myofibroblasts were the main sources of IGF production, and pharmacologic blockade of IGF sensitized pancreatic tumors to gemcitabine. These findings suggest that inhibition of IGF in combination with chemotherapy could benefit patients with PDAC, and that insulin/IGF1R activation may be used as a biomarker to identify patients for such therapeutic intervention. PMID:27742686

  18. Image based detection and targeting of therapy resistance in pancreatic adenocarcinoma

    PubMed Central

    Jaquish, Dawn V.; Park, Frederick D.; Ito, Takahiro; Bajaj, Jeevisha; Koechlein, Claire S.; Zimdahl, Bryan; Yano, Masato; Kopp, Janel; Kritzik, Marcie; Sicklick, Jason; Sander, Maike; Grandgenett, Paul M.; Hollingsworth, Michael A.; Shibata, Shinsuke; Pizzo, Donald; Valasek, Mark; Sasik, Roman; Scadeng, Miriam; Okano, Hideyuki; Kim, Youngsoo; MacLeod, A. Robert

    2016-01-01

    Pancreatic intraepithelial neoplasia (PanIN) is a premalignant lesion that can progress to pancreatic ductal adenocarcinoma, a highly lethal malignancy marked by its late stage at clinical presentation and profound drug resistance1. The genomic alterations that commonly occur in pancreatic cancer include activation of KRAS2 and inactivation of p53, and SMAD42-4. To date, however, it has been challenging to target these pathways therapeutically; thus the search for other key mediators of pancreatic cancer growth remains an important endeavor. Here we show that the stem cell determinant Musashi (Msi) is a critical element of pancreatic cancer progression in both genetic models and patient derived xenografts. Specifically, we developed Msi reporter mice that allowed image based tracking of stem cell signals within cancers, revealing that Msi expression rises as PanIN progresses to adenocarcinoma, and that Msi-expressing cells are key drivers of pancreatic cancer: they preferentially harbor the capacity to propagate adenocarcinoma, are enriched in circulating tumor cells, and are markedly drug resistant. This population could be effectively targeted by deletion of either Msi1 or Msi2, which led to a striking defect in PanIN progression to adenocarcinoma and an improvement in overall survival. Msi inhibition also blocked the growth of primary patient-derived tumors, suggesting that this signal is required for human disease. To define the translational potential of this work we developed antisense oligonucleotides against Msi; these showed reliable tumor penetration, uptake and target inhibition, and effectively blocked pancreatic cancer growth. Collectively, these studies highlight Msi reporters as a unique tool to identify therapy resistance, and define Msi signaling as a central regulator of pancreatic cancer. PMID:27281208

  19. DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors.

    PubMed

    How-Kit, Alexandre; Dejeux, Emelyne; Dousset, Bertrand; Renault, Victor; Baudry, Marion; Terris, Benoit; Tost, Jörg

    2015-01-01

    Most studies have considered gastroenteropancreatic neuroendocrine tumors (GEP-NETs) as a homogenous group of samples or distinguish only gastrointestinal from pancreatic endocrine tumors. This article investigates if DNA methylation patterns could distinguish subtypes of GEP-NETs. The DNA methylation level of 807 cancer-related genes was investigated in insulinomas, gastrinomas, non-functioning pancreatic endocrine tumors and small intestine endocrine tumors. DNA methylation patterns were found to be tumor type specific for each of the pancreatic tumor subtypes and identified two distinct methylation-based groups in small intestine endocrine tumors. Differences of DNA methylation levels were validated by pyrosequencing for 20 candidate genes and correlated with differences at the transcriptional level for four candidate genes. The heterogeneity of DNA methylation patterns in the different subtypes of gastroenteropancreatic neuroendocrine tumors suggests different underlying pathways and, therefore, these tumors should be considered as distinct entities in molecular and clinical studies.

  20. Organoid Models of Human and Mouse Ductal Pancreatic Cancer

    PubMed Central

    Boj, Sylvia F.; Hwang, Chang-Il; Baker, Lindsey A.; Chio, Iok In Christine; Engle, Dannielle D.; Corbo, Vincenzo; Jager, Myrthe; Ponz-Sarvise, Mariano; Tiriac, Hervé; Spector, Mona S.; Gracanin, Ana; Oni, Tobiloba; Yu, Kenneth H.; van Boxtel, Ruben; Huch, Meritxell; Rivera, Keith D.; Wilson, John P.; Feigin, Michael E.; Öhlund, Daniel; Handly-Santana, Abram; Ardito-Abraham, Christine M.; Ludwig, Michael; Elyada, Ela; Alagesan, Brinda; Biffi, Giulia; Yordanov, Georgi N.; Delcuze, Bethany; Creighton, Brianna; Wright, Kevin; Park, Youngkyu; Morsink, Folkert H.M.; Molenaar, I. Quintus; Borel Rinkes, Inne H.; Cuppen, Edwin; Hao, Yuan; Jin, Ying; Nijman, Isaac J.; Iacobuzio-Donahue, Christine; Leach, Steven D.; Pappin, Darryl J.; Hammell, Molly; Klimstra, David S.; Basturk, Olca; Hruban, Ralph H.; Offerhaus, George Johan; Vries, Robert G.J.; Clevers, Hans; Tuveson, David A.

    2015-01-01

    SUMMARY Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation and exhibit ductal- and disease stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy. PMID:25557080

  1. Smac mimetic increases chemotherapy response and improves survival in mice with pancreatic cancer

    PubMed Central

    Dineen, Sean P.; Roland, Christina L.; Greer, Rachel; Carbon, Juliet G.; Toombs, Jason E.; Gupta, Puja; Bardeesy, Nabeel; Sun, Haizhou; Williams, Noelle; Minna, John D.; Brekken, Rolf A.

    2010-01-01

    Failure of chemotherapy in the treatment of pancreatic cancer is often due to resistance to therapy-induced apoptosis. A major mechanism for such resistance is the expression and activity of inhibitors of apoptosis proteins (IAPs). Smac is a mitochondrial protein that inhibits IAPs. We show that JP1201, a Smac mimetic, is a potent enhancer of chemotherapy in robust mouse models of pancreatic cancer. Combination of JP1201 with gemcitabine reduced primary and metastatic tumor burden in orthotopic xenograft and syngenic tumor models, induced regression of established tumors, and prolonged survival in xenograft and transgenic models of pancreatic cancer. The effect of JP1201 was phenocopied by XIAP siRNA in vitro and correlated with elevated levels of TNFα protein in vivo. The continued development of JP1201 and other strategies designed to enhance therapy-induced apoptosis in pancreatic cancer is warranted. PMID:20332237

  2. Vitamins in pancreatic cancer: a review of underlying mechanisms and future applications.

    PubMed

    Davis-Yadley, Ashley H; Malafa, Mokenge P

    2015-11-01

    Although there is increasing evidence that vitamins influence pancreatic adenocarcinoma biology and carcinogenesis, a comprehensive review is lacking. In this study, we performed a PubMed literature search to review the anticancer mechanisms and the preclinical and clinical studies that support the development of the bioactive vitamins A, C, D, E, and K in pancreatic cancer intervention. Preclinical studies have shown promising results for vitamin A in pancreatic cancer prevention, with clinical trials showing intriguing responses in combination with immunotherapy. For vitamin C, preclinical studies have shown slower tumor growth rates and/or increased survival when used alone or in combination with gemcitabine, with clinical trials with this combination revealing decreased primary tumor sizes and improved performance status. Preclinical studies with vitamin D analogues have shown potent antiproliferative effects and repression of migration and invasion of pancreatic cancer cells, with a clinical trial showing increased time to progression when calciferol was added to docetaxel. For vitamin E, preclinical studies have shown that δ-tocotrienol and γ-tocotrienol inhibited tumor cell growth and survival and augmented gemcitabine activity. Early-phase clinical trials with δ-tocotrienol are ongoing. Vitamin K demonstrates activation of apoptosis and inhibition of cellular growth in pancreatic tumor cells; however, there are no clinical studies available for further evaluation. Although preclinical and clinical studies are encouraging, randomized controlled trials with endpoints based on insights gained from mechanistic and preclinical studies and early-phase clinical trials are required to determine the efficacy of bioactive vitamin interventions in pancreatic cancer. © 2015 American Society for Nutrition.

  3. Treatment Patterns and Burden of Illness in Patients Initiating Targeted Therapy or Chemotherapy for Pancreatic Neuroendocrine Tumors.

    PubMed

    Broder, Michael S; Chang, Eunice; Reddy, Sheila R; Neary, Maureen P

    2017-08-01

    The aim of this study was to characterize treatment patterns and burden of pancreatic neuroendocrine tumors (PNET). Using 2 claims databases, we identified patients with PNET initiating targeted therapy (everolimus, sunitinib) or chemotherapy from 2009 to 2012. The first targeted/cytotoxic therapy was considered index treatment. Treatment patterns were graphically evaluated from index treatment initiation until enrollment or study end, whichever occurred first. Disease burden was examined by index group for first follow-up year. In treatment pattern analyses (582 newly treated patients with PNET), 72.2% received chemotherapy index treatment, 16.2% everolimus, and 11.7% received sunitinib. Median index treatment duration was 242, 146, and 126 days for everolimus, sunitinib, and cytotoxics (P < 0.01). Sunitinib initiators switched most often followed by everolimus and cytotoxic initiators. In disease burden analyses, 338 patients met inclusion criteria, with mean age of 54.5 (standard deviation, 9.9) years, 45.6% were female, and there were no significant between-group differences. Targeted therapy initiators had more prior somatostatin analog use versus cytotoxics (53.4% vs 25.1%, P < 0.001); 72.5% had comorbidities after treatment initiation; 42.9% had 1 or more inpatient hospitalization; and 47.9% had 1 or more emergency department visit. Pancreatic neuroendocrine tumor treatment patterns varied; cytotoxics were more often used as early therapy than targeted agents, but for less time. Patients had high health care utilization, irrespective of treatment, potentially from burdensome symptoms and comorbidities.

  4. [Pancreatic mucinous cystadenoma doubly complicated by acute pancreatitis and retroperitoneal rupture].

    PubMed

    Maghrebi, Houcine; Makni, Amine

    2017-01-01

    Mucinous cystadenomas are benign tumors with malignant potential. They are often revealed by non-specific abdominal pain, jaundice or an episode of acute pancreatitis. We here report an exceptional case of mucinous cystadenoma doubly complicated by acute pancreatitis and retroperitoneal rupture. The study involved a 30-year old non-weighted female patient, presenting with epigastric pain associated with left hypochondrium evolving over the last three months and which had intensified without fever or jaundice in the last 3 days. Clinical examination showed impingement on palpation of the epigastrium and of the left hypochondrium. There was no palpable mass. Laboratory tests were without abnormalities, except for lipasemia that was 8-times the upper normal. Abdominal CT scan showed bi-loculated cystic mass in the pancreas tail, measuring 111 mm * 73 mm, with a thin wall and a fluid content, associated with an infiltration of the left perirenal fascia. MRI (Panel A) showed mucinous cystadenoma with retroperitoneal rupture. The caudal portion of the main pancreatic duct was slightly dilated and communicated with the pancreatic cyst. The patient underwent surgery via bi-sub-costal approach. A cystic mass in the pancreas tail with retroperitoneal rupture associated with acute pancreatitis (outflow of necrotic content from left anterior prerenal space) was found. Caudal splenopancreatectomy was performed (Panel B). The postoperative course was uneventful. The anatomo-pathological examination of the surgical specimen showed pancreatic mucinous cystadenoma with low-grade dysplasia.

  5. Intrafractional Baseline Shift or Drift of Lung Tumor Motion During Gated Radiation Therapy With a Real-Time Tumor-Tracking System.

    PubMed

    Takao, Seishin; Miyamoto, Naoki; Matsuura, Taeko; Onimaru, Rikiya; Katoh, Norio; Inoue, Tetsuya; Sutherland, Kenneth Lee; Suzuki, Ryusuke; Shirato, Hiroki; Shimizu, Shinichi

    2016-01-01

    To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch position correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. The average change in position of the treatment couch during the treatment time was 0.45 ± 2.23 mm (mean ± standard deviation), -1.65 ± 5.95 mm, and 1.50 ± 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Definition and Management of Borderline Resectable Pancreatic Cancer.

    PubMed

    Denbo, Jason W; Fleming, Jason B

    2016-12-01

    Patients with localized pancreatic ductal adenocarcinoma seek potentially curative treatment, but this group represents a spectrum of disease. Patients with borderline resectable primary tumors are a unique subset whose successful therapy requires a care team with expertise in medical care, imaging, surgery, medical oncology, and radiation oncology. This team must identify patients with borderline tumors then carefully prescribe and execute a combined treatment strategy with the highest possibility of cure. This article addresses the issues of clinical evaluation, imaging techniques, and criteria, as well as multidisciplinary treatment of patients with borderline resectable pancreatic ductal adenocarcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A Novel Chimeric Antigen Receptor Against Prostate Stem Cell Antigen Mediates Tumor Destruction in a Humanized Mouse Model of Pancreatic Cancer

    PubMed Central

    Lagisetty, Kiran H.; Tran, Eric; Zheng, Zhili; Gattinoni, Luca; Yu, Zhiya; Burns, William R.; Miermont, Anne M.; Teper, Yaroslav; Rudloff, Udo; Restifo, Nicholas P.; Feldman, Steven A.; Rosenberg, Steven A.; Morgan, Richard A.

    2014-01-01

    Abstract Despite advances in the understanding of its molecular pathophysiology, pancreatic cancer remains largely incurable, highlighting the need for novel therapies. We developed a chimeric antigen receptor (CAR) specific for prostate stem cell antigen (PSCA), a glycoprotein that is overexpressed in pancreatic cancer starting at early stages of malignant transformation. To optimize the CAR design, we used antigen-recognition domains derived from mouse or human antibodies, and intracellular signaling domains containing one or two T cell costimulatory elements, in addition to CD3zeta. Comparing multiple constructs established that the CAR based on human monoclonal antibody Ha1-4.117 had the greatest reactivity in vitro. To further analyze this CAR, we developed a human pancreatic cancer xenograft model and adoptively transferred CAR-engineered T cells into animals with established tumors. CAR-engineered human lymphocytes induced significant antitumor activity, and unlike what has been described for other CARs, a second-generation CAR (containing CD28 cosignaling domain) induced a more potent antitumor effect than a third-generation CAR (containing CD28 and 41BB cosignaling domains). While our results provide evidence to support PSCA as a target antigen for CAR-based immunotherapy of pancreatic cancer, the expression of PSCA on selected normal tissues could be a source of limiting toxicity. PMID:24694017

  8. Recovery of biological motion perception and network plasticity after cerebellar tumor removal.

    PubMed

    Sokolov, Arseny A; Erb, Michael; Grodd, Wolfgang; Tatagiba, Marcos S; Frackowiak, Richard S J; Pavlova, Marina A

    2014-10-01

    Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.

  9. Periodontal Pathogens in the Etiology of Pancreatic Cancer.

    PubMed

    Öğrendik, Mesut

    2017-03-01

    Pancreatic cancer is the fourth leading cause of cancer-related deaths worldwide. Chronic pancreatitis is frequently observed in patients with pancreatic cancer, and a significant relationship between orodigestive cancer-related deaths and chronic periodontitis has been detected. Porphyromonas gingivalis , Tannerella forsythia , and Treponema denticola , collectively called the Red complex, are the major pathogens responsible for chronic periodontitis and secrete peptidylarginine deiminase. Anti- P. gingivalis antibodies titers are higher in pancreatic cancer patients than in healthy subjects. This review examines the association between oral bacteria and the etiology of pancreatic cancer. High rates of tumor suppressor gene p53 mutations, particularly p53 arginine mutations, were detected in pancreatic cancer patients. K-ras arginine mutations were detected in patients with pancreatic cancer. Oral bacteria peptidylarginine deiminases might lead to the p53 and K-ras point mutations by degrading arginine. Oral bacteria are likely to be responsible for the development of pancreatic cancer. If this hypothesis is true, it may reveal the real cause of pancreatic cancer, which is a fatal disease.

  10. Stabilization of β-catenin induces pancreas tumor formation

    PubMed Central

    Heiser, Patrick W.; Cano, David A.; Landsman, Limor; Kim, Grace E.; Kench, James G.; Klimstra, David S.; Taketo, Maketo M.; Biankin, Andrew V.; Hebrok, Matthias

    2008-01-01

    Background & Aims β-catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of β-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is one of the leading causes of cancer death. While activating mutations within β-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of β-catenin signaling in pancreas tumorigenesis. Methods Using Cre/lox technology, we conditionally activated β-catenin in a subset of murine pancreatic cells, in vivo. Results Activation of β-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based upon morphological and immunohistochemical comparisons. Interestingly, stabilization of β-catenin blocks the formation of pancreatic intraepithlelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to pancreatic ductal adenocarcinoma (PDA). Instead, mice in which β-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. Conclusions These results demonstrate that activation of β-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor. PMID:18725219

  11. Pathological and Molecular Evaluation of Pancreatic Neoplasms

    PubMed Central

    Rishi, Arvind; Goggins, Michael; Wood, Laura D.; Hruban, Ralph H.

    2015-01-01

    Pancreatic neoplasms are morphologically and genetically heterogeneous and include wide variety of neoplasms ranging from benign to malignant with an extremely poor clinical outcome. Our understanding of these pancreatic neoplasms has improved significantly with recent advances in cancer sequencing. Awareness of molecular pathogenesis brings in new opportunities for early detection, improved prognostication, and personalized gene-specific therapies. Here we review the pathological classification of pancreatic neoplasms from their molecular and genetic perspective. All of the major tumor types that arise in the pancreas have been sequenced, and a new classification that incorporates molecular findings together with pathological findings is now possible (Table 1). This classification has significant implications for our understanding of why tumors aggregate in some families, for the development of early detection tests, and for the development of personalized therapies for patients with established cancers. Here we describe this new classification using the framework of the standard histological classification. PMID:25726050

  12. Utility of core biopsy with concurrent ROSE FNA in the diagnosis of pancreatic tumor-does the biopsy add any diagnostic benefit?

