Stationary Digital Tomosynthesis System for Early Detection of Breast Tumors
2011-05-01
selenium flat panel detector. Proc. SPIE 2005. 5745: p. 529-540 4. Kopans, D.B., Breast Imaging. 2 ed. 1997, New York Lippincott Williams and...same. 2005. 8. M. Bissonnette, et al. Digital breast tomosynthesis using an amorphous selenium flat panel detector. in Medical Imaging 2005...tomosynthesis system with selenium based flat panel detector. Proc of SPIE, Physics of Medical Imaging, 2005. 5745. 12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee
2010-03-15
Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detectormore » materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam hardening effect. Conclusions: The results showed that a CT system using an energy resolving detector reduces the dose to the patient while maintaining image quality for various breast imaging tasks.« less
Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan
2015-09-11
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.
High efficiency proportional neutron detector with solid liner internal structures
Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.
2014-08-05
A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.
Construction and Performance Studies of Large Resistive Micromegas Quadruplets
NASA Astrophysics Data System (ADS)
Farina, E.; Iengo, P.; Bianco, M.; Sidiropoulou, O.; Kuger, F.; Sekhniaidze, G.; Vergain, M.; Wotschack, J.; Danielsson, H.; Degrange, J.; De Oliveira, R.; Schott, M.; Lin, Tai-Hua; Valderanis, C.; Düdder, A.
2018-02-01
In view of the use of Micromegas detectors for the upgrade of the ATLAS muon system, two detector quadruplets with an area of 0.3 m2 per plane serving as prototypes for future ATLAS chambers have been constructed. They are based on the resistive-strip technology and thus spark tolerant. The detectors were built in a modular way. The quadruplets consist of two double-sided readout panels and three support (or drift) panels equipped with the micromesh and the drift electrode. The panels are bolted together such that the detector can be opened and cleaned, if required. Two of the readout planes are equipped with readout strips inclined by 1.5 degree. In this talk, we present the results of detailed performance studies based on X-Ray and cosmic ray measurements as well as measurements with 855 MeV electrons at the MAMI accelerator. In particular, results on reconstruction efficiencies, track resolution and gain homogeneity is presented.
Investigations of a flat-panel detector for quality assurance measurements in ion beam therapy.
Hartmann, Bernadette; Telsemeyer, Julia; Huber, Lucas; Ackermann, Benjamin; Jäkel, Oliver; Martišíková, Mária
2012-01-07
Increased accuracy in radiation delivery to a patient provided by scanning particle beams leads to high demands on quality assurance (QA). To meet the requirements, an extensive quality assurance programme has been implemented at the Heidelberg Ion Beam Therapy Center. Currently, high-resolution radiographic films are used for beam spot position measurements and homogeneity measurements for scanned fields. However, given that using this film type is time and equipment demanding, considerations have been made to replace the radiographic films in QA by another appropriate device. In this study, the suitability of the flat-panel detector RID 256 L based on amorphous silicon was investigated as an alternative method. The currently used radiographic films were taken as a reference. Investigations were carried out for proton and carbon ion beams. The detectors were irradiated simultaneously to allow for a direct comparison. The beam parameters (e.g. energy, focus, position) currently used in the daily QA procedures were applied. Evaluation of the measurements was performed using newly implemented automatic routines. The results for the flat-panel detector were compared to the standard radiographic films. Additionally, a field with intentionally decreased homogeneity was applied to test the detector's sensitivities toward possible incorrect scan parameters. For the beam position analyses, the flat-panel detector results showed good agreement with radiographic films. For both detector types, deviations between measured and planned spot distances were found to be below 1% (1 mm). In homogeneously irradiated fields, the flat-panel detector showed a better dose response homogeneity than the currently used radiographic film. Furthermore, the flat-panel detector is sensitive to field irregularities. The flat-panel detector was found to be an adequate replacement for the radiographic film in QA measurements. In addition, it saves time and equipment because no post-exposure treatment and no developer and darkroom facilities are needed.
Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O’Sullivan, Andrew W.; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan
2015-01-01
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC’s active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm2. Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module’s mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/−0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules. PMID:26085702
NASA Astrophysics Data System (ADS)
Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.
2011-01-01
In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.
NASA Astrophysics Data System (ADS)
Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md
2011-10-01
The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.
High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.
Daniels, J E; Drakopoulos, M
2009-07-01
The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.
NASA Astrophysics Data System (ADS)
Duxbury, D.; Khalyavin, D.; Manuel, P.; Raspino, D.; Rhodes, N.; Schooneveld, E.; Spill, E.
2014-12-01
The performance of the position sensitive neutron detector array of the WISH diffractometer is discussed. WISH (Wide angle In a Single Histogram) is one of the seven instruments currently available for users on the second target station (TS2) of the ISIS spallation neutron source, and is used mainly for magnetic studies of materials. WISH is instrumented with an array of 10 detector panels, covering an angular range of 320o, orientated in two semi-cylindrical annuli around a central sample position at a radius of 2.2m. In total the 10 detector panels are composed of 1520 3He based position sensitive detector tubes. Each tube has an active length of one metre, a diameter of 8mm and is filled with 3He at 15 bar. The specification for the WISH detectors included a neutron detection efficiency of 50% at a neutron wavelength of 1Å with good gamma rejection. A position resolution better than 8 mm FWHM along the length of the tubes was also required which has been met experimentally. Results obtained from the detector arrays showing pulse height and positional information both prior to and post installation are shown. The first 5 of the 10 detector panels have been operational since 2009, and comparable diffraction data from powder and single crystal samples taken from the remaining 5 panels (installation completed in 2013) shows that we have a detector array with a highly stable performance which is easily assembled and maintained. Finally some real user data is shown, highlighting the excellent quality of data attainable with this instrument.
Fink, Christian; Hallscheidt, Peter J; Noeldge, Gerd; Kampschulte, Annette; Radeleff, Boris; Hosch, Waldemar P; Kauffmann, Günter W; Hansmann, Jochen
2002-02-01
The objective of this study was to compare clinical chest radiographs of a large-area, flat-panel digital radiography system and a conventional film-screen radiography system. The comparison was based on an observer preference study of image quality and visibility of anatomic structures. Routine follow-up chest radiographs were obtained from 100 consecutive oncology patients using a large-area, amorphous silicon flat-panel detector digital radiography system (dose equivalent to a 400-speed film system). Hard-copy images were compared with previous examinations of the same individuals taken on a conventional film-screen system (200-speed). Patients were excluded if changes in the chest anatomy were detected or if the time interval between the examinations exceeded 1 year. Observer preference was evaluated for the image quality and the visibility of 15 anatomic structures using a five-point scale. Dose measurements with a chest phantom showed a dose reduction of approximately 50% with the digital radiography system compared with the film-screen radiography system. The image quality and the visibility of all but one anatomic structure of the images obtained with the digital flat-panel detector system were rated significantly superior (p < or = 0.0003) to those obtained with the conventional film-screen radiography system. The image quality and visibility of anatomic structures on the images obtained by the flat-panel detector system were perceived as equal or superior to the images from conventional film-screen chest radiography. This was true even though the radiation dose was reduced approximately 50% with the digital flat-panel detector system.
NASA Astrophysics Data System (ADS)
Yang, Xusan; Tang, Yuanhe; Liu, Kai; Liu, Hanchen; Gao, Haiyang; Li, Qing; Zhang, Ruixia; Ye, Na; Liang, Yuan; Zhao, Gaoxiang
2008-12-01
Based on the electro-optical properties of liquid crystal, we have designed a novel partial gating detector. Liquid crystal can be taken to change its own transmission according to the light intensity outside. Every single pixel of the image is real-time modulated by liquid crystal, thus the strong light is weakened and low light goes through the detector normally .The purpose of partial-gating strong light (>105lx) can be achieved by this detector. The modulation transfer function (MTF) equations of the main optical sub-systems are calculated in this paper, they are liquid crystal panels, linear fiber panel and CCD array detector. According to the relevant size, the MTF value of this system is fitted out. The result is MTF= 0.518 at Nyquist frequency.
X-ray light valve (XLV): a novel detectors' technology for digital mammography
NASA Astrophysics Data System (ADS)
Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter
2014-03-01
A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.
Portal imaging with flat-panel detector and CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Wai; Dallas, William J.
1997-07-01
This paper provides a comparison of imaging parameters of two portal imaging systems at 6 MV: a flat panel detector and a CCD-camera based portal imaging system. Measurements were made of the signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. Both systems have a linear response with respect to exposure, and the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal- to-noise ratio, which is higher than that observed wit the CCD-camera based portal imaging system. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The paper also presents data on the screen's photon gain (the number of light-photons per interacting x-ray photon), as well as on the magnitude of the Swank-noise, (which describes fluctuation in the screen's photon gain). Images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center, were generated at an exposure of 1 MU. The CCD-camera based system permits detection of aluminum-holes of 0.01194 cm diameter and 0.228 mm depth while the flat-panel detector permits detection of aluminum holes of 0.01194 cm diameter and 0.1626 mm depth, indicating a better signal-to-noise ratio. Rank order filtering was applied to the raw images from the CCD-based system in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-camera and generate 'salt and pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise.
NASA Astrophysics Data System (ADS)
Lopez Maurino, Sebastian; Badano, Aldo; Cunningham, Ian A.; Karim, Karim S.
2016-03-01
We propose a new design of a stacked three-layer flat-panel x-ray detector for dual-energy (DE) imaging. Each layer consists of its own scintillator of individual thickness and an underlying thin-film-transistor-based flat-panel. Three images are obtained simultaneously in the detector during the same x-ray exposure, thereby eliminating any motion artifacts. The detector operation is two-fold: a conventional radiography image can be obtained by combining all three layers' images, while a DE subtraction image can be obtained from the front and back layers' images, where the middle layer acts as a mid-filter that helps achieve spectral separation. We proceed to optimize the detector parameters for two sample imaging tasks that could particularly benefit from this new detector by obtaining the best possible signal to noise ratio per root entrance exposure using well-established theoretical models adapted to fit our new design. These results are compared to a conventional DE temporal subtraction detector and a single-shot DE subtraction detector with a copper mid-filter, both of which underwent the same theoretical optimization. The findings are then validated using advanced Monte Carlo simulations for all optimized detector setups. Given the performance expected from initial results and the recent decrease in price for digital x-ray detectors, the simplicity of the three-layer stacked imager approach appears promising to usher in a new generation of multi-spectral digital x-ray diagnostics.
Stidd, D A; Theessen, H; Deng, Y; Li, Y; Scholz, B; Rohkohl, C; Jhaveri, M D; Moftakhar, R; Chen, M; Lopes, D K
2014-01-01
Flat panel detector CT images are degraded by streak artifacts caused by radiodense implanted materials such as coils or clips. A new metal artifacts reduction prototype algorithm has been used to minimize these artifacts. The application of this new metal artifacts reduction algorithm was evaluated for flat panel detector CT imaging performed in a routine clinical setting. Flat panel detector CT images were obtained from 59 patients immediately following cerebral endovascular procedures or as surveillance imaging for cerebral endovascular or surgical procedures previously performed. The images were independently evaluated by 7 physicians for metal artifacts reduction on a 3-point scale at 2 locations: immediately adjacent to the metallic implant and 3 cm away from it. The number of visible vessels before and after metal artifacts reduction correction was also evaluated within a 3-cm radius around the metallic implant. The metal artifacts reduction algorithm was applied to the 59 flat panel detector CT datasets without complications. The metal artifacts in the reduction-corrected flat panel detector CT images were significantly reduced in the area immediately adjacent to the implanted metal object (P = .05) and in the area 3 cm away from the metal object (P = .03). The average number of visible vessel segments increased from 4.07 to 5.29 (P = .1235) after application of the metal artifacts reduction algorithm to the flat panel detector CT images. Metal artifacts reduction is an effective method to improve flat panel detector CT images degraded by metal artifacts. Metal artifacts are significantly decreased by the metal artifacts reduction algorithm, and there was a trend toward increased vessel-segment visualization. © 2014 by American Journal of Neuroradiology.
A picture of our detector with the front panel removed. Normally the electronic board is located on the the front lucite panel. Below is a picture of a completed detector being held by Colleen Twitty
Using a flat-panel detector in high resolution cone beam CT for dental imaging.
Baba, R; Ueda, K; Okabe, M
2004-09-01
Cone beam CT (CBCT) requires a two-dimensional X-ray detector. In the several CBCT systems developed for dental imaging, detection has been by the combination of an X-ray image intensifier and charge-coupled device (CCD) camera. In this paper, we propose a new CBCT system in which the detector is of the flat-panel type and evaluate its performance in dental imaging. We developed a prototype CBCT that has a flat-panel-type detector. The detector consists of a CsI scintillator screen and a photosensor array. First, the flat panel detector and image intensifier detector were compared in terms of the signal-to-noise ratio (SNR) of projected images. We then used these data and a theoretical formula to evaluate noise in reconstructed images. Second, reconstructed images of a bar pattern phantom were obtained as a way of evaluating the spatial resolution. Then, reconstructed images of a skull phantom were obtained. The SNR of the developed system was 1.6 times as high as that of a system with an image intensifier detector of equal detector pitch. The system was capable of resolving a 0.35 mm pattern and its field of view almost completely encompassed that of an image intensifier detector which is used in dentomaxillofacial imaging. The fine spatial resolution of the detector led to images in which the structural details of a skull phantom were clearly visible. The system's isotropically fine resolution will lead to improved precision in dental diagnosis and surgery. The next stage of our research will be the development of a flat panel detector system with a high frame acquisition rate.
Image reconstruction in cone-beam CT with a spherical detector using the BPF algorithm
NASA Astrophysics Data System (ADS)
Zuo, Nianming; Zou, Yu; Jiang, Tianzi; Pan, Xiaochuan
2006-03-01
Both flat-panel detectors and cylindrical detectors have been used in CT systems for data acquisition. The cylindrical detector generally offers a sampling of a transverse image plane more uniformly than does a flat-panel detector. However, in the longitudinal dimension, the cylindrical and flat-panel detectors offer similar sampling of the image space. In this work, we investigate a detector of spherical shape, which can yield uniform sampling of the 3D image space because the solid angle subtended by each individual detector bin remains unchanged. We have extended the backprojection-filtration (BPF) algorithm, which we have developed previously for cone-beam CT, to reconstruct images in cone-beam CT with a spherical detector. We also conduct computer-simulation studies to validate the extended BPF algorithm. Quantitative results in these numerical studies indicate that accurate images can be obtained from data acquired with a spherical detector by use of our extended BPF cone-beam algorithms.
Bacher, Klaus; Smeets, Peter; Vereecken, Ludo; De Hauwere, An; Duyck, Philippe; De Man, Robert; Verstraete, Koenraad; Thierens, Hubert
2006-09-01
The aim of this study was to compare the image quality and radiation dose in chest imaging using an amorphous silicon flat-panel detector system and an amorphous selenium flat-panel detector system. In addition, the low-contrast performance of both systems with standard and low radiation doses was compared. In two groups of 100 patients each, digital chest radiographs were acquired with either an amorphous silicon or an amorphous selenium flat-panel system. The effective dose of the examination was measured using thermoluminescent dosimeters placed in an anthropomorphic Rando phantom. The image quality of the digital chest radiographs was assessed by five experienced radiologists using the European Guidelines on Quality Criteria for Diagnostic Radiographic Images. In addition, a contrast-detail phantom study was set up to assess the low-contrast performance of both systems at different radiation dose levels. Differences between the two groups were tested for significance using the two-tailed Mann-Whitney test. The amorphous silicon flat-panel system allowed an important and significant reduction in effective dose in comparison with the amorphous selenium flat-panel system (p < 0.0001) for both the posteroanterior and lateral views. In addition, clinical image quality analysis showed that the dose reduction was not detrimental to image quality. Compared with the amorphous selenium flat-panel detector system, the amorphous silicon flat-panel detector system performed significantly better in the low-contrast phantom study, with phantom entrance dose values of up to 135 muGy. Chest radiographs can be acquired with a significantly lower patient radiation dose using an amorphous silicon flat-panel system than using an amorphous selenium flat-panel system, thereby producing images that are equal or even superior in quality to those of the amorphous selenium flat-panel detector system.
Katayama, R; Sakai, S; Sakaguchi, T; Maeda, T; Takada, K; Hayabuchi, N; Morishita, J
2008-07-20
PURPOSE/AIM OF THE EXHIBIT: The purpose of this exhibit is: 1. To explain "resampling", an image data processing, performed by the digital radiographic system based on flat panel detector (FPD). 2. To show the influence of "resampling" on the basic imaging properties. 3. To present accurate measurement methods of the basic imaging properties of the FPD system. 1. The relationship between the matrix sizes of the output image and the image data acquired on FPD that automatically changes depending on a selected image size (FOV). 2. The explanation of the image data processing of "resampling". 3. The evaluation results of the basic imaging properties of the FPD system using two types of DICOM image to which "resampling" was performed: characteristic curves, presampled MTFs, noise power spectra, detective quantum efficiencies. CONCLUSION/SUMMARY: The major points of the exhibit are as follows: 1. The influence of "resampling" should not be disregarded in the evaluation of the basic imaging properties of the flat panel detector system. 2. It is necessary for the basic imaging properties to be measured by using DICOM image to which no "resampling" is performed.
Flat-panel detector, CCD cameras, and electron-beam-tube-based video for use in portal imaging
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Way; Dallas, William J.
1998-07-01
This paper provides a comparison of some imaging parameters of four portal imaging systems at 6 MV: a flat panel detector, two CCD cameras and an electron beam tube based video camera. Measurements were made of signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. All systems have a linear response with respect to exposure, and with the exception of the electron beam tube based video camera, the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal-to-noise ratio, which is higher than that observed with both CCD-Cameras or with the electron beam tube based video camera. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The measurements of signal-and noise were complemented by images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center. These images were generated at an exposure of 1 MU. The flat-panel detector permits detection of Aluminum holes of 1.2 mm diameter and 1.6 mm depth, indicating the best signal-to-noise ratio. The CCD-cameras rank second and third in signal-to- noise ratio, permitting detection of Aluminum-holes of 1.2 mm diameter and 2.2 mm depth (CCD_1) and of 1.2 mm diameter and 3.2 mm depth (CCD_2) respectively, while the electron beam tube based video camera permits detection of only a hole of 1.2 mm diameter and 4.6 mm depth. Rank Order Filtering was applied to the raw images from the CCD-based systems in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-Camera and generate 'Salt and Pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise. The paper also presents data on the metal-phosphor's photon gain (the number of light-photons per interacting x-ray photon).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen
2013-10-15
Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widelymore » used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used.Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors.Conclusions: The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies.« less
Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.
2013-01-01
Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors. Conclusions: The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies. PMID:24089917
Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C
2013-10-01
To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150-160, 160-180, and 180-200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200-212 and 212-224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224-250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160-180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors. The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies.
MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yiping
Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been developed. PET imaging performance and initial phantom studies of on-line proton beam-range measurement will be conducted and reported. NIH grant R21CA187717; Cancer Prevention and Research Institute of Texas grant RP120326.« less
Large area x-ray detectors for cargo radiography
NASA Astrophysics Data System (ADS)
Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.
2007-04-01
Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.
Paul W. Kruse (1927-2012), In Memoriam
NASA Astrophysics Data System (ADS)
Reine, Marion B.; Norton, Paul R.; Stelzer, Ernie L.
2013-06-01
During his distinguished 37-year career as a research physicist at the Honeywell Research Center in Minneapolis, Minnesota, Dr. Paul W. Kruse (1927-2012) played leadership roles in two disruptive infrared detector technologies, the narrow-gap semiconductor alloy HgCdTe and the silicon CMOS-based microbolometer array, both of which revolutionized the worldwide infrared detector industry. He served on numerous government advisory boards and panels, including the Army Scientific Advisory Panel and the Army Science Board, for which he received the Outstanding Civilian Service Medal. After retiring for Honeywell in 1993, he remained active in the infrared detector field in several roles: as a successful small-business entrepreneur, as an author of two books, and as a SPIE lecturer. His books, papers and lectures have educated new generations of workers in the infrared detector industry. His career, a model for industrial research physicists, has had major and permanent impacts on the worldwide infrared detector industry. This paper is a summary of the career of Paul W. Kruse, as well as a tribute to that career and its lasting legacy.
NASA Astrophysics Data System (ADS)
Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.
2016-02-01
To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.