    PubMed

    Yan, Lei; Ikemura, Kenji; Park, Ji-Weon

    2018-02-01

    Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) and endoscopic ultrasound-guided core-needle biopsy (EUS-CNB) are widely used for diagnosis of pancreatic tumors. The aim of our study was to compare the diagnostic performance of ROSE EUS-FNA and EUS-CNB for diagnosis of pancreatic malignancy during the same EUS. Patients who underwent both FNA and CNB during the same EUS for pancreatic solid lesion were reviewed retrospectively. Sample adequacy, diagnostic yield (defined as percentage of definitive diagnosis), sensitivity and specificity for malignancy were compared between FNA and CNB. A total of 48 patients with solid pancreatic lesions were evaluated. The proportions of adequate samples were 48/48 (100%) for FNA and 45/48 (93.7%) for core biopsy (P = .24). The diagnostic yield was 42/48 (87.5%) and 33/48 (68.7%) for FNA and CNB respectively (P = .046). The incremental increase in diagnostic yield by combining both methods was 2/48 (4%). The diagnostic yield for malignancy was 30/32 (93.7%) for FNA and 23/32 (71.8%) for CNB (P = .043). The sensitivity for the diagnosis of malignancy for FNA and CNB were 90.6% and 69%, respectively (P = .045). The specificity was 100% for both methods. The sensitivity for diagnosing malignancy increased to 93.8% when the two methods were combined. The difference in diagnostic yield was not associated with lesion size or location. EUS-guided FNA is a superior method of assessing solid pancreatic lesion and pancreatic malignancy with better diagnostic yield and higher sensitivity than EUS-CNB. © 2017 Wiley Periodicals, Inc.

  13. Therapeutic benefit of selective inhibition of p110α PI3-kinase in pancreatic neuroendocrine tumors

    PubMed Central

    Soler, Adriana; Figueiredo, Ana M; Castel, Pau; Martin, Laura; Monelli, Erika; Angulo-Urarte, Ana; Milà-Guasch, Maria; Viñals, Francesc; Casanovas, Oriol

    2017-01-01

    Purpose Mutations in the PI3-kinase (PI3K) pathway occur in 16% of patients with pancreatic neuroendocrine tumors (PanNETs), which suggests that these tumors are an exciting setting for PI3K/AKT/mTOR pharmacological intervention. Everolimus, an mTOR inhibitor, is being used to treat patients with advanced PanNETs. However, resistance to mTOR targeted therapy is emerging partially due to the loss of mTOR-dependent feedback inhibition of AKT. In contrast, the response to PI3K inhibitors in PanNETs is unknown. Experimental Design In the present study, we assessed the frequency of PI3K pathway activation in human PanNETs and in RIP1-Tag2 mice, a preclinical tumor model of PanNETs, and we investigated the therapeutic efficacy of inhibiting PI3K in RIP1-Tag2 mice using a combination of pan (GDC-0941) and p110α selective (GDC-0326) inhibitors and isoform specific PI3K kinase-dead mutant mice. Results Human and mouse PanNETs showed enhanced pAKT, pPRAS40 and pS6 positivity compared to normal tissue. While treatment of RIP1-Tag2 mice with GDC-0941 led to reduced tumor growth with no impact on tumor vessels, the selective inactivation of the p110α PI3K isoform, either genetically or pharmacologically, reduced tumor growth as well as vascular area. Furthermore, GDC-0326 reduced the incidence of liver and lymph node (LN) metastasis compared to vehicle treated mice. We also demonstrated that tumor and stromal cells are implicated in the anti-tumor activity of GDC-0326 in RIP1-Tag2 tumors. Conclusion Our data provide a rationale for p110α selective intervention in PanNETs and unravel a new function of this kinase in cancer biology through its role in promoting metastasis. PMID:27225693

  14. Craniocaudal Safety Margin Calculation Based on Interfractional Changes in Tumor Motion in Lung SBRT Assessed With an EPID in Cine Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Yoshihiro, E-mail: ueda-yo@mc.pref.osaka.jp; Miyazaki, Masayoshi; Nishiyama, Kinji

    2012-07-01

    Purpose: To evaluate setup error and interfractional changes in tumor motion magnitude using an electric portal imaging device in cine mode (EPID cine) during the course of stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC) and to calculate margins to compensate for these variations. Materials and Methods: Subjects were 28 patients with Stage I NSCLC who underwent SBRT. Respiratory-correlated four-dimensional computed tomography (4D-CT) at simulation was binned into 10 respiratory phases, which provided average intensity projection CT data sets (AIP). On 4D-CT, peak-to-peak motion of the tumor (M-4DCT) in the craniocaudal direction was assessed and the tumor centermore » (mean tumor position [MTP]) of the AIP (MTP-4DCT) was determined. At treatment, the tumor on cone beam CT was registered to that on AIP for patient setup. During three sessions of irradiation, peak-to-peak motion of the tumor (M-cine) and the mean tumor position (MTP-cine) were obtained using EPID cine and in-house software. Based on changes in tumor motion magnitude ( Increment M) and patient setup error ( Increment MTP), defined as differences between M-4DCT and M-cine and between MTP-4DCT and MTP-cine, a margin to compensate for these variations was calculated with Stroom's formula. Results: The means ({+-}standard deviation: SD) of M-4DCT and M-cine were 3.1 ({+-}3.4) and 4.0 ({+-}3.6) mm, respectively. The means ({+-}SD) of Increment M and Increment MTP were 0.9 ({+-}1.3) and 0.2 ({+-}2.4) mm, respectively. Internal target volume-planning target volume (ITV-PTV) margins to compensate for Increment M, Increment MTP, and both combined were 3.7, 5.2, and 6.4 mm, respectively. Conclusion: EPID cine is a useful modality for assessing interfractional variations of tumor motion. The ITV-PTV margins to compensate for these variations can be calculated.« less

  15. Effect of inhibition of prostaglandin E2 production on pancreatic infection in experimental acute pancreatitis

    PubMed Central

    Coelho, Ana Maria M.; Sampietre, Sandra; Patzina, Rosely; Jukemura, Jose; Cunha, Jose Eduardo M.; Machado, Marcel C.C.

    2007-01-01

    Objective. Acute pancreatitis is one the important causes of systemic inflammatory response syndrome (SIRS). SIRS results in gut barrier dysfunction that allows bacterial translocation and pancreatic infection to occur. Indomethacin has been used to reduce inflammatory process and bacterial translocation in experimental models. The purpose of this study was to determine the effect of inhibition of prostaglandin E2 (PGE2) production on pancreatic infection. Materials and methods. An experimental model of severe acute pancreatitis (AP) was utilized. The animals were divided into three groups: sham (surgical procedure without AP induction); pancreatitis (AP induction); and indomethacin (AP induction plus administration of 3 mg/kg of indomethacin). Serum levels of interleukin (IL)-6 and IL-10, PGE2, and tumor necrosis factor (TNF)-α were measured 2 h after the induction of AP. We analyzed the occurrence of pancreatic infection with bacterial cultures performed 24 h after the induction of AP. The occurrence of pancreatic infection (considered positive when the CFU/g was >105), pancreatic histologic analysis, and mortality rate were studied. Results. In spite of the reduction of IL-6, IL-10, and PGE2 levels in the indomethacin group, TNF-α level, bacterial translocation, and pancreatic infection were not influenced by administration of indomethacin. The inhibition of PGE2 production did not reduce pancreatic infection, histologic score, or mortality rate. Conclusion. The inhibition of PGE2 production was not able to reduce the occurrence of pancreatic infection and does not have any beneficial effect in this experimental model. Further investigations will be necessary to discover a specific inhibitor that would make it possible to develop an anti-inflammatory therapy. PMID:18345325

  16. Cabozantinib S-malate in Treating Patients With Neuroendocrine Tumors Previously Treated With Everolimus That Are Locally Advanced, Metastatic, or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-03-12

    Atypical Carcinoid Tumor; Carcinoid Tumor; Digestive System Neuroendocrine Neoplasm; Enterochromaffin Cell Serotonin-Producing Pancreatic Neuroendocrine Tumor; Functional Pancreatic Neuroendocrine Tumor; Intermediate Grade Lung Neuroendocrine Neoplasm; Low Grade Lung Neuroendocrine Neoplasm; Lung Atypical Carcinoid Tumor; Lung Carcinoid Tumor; Metastatic Digestive System Neuroendocrine Tumor G1; Neuroendocrine Neoplasm; Nonfunctional Pancreatic Neuroendocrine Tumor; Pancreatic Neuroendocrine Tumor; Stage IIIA Digestive System Neuroendocrine Tumor AJCC v7; Stage IIIB Digestive System Neuroendocrine Tumor AJCC v7; Stage IV Digestive System Neuroendocrine Tumor AJCC v7

  17. Pancreatic abscess caused by Corynebacterium coyleae mimicking malignant neoplasm.

    PubMed

    Taguchi, Masashi; Nishikawa, Shoichiro; Matsuoka, Hidehiko; Narita, Ryoichi; Abe, Shintaro; Fukuda, Kazumasa; Miyamoto, Hiroshi; Taniguchi, Hatsumi; Otsuki, Makoto

    2006-11-01

    A 50-year-old female was referred to our hospital because of postprandial epigastric pain and pancreatic head mass. On admission, an elastic hard mass with tenderness was palpable in the epigastric region. Laboratory findings showed no abnormalities, except for a slightly elevated C-reactive protein value and iron deficiency anemia. Serum levels of pancreatic enzymes and tumor markers were also within the reference range. Computed tomography (CT) demonstrated a 5-cm heterogenous mass at the head of the pancreas. Angiography showed that gastroduodenal artery was transformed and narrowed by the mass. Smooth stenosis of portal vein was also observed. Fusion CT-positron emission tomography with 2-deoxy-2-[F]fluoro-D-glucose demonstrated a focus of increased uptake in the pancreatic head mass. We suspected the mass of malignancy but, surprisingly, tumor size was gradually decreased without any therapies. Biopsy specimens from the mass of the pancreas showed marked inflammatory cell infiltration and marked interstitial fibrosis without malignant cells. Thereafter, we could isolate Corynebacterium coyleae from the biopsy specimen. We diagnosed the mass as a pancreatic abscess caused by C. coyleae and started with the intravenous antibiotics therapy. Subsequent follow-up CT and ultrasonography showed dramatic improvement in pancreatic mass. We present here a case of pancreatic abscess which was difficult to differentiate from malignant lesion by various imaging studies. Moreover, we could culture and identify C. coyleae which had never been reported to be the source of pancreatic abscess.

  18. PDX-1 Is a Therapeutic Target for Pancreatic Cancer, Insulinoma and Islet Neoplasia Using a Novel RNA Interference Platform

    PubMed Central

    Liu, Shi-He; Rao, Donald D.; Nemunaitis, John; Senzer, Neil; Zhou, Guisheng; Dawson, David; Gingras, Marie-Claude; Wang, Zhaohui; Gibbs, Richard; Norman, Michael; Templeton, Nancy S.; DeMayo, Francesco J.; O'Malley, Bert; Sanchez, Robbi; Fisher, William E.; Brunicardi, F. Charles

    2012-01-01

    Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a “drugable” target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNAPDX-1, was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNAhumanPDX-1 lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNAmousePDX-1 lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNAmousePDX-1 lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases. PMID:22905092

  19. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance.

    PubMed

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-30

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future.

  20. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance

    PubMed Central

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-01

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future. PMID:28134290

  1. MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3.

    PubMed

    Li, Zhipeng; Li, Xu; Yu, Chao; Wang, Min; Peng, Feng; Xiao, Jie; Tian, Rui; Jiang, Jianxin; Sun, Chengyi

    2014-12-01

    We intended to investigate the role of microRNA 100 (miR-100) in regulating pancreatic cancer cells' growth in vitro and tumor development in vivo. QTR-PCR was used to examine the expression of miR-100 in pancreatic cancer cell lines and tumor cells from human patients. Lentivirual vector containing miR-100 mimics (lv-miR-100) was used to overexpress miR-100 in MIA PaCa-2 and FCPAC-1 cells. The effects of overexpressing miR-100 on pancreatic cancer cell proliferation and chemosensitivity to cisplatin were examined by cell proliferation essay in vitro. MIA PaCa-2 cells with endogenously overexpressed miR-100 were transplanted into null mice to examine tumor growth in vivo. The predicted target of miR-100, fibroblast growth factor receptor 3 (FGFR3), was downregulated by siRNA to examine its effect on pancreatic cancer cells. We found miR-100 was markedly underexpressed in both pancreatic cancer cell lines and tumor cells from patients. In cancer cells, transfection of lv-miR-100 was able to upregulate endogenous expression of miR-100, inhibited cancer cell proliferation, and increased sensitivities to cisplatin. Overexpressing miR-100 led to significant inhibition on tumor formation in vivo. Luciferase essay showed FGFR3 was direct target of miR-100. FGFR3 was significantly downregulated by overexpressing miR-100 in pancreatic cancer cells and knocking down FGFR3 by siRNA exerted similar effect as miR-100. Our study demonstrated that miR-100 played an important role in pancreatic cancer development, possibly through targeting FGFR3. It may become a new therapeutic target for gene therapy in patients suffered from pancreatic cancer.

  2. 32-Phosphorus selectively delivered by listeria to pancreatic cancer demonstrates a strong therapeutic effect

    PubMed Central

    Chandra, Dinesh; Selvanesan, Benson Chellakkan; Yuan, Ziqiang; Libutti, Steven K; Koba, Wade; Beck, Amanda; Zhu, Kun; Casadevall, Arturo; Dadachova, Ekaterina; Gravekamp, Claudia

    2017-01-01

    Our laboratory has developed a novel delivery platform using an attenuated non-toxic and non-pathogenic bacterium Listeria monocytogenes that infects tumor cells and selectively survives and multiplies in metastases and primary tumors with help of myeloid-derived suppressor cells (MDSC) and immune suppression in the tumor microenvironment (TME). 32P was efficiently incorporated into the Listeria bacteria by starvation of the bacteria in saline, and then cultured in phosphorus-free medium complemented with 32P as a nutrient. Listeria-32P kills tumor cells through both 32P-induced ionizing radiation and Listeria-induced reactive oxygen species (ROS). The levels of 32P and Listeria were studied in various normal and tumor tissues, at sequential time points after injection of mice with pancreatic cancer (syngeneic model Panc-02). We found that 32P and Listeria predominantly accumulated in tumors and metastases, with their highest accumulation 4 hrs (32P) and 3 days (Listeria) after injection. Listeria also penetrated the transgenic KPC (conditionally express endogenous Kras-G12D and p53-R172H mutant alleles) pancreatic tumors and metastases. This is remarkable since KPC tumors, like human tumors, exhibit a stromal barrier, which prevents most drugs from penetrating the pancreatic tumors. Therapeutic treatment with Listeria -32P resulted in a strong reduction of the growth of pancreatic cancer at early and late stages in Panc-02 and KPC mice. These results highlight the power of Listeria as new delivery platform of anticancer agents to the TME. Not only were therapeutic levels of radioactive Listeria reached in tumors and metastases but the selective delivery also led to minimal side effects. PMID:28186976

  3. GLP1 and glucagon co-secreting pancreatic neuroendocrine tumor presenting as hypoglycemia after gastric bypass

    PubMed Central

    Guimarães, Marta; Rodrigues, Pedro; Pereira, Sofia S; Nora, Mário; Gonçalves, Gil; Albrechtsen, Nicolai Wewer; Hartmann, Bolette; Holst, Jens Juul

    2015-01-01

    Summary Post-prandial hypoglycemia is frequently found after bariatric surgery. Although rare, pancreatic neuroendocrine tumors (pNET), which occasionally are mixed hormone secreting, can lead to atypical clinical manifestations, including reactive hypoglycemia. Two years after gastric bypass surgery for the treatment of severe obesity, a 54-year-old female with previous type 2 diabetes, developed post-prandial sweating, fainting and hypoglycemic episodes, which eventually led to the finding by ultrasound of a 1.8-cm solid mass in the pancreatic head. The 72-h fast test and the plasma chromogranin A levels were normal but octreotide scintigraphy showed a single focus of abnormal radiotracer uptake at the site of the nodule. There were no other clinical signs of hormone secreting pNET and gastrointestinal hormone measurements were not performed. The patient underwent surgical enucleation with complete remission of the hypoglycemic episodes. Histopathology revealed a well-differentiated neuroendocrine carcinoma with low-grade malignancy with positive chromogranin A and glucagon immunostaining. An extract of the resected tumor contained a high concentration of glucagon (26.707 pmol/g tissue), in addition to traces of GLP1 (471 pmol/g), insulin (139 pmol/g) and somatostatin (23 pmol/g). This is the first report of a GLP1 and glucagon co-secreting pNET presenting as hypoglycemia after gastric bypass surgery. Although pNET are rare, they should be considered in the differential diagnosis of the clinical approach to the post-bariatric surgery hypoglycemia patient. Learning points pNETs can be multihormonal-secreting, leading to atypical clinical manifestations.Reactive hypoglycemic episodes are frequent after gastric bypass.pNETs should be considered in the differential diagnosis of hypoglycemia after bariatric surgery. PMID:26266036

  4. Impact of tumor grade on prognosis in pancreatic cancer: should we include grade in AJCC staging?

    PubMed

    Wasif, Nabil; Ko, Clifford Y; Farrell, James; Wainberg, Zev; Hines, Oscar J; Reber, Howard; Tomlinson, James S

    2010-09-01

    AJCC staging of pancreatic cancer (PAC) is used to determine prognosis, yet survival within each stage shows wide variation and remains unpredictable. We hypothesized that tumor grade might be responsible for some of this variation and that the addition of grade to current AJCC staging would provide improved prognostication. The Surveillance, Epidemiology, and End Results (SEER) database (1991-2005) was used to identify 8082 patients with resected PAC. The impact of grade on overall and stage-specific survival was assessed using Cox regression analysis. Variables in the model were age, sex, tumor size, lymph node status, and tumor grade. For each AJCC stage, survival was significantly worse for high-grade versus low-grade tumors. On multivariate analysis, high tumor grade was an independent predictor of survival for the entire cohort (hazard ratio [HR] 1.40, 95% confidence interval [95% CI] 1.31-1.48) as well as for stage I (HR 1.28, 95% CI 1.07-1.54), stage IIA (HR 1.43, 95% CI 1.26-1.61), stage IIB (HR 1.38, 95% CI 1.27-1.50), stage III (HR 1.28, 95% CI 1.02-1.59), and stage IV (HR 1.58, 95% CI 1.21-2.05) patients. The addition of grade to staging results in a statistically significant survival discrimination between all stages. Tumor grade is an important prognostic variable of survival in PAC. We propose a novel staging system incorporating grade into current AJCC staging for pancreas cancer. The improved prognostication is more reflective of tumor biology and may impact therapy decisions and stratification of future clinical trials.

  5. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers

    PubMed Central

    Cohen, Joshua D.; Javed, Ammar A.; Thoburn, Christopher; Wong, Fay; Tie, Jeanne; Gibbs, Peter; Schmidt, C. Max; Yip-Schneider, Michele T.; Allen, Peter J.; Schattner, Mark; Brand, Randall E.; Singhi, Aatur D.; Petersen, Gloria M.; Hong, Seung-Mo; Kim, Song Cheol; Falconi, Massimo; Doglioni, Claudio; Weiss, Matthew J.; Ahuja, Nita; He, Jin; Makary, Martin A.; Maitra, Anirban; Hanash, Samir M.; Dal Molin, Marco; Wang, Yuxuan; Li, Lu; Ptak, Janine; Dobbyn, Lisa; Schaefer, Joy; Silliman, Natalie; Popoli, Maria; Goggins, Michael G.; Hruban, Ralph H.; Wolfgang, Christopher L.; Klein, Alison P.; Tomasetti, Cristian; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Lennon, Anne Marie

    2017-01-01

    The earlier diagnosis of cancer is one of the keys to reducing cancer deaths in the future. Here we describe our efforts to develop a noninvasive blood test for the detection of pancreatic ductal adenocarcinoma. We combined blood tests for KRAS gene mutations with carefully thresholded protein biomarkers to determine whether the combination of these markers was superior to any single marker. The cohort tested included 221 patients with resectable pancreatic ductal adenocarcinomas and 182 control patients without known cancer. KRAS mutations were detected in the plasma of 66 patients (30%), and every mutation found in the plasma was identical to that subsequently found in the patient’s primary tumor (100% concordance). The use of KRAS in conjunction with four thresholded protein biomarkers increased the sensitivity to 64%. Only one of the 182 plasma samples from the control cohort was positive for any of the DNA or protein biomarkers (99.5% specificity). This combinatorial approach may prove useful for the earlier detection of many cancer types. PMID:28874546

  6. Irreversible electroporation of locally advanced pancreatic neck/body adenocarcinoma

    PubMed Central

    2015-01-01

    Objective Irreversible electroporation (IRE) of locally advanced pancreatic adenocarcinoma of the neck has been used to palliate appropriate stage 3 pancreatic cancers without evidence of metastasis and who have undergone appropriate induction therapy. Currently there has not been a standardized reported technique for pancreatic mid-body tumors for patient selection and intra-operative technique. Patients Subjects are patients with locally advanced pancreatic adenocarcinoma of the body/neck who have undergone appropriate induction chemotherapy for a reasonable duration. Main outcome measures Technique of open IRE of locally advanced pancreatic adenocarcinoma of the neck/body is described, with the emphasis on intra-operative ultrasound and intra-operative electroporation management. Results The technique of open IRE of the pancreatic neck/body with bracketing of the celiac axis and superior mesenteric artery with continuous intraoperative ultrasound imaging and consideration of intraoperative navigational system is described. Conclusions IRE of locally advanced pancreatic adenocarcinoma of the body/neck is feasible for appropriate patients with locally advanced unresectable pancreatic cancer. PMID:26029461

  7. Vitamins in Pancreatic Cancer: A Review of Underlying Mechanisms and Future Applications12

    PubMed Central

    Davis-Yadley, Ashley H; Malafa, Mokenge P

    2015-01-01

    Although there is increasing evidence that vitamins influence pancreatic adenocarcinoma biology and carcinogenesis, a comprehensive review is lacking. In this study, we performed a PubMed literature search to review the anticancer mechanisms and the preclinical and clinical studies that support the development of the bioactive vitamins A, C, D, E, and K in pancreatic cancer intervention. Preclinical studies have shown promising results for vitamin A in pancreatic cancer prevention, with clinical trials showing intriguing responses in combination with immunotherapy. For vitamin C, preclinical studies have shown slower tumor growth rates and/or increased survival when used alone or in combination with gemcitabine, with clinical trials with this combination revealing decreased primary tumor sizes and improved performance status. Preclinical studies with vitamin D analogues have shown potent antiproliferative effects and repression of migration and invasion of pancreatic cancer cells, with a clinical trial showing increased time to progression when calciferol was added to docetaxel. For vitamin E, preclinical studies have shown that δ-tocotrienol and γ-tocotrienol inhibited tumor cell growth and survival and augmented gemcitabine activity. Early-phase clinical trials with δ-tocotrienol are ongoing. Vitamin K demonstrates activation of apoptosis and inhibition of cellular growth in pancreatic tumor cells; however, there are no clinical studies available for further evaluation. Although preclinical and clinical studies are encouraging, randomized controlled trials with endpoints based on insights gained from mechanistic and preclinical studies and early-phase clinical trials are required to determine the efficacy of bioactive vitamin interventions in pancreatic cancer. PMID:26567201

  8. Dendritic cell-based vaccines for pancreatic cancer and melanoma.

    PubMed

    Mulé, James J

    2009-09-01

    Based on leads from our recent animal studies, we are embarking on a series of new clinical trials to evaluate potential improvements in dendritic cell (DC)-based vaccines for melanoma and pancreatic cancer. The first new strategy involves the use of a powerful chemokine (denoted secondary lymphoid tissue chemokine; SLC/CCL-21), which can both create functioning lymph node-like structures at sites of vaccination with tumor-loaded DCs and dramatically enhance vaccine efficacy in animal tumor models. Using this strategy, we are embarking on a clinical trial in melanoma patients with the intent to create functioning, ectopic, lymph node-like structures to enhance host antitumor immunity. The second strategy, in the setting of pancreatic cancer, involves a gene therapy and immunotherapy combination of a locally administered tumor necrosis factor-alpha gene vector followed by radiation (to induce tumor apoptosis/necrosis) and intratumorally administered monocyte-derived DCs (to uptake and present antigens from dying tumor cells to elicit potent, systemic, antitumor immunity).

  9. Cytologic characteristics of circulating epithelioid cells in pancreatic disease.

    PubMed

    Rosenbaum, Matthew W; Cauley, Christy E; Kulemann, Birte; Liss, Andrew S; Castillo, Carlos Fernandez-Del; Warshaw, Andrew L; Lillemoe, Keith D; Thayer, Sarah P; Pitman, Martha B

    2017-05-01

    Circulating epithelioid cells (CECs), also known as circulating tumor, circulating cancer, circulating epithelial, or circulating nonhematologic cells, are a prognostic factor in various malignancies that can be isolated via various protocols. In the current study, the authors analyzed the cytomorphologic characteristics of CECs isolated by size in a cohort of patients with benign and malignant pancreatic diseases to determine whether cytomorphological features could predict CEC origin. Blood samples were collected from 9 healthy controls and 171 patients with pancreatic disease who were presenting for surgical evaluation before treatment. Blood was processed with the ScreenCell size-based filtration device. Evaluable CECs were analyzed in a blinded fashion for cytomorphologic characteristics, including cellularity; nucleoli; nuclear size, irregularity, variability, and hyperchromasia; and nuclear-to-cytoplasmic ratio. Statistical differences between variables were analyzed via the Fisher exact test. No CECs were identified among the 9 normal healthy controls. Of the 115 patients with CECs (positive or suspicious for), 25 had nonmalignant disease and 90 had malignancy. There were no significant differences in any of the cytologic criteria noted between groups divided by benign versus malignant, neoplastic versus nonneoplastic, or pancreatic ductal adenocarcinoma versus neuroendocrine tumor. CECs were observed in patients with malignant and nonmalignant pancreatic disease, but not in healthy controls. There were no morphologic differences observed between cells from different pancreatic diseases, suggesting that numerous conditions may be associated with CECs in the circulation and that care must be taken not to overinterpret cells identified by cytomorphology as indicative of circulating tumor cells of pancreatic cancer. Additional studies are required to determine the origin and clinical significance of these cells. Cancer Cytopathol 2017;125:332-340. © 2017

  10. Gastroenteropancreatic Neuroendocrine Tumors in Multiple Endocrine Neoplasia Type 1

    PubMed Central

    Tonelli, Francesco; Giudici, Francesco; Giusti, Francesca; Brandi, Maria Luisa

    2012-01-01

    We reviewed the literature about entero-pancreatic neuroendocrine tumors in Multiple Endocrine Neoplasia type 1 syndrome (MEN1) to clarify their demographic features, localization imaging, practice, and appropriate therapeutical strategies, analyzing the current approach to entero-pancreatic neuroendocrine tumors in MEN1. Despite the fact that hyperparathyroidism is usually the first manifestation of MEN1, the penetrance of these tumors is similar. They are characterized by multiplicity of lesions, variable expression of the tumors, and propensity for malignant degeneration. Both the histological type and the size of MEN1 neuroendocrine tumors correlate with malignancy. Monitoring of pancreatic peptides and use of imaging exams allow early diagnosis and prompt surgical treatment, resulting in prevention of metastatic disease and improvement of long-term survival. Surgery is often the treatment of choice for MEN1-neuroendocrine tumors. The rationale for surgical approach is to curtail malignant progression of the disease, and to cure the associated biochemical syndrome, should it be present. PMID:24213321

  11. Environmental effects on molecular biomarkers expression in pancreatic and brain cancer

    NASA Astrophysics Data System (ADS)

    Mensah, Lawrence; Mallidi, Srivalleesha; Massodi, Iqbal; Anbil, Sriram; Mai, Zhiming; Hasan, Tayyaba

    2013-03-01

    A complete understanding of the biological mechanisms regulating devastating disease such as cancer remains elusive. Pancreatic and brain cancers are primary among the cancer types with poor prognosis. Molecular biomarkers have emerged as group of proteins that are preferentially overexpressed in cancers and with a key role in driving disease progression and resistance to chemotherapy. The epidermal growth factor receptor (EGFR), a cell proliferative biomarker is particularly highly expressed in most cancers including brain and pancreatic cancers. The ability of EGFR to sustain prolong cell proliferation is augmented by biomarkers such as Bax, Bcl-XL and Bcl-2, proteins regulating the apoptotic process. To better understand the role and effect of the microenvironment on these biomarkers in pancreatic cancer (PaCa); we analysed two pancreatic tumor lines (AsPc-1 and MiaPaCa-2) in 2D, 3D in-vitro cultures and in orthotopic tumors at different growth stages. We also investigated in patient derived glioblastoma (GBM) tumor cultures, the ability to utilize the EGFR expression to specifically deliver photosensitizer to the cells for photodynamic therapy. Overall, our results suggest that (1) microenvironment changes affect biomarker expression; thereby it is critical to understand these effects prior to designing combination therapies and (2) EGFR expression in tumor cells indeed could serve as a reliable and a robust biomarker that could be used to design targeted and image-guided photodynamic therapy.

  12. Experimental treatment of pancreatic cancer with two novel histone deacetylase inhibitors

    PubMed Central

    Haefner, Martin; Bluethner, Thilo; Niederhagen, Manuel; Moebius, Christian; Wittekind, Christian; Mossner, Joachim; Caca, Karel; Wiedmann, Marcus

    2008-01-01

    AIM: To investigate in vitro and in vivo treatment with histone deacetylase inhibitors NVP-LAQ824 and NVP-LBH589 in pancreatic cancer. METHODS: Cell-growth inhibition by NVP-LAQ824 and NVP-LBH589 was studied in vitro in 8 human pancreatic cancer cell lines using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the anti-tumoral effect of NVP-LBH589 was studied in a chimeric mouse model. Anti-tumoral activity of the drugs was assessed by immunoblotting for p21WAF-1, acH4, cell cycle analysis, TUNEL assay, and immunohistochemistry for MIB-1. RESULTS: In vitro treatment with both compounds significantly suppressed the growth of all cancer cell lines and was associated with hyperacetylation of nucleosomal histone H4, increased expression of p21WAF-1, cell cycle arrest at G2/M-checkpoint, and increased apoptosis. In vivo, NVP-LBH589 alone significantly reduced tumor mass and potentiated the efficacy of gemcitabine. Further analysis of the tumor specimens revealed slightly increased apoptosis and no significant reduction of cell proliferation. CONCLUSION: Our findings suggest that NVP-LBH589 and NVP-LAQ824 are active against human pancreatic cancer, although the precise mechanism of in vivo drug action is not yet completely understood. Therefore, further preclinical and clinical studies for the treatment of pancreatic cancer are recommended. PMID:18595135

  13. Antitumor Activity of Emodin against Pancreatic Cancer Depends on Its Dual Role: Promotion of Apoptosis and Suppression of Angiogenesis

    PubMed Central

    Chen, Kang-Jie; Tong, Hong-Fei; Wang, Zhao-Hong; Ni, Zhong-Lin; Liu, Hai-Bin; Guo, Hong-Chun; Liu, Dian-Lei

    2012-01-01

    Background Emodin has been showed to induce apoptosis of pancreatic cancer cells and inhibit tumor growth in our previous studies. This study was designed to investigate whether emodin could inhibit the angiogenesis of pancreatic cancer tissues and its mechanism. Methodology/Principal Finding In accordance with our previous study, emodin inhibited pancreatic cancer cell growth, induced apoptosis, and enhanced the anti-tumor effect of gemcitabine on pancreatic caner cells in vitro and in vivo by inhibiting the activity of NF-κB. Here, for the first time, we demonstrated that emodin inhibited tumor angiogenesis in vitro and in implanted pancreatic cancer tissues, decreased the expression of angiogenesis-associated factors (NF-κB and its regulated factors VEGF, MMP-2, MMP-9, and eNOS), and reduced eNOS phosphorylation, as evidenced by both immunohistochemistry and western blot analysis of implanted tumors. In addition, we found that emodin had no effect on VEGFR expression in vivo. Conclusions/Significance Our results suggested that emodin has potential anti-tumor effect on pancreatic cancer via its dual role in the promotion of apoptosis and suppression of angiogenesis, probably through regulating the expression of NF-κB and NF-κB-regulated angiogenesis-associated factors. PMID:22876305

  14. Targeting the yin and the yang: combined inhibition of the tyrosine kinase c-Src and the tyrosine phosphatase SHP-2 disrupts pancreatic cancer signaling and biology in vitro and tumor formation in vivo.

    PubMed

    Gomes, Evan G; Connelly, Sarah F; Summy, Justin M

    2013-07-01

    Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.

  15. Pancreatic ductal adenocarcinoma presenting with acute and chronic pancreatitis as initial presentation: is prognosis better? A comparison study..

    PubMed

    Thorat, Ashok; Huang, Wen-Hsuan; Yeh, Ta-Sen; Jan, Yi-Yan; Hwang, Tsann-Long

    2014-10-01

    Pancreatic ductal adenocarcinoma (PDAC) may present with acute and /or chronic pancreatitis due to pancreatic ductal obstruction causing diagnostic dilemma. The aim of this retrospective study was to investigate the outcome and prognosis of the patients of PDAC presenting with pancreatitis. From 1991 to 2009, 298 patients with PDAC that underwent surgical treatment were retrospectively studied and divided in two groups depending upon initial symptomatic presentation. Group A (n=254) comprised patients without pancreatitis while group B (n=44) patients presented with acute and/or chronic pancreatitis initially. All the patients in studied cohort were surgically treated. Mean age of group A was 63.1 years & for group B it was 62.9 years. Location of tumor was in head of the pancreas in 66.14% of group A patients (n=168) and 61.36% of group B patients (n=27). Although statistically insignificant, the patients in group B had overall better 5-year survival than the patients in group A (20% vs 15.9%). This retrospective study highlights the overall better survival of PDAC patients presenting with acute and/or chronic pancreatitis than those without as contrary to previous reports which stated the poor prognosis of PDAC patients if associated with underlying pancreatitis.

  16. Prognostic impact of a compartment-specific angiogenic marker profile in patients with pancreatic cancer.

    PubMed

    Kahlert, Christoph; Fiala, Maria; Musso, Gabriel; Halama, Niels; Keim, Sophia; Mazzone, Massimiliano; Lasitschka, Felix; Pecqueux, Mathieu; Klupp, Fee; Schmidt, Thomas; Rahbari, Nuh; Schölch, Sebastian; Pilarsky, Christian; Ulrich, Alexis; Schneider, Martin; Weitz, Juergen; Koch, Moritz

    2014-12-30

    Pancreatic cancer consists of a heterogenous bulk of tumor cells and stroma cells which contribute to tumor progression by releasing angiogenic factors. Those factors can be detected as circulating serum factors. We performed a compartment-specific analysis of tumor-derived and stroma-derived angiogenic factors to identify biomarkers and molecular targets for the treatment of pancreatic cancer. Kryo-frozen tissue from primary ductal adenocarcinomas (n = 51) was laser-microdissected to isolate tumor and stroma tissue. Expression of 17 angiogenic factors (angiopoietin-2, follistatin, GCSF, HGF, interleukin-8, leptin, PDGF-BB, PECAM-1, VEGF, matrix metalloproteinase -1, -2, -3, -7, -9, -10, -12, and -13) was analyzed using a multiplex elisa assay for tissue-derived proteins and corresponding serum. Our study reveals a compartment-specific expression profile for several angiogenic factors and matrix metalloproteinases. ROC analysis of corresponding serum samples reveals MMP-7 and MMP-12 as strong classifiers for the diagnosis of patients with pancreatic cancer vs. healthy control donors. High expression of tumor-derived PDGF-BB and MMP-1 correlates with prolonged survival in univariate and multivariate analysis. In conclusion, a distinct expression patterns for angiogenic cytokines and MMPs in pancreatic cancer and surrounding stroma may implicate them as novel targets for cancer treatment. Tumor-derived PDGF-BB and MMP-1 are significant and independent prognostic markers for poor survival.