Jain, A; Bednarek, D; Rudin, S
2012-06-01
The need for high-resolution, dynamic x-ray imaging capability for neurovascular applications has put an ever increasing demand on x-ray detector technology. Present state-of-the-art detectors such as flat panels have limited resolution and noise performance. A linear cascade model analysis was used to estimate the theoretical performance for a proposed CMOS-based detector. The proposed CMOS-based detector was assumed to have a 300-micron thick HL type CsI phosphor, 35-micron pixels, a variable gain light image intensifier (LU), and 400 electron readout noise. The proposed detector has a CMOS sensor coupled to an LII which views the output of the CsI phosphor. For the analysis the whole imaging chain was divided into individual stages characterized by one of the basic processes (stochastic/deterministic blurring, binomial selection, quantum gain, additive noise). Standard linear cascade modeling was used for the propagation of signal and noise through the stages and an RQA5 spectrum was assumed. The gain, blurring or transmission of different stages was either measured or taken from manufacturer's specifications. The theoretically calculated MTF and DQE for the proposed detector were compared with a high-resolution, high-sensitive Micro-Angio Fluoroscope (MAF), predecessor of the proposed detector. Signal and noise for each of the 19 stages in the complete imaging chain were calculated and showed improved performance. For example, at 5 cycles/mm the MTF and DQE were 0.08 and 0.28, respectively, for the CMOS detector compared to 0.05 and 0.07 for the MAF detector. The proposed detector will have improved MTF and DQE and slimmer physical dimension due to the elimination of the large fiber-optic taper used in the MAF. Once operational, the proposed CMOS detector will serve as a further improvement over standard flat panel detectors compared to the MAF which is already receiving a very positive reception by neuro-vascular interventionalists. (Support:NIH-Grant R01EB002873) NIH Grants R01- EB008425, R01-EB002873 and an equipment grant from Toshiba Medical Systems Corp. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Friedman, Peter
2017-09-01
The plasma panel sensor (PPS) is a novel micropattern gas detector inspired by plasma display panels (PDPs), the core component of plasma-TVs. A PDP comprises millions of discrete cells per square meter, each of which, when provided with a signal pulse, can initiate and sustain a plasma discharge. Configured as a detector, a pixel or cell is biased to discharge when a free-electron is generated in the gas. The PPS consists of an array of small plasma discharge pixels, and can be configured to have either an ``open-cell'' or ``closed-cell'' structure, operating with high gain in the Geiger region. We describe both configurations and their application to particle physics. The open-cell PPS lends itself to ultra-low-mass, ultrathin structures, whereas the closed-cell microhexcavity PPS is capable of higher performance. For the ultrathin-PPS, we are fabricating 3-inch devices based on two types of extremely thin, inorganic, transparent, substrate materials: one being 8-10 µm thick, and the other 25-27 µm thick. These gas-filled ultrathin devices are designed to operate in a beam-line vacuum environment, yet must be hermetically-sealed and gas-filled in an ambient environment at atmospheric pressure. We have successfully fabricated high resolution, submillimeter pixel electrodes on both types of ultrathin substrates. We will also report on the fabrication, staging and operation of the first microhexcavity detectors (µH-PPS). The first µH-PPS prototype devices have a 16 by 16 matrix of closed packed hexagon pixels, each having a 2 mm width. Initial tests of these detectors, conducted with Ne based gases at atmospheric pressure, indicate that each pixel responds independent of its neighboring cells, producing volt level pulse amplitudes in response to ionizing radiation. Results will include the hit rate response to a radioactive beta source, cosmic ray muons, the background from spontaneous discharge, pixel isolation and uniformity, and efficiency measurements. This work was funded in part by a DOE Office of Nuclear Physics SBIR Phase-II Grant.
Flat panel detectors--closing the (digital) gap in chest and skeletal radiology.
Reiff, K J
1999-08-01
In the radiological department today the majority of all X-ray procedures on chest and skeletal radiography is performed with classical film-screen-systems. Using digital luminescence radiography (DLR or CR, which stands for Computed Radiography) as a technique has shown a way to replace this 100-year-old procedure of doing general radiography work by acquiring the X-rays digitally via phosphor screens, but this approach has faced criticism from lots of radiologists world wide and therefore has not been widely accepted except in the intensive care environment. A new technology is now rising based on the use of so called flat panel X-ray (FD) detectors. Semi-conducting material detects the X-rays in digital form directly and creates an instantaneous image for display, distribution and diagnosis. This ability combined with a large field of view and compared to existing methods--excellent detective quantum efficiency represents a revolutionary step for chest and skeletal radiography and will put basic X-ray-work back into the focus of radiological solutions. This paper will explain the basic technology of flat panel detectors, possible system solutions based on this new technology, aspects of the user interface influencing the system utilization and versatility as well as the possibility to redefine the patient examination process for chest and skeletal radiography. Furthermore the author discusses limitations for the first released systems, upgrades for the installed base and possible scenarios for the future, e.g. fluoroscopy or angiography application.
Radiation dose reduction in chest radiography using a flat-panel amorphous silicon detector.
Hosch, W P; Fink, C; Radeleff, B; kampschulte a, A; Kauffmann, G W; Hansmann, J
2002-10-01
The aim of this study was to evaluate the image quality and the potential for radiation dose reduction with a digital flat-panel amorphous silicon detector radiography system. Using flat-panel technology, radiographs of an anthropomorphic thorax phantom were taken with a range of technical parameters (125kV, 200mA and 5, 4, 3.2, 2, 1, 0.5, and 0.25mAs) which were equivalent to a radiation dose of 332, 263, 209, 127, 58.7, 29, and 14 microGy, respectively. These images were compared to radiographs obtained by a conventional film-screen radiography system at 125kV, 200mA and 5mAs (equivalent to 252 microGy) which served as reference. Three observers evaluated independently the visibility of simulated rounded lesions and anatomical structures, comparing printed films from the flat-panel amorphous silicon detector and conventional x-ray system films. With flat-panel technology, the visibility of rounded lesions and normal anatomical structures at 5, 4, and 3.2mAs was superior compared to the conventional film-screen radiography system. (P< or =0.0001). At 2mAs, improvement was only marginal (P=0.19). At 1.0, 0.5 and 0.25mAs, the visibility of simulated rounded lesions was worse (P< or =0.004). Comparing fine lung parenchymal structures, the flat-panel amorphous silicon detector showed improvement for all exposure levels down to 2mAs and equality at 1mAs. Compared to a conventional x-ray film system, the flat-panel amorphous silicon detector demonstrated improved image quality and the possibility for a reduction of the radiation dose by 50% without loss in image quality.
Musculoskeletal imaging with a prototype photon-counting detector.
Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F
2012-01-01
To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.
A Lower-Cost High-Resolution LYSO Detector Development for Positron Emission Mammography (PEM)
Ramirez, Rocio A.; Zhang, Yuxuan; Liu, Shitao; Li, Hongdi; Baghaei, Hossain; An, Shaohui; Wang, Chao; Jan, Meei-Ling; Wong, Wai-Hoi
2010-01-01
In photomultiplier-quadrant-sharing (PQS) geometry for positron emission tomography applications, each PMT is shared by four blocks and each detector block is optically coupled to four round PMTs. Although this design reduces the cost of high-resolution PET systems, when the camera consists of detector panels that are made up of square blocks, half of the PMT’s sensitive window remains unused at the detector panel edge. Our goal was to develop a LYSO detector panel which minimizes the unused portion of the PMTs for a low-cost, high-resolution, and high-sensitivity positron emission mammography (PEM) camera. We modified the PQS design by using elongated blocks at panel edges and square blocks in the inner area. For elongated blocks, symmetric and asymmetrical reflector patterns were developed and PQS and PMT-half-sharing (PHS) arrangements were implemented in order to obtain a suitable decoding. The packing fraction was 96.3% for asymmetric block and 95.5% for symmetric block. Both of the blocks have excellent decoding capability with all crystals clearly identified, 156 for asymmetric and 144 for symmetric and peak-to-valley ratio of 3.0 and 2.3 respectively. The average energy resolution was 14.2% for the asymmetric block and 13.1% for the symmetric block. Using a modified PQS geometry and asymmetric block design, we reduced the unused PMT region at detector panel edges, thereby increased the field-of-view and the overall detection sensitivity and minimized the undetected breast region near the chest wall. This detector design and using regular round PMT allowed building a lower-cost, high-resolution and high-sensitivity PEM camera. PMID:20485510
DOT National Transportation Integrated Search
2010-08-01
The installation of loop detectors in portland cement concrete pavement (PCCP) may shorten affected panel life, thus prematurely worsening the condition of the overall pavement. This study focuses on the performance of those loop embedded panels (LEP...
A forward bias method for lag correction of an a-Si flat panel detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starman, Jared; Tognina, Carlo; Partain, Larry
2012-01-15
Purpose: Digital a-Si flat panel (FP) x-ray detectors can exhibit detector lag, or residual signal, of several percent that can cause ghosting in projection images or severe shading artifacts, known as the radar artifact, in cone-beam computed tomography (CBCT) reconstructions. A major contributor to detector lag is believed to be defect states, or traps, in the a-Si layer of the FP. Software methods to characterize and correct for the detector lag exist, but they may make assumptions such as system linearity and time invariance, which may not be true. The purpose of this work is to investigate a new hardwaremore » based method to reduce lag in an a-Si FP and to evaluate its effectiveness at removing shading artifacts in CBCT reconstructions. The feasibility of a novel, partially hardware based solution is also examined. Methods: The proposed hardware solution for lag reduction requires only a minor change to the FP. For pulsed irradiation, the proposed method inserts a new operation step between the readout and data collection stages. During this new stage the photodiode is operated in a forward bias mode, which fills the defect states with charge. A Varian 4030CB panel was modified to allow for operation in the forward bias mode. The contrast of residual lag ghosts was measured for lag frames 2 and 100 after irradiation ceased for standard and forward bias modes. Detector step response, lag, SNR, modulation transfer function (MTF), and detective quantum efficiency (DQE) measurements were made with standard and forward bias firmware. CBCT data of pelvic and head phantoms were also collected. Results: Overall, the 2nd and 100th detector lag frame residual signals were reduced 70%-88% using the new method. SNR, MTF, and DQE measurements show a small decrease in collected signal and a small increase in noise. The forward bias hardware successfully reduced the radar artifact in the CBCT reconstruction of the pelvic and head phantoms by 48%-81%. Conclusions: Overall, the forward bias method has been found to greatly reduce detector lag ghosts in projection data and the radar artifact in CBCT reconstructions. The method is limited to improvements of the a-Si photodiode response only. A future hybrid mode may overcome any limitations of this method.« less
Active Well Counting Using New PSD Plastic Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis
This report presents results and analysis from a series of proof-of-concept measurements to assess the suitability of segmented detectors constructed from Eljen EJ-299-34 PSD-plastic scintillator with pulse-shape discrimination capability for the purposes of quantifying uranium via active neutron coincidence counting. Present quantification of bulk uranium materials for international safeguards and domestic materials control and accounting relies on active neutron coincidence counting systems, such as the Active Well Coincidence Counter (AWCC) and the Uranium Neutron Coincidence Collar (UNCL), that use moderated He-3 proportional counters along with necessarily low-intensity 241Am(Li) neutron sources. Scintillation-based fast-neutron detectors are a potentially superior technology to themore » existing AWCC and UNCL designs due to their spectroscopic capability and their inherently short neutron coincidence times that largely eliminate random coincidences and enable interrogation by stronger sources. One of the past impediments to the investigation and adoption of scintillation counters for the purpose of quantifying bulk uranium was the commercial availability of scintillators having the necessary neutron-gamma pulse-shape discrimination properties only as flammable liquids. Recently, Eljen EJ-299-34 PSD-plastic scintillator became commercially available. The present work is the first assessment of an array of PSD-plastic detectors for the purposes of quantifying bulk uranium. The detector panel used in the present work was originally built as the focal plane for a fast-neutron imager, but it was repurposed for the present investigation by construction of a stand to support the inner well of an AWCC immediately in front of the detector panel. The detector panel and data acquisition of this system are particularly well suited for performing active-well fast-neutron counting of LEU and HEU samples because the active detector volume is solid, the 241Am(Li) interrogating neutrons are largely below the detector threshold, and the segmented construction of the detector modules allow for separation of true neutron-neutron coincidences from inter-detector scattering using the kinematics of neutron scattering. The results from a series of measurements of a suite of uranium standards are presented, and compared to measurements of the same standards and source configurations using the AWCC. Using these results, the performance of the segmented detectors reconfigured as a well counter is predicted and outperforms the AWCC.« less
DQE simulation of a-Se x-ray detectors using ARTEMIS
NASA Astrophysics Data System (ADS)
Fang, Yuan; Badano, Aldo
2016-03-01
Detective Quantum Efficiency (DQE) is one of the most important image quality metrics for evaluating the spatial resolution performance of flat-panel x-ray detectors. In this work, we simulate the DQE of amorphous selenium (a-Se) xray detectors with a detailed Monte Carlo transport code (ARTEMIS) for modeling semiconductor-based direct x-ray detectors. The transport of electron-hole pairs is achieved with a spatiotemporal model that accounts for recombination and trapping of carriers and Coulombic effects of space charge and external applied electric field. A range of x-ray energies has been simulated from 10 to 100 keV. The DQE results can be used to study the spatial resolution characteristics of detectors at different energies.
Development of 10B-Based 3He Replacement Neutron Detectors
NASA Astrophysics Data System (ADS)
King, Michael J.; Gozani, Tsahi; Hilliard, Donald B.
2011-12-01
Radiation portal monitors (RPM) are currently deployed at United States border crossings to passively inspect vehicles and persons for any emission of neutrons and/or gamma rays, which may indicate the presence of unshielded nuclear materials. The RPM module contains an organic scintillator with 3He proportional counters to detect gamma rays and thermalized neutrons, respectively. The supply of 3He is rapidly dwindling, requiring alternative detectors to provide the same function and performance. Our alternative approach is one consisting of a thinly-coated 10B flat-panel ionization chamber neutron detector that can be deployed as a direct drop-in replacement for current RPM 3He detectors. The uniqueness of our approach in providing a large-area detector is in the simplicity of construction, scalability of the unit cell detector, ease of adaptability to a variety of applications and low cost. Currently, Rapiscan Laboratories and Helicon Thin Film Systems have designed and developed an operational 100 cm2 multi-layer prototype 10BB-based ionization chamber.
NASA Astrophysics Data System (ADS)
Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.
2012-04-01
In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).
Shen, Y; Zhong, Y; Lai, C; Wang, T; Shaw, C
2012-06-01
To investigate the advantage of a high resolution flat panel detector for improving the visibility of microcalcifications (MCs) in cone beam breast CT Methods: A paraffin cylinder was used to simulate a 100% adipose breast. Calcium carbonate grains, ranging from 125-140 μm to 224 - 250 μm in size, were used to simulate the MCs. Groups of 25 same size MCs were embedded at the phantom center. The phantom was scanned with a bench-top CBCT system at various exposure levels. A 75μm pitch flat panel detector (Dexela 2923, Perkin Elmer) with 500μm thick CsI scintillator plate was used as the high resolution detector. A 194 μm pitch detector (Paxscan 4030CB, Varian Medical Systems) was used for reference. 300 projection images were acquired over 360° and reconstructed. The images were reviewed by 6 readers. The MC visibility was quantified as the fraction of visible MCs and averaged for comparison. The visibility was plotted as a function of the estimated dose level for various MC sizes and detectors. The MTFs and DQEs were measured and compared. For imaging small (200 μm and smaller) MCs, the visibility achieved with the 75μm pitch detector was found to be significantly higher than those achieved with the 194μm pitch detector. For imaging larger MCs, there was little advantage in using the 75μm pitch detector. Using the 75μm pitch detector, MCs as small as 180 μm could be imaged to achieve a visibility of 78% with an isocenter tissue dose of ∼20 mGys versus 62% achieved with the 194 μm pitch detector at the same dose level. It was found that a high pitch flat panel detector had the advantages of extending its imaging capability to higher frequencies thus helping improve the visibility when used to image small MCs. This work was supported in part by grants CA104759, CA13852 and CA124585 from NIH-NCI, a grant EB00117 from NIH-NIBIB, and a subcontract from NIST-ATP. © 2012 American Association of Physicists in Medicine.
A semiempirical linear model of indirect, flat-panel x-ray detectors.
Huang, Shih-Ying; Yang, Kai; Abbey, Craig K; Boone, John M
2012-04-01
It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV∕0.1-mm Sn, 65 kV∕0.2-mm Cu, 85 kV∕1.5-mm Al, and 95 kV∕0.05-mm Ag. The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r(2) of signal mean to kV: 0.91, 0.93, 0.86, and 0.99 for 0.1-mm Sn, 0.2-mm Cu, 1.5-mm Al, and 0.05-mm Ag, respectively; r(2) of signal variance to kV: 0.99 for all four filters). The comparison of the signal and noise (mean, variance, and NPS) between the simulated and measured air scan images suggested that this model was reasonable in predicting accurate signal statistics of air scan images using absolute percent error. Overall, the model was found to be accurate in estimating signal statistics and spatial correlation between the detector elements of the images acquired with indirect, flat-panel x-ray detectors. The semiempirical linear model of the indirect, flat-panel x-ray detectors was described and validated with images of air scans. The model was found to be a useful tool in understanding the signal and noise transfer within indirect, flat-panel x-ray detector systems.
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 10: Basic research panel
NASA Technical Reports Server (NTRS)
1975-01-01
Possible research experiments using the space transportation system are identified based on user requirements. Opportunity driven research areas include quantum electronics, cryogenics system technology, superconducting devices and detectors, and photo-induced reactions. Mission driven research requirements were examined and ranked based on inputs from the user group.
Evaluation of imaging quality for flat-panel detector based low dose C-arm CT system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae
The image quality associated with the extent of the angle of gantry rotation, the number of projection views, and the dose of X-ray radiation was investigated in flat-panel detector (FPD) based C-arm cone-beam computed tomography (CBCT) system for medical applications. A prototype CBCT system for the projection acquisition used the X-ray tube (A-132, Varian inc.) having rhenium-tungsten molybdenum target and flat panel a-Si X-ray detector (PaxScan 4030CB, Varian inc.) having a 397 x 298 mm active area with 388 μm pixel pitch and 1024 x 768 pixels in 2 by 2 binning mode. The performance comparison of X-ray imaging qualitymore » was carried out using the Feldkamp, Davis, and Kress (FDK) reconstruction algorithm between different conditions of projection acquisition. In this work, head-and-dental (75 kVp/20 mA) and chest (90 kVp/25 mA) phantoms were used to evaluate the image quality. The 361 (30 fps x 12 s) projection data during 360 deg. gantry rotation with 1 deg. interval for the 3D reconstruction were acquired. Parke weighting function were applied to handle redundant data and improve the reconstructed image quality in a mobile C-arm system with limited rotation angles. The reconstructed 3D images were investigated for comparison of qualitative image quality in terms of scan protocols (projection views, rotation angles and exposure dose). Furthermore, the performance evaluation in image quality will be investigated regarding X-ray dose and limited projection data for a FPD based mobile C-arm CBCT system. (authors)« less
NASA Astrophysics Data System (ADS)
Wong, Wai-Hoi; Li, Hongdi; Zhang, Yuxuan; Ramirez, Rocio; An, Shaohui; Wang, Chao; Liu, Shitao; Dong, Yun; Baghaei, Hossain
2015-10-01
We developed a high-resolution Photomultiplier-Quadrant-Sharing (PQS) PET system for human imaging. This system is made up of 24 detector panels. Each panel (bank) consists of 3 ×7 detector blocks, and each block has 16 ×16 LYSO crystals of 2.35 ×2.35 ×15.2 mm3. We used a novel detector-grinding scheme that is compatible with the PQS detector-pixel-decoding requirements to make a gapless cylindrical detector ring for maximizing detection efficiency while delivering an ultrahigh spatial-resolution for a whole-body PET camera with a ring diameter of 87 cm and axial field of view of 27.6 cm. This grinding scheme enables two adjacent gapless panels to share one row of the PMTs to extend the PQS configuration beyond one panel and thus maximize the economic benefit (in PMT usage) of the PQS design. The entire detector ring has 129,024 crystals, all of which are clearly decoded using only 576 PMTs (38-mm diameter). Thus, each PMT on average decodes 224 crystals to achieve a high crystal-pitch resolution of 2.44 mm ×2.44 mm. The detector blocks were mass-produced with our slab-sandwich-slice technique using a set of optimized mirror-film patterns (between crystals) to maximize light output and achieve high spatial and timing resolution. This detection system with time-of-flight capability was placed in a human PET/CT gantry. The reconstructed image resolution of the system was about 2.87 mm using 2D-filtered back-projection. The time-of-flight resolution was 473 ps. The preliminary images of phantoms and clinical studies presented in this work demonstrate the capability of this new PET/CT system to produce high-quality images.
Image-based Modeling of PSF Deformation with Application to Limited Angle PET Data
Matej, Samuel; Li, Yusheng; Panetta, Joseph; Karp, Joel S.; Surti, Suleman
2016-01-01
The point-spread-functions (PSFs) of reconstructed images can be deformed due to detector effects such as resolution blurring and parallax error, data acquisition geometry such as insufficient sampling or limited angular coverage in dual-panel PET systems, or reconstruction imperfections/simplifications. PSF deformation decreases quantitative accuracy and its spatial variation lowers consistency of lesion uptake measurement across the imaging field-of-view (FOV). This can be a significant problem with dual panel PET systems even when using TOF data and image reconstruction models of the detector and data acquisition process. To correct for the spatially variant reconstructed PSF distortions we propose to use an image-based resolution model (IRM) that includes such image PSF deformation effects. Originally the IRM was mostly used for approximating data resolution effects of standard PET systems with full angular coverage in a computationally efficient way, but recently it was also used to mitigate effects of simplified geometric projectors. Our work goes beyond this by including into the IRM reconstruction imperfections caused by combination of the limited angle, parallax errors, and any other (residual) deformation effects and testing it for challenging dual panel data with strongly asymmetric and variable PSF deformations. We applied and tested these concepts using simulated data based on our design for a dedicated breast imaging geometry (B-PET) consisting of dual-panel, time-of-flight (TOF) detectors. We compared two image-based resolution models; i) a simple spatially invariant approximation to PSF deformation, which captures only the general PSF shape through an elongated 3D Gaussian function, and ii) a spatially variant model using a Gaussian mixture model (GMM) to more accurately capture the asymmetric PSF shape in images reconstructed from data acquired with the B-PET scanner geometry. Results demonstrate that while both IRMs decrease the overall uptake bias in the reconstructed image, the second one with the spatially variant and accurate PSF shape model is also able to ameliorate the spatially variant deformation effects to provide consistent uptake results independent of the lesion location within the FOV. PMID:27812222
Thermal control of the GRASP detector section
NASA Astrophysics Data System (ADS)
Roig, P. B.
1988-12-01
The necessity of keeping GRASP telescope (Gamma Ray Astronomy with Spectroscopy and Positioning) detectors at working temperatures within an adequate range (85 + or - 15 K for the germanium and 283 + or - 20 K for CsI) is discussed. Thermal control based in cryogenic liquid tanks is not considered the most suitable solution because of mass and lifetime considerations. Instead of this conventional solution, a concept using a combination of passive and active cooling systems was chosen. It combines the features of a corrugated radiator panel, thermal shields, MLI blankets, and an extra cooling system based on the Stirling cycle engine.
Towards a high sensitivity small animal PET system based on CZT detectors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Abbaszadeh, Shiva; Levin, Craig
2017-03-01
Small animal positron emission tomography (PET) is a biological imaging technology that allows non-invasive interrogation of internal molecular and cellular processes and mechanisms of disease. New PET molecular probes with high specificity are under development to target, detect, visualize, and quantify subtle molecular and cellular processes associated with cancer, heart disease, and neurological disorders. However, the limited uptake of these targeted probes leads to significant reduction in signal. There is a need to advance the performance of small animal PET system technology to reach its full potential for molecular imaging. Our goal is to assemble a small animal PET system based on CZT detectors and to explore methods to enhance its photon sensitivity. In this work, we reconstruct an image from a phantom using a two-panel subsystem consisting of six CZT crystals in each panel. For image reconstruction, coincidence events with energy between 450 and 570 keV were included. We are developing an algorithm to improve sensitivity of the system by including multiple interaction events.
HVI-Test Setup for Debris Detector Verification
NASA Astrophysics Data System (ADS)
Bauer, Waldemar; Romberg, Oliver; Wiedemann, Carsten; Putzar, Robin; Drolshagen, Gerhard; Vorsmann, Peter
2013-08-01
Risk assessment concerning impacting space debris or micrometeoroids with spacecraft or payloads can be performed by using environmental models such as MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured data. Such data can be obtained from ground-based or space-based radars or telescopes, or by analysis of space hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are retrieved from orbit. An additional data source is in-situ impact detectors, which are purposed for the collection of space debris and micrometeoroids impact data. In comparison to the impact data gained by analysis of the retrieved surfaces, the detected data contains additional information regarding impact time and orbit. In the past, many such in-situ detectors have been developed, with different measurement methods for the identification and classification of impacting objects. However, existing detectors have a drawback in terms of data acquisition. Generally the detection area is small, limiting the collected data as the number of recorded impacts has a linear dependence to the exposed area. An innovative impact detector concept is currently under development at the German Aerospace Centre (DLR) in Bremen, in order to increase the surface area while preserving the advantages offered by dedicated in-situ impact detectors. The Solar Generator based Impact Detector (SOLID) is not an add-on component on the spacecraft, making it different to all previous impact detectors. SOLID utilises existing subsystems of the spacecraft and adapts them for impact detection purposes. Solar generators require large panel surfaces in order to provide the spacecraft with sufficient energy. Therefore, the spacecraft solar panels provide a perfect opportunity for application as impact detectors. Employment of the SOLID method in several spacecraft in various orbits would serve to significantly increase the spatial coverage concerning space debris and micrometeoroids. In this way, the SOLID method will allow the generation of a large amount of impact data for environmental model validation. The ground verification of the SOLID method was performed at Fraunhofer EMI. For this purpose, a test model was developed. This paper focuses on the test methodology and development of the Hypervelocity Impact (HVI) test setup, including pretesting at the German Aerospace Centre (DLR), Bremen. Foreseen hardware and software for the automatic damage assessment of the detector after the impact are also presented.
Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System
NASA Astrophysics Data System (ADS)
Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin
2008-09-01
The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.
Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravindran, V. R.; Sreelakshmi, C.; Vibin
2008-09-26
The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CTmore » image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.« less
Comparison of ring artifact removal methods using flat panel detector based CT images
2011-01-01
Background Ring artifacts are the concentric rings superimposed on the tomographic images often caused by the defective and insufficient calibrated detector elements as well as by the damaged scintillator crystals of the flat panel detector. It may be also generated by objects attenuating X-rays very differently in different projection direction. Ring artifact reduction techniques so far reported in the literature can be broadly classified into two groups. One category of the approaches is based on the sinogram processing also known as the pre-processing techniques and the other category of techniques perform processing on the 2-D reconstructed images, recognized as the post-processing techniques in the literature. The strength and weakness of these categories of approaches are yet to be explored from a common platform. Method In this paper, a comparative study of the two categories of ring artifact reduction techniques basically designed for the multi-slice CT instruments is presented from a common platform. For comparison, two representative algorithms from each of the two categories are selected from the published literature. A very recently reported state-of-the-art sinogram domain ring artifact correction method that classifies the ring artifacts according to their strength and then corrects the artifacts using class adaptive correction schemes is also included in this comparative study. The first sinogram domain correction method uses a wavelet based technique to detect the corrupted pixels and then using a simple linear interpolation technique estimates the responses of the bad pixels. The second sinogram based correction method performs all the filtering operations in the transform domain, i.e., in the wavelet and Fourier domain. On the other hand, the two post-processing based correction techniques actually operate on the polar transform domain of the reconstructed CT images. The first method extracts the ring artifact template vector using a homogeneity test and then corrects the CT images by subtracting the artifact template vector from the uncorrected images. The second post-processing based correction technique performs median and mean filtering on the reconstructed images to produce the corrected images. Results The performances of the comparing algorithms have been tested by using both quantitative and perceptual measures. For quantitative analysis, two different numerical performance indices are chosen. On the other hand, different types of artifact patterns, e.g., single/band ring, artifacts from defective and mis-calibrated detector elements, rings in highly structural object and also in hard object, rings from different flat-panel detectors are analyzed to perceptually investigate the strength and weakness of the five methods. An investigation has been also carried out to compare the efficacy of these algorithms in correcting the volume images from a cone beam CT with the parameters determined from one particular slice. Finally, the capability of each correction technique in retaining the image information (e.g., small object at the iso-center) accurately in the corrected CT image has been also tested. Conclusions The results show that the performances of the algorithms are limited and none is fully suitable for correcting different types of ring artifacts without introducing processing distortion to the image structure. To achieve the diagnostic quality of the corrected slices a combination of the two approaches (sinogram- and post-processing) can be used. Also the comparing methods are not suitable for correcting the volume images from a cone beam flat-panel detector based CT. PMID:21846411
Characterization of LANDSAT Panels Using the NIST BRDF Scale from 1100 nm to 2500 nm
NASA Technical Reports Server (NTRS)
Markham, Brian; Tsai, Benjamin K.; Allen, David W.; Cooksey, Catherine; Yoon, Howard; Hanssen, Leonard; Zeng, Jinan; Fulton, Linda; Biggar, Stuart; Markham, Brian
2010-01-01
Many earth observing sensors depend on white diffuse reflectance standards to derive scales of radiance traceable to the St Despite the large number of Earth observing sensors that operate in the reflective solar region of the spectrum, there has been no direct method to provide NIST traceable BRDF measurements out to 2500 rim. Recent developments in detector technology have allowed the NIST reflectance measurement facility to expand the operating range to cover the 250 nm to 2500 nm range. The facility has been modified with and additional detector using a cooled extended range indium gallium arsenide (Extended InGaAs) detector. Measurements were made for two PTFE white diffuse reflectance standards over the 1100 nm to 2500 nm region at a 0' incident and 45' observation angle. These two panels will be used to support the OLI calibration activities. An independent means of verification was established using a NIST radiance transfer facility based on spectral irradiance, radiance standards and a diffuse reflectance plaque. An analysis on the results and associated uncertainties will be discussed.
Ning, Ruola; Tang, Xiangyang; Conover, David; Yu, Rongfeng
2003-07-01
Cone beam computed tomography (CBCT) has been investigated in the past two decades due to its potential advantages over a fan beam CT. These advantages include (a) great improvement in data acquisition efficiency, spatial resolution, and spatial resolution uniformity, (b) substantially better utilization of x-ray photons generated by the x-ray tube compared to a fan beam CT, and (c) significant advancement in clinical three-dimensional (3D) CT applications. However, most studies of CBCT in the past are focused on cone beam data acquisition theories and reconstruction algorithms. The recent development of x-ray flat panel detectors (FPD) has made CBCT imaging feasible and practical. This paper reports a newly built flat panel detector-based CBCT prototype scanner and presents the results of the preliminary evaluation of the prototype through a phantom study. The prototype consisted of an x-ray tube, a flat panel detector, a GE 8800 CT gantry, a patient table and a computer system. The prototype was constructed by modifying a GE 8800 CT gantry such that both a single-circle cone beam acquisition orbit and a circle-plus-two-arcs orbit can be achieved. With a circle-plus-two-arcs orbit, a complete set of cone beam projection data can be obtained, consisting of a set of circle projections and a set of arc projections. Using the prototype scanner, the set of circle projections were acquired by rotating the x-ray tube and the FPD together on the gantry, and the set of arc projections were obtained by tilting the gantry while the x-ray tube and detector were at the 12 and 6 o'clock positions, respectively. A filtered backprojection exact cone beam reconstruction algorithm based on a circle-plus-two-arcs orbit was used for cone beam reconstruction from both the circle and arc projections. The system was first characterized in terms of the linearity and dynamic range of the detector. Then the uniformity, spatial resolution and low contrast resolution were assessed using different phantoms mainly in the central plane of the cone beam reconstruction. Finally, the reconstruction accuracy of using the circle-plus-two-arcs orbit and its related filtered backprojection cone beam volume CT reconstruction algorithm was evaluated with a specially designed disk phantom. The results obtained using the new cone beam acquisition orbit and the related reconstruction algorithm were compared to those obtained using a single-circle cone beam geometry and Feldkamp's algorithm in terms of reconstruction accuracy. The results of the study demonstrate that the circle-plus-two-arcs cone beam orbit is achievable in practice. Also, the reconstruction accuracy of cone beam reconstruction is significantly improved with the circle-plus-two-arcs orbit and its related exact CB-FPB algorithm, as compared to using a single circle cone beam orbit and Feldkamp's algorithm.
DSSD detectors development PACT, a new space Compton telescope at the horizon 2025
NASA Astrophysics Data System (ADS)
Laurent, P.; Khalil, M.; Dolgorouki, Y.; Bertoli, W.; Oger, R.; Bréelle, E.
2015-07-01
PACT is a Pair and Compton telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV . It will be devoted to the detection of radioactivity lines from present and past supernova explosions, the observation of thousands of new blazars, and the study of polarized radiations from gamma-ray bursts, pulsars and accreting black holes. It will reach a sensitivity of one to two orders of magnitude lower than COMPTEL/CGRO (e.g. about 50 times lower for the broad-band, survey sensitivity at 1 MeV after 5 years). The PACT telescope is based upon three main components: a silicon-based gamma-ray tracker, a crystal-based calorimeter (e.g. CeBr3), and an anticoincidence detector made of plastic scintillator panels. Prototypes of the Silicon detector planes have been optimized and are currently tested in the APC laboratory.
Pictorial Review of Digital Radiography Artifacts.
Walz-Flannigan, Alisa I; Brossoit, Kimberly J; Magnuson, Dayne J; Schueler, Beth A
2018-01-01
Visual familiarity with the variety of digital radiographic artifacts is needed to identify, resolve, or prevent image artifacts from creating issues with patient imaging. Because the mechanism for image creation is different between flat-panel detectors and computed radiography, the causes and appearances of some artifacts can be unique to these different modalities. Examples are provided of artifacts that were found on clinical images or during quality control testing with flat-panel detectors. The examples are meant to serve as learning tools for future identification and troubleshooting of artifacts and as a reminder for steps that can be taken for prevention. The examples of artifacts provided are classified according to their causal connection in the imaging chain, including an equipment defect as a result of an accident or mishandling, debris or gain calibration flaws, a problematic acquisition technique, signal transmission failures, and image processing issues. Specific artifacts include those that are due to flat-panel detector drops, backscatter, debris in the x-ray field during calibration, detector saturation or underexposure, or collimation detection errors, as well as a variety of artifacts that are processing induced. © RSNA, 2018.
Experiences with radiation portal detectors for international rail transport
NASA Astrophysics Data System (ADS)
Stromswold, D. C.; McCormick, K.; Todd, L.; Ashbaker, E. D.; Evans, J. C.
2006-08-01
Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm × 10-cm × 41-cm) and a PVT panel with a 41 cm × 173 cm × 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars creates a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site, the trains carried inter-modal containers that had been unloaded from ships, and at the other site, the trains contained bulk cargo in tanker cars and hopper cars or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting portion of the program GADRAS developed at Sandia National Laboratories. For most of the NORM, the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases.
Experiences with radiation portal detectors for international rail transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stromswold, David C.; McCormick, Kathleen R.; Todd, Lindsay C.
Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm × 10-cm × 41-cm) and a PVT panel with a 41 cm × 173 cm × 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars createsmore » a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site the trains carried inter-modal containers that had been unloaded from ships, and at the other site the trains contained bulk cargo or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting program GADRAS/FitToDB from Sandia National Laboratories. For much of the NORM the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases.« less
Cai, Bin; Dolly, Steven; Kamal, Gregory; Yaddanapudi, Sridhar; Sun, Baozhou; Goddu, S Murty; Mutic, Sasa; Li, Hua
2018-04-28
To investigate the feasibility of using kV flat panel detector on linac for consistency evaluations of kV X-ray generator performance. An in-house designed aluminum (Al) array phantom with six 9×9 cm 2 square regions having various thickness was proposed and used in this study. Through XML script-driven image acquisition, kV images with various acquisition settings were obtained using the kV flat panel detector. Utilizing pre-established baseline curves, the consistency of X-ray tube output characteristics including tube voltage accuracy, exposure accuracy and exposure linearity were assessed through image quality assessment metrics including ROI mean intensity, ROI standard deviation (SD) and noise power spectrums (NPS). The robustness of this method was tested on two linacs for a three-month period. With the proposed method, tube voltage accuracy can be verified through conscience check with a 2% tolerance and 2 kVp intervals for forty different kVp settings. The exposure accuracy can be tested with a 4% consistency tolerance for three mAs settings over forty kVp settings. The exposure linearity tested with three mAs settings achieved a coefficient of variation (CV) of 0.1. We proposed a novel approach that uses the kV flat panel detector available on linac for X-ray generator test. This approach eliminates the inefficiencies and variability associated with using third party QA detectors while enabling an automated process. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Development of a fast multi-line x-ray CT detector for NDT
NASA Astrophysics Data System (ADS)
Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.
2015-04-01
Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of pixels. By using a modular assembly of the detector, the width can be chosen as multiples of 512 pixels. With a frame rate of up to 300 frames/s (full resolution) or 1200 frame/s (analog binning to 400 μ m pixel pitch) time-resolved 3D CT applications become possible. Two versions of the detector are in development, one with a high resolution scintillator and one with a thick, structured and very efficient scintillator (pitch 400 μ m). This way the detector can even work with X-ray energies up to 450 kVp.
Performance evaluation of a retrofit digital detector-based mammography system.
Marshall, Nicholas W; van Ongeval, Chantal; Bosmans, Hilde
2016-02-01
A retrofit flat panel detector was integrated with a GE DMR+ analog mammography system and characterized using detective quantum efficiency (DQE). Technical system performance was evaluated using the European Guidelines protocol, followed by a limited evaluation of clinical image quality for 20 cases using image quality criteria in the European Guidelines. Optimal anode/filter selections were established using signal difference-to-noise ratio measurements. Only small differences in peak DQE were seen between the three anode/filter settings, with an average value of 0.53. For poly(methyl methacrylate) (PMMA) thicknesses above 60 mm, the Rh/Rh setting was the optimal anode/filter setting. The system required a mean glandular dose of 0.54 mGy at 30 kV Rh/Rh to reach the Acceptable gold thickness limit for 0.1 mm details. Imaging performance of the retrofit unit with the GE DMR+ is notably better than of powder based computed radiography systems and is comparable to current flat panel FFDM systems. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Development of a real-time digital radiography system using a scintillator-type flat-panel detector
NASA Astrophysics Data System (ADS)
Ikeda, Shigeyuki; Suzuki, Katsumi; Ishikawa, Ken; Okajima, Kenichi
2001-06-01
In order to study the advantage and remaining problems of FPD (flat panel detector) for clinical use by the real-time DR (digital radiography) system, we developed a prototype system using a scintillator type FPD and which was compared with previous I.I.-CCD type real-time DR. We replaced the X- ray detector of DR-2000X from I.I.-4M (4 million pixels)-CCD camera to the scintillator type dynamic FPD(7' X 9', 127 micrometers ), which can take both radiographic and fluoroscopic images. We obtained the images of head and stomach phantoms, and discussed about the image quality with medical doctors.
Workshop on detectors for third-generation synchrotron sources: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-01
The aims of the workshop were (1) to acquaint APS users with current R and D being carried out on detectors, (2) to identify new detector systems possible during the next five years, (3) to identify new detectors theoretically possible in the future, (4) to stimulate interactions between user groups and detector developers, and (5) to obtain recommendations from expert panels on technical issues needing resolution. Development of detectors at ESRF, Spring-8, BNL, CERN and LBL are included.
Experimental flat-panel high-spatial-resolution volume CT of the temporal bone.
Gupta, Rajiv; Bartling, Soenke H; Basu, Samit K; Ross, William R; Becker, Hartmut; Pfoh, Armin; Brady, Thomas; Curtin, Hugh D
2004-09-01
A CT scanner employing a digital flat-panel detector is capable of very high spatial resolution as compared with a multi-section CT (MSCT) scanner. Our purpose was to determine how well a prototypical volume CT (VCT) scanner with a flat-panel detector system defines fine structures in temporal bone. Four partially manipulated temporal-bone specimens were imaged by use of a prototypical cone-beam VCT scanner with a flat-panel detector system at an isometric resolution of 150 microm at the isocenter. These specimens were also depicted by state-of-the-art multisection CT (MSCT). Forty-two structures imaged by both scanners were qualitatively assessed and rated, and scores assigned to VCT findings were compared with those of MSCT. Qualitative assessment of anatomic structures, lesions, cochlear implants, and middle-ear hearing aids indicated that image quality was significantly better with VCT (P < .001). Structures near the spatial-resolution limit of MSCT (e.g., bony covering of the tympanic segment of the facial canal, the incudo-stapedial joint, the proximal vestibular aqueduct, the interscalar septum, and the modiolus) had higher contrast and less partial-volume effect with VCT. The flat-panel prototype provides better definition of fine osseous structures of temporal bone than that of currently available MSCT scanners. This study provides impetus for further research in increasing spatial resolution beyond that offered by the current state-of-the-art scanners.
Kobayashi, Shinya; Ishikawa, Tatsuya; Mutoh, Tatsushi; Hikichi, Kentaro; Suzuki, Akifumi
2012-01-01
Background: Surgical placement of a ventriculoperitoneal shunt (VPS) is the main strategy to manage hydrocephalus. However, the failure rate associated with placement of ventricular catheters remains high. Methods: A hybrid operating room, equipped with a flat-panel detector digital subtraction angiography system containing C-arm cone-beam computed tomography (CB-CT) imaging, has recently been developed and utilized to assist neurosurgical procedures. We have developed a novel technique using intraoperative fluoroscopy and a C-arm CB-CT system to facilitate accurate placement of a VPS. Results: Using this novel technique, 39 consecutive ventricular catheters were placed accurately, and no ventricular catheter failures were experienced during the follow-up period. Only two patients experienced obstruction of the VPS, both of which occurred in the extracranial portion of the shunt system. Conclusion: Surgical placement of a VPS assisted by flat panel detector CT-guided real-time fluoroscopy enabled accurate placement of ventricular catheters and was associated with a decreased need for shunt revision. PMID:23226605
WE-C-217BCD-10: Development of High Performance PET for Animal Imaging and Therapy Applications.
Shao, Y; Sun, X; Lan, K; Bircher, C
2012-06-01
A prototype small animal PET is developed with several novel technologies to measure 3D gamma-interaction positions and to substantially improve imaging performance. Each new detector has an 8×8 array of 1.95×1.95×30 mm̂3 LYSO scintillators, with each end optically connected to a solid-state photo multiplier (SSPM) array through a light guide. This dual-ended-readout enables the depth-of-interaction (DOI) measurement. Each SSPM array has 16 SSPMs arranged in a 4×4 matrix. Each SSPM has active area about 3×3 mm̂2, with its output read by an ASIC electronics that directly converts analog signals to digital timing pulses which encode the interaction information for energy, timing, crystal of interaction, and DOI calculations. These digital pulses are transferred to and decoded by FPGA-based TDC for coincident event selection and data acquisition. This independent readout of each SSPM and parallel signal process significantly improve signal-to-noise ratio and permit applying flexible data processing algorithms. The current prototype system consists of two rotating detector panels on a portable gantry, with 4 detectors linearly packed together in each panel to provide ∼16 mm axial and variable trans- axial FOV with adjustable panel-to-panel distance. List-mode OSEM-based image reconstruction with resolution modeling was implemented. Both Na- 22 point source and phantom were used to evaluate the system performance. The measured energy, timing, spatial and DOI resolutions for each crystal were around 16%, 2.6 ns, 2.0 mm and 5.0 mm, respectively. The measured spatial resolutions with DOI were ∼1.7 mm across the entire FOV in all direction, while those without DOI were much worse and non-uniform across the FOV, in the range predominately around 3.0 to 4.0 mm. In addition, images from a F-18 hot-rod phantom with DOI show significantly improved quality compared to those without DOI. DOI- measurable PET shows substantially improved image performance for a compact system. National Institute of Health. University of Texas MD Anderson Cancer Center. © 2012 American Association of Physicists in Medicine.
Measurement of the absolute reflectance of polytetrafluoroethylene (PTFE) immersed in liquid xenon
NASA Astrophysics Data System (ADS)
Neves, F.; Lindote, A.; Morozov, A.; Solovov, V.; Silva, C.; Bras, P.; Rodrigues, J. P.; Lopes, M. I.
2017-01-01
The performance of a detector using liquid xenon (LXe) as a scintillator is strongly dependent on the collection efficiency for xenon scintillation light, which in turn is critically dependent on the reflectance of the surfaces that surround the active volume. To improve the light collection in such detectors the active volume is usually surrounded by polytetrafluoroethylene (PTFE) reflector panels, used due to its very high reflectance—even at the short wavelength of scintillation light of LXe (peaked at 178 nm). In this work, which contributed to the overall R&D effort towards the LUX-ZEPLIN (LZ) experiment, we present experimental results for the absolute reflectance measurements of three different PTFE samples (including the material used in the LUX detector) immersed in LXe for its scintillation light. The obtained results show that very high bi-hemispherical reflectance values (>= 97%) can be achieved, enabling very low energy thresholds in liquid xenon scintillator-based detectors.
NASA Astrophysics Data System (ADS)
Palma, K. D.; Pichotka, M.; Hasn, S.; Granja, C.