  17. Improved Treatment of Pancreatic Cancer With Drug Delivery Nanoparticles Loaded With a Novel AKT/PDK1 Inhibitor.

    PubMed

    Kobes, Joseph E; Daryaei, Iman; Howison, Christine M; Bontrager, Jordan G; Sirianni, Rachael W; Meuillet, Emmanuelle J; Pagel, Mark D

    2016-09-01

    This research study sought to improve the treatment of pancreatic cancer by improving the drug delivery of a promising AKT/PDK1 inhibitor, PHT-427, in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. PHT-427 was encapsulated in single-emulsion and double-emulsion PLGA nanoparticles (SE-PLGA-427 and DE-PLGA-427). The drug release rate was evaluated to assess the effect of the second PLGA layer of DE-PLGA-427. Ex vivo cryo-imaging and drug extraction from ex vivo organs was used to assess the whole-body biodistribution in an orthotopic model of MIA PaCa-2 pancreatic cancer. Anatomical magnetic resonance imaging (MRI) was used to noninvasively assess the effects of 4 weeks of nanoparticle drug treatment on tumor size, and diffusion-weighted MRI longitudinally assessed changes in tumor cellularity. DE-PLGA-427 showed delayed drug release and longer drug retention in the pancreas relative to SE-PLGA-427. Diffusion-weighted MRI indicated a consistent decrease in cellularity during drug treatment with both types of drug-loaded nanoparticles. Both SE- and DE-PLGA-427 showed a 6-fold and 4-fold reduction in tumor volume relative to untreated tumors and an elimination of primary pancreatic tumor in 68% of the mice. These results indicated that the PLGA nanoparticles improved drug delivery of PHT-427 to pancreatic tumors, which improved the treatment of MIA PaCa-2 pancreatic cancer.

  18. Gene expression disorders of innate antibacterial signaling pathway in pancreatic cancer patients: implications for leukocyte dysfunction and tumor progression

    PubMed Central

    Dąbrowska, Aleksandra; Lech, Gustaw; Słodkowski, Maciej; Słotwińska, Sylwia M.

    2014-01-01

    The study was carried out to investigate changes in gene expression of innate antibacterial signaling pathways in patients with pancreatic cancer. Expression of the following genes was measured in peripheral blood leukocytes of 55 patients with pancreatic adenocarcinoma using real-time polymerase chain reaction (RT-PCR): TLR4, NOD1, MyD88, TRAF6 and HMGB1. The levels of expression of TLR4, NOD1 and TRAF6 genes were significantly elevated (p = 0.007; p = 0.001 and p = 0.01, respectively), while MyD88 expression was markedly reduced (p = 0.0002), as compared to controls. Expression of TLR4 and NOD1 exceeded the normal level more than 3.5-fold and there was a significant correlation found between the expression of these genes (r = 0.558, p < 0.001). TLR4, NOD1 and MyD88 genes were expressed at a similar level both before and after surgery. No significant changes in the expression of HMGB1 gene were observed. The results of the study clearly indicate abnormal expression of genes belonging to innate antibacterial signaling pathways in peripheral blood leukocytes of patients with pancreatic cancer, which may lead to leukocyte dysfunction. Overexpression of TLR4, NOD1 and TRAF6 genes, and decreased MyD88 gene expression may contribute to chronic inflammation and tumor progression by up-regulation of the innate antibacterial response. The parameters tested are useful for monitoring innate immunity gene disorders and pancreatic cancer progression. PMID:26155170

  19. A case of positive 68Ga-DOTATOC-PET/CT pancreatic heterotopia mimicking an intestinal neuroendocrine tumor.

    PubMed

    Zilli, Alessandra; Fanetti, Ilaria; Conte, Dario; Massironi, Sara

    Gallium-68 DOTA-peptide positron emission tomography/computed tomography ( 68 Ga-PET/CT) has emerged as a promising tool for the diagnosis and staging of gastro-entero-pancreatic neoplasms, thanks to its high sensitivity and specificity. Heterotopic pancreas, which is relatively rare, has never been reported as a possible cause of false positives of 68 Ga-PET/CT. We report on the first case of a heterotopic pancreas showing pathological uptake at 68 Ga-PET/CT, thus mimicking an intestinal neuroendocrine tumor. The present case suggests that heterotopic pancreas should be included among the possible causes of false positives at 68 Ga PET. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. [Pancreatic acinar neoplasms : Comparative molecular characterization].

    PubMed

    Bergmann, F

    2016-11-01

    Pancreatic acinar cell carcinomas are biologically aggressive neoplasms for which treatment options are very limited. The molecular mechanisms of tumor initiation and progression are largely not understood and precursor lesions have not yet been identified. In this study, pancreatic acinar cell carcinomas were cytogenetically characterized as well as by molecular and immunohistochemical analyses. Corresponding investigations were carried out on pancreatic ductal adenocarcinomas and pancreatic neuroendocrine neoplasms augmented by functional analyses. We show that pancreatic acinar cell carcinomas display a microsatellite stable, chromosomal unstable genotype, characterized by recurrent chromosomal imbalances that clearly discriminate them from pancreatic ductal adenocarcinomas and neuroendocrine neoplasms. Based on findings obtained from comparative genomic hybridization, candidate genes could be identified, such as deleted in colorectal cancer (DCC) and c-MYC. Furthermore, several therapeutic targets were identified in acinar cell carcinomas and other pancreatic neoplasms, including epidermal growth factor receptor (EGFR), L1 cell adhesion molecule (L1CAM) and heat shock protein 90 (HSP90). Moreover, L1CAM was shown to play a significant role in the tumorigenesis of pancreatic ductal adenocarcinoma. Functional analyses in cell lines derived from pancreatic neuroendocrine neoplasms revealed promising anti-tumorigenic effects using EGFR and HSP90 inhibitors affecting the cell cycle and in the case of HSP90, regulating several other oncogenes. Finally, based on mutational analyses of mitochondrial DNA, molecular evidence is provided that acinar cell cystadenomas (or better cystic acinar transformation) represent non-clonal lesions, suggesting an inflammatory reactive non-neoplastic nature.

  1. SU-C-17A-05: Quantification of Intra-Fraction Motion of Breast Tumors Using Cine-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heijst, T van; Philippens, M; Bongard, D van den

    2014-06-01

    Purpose: Magnetic resonance imaging (MRI) enables direct characterization of intra-fraction motion ofbreast tumors, due to high softtissue contrast and geometric accuracy. The purpose is to analyzethis motion in early-stage breast-cancer patients using pre-operative supine cine-MRI. Methods: MRI was performed in 12 female early-stage breast-cancer patients on a 1.5-T Ingenia (Philips)wide-bore scanner in supine radiotherapy (RT) position, prior to breast-conserving surgery. Twotwodimensional (2D) T2-weighted balanced fast-field echo (cine-MRI) sequences were added tothe RT protocol, oriented through the tumor. They were alternately acquired in the transverse andsagittal planes, every 0.3 s during 1 min. A radiation oncologist delineated gross target volumes(GTVs) onmore » 3D contrast-enhanced MRI. Clinical target volumes (CTV = GTV + 15 mm isotropic)were generated and transferred onto the fifth time-slice of the time-series, to which subsequents lices were registered using a non-rigid Bspline algorithm; delineations were transformed accordingly. To evaluate intra-fraction CTV motion, deformation fields between the transformed delineations were derived to acquire the distance ensuring 95% surface coverage during scanning(P95%), for all in-plane directions: anteriorposterior (AP), left-right (LR), and caudal-cranial(CC). Information on LR was derived from transverse scans, CC from sagittal scans, AP fromboth sets. Results: Time-series with registration errors - induced by motion artifacts - were excluded by visual inspection. For our analysis, 11 transverse, and 8 sagittal time-series were taken into account. Themedian P95% calculated in AP (19 series), CC (8), and LR (11) was 1.8 mm (range: 0.9–4.8), 1.7mm (0.8–3.6), and 1.0 mm (0.6–3.5), respectively. Conclusion: Intra-fraction motion analysis of breast tumors was achieved using cine-MRI. These first results show that in supine RT position, motion amplitudes are limited. This information can be used for

  2. O6-Methylguanine DNA Methyltransferase Status Does Not Predict Response or Resistance to Alkylating Agents in Well-Differentiated Pancreatic Neuroendocrine Tumors.

    PubMed

    Raj, Nitya; Klimstra, David S; Horvat, Natally; Zhang, Liying; Chou, Joanne F; Capanu, Marinela; Basturk, Olca; Do, Richard Kinh Gian; Allen, Peter J; Reidy-Lagunes, Diane

    2017-07-01

    Alkylating agents have activity in well-differentiated pancreatic neuroendocrine tumors (WD panNETs). In glioblastoma multiforme, decreased activity of O-methylguanine DNA methyltransferase (MGMT) predicts response; in panNETs, MGMT relevance is unknown. We identified patients with WD panNETs treated with alkylating agents, determined best overall response by Response Evaluation Criteria In Solid Tumors (RECIST) 1.1, and performed MGMT activity testing. Fifty-six patients were identified; 26 (46%) of the 56 patients experienced partial response, 24 (43%) of 56 experienced stable disease, and 6 (11%) of 56 experienced progression of disease. O-methylguanine DNA methyltransferase status was available for 36 tumors. For tumors with partial response, 10 (67%) of 15 were MGMT deficient, and 5 (33%) of 15 were MGMT intact. For tumors with stable disease, 7 (47%) of 15 were MGMT deficient, and 8 (53%) of 15 were MGMT intact. For tumors with progression of disease, 3 (50%) of 6 were MGMT deficient, and 3 (50%) of 6 were MGMT intact. We observed response and resistance to alkylating agents in MGMT-deficient and MGMT-intact tumors. O-methylguanine DNA methyltransferase status should not guide alkylating agent therapy in WD panNETs.

  3. Evidence that P12, a specific variant of P16{sup INK4A}, plays a suppressive role in human pancreatic carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poi, Ming J.; Knobloch, Thomas J.; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210

    2013-06-28

    Highlights: •P12, a variant of P16{sup INK4A}, inhibits the proliferation of pancreatic cancer cells. •P12 is distinct from P16 in function and structure. •Genetic alterations of p12 are prevalent in human pancreatic carcinoma. •P12 represents a potential pancreas-specific tumor suppressor. -- Abstract: The INK4a-ARF locus plays a central role in the development of pancreatic tumors as evidenced by the fact that up to 98% of pancreatic tumor specimens harbored genetic alterations at the INK4a-ARF locus. Interestingly, in addition to the well-known P16{sup INK4A} (P16) and P14ARF tumor suppressors, the INK4a-ARF locus in pancreas encodes another protein, P12, whose structure, function,more » and contributions to pancreatic carcinogenesis remain to be elucidated. In the current study, we demonstrated that over-expression of p12 in human pancreatic cancer cells led to cell arrest at the G1 phase and such cell cycle arrest was related to down-regulation of a number of oncogenes, such as c-Jun, Fos, and SEI1. Furthermore, unlike P16, P12 did not retain any cyclin-dependent kinase 4 (CDK4)-inhibitory activity. Instead, P12 exhibited a transactivating activity not found in P16. We also examined the genetic status of p12 in a cohort of 40 pancreatic tumor specimens and found that p12 alteration was prevalent in pancreatic tumors with an incidence of 70% (28/40). These results support that P12 is a tumor suppressive protein distinct from P16, and its genetic inactivation is associated with pancreatic carcinogenesis.« less

  4. Percutaneous Irreversible Electroporation of Locally Advanced Pancreatic Carcinoma Using the Dorsal Approach: A Case Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheffer, Hester J., E-mail: hj.scheffer@vumc.nl; Melenhorst, Marleen C. A. M., E-mail: m.melenhorst@vumc.nl; Vogel, Jantien A., E-mail: j.a.vogel@amc.uva.nl

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is increasingly used to treat locally advanced pancreatic carcinoma (LAPC). We describe a 67-year-old male patient with a 5 cm stage III pancreatic tumor who was referred for IRE. Because the ventral approach for electrode placement was considered dangerous due to vicinity of the tumor to collateral vessels and duodenum, the dorsal approach was chosen. Under CT-guidance, six electrodes were advanced in the tumor, approaching paravertebrally alongside the aorta and inferior vena cava. Ablation was performed without complications. This case describes that when ventral electrode placement for pancreatic IRE is impaired,more » the dorsal approach could be considered alternatively.« less

  5. Characterization of Mouse Models of Early Pancreatic Lesions Induced by Alcohol and Chronic Pancreatitis.

    PubMed

    Xu, Shiping; Chheda, Chintan; Ouhaddi, Yassine; Benhaddou, Hajar; Bourhim, Mouloud; Grippo, Paul J; Principe, Daniel R; Mascariñas, Emman; DeCant, Brian; Tsukamoto, Hidekazu; Pandol, Stephen J; Edderkaoui, Mouad

    2015-08-01

    We describe the first mouse model of pancreatic intraepithelial neoplasia (PanIN) lesions induced by alcohol in the presence and absence of chronic pancreatitis. Pdx1-Cre;LSL-K-ras mice were exposed to Lieber-DeCarli alcohol diet for 6 weeks with cerulein injections. The PanIN lesions and markers of fibrosis, inflammation, histone deacetylation, epithelial-to-mesenchymal transition (EMT), and cancer stemness were measured by immunohistochemistry and Western. Exposure of Pdx1-Cre;LSL-K-ras mice to an alcohol diet significantly stimulated fibrosis and slightly but not significantly increased the level of PanIN lesions associated with an increase in tumor-promoting M2 macrophages. Importantly, the alcohol diet did not increase activation of stellate cells. Alcohol diet and cerulein injections resulted in synergistic and additive effects on PanIN lesion and M2 macrophage phenotype induction, respectively. Cerulein pancreatitis caused stellate cell activation, EMT, and cancer stemness in the pancreas. Pancreatitis caused histone deacetylation, which was promoted by the alcohol diet. Pancreatitis increased EMT and cancer stemness markers, which were not further affected by the alcohol diet. The results suggest that alcohol has independent effects on promotion of PDAC associated with fibrosis formed through a stellate cell-independent mechanism and that it further promotes early PDAC and M2 macrophage induction in the context of chronic pancreatitis.

  6. Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Maawy, Ali A.; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2014-10-01

    Labeling of metastatic tumors can aid in their staging and resection of cancer. Near infrared (NIR) dyes have been used in the clinic for tumor labeling. However, there can be a nonspecific uptake of dye by the liver, lungs, and lymph nodes, which hinders detection of metastasis. In order to overcome these problems, we have used two NIR dyes (DyLight 650 and 750) conjugated to a chimeric anti-carcinoembryonic antigen antibody to evaluate how polyethylene glycol linkage (PEGylation) can improve specific tumor labeling in a nude mouse model of human pancreatic cancer. The conjugated PEGylated and non-PEGylated DyLight 650 and 750 dyes were injected intravenously into non-tumor-bearing nude mice. Serum samples were collected at various time points in order to determine serum concentrations and elimination kinetics. Conjugated PEGylated dyes had significantly higher serum dye concentrations than non-PEGylated dyes (p=0.005 for the 650 dyes and p<0.001 for the 750 dyes). Human pancreatic tumors subcutaneously implanted into nude mice were labeled with antibody-dye conjugates and serially imaged. Labeling with conjugated PEGylated dyes resulted in significantly brighter tumors compared to the non-PEGylated dyes (p<0.001 for the 650 dyes; p=0.01 for 750 dyes). PEGylation of the NIR dyes also decreased their accumulation in lymph nodes, liver, and lung. These results demonstrate enhanced selective tumor labeling by PEGylation of dyes conjugated to a tumor-specific antibody, suggesting their future clinical use in fluorescence-guided surgery.

  7. Chimeric antigen receptor T cell therapy in pancreatic cancer: from research to practice.

    PubMed

    Jindal, Vishal; Arora, Ena; Masab, Muhammad; Gupta, Sorab

    2018-05-04

    Chimeric antigen receptor (CAR) T cell therapy is genetically engineered tumor antigen-specific anticancer immunotherapy, which after showing great success in hematological malignancies is currently being tried in advanced solid tumors like pancreatic cancer. Immunosuppressive tumor microenvironment and dense fibrous stroma are some of the limitation in the success of this novel therapy. However, genetic modifications and combination therapy is the topic of the research to improve its efficacy. In this article, we summarize the current state of knowledge, limitations, and future prospects for CAR T cell therapy in pancreatic cancer.

  8. Reliable Gene Expression Measurements from Fine Needle Aspirates of Pancreatic Tumors

    PubMed Central

    Anderson, Michelle A.; Brenner, Dean E.; Scheiman, James M.; Simeone, Diane M.; Singh, Nalina; Sikora, Matthew J.; Zhao, Lili; Mertens, Amy N.; Rae, James M.