2017-02-01
In mammography the difficult task to detect microcalcifications (≈ 100 μm) and low contrast structures in the breast has been a topic of interest from its beginnings. The possibility to improve the image quality requires the effort to employ novel X-ray imaging techniques, such as phase-contrast, and high resolution detectors. Phase-contrast techniques are promising tools for medical diagnosis because they provide additional and complementary information to traditional absorption-based X-ray imaging methods. In this work a Hamamatsu microfocus X-ray source with tungsten anode and a photon counting detector (Timepix operated in Medipix mode) was used. A significant improvement in the detection of phase-effects using Medipix detector was observed in comparison to an standard flat-panel detector. An optimization of geometrical parameters reveals the dependency on the X-ray propagation path and the small angle deviation. The quantification of these effects was achieved taking into account the image noise, contrast, spatial resolution of the phase-enhancement, absorbed dose, and energy dependence.
Interactive display system having a scaled virtual target zone
Veligdan, James T.; DeSanto, Leonard
2006-06-13
A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector and imaging device cooperate with the panel for projecting a video image thereon. An optical detector bridges at least a portion of the waveguides for detecting a location on the outlet face within a target zone of an inbound light spot. A controller is operatively coupled to the imaging device and detector for displaying a cursor on the outlet face corresponding with the detected location of the spot within the target zone.
CT Scans of NASA BSTRA Balls 5f5, f2, f3, sr2c, nb2a, hb2b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, J; Thompson, R; Perry, R
2004-01-29
At the request of Jose Hernandez we performed some feasibility DR/CT scanning of BSTRA Balls of different sizes. To this point we have scanned all the specimens on a single system, HECAT. This particular system employs a 9 meV LINAC as the x-ray source and a THALES 12 x 16 inch 14-bit Amorphous Silicon panel as the detector. In this report we describe the system, detail some of its properties, describe the scans performed and present the data. Figure 1 contains a couple of images of the system as fielded in the 9 MeV bay. The LINAC is in themore » right portion of the picture. The black panels in the blue frame constitute the High Energy collimator developed specifically for High Energy DR/CT scanning (known here as Stonehenge II). The holes in the collimator panels are beveled to match the distribution of the x-rays from the LINAC, and are sized to just subtend the active area of the THALES Amorphous Silicon panel. Consequently the source to detector distance is restricted to a few positions. Nominally our source to detector distance is 6 meters. The part manipulator, part holder fixturing consists of a translate-rotate assembly on a NEWPORT air bearing table. The stages are NEWPORT RV160PP for rotation and NEWPORT IMS400CC for translation. Both are interfaced through an ESP7000 controller, which is connected to our data acquisition computer over USB. The detector holder also resides on this table and includes pitch, roll and yaw adjustments for aligning the panel to the plane of the rotational table and the x-ray beam. The relatively large source to detector distance and LINAC properties (1 mm spot size) conspire to recommend rotation-only scanning. We use a VARIAN LINATRON 3000 with the small spot retrofit implemented. We have measured the source spot size at about 1 mm. Pixel size on the THALES panel is 0.127 um. Consequently we are in a low-cone angle scanning regime which enables rotation-only 3D CT scanning of objects and assemblies with little ''cone-angle'' error.« less
Russ, M; Shankar, A; Jain, A; Setlur Nagesh, S V; Ionita, C N; Scott, C; Karim, K S; Bednarek, D R; Rudin, S
2016-02-27
A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25 μ m pixel pitch, and 1000 μ m thick a-Se layer operating at 10V/ μ m bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.
NASA Astrophysics Data System (ADS)
Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.
2016-03-01
A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-pre-whitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal- spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide break- through abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.
Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.
2017-01-01
A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices. PMID:28615795
Iodine 125 Imaging in Mice Using NaI(Tl)/Flat Panel PMT Integral Assembly
NASA Astrophysics Data System (ADS)
Cinti, M. N.; Majewski, S.; Williams, M. B.; Bachmann, C.; Cominelli, F.; Kundu, B. K.; Stolin, A.; Popov, V.; Welch, B. L.; De Vincentis, G.; Bennati, P.; Betti, M.; Ridolfi, S.; Pani, R.
2007-06-01
Radiolabeled agents that bind to specific receptors have shown great promise in diagnosing and characterizing tumor cell biology. In vivo imaging of gene transcription and protein expression represents an other area of interest. The radioisotope I is commercially available as a label for molecular probes and utilized by researchers in small animal studies. We propose an advanced imaging detector based on planar NaI(T1) integral assembly with a Hamamatsu Flat Panel Photomultiplier (MA-PMT) representing one of the best trade-offs between spatial resolution and detection efficiency. We characterized the imaging performances of this planar detector, in comparison with a gamma camera based on a pixellated scintillator. We also tested the in-vivo image capability by acquiring images of mice as a part of a study of inflammatory bowel disease (IBD). In this study, four 25g mice with an IBD-like phenotype (SAMP1/YitFc) were injected with 375, 125, 60 and 30 muCi of I-labelled antibody against mucosal vascular addressin cell adhesion molecule (MAdCAM-1), which is up-regulated in the presence of inflammation. Two mice without bowel inflammation were injected with 150 and 60 muCi of the labeled anti-MAdCAM-1 antibody as controls. To better evaluate the performances of the integral assembly detector, we also acquired mice images with a dual modality (X and Gamma Ray) camera dedicated for small animal imaging. The results coming from this new detector are considerable: images of SAMP1/YitFc injected with 30 muCi activity show inflammation throughout the intestinal tract, with the disease very well defined at two hours post-injection.
Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.
Tanaka, Rie
2016-07-01
Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.
Monnin, P; Gutierrez, D; Bulling, S; Lepori, D; Valley, J F; Verdun, F R
2005-02-01
Four standard radiation qualities (from RQA 3 to RQA 9) were used to compare the imaging performance of a computed radiography (CR) system (general purpose and high resolution phosphor plates of a Kodak CR 9000 system), a selenium-based direct flat panel detector (Kodak Direct View DR 9000), and a conventional screen-film system (Kodak T-MAT L/RA film with a 3M Trimax Regular screen of speed 400) in conventional radiography. Reference exposure levels were chosen according to the manufacturer's recommendations to be representative of clinical practice (exposure index of 1700 for digital systems and a film optical density of 1.4). With the exception of the RQA 3 beam quality, the exposure levels needed to produce a mean digital signal of 1700 were higher than those needed to obtain a mean film optical density of 1.4. In spite of intense developments in the field of digital detectors, screen-film systems are still very efficient detectors for most of the beam qualities used in radiology. An important outcome of this study is the behavior of the detective quantum efficiency of the digital radiography (DR) system as a function of beam energy. The practice of users to increase beam energy when switching from a screen-film system to a CR system, in order to improve the compromise between patient dose and image quality, might not be appropriate when switching from screen-film to selenium-based DR systems.
NASA Astrophysics Data System (ADS)
Radulescu, A.; Arend, N.; Drochner, M.; Ioffe, A.; Kemmerling, G.; Ossovyi, V.; Staringer, S.; Vehres, G.; McKinny, K.; Olechnowicz, B.; Yen, D.
2016-09-01
A new detection system based on an array of 3He tubes and innovative fast detection electronics was designed and produced by GE Reuter Stokes for the high-intensity small-angle neutron scattering diffractometer KWS-2, operated by the Jülich Centre for Neutron Science (JCNS) at the Heinz Meier-Leibnitz Zentrum (MLZ). The new detector consists of a panel array of 144 3He tubes and a new fast read-out electronics. The electronics is mounted in a closed case in the backside of the 3He tubes panel array and will operate at ambient atmosphere under cooling air stream. The new detection system is composed of eighteen 8-pack modules of 3He-tubes that work independently of one another (each unit has its own processor and electronics). Knowing beforehand the performance of one detector unit and of one single tube detector is prerequisite for tuning and maximizing the performance of the complete detection system. In this paper we present the results of the tests of the prototyped 8-pack of 3He-tubes and corresponding electronics, which have been carried out at the JCNS instruments KWS-2 (in high flux conditions) and TREFF.
A comparison of quantum limited dose and noise equivalent dose
NASA Astrophysics Data System (ADS)
Job, Isaias D.; Boyce, Sarah J.; Petrillo, Michael J.; Zhou, Kungang
2016-03-01
Quantum-limited-dose (QLD) and noise-equivalent-dose (NED) are performance metrics often used interchangeably. Although the metrics are related, they are not equivalent unless the treatment of electronic noise is carefully considered. These metrics are increasingly important to properly characterize the low-dose performance of flat panel detectors (FPDs). A system can be said to be quantum-limited when the Signal-to-noise-ratio (SNR) is proportional to the square-root of x-ray exposure. Recent experiments utilizing three methods to determine the quantum-limited dose range yielded inconsistent results. To investigate the deviation in results, generalized analytical equations are developed to model the image processing and analysis of each method. We test the generalized expression for both radiographic and fluoroscopic detectors. The resulting analysis shows that total noise content of the images processed by each method are inherently different based on their readout scheme. Finally, it will be shown that the NED is equivalent to the instrumentation-noise-equivalent-exposure (INEE) and furthermore that the NED is derived from the quantum-noise-only method of determining QLD. Future investigations will measure quantum-limited performance of radiographic panels with a modified readout scheme to allow for noise improvements similar to measurements performed with fluoroscopic detectors.
Heiland, Max; Pohlenz, Philipp; Blessmann, Marco; Habermann, Christian R; Oesterhelweg, Lars; Begemann, Philipp C; Schmidgunst, Christian; Blake, Felix A S; Püschel, Klaus; Schmelzle, Rainer; Schulze, Dirk
2007-12-01
The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.
Characterizing X-ray detectors for prototype digital breast tomosynthesis systems
NASA Astrophysics Data System (ADS)
Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.
2016-03-01
The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x-ray detectors for commercial DBT systems. Our findings suggest that the Dexela detector can be applied to the DBT system with regard to its high imaging performance.
NASA Astrophysics Data System (ADS)
Dahi, Bahram; Keyes, Gary S.; Rendon, David A.; DiBianca, Frank A.
2007-03-01
A new Cone-Beam CT (CBCT) system is introduced that uses the concept of Variable Resolution X-ray (VRX) detection, which has previously been demonstrated to significantly increase spatial resolution for small objects. An amorphous silicon Flat Panel Detector (FPD) with a CsI scintillator (PaxScan 2020, Varian, Salt Lake City, UT) is coupled with a micro-focus x-ray tube (35 - 80 kVp, 10 - 250 μA) to form a CBCT. The FPD is installed on a rotating arm that can be adjusted to any angle θ, called the VRX angle, between 90° and 0° with respect to the x-ray direction. A VRX angle of 90° for the detector corresponds to a conventional CBCT whereas a VRX angle of 30° means that the detector is tilted 90° - 30° = 60° from its perpendicular position. Tilting the FPD in this manner reduces both the line-spread function width and the sampling distance by a factor of sin(θ), thereby increasing detector spatial resolution proportionately. An in-house phantom is used to measure the MTF of the reconstructed CT images using different VRX angles. An increase by a factor of 1.67 +/- 0.007 is observed in the MTF cutoff frequency at 30° compared to 90° in images acquired at 75 kVp. Expected theoretical value for this case is 2.0. The new Cone-Beam Variable Resolution X-ray (CB-VRX) CT system is expected to significantly improve the images acquired from small objects - such as small animals - while exploiting the opportunities offered by a conventional CBCT.
Fiber optic thermal/fast neutron and gamma ray scintillation detector
Neal, John S.; Mihalczo, John T.
2006-11-28
A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.
Peng, Hao; Levin, Craig S
2013-01-01
We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 × 15 cm2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ~32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ~94.2 kcts s−1 (breast volume: 720 cm3 and activity concentration: 3.7 kBq cm−3) for a ~10% energy window around 511 keV and ~8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σrms/mean) ≤ 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within roughly 7 min imaging time. Furthermore, we observe that the degree of spatial resolution degradation along the direction orthogonal to the two panels that is typical of a limited angle tomography configuration is mitigated by having high-resolution DOI capabilities that enable more accurate positioning of oblique response lines. PMID:20400807
Kuipers sets up the EHS/TEPC Spectrometer and Detector Assembly in the SM
2012-03-12
ISS030-E-177101 (12 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, sets up the Environmental Health System / Tissue Equivalent Proportional Counter (EHS/TEPC) spectrometer and detector assembly on panel 327 in the Zvezda Service Module of the International Space Station. The TEPC detector assembly is the primary radiation measurement tool on the space station.
WE-AB-BRB-10: Filmless QA of CyberKnife MLC-Collimated and Iris-Collimated Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gersh, J; Spectrum Medical Physics, LLC, Greenville, SC
Purpose: Current methods of CK field shape QA is based on the use of radiochromic film. Though accurate results can be attained, these methods are prone to error, time consuming, and expensive. The techniques described herein perform similar QA using the FOIL Detector (Field, Output, and Image Localization). A key feature of this in-house QA solution, and central to this study, is an aSi flat-panel detector which provides the user with the means to perform accurate, immediate, and quantitative field analysis. Methods: The FOIL detector is automatically aligned in the CK beam using fiducial markers implanted within the detector case.more » Once the system is aligned, a treatment plan is delivered which irradiates the flat-panel imager using the field being tested. The current study tests each of the clinically-used fields shaped using the Iris variable-aperture collimation system using a plan which takes 6 minutes to deliver. The user is immediately provided with field diameter and beam profile, as well as a comparison to baseline values. Additionally, the detector is used to acquire and analyze leaf positions of the InCise multi-leaf collimation system. Results: Using a 6-minute plan consisting of 11 beams of 25MU-per-beam, the FOIL detector provided the user with a quantitative analysis of all clinically-used field shapes. The FOIL detector was also able to clearly resolve field edge junctions in a picket fence test, including slight over-travel of individual leaves as well as inter-leaf leakage. Conclusion: The FOIL system provided comparable field diameter and profile data when compared to methods using film; providing results much faster and with 5% of the MU used for film. When used with the MLC system, the FOIL detector provided the means for immediate quantification of the performance of the system through analysis of leaf positions in a picket fence test field. Author is the President/Owner of Spectrum Medical Physics, LLC, a company which maintains contracts with Siemens Healthcare and Standard Imaging, Inc.« less
Ohtani, M; Oshima, T; Mimasaka, S
2017-12-01
Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.
Volumetric soft tissue brain imaging on xCAT, a mobile flat-panel x-ray CT system
NASA Astrophysics Data System (ADS)
Zbijewski, Wojciech; Stayman, J. Webster
2009-02-01
We discuss the ongoing development of soft-tissue imaging capabilities on xCAT, a highly portable, flat-panel based cone-beam X-ray CT platform. By providing the ability to rapidly detect intra-cranial bleeds and other symptoms of stroke directly at the patient's bedside, our new system can potentially significantly improve the management of neurological emergency and intensive care patients. The paper reports on the design of our system, as well as on the methods used to combat artifacts due to scatter, non-linear detector response and scintillator glare. Images of cadaveric head samples are also presented and compared with conventional CT scans.
NASA Astrophysics Data System (ADS)
McDonald, Michael C.; Kim, H. K.; Henry, J. R.; Cunningham, I. A.
2012-03-01
The detective quantum efficiency (DQE) is widely accepted as a primary measure of x-ray detector performance in the scientific community. A standard method for measuring the DQE, based on IEC 62220-1, requires the system to have a linear response meaning that the detector output signals are proportional to the incident x-ray exposure. However, many systems have a non-linear response due to characteristics of the detector, or post processing of the detector signals, that cannot be disabled and may involve unknown algorithms considered proprietary by the manufacturer. For these reasons, the DQE has not been considered as a practical candidate for routine quality assurance testing in a clinical setting. In this article we described a method that can be used to measure the DQE of both linear and non-linear systems that employ only linear image processing algorithms. The method was validated on a Cesium Iodide based flat panel system that simultaneously stores a raw (linear) and processed (non-linear) image for each exposure. It was found that the resulting DQE was equivalent to a conventional standards-compliant DQE with measurement precision, and the gray-scale inversion and linear edge enhancement did not affect the DQE result. While not IEC 62220-1 compliant, it may be adequate for QA programs.
Assessment of a New High-Performance Small-Animal X-Ray Tomograph
NASA Astrophysics Data System (ADS)
Vaquero, J. J.; Redondo, S.; Lage, E.; Abella, M.; Sisniega, A.; Tapias, G.; Montenegro, M. L. Soto; Desco, M.
2008-06-01
We have developed a new X-ray cone-beam tomograph for in vivo small-animal imaging using a flat panel detector (CMOS technology with a microcolumnar CsI scintillator plate) and a microfocus X-ray source. The geometrical configuration was designed to achieve a spatial resolution of about 12 lpmm with a field of view appropriate for laboratory rodents. In order to achieve high performance with regard to per-animal screening time and cost, the acquisition software takes advantage of the highest frame rate of the detector and performs on-the-fly corrections on the detector raw data. These corrections include geometrical misalignments, sensor non-uniformities, and defective elements. The resulting image is then converted to attenuation values. We measured detector modulation transfer function (MTF), detector stability, system resolution, quality of the reconstructed tomographic images and radiated dose. The system resolution was measured following the standard test method ASTM E 1695 -95. For image quality evaluation, we assessed signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as a function of the radiated dose. Dose studies for different imaging protocols were performed by introducing TLD dosimeters in representative organs of euthanized laboratory rats. Noise figure, measured as standard deviation, was 50 HU for a dose of 10 cGy. Effective dose with standard research protocols is below 200 mGy, confirming that the system is appropriate for in vivo imaging. Maximum spatial resolution achieved was better than 50 micron. Our experimental results obtained with image quality phantoms as well as with in-vivo studies show that the proposed configuration based on a CMOS flat panel detector and a small micro-focus X-ray tube leads to a compact design that provides good image quality and low radiated dose, and it could be used as an add-on for existing PET or SPECT scanners.
Biological object recognition in μ-radiography images
NASA Astrophysics Data System (ADS)
Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.
2015-03-01
This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.
Interactive display system having a matrix optical detector
Veligdan, James T.; DeSanto, Leonard
2007-01-23
A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. An image beam is projected across the inlet face laterally and transversely for display on the outlet face. An optical detector including a matrix of detector elements is optically aligned with the inlet face for detecting a corresponding lateral and transverse position of an inbound light spot on the outlet face.
Aging of imaging properties of a CMOS flat-panel detector for dental cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Kim, D. W.; Han, J. C.; Yun, S.; Kim, H. K.
2017-01-01
We have experimentally investigated the long-term stability of imaging properties of a flat-panel detector in conditions used for dental x-ray imaging. The detector consists of a CsI:Tl layer and CMOS photodiode pixel arrays. Aging simulations were carried out using an 80-kVp x-ray beam at an air-kerma rate of approximately 5 mGy s-1 at the entrance surface of the detector with a total air kerma of up to 0.6 kGy. Dark and flood-field images were periodically obtained during irradiation, and the mean signal and noise levels were evaluated for each image. We also evaluated the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). The aging simulation showed a decrease in both the signal and noise of the gain-offset-corrected images, but there was negligible change in the signal-to-noise performance as a function of the accumulated dose. The gain-offset correction for analyzing images resulted in negligible changes in MTF, NPS, and DQE results over the total dose. Continuous x-ray exposure to a detector can cause degradation in the physical performance factors such the detector sensitivity, but linear analysis of the gain-offset-corrected images can assure integrity of the imaging properties of a detector during its lifetime.
Space-Based Gravitational-Wave Observatory (SGO) Mission Concept Study
NASA Technical Reports Server (NTRS)
Livas, Jeffrey; McNamara, Paul; Jennrich, Oliver
2012-01-01
The LISA Mission Concept has been under study for over two decades as a space-based gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return.
Imaging responses of on-site CsI and Gd2O2S flat-panel detectors: Dependence on the tube voltage
NASA Astrophysics Data System (ADS)
Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung
2015-07-01
One of the emerging issues in radiography is low-dose imaging to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel detectors show a drastic change of X-ray photon absorption efficiency around their K-edge energies that consequently affects image quality. Using various tube voltages, we investigated the imaging performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four detectors installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S detectors were normalized by those of CsI detectors to exclude the effects of image postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI detector outperformed that of the Gd2O2S detector over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S detectors quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S detectors, variations in the DQE performance of the CsI detectors were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S detectors are inappropriate for use in low-tube-voltage imaging (e.g., extremities and pediatrics) with low patient exposure.
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ciprian Ionita, N.; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2011-01-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 × 20 cm can be obtained where the images have pixel-resolution of 100 µm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 µR detector exposure per frame. Because of the flexible voltage controlled gain of the LA’s and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels. PMID:21297904
NASA Astrophysics Data System (ADS)
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ionita, N. Ciprian; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2006-03-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 x 20 cm can be obtained where the images have pixel-resolution of 100 μm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 μR detector exposure per frame. Because of the flexible voltage controlled gain of the LA's and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels.
Lee, Won-Jeong; Choi, Byung-Soon
2013-06-01
The aim of this study was to evaluate the reliability and validity of soft copy images based on flat-panel detector of digital radiography (DR-FPD soft copy images) compared to analog radiographs (ARs) in pneumoconiosis classification and diagnosis. DR-FPD soft copy images and ARs from 349 subjects were independently read by four-experienced readers according to the International Labor Organization 2000 guidelines. DR-FPD soft copy images were used to obtain consensus reading (CR) by all readers as the gold standard. Reliability and validity were evaluated by a κ and receiver operating characteristic analysis, respectively. In small opacity, overall interreader agreement of DR-FPD soft copy images was significantly higher than that of ARs, but it was not significantly different in large opacity and costophrenic angle obliteration. In small opacity, agreement of DR-FPD soft copy images with CR was significantly higher than that of ARs with CR. It was also higher than that of ARs with CR in pleural plaque and thickening. Receiver operating characteristic areas were not different significantly between DR-FPD soft copy images and ARs. DR-FPD soft copy images showed accurate and reliable results in pneumoconiosis classification and diagnosis compared to ARs. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.
Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana
2015-11-01
Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golshan, Maryam, E-mail: maryam.golshan@bccancer.bc.ca; Spadinger, Ingrid; Chng, Nick
2016-06-15
Purpose: Current methods of low dose rate brachytherapy source strength verification for sources preloaded into needles consist of either assaying a small number of seeds from a separate sample belonging to the same lot used to load the needles or performing batch assays of a subset of the preloaded seed trains. Both of these methods are cumbersome and have the limitations inherent to sampling. The purpose of this work was to investigate an alternative approach that uses an image-based, autoradiographic system capable of the rapid and complete assay of all sources without compromising sterility. Methods: The system consists of amore » flat panel image detector, an autoclavable needle holder, and software to analyze the detected signals. The needle holder was designed to maintain a fixed vertical spacing between the needles and the image detector, and to collimate the emissions from each seed. It also provides a sterile barrier between the needles and the imager. The image detector has a sufficiently large image capture area to allow several needles to be analyzed simultaneously.Several tests were performed to assess the accuracy and reproducibility of source strengths obtained using this system. Three different seed models (Oncura 6711 and 9011 {sup 125}I seeds, and IsoAid Advantage {sup 103}Pd seeds) were used in the evaluations. Seeds were loaded into trains with at least 1 cm spacing. Results: Using our system, it was possible to obtain linear calibration curves with coverage factor k = 1 prediction intervals of less than ±2% near the centre of their range for the three source models. The uncertainty budget calculated from a combination of type A and type B estimates of potential sources of error was somewhat larger, yielding (k = 1) combined uncertainties for individual seed readings of 6.2% for {sup 125}I 6711 seeds, 4.7% for {sup 125}I 9011 seeds, and 11.0% for Advantage {sup 103}Pd seeds. Conclusions: This study showed that a flat panel detector dosimetry system is a viable option for source strength verification in preloaded needles, as it is capable of measuring all of the sources intended for implantation. Such a system has the potential to directly and efficiently estimate individual source strengths, the overall mean source strength, and the positions within the seed-spacer train.« less
Smile effect detection for dispersive hypersepctral imager based on the doped reflectance panel
NASA Astrophysics Data System (ADS)
Zhou, Jiankang; Liu, Xiaoli; Ji, Yiqun; Chen, Yuheng; Shen, Weimin
2012-11-01
Hyperspectral imager is now widely used in many regions, such as resource development, environmental monitoring and so on. The reliability of spectral data is based on the instrument calibration. The smile, wavelengths at the center pixels of imaging spectrometer detector array are different from the marginal pixels, is a main factor in the spectral calibration because it can deteriorate the spectral data accuracy. When the spectral resolution is high, little smile can result in obvious signal deviation near weak atmospheric absorption peak. The traditional method of detecting smile is monochromator wavelength scanning which is time consuming and complex and can not be used in the field or at the flying platform. We present a new smile detection method based on the holmium oxide panel which has the rich of absorbed spectral features. The higher spectral resolution spectrometer and the under-test imaging spectrometer acquired the optical signal from the Spectralon panel and the holmium oxide panel respectively. The wavelength absorption peak positions of column pixels are determined by curve fitting method which includes spectral response function sequence model and spectral resampling. The iteration strategy and Pearson coefficient together are used to confirm the correlation between the measured and modeled spectral curve. The present smile detection method is posed on our designed imaging spectrometer and the result shows that it can satisfy precise smile detection requirement of high spectral resolution imaging spectrometer.
Interactions.org Particle Physics News Image Bank Fermilab in the News Quantum Diaries Mu2e: muon-to-electron works The Mu2e detector is a particle physics detector embedded in a series of superconducting magnets advance research at the Intensity Frontier. The U.S. Particle Physics Project Prioritization Panel, P5
Operational Land Imager relative radiometric calibration
NASA Astrophysics Data System (ADS)
Barsi, Julia A.; Markham, Brian L.
2015-09-01
The Operational Land Imager (OLI), on board the Landsat-8 satellite, is a pushbroom sensor with nearly 7000 detectors per band, divided between 14 separate modules. While rigorously characterized prior to launch, the shear number of individual detectors presents a challenge to maintaining the on-orbit relative calibration, such that stripes, bands and other artifacts are minimized in the final image products. On-orbit relative calibration of the OLI is primarily monitored and corrected by observing an on-board primary solar diffuser panel. The panel is the most uniform target available to the OLI, though as observed but the OLI, it has a slope across the field of view due to view angle effects. Just after launch, parameters were derived using the solar diffuser data, to correct for the angular effects across the 14 modules. The residual discontinuities between arrays and the detector-to-detector uniformity continue to be monitored on a weekly basis. The observed variations in the responses to the diffuser panel since launch are thought to be due to real instrument changes. Since launch, the Coastal/Aerosol (CA) and Blue bands have shown the most variation in relative calibration of the VNIR bands, with as much as 0.14% change (3-sigma) between consecutive relative gain estimates. The other VNIR bands (Green, Red and NIR) initially had detectors showing a slow drift of about 0.2% per year, though this stopped after an instrument power cycle about seven months after launch. The SWIR bands also exhibit variability between collects (0.11% 3-sigma) but the larger changes have been where individual detectors' responses change suddenly by as much as 1.5%. The mechanisms behind these changes are not well understood but in order to minimize impact to the users, the OLI relative calibration is updated on a quarterly basis in order to capture changes over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Dr. Peter S.; Ball, Robert; Chapman, J. Wehrley
2010-01-01
A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.
NEMA NU-4 performance evaluation of PETbox4, a high sensitivity dedicated PET preclinical tomograph
NASA Astrophysics Data System (ADS)
Gu, Z.; Taschereau, R.; Vu, N. T.; Wang, H.; Prout, D. L.; Silverman, R. W.; Bai, B.; Stout, D. B.; Phelps, M. E.; Chatziioannou, A. F.
2013-06-01
PETbox4 is a new, fully tomographic bench top PET scanner dedicated to high sensitivity and high resolution imaging of mice. This manuscript characterizes the performance of the prototype system using the National Electrical Manufacturers Association NU 4-2008 standards, including studies of sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance and image quality. The PETbox4 performance is also compared with the performance of PETbox, a previous generation limited angle tomography system. PETbox4 consists of four opposing flat-panel type detectors arranged in a box-like geometry. Each panel is made by a 24 × 50 pixelated array of 1.82 × 1.82 × 7 mm bismuth germanate scintillation crystals with a crystal pitch of 1.90 mm. Each of these scintillation arrays is coupled to two Hamamatsu H8500 photomultiplier tubes via a glass light guide. Volumetric images for a 45 × 45 × 95 mm field of view (FOV) are reconstructed with a maximum likelihood expectation maximization algorithm incorporating a system model based on a parameterized detector response. With an energy window of 150-650 keV, the peak absolute sensitivity is approximately 18% at the center of FOV. The measured crystal energy resolution ranges from 13.5% to 48.3% full width at half maximum (FWHM), with a mean of 18.0%. The intrinsic detector spatial resolution is 1.5 mm FWHM in both transverse and axial directions. The reconstructed image spatial resolution for different locations in the FOV ranges from 1.32 to 1.93 mm, with an average of 1.46 mm. The peak noise equivalent count rate for the mouse-sized phantom is 35 kcps for a total activity of 1.5 MBq (40 µCi) and the scatter fraction is 28%. The standard deviation in the uniform region of the image quality phantom is 5.7%. The recovery coefficients range from 0.10 to 0.93. In comparison to the first generation two panel PETbox system, PETbox4 achieves substantial improvements on sensitivity and spatial resolution. The overall performance demonstrates that the PETbox4 scanner is suitable for producing high quality images for molecular imaging based biomedical research.
Miraglia, Roberto; Maruzzelli, Luigi; Cortis, Kelvin; Tafaro, Corrado; Gerasia, Roberta; Parisi, Carmelo; Luca, Angelo
2015-08-01
To determine whether the use of a low-dose acquisition protocol (LDP) in digital subtraction angiography during transjugular intrahepatic portosystemic shunt (TIPS) creation/revision results in significant reduction of patient radiation exposure and adequate image quality, as compared to a default reference standard-dose acquisition protocol (SDP). Two angiographic runs were performed during TIPS creation/revision: the first following catheterization of the portal venous system and the second after stent deployment/angioplasty. Constant field of view, object to image-detector distance, and source to image-receptor distance were maintained in each patient during the two angiographic runs. 17 consecutive adult patients who underwent TIPS creation (n = 11) or TIPS revision (n = 6) from December 2013 to March 2014 were considered eligible for this single centre prospective study. In each patient, the LDP and the SDP were used in a random order for the two runs, with each patient serving as his/her own control. The dose-area product (DAP) was calculated for each image and compared. Image quality was graded by two interventional radiologists other than the operator. In all runs acquired with the LDP, image quality was considered adequate for a successful procedural outcome. The DAP per image of the LDP was numerically inferior as compared to the DAP per image of the SDP in all patients. The mean reduction in DAP per image was 75.24% ± 5.7% (p < 0. 001). Radiation exposure during TIPS creation/revision was significantly reduced by selecting a LDP in our flat-panel detector-based system, while maintaining adequate image quality.
NASA Astrophysics Data System (ADS)
Roh, Y. H.; Yoon, Y.; Kim, K.; Kim, J.; Kim, J.; Morishita, J.
2016-10-01
Scattered radiation is the main reason for the degradation of image quality and the increased patient exposure dose in diagnostic radiology. In an effort to reduce scattered radiation, a novel structure of an indirect flat panel detector has been proposed. In this study, a performance evaluation of the novel system in terms of image contrast as well as an estimation of the number of photons incident on the detector and the grid exposure factor were conducted using Monte Carlo simulations. The image contrast of the proposed system was superior to that of the no-grid system but slightly inferior to that of the parallel-grid system. The number of photons incident on the detector and the grid exposure factor of the novel system were higher than those of the parallel-grid system but lower than those of the no-grid system. The proposed system exhibited the potential for reduced exposure dose without image quality degradation; additionally, can be further improved by a structural optimization considering the manufacturer's specifications of its lead contents.
NASA Astrophysics Data System (ADS)
Sabol, John M.; Avinash, Gopal B.; Nicolas, Francois; Claus, Bernhard E. H.; Zhao, Jianguo; Dobbins, James T., III
2001-06-01
Dual-energy subtraction imaging increases the sensitivity and specificity of pulmonary nodule detection in chest radiography by reducing the contrast of overlying bone structures. Recent development of a fast, high-efficiency detector enables dual-energy imaging to be integrated into the traditional workflow. We have modified a GE RevolutionTM XQ/i chest imaging system to construct a dual-energy imaging prototype system. Here we describe the operating characteristics of this prototype and evaluate image quality. Empirical results show that the dual-energy CNR is maximized if the dose is approximately equal for both high and low energy exposures. Given the high detector DQE, and allocation of dose between the two views, we can acquire dual-energy PA and conventional lateral images with total dose equivalent to a conventional two-view film chest exam. Calculations have shown that the dual-exposure technique has superior CNR and tissue cancellation than single-exposure CR systems. Clinical images obtained on a prototype dual-energy imaging system show excellent tissue contrast cancellation, low noise, and modest motion artefacts. In summary, a prototype dual-energy system has been constructed which enables rapid, dual-exposure imaging of the chest using a commercially available high-efficiency, flat-panel x-ray detector. The quality of the clinical images generated with this prototype exceeds that of CR techniques and demonstrates the potential for improved detection and characterization of lung disease through dual-energy imaging.
NASA Astrophysics Data System (ADS)
Choi, Jang-Hwan; Muller, Kerstin; Hsieh, Scott; Maier, Andreas; Gold, Garry; Levenston, Marc; Fahrig, Rebecca
2016-03-01
C-arm-based cone-beam CT (CBCT) systems with flat-panel detectors are suitable for diagnostic knee imaging due to their potentially flexible selection of CT trajectories and wide volumetric beam coverage. In knee CT imaging, over-exposure artifacts can occur because of limitations in the dynamic range of the flat panel detectors present on most CBCT systems. We developed a straightforward but effective method for correction and detection of over-exposure for an Automatic Exposure Control (AEC)-enabled standard knee scan incorporating a prior low dose scan. The radiation dose associated with the low dose scan was negligible (0.0042mSv, 2.8% increase) which was enabled by partially sampling the projection images considering the geometry of the knees and lowering the dose further to be able to just see the skin-air interface. We combined the line integrals from the AEC and low dose scans after detecting over-exposed regions by comparing the line profiles of the two scans detector row-wise. The combined line integrals were reconstructed into a volumetric image using filtered back projection. We evaluated our method using in vivo human subject knee data. The proposed method effectively corrected and detected over-exposure, and thus recovered the visibility of exterior tissues (e.g., the shape and density of the patella, and the patellar tendon), incorporating a prior low dose scan with a negligible increase in radiation exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco
2013-10-15
Purpose: A characterization of a clinical unit for digital radiography (FUJIFILM FDR D-EVO) is presented. This system is based on the irradiation side sampling (ISS) technology and can be equipped with two different scintillators: one traditional gadolinium-oxysulphide phosphor (GOS) and a needle structured cesium iodide (CsI) phosphor panel.Methods: The characterization was achieved in terms of response curve, modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). For both scintillation screens the authors accomplished the measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9.Results:more » At the Nyquist frequency (3.33 lp/mm) the MTF is about 35% and 25% for CsI and GOS detectors, respectively. The CsI scintillator has better noise properties than the GOS screen in almost all the conditions. This is particularly true for low-energy beams, where the noise for the GOS system can go up to a factor 2 greater than that found for CsI. The DQE of the CsI detector reaches a peak of 60%, 60%, 58%, and 50% for the RQA3, RQA5, RQA7, and RQA9 beams, respectively, whereas for the GOS screen the maximum DQE is 40%, 44%, 44%, and 35%. The contrast-detail analysis confirms that in the majority of cases the CsI scintillator is able to provide improved outcomes to those obtained with the GOS screen.Conclusions: The limited diffusion of light produced by the ISS reading makes possible the achievement of very good spatial resolution. In fact, the MTF of the unit with the CsI panel is only slightly lower to that achieved with direct conversion detectors. The combination of very good spatial resolution, together with the good noise properties reached with the CsI screen, allows achieving DQE on average about 1.5 times greater than that obtained with GOS. In fact, the DQE of unit equipped with CsI is comparable to the best alternative methods available which are based on the same technology, and similar to others based on an a-Se direct conversion detectors.« less
Ultra-thin plasma panel radiation detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Peter S.
An ultra-thin radiation detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includesmore » a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.« less
PREFACE: 2nd Workshop on Germanium Detectors and Technologies
NASA Astrophysics Data System (ADS)
Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.
2015-05-01
The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge-based detectors and technology; 2) Ge zone refining and crystal growth; 3) Ge detector development; 4) Ge orientated business and applications; 5) Ge recycling and recovery; 6) introduction to underground sciences for young scientists; and 7) introduction of experimental techniques for low background experiments to young scientists. Sections 1-5 were dedicated to Ge detectors and technology. Each topic was complemented with a panel discussion on challenges, critical measures, and R&D activities. Sections 6-7 provided students and postdocs an opportunity to understand fundamental principles of underground sciences and experimental techniques on low background experiments. To these two sections, well-known scientists in the field were invited to give lectures and allow young scientists to make presentations on their own research activities. Fifty-six invited talks were delivered during the three-day workshop. Many critical questions were addressed not only in the specific talks but also in the panel discussions. Details of the panel discussions, as well as conference photos, the list of committees and the workshop website can be found in the PDF.
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor
2013-01-01
Recent interest in hybrid RF/Optical communications has led to the development and installation of a "polished-panel" optical receiver evaluation assembly on the 34-meter research antenna at Deep-Space Station 13 (DSS-13) at NASA's Goldstone Communications Complex. The test setup consists of a custom aluminum panel polished to optical smoothness, and a large-sensor CCD camera designed to image the point-spread function (PSF) generated by the polished aluminum panel. Extensive data has been obtained via realtime tracking and imaging of planets and stars at DSS-13. Both "on-source" and "off-source" data were recorded at various elevations, enabling the development of realistic simulations and analytic models to help determine the performance of future deep-space communications systems operating with on-off keying (OOK) or pulse-position-modulated (PPM) signaling formats with photon-counting detection, and compared with the ultimate quantum bound on detection performance for these modulations. Experimentally determined PSFs were scaled to provide realistic signal-distributions across a photon-counting detector array when a pulse is received, and uncoded as well as block-coded performance analyzed and evaluated for a well-known class of block codes.
Jeong, Chang-Won; Ryu, Jong-Hyun; Joo, Su-Chong; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2015-01-01
Technologies employing digital X-ray devices are developed for mobile settings. To develop a mobile digital X-ray fluoroscopy (MDF) for intraoperative guidance, using a novel flat panel detector to focus on diagnostics in outpatient clinics, operating and emergency rooms. An MDF for small-scale field diagnostics was configured using an X-ray source and a novel flat panel detector. The imager enabled frame rates reaching 30 fps in full resolution fluoroscopy with maximal running time of 5 minutes. Signal-to-noise (SNR), contrast-to-noise (CNR), and spatial resolution were analyzed. Stray radiation, exposure radiation dose, and effective absorption dose were measured for patients. The system was suitable for small-scale field diagnostics. SNR and CNR were 62.4 and 72.0. Performance at 10% of MTF was 9.6 lp/mm (53 μ m) in the no binned mode. Stray radiation at 100 cm and 150 cm from the source was below 0.2 μ Gy and 0.1 μ Gy. Exposure radiation in radiography and fluoroscopy (5 min) was 10.2 μ Gy and 82.6 mGy. The effective doses during 5-min-long fluoroscopy were 0.26 mSv (wrist), 0.28 mSv (elbow), 0.29 mSv (ankle), and 0.31 mSv (knee). The proposed MDF is suitable for imaging in operating rooms.
Solar-diffuser panel and ratioing radiometer approach to satellite sensor on-board calibration
NASA Technical Reports Server (NTRS)
Slater, Philip N.; Palmer, James M.
1991-01-01
The use of a solar-diffuser panel is a desirable approach to the on-board absolute radiometric calibration of satellite multispectral sensors used for earth observation in the solar reflective spectral range. It provides a full aperture, full field, end-to-end calibration near the top of the sensor's dynamic range and across its entire spectral response range. A serious drawback is that the panel's reflectance, and the response of any simple detector used to monitor its reflectance may change with time. This paper briefly reviews some preflight and on-board methods for absolute calibration and introduces the ratioing-radiometer concept in which the radiance of the panel is ratioed with respect to the solar irradiance at the time the multispectral sensor is viewing the panel in its calibration mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka
We developed a prototype positron emission tomography (PET) system based on a new concept called Open-close PET, which has two modes: open and close-modes. In the open-mode, the detector ring is separated into two halved rings and subject is imaged with the open space and projection image is formed. In the close-mode, the detector ring is closed to be a regular circular ring, and the subject can be imaged without an open space, and so reconstructed images can be made without artifacts. The block detector of the Open-close PET system consists of two scintillator blocks that use two types ofmore » gadolinium orthosilicate (GSO) scintillators with different decay times, angled optical fiber-based image guides, and a flat panel photomultiplier tube. The GSO pixel size was 1.6 × 2.4 × 7 mm and 8 mm for fast (35 ns) and slow (60 ns) GSOs, respectively. These GSOs were arranged into an 11 × 15 matrix and optically coupled in the depth direction to form a depth-of-interaction detector. The angled optical fiber-based image guides were used to arrange the two scintillator blocks at 22.5° so that they can be arranged in a hexadecagonal shape with eight block detectors to simplify the reconstruction algorithm. The detector ring was divided into two halves to realize the open-mode and set on a mechanical stand with which the distance between the two parts can be manually changed. The spatial resolution in the close-mode was 2.4-mm FWHM, and the sensitivity was 1.7% at the center of the field-of-view. In both the close- and open-modes, we made sagittal (y-z plane) projection images between the two halved detector rings. We obtained reconstructed and projection images of {sup 18}F-NaF rat studies and proton-irradiated phantom images. These results indicate that our developed Open-close PET is useful for some applications such as proton therapy as well as other applications such as molecular imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagesh, S Setlur; Rana, R; Russ, M
Purpose: CMOS-based aSe detectors compared to CsI-TFT-based flat panels have the advantages of higher spatial sampling due to smaller pixel size and decreased blurring characteristic of direct rather than indirect detection. For systems with such detectors, the limiting factor degrading image resolution then becomes the focal-spot geometric unsharpness. This effect can seriously limit the use of such detectors in areas such as cone beam computed tomography, clinical fluoroscopy and angiography. In this work a technique to remove the effect of focal-spot blur is presented for a simulated aSe detector. Method: To simulate images from an aSe detector affected with focal-spotmore » blur, first a set of high-resolution images of a stent (FRED from Microvention, Inc.) were acquired using a 75µm pixel size Dexela-Perkin-Elmer detector and averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur at two different magnifications to simulate an idealized focal spot. The blurred images were then deconvolved with a set of different Gaussian blurs to remove the effect of focal-spot blurring using a threshold-based, inverse-filtering method. Results: The blur was removed by deconvolving the images using a set of Gaussian functions for both magnifications. Selecting the correct function resulted in an image close to the original; however, selection of too wide a function would cause severe artifacts. Conclusion: Experimentally, focal-spot blur at different magnifications can be measured using a pin hole with a high resolution detector. This spread function can be used to deblur the input images that are acquired at corresponding magnifications to correct for the focal spot blur. For CBCT applications, the magnification of specific objects can be obtained using initial reconstructions then corrected for focal-spot blurring to improve resolution. Similarly, if object magnification can be determined such correction may be applied in fluoroscopy and angiography.« less
Space-Based Gravitational-wave Mission Concept Studies
NASA Technical Reports Server (NTRS)
Livas, Jeffrey C.
2012-01-01
The LISA Mission Concept has been under study for over two decades as a spacebased gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return, and in particular a family of mission concepts referred to as SGO (Space-based Gravitational-wave Observatory).
Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector.
Jain, A; Takemoto, H; Silver, M D; Nagesh, S V S; Ionita, C N; Bednarek, D R; Rudin, S
Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm × 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.
The slip-and-slide algorithm: a refinement protocol for detector geometry
Ginn, Helen Mary; Stuart, David Ian
2017-01-01
Geometry correction is traditionally plagued by mis-fitting of correlated parameters, leading to local minima which prevent further improvements. Segmented detectors pose an enhanced risk of mis-fitting: even a minor confusion of detector distance and panel separation can prevent improvement in data quality. The slip-and-slide algorithm breaks down effects of the correlated parameters and their associated target functions in a fundamental shift in the approach to the problem. Parameters are never refined against the components of the data to which they are insensitive, providing a dramatic boost in the exploitation of information from a very small number of diffraction patterns. This algorithm can be applied to exploit the adherence of the spot-finding results prior to indexing to a given lattice using unit-cell dimensions as a restraint. Alternatively, it can be applied to the predicted spot locations and the observed reflection positions after indexing from a smaller number of images. Thus, the indexing rate can be boosted by 5.8% using geometry refinement from only 125 indexed patterns or 500 unindexed patterns. In one example of cypovirus type 17 polyhedrin diffraction at the Linac Coherent Light Source, this geometry refinement reveals a detector tilt of 0.3° (resulting in a maximal Z-axis error of ∼0.5 mm from an average detector distance of ∼90 mm) whilst treating all panels independently. Re-indexing and integrating with updated detector geometry reduces systematic errors providing a boost in anomalous signal of sulfur atoms by 20%. Due to the refinement of decoupled parameters, this geometry method also reaches convergence. PMID:29091058
NASA Astrophysics Data System (ADS)
Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.
2010-05-01
Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.
ERS-1 experimental payload package
NASA Astrophysics Data System (ADS)
Reynolds, M. L.; Llewellyn-Jones, D. T.
1982-09-01
Proposals were received in response to an Announcement of Opportunity in April 1981. The proposals received were evaluated by two independent panels: a science panel appointed by the Earth Observation Advisory Committee and an Agency-internal technical panel. The five proposals that met all the evaluation criteria were the imaging lightning flash detector, the along-track scanning radiometer (ATSR), the precise range and range rate equipment (PRARE), the tropospheric and stratospheric wind and composition investigation, and the conical scan radiometer. The scientific evaluation panel preferred two alternative combinations: the PRARE with, if possible, a redefined and down-graded mini-imaging microwave radiometer, and the PRARE with the ASTR and, if possible, a nadir looking microwave sounder to provide water vapor correction in all-weather conditions.
Pjontek, Rastislav; Önenköprülü, Belgin; Scholz, Bernhard; Kyriakou, Yiannis; Schubert, Gerrit A; Othman, Ahmed; Wiesmann, Martin; Brockmann, Marc A
2016-01-01
Background Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. Objective To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image quality in patients with intracranial metallic implants. Methods Flat panel detector CT after intravenous application of 80 mL contrast agent was performed with an angiography system (Artis zee; Siemens, Forchheim, Germany) using a 20 s rotation protocol (200° rotation angle, 20 s acquisition time, 496 projections). The data before and after MAR of 26 patients with a total of 34 implants (coils, clips, stents) were independently evaluated by two blinded neuroradiologists. Results MAR improved the assessability of the brain parenchyma and small vessels (diameter <1 mm) in the neighborhood of metallic implants and at a distance of 6 cm (p<0.001 each, Wilcoxon test). Furthermore, MAR significantly improved the assessability of parent vessel patency and potential aneurysm remnants (p<0.005 each, McNemar test). MAR, however, did not improve assessability of stented vessels. Conclusions When an intravenous contrast protocol is used, MAR significantly ameliorates the assessability of brain parenchyma, vessels, and treated aneurysms in patients with intracranial coils or clips. PMID:26346458
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russ, M; Ionita, C; Bednarek, D
Purpose: In endovascular image-guided neuro-interventions, visualization of fine detail is paramount. For example, the ability of the interventionist to visualize the stent struts depends heavily on the x-ray imaging detector performance. Methods: A study to examine the relative performance of the high resolution MAF-CMOS (pixel size 75µm, Nyquist frequency 6.6 cycles/mm) and a standard Flat Panel Detector (pixel size 194µm, Nyquist frequency 2.5 cycles/mm) detectors in imaging a neuro stent was done using the Generalized Measured Relative Object Detectability (GM-ROD) metric. Low quantum noise images of a deployed stent were obtained by averaging 95 frames obtained by both detectors withoutmore » changing other exposure or geometric parameters. The square of the Fourier transform of each image is taken and divided by the generalized normalized noise power spectrum to give an effective measured task-specific signal-to-noise ratio. This expression is then integrated from 0 to each of the detector’s Nyquist frequencies, and the GM-ROD value is determined by taking a ratio of the integrals for the MAF-CMOS to that of the FPD. The lower bound of integration can be varied to emphasize high frequencies in the detector comparisons. Results: The MAF-CMOS detector exhibits vastly superior performance over the FPD when integrating over all frequencies, yielding a GM-ROD value of 63.1. The lower bound of integration was stepped up in increments of 0.5 cycles/mm for higher frequency comparisons. As the lower bound increased, the GM-ROD value was augmented, reflecting the superior performance of the MAF-CMOS in the high frequency regime. Conclusion: GM-ROD is a versatile metric that can provide quantitative detector and task dependent comparisons that can be used as a basis for detector selection. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less
Batch production of microchannel plate photo-multipliers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frisch, Henry J.; Wetstein, Matthew; Elagin, Andrey
In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.
Interplanetary dust profile observed on Juno's cruise from Earth to Jupiter
NASA Astrophysics Data System (ADS)
Joergensen, J. L.; Benn, M.; Jørgensen, P. S.; Denver, T.; Jørgensen, F. E.; Connerney, J. E. P.; Andersen, A. C.; Bolton, S. J.; Levin, S.
2017-12-01
Juno was launched August 5th, 2011, and entered the highly-elliptical polar orbit about Jupiter on July 4th, 2016, some 5 years later. Juno's science objectives include the mapping of Jupiter's gravity and magnetic fields and observation of the planet's deep atmosphere, aurora and polar regions. The Juno spacecraft is a large spin-stabilized platform powered by three long solar panel structures, 11 m in length, extending radially outward from the body of the spacecraft with panel normal parallel to the spacecraft spin axis. During almost 5 years in cruise, Juno traversed the inner part of the solar system, from Earth, to a deep space maneuver at 2.2AU, back to 0.8AU for a subsequent rendezvous with Earth for gravity assist, and then out to Jupiter (at 5.4AU at the time of arrival). The solar panels were nearly sun-pointing during the entire cruise phase, with the 60 m2 of solar panel area facing the ram direction (panel normal parallel to the spacecraft velocity vector). Interplanetary Dust Particles (IPDs) impacting Juno's solar panels with typical relative velocities of 20 km/s excavate target mass, some of which will leave the spacecraft at moderate speeds (few m/s) in the form of a few large spallation products. Many of these impact ejecta have been recorded and tracked by one of the autonomous star trackers flown as part of the Juno magnetometer investigation (MAG). Juno MAG instrumentation is accommodated on a boom at the end of one of the solar arrays, and consists of two magnetometer sensor suites each instrumented with two star trackers for accurate attitude determination at the MAG sensors. One of the four star trackers was configured to report such fast moving objects, effectively turning Juno's large solar array area into the largest-aperture IPD detector ever flown - by far. This "detector", by virtue of its prodigious collecting area, is sensitive to the relatively infrequent impacts of particles much larger (at 10's of microns) than those collected in space by dedicated dust detectors. These impactors are those responsible for the zodiacal light. We present the distribution and orbital characteristics of such IDPs as a function of distance from the Sun, and discuss possible sources of origin of these IDPs.
Low dose digital X-ray imaging with avalanche amorphous selenium
NASA Astrophysics Data System (ADS)
Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei
2015-03-01
Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapoval, Marc, E-mail: marc.sapoval2@egp.aphp.fr; Pellerin, Olivier; Rehel, Jean-Luc
The purpose of this study was to assess the ability of low-dose/low-frame fluoroscopy/angiography with a flat-panel detector angiographic suite to reduce the dose delivered to patients during uterine fibroid embolization (UFE). A two-step prospective dosimetric study was conducted, with a flat-panel detector angiography suite (Siemens Axiom Artis) integrating automatic exposure control (AEC), during 20 consecutive UFEs. Patient dosimetry was performed using calibrated thermoluminescent dosimeters placed on the lower posterior pelvis skin. The first step (10 patients; group A) consisted in UFE (bilateral embolization, calibrated microspheres) performed using the following parameters: standard fluoroscopy (15 pulses/s) and angiography (3 frames/s). The secondmore » step (next consecutive 10 patients; group B) used low-dose/low-frame fluoroscopy (7.5 pulses/s for catheterization and 3 pulses/s for embolization) and angiography (1 frame/s). We also recorded the total dose-area product (DAP) delivered to the patient and the fluoroscopy time as reported by the manufacturer's dosimetry report. The mean peak skin dose decreased from 2.4 {+-} 1.3 to 0.4 {+-} 0.3 Gy (P = 0.001) for groups A and B, respectively. The DAP values decreased from 43,113 {+-} 27,207 {mu}Gy m{sup 2} for group A to 9,515 {+-} 4,520 {mu}Gy m{sup 2} for group B (P = 0.003). The dose to ovaries and uterus decreased from 378 {+-} 238 mGy (group A) to 83 {+-} 41 mGy (group B) and from 388 {+-} 246 mGy (group A) to 85 {+-} 39 mGy (group B), respectively. Effective doses decreased from 112 {+-} 71 mSv (group A) to 24 {+-} 12 mSv (group B) (P = 0.003). In conclusion, the use of low-dose/low-frame fluoroscopy/angiography, based on a good understanding of the AEC system and also on the technique during uterine fibroid embolization, allows a significant decrease in the dose exposure to the patient.« less
Combination of CT scanning and fluoroscopy imaging on a flat-panel CT scanner
NASA Astrophysics Data System (ADS)
Grasruck, M.; Gupta, R.; Reichardt, B.; Suess, Ch.; Schmidt, B.; Stierstorfer, K.; Popescu, S.; Brady, T.; Flohr, T.
2006-03-01
We developed and evaluated a prototype flat-panel detector based Volume CT (fpVCT) scanner. The fpVCT scanner consists of a Varian 4030CB a-Si flat-panel detector mounted in a multi slice CT-gantry (Siemens Medical Solutions). It provides a 25 cm field of view with 18 cm z-coverage at the isocenter. In addition to the standard tomographic scanning, fpVCT allows two new scan modes: (1) fluoroscopic imaging from any arbitrary rotation angle, and (2) continuous, time-resolved tomographic scanning of a dynamically changing viewing volume. Fluoroscopic imaging is feasible by modifying the standard CT gantry so that the imaging chain can be oriented along any user-selected rotation angle. Scanning with a stationary gantry, after it has been oriented, is equivalent to a conventional fluoroscopic examination. This scan mode enables combined use of high-resolution tomography and real-time fluoroscopy with a clinically usable field of view in the z direction. The second scan mode allows continuous observation of a timeevolving process such as perfusion. The gantry can be continuously rotated for up to 80 sec, with the rotation time ranging from 3 to 20 sec, to gather projection images of a dynamic process. The projection data, that provides a temporal log of the viewing volume, is then converted into multiple image stacks that capture the temporal evolution of a dynamic process. Studies using phantoms, ex vivo specimens, and live animals have confirmed that these new scanning modes are clinically usable and offer a unique view of the anatomy and physiology that heretofore has not been feasible using static CT scanning. At the current level of image quality and temporal resolution, several clinical applications such a dynamic angiography, tumor enhancement pattern and vascularity studies, organ perfusion, and interventional applications are in reach.
Basic performance and stability of a CdTe solid-state detector panel.
Tsuchiya, Katsutoshi; Takahashi, Isao; Kawaguchi, Tsuneaki; Yokoi, Kazuma; Morimoto, Yuuichi; Ishitsu, Takafumi; Suzuki, Atsurou; Ueno, Yuuichirou; Kobashi, Keiji
2010-05-01
We have developed a prototype gamma camera system (R1-M) using a cadmium telluride (CdTe) detector panel and evaluated the basic performance and the spectral stability. The CdTe panel consists of 5-mm-thick crystals. The field of view is 134 x 268 mm comprising 18,432 pixels with a pixel pitch of 1.4 mm. Replaceable small CdTe modules are mounted on to the circuit board by dedicated zero insertion force connectors. To make the readout circuit compact, the matrix read out is processed by dedicated ASICs. The panel is equipped with a cold-air cooling system. The temperature and humidity in the panel were kept at 20 degrees C and below 70% relative humidity. CdTe polarization was suppressed by the bias refresh technique to stabilize the detector. We also produced three dedicated square pixel-matched collimators: LEGP (20 mm-thick), LEHR (27 mm-thick), and LEUHR (35 mm-thick). We evaluated their basic performance (energy resolution, system resolution, and sensitivity) and the spectral stability in terms of short-term (several hours of continuous acquisition) and long-term (infrequent measurements over more than a year) activity. The intrinsic energy resolution (FWHM) acquired with Tc-99m (140.5 keV) was 6.6%. The spatial resolutions (FWHM at a distance of 100 mm) with LEGP, LEHR, and LEUHR collimators were 5.7, 4.9, and 4.2 mm, and the sensitivities were 71, 39, and 23 cps/MBq, respectively. The energy peak position and the intrinsic energy resolution after several hours of operation were nearly the same as the values a few minutes after the system was powered on; the variation of the peak position was <0.2%, and that of the resolution was about 0.3%. Infrequent measurements conducted over a year showed that the variations of the energy peak position and the intrinsic energy resolution of the system were at a similar level to those described above. The basic performance of the CdTe-gamma camera system was evaluated, and its stability was verified. It was shown that the camera could be operated daily for several months without calibration.
NASA Astrophysics Data System (ADS)
Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.
1999-05-01
We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent manner to the DSF systems for the TCDD comparisons. This would suggest that FDXD would therefore perform adequately in a clinical fluoroscopic environment and our initial clinical experiences support this. Noise reduction processing of the fluoroscopic data acquired on FDXD was also found to further improve TCDD performance for FDXD. FDXD therefore combines acceptable fluoroscopic performance with excellent radiographic (snap shot) imaging fidelity, allowing the possibility of a universal x-ray detector to be developed, based on FDXD's technology. It is also envisaged that fluoroscopic performance will be improved by the development of digital image enhancement techniques specifically tailored to the characteristics of the FDXD detector.
Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less
Neutron multiplicity measurements with 3He alternative: Straw neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originatingmore » from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.« less
Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors
Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; ...
2015-01-27
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less
Scaduto, David A; Tousignant, Olivier; Zhao, Wei
2017-08-01
Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly affect reconstructed images due to the algorithms and filters employed. Degradation to projection domain spatial resolution is thus outweighed by the improvement in detective quantum efficiency for high-energy x-rays. © 2017 American Association of Physicists in Medicine.
Haga, Yoshihiro; Chida, Koichi; Inaba, Yohei; Kaga, Yuji; Meguro, Taiichiro; Zuguchi, Masayuki
2016-02-01
As the use of diagnostic X-ray equipment with flat panel detectors (FPDs) has increased, so has the importance of proper management of FPD systems. To ensure quality control (QC) of FPD system, an easy method for evaluating FPD imaging performance for both stationary and moving objects is required. Until now, simple rotatable QC phantoms have not been available for the easy evaluation of the performance (spatial resolution and dynamic range) of FPD in imaging moving objects. We developed a QC phantom for this purpose. It consists of three thicknesses of copper and a rotatable test pattern of piano wires of various diameters. Initial tests confirmed its stable performance. Our moving phantom is very useful for QC of FPD images of moving objects because it enables visual evaluation of image performance (spatial resolution and dynamic range) easily.
Percutaneous foot joint needle placement using a C-arm flat-panel detector CT.
Wiewiorski, Martin; Takes, Martin Thanh Long; Valderrabano, Victor; Jacob, Augustinus Ludwig
2012-03-01
Image guidance is valuable for diagnostic injections in foot orthopaedics. Flat-detector computed tomography (FD-CT) was implemented using a C-arm, and the system was tested for needle guidance in foot joint injections. FD-CT-guided joint infiltration was performed in 6 patients referred from the orthopaedic department for diagnostic foot injections. All interventions were performed utilising a flat-panel fluoroscopy system utilising specialised image guidance and planning software. Successful infiltration was defined by localisation of contrast media depot in the targeted joint. The pre- and post-interventional numeric analogue scale (NAS) pain score was assessed. All injections were technically successful. Contrast media deposit was documented in all targeted joints. Significant relief of symptoms was noted by all 6 participants. FD-CT-guided joint infiltration is a feasible method for diagnostic infiltration of midfoot and hindfoot joints. The FD-CT approach may become an alternative to commonly used 2D-fluoroscopically guidance.
Development of a prototype Open-close positron emission tomography system
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Okumura, Satoshi; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Toshito, Toshiyuki; Komori, Masataka; Ogata, Yoshimune; Kato, Katsuhiko; Hatazawa, Jun
2015-08-01
We developed a prototype positron emission tomography (PET) system based on a new concept called Open-close PET, which has two modes: open and close-modes. In the open-mode, the detector ring is separated into two halved rings and subject is imaged with the open space and projection image is formed. In the close-mode, the detector ring is closed to be a regular circular ring, and the subject can be imaged without an open space, and so reconstructed images can be made without artifacts. The block detector of the Open-close PET system consists of two scintillator blocks that use two types of gadolinium orthosilicate (GSO) scintillators with different decay times, angled optical fiber-based image guides, and a flat panel photomultiplier tube. The GSO pixel size was 1.6 × 2.4 × 7 mm and 8 mm for fast (35 ns) and slow (60 ns) GSOs, respectively. These GSOs were arranged into an 11 × 15 matrix and optically coupled in the depth direction to form a depth-of-interaction detector. The angled optical fiber-based image guides were used to arrange the two scintillator blocks at 22.5° so that they can be arranged in a hexadecagonal shape with eight block detectors to simplify the reconstruction algorithm. The detector ring was divided into two halves to realize the open-mode and set on a mechanical stand with which the distance between the two parts can be manually changed. The spatial resolution in the close-mode was 2.4-mm FWHM, and the sensitivity was 1.7% at the center of the field-of-view. In both the close- and open-modes, we made sagittal (y-z plane) projection images between the two halved detector rings. We obtained reconstructed and projection images of 18F-NaF rat studies and proton-irradiated phantom images. These results indicate that our developed Open-close PET is useful for some applications such as proton therapy as well as other applications such as molecular imaging.
[Change in process management by implementing RIS, PACS and flat-panel detectors].
Imhof, H; Dirisamer, A; Fischer, H; Grampp, S; Heiner, L; Kaderk, M; Krestan, C; Kainberger, F
2002-05-01
Implementation of radiological information systems (RIS) and picture archiving and communicating systems (PACS) results in significant changes of workflow in a radiological department. Additional connection with flat-panel detectors leads to a shortening of the work process. RIS and PACS implementation alone reduces the complete workflow by 21-80%. With flatpanel technology the image production process is further shortened by 25-30%. The workflow-steps are changed from original 17-12 with the implementation of RIS and PACS and to 5 with the integrated use of flatpanels. This clearly recognizable advantages in the workflow need an according financial investment. Several studies could show that the capitalisation-factor calculated over eight years is positive, with a gain range between 5-25%. Whether the additional implementation of flatpanel detectors results also in a positive capitalisation over the years, cannot be estimated exactly, at the moment, because the experiences are too short. Particularly critical are the interfaces, which needs a constant quality control. Our flatpanel detector-system is fixed, special images--as we have them in about 3-5% of all cases--need still conventional filmscreen or phosphorplate-systems. Full-spine and long-leg examinations cannot be performed with sufficient exactness. Without any questions implementation of integrated RIS, PACS and flatpanel detector-system needs excellent training of the employees, because of the changes in workflow etc. The main profits of such an integrated implementation are an increase in quality in image and report datas, easier handling--there are almost no more cassettes necessary--and excessive shortening of workflow.
Pjontek, Rastislav; Önenköprülü, Belgin; Scholz, Bernhard; Kyriakou, Yiannis; Schubert, Gerrit A; Nikoubashman, Omid; Othman, Ahmed; Wiesmann, Martin; Brockmann, Marc A
2016-08-01
Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image quality in patients with intracranial metallic implants. Flat panel detector CT after intravenous application of 80 mL contrast agent was performed with an angiography system (Artis zee; Siemens, Forchheim, Germany) using a 20 s rotation protocol (200° rotation angle, 20 s acquisition time, 496 projections). The data before and after MAR of 26 patients with a total of 34 implants (coils, clips, stents) were independently evaluated by two blinded neuroradiologists. MAR improved the assessability of the brain parenchyma and small vessels (diameter <1 mm) in the neighborhood of metallic implants and at a distance of 6 cm (p<0.001 each, Wilcoxon test). Furthermore, MAR significantly improved the assessability of parent vessel patency and potential aneurysm remnants (p<0.005 each, McNemar test). MAR, however, did not improve assessability of stented vessels. When an intravenous contrast protocol is used, MAR significantly ameliorates the assessability of brain parenchyma, vessels, and treated aneurysms in patients with intracranial coils or clips. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Muon detector for the COSINE-100 experiment
NASA Astrophysics Data System (ADS)
Prihtiadi, H.; Adhikari, G.; Adhikari, P.; Barbosa de Souza, E.; Carlin, N.; Choi, S.; Choi, W. Q.; Djamal, M.; Ezeribe, A. C.; Ha, C.; Hahn, I. S.; Hubbard, A. J. F.; Jeon, E. J.; Jo, J. H.; Joo, H. W.; Kang, W.; Kang, W. G.; Kauer, M.; Kim, B. H.; Kim, H.; Kim, H. J.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Kudryavtsev, V. A.; Lee, H. S.; Lee, J.; Lee, J. Y.; Lee, M. H.; Leonard, D. S.; Lim, K. E.; Lynch, W. A.; Maruyama, R. H.; Mouton, F.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, J. S.; Park, K. S.; Pettus, W.; Pierpoint, Z. P.; Ra, S.; Rogers, F. R.; Rott, C.; Scarff, A.; Spooner, N. J. C.; Thompson, W. G.; Yang, L.; Yong, S. H.