    2010-01-01

    Background and aims: Biomarker use for pancreatic cancer diagnosis has been impaired by a lack of samples suitable for reliable quantitative RT-PCR (qRT-PCR). Fine needle aspirates (FNAs) from pancreatic masses were studied to define potential causes of RNA degradation and develop methods for accurately measuring gene expression. Methods: Samples from 32 patients were studied. RNA degradation was assessed by using a multiplex PCR assay for varying lengths of glyceraldehyde-3-phosphate dehydrogenase, and effects on qRT-PCR were determined by using a 150-bp and a 80-bp amplicon for RPS6. Potential causes of and methods to circumvent RNA degradation were studied by using FNAs from a pancreatic cancer xenograft. Results: RNA extracted from pancreatic mass FNAs was extensively degraded. Fragmentation was related to needle bore diameter and could not be overcome by alterations in aspiration technique. Multiplex PCR for glyceraldehyde-3-phosphate dehydrogenase could distinguish samples that were suitable for qRT-PCR. The use of short PCR amplicons (<100 bp) provided reliable gene expression analysis from FNAs. When appropriate samples were used, the assay was highly reproducible for gene copy number with minimal (0.0003 or about 0.7% of total) variance. Conclusions: The degraded properties of endoscopic FNAs markedly affect the accuracy of gene expression measurements. Our novel approach to designate specimens “informative” for qRT-PCR allowed accurate molecular assessment for the diagnosis of pancreatic diseases. PMID:20709792

  9. Immunotherapy for pancreatic cancer: present and future.

    PubMed

    Aroldi, Francesca; Zaniboni, Alberto

    2017-06-01

    Despite the identification of some efficient drugs for the treatment of metastatic pancreatic cancer, this tumor remains one of the most lethal cancers and is characterized by a strong resistance to therapies. Pancreatic cancer has some unique features including the presence of a microenvironment filled with immunosuppressive mediators and a dense stroma, which is both a physical barrier to drug penetration and a dynamic entity involved in immune system control. Therefore, the immune system has been hypothesized to play an important role in pancreatic cancer. Thus, therapies acting on innate or adaptive immunity are being investigated. Here, we review the literature, report the most interesting results and hypothesize future treatment directions.

  10. Intrafractional Baseline Shift or Drift of Lung Tumor Motion During Gated Radiation Therapy With a Real-Time Tumor-Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takao, Seishin; Miyamoto, Naoki; Matsuura, Taeko

    2016-01-01

    Purpose: To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. Methods and Materials: Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch positionmore » correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. Results: The average change in position of the treatment couch during the treatment time was 0.45 ± 2.23 mm (mean ± standard deviation), −1.65 ± 5.95 mm, and 1.50 ± 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. Conclusions: Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers.« less

  11. Rare pancreatic neoplasms: the utility of endoscopic ultrasound-guided fine-needle aspiration-a large single center study.

    PubMed

    Imaoka, Hiroshi; Yamao, Kenji; Bhatia, Vikram; Shimizu, Yasuhiro; Yatabe, Yasushi; Koshikawa, Takashi; Kinoshita, Yoshikazu

    2009-01-01

    Tumors other than ductal adenocarcinomas constitute 10%-15% of all pancreatic tumors. We describe the performance and pitfalls of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) for diagnosis of these rare pancreatic tumors and their characteristic cytopathological features. The records of 455 pancreatic fine-needle aspiration procedures done between March 1997 and August 2006 at Aichi Cancer Center, Nagoya, Japan, were reviewed. Besides cytology, aspirated material was routinely submitted in formalin for cell-block analysis. The reference standard for final diagnosis was surgical pathology from resected specimens. Twenty-eight rare (nonductal adenocarcinomas) pancreatic tumors were identified. Overall, EUS-FNA with the results of cytology, cell-block processing, and immunohistochemistry could correctly diagnose the type of neoplasm in 19 (67.9%) cases. EUS-FNA could distinguish benign from malignant rare tumors with a sensitivity of 69.2%, a specificity of 100%, positive predictive value of 100%, negative predictive value of 79.0%, and accuracy of 85.7%. None of three malignant pancreatic endocrine neoplasms could be diagnosed as malignant. An adequate core tissue sample could be obtained in 21 cases (75.0%) and provide a histopathological diagnosis in 19 (67.9%) cases. EUS-FNA could change the presumptive diagnosis in 11 (39.3%) cases. Specific immunochemical studies were useful adjuncts to the diagnosis. No major or minor complication was noted in any patient. Pancreatic neoplasms other than ductal adenocarcinomas have diverse imaging and histopathological features. EUS-FNA is accurate and safe for their identification.

  12. Perivascular epithelioid cell tumor (PEComa) of the pancreas: immunoelectron microscopy and review of the literature.

    PubMed

    Hirabayashi, Kenichi; Nakamura, Naoya; Kajiwara, Hiroshi; Hori, Sadaaki; Kawaguchi, Yoshiaki; Yamashita, Tomohiro; Dowaki, Shoichi; Imaizumi, Toshihide; Osamura, Robert Y

    2009-09-01

    A perivascular epithelioid tumor (PEComa) is a rare tumor probably arising from the perivascular epithelioid cells. Only three cases of pancreatic PEComa have been reported in the English-language literature. The present report describes an extremely rare case of pancreatic PEComa. A 47-year-old Japanese woman complained of lower abdominal pain and a well-demarcated solid tumor was found in the pancreatic head. There was no history of tuberous sclerosis complexes. Pylorus-preserving pancreaticoduodenectomy was thus performed. There was a well-demarcated, solid tumor measuring 17 mm in the pancreatic head. The tumor was composed of a diffuse proliferation of epithelioid tumor cells with many blood vessels but no adipose tissue. The tumor cells expressed HMB45 and alpha-smooth muscle actin. Ultrastructurally, the tumor cells possessed many membrane-bound granules that were positive for HMB45 on immunoelectron microscopy. The results of immunoelectron microscopy show that some PEComas possess not only typical melanosomes or premelanosomes but also aberrant melanosomes.

  13. Pancreatic Cancer Metabolism: Molecular Mechanisms and Clinical Applications.

    PubMed

    Hosein, Abdel Nasser; Beg, Muhammad Shaalan

    2018-05-11

    Pancreatic adenocarcinoma is a leading cause of cancer mortality in western countries with a uniformly poor prognosis. Unfortunately, there has been little in the way of novel therapeutics for this malignancy over the last several decades. Derangements in metabolic circuitry favoring excess glycolysis are increasingly recognized as a key hallmark of cancer. The role of alterations in glutamine metabolism in pancreatic tumor progression has been elucidated in animal models and human cells lines, and there has been considerable interest in exploiting these aberrations for the treatment of pancreatic cancer. Other strategies targeting NQO1/GLS1 inhibition, NAD+ synthesis, and TCA cycle intermediates are being actively studied in the clinic. Aberrant metabolism in pancreatic cancer poses a unique therapeutic strategy. We review preclinical and clinical studies looking to exploit alterations in the metabolic circuitry of pancreatic cancer.

  14. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis

    PubMed Central

    Mitsuhashi, Kei; Nosho, Katsuhiko; Sukawa, Yasutaka; Matsunaga, Yasutaka; Ito, Miki; Kurihara, Hiroyoshi; Kanno, Shinichi; Igarashi, Hisayoshi; Naito, Takafumi; Adachi, Yasushi; Tachibana, Mami; Tanuma, Tokuma; Maguchi, Hiroyuki; Shinohara, Toshiya; Hasegawa, Tadashi; Imamura, Masafumi; Kimura, Yasutoshi; Hirata, Koichi; Maruyama, Reo; Suzuki, Hiromu; Imai, Kohzoh

    2015-01-01

    Recently, bacterial infection causing periodontal disease has attracted considerable attention as a risk factor for pancreatic cancer. Fusobacterium species is an oral bacterial group of the human microbiome. Some evidence suggests that Fusobacterium species promote colorectal cancer development; however, no previous studies have reported the association between Fusobacterium species and pancreatic cancer. Therefore, we examined whether Fusobacterium species exist in pancreatic cancer tissue. Using a database of 283 patients with pancreatic ductal adenocarcinoma (PDAC), we tested cancer tissue specimens for Fusobacterium species. We also tested the specimens for KRAS, NRAS, BRAF and PIK3CA mutations and measured microRNA-21 and microRNA-31. In addition, we assessed epigenetic alterations, including CpG island methylator phenotype (CIMP). Our data showed an 8.8% detection rate of Fusobacterium species in pancreatic cancers; however, tumor Fusobacterium status was not associated with any clinical and molecular features. In contrast, in multivariate Cox regression analysis, compared with the Fusobacterium species-negative group, we observed significantly higher cancer-specific mortality rates in the positive group (p = 0.023). In conclusion, Fusobacterium species were detected in pancreatic cancer tissue. Tumor Fusobacterium species status is independently associated with a worse prognosis of pancreatic cancer, suggesting that Fusobacterium species may be a prognostic biomarker of pancreatic cancer. PMID:25797243

  15. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis.

    PubMed

    Mitsuhashi, Kei; Nosho, Katsuhiko; Sukawa, Yasutaka; Matsunaga, Yasutaka; Ito, Miki; Kurihara, Hiroyoshi; Kanno, Shinichi; Igarashi, Hisayoshi; Naito, Takafumi; Adachi, Yasushi; Tachibana, Mami; Tanuma, Tokuma; Maguchi, Hiroyuki; Shinohara, Toshiya; Hasegawa, Tadashi; Imamura, Masafumi; Kimura, Yasutoshi; Hirata, Koichi; Maruyama, Reo; Suzuki, Hiromu; Imai, Kohzoh; Yamamoto, Hiroyuki; Shinomura, Yasuhisa

    2015-03-30

    Recently, bacterial infection causing periodontal disease has attracted considerable attention as a risk factor for pancreatic cancer. Fusobacterium species is an oral bacterial group of the human microbiome. Some evidence suggests that Fusobacterium species promote colorectal cancer development; however, no previous studies have reported the association between Fusobacterium species and pancreatic cancer. Therefore, we examined whether Fusobacterium species exist in pancreatic cancer tissue. Using a database of 283 patients with pancreatic ductal adenocarcinoma (PDAC), we tested cancer tissue specimens for Fusobacterium species. We also tested the specimens for KRAS, NRAS, BRAF and PIK3CA mutations and measured microRNA-21 and microRNA-31. In addition, we assessed epigenetic alterations, including CpG island methylator phenotype (CIMP). Our data showed an 8.8% detection rate of Fusobacterium species in pancreatic cancers; however, tumor Fusobacterium status was not associated with any clinical and molecular features. In contrast, in multivariate Cox regression analysis, compared with the Fusobacterium species-negative group, we observed significantly higher cancer-specific mortality rates in the positive group (p = 0.023). In conclusion, Fusobacterium species were detected in pancreatic cancer tissue. Tumor Fusobacterium species status is independently associated with a worse prognosis of pancreatic cancer, suggesting that Fusobacterium species may be a prognostic biomarker of pancreatic cancer.

  16. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells

    PubMed Central

    Okumura, Takashi; Ohuchida, Kenoki; Sada, Masafumi; Abe, Toshiya; Endo, Sho; Koikawa, Kazuhiro; Iwamoto, Chika; Miura, Daisuke; Mizuuchi, Yusuke; Moriyama, Taiki; Nakata, Kohei; Miyasaka, Yoshihiro; Manabe, Tatsuya; Ohtsuka, Takao; Nagai, Eishi; Mizumoto, Kazuhiro; Oda, Yoshinao; Hashizume, Makoto; Nakamura, Masafumi

    2017-01-01

    Pancreatic cancer progression involves components of the tumor microenvironment, including stellate cells, immune cells, endothelial cells, and the extracellular matrix. Although peripancreatic fat is the main stromal component involved in extra-pancreatic invasion, its roles in local invasion and metastasis of pancreatic cancer remain unclear. This study investigated the role of adipose tissue in pancreatic cancer progression using genetically engineered mice (Pdx1-Cre; LSL-KrasG12D; Trp53R172H/+) and an in vitro model of organotypic fat invasion. Mice fed a high fat diet had significantly larger primary pancreatic tumors and a significantly higher rate of distant organ metastasis than mice fed a standard diet. In the organotypic fat invasion model, pancreatic cancer cell clusters were smaller and more elongated in shape and showed increased fibrosis. Adipose tissue-derived conditioned medium enhanced pancreatic cancer cell invasiveness and gemcitabine resistance, as well as inducing morphologic changes in cancer cells and increasing the numbers of lipid droplets in their cytoplasm. The concentrations of oleic, palmitoleic, and linoleic acids were higher in adipose tissue-derived conditioned medium than in normal medium, with these fatty acids significantly enhancing the migration of cancer cells. Mature adipocytes were smaller and the concentration of fatty acids in the medium higher when these cells were co-cultured with cancer cells. These findings indicate that lipolytic and fibrotic changes in peripancreatic adipose tissue enhance local invasiveness and metastasis via adipocyte-released fatty acids. Inhibition of fatty acid uptake by cancer cells may be a novel therapy targeting interactions between cancer and stromal cells. PMID:28407685

  17. Diagnostic value of selected markers and apoptotic pathways for pancreatic cancer

    PubMed Central

    Słotwińska, Sylwia Małgorzata

    2017-01-01

    Pancreatic cancer occupies the fourth place as a cause of death from cancer, and the mortality rate is similar to the number of newly detected cases. Due to the late diagnosis, only 5-6% of patients with pancreatic cancer survive for five years. Given that early diagnosis is critical for improving patients’ survival rates, there is an urgent need for the discovery and validation of new biomarkers with sufficient sensitivity and specificity to help diagnose pancreatic cancer early. Detection of serum tumor markers (CA19-9, CEA, CA125 and CA242) is conducive to the early diagnosis of pancreatic cancer. The combination of miR-16, miR-196a and CA19-9 plasma level was more effective, especially in early tumor screening. Furthermore, recent studies reported that mainly miR-21, miR-155 and miR-196 were dysregulated in IPMN (intraductal papillary mucinous neoplasms) and PanIN (pancreatic intraepithelial neoplasia) lesions, suggesting their usefulness as early biomarkers of these diseases. The reduced rate of apoptosis plays a crucial role in carcinogenesis, and it is one of the most important characteristics acquired by pancreatic cancer cells, which protects them from attack by the immune system and reduces the effectiveness of pharmacological treatment. This review summarizes the data concerning the clinical utility of selected biomarkers in pancreatic cancer patients. The review mainly focuses on the genetic aspects of signaling pathway disorders associated with apoptosis in the pathogenesis and diagnosis of pancreatic cancer. PMID:28450803

  18. aPKCλ/ι is a beneficial prognostic marker for pancreatic neoplasms.

    PubMed

    Kato, Shingo; Akimoto, Kazunori; Nagashima, Yoji; Ishiguro, Hitoshi; Kubota, Kensuke; Kobayashi, Noritoshi; Hosono, Kunihiro; Watanabe, Seitaro; Sekino, Yusuke; Sato, Takamitsu; Sasaki, Kazunori; Nakaigawa, Noboru; Kubota, Yoshinobu; Inayama, Yoshiaki; Endo, Itaru; Ohno, Shigeo; Maeda, Shin; Nakajima, Atsushi

    2013-01-01

    Pancreatic cancer is a lethal disease. Overall survival is typically 6 months from diagnosis. Determination of prognostic factors in pancreatic cancer that would allow identification of patients who could potentially benefit from aggressive treatment is important. However, until date, there are no established reliable prognostic factors for pancreatic cancer patients. Herein, we propose a beneficial biomarker which is significantly correlated with the prognosis in pancreatic cancer patients. Atypical protein kinase C λ/ι (aPKCλ/ι) is overexpressed and has been implicated in the progression of several cancers. We tested the expression levels of aPKCλ/ι in two types of pancreatic neoplasm, pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasms (IPMNs), by immunohistochemistry. Examination of the aPKCλ/ι expression levels in surgically resected specimens of PDCA (n = 115) demonstrated that the expression levels of aPKCλ/ιin PDAC had prognostic implications, independent of the Tumor-Node-Metastasis classification and World Health Organization tumor grade. In the case of IPMNs (n = 46) also, the expression levels of aPKCλ/ιin IPMN were found to be of prognostic importance, independent of the World Health Organization histological grade or morphological type. Interestingly, high expression levels of aPKCλ/ι were significantly correlated with a worse histological grade (p = 0.010) and advanced stage of the tumor (p = 0.0050) in IPMN patients. These findings suggest that high expression levels of aPKCλ/ι could be involved in the malignant transformation of IPMNs. Based on these observations, we propose the expression level of aPKCλ/ι as a prognostic marker common to different types of pancreatic neoplasms. Copyright © 2013 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  19. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Duanmin; Su, Cunjin; Jiang, Min

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs,more » siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.« less

  20. Reduction of Decoy Receptor 3 Enhances TRAIL-Mediated Apoptosis in Pancreatic Cancer

    PubMed Central

    Wang, Wei; Yang, Shanmin; Su, Ying; Zhang, Hengshan; Liu, Chaomei; Li, Xinfeng; Lin, Ling; Kim, Sunghee; Okunieff, Paul; Zhang, Zhenhuan; Zhang, Lurong

    2013-01-01

    Most human pancreatic cancer cells are resistant to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. However, the mechanisms by which pancreatic cancer cells utilize their extracellular molecules to counteract the proapoptotic signaling mediated by the TNF family are largely unknown. In this study, we demonstrate for the first time that DcR3, a secreted decoy receptor that malignant pancreatic cancer cells express at a high level, acts as an extracellular antiapoptotic molecule by binding to TRAIL and counteracting its death-promoting function. The reduction of DcR3 with siRNA unmasked TRAIL and greatly enhanced TRAIL-induced apoptosis. Gemcitabine, a first-line drug for pancreatic cancer, also reduced the level of DcR3. The addition of DcR3 siRNA further enhanced gemcitabine-induced apoptosis. Notably, our in vivo study demonstrated that the therapeutic effect of gemcitabine could be enhanced via further reduction of DcR3, suggesting that downregulation of DcR3 in tumor cells could tip the balance of pancreatic cells towards apoptosis and potentially serve as a new strategy for pancreatic cancer therapy. PMID:24204567

  1. Reduction of decoy receptor 3 enhances TRAIL-mediated apoptosis in pancreatic cancer.

    PubMed

    Wang, Wei; Zhang, Mei; Sun, Weimin; Yang, Shanmin; Su, Ying; Zhang, Hengshan; Liu, Chaomei; Li, Xinfeng; Lin, Ling; Kim, Sunghee; Okunieff, Paul; Zhang, Zhenhuan; Zhang, Lurong

    2013-01-01

    Most human pancreatic cancer cells are resistant to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. However, the mechanisms by which pancreatic cancer cells utilize their extracellular molecules to counteract the proapoptotic signaling mediated by the TNF family are largely unknown. In this study, we demonstrate for the first time that DcR3, a secreted decoy receptor that malignant pancreatic cancer cells express at a high level, acts as an extracellular antiapoptotic molecule by binding to TRAIL and counteracting its death-promoting function. The reduction of DcR3 with siRNA unmasked TRAIL and greatly enhanced TRAIL-induced apoptosis. Gemcitabine, a first-line drug for pancreatic cancer, also reduced the level of DcR3. The addition of DcR3 siRNA further enhanced gemcitabine-induced apoptosis. Notably, our in vivo study demonstrated that the therapeutic effect of gemcitabine could be enhanced via further reduction of DcR3, suggesting that downregulation of DcR3 in tumor cells could tip the balance of pancreatic cells towards apoptosis and potentially serve as a new strategy for pancreatic cancer therapy.