2018-02-01
The COSINE-100 dark matter search experiment has started taking physics data with the goal of performing an independent measurement of the annual modulation signal observed by DAMA/LIBRA. A muon detector was constructed by using plastic scintillator panels in the outermost layer of the shield surrounding the COSINE-100 detector. It detects cosmic ray muons in order to understand the impact of the muon annual modulation on dark matter analysis. Assembly and initial performance tests of each module have been performed at a ground laboratory. The installation of the detector in the Yangyang Underground Laboratory (Y2L) was completed in the summer of 2016. Using three months of data, the muon underground flux was measured to be 328 ± 1(stat.)± 10(syst.) muons/m2/day. In this report, the assembly of the muon detector and the results from the analysis are presented.
First Results from the DUNE 35-ton Prototype using Cosmics
NASA Astrophysics Data System (ADS)
Insler, Jonathan; DUNE Collaboration
2016-03-01
The 35-ton prototype for the Deep Underground Neutrino Experiment (DUNE) Far Detector is a single-phase liquid argon time projection chamber (LAr-TPC) integrated detector that will take cosmics data for a two month run beginning in February 2016. The 35-ton prototype will characterize DUNE's Far Detector technology performance and provide a sample of real data for DUNE reconstruction algorithms. The 35-ton prototype has two drift volumes of lengths 2.23 m and 0.23 m on either side of its anode plane assembly (APA) and makes use of wire planes with wrapped wires and a photon detection system (PDS) utilizing photon detection panels read out by silicon photomultipliers (SiPMs). Data from the 35-ton LAr detector are expected to provide rich information on scintillation light and charged particle tracks. We present a preliminary analysis of cosmics data taken with the 35-ton detector with a focus on stopping muons.
The ground support equipment for the LAUE project
NASA Astrophysics Data System (ADS)
Caroli, E.; Auricchio, N.; Basili, A.; Carassiti, V.; Cassese, F.; Del Sordo, S.; Frontera, F.; Pecora, M.; Recanatesi, L.; Schiavone, F.; Silvestri, S.; Squerzanti, S.; Stephen, J. B.; Virgilli, E.
2013-09-01
The development of wide band Laue lens imaging technology is challenging, but has important potential applications in hard X- and γ-ray space instrumentation for the coming decades. The Italian Space Agency has funded a project dedicated to the development of a reliable technology to assemble a wide band Laue lens for use in space. The ground support equipment (GSE) for this project was fundamental to its eventual success... The GSE was implemented in a hard X-ray beam line built at the University of Ferrara and had the main purpose of controlling the assembly of crystals onto the Laue lens petal and to verify its final performance. The GSE incorporates the management and control of all the movements of the beam line mechanical subsystems and of the precision positioner (based on a Hexapod tool) of crystals on the petal, as well as the acquisition, storing and analysis of data obtained from the focal plane detectors (an HPGe spectrometer and an X-ray flat panel imager). The GSE is based on two PC's connected through a local network: one, placed inside the beam line, to which all the movement subsystems and the detector I/O interface and on which all the management and acquisition S/W runs, the other in the control room allows the remote control and implements the offline analysis S/W of the data obtained from the detectors. Herein we report on the GSE structure with its interface with the beam line mechanical system, with the fine crystal positioner and with the focal plane detector. Furthermore we describe the SW developed for the handling of the mechanical movement subsystems and for the analysis of the detector data with the procedure adopted for the correct orientation of the crystals before their bonding on the lens petal support.
Building Security into Schools.
ERIC Educational Resources Information Center
Kosar, John E.; Ahmed, Faruq
2000-01-01
Offers tips for redesigning safer school sites; installing and implementing security technologies (closed-circuit television cameras, door security hardware, electronic security panels, identification cards, metal detectors, and panic buttons); educating students and staff about security functions; and minimizing costs via a comprehensive campus…
[Digital thoracic radiology: devices, image processing, limits].
Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E
2001-09-01
In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.
Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode
Masuzawa, Tomoaki; Saito, Ichitaro; Yamada, Takatoshi; Onishi, Masanori; Yamaguchi, Hisato; Suzuki, Yu; Oonuki, Kousuke; Kato, Nanako; Ogawa, Shuichi; Takakuwa, Yuji; Koh, Angel T. T.; Chua, Daniel H. C.; Mori, Yusuke; Shimosawa, Tatsuo; Okano, Ken
2013-01-01
Amorphous-selenium (a-Se) based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized. PMID:24152932
Simulation of the CRIPT Detector
2015-03-01
National Defence, 2015 c© Sa Majesté la Reine (en droit du Canada), telle que réprésentée par le ministre de la Défense nationale, 2015 Abstract The...iron slabs of the spectrometer. The red plates are the panels containing the scintillator bars. 3 3 Monte Carlo Geometry The geometry of the detector is...instead of hollow), • parts were in wrong location (eg. spectrometer iron plates). To fix this, Computer Aided Design ( CAD ) drawings were provided for
Clinical performance of a prototype flat-panel digital detector for general radiography
NASA Astrophysics Data System (ADS)
Huda, Walter; Scalzetti, Ernest M.; Roskopf, Marsha L.; Geiger, Robert
2001-08-01
Digital radiographs obtained using a prototype Digital Radiography System (Stingray) were compared with those obtained using conventional screen-film. Forty adult volunteers each had two identical radiographs taken at the same level of radiation exposure, one using screen-film and the other the digital detector. Each digital image was processed by hand to ensure that the printed quality was optimal. Ten radiologists compared the diagnostic image quality of the digital images with the corresponding film radiographs using a seven point ranking scheme.
High-resolution fluence verification for treatment plan specific QA in ion beam radiotherapy
NASA Astrophysics Data System (ADS)
Martišíková, Mária; Brons, Stephan; Hesse, Bernd M.; Jäkel, Oliver
2013-03-01
Ion beam radiotherapy exploits the finite range of ion beams and the increased dose deposition of ions toward the end of their range in material. This results in high dose conformation to the target region, which can be further increased using scanning ion beams. The standard method for patient-plan verification in ion beam therapy is ionization chamber dosimetry. The spatial resolution of this method is given by the distance between the chambers (typically 1 cm). However, steep dose gradients created by scanning ion beams call for more information and improved spatial resolution. Here we propose a clinically applicable method, supplementary to standard patient-plan verification. It is based on ion fluence measurements in the entrance region with high spatial resolution in the plane perpendicular to the beam, separately for each energy slice. In this paper the usability of the RID256 L amorphous silicon flat-panel detector for the measurements proposed is demonstrated for carbon ion beams. The detector provides sufficient spatial resolution for this kind of measurement (pixel pitch 0.8 mm). The experiments were performed at the Heidelberg Ion-Beam Therapy Center in Germany. This facility is equipped with a synchrotron capable of accelerating ions from protons up to oxygen to energies between 48 and 430 MeV u-1. Beam application is based on beam scanning technology. The measured signal corresponding to single energy slices was translated to ion fluence on a pixel-by-pixel basis, using calibration, which is dependent on energy and ion type. To quantify the agreement of the fluence distributions measured with those planned, a gamma-index criterion was used. In the patient field investigated excellent agreement was found between the two distributions. At least 95% of the slices contained more than 96% of points agreeing with our criteria. Due to the high spatial resolution, this method is especially valuable for measurements of strongly inhomogeneous fluence distributions like those in intensity-modulated treatment plans or plans including dose painting. Since no water phantom is needed to perform measurements, the flat-panel detector investigated has high potential for use with gantries. Before the method can be used in the clinical routine, it has to be sufficiently tested for each detector-facility combination.
NASA Astrophysics Data System (ADS)
Bruegge, Carol J.; Val, Sebastian; Diner, David J.; Jovanovic, Veljko; Gray, Ellyn; Di Girolamo, Larry; Zhao, Guangyu
2014-09-01
The Multi-angle Imaging SpectroRadiometer (MISR) has successfully operated on the EOS/ Terra spacecraft since 1999. It consists of nine cameras pointing from nadir to 70.5° view angle with four spectral channels per camera. Specifications call for a radiometric uncertainty of 3% absolute and 1% relative to the other cameras. To accomplish this, MISR utilizes an on-board calibrator (OBC) to measure camera response changes. Once every two months the two Spectralon panels are deployed to direct solar-light into the cameras. Six photodiode sets measure the illumination level that are compared to MISR raw digital numbers, thus determining the radiometric gain coefficients used in Level 1 data processing. Although panel stability is not required, there has been little detectable change in panel reflectance, attributed to careful preflight handling techniques. The cameras themselves have degraded in radiometric response by 10% since launch, but calibration updates using the detector-based scheme has compensated for these drifts and allowed the radiance products to meet accuracy requirements. Validation using Sahara desert observations show that there has been a drift of ~1% in the reported nadir-view radiance over a decade, common to all spectral bands.
NASA Astrophysics Data System (ADS)
Yoshida, Eiji; Kitamura, Keishi; Kimura, Yuichi; Nishikido, Fumihiko; Shibuya, Kengo; Yamaya, Taiga; Murayama, Hideo
2007-02-01
In a conventional positron emission tomography (PET) detector, detected events are projected onto a 2D position histogram by an Anger calculation for crystal identification. However, the measured histogram is affected by inter-crystal scatterings (ICS) which occur in the entire detector. Peaks which are projected for each crystal in the histogram are blurred, and this causes ICS mispositioning. A depth-of-interaction (DOI) detector has been developed for the small animal PET scanner jPET-RD. This DOI detector uses 32×32 crystals with four layers and a 256-channel multi-anode flat panel photomultiplier tube (FP-PMT) which was developed by Hamamatsu Photonics K.K. Each crystal element is 1.45×1.45×4.5 mm 3. The FP-PMT has a large detective area (49×49 mm 2) and a small anode pitch (3.04 mm). Therefore, the FP-PMT can extensively trace the behavior of incident γ rays in the crystals including ICS event. We, therefore, propose a novel method for ICS estimation using a statistical pattern recognition algorithm based on a support vector machine (SVM). In this study, we applied the SVM for discriminating photoelectric events from ICS events generated from multiple-anode outputs. The SVM was trained by uniform irradiation events generated from a detector simulator using a Monte Carlo calculation. The success rate for ICS event identification is about 78% for non-training data. The SVM can achieve a true subtraction of ICS events from measured events, and it is also useful for random correction in PET.
Corrected Position Estimation in PET Detector Modules With Multi-Anode PMTs Using Neural Networks
NASA Astrophysics Data System (ADS)
Aliaga, R. J.; Martinez, J. D.; Gadea, R.; Sebastia, A.; Benlloch, J. M.; Sanchez, F.; Pavon, N.; Lerche, Ch.
2006-06-01
This paper studies the use of Neural Networks (NNs) for estimating the position of impinging photons in gamma ray detector modules for PET cameras based on continuous scintillators and Multi-Anode Photomultiplier Tubes (MA-PMTs). The detector under study is composed of a 49/spl times/49/spl times/10 mm/sup 3/ continuous slab of LSO coupled to a flat panel H8500 MA-PMT. Four digitized signals from a charge division circuit, which collects currents from the 8/spl times/8 anode matrix of the photomultiplier, are used as inputs to the NN, thus reducing drastically the number of electronic channels required. We have simulated the computation of the position for 511 keV gamma photons impacting perpendicularly to the detector surface. Thus, we have performed a thorough analysis of the NN architecture and training procedures in order to achieve the best results in terms of spatial resolution and bias correction. Results obtained using GEANT4 simulation toolkit show a resolution of 1.3 mm/1.9 mm FWHM at the center/edge of the detector and less than 1 mm of systematic error in the position near the edges of the scintillator. The results confirm that NNs can partially model and correct the non-uniform detector response using only the position-weighted signals from a simple 2D DPC circuit. Linearity degradation for oblique incidence is also investigated. Finally, the NN can be implemented in hardware for parallel real time corrected Line-of-Response (LOR) estimation. Results on resources occupancy and throughput in FPGA are presented.
NASA Astrophysics Data System (ADS)
Buczkowski, S.; Martins, J.; Fernandez-Borda, R.; Cieslak, D.; Hall, J.
2013-12-01
The UMBC Rainbow Polarimetric Imager is a small form factor VIS imaging polarimeter suitable for use on a number of platforms. An optical system based on a Phillips prism with three Bayer filter color detectors, each detecting a separate polarization state, allows simultaneous detection of polarization and spectral information. A Mueller matrix-like calibration scheme corrects for polarization artifacts in the optical train and allows retrieval of the polarization state of incoming light to better than 0.5%. Coupled with wide field of view optics (~90°), RPI can capture images of cloudbows over a wide range of aircraft headings and solar zenith angles for retrieval of cloud droplet size distribution (DSD) parameters. In May-June 2012, RPI was flown in a nadir port on the NASA DC-8 during the DC3 field campaign. We will show examples of cloudbow DSD parameter retrievals from the campaign to demonstrate the efficacy of such a system to terrestrial atmospheric remote sensing. RPI image from DC3 06/15/2012 flight. Left panel is raw image from the RPI 90° camera. Middle panel is Stokes 'q' parameter retrieved from full three camera dataset. Right panel is a horizontal cut in 'q' through the glory. Both middle and right panels clearly show cloudbow features which can be fit to infer cloud DSD parameters.
Mercuric iodide medical imagers for low-exposure radiography and fluoroscopy
NASA Astrophysics Data System (ADS)
Zentai, George; Partain, Larry; Pavlyuchkova, Raisa; Proano, Cesar; Breen, Barry N.; Taieb, A.; Dagan, Ofer; Schieber, Michael; Gilboa, Haim; Thomas, Jerry
2004-05-01
Photoconductive polycrystalline mercuric iodide deposited on flat panel thin film transistor (TFT) arrays is being developed for direct digital X-ray detectors that can perform both radiographic and fluoroscopic medical imaging. The mercuric iodide is either vacuum deposited by Physical Vapor Deposition (PVD) or coated onto the array by a wet Particle-In-Binder (PIB) process. The PVD deposition technology has been scaled up to the 20 cm x 25 cm size required in common medical imaging applications. A TFT array with a pixel pitch of 127 microns is used for these imagers. Arrays of 10 cm x 10 cm size have been used to evaluate performance of mercuric iodide imagers. Radiographic and fluoroscopic images of diagnostic quality at up to 15 pulses per second were demonstrated. As we previously reported, the resolution is limited to the TFT array Nyquist frequency of ~3.9 lp/mm (127 micron pixel pitch). Detective Quantum Efficiency (DQE) has been measured as a function of spatial frequency for these imagers. The DQE is lower than the theoretically calculated value due to some additional noise sources of the electronics and the array. We will retest the DQE after eliminating these noise sources. Reliability and stress testing was also began for polycrystalline mercuric iodide PVD and PIB detectors. These are simplified detectors based upon a stripe electrode or circular electrode structure. The detectors were stressed under various voltage bias, temperature and time conditions. The effects of the stress tests on the detector dark current and sensitivity were determined.
NASA Astrophysics Data System (ADS)
Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David
2013-05-01
Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.
Report of the x ray and gamma ray sensors panel
NASA Technical Reports Server (NTRS)
Szymkowiak, Andrew; Collins, S.; Kurfess, J.; Mahoney, W.; Mccammon, D.; Pehl, R.; Ricker, G.
1991-01-01
Overall five major areas of technology are recommended for development in order to meet the science requirements of the Astrotech 21 mission set. These are: detectors for high resolution gamma ray spectroscopy, cryogenic detectors for improved x ray spectral and spatial resolution, advanced x ray charge coupled devices (CCDs) for higher energy resolution and larger format, extension to higher energies, liquid and solid position sensitive detectors for improving stopping power in the energy range 5 to 500 keV and 0.2 to 2 MeV. Development plans designed to achieve the desired capabilities on the time scales required by the technology freeze dates have been recommended in each of these areas.
NASA Astrophysics Data System (ADS)
Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei
2014-03-01
We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.
Teymurazyan, A; Pang, G
2012-03-01
Most electronic portal imaging devices (EPIDs) developed so far use a thin Cu plate/phosphor screen to convert x-ray energies into light photons, while maintaining a high spatial resolution. This results in a low x-ray absorption and thus a low quantum efficiency (QE) of approximately 2-4% for megavoltage (MV) x-rays. A significant increase of QE is desirable for applications such as MV cone-beam computed tomography (MV-CBCT). Furthermore, the Cu plate/phosphor screen contains high atomic number (high-Z) materials, resulting in an undesirable over-response to low energy x-rays (due to photoelectric effect) as well as high energy x-rays (due to pair production) when used for dosimetric verification. Our goal is to develop a new MV x-ray detector that has a high QE and uses low-Z materials to overcome the obstacles faced by current MV x-ray imaging technologies. A new high QE and low-Z EPID is proposed. It consists of a matrix of plastic scintillating fibers embedded in a water-equivalent medium and coupled to an optically sensitive 2D active matrix flat panel imager (AMFPI) for image readout. It differs from the previous approach that uses segmented crystalline scintillators made of higher density and higher atomic number materials to detect MV x-rays. The plastic scintillating fibers are focused toward the x-ray source to avoid image blurring due to oblique incidence of off-axis x-rays. When MV x-rays interact with the scintillating fibers in the detector, scintillation light will be produced. The light photons produced in a fiber core and emitted within the acceptance angle of the fiber will be guided toward the AMFPI by total internal reflection. A Monte Carlo simulation has been used to investigate imaging and dosimetric characteristics of the proposed detector under irradiation of MV x-rays. Properties, such as detection efficiency, modulation transfer function, detective quantum efficiency (DQE), energy dependence of detector response, and water-equivalence of dose response have been investigated. It has been found that the zero frequency DQE of the proposed detector can be up to 37% at 6 MV. The detector, also, is water-equivalent with a relatively uniform response to different energy x-rays as compared to current EPIDs. The results of our simulations show that, using plastic scintillating fibers, it is possible to construct a water-equivalent EPID that has a better energy response and a higher detection efficiency than current flat panel based EPIDs.
Physical characteristics of GE Senographe Essential and DS digital mammography detectors.
Ghetti, Caterina; Borrini, Adriano; Ortenzia, Ornella; Rossi, Raffaella; Ordóñez, Pedro L
2008-02-01
The purpose of this study was to investigate physical characteristics of two full field digital mammography (FFDM) systems (GE Senographe Essential and DS). Both are indirect conversion (x ray to light) alpha-Si flat panels coupled with a CsI(Tl) scintillator. The examined systems have the same pixel size (100 microm) but a different field of view: a conventional size 23 x 19.2 cm2 and a large field 24 X 30.7 cm2, specifically designed to image large breasts. In the GE Senographe Essential model relevant improvements in flat panel design were implemented and new deposition tools for metal, alpha-Si, and CsI(Tl) were introduced by GE. These changes in detector design are expected to be beneficial for advanced applications such as breast tomosynthesis. The presampling modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were measured for a wide range of exposure (25-240 microGy) with a RQA-M2 technique (28 kVp with a Mo/Mo target/filter combination and 2 mm of additional aluminum filtration). At 1, 2, and at 4 lp/mm MTF is equal to 0.9, 0.76, and 0.46 for the conventional field detector and to 0.85, 0.59, and 0.24 for the large field detector. The latter detector exhibits an improved NNPS due to a lower electronic noise and a better DQE that reaches 60%. In addition a contrast-detail analysis was performed with CDMAM 3.4 phantom and CDCOM software: GE Senographe DS showed statistically significant poorer detection ability in comparison with the GE Senographe Essential. These results could have been expected, at least qualitatively, considering the relative DQE of the two systems.
Report of the ultraviolet and visible sensors panel
NASA Technical Reports Server (NTRS)
Timothy, J. Gethyn; Blouke, M.; Bredthauer, R.; Kimble, R.; Lee, T.-H.; Lesser, M.; Siegmund, O.; Weckler, G.
1991-01-01
In order to meet the science objectives of the Astrotech 21 mission set the Ultraviolet (UV) and Visible Sensors Panel made a number of recommendations. In the UV wavelength range of 0.01 to 0.3 micro-m the focus is on the need for large format high quantum efficiency, radiation hard 'solar-blind' detectors. Options recommended for support include Si and non-Si charge coupled devices (CCDs) as well as photocathodes with improved microchannel plate readouts. For the 0.3 to 0.9 micro-m range, it was felt that Si CCDs offer the best option for high quantum efficiencies at these wavelengths. In the 0.9 to 2.5 micro-m the panel recommended support for the investigation of monolithic arrays. Finally, the panel noted that the implementation of very large arrays will require new data transmission, data recording, and data handling technologies.
Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array
NASA Astrophysics Data System (ADS)
Wang, Zhonghai; Sun, Xishan; Lou, Kai; Meier, Joseph; Zhou, Rong; Yang, Chaowen; Zhu, Xiaorong; Shao, Yiping
2016-04-01
One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm3 size) with 22Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.
Nickoloff, Edward Lee
2011-01-01
This article reviews the design and operation of both flat-panel detector (FPD) and image intensifier fluoroscopy systems. The different components of each imaging chain and their functions are explained and compared. FPD systems have multiple advantages such as a smaller size, extended dynamic range, no spatial distortion, and greater stability. However, FPD systems typically have the same spatial resolution for all fields of view (FOVs) and are prone to ghosting. Image intensifier systems have better spatial resolution with the use of smaller FOVs (magnification modes) and tend to be less expensive. However, the spatial resolution of image intensifier systems is limited by the television system to which they are coupled. Moreover, image intensifier systems are degraded by glare, vignetting, spatial distortions, and defocusing effects. FPD systems do not have these problems. Some recent innovations to fluoroscopy systems include automated filtration, pulsed fluoroscopy, automatic positioning, dose-area product meters, and improved automatic dose rate control programs. Operator-selectable features may affect both the patient radiation dose and image quality; these selectable features include dose level setting, the FOV employed, fluoroscopic pulse rates, geometric factors, display software settings, and methods to reduce the imaging time. © RSNA, 2011.