  2. Marital status is an independent prognostic factor for pancreatic neuroendocrine tumors patients: An analysis of the Surveillance, Epidemiology, and End Results (SEER) database.

    PubMed

    Zhou, Huaqiang; Zhang, Yuanzhe; Song, Yiyan; Tan, Wulin; Qiu, Zeting; Li, Si; Chen, Qinchang; Gao, Shaowei

    2017-09-01

    Marital status's prognostic impact on pancreatic neuroendocrine tumors (PNET) has not been rigorously studied. We aimed to explore the relationship between marital status and outcomes of PNET. We retrospectively investigated 2060 PNET cases between 2004 and 2010 from Surveillance, Epidemiology, and End Results (SEER) database. Variables were compared by Chi 2 test, t-test as appropriate. Kaplan-Meier methods and COX proportional hazard models were used to ascertain independent prognostic factors. Married patients had better 5-year overall survival (OS) (53.37% vs. 42.27%, P<0.001) and 5-year pancreatic neuroendocrine tumor specific survival (PNSS) (67.76% vs. 59.82%, P=0.001) comparing with unmarried patients. Multivariate analysis revealed marital status is an independent prognostic factor, with married patients showing better OS (HR=0.74; 95% CI: 0.65-0.84; P<0.001) and PNSS (HR=0.78; 95% CI: 0.66-0.92; P=0.004). Subgroup analysis suggested marital status plays a more important role in the PNET patients with distant stage rather than regional or localized disease. Marital status is an independent prognostic factor for survival in PNET patients. Poor prognosis in unmarried patients may be associated with a delayed diagnosis with advanced tumor stage, psychosocial and socioeconomic factors. Further studies are needed. Copyright © 2017. Published by Elsevier Masson SAS.

  3. Huge retroperitoneal dedifferentiated liposarcoma presented as acute pancreatitis: report of a case.

    PubMed

    Arakawa, Yusuke; Yoshioka, Kazuo; Kamo, Hitomi; Kawano, Koichiro; Yamaguchi, Takeshi; Sumise, Yuko; Okitsu, Natsu; Ikeyama, Shizuo; Morimoto, Kojiro; Nakai, Yoshihiro; Tashiro, Seiki

    2013-01-01

    A 74-year-old male with abdominal pain was admitted to the emergency room in our hospital. The high value of serum amylase was shown in his blood test. The postcontrast computed tomography (CT) showed the huge retroperitoneal tumor with a thin-walled mass occupying most of the part of the right retroperitoneal space. The tumor spread into the soft tissues around the pancreas; as a result, the duodenum was compressed and the pancreas was displaced to the right side. The irregular pancreatic outline, obliterated peripancreatic fatty tissue and fluid in the left anterior pararenal space were revealed, so acute pancreatitis was diagnosed. The diagnostic biopsy of retroperitoneal tumor was done, and the pathological findings of retroperitoneal mass revealed dedifferentiated liposarcoma. The medical treatment against acute pancreatitis was performed firstly. After the patient recovered from that, the surgical resection of the tumor with the right kidney and right adrenal gland was completed successfully. The patient remained well, without any evidence of recurrence three months after surgery. However, the histology showed dedifferentiated liposarcoma; therefore, postoperative regular examination is necessary.

  4. Benign Tumors of the Pancreas-Radical Surgery Versus Parenchyma-Sparing Local Resection-the Challenge Facing Surgeons.

    PubMed

    Beger, Hans G

    2018-03-01

    Pancreaticoduodenectomy and left-sided pancreatectomy are the surgical treatment standards for tumors of the pancreas. Surgeons, who are requested to treat patients with benign tumors, using standard oncological resections, face the challenge of sacrificing pancreatic and extra-pancreatic tissue. Tumor enucleation, pancreatic middle segment resection and local, duodenum-preserving pancreatic head resections are surgical procedures increasingly used as alternative treatment modalities compared to classical pancreatic resections. Use of local resection procedures for cystic neoplasms and neuro-endocrine tumors of the pancreas (panNETs) is associated with an improvement of procedure-related morbidity, when compared to classical Whipple OP (PD) and left-sided pancreatectomy (LP). The procedure-related advantages are a 90-day mortality below 1% and a low level of POPF B+C rates. Most importantly, the long-term benefits of the use of local surgical procedures are the preservation of the endocrine and exocrine pancreatic functions. PD performed for benign tumors on preoperative normo-glycemic patients is followed by the postoperative development of new onset of diabetes mellitus (NODM) in 4 to 24% of patients, measured by fasting blood glucose and/or oral/intravenous glucose tolerance test, according to the criteria of the international consensus guidelines. Persistence of new diabetes mellitus during the long-term follow-up after PD for benign tumors is observed in 14.5% of cases and after surgery for malignant tumors in 15.5%. Pancreatic exocrine insufficiency after PD is found in the long-term follow-up for benign tumors in 25% and for malignant tumors in 49%. Following LP, 14-31% of patients experience postoperatively NODM; many of the patients subsequently change to insulin-dependent diabetes mellitus (IDDM). The decision-making for cystic neoplasms and panNETs of the pancreas should be guided by the low surgical risk and the preservation of pancreatic metabolic

  5. Three-dimensional reconstruction of the peripancreatic vascular system based on computed tomographic angiography images and its clinical application in the surgical management of pancreatic tumors.

    PubMed

    Fang, Chi-hua; Kong, Deshuai; Wang, Xiaojun; Wang, Huaizhi; Xiang, Nan; Fan, Yingfang; Yang, Jian; Zhong, Shi Zheng

    2014-04-01

    This study aimed to investigate the clinical significance of 3-dimensional (3D) reconstruction of peripancreatic vessels for patients with suspected pancreatic cancer (PC). A total of 89 patients with PC were included; 60 patients randomly underwent computed tomographic angiography. Based on the findings of 3D reconstruction of peripancreatic vessels, the appropriate method for individualized tumor resection was determined. These patients were compared with 29 conventionally treated patients with PC. The rate of visualization was 100% for great vessels around the pancreas. The detection rates for anterior superior pancreaticoduodenal artery, posterior superior pancreaticoduodenal artery, anterior inferior pancreaticoduodenal artery, posterior inferior pancreaticoduodenal artery, dorsal pancreatic artery, superior marginal arterial branch of the pancreatic head, anterior superior pancreaticoduodenal vein, posterior superior pancreaticoduodenal vein, anterior inferior pancreaticoduodenal vein, and posterior inferior pancreaticoduodenal vein were 86.6%, 85.0%, 76.6%, 71.6%, 91.6%, 53.3%, 61.6%, 55.0%, 43.3%, and 51.6%, respectively. Forty-three patients who had undergone 3D reconstruction underwent surgery. Of the 29 conventionally treated patients, 19 underwent surgery. The operative time, blood loss, length of hospital stay, and complication incidence of the 43 patients were superior to that of the 19 patients. A peripancreatic vascular reconstruction can reveal the vascular anatomy, variations of peripancreatic vascular, and tumor-induced vascular changes; the application of the simulation surgery platform could reduce surgical trauma and decrease operative time.

  6. Design of a nanoplatform for treating pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Manawadu, Harshi Chathurangi

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the USA. Asymptomatic early cancer stages and late diagnosis leads to very low survival rates of pancreatic cancers, compared to other cancers. Treatment options for advanced pancreatic cancer are limited to chemotherapy and/or radiation therapy, as surgical removal of the cancerous tissue becomes impossible at later stages. Therefore, there's a critical need for innovative and improved chemotherapeutic treatment of (late) pancreatic cancers. It is mandatory for successful treatment strategies to overcome the drug resistance associated with pancreatic cancers. Nanotechnology based drug formulations have been providing promising alternatives in cancer treatment due to their selective targeting and accumulation in tumor vasculature, which can be used for efficient delivery of chemotherapeutic agents to tumors and metastases. The research of my thesis is following the principle approach to high therapeutic efficacy that has been first described by Dr. Helmut Ringsdorf in 1975. However, I have extended the use of the Ringsdorf model from polymeric to nanoparticle-based drug carriers by exploring an iron / iron oxide nanoparticle based drug delivery system. A series of drug delivery systems have been synthesized by varying the total numbers and the ratio of the tumor homing peptide sequence CGKRK and the chemotherapeutic drug doxorubicin at the surfaces of Fe/Fe3O 4-nanoparticles. The cytotoxicity of these nanoformulations was tested against murine pancreatic cancer cell lines (Pan02) to assess their therapeutic capabilities for effective treatments of pancreatic cancers. Healthy mouse fibroblast cells (STO) were also tested for comparison, because an effective chemotherapeutic drug has to be selective towards cancer cells. Optimal Experimental Design methodology was applied to identify the nanoformulation with the highest therapeutic activity. A statistical analysis method known as response

  7. A novel spectral imaging system for use during pancreatic cancer surgery

    NASA Astrophysics Data System (ADS)

    Peller, Joseph; Shipley, A. E.; Trammell, Susan R.; Abolbashari, Mehrdad; Farahi, Faramarz

    2015-03-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Most pancreatic cancer patients will die within the first year of diagnosis, and just 6% will survive five years. Currently, surgery is the only treatment that offers a chance of cure for pancreatic cancer patients. Accurately identifying the tumors margins in real time is a significant difficulty during pancreatic cancer surgery and contributes to the low 5-year survival rate. We are developing a hyperspectral imaging system based on compressive sampling for real-time tumor margin detection to facilitate more effective removal of diseased tissue and result in better patient outcomes. Recent research has shown that optical spectroscopy can be used to distinguish between healthy and diseased tissue and will likely become an important minimally invasive diagnostic tool for a range of diseases. Reflectance spectroscopy provides information about tissue morphology, while laser-induced autofluorescence spectra give accurate information about the content and molecular structure of the emitting tissue. We are developing a spectral imaging system that targets emission from collagen and NAD(P)H as diagnostics for differentiating healthy and diseased pancreatic tissue. In this study, we demonstrate the ability of our camera system to acquire hyperspectral images and its potential application for imaging autofluorescent emission from pancreatic tissue.

  8. Role of Pancreatic Cancer-derived Exosomes in Salivary Biomarker Development*

    PubMed Central

    Lau, Chang; Kim, Yong; Chia, David; Spielmann, Nadine; Eibl, Guido; Elashoff, David; Wei, Fang; Lin, Yi-Ling; Moro, Aune; Grogan, Tristan; Chiang, Samantha; Feinstein, Eric; Schafer, Christopher; Farrell, James; Wong, David T. W.

    2013-01-01

    Recent studies have demonstrated that discriminatory salivary biomarkers can be readily detected upon the development of systemic diseases such as pancreatic cancer, breast cancer, lung cancer, and ovarian cancer. However, the utility of salivary biomarkers for the detection of systemic diseases has been undermined due to the absence of the biological and mechanistic rationale as to why distal diseases from the oral cavity would lead to the development of discriminatory biomarkers in saliva. Here, we examine the hypothesis that pancreatic tumor-derived exosomes are mechanistically involved in the development of pancreatic cancer-discriminatory salivary transcriptomic biomarkers. We first developed a pancreatic cancer mouse model that yielded discriminatory salivary biomarkers by implanting the mouse pancreatic cancer cell line Panc02 into the pancreas of the syngeneic host C57BL/6. The role of pancreatic cancer-derived exosomes in the development of discriminatory salivary biomarkers was then tested by engineering a Panc02 cell line that is suppressed for exosome biogenesis, implanting into the C56BL/6 mouse, and examining whether the discriminatory salivary biomarker profile was ablated or disrupted. Suppression of exosome biogenesis results in the ablation of discriminatory salivary biomarker development. This study supports that tumor-derived exosomes provide a mechanism in the development of discriminatory biomarkers in saliva and distal systemic diseases. PMID:23880764

  9. Interventional Nanotheranostics of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Li, Junjie; Liu, Fengyong; Gupta, Sanjay; Li, Chun

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) accounts for over 90% of all pancreatic cancer. Nanoparticles (NPs) offer new opportunities for image-guided therapy owing to the unique physicochemical properties of the nanoscale effect and the multifunctional capabilities of NPs. However, major obstacles exist for NP-mediated cancer theranostics, especially in PDAC. The hypovascular nature of PDAC may impede the deposition of NPs into the tumor after systemic administration, and most NPs localize predominantly in the mononuclear phagocytic system, leading to a relatively poor tumor-to-surrounding-organ uptake ratio. Image guidance combined with minimally invasive interventional procedures may help circumvent these barriers to poor drug delivery of NPs in PDAC. Interventional treatments allow regional drug delivery, targeted vascular embolization, direct tumor ablation, and the possibility of disrupting the stromal barrier of PDAC. Interventional treatments also have potentially fewer complications, faster recovery, and lower cost compared with conventional therapies. This work is an overview of current image-guided interventional cancer nanotheranostics with specific attention given to their applications for the management of PDAC. PMID:27375787

  10. Stabilization of beta-catenin induces pancreas tumor formation.

    PubMed

    Heiser, Patrick W; Cano, David A; Landsman, Limor; Kim, Grace E; Kench, James G; Klimstra, David S; Taketo, Maketo M; Biankin, Andrew V; Hebrok, Matthias

    2008-10-01

    beta-Catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of beta-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is among the leading causes of cancer death. Whereas activating mutations within beta-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of beta-catenin signaling in pancreas tumorigenesis. Using Cre/lox technology, we conditionally activated beta-catenin in a subset of murine pancreatic cells in vivo. Activation of beta-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based on morphologic and immunohistochemical comparisons. Interestingly, stabilization of beta-catenin blocks the formation of pancreatic intraepithelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to PDA. Instead, mice in which beta-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. These results demonstrate that activation of beta-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor.

  11. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats

    PubMed Central

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S.; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55–65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training

  12. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats.

    PubMed

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO 2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO 2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training

  13. A Fast Neural Network Approach to Predict Lung Tumor Motion during Respiration for Radiation Therapy Applications

    PubMed Central

    Slama, Matous; Benes, Peter M.; Bila, Jiri

    2015-01-01

    During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time. PMID:25893194

  14. A fast neural network approach to predict lung tumor motion during respiration for radiation therapy applications.

    PubMed

    Bukovsky, Ivo; Homma, Noriyasu; Ichiji, Kei; Cejnek, Matous; Slama, Matous; Benes, Peter M; Bila, Jiri

    2015-01-01

    During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time.

  15. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.

    PubMed

    Jones, Siân; Zhang, Xiaosong; Parsons, D Williams; Lin, Jimmy Cheng-Ho; Leary, Rebecca J; Angenendt, Philipp; Mankoo, Parminder; Carter, Hannah; Kamiyama, Hirohiko; Jimeno, Antonio; Hong, Seung-Mo; Fu, Baojin; Lin, Ming-Tseh; Calhoun, Eric S; Kamiyama, Mihoko; Walter, Kimberly; Nikolskaya, Tatiana; Nikolsky, Yuri; Hartigan, James; Smith, Douglas R; Hidalgo, Manuel; Leach, Steven D; Klein, Alison P; Jaffee, Elizabeth M; Goggins, Michael; Maitra, Anirban; Iacobuzio-Donahue, Christine; Eshleman, James R; Kern, Scott E; Hruban, Ralph H; Karchin, Rachel; Papadopoulos, Nickolas; Parmigiani, Giovanni; Vogelstein, Bert; Velculescu, Victor E; Kinzler, Kenneth W

    2008-09-26

    There are currently few therapeutic options for patients with pancreatic cancer, and new insights into the pathogenesis of this lethal disease are urgently needed. Toward this end, we performed a comprehensive genetic analysis of 24 pancreatic cancers. We first determined the sequences of 23,219 transcripts, representing 20,661 protein-coding genes, in these samples. Then, we searched for homozygous deletions and amplifications in the tumor DNA by using microarrays containing probes for approximately 10(6) single-nucleotide polymorphisms. We found that pancreatic cancers contain an average of 63 genetic alterations, the majority of which are point mutations. These alterations defined a core set of 12 cellular signaling pathways and processes that were each genetically altered in 67 to 100% of the tumors. Analysis of these tumors' transcriptomes with next-generation sequencing-by-synthesis technologies provided independent evidence for the importance of these pathways and processes. Our data indicate that genetically altered core pathways and regulatory processes only become evident once the coding regions of the genome are analyzed in depth. Dysregulation of these core pathways and processes through mutation can explain the major features of pancreatic tumorigenesis.

  16. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines.

    PubMed

    Hanavan, Paul D; Borges, Chad R; Katchman, Benjamin A; Faigel, Douglas O; Ho, Thai H; Ma, Chen-Ting; Sergienko, Eduard A; Meurice, Nathalie; Petit, Joachim L; Lake, Douglas F

    2015-07-30

    Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a "proof-of-principle" that enzymatic inhibition of QSOX1 may have clinical relevancy.

  17. Improved Treatment of Pancreatic Cancer With Drug Delivery Nanoparticles Loaded With a Novel AKT/PDK1 Inhibitor

    PubMed Central

    Kobes, Joseph E.; Daryaei, Iman; Howison, Christine M.; Bontrager, Jordan G.; Sirianni, Rachael W.; Meuillet, Emmanuelle J.; Pagel, Mark D.

    2015-01-01

    Objectives This research study sought to improve the treatment of pancreatic cancer by improving the drug delivery of a promising AKT/PDK1 inhibitor, PHT-427, in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. Methods PHT-427 was encapsulated in single-emulsion and double-emulsion PLGA nanoparticles (SE- and DE-PLGA-427). The drug release rate was evaluated to assess the effect of the second PLGA layer of DE-PLGA-427. Ex vivo cryo-imaging and drug extraction from ex vivo organs was used to assess the whole body biodistribution in an orthotopic model of MiaPaCa-2 pancreatic cancer. Anatomical MRI was used to noninvasively assess the effects of four weeks of nanoparticle-drug treatment on tumor size, and diffusion-weighted MRI longitudinally assessed changes in tumor cellularity. Results DE-PLGA-427 showed delayed drug release and longer drug retention in the pancreas relative to SE-PLGA-427. Diffusion-weighted MRI indicated a consistent decrease in cellularity during drug treatment with both types of drug-loaded nanoparticles. Both SE- and DE-PLGA-427 showed a 6-fold and 4-fold reduction in tumor volume relative to untreated tumors, and an elimination of primary pancreatic tumor in 68% of the mice. Conclusions These results indicated that the PLGA nanoparticles improved drug delivery of PHT-427 to pancreatic tumors, which improved the treatment of Mia PaCa-2 pancreatic cancer. PMID:26918875

  18. The Lymphatic System and Pancreatic Cancer

    PubMed Central

    Fink, Darci M.; Steele, Maria M.; Hollingsworth, Michael A.

    2016-01-01

    This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented. PMID:26742462

  19. KRAS Mutation and Epithelial-Macrophage Interplay in Pancreatic Neoplastic Transformation.

    PubMed

    Bishehsari, Faraz; Zhang, Lijuan; Barlass, Usman; Preite, Nailliw; Turturro, Sanja; Najor, Matthew S; Shetuni, Brandon B; Zayas, Janet P; Mahdavinia, Mahboobeh; Abukhdeir, Abde M; Keshavarzian, Ali

    2018-05-14

    Pancreatic ductal adenocarcinoma (PDA) is characterized by epithelial mutations in KRAS and prominent tumor-associated inflammation, including macrophage infiltration. But knowledge of early interactions between neoplastic epithelium and macrophages in PDA carcinogenesis is limited. Using a pancreatic organoid model, we found that the expression of mutant KRAS in organoids increased i) ductal to acinar gene expression ratios, ii) epithelial cells proliferation, and iii) colony formation capacity in vitro, and endowed pancreatic cells with the ability to generate neoplastic tumors in vivo. KRAS mutations induced a pro-tumorigenic phenotype in macrophages. Altered macrophages decreased epithelial Pigment Epithelial Derived Factor (PEDF) expression and induced a cancerous phenotype. We validated our findings using annotated patient samples from The Cancer Genome Atlas (TCGA) as well as in our human PDA specimens. Epithelium-macrophage cross talk occurs early in pancreatic carcinogenesis where KRAS directly induces cancer-related phenotypes in epithelium, and also promotes a pro-tumorigenic phenotype in macrophages, in turn augmenting neoplastic growth. This article is protected by copyright. All rights reserved. © 2018 UICC.

  20. Prognostic factors of non-functioning pancreatic neuroendocrine tumor revisited: The value of WHO 2010 classification.

    PubMed

    Bu, Jiyoung; Youn, Sangmin; Kwon, Wooil; Jang, Kee Taek; Han, Sanghyup; Han, Sunjong; You, Younghun; Heo, Jin Seok; Choi, Seong Ho; Choi, Dong Wook

    2018-02-01

    Various factors have been reported as prognostic factors of non-functional pancreatic neuroendocrine tumors (NF-pNETs). There remains some controversy as to the factors which might actually serve to successfully prognosticate future manifestation and diagnosis of NF-pNETs. As well, consensus regarding management strategy has never been achieved. The aim of this study is to further investigate potential prognostic factors using a large single-center cohort to help determine the management strategy of NF-pNETs. During the time period 1995 through 2013, 166 patients with NF-pNETs who underwent surgery in Samsung Medical Center were entered in a prospective database, and those factors thought to represent predictors of prognosis were tested in uni- and multivariate models. The median follow-up time was 46.5 months; there was a maximum follow-up period of 217 months. The five-year overall survival and disease-free survival rates were 88.5% and 77.0%, respectively. The 2010 WHO classification was found to be the only prognostic factor which affects overall survival and disease-free survival in multivariate analysis. Also, pathologic tumor size and preoperative image tumor size correlated strongly with the WHO grades ( p <0.001, and p <0.001). Our study demonstrates that 2010 WHO classification represents a valuable prognostic factor of NF-pNETs and tumor size on preoperative image correlated with WHO grade. In view of the foregoing, the preoperative image size is thought to represent a reasonable reference with regard to determination and development of treatment strategy of NF-pNETs.

  1. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yao; Baba, Tomohisa; Li, Ying-Yi

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine alsomore » enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization.« less

  2. Quantification of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional computed tomography.

    PubMed

    Jin, Peng; Hulshof, Maarten C C M; de Jong, Rianne; van Hooft, Jeanin E; Bel, Arjan; Alderliesten, Tanja

    2016-03-01

    Respiration-induced tumor motion is an important geometrical uncertainty in esophageal cancer radiation therapy. The aim of this study was to quantify this motion using fiducial markers and four-dimensional computed tomography (4DCT). Twenty esophageal cancer patients underwent endoscopy-guided marker implantation in the tumor volume and 4DCT acquisition. The 4DCT data were sorted into 10 breathing phases and the end-of-inhalation phase was selected as reference. We quantified for each visible marker (n=60) the motion in each phase and derived the peak-to-peak motion magnitude throughout the breathing cycle. The motion was quantified and analyzed for four different regions and in three orthogonal directions. The median(interquartile range) of the peak-to-peak magnitudes of the respiration-induced marker motion (left-right/anterior-posterior/cranial-caudal) was 1.5(0.5)/1.6(0.5)/2.9(1.4) mm for the proximal esophagus (n=6), 1.5(1.4)/1.4(1.3)/3.7(2.6) mm for the middle esophagus (n=12), 2.6(1.3)/3.3(1.8)/5.4(2.9) mm for the distal esophagus (n=25), and 3.7(2.1)/5.3(1.8)/8.2(3.1) mm for the proximal stomach (n=17). The variations in the results between the three directions, four regions, and patients suggest the need of individualized region-dependent anisotropic internal margins. Therefore, we recommend using markers with 4DCT to patient-specifically adapt the internal target volume (ITV). Without 4DCT, 3DCTs at the end-of-inhalation and end-of-exhalation phases could be alternatively applied for ITV individualization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. High incidence of coagualopathy in phase II studies of recombinant tumor necrosis factor in advanced pancreatic and gastric cancers.

    PubMed

    Muggia, F M; Brown, T D; Goodman, P J; Macdonald, J S; Hersh, E M; Fleming, T R; Leichman, L

    1992-06-01

    This multi-center trial was carried out to assess the therapeutic potential of recombinant tumor necrosis factor (rTNF) as the first form of systemic therapy for advanced carcinomas of gastric and pancreatic origin. To be eligible patients were required to have no overt sign of coagulopathy and hepatic function studies with enzymes less than two times beyond the normal range. Twenty nine patients with gastric cancer and 26 with pancreatic cancer were entered from various institutions in the Southwest Oncology Group with 27 and 22, respectively, meeting eligibility criteria. Drug treatment consisted of rTNF (Genentech) given at a dose of 150 micrograms intravenously for five consecutive days every 3 weeks; 50% dose reduction was made for acute intolerance such as hypotension or severe fever and chills. Although eight patients with gastric cancer and five patients with pancreatic cancer received four or more courses of treatment, no objective antitumor responses were recorded. As in other trials common toxicities of rTNF included nausea and vomiting, chills and fever, hypotension, headache, myalgias, fatigue and malaise. However, in this trial, other toxicities became prominent: four episodes of symptomatic disseminated intravascular clotting occurred among patients with pancreatic cancer. Eleven with this disease and five with gastric cancer manifested laboratory findings of abnormal amounts of fibrin split products, and/or hypofibrinogenemia, and/or thrombocytopenia after treatment began. Other laboratory abnormalities that were commonly encountered included hyperglycemia, hypertriglyceridemia, anemia, neutropenia and an elevation in liver enzymes. We conclude that rTNF does not demonstrate antitumor efficacy against adenocarcinomas of the stomach and the pancreas.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Algenpantucel-L immunotherapy in pancreatic adenocarcinoma.

    PubMed

    Coveler, Andrew L; Rossi, Gabriela R; Vahanian, Nicholas N; Link, Charles; Chiorean, E Gabriela

    2016-02-01

    Pancreatic adenocarcinoma is the 4th leading cause of cancer death in the USA and the EU. A minority of patients presents with surgically resectable and potentially curable disease, but among these, 80% are destined to relapse and overall survival rates with adjuvant chemotherapy average 24 months. Immunotherapy is a promising therapeutic option and a potential paradigm shift in the treatment of patients with pancreatic cancer, and may be particularly effective when used early in the disease course to prevent metastatic spread. Algenpantucel-L (HyperAcute Pancreas, NewLink Genetics, Ames, IA, USA) is a whole-cell immunotherapy consisting of irradiated allogeneic pancreatic cancer cells genetically engineered to express the murine enzyme α-GT, which results in hyperacute rejection of the tumor cells with complement- and antibody-dependent cytotoxicity. Phase II clinical trial data has been encouraging, particularly for patients who demonstrated humoral immunologic responses. Here, we report preliminary results and biomarkers correlations with clinical activity of algenpantucel-L in pancreatic cancer.

  5. Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod.

    PubMed

    Zhao, Ruifang; Han, Xuexiang; Li, Yiye; Wang, Hai; Ji, Tianjiao; Zhao, Yuliang; Nie, Guangjun

    2017-08-22

    Pancreatic cancer, one of the leading causes of cancer-related mortality, is characterized by desmoplasia and hypovascular cancerous tissue, with a 5 year survival rate of <8%. To overcome the severe resistance of pancreatic cancer to conventional therapies, we synthesized gold nanoshell-coated rod-like mesoporous silica (GNRS) nanoparticles which integrated cascade tumor targeting (mediated by photothermal effect and molecular receptor binding) and photothermal treatment-enhanced gemcitabine chemotherapy, under mild near-infrared laser irradiation condition. GNRS significantly improved gemcitabine penetration and accumulation in tumor tissues, thus destroying the dense stroma barrier of pancreatic cancer and reinforcing chemosensitivity in mice. Our current findings strongly support the notion that further development of this integrated plasmonic photothermal strategy may represent a promising translational nanoformulation for effective treatment of pancreatic cancer with integral cascade tumor targeting strategy and enhanced drug delivery efficacy.

  6. A fractional motion diffusion model for grading pediatric brain tumors.

    PubMed

    Karaman, M Muge; Wang, He; Sui, Yi; Engelhard, Herbert H; Li, Yuhua; Zhou, Xiaohong Joe

    2016-01-01

    To demonstrate the feasibility of a novel fractional motion (FM) diffusion model for distinguishing low- versus high-grade pediatric brain tumors; and to investigate its possible advantage over apparent diffusion coefficient (ADC) and/or a previously reported continuous-time random-walk (CTRW) diffusion model. With approval from the institutional review board and written informed consents from the legal guardians of all participating patients, this study involved 70 children with histopathologically-proven brain tumors (30 low-grade and 40 high-grade). Multi- b -value diffusion images were acquired and analyzed using the FM, CTRW, and mono-exponential diffusion models. The FM parameters, D fm , φ , ψ (non-Gaussian diffusion statistical measures), and the CTRW parameters, D m , α , β (non-Gaussian temporal and spatial diffusion heterogeneity measures) were compared between the low- and high-grade tumor groups by using a Mann-Whitney-Wilcoxon U test. The performance of the FM model for differentiating between low- and high-grade tumors was evaluated and compared with that of the CTRW and the mono-exponential models using a receiver operating characteristic (ROC) analysis. The FM parameters were significantly lower ( p  < 0.0001) in the high-grade ( D fm : 0.81 ± 0.26, φ : 1.40 ± 0.10, ψ : 0.42 ± 0.11) than in the low-grade ( D fm : 1.52 ± 0.52, φ : 1.64 ± 0.13, ψ : 0.67 ± 0.13) tumor groups. The ROC analysis showed that the FM parameters offered better specificity (88% versus 73%), sensitivity (90% versus 82%), accuracy (88% versus 78%), and area under the curve (AUC, 93% versus 80%) in discriminating tumor malignancy compared to the conventional ADC. The performance of the FM model was similar to that of the CTRW model. Similar to the CTRW model, the FM model can improve differentiation between low- and high-grade pediatric brain tumors over ADC.

  7. Comparison of Fasting Human Pancreatic Polypeptide Levels Among Patients With Pancreatic Ductal Adenocarcinoma, Chronic Pancreatitis, and Type 2 Diabetes Mellitus.

    PubMed

    Nagpal, Sajan Jiv Singh; Bamlet, William R; Kudva, Yogish C; Chari, Suresh T

    2018-05-17

    Human pancreatic polypeptide (HPP) is a hormone secreted by the ventral pancreas. While postprandial HPP levels have been studied in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC), there are limited data on fasting HPP in these diseases. Fasting serum HPP was measured in the following groups of patients: CP with diabetes mellitus (DM) (n = 16), CP without DM (n = 34), PDAC with new-onset DM (n = 50), PDAC without DM (n = 49), new-onset type 2 DM (n = 50), and controls without DM (n = 49). Sixty-six had type 3c DM (CP with DM, n = 16; PDAC with new-onset DM, n = 50). Median fasting HPP levels (in picograms per milliliter) were similar among all groups. Median (interquartile range) HPP levels in new-onset type 2 DM (n = 50; 288.3 [80.1-1072.1]) were similar to those in type 3c DM (n = 66; 242.3 [64.9-890.9]) (P = 0.71). In PDAC (n = 99), HPP values were similar in pancreatic head (n = 75) versus body/tail (n = 24) tumors (245.3 [64.3-1091.3] vs 334.7 [136.1-841.5]; P = 0.95), regardless of DM. Fasting HPP levels are similar in CP, PDAC, and controls regardless of glycemic status.

  8. Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele

    PubMed Central

    Wu, Jinghai; Liu, Xin; Nayak, Sunayana G.; Pitarresi, Jason R.; Cuitiño, Maria C.; Yu, Lianbo; Hildreth, Blake E.; Thies, Katie A.; Schilling, Daniel J.; Fernandez, Soledad A.; Leone, Gustavo

    2017-01-01

    The contribution of the tumor microenvironment to the development of pancreatic adenocarcinoma (PDAC) is unclear. The LSL-KrasG12D/+;LSL-p53R172H/+;Pdx-1-Cre (KPC) tumor model, which is widely utilized to faithfully recapitulate human pancreatic cancer, depends on Cre-mediated recombination in the epithelial lineage to drive tumorigenesis. Therefore, specific Cre-loxP recombination in stromal cells cannot be applied in this model, limiting the in vivo investigation of stromal genetics in tumor initiation and progression. To address this issue, we generated a new Pdx1FlpO knock-in mouse line, which represents the first mouse model to physiologically express FlpO recombinase in pancreatic epithelial cells. This mouse specifically recombines Frt loci in pancreatic epithelial cells, including acinar, ductal, and islet cells. When combined with the Frt-STOP-Frt KrasG12D and p53Frt mouse lines, simultaneous Pdx1FlpO activation of mutant Kras and deletion of p53 results in the spectrum of pathologic changes seen in PDAC, including PanIN lesions and ductal carcinoma. Combination of this KPF mouse model with any stroma-specific Cre can be used to conditionally modify target genes of interest. This will provide an excellent in vivo tool to study the roles of genes in different cell types and multiple cell compartments within the pancreatic tumor microenvironment. PMID:28934293

  9. Satellite RNA Increases DNA Damage and Accelerates Tumor Formation in Mouse Models of Pancreatic Cancer.

    PubMed

    Kishikawa, Takahiro; Otsuka, Motoyuki; Suzuki, Tatsunori; Seimiya, Takahiro; Sekiba, Kazuma; Ishibashi, Rei; Tanaka, Eri; Ohno, Motoko; Yamagami, Mari; Koike, Kazuhiko

    2018-05-10

    Highly repetitive tandem arrays such as satellite sequences in the centromeric and pericentromeric regions of chromosomes, which were previously considered to be silent, are actively transcribed in various biological processes, including cancers. In the pancreas, this aberrant expression occurs even in Kras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To determine the biological role of satellite RNAs in carcinogenesis in vivo , we constructed mouse major satellite (MajSAT) RNA-expressing transgenic mice. However, these transgenic mice did not show spontaneous malignant tumor formation under normal breeding. Importantly, however, DNA damage was increased in pancreatic tissues induced by caerulein treatment or high-fat diet, which may be due to impaired nuclear localization of Y-Box Binding Protein 1 (YBX1), a component of the DNA damage repair machinery. In addition, when crossed with pancreas-specific Kras-mutant mice, MajSAT RNA expression resulted in an earlier increase in PanIN formation. These results suggest that aberrant MajSAT RNA expression accelerates oncogenesis by increasing the probability of a second driver mutation, thus accelerating cells to exit from the breakthrough phase to the expansion phase. Implications: Aberrant expression of satellite RNAs accelerates oncogenesis through a mechanism involving increased DNA damage. Mol Cancer Res; 1-8. ©2018 AACR. ©2018 American Association for Cancer Research.

  10. Periostin, a matrix specific protein, is associated with proliferation and invasion of pancreatic cancer.

    PubMed

    Ben, Qi-Wen; Jin, Xiao-Long; Liu, Jun; Cai, Xia; Yuan, Fei; Yuan, Yao-Zong

    2011-03-01

    Overexpression of periostin is present in various malignant tumors and correlates with disease progression. However, its clinicopathological significance in pancreatic cancer is currently not known. Expression of periostin was analyzed by RT-PCR and western blotting in pancreatic cancers and cell lines. Using immunohistochemistry, expression of periostin in pancreatic cancers was evaluated according to factors influencing overall survival with Kaplan-Meier analysis. Ectopic expression of periostin was used to examine the effects of periostin on proliferation and invasiveness of pancreatic cancer cells in vitro. There was no detectable periostin mRNA and protein expression in the 4 pancreatic cell lines. Expression of periostin was found to be up-regulated in pancreatic cancer compared to the adjacent tumor free (TF) tissues by western blotting. The positive ratio of periostin expression in the neoplastic stroma was significantly correlated with the depth of invasion (p=0.007) and lymph node metastasis (p=0.027). Survival analysis showed that stromal or epithelium expression of periostin was associated with poor survival (p=0.035, p=0.022, log-rank test, respectively). In vitro studies showed that periostin was able to promote proliferation and invasiveness of pancreatic cancer cells. These results suggest that periostin may be involved in the progression and invasion of pancreatic cancer.

  11. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation.

    PubMed

    Zhang, Qiang; Zhang, Yaqing; Parsels, Joshua D; Lohse, Ines; Lawrence, Theodore S; Pasca di Magliano, Marina; Sun, Yi; Morgan, Meredith A

    2016-11-01

    Pancreatic cancers driven by KRAS mutations require additional mutations for tumor progression. The tumor suppressor FBXW7 is altered in pancreatic cancers, but its contribution to pancreatic tumorigenesis is unknown. To determine potential cooperation between Kras mutation and Fbxw7 inactivation in pancreatic tumorigenesis, we generated P48-Cre;LSL-Kras G12D ;Fbxw7 fl/fl (KFC fl/fl ) compound mice. We found that KFC fl/fl mice displayed accelerated tumorigenesis: all mice succumbed to pancreatic ductal adenocarcinoma (PDA) by 40 days of age, with PDA onset occurring by 2 weeks of age. PDA in KFC fl/fl mice was preceded by earlier onset of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions, and associated with chromosomal instability and the accumulation of Fbxw7 substrates Yes-associated protein (Yap), c-Myc, and Notch. Using KFC fl/fl and FBXW7-deficient human pancreatic cancer cells, we found that Yap silencing attenuated growth promotion by Fbxw7 deletion. Our data demonstrate that Fbxw7 is a potent suppressor of Kras G12D -induced pancreatic tumorigenesis due, at least in part, to negative regulation of Yap. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis.

    PubMed

    Vennin, Claire; Chin, Venessa T; Warren, Sean C; Lucas, Morghan C; Herrmann, David; Magenau, Astrid; Melenec, Pauline; Walters, Stacey N; Del Monte-Nieto, Gonzalo; Conway, James R W; Nobis, Max; Allam, Amr H; McCloy, Rachael A; Currey, Nicola; Pinese, Mark; Boulghourjian, Alice; Zaratzian, Anaiis; Adam, Arne A S; Heu, Celine; Nagrial, Adnan M; Chou, Angela; Steinmann, Angela; Drury, Alison; Froio, Danielle; Giry-Laterriere, Marc; Harris, Nathanial L E; Phan, Tri; Jain, Rohit; Weninger, Wolfgang; McGhee, Ewan J; Whan, Renee; Johns, Amber L; Samra, Jaswinder S; Chantrill, Lorraine; Gill, Anthony J; Kohonen-Corish, Maija; Harvey, Richard P; Biankin, Andrew V; Evans, T R Jeffry; Anderson, Kurt I; Grey, Shane T; Ormandy, Christopher J; Gallego-Ortega, David; Wang, Yingxiao; Samuel, Michael S; Sansom, Owen J; Burgess, Andrew; Cox, Thomas R; Morton, Jennifer P; Pajic, Marina; Timpson, Paul

    2017-04-05

    The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or "priming," using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer. Copyright © 2017, American Association for the Advancement of Science.

  13. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis

    PubMed Central

    Vennin, Claire; Chin, Venessa T.; Warren, Sean C.; Lucas, Morghan C.; Herrmann, David; Magenau, Astrid; Melenec, Pauline; Walters, Stacey N.; del Monte-Nieto, Gonzalo; Conway, James R. W.; Nobis, Max; Allam, Amr H.; McCloy, Rachael A.; Currey, Nicola; Pinese, Mark; Boulghourjian, Alice; Zaratzian, Anaiis; Adam, Arne A. S.; Heu, Celine; Nagrial, Adnan M.; Chou, Angela; Steinmann, Angela; Drury, Alison; Froio, Danielle; Giry-Laterriere, Marc; Harris, Nathanial L. E.; Phan, Tri; Jain, Rohit; Weninger, Wolfgang; McGhee, Ewan J.; Whan, Renee; Johns, Amber L; Samra, Jaswinder S.; Chantrill, Lorraine; Gill, Anthony J.; Kohonen-Corish, Maija; Harvey, Richard P.; Biankin, Andrew V.; Jeffry Evans, T. R.; Anderson, Kurt I.; Grey, Shane T.; Ormandy, Christopher J.; Gallego-Ortega, David; Wang, Yingxiao; Samuel, Michael S.; Sansom, Owen J.; Burgess, Andrew; Cox, Thomas R.; Morton, Jennifer P.; Pajic, Marina; Timpson, Paul

    2018-01-01

    The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or “priming,” using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer. PMID:28381539

  14. Time-Adjusted Internal Target Volume: A Novel Approach Focusing on Heterogeneity of Tumor Motion Based on 4-Dimensional Computed Tomography Imaging for Radiation Therapy Planning of Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishibuchi, Ikuno; Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima; Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp

    2014-08-01

    Purpose: To consider nonuniform tumor motion within the internal target volume (ITV) by defining time-adjusted ITV (TTV), a volume designed to include heterogeneity of tumor existence on the basis of 4-dimensional computed tomography (4D-CT). Methods and Materials: We evaluated 30 lung cancer patients. Breath-hold CT (BH-CT) and free-breathing 4D-CT scans were acquired for each patient. The tumors were manually delineated using a lung CT window setting (window, 1600 HU; level, −300 HU). Tumor in BH-CT images was defined as gross tumor volume (GTV), and the sum of tumors in 4D-CT images was defined as ITV-4D. The TTV images were generatedmore » from the 4D-CT datasets, and the tumor existence probability within ITV-4D was calculated. We calculated the TTV{sub 80} value, which is the percentage of the volume with a tumor existence probability that exceeded 80% on ITV-4D. Several factors that affected the TTV{sub 80} value, such as the ITV-4D/GTV ratio or tumor centroid deviation, were evaluated. Results: Time-adjusted ITV images were acquired for all patients, and tumor respiratory motion heterogeneity was visualized. The median (range) ITV-4D/GTV ratio and median tumor centroid deviation were 1.6 (1.0-4.1) and 6.3 mm (0.1-30.3 mm), respectively. The median TTV{sub 80} value was 43.3% (2.9-98.7%). Strong correlations were observed between the TTV{sub 80} value and the ITV-4D/GTV ratio (R=−0.71) and tumor centroid deviation (R=−0.72). The TTV images revealed the tumor motion pattern features within ITV. Conclusions: The TTV images reflected nonuniform tumor motion, and they revealed the tumor motion pattern features, suggesting that the TTV concept may facilitate various aspects of radiation therapy planning of lung cancer while incorporating respiratory motion in the future.« less

  15. [Chemotherapy for GI and pancreatic NETs].

    PubMed

    Doi, Toshihiko

    2013-07-01

    Neuroendocrine tumors(NETs)describe a heterogeneous group of tumors with a wide range of morphologic, functional, and behavioral characteristics. Pancreatic neuroendocrine tumors(pNET)are a subset of NETs which are increasing in incidence and prevalence. These tumors are generally slow growing and behave in an indolent fashion. However, when these tumors spread they can be life threatening and difficult to treat with current modalities. Recently, the basic treatment for pNET was changed with the approval of two targeted agents, sunitinib and everolimus. Clinical trials conducting various combinations of somatostatin analogues, mTOR inhibitors, tyrosine kinase inhibitors, and cytotoxic agents are ongoing under-evaluation, and a multitargeted approach to therapy will translate into improved patient outcomes.

  16. EMMPRIN as a novel target for pancreatic cancer therapy

    PubMed Central

    Kim, Hyunki; Zhai, Guihua; Liu, Zhiyong; Samuel, Sharon; Shah, Nemil; Helman, Emily E.; Knowles, Joseph A.; Stockard, Cecil R.; Fineberg, Naomi S.; Grizzle, William E.; Zhou, Tong; Zinn, Kurt R.; Rosenthal, Eben L.

    2013-01-01

    The objective of this study was to evaluate extracelluar matrix metalloproteinase (EMMPRIN) as a novel target in orthotopic pancreatic-cancer murine models. MIA PaCa-2 human pancreatic tumor cells were implanted in groups 1 and 3-7, while MIA PaCa-2 EMMPRIN knockdown cells were implanted in group 2. Dosing with anti-EMMPRIN antibody started immediately after implantation for groups 1-3 (residual tumor model) and at 21 days after cell implantation for groups 4-7 (established tumor model). Groups 3, 5, and 7 were treated with anti-EMMRPIN antibody (0.2-1.0 mg) twice weekly for 2-3 weeks, while the other groups served as the control. In residual tumor model, tumor growth of anti-EMMPRIN treated group was successfully arrested for 21 days (15±4 mm3), significantly lower than that of EMMPRIN knockdown group (80±15 mm3; p=0.001) or control group (240±41 mm3; p<0.001). In established tumor model, anti-EMMPRIN therapy lowered tumor-volume increase about 40% compared with control regardless of dose amount. Ki67-expressed cell densities of group 5 was 939±150 mm−2, significantly lower than that of group 4 (1709±145 mm−2; p=0.006). Microvessel density of group 5 (30±6 mm−2) was also significantly lower than that of group 4 (53±5 mm−2; p=0.014), while the microvessel size of group 5 (191±22 μm2) was significantly larger than that of group 4 (113±26 μm2; p=0.049). These data show the high potential of anti-EMMPRIN therapy for pancreatic cancer, and support its clinical translation. PMID:21730821

  17. Therapeutic Benefit of Selective Inhibition of p110α PI3-Kinase in Pancreatic Neuroendocrine Tumors.

    PubMed

    Soler, Adriana; Figueiredo, Ana M; Castel, Pau; Martin, Laura; Monelli, Erika; Angulo-Urarte, Ana; Milà-Guasch, Maria; Viñals, Francesc; Baselga, Jose; Casanovas, Oriol; Graupera, Mariona

    2016-12-01

    Mutations in the PI3K pathway occur in 16% of patients with pancreatic neuroendocrine tumors (PanNETs), which suggests that these tumors are an exciting setting for PI3K/AKT/mTOR pharmacologic intervention. Everolimus, an mTOR inhibitor, is being used to treat patients with advanced PanNETs. However, resistance to mTOR-targeted therapy is emerging partially due to the loss of mTOR-dependent feedback inhibition of AKT. In contrast, the response to PI3K inhibitors in PanNETs is unknown. In the current study, we assessed the frequency of PI3K pathway activation in human PanNETs and in RIP1-Tag2 mice, a preclinical tumor model of PanNETs, and we investigated the therapeutic efficacy of inhibiting PI3K in RIP1-Tag2 mice using a combination of pan (GDC-0941) and p110α-selective (GDC-0326) inhibitors and isoform-specific PI3K kinase-dead-mutant mice. Human and mouse PanNETs showed enhanced pAKT, pPRAS40, and pS6 positivity compared with normal tissue. Although treatment of RIP1-Tag2 mice with GDC-0941 led to reduced tumor growth with no impact on tumor vessels, the selective inactivation of the p110α PI3K isoform, either genetically or pharmacologically, reduced tumor growth as well as vascular area. Furthermore, GDC-0326 reduced the incidence of liver and lymph node metastasis compared with vehicle-treated mice. We also demonstrated that tumor and stromal cells are implicated in the antitumor activity of GDC-0326 in RIP1-Tag2 tumors. Our data provide a rationale for p110α-selective intervention in PanNETs and unravel a new function of this kinase in cancer biology through its role in promoting metastasis. Clin Cancer Res; 22(23); 5805-17. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Orthotopic Patient-Derived Pancreatic Cancer Xenografts Engraft Into the Pancreatic Parenchyma, Metastasize, and Induce Muscle Wasting to Recapitulate the Human Disease.

    PubMed

    Go, Kristina L; Delitto, Daniel; Judge, Sarah M; Gerber, Michael H; George, Thomas J; Behrns, Kevin E; Hughes, Steven J; Judge, Andrew R; Trevino, Jose G

    2017-07-01

    Limitations associated with current animal models serve as a major obstacle to reliable preclinical evaluation of therapies in pancreatic cancer (PC). In an effort to develop more reliable preclinical models, we have recently established a subcutaneous patient-derived xenograft (PDX) model. However, critical aspects of PC responsible for its highly lethal nature, such as the development of distant metastasis and cancer cachexia, remain underrepresented in the flank PDX model. The purpose of this study was to evaluate the degree to which an orthotopic PDX model of PC recapitulates these aspects of the human disease. Human PDX-derived PC tumors were implanted directly into the pancreas of NOD.Cg-Prkdc Il2rg/SzJ mice. Tumor growth, metastasis, and muscle wasting were then evaluated. Orthotopically implanted PDX-derived tumors consistently incorporated into the murine pancreatic parenchyma, metastasized to both the liver and lungs and induced muscle wasting directly proportional to the size of the tumor, consistent of the cancer cachexia syndrome. Through the orthotopic implantation technique described, we demonstrate a highly reproducible model that recapitulates both local and systemic aspects of human PC.

  19. Synergistic action of Smad4 and Pten in suppressing pancreatic ductal adenocarcinoma formation in mice.

    PubMed

    Xu, X; Ehdaie, B; Ohara, N; Yoshino, T; Deng, C-X

    2010-02-04

    Mutations of SMAD4/DPC4 are found in about 60% of human invasive pancreatic ductal adenocarcinomas (PDACs); yet, the manner in which SMAD4 deficiency enhances tumorigenesis remains elusive. Using a Cre-LoxP approach, we generated a mutant mouse carrying a targeted deletion of Smad4 in the pancreas. We showed that the absence of Smad4 alone did not trigger pancreas tumor formation; however, it increased the expression of an inactivated form of Pten, suggesting a role of Pten in preventing Smad4-/- cells from undergoing malignancy. To investigate this, we disrupted both Pten and Smad4. We showed that Pten deficiency initiated widespread premalignant lesions, and a low tumor incidence that was significantly accelerated by Smad4-deficiency. The absence of Smad4 in a Pten-mutant background enhanced cell proliferation and triggered transdifferentiation from acinar, centroacinar and islet cells, accompanied by activation of Notch1 signaling. We showed that all tumors developed in the Smad4/Pten-mutant pancreas exhibited high levels of pAKT and mTOR, and that about 50 and 83% of human pancreatic cancers examined showed increased pAKT and pmTOR, respectively. Besides the similarity in gene expression, the pAKT and/or pmTOR-positive human PDACs and mouse pancreatic tumors also shared some histopathological similarities. These observations indicate that Smad4/Pten-mutant mice mimic the tumor progression of human pancreatic cancers that are driven by activation of the AKT-mTOR pathway, and uncovered a synergistic action of Smad4 and Pten in repressing pancreatic tumorigenesis.

  20. Modeling targeted inhibition of MEK and PI3 kinase in human pancreatic cancer.

    PubMed

    Junttila, Melissa R; Devasthali, Vidusha; Cheng, Jason H; Castillo, Joseph; Metcalfe, Ciara; Clermont, Anne C; Otter, Douglas Den; Chan, Emily; Bou-Reslan, Hani; Cao, Tim; Forrest, William; Nannini, Michelle A; French, Dorothy; Carano, Richard; Merchant, Mark; Hoeflich, Klaus P; Singh, Mallika

    2015-01-01

    Activating mutations in the KRAS oncogene occur in approximately 90% of pancreatic cancers, resulting in aberrant activation of the MAPK and the PI3K pathways, driving malignant progression. Significant efforts to develop targeted inhibitors of nodes within these pathways are underway and several are currently in clinical trials for patients with KRAS-mutant tumors, including patients with pancreatic cancer. To model MEK and PI3K inhibition in late-stage pancreatic cancer, we conducted preclinical trials with a mutant Kras-driven genetically engineered mouse model that faithfully recapitulates human pancreatic ductal adenocarcinoma development. Treatment of advanced disease with either a MEK (GDC-0973) or PI3K inhibitor (GDC-0941) alone showed modest tumor growth inhibition and did not significantly enhance overall survival. However, combination of the two agents resulted in a significant survival advantage as compared with control tumor-bearing mice. To model the clinical scenario, we also evaluated the combination of these targeted agents with gemcitabine, the current standard-of-care chemotherapy for pancreatic cancer. The addition of MEK or PI3K inhibition to gemcitabine, or the triple combination regimen, incrementally enhanced overall survival as compared with gemcitabine alone. These results are reminiscent of the survival advantage conferred in this model and in patients by the combination of gemcitabine and erlotinib, an approved therapeutic regimen for advanced nonresectable pancreatic cancer. Taken together, these data indicate that inhibition of MEK and PI3K alone or in combination with chemotherapy do not confer a dramatic improvement as compared with currently available therapies for patients with pancreatic cancer. ©2014 American Association for Cancer Research.