Nguyen, Richard; Perfetto, Stephen; Mahnke, Yolanda D; Chattopadhyay, Pratip; Roederer, Mario
2013-03-01
After compensation, the measurement errors arising from multiple fluorescences spilling into each detector become evident by the spreading of nominally negative distributions. Depending on the instrument configuration and performance, and reagents used, this "spillover spreading" (SS) affects sensitivity in any given parameter. The degree of SS had been predicted theoretically to increase with measurement error, i.e., by the square root of fluorescence intensity, as well as directly related to the spectral overlap matrix coefficients. We devised a metric to quantify SS between any pair of detectors. This metric is intrinsic, as it is independent of fluorescence intensity. The combination of all such values for one instrument can be represented as a spillover spreading matrix (SSM). Single-stained controls were used to determine the SSM on multiple instruments over time, and under various conditions of signal quality. SSM values reveal fluorescence spectrum interactions that can limit the sensitivity of a reagent in the presence of brightly-stained cells on a different color. The SSM was found to be highly reproducible; its non-trivial values show a CV of less than 30% across a 2-month time frame. In addition, the SSM is comparable between similarly-configured instruments; instrument-specific differences in the SSM reveal underperforming detectors. Quantifying and monitoring the SSM can be a useful tool in instrument quality control to ensure consistent sensitivity and performance. In addition, the SSM is a key element for predicting the performance of multicolor immunofluorescence panels, which will aid in the optimization and development of new panels. We propose that the SSM is a critical component of QA/QC in evaluation of flow cytometer performance. Published 2013 Wiley Periodicals, Inc.
Debris Detector Verification by Hvi-Tests
NASA Astrophysics Data System (ADS)
Bauer, Waldemar; Drolshagen, Gerhard; Vörsmann, Peter; Romberg, Oliver; Putzar, Robin
Information regarding Space Debris (SD) or Micrometeoroids (MM) impacting on spacecraft (S/C) or payloads (P/L) can be obtained by using environmental models e.g. MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured or orbital observed data. The latter is utilised for large particles and can be obtained from ground based or space based radars or telescopes. Data regarding very small but abundant particles can also be gained by analysis of retrieved hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are brought from orbit back to Earth. Furthermore, in-situ impact detectors are an essential source for information on small size meteoroids and space debris. These kind of detectors are placed in orbit and collect impact data regarding SD and MM, sending data near real time via telemetry. Compared to the impact data which is gained by analysis of retrieved surfaces, the detected data comprise additional information regarding exact impact time and, depending on the type of detector, on the orbit and particles composition. Nevertheless, existing detectors have limitations. Since the detection area is small, statistically meaningful number of impacts are obtained for very small particles only. Measurements of particles in the size range of hundreds of microns to mm which are potentially damaging to S/C require larger sensor areas. To make use of the advantages of in-situ impact detectors and to increase the amount of impact data an innovative impact detector concept is currently under development at DLR in Bremen. Different to all previous impact detectors the Solar Generator based Impact Detector (SOLID) is not an add-on component on the S/C. SOLID makes use of existing subsystems of the S/C and adopts them for impact detection purposes. Since the number of impacts on a target in space depends linearly on the exposed area, the S/C solar panels offer a unique opportunity to use them for impact detection. Considering that the SOLID method could be applied to several S/Cs in different orbits, the spatial coverage in space concerning SD and MM can be significantly increased. In this way the method allows to generate large amount of impact data, which can be used for environmental model validation. This paper focuses on the verification of the SOLID method by Hypervelocity Impact (HVI) tests performed at Fraunhofer EMI. The test set-up as well as achieved results are presented and discussed.
Tanaka, Nobukazu; Yano, Yuki; Yabuuchi, Hidetake; Akasaka, Tsutomu; Sasaki, Masayuki; Ohki, Masafumi; Morishita, Junji
2013-01-01
The image quality and potential usefulness for patient skin-dose reduction of a newly developed flat-panel detector (FPD) system employing irradiation side sampling (ISS) were investigated and compared to a conventional computed radiography (CR) system. We used the X-ray beam quality of RQA 9 as noted in the standard evaluation method by the International Electrotechnical Commission 62220-1 to evaluate the image quality of the detector for chest radiography. The presampled modulation transfer function (MTF) of the ISS-FPD system was slightly higher than that of the CR system in the horizontal direction at more than 2.2 cycles/mm. However, the presampled MTF of the ISS-FPD system was slightly lower than that of the CR system in the vertical direction. The Wiener spectrum of the ISS-FPD system showed a 50-65 % lesser noise level than that of the CR system under the same exposure condition. The detective quantum efficiency of the ISS-FPD system was at least twice as great as that of the CR system. We conclude that the ISS-FPD system has the potential to reduce the patient skin dose compared to a conventional CR system for chest radiography.
[Comparison of noise characteristics of direct and indirect conversion flat panel detectors].
Murai, Masami; Kishimoto, Kenji; Tanaka, Katsuhisa; Oota, Kenji; Ienaga, Akinori
2010-11-20
Flat-panel detector (FPD) digital radiography systems have direct and indirect conversion systems, and the 2 conversion systems provide different imaging performances. We measured some imaging performances [input-output characteristic, presampled modulation transfer function (presampled MTF), noise power spectrum (NPS)] of direct and indirect FPD systems. Moreover, some image samples of the NPSs were visually evaluated by the pair comparison method. As a result, the presampled MTF of the direct FPD system was substantially higher than that of the indirect FPD system. The NPS of the direct FPD system had a high value for all spatial frequencies. In contrast, the NPS of the indirect FPD system had a lower value as the frequency became higher. The results of visual evaluations showed the same tendency as that found for NPSs. We elucidated the cause of the difference in NPSs in a simulation study, and we determined that the cause of the difference in the noise components of the direct and indirect FPD systems was closely related to the presampled MTF.
1986-11-01
optical wave-mixing am., interact via the third order non linear susceptibility of the medium to produce a coherent laser-like signal beam at the higher...is the third order non- linear susceptibility of the medium and determines the shape of the CARS spectrum. It is the sum of a resonant contribution and...simultaneously using an appropriate spectrograph/optical multichannel detector; intensified linear diode array detectors are now used in most systems. The two
NOTE: A BPF-type algorithm for CT with a curved PI detector
NASA Astrophysics Data System (ADS)
Tang, Jie; Zhang, Li; Chen, Zhiqiang; Xing, Yuxiang; Cheng, Jianping
2006-08-01
Helical cone-beam CT is used widely nowadays because of its rapid scan speed and efficient utilization of x-ray dose. Recently, an exact reconstruction algorithm for helical cone-beam CT was proposed (Zou and Pan 2004a Phys. Med. Biol. 49 941 59). The algorithm is referred to as a backprojection-filtering (BPF) algorithm. This BPF algorithm for a helical cone-beam CT with a flat-panel detector (FPD-HCBCT) requires minimum data within the Tam Danielsson window and can naturally address the problem of ROI reconstruction from data truncated in both longitudinal and transversal directions. In practical CT systems, detectors are expensive and always take a very important position in the total cost. Hence, we work on an exact reconstruction algorithm for a CT system with a detector of the smallest size, i.e., a curved PI detector fitting the Tam Danielsson window. The reconstruction algorithm is derived following the framework of the BPF algorithm. Numerical simulations are done to validate our algorithm in this study.
A BPF-type algorithm for CT with a curved PI detector.
Tang, Jie; Zhang, Li; Chen, Zhiqiang; Xing, Yuxiang; Cheng, Jianping
2006-08-21
Helical cone-beam CT is used widely nowadays because of its rapid scan speed and efficient utilization of x-ray dose. Recently, an exact reconstruction algorithm for helical cone-beam CT was proposed (Zou and Pan 2004a Phys. Med. Biol. 49 941-59). The algorithm is referred to as a backprojection-filtering (BPF) algorithm. This BPF algorithm for a helical cone-beam CT with a flat-panel detector (FPD-HCBCT) requires minimum data within the Tam-Danielsson window and can naturally address the problem of ROI reconstruction from data truncated in both longitudinal and transversal directions. In practical CT systems, detectors are expensive and always take a very important position in the total cost. Hence, we work on an exact reconstruction algorithm for a CT system with a detector of the smallest size, i.e., a curved PI detector fitting the Tam-Danielsson window. The reconstruction algorithm is derived following the framework of the BPF algorithm. Numerical simulations are done to validate our algorithm in this study.
Impedance matched thin metamaterials make metals absorbing.
Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G
2013-11-13
Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.
NASA Technical Reports Server (NTRS)
1990-01-01
Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, X; Lou, K; Rice University, Houston, TX
Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface andmore » reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate capability for substantially improved imaging and quantification performance for small animal imaging and image-guided radiotherapy applications. This work was supported by a research award RP120326 from Cancer Prevention and Research Institute of Texas.« less
Detection and Localization of Money Bills Concealed Behind Wooden Walls Using Compton Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wart, Jason A. van; Hussein, Esam M.A.; Waller, Edward J
2005-05-15
This work presents a portable device for detecting visually obscured contraband money bills that may be hidden within conventional household walls for the purpose of avoiding confiscation. The device utilizes the Compton backscattering of photons emitted from a collimated {sup 241}Am source. The scattered photons are detected with a thin NaI(Tl) detector, either over a wide field of view for surface scanning of the wall or within a confined view field for depth scanning. The design of the device was optimized for best density contrast and highest count rate for a given source activity. It was shown that the minimummore » detectable amount of contraband, with >95% confidence level, is 86 paper bills. The contraband was detectable when hidden in household walls made of gyprock or wooden paneling, even when masked by higher density materials such as metallic piping. The device's capability exceeded those of commercially available density-based portable contraband detectors.« less
Flexible amorphous silicon PIN diode x-ray detectors
NASA Astrophysics Data System (ADS)
Marrs, Michael; Bawolek, Edward; Smith, Joseph T.; Raupp, Gregory B.; Morton, David
2013-05-01
A low temperature amorphous silicon (a-Si) thin film transistor (TFT) and amorphous silicon PIN photodiode technology for flexible passive pixel detector arrays has been developed using active matrix display technology. The flexible detector arrays can be conformed to non-planar surfaces with the potential to detect x-rays or other radiation with an appropriate conversion layer. The thin, lightweight, and robust backplanes may enable the use of highly portable x-ray detectors for use in the battlefield or in remote locations. We have fabricated detector arrays up to 200 millimeters along the diagonal on a Gen II (370 mm x 470 mm rectangular substrate) using plasma enhanced chemical vapor deposition (PECVD) a-Si as the active layer and PECVD silicon nitride (SiN) as the gate dielectric and passivation. The a-Si based TFTs exhibited an effective saturation mobility of 0.7 cm2/V-s, which is adequate for most sensing applications. The PIN diode material was fabricated using a low stress amorphous silicon (a-Si) PECVD process. The PIN diode dark current was 1.7 pA/mm2, the diode ideality factor was 1.36, and the diode fill factor was 0.73. We report on the critical steps in the evolution of the backplane process from qualification of the low temperature (180°C) TFT and PIN diode process on the 150 mm pilot line, the transfer of the process to flexible plastic substrates, and finally a discussion and demonstration of the scale-up to the Gen II (370 x 470 mm) panel scale pilot line.
NASA Astrophysics Data System (ADS)
Miyahara, Yoshinori; Hara, Yuki; Nakashima, Hiroto; Nishimura, Tomonori; Itakura, Kanae; Inomata, Taisuke; Kitagaki, Hajime
2018-03-01
In high-dose-rate (HDR) brachytherapy, a direct-conversion flat-panel detector (d-FPD) clearly depicts a 192Ir source without image halation, even under the emission of high-energy gamma rays. However, it was unknown why iridium is visible when using a d-FPD. The purpose of this study was to clarify the reasons for visibility of the source core based on physical imaging characteristics, including the modulation transfer functions (MTF), noise power spectral (NPS), contrast transfer functions, and linearity of d-FPD to high-energy gamma rays. The acquired data included: x-rays, [X]; gamma rays, [γ] dual rays (X + γ), [D], and subtracted data for depicting the source ([D] - [γ]). In the quality assurance (QA) test for the positional accuracy of a source core, the coordinates of each dwelling point were compared between the planned and actual source core positions using a CT/MR-compatible ovoid applicator and a Fletcher-Williamson applicator. The profile curves of [X] and ([D] - [γ]) matched well on MTF and NPS. The contrast resolutions of [D] and [X] were equivalent. A strongly positive linear correlation was found between the output data of [γ] and source strength (r 2 > 0.99). With regard to the accuracy of the source core position, the largest coordinate difference (3D distance) was noted at the maximum curvature of the CT/MR-compatible ovoid and Fletcher-Williamson applicators, showing 1.74 ± 0.02 mm and 1.01 ± 0.01 mm, respectively. A d-FPD system provides high-quality images of a source, even when high-energy gamma rays are emitted to the detector, and positional accuracy tests with clinical applicators are useful in identifying source positions (source movements) within the applicator for QA.
A graphite crystal polarimeter for stellar X-ray astronomy.
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Berthelsdorf, R.; Epstein, G.; Linke, R.; Mitchell, D.; Novick, R.; Wolff, R. S.
1972-01-01
The first crystal X-ray polarimeter to be used for X-ray astronomy is described. Polarization is measured by modulation of the X rays diffracted at an average 45 deg glancing angle from large, curved graphite crystal panels as these rotate about an axis parallel to the incident X-ray flux. Arrangement of the crystal panels, the design of the detector, and the signal-processing circuitry were optimized to minimize systematic effects produced by off-axis pointing of the rocket and cosmic ray induced events. The in-flight performance of the instrument in relation to the observed background signal is discussed.
NASA Astrophysics Data System (ADS)
Siewerdsen, J. H.; Shkumat, N. A.; Dhanantwari, A. C.; Williams, D. B.; Richard, S.; Daly, M. J.; Paul, N. S.; Moseley, D. J.; Jaffray, D. A.; Yorkston, J.; Van Metter, R.
2006-03-01
The application of high-performance flat-panel detectors (FPDs) to dual-energy (DE) imaging offers the potential for dramatically improved detection and characterization of subtle lesions through reduction of "anatomical noise," with applications ranging from thoracic imaging to image-guided interventions. In this work, we investigate DE imaging performance from first principles of image science to preclinical implementation, including: 1.) generalized task-based formulation of NEQ and detectability as a guide to system optimization; 2.) measurements of imaging performance on a DE imaging benchtop; and 3.) a preclinical system developed in our laboratory for cardiac-gated DE chest imaging in a research cohort of 160 patients. Theoretical and benchtop studies directly guide clinical implementation, including the advantages of double-shot versus single-shot DE imaging, the value of differential added filtration between low- and high-kVp projections, and optimal selection of kVp pairs, filtration, and dose allocation. Evaluation of task-based NEQ indicates that the detectability of subtle lung nodules in double-shot DE imaging can exceed that of single-shot DE imaging by a factor of 4 or greater. Filter materials are investigated that not only harden the high-kVp beam (e.g., Cu or Ag) but also soften the low-kVp beam (e.g., Ce or Gd), leading to significantly increased contrast in DE images. A preclinical imaging system suitable for human studies has been constructed based upon insights gained from these theoretical and experimental studies. An important component of the system is a simple and robust means of cardiac-gated DE image acquisition, implemented here using a fingertip pulse oximeter. Timing schemes that provide cardiac-gated image acquisition on the same or successive heartbeats is described. Preclinical DE images to be acquired under research protocol will afford valuable testing of optimal deployment, facilitate the development of DE CAD, and support comparison of DE diagnostic imaging performance to low-dose CT and radiography.
Calibration Plans for the Multi-angle Imaging SpectroRadiometer (MISR)
NASA Astrophysics Data System (ADS)
Bruegge, C. J.; Duval, V. G.; Chrien, N. L.; Diner, D. J.
1993-01-01
The EOS Multi-angle Imaging SpectroRadiometer (MISR) will study the ecology and climate of the Earth through acquisition of global multi-angle imagery. The MISR employs nine discrete cameras, each a push-broom imager. Of these, four point forward, four point aft and one views the nadir. Absolute radiometric calibration will be obtained pre-flight using high quantum efficiency (HQE) detectors and an integrating sphere source. After launch, instrument calibration will be provided using HQE detectors in conjunction with deployable diffuse calibration panels. The panels will be deployed at time intervals of one month and used to direct sunlight into the cameras, filling their fields-of-view and providing through-the-optics calibration. Additional techniques will be utilized to reduce systematic errors, and provide continuity as the methodology changes with time. For example, radiation-resistant photodiodes will also be used to monitor panel radiant exitance. These data will be acquired throughout the five-year mission, to maintain calibration in the latter years when it is expected that the HQE diodes will have degraded. During the mission, it is planned that the MISR will conduct semi-annual ground calibration campaigns, utilizing field measurements and higher resolution sensors (aboard aircraft or in-orbit platforms) to provide a check of the on-board hardware. These ground calibration campaigns are limited in number, but are believed to be the key to the long-term maintenance of MISR radiometric calibration.
On-orbit performance of the Landsat-7 ETM+ radiometric calibrators
Markham, Brian L; Barker, J. L.; Kaita, E.; Seiferth, J.; Morfitt, Ron
2003-01-01
The Landsat-7 Enhanced Thematic Mapper Plus (ETM+) incorporates two new devices to improve its absolute radiometric calibration: a Full Aperture Solar Calibrator (FASC) and a Partial Aperture Solar Calibrator (PASC). The FASC is a diffuser panel, typically deployed once per month. Initial FASC absolute calibration results were within 5% of the pre-launch calibrations. Over time, the responses of the ETM+ to the FASC have varied with the location viewed on the panel, suggesting a localized degradation or contamination of the panel. On the best part of the panel, the trends in response range from m 1.4% y m 1 (band 4) to +0.6% y m 1 (band 7), with band 5 showing the least change at m 0.4% y m 1 . Changes in the panel reflectance due to UV exposure are believed to be the origin of these trends. The PASC is a set of auxiliary optics that allows the ETM+ to image the Sun through reduced apertures. PASC data have normally been acquired on a daily basis. Unlike the FASC, the PASC has exhibited significant anomalies. During the first six months of operation, responses to the PASC increased up to 60%, sending bands 2, 3 and 8 into saturation (band 1 was saturated at launch). The short-wave infrared (SWIR) band individual detectors have shown variations up to - 20% in response to the PASC. The variation is different for each detector. After the first six months, the responses to the PASC have become more stable, with much of the variation related to the within-scan position of the solar image. Overall results to date for all calibrators and comparisons with vicarious calibrations indicate that most of the response variations have been due to the calibrators themselves and suggest that the instrument has been stable with changes in response of less than 0.5% y m 1 .
Topological detector: measuring continuous dosimetric quantities with few-element detector array.
Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr
2016-08-21
A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm × 15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.
An integrated system for the online monitoring of particle therapy treatment accuracy
NASA Astrophysics Data System (ADS)
Fiorina, E.; INSIDE Collaboration
2016-07-01
Quality assurance in hadrontherapy remains an open issue that can be addressed with reliable monitoring of treatment accuracy. The INSIDE (INnovative SolutIons for DosimEtry in hadrontherapy) project aims to develop an integrated online monitoring system based on two dedicated PET panels and a tracking system, called Dose Profiler. The proposed solution is designed to operate in-beam and provide an immediate feedback on the particle range acquiring both photons produced by β+ decays and prompt secondary particle signals. Monte Carlo simulations cover an important role both in the system development, by confirming the design feasibility, and in the system operation, by understanding data. A FLUKA-based integrated simulation was developed taking into account the hadron beam structure, the phantom/patient features and the PET detector and Dose Profiler specifications. In addition, to reduce simulation time in signal generation on PET detectors, a two-step technique has been implemented and validated. The first PET modules were tested in May 2015 at the Centro Nazionale Adroterapia Oncologica (CNAO) in Pavia (Italy) with very satisfactory results: in-spill, inter-spill and post-treatment PET images were reconstructed and a quantitative agreement between data and simulation was found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, John A.; Burke, Kevin J.; Towner, Antony C.N.
This paper describes the development, testing and validation of a shielded waste segregation and clearance monitor designed for the measurement of low-density low-level waste (LLW). The monitor is made of a measurement chamber surrounded by detectors and a shielded outer frame. The shielded chamber consists of a steel frame, which contains typically 1.5 inches (3.81 cm) of lead and 0.5 inches (1.27 cm) of steel shielding. Inside the shielding are plastic scintillator panels, which serve as gross gamma ray detectors. The detector panels, with embedded photomultipliers, completely surround the internal measurement chamber on all 6 sides. Care has been takenmore » to distribute the plastic scintillator detectors in order to optimise both the efficiency for gamma ray detection and at the same time achieve a volumetric sensitivity, which is as uniform as possible. A common high voltage power supply provides the bias voltage for each of the six photomultipliers. The voltage signals arising from the detectors and photomultipliers are amplified by six sensitive amplifiers. Each amplifier incorporates a single channel analyser with both upper and lower thresholds and the digitised counts from each detector are recorded on six scalars. Operation of the device is by means of a microprocessor from which the scalars are controlled. An internal load cell linked to the microprocessor determines the weight of the waste object, and this information is used to calculate the specific activity of the waste. The monitor makes background measurements when the shielded door is closed and a sample, usually a bag of low-density waste, is not present in the measurement chamber. Measurements of the minimum detectable activity (MDA) of an earlier large volume prototype instrument are reported as part of the development of the Waste Segregation and Clearance Monitor (WSCM) described in the paper. For the optimised WSCM a detection efficiency of greater than 32% was measured using a small Cs-137 source placed in the centre of the measurement chamber. Small sources have also been used to determine the spatial variation of the detection efficiency for various positions within the measurement chamber. The data have been used to establish sentencing limits and different 'fingerprints' for specific waste streams including waste streams containing fission products and others based on other radionuclides including Am-241. Some of the test data that are presented have been used to validate the instrument performance. The monitor is currently in routine use at a nuclear facility for the measurement and sentencing of low-density low activity radioactive waste. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Q; Brehler, M; Sisniega, A
Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection)more » using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high-frequency imaging tasks through adoption of the CMOS detector and small FS x-ray source, motivating the use of these components in a new system for quantitative in-vivo imaging of trabecular bone. Financial Support: US NIH grant R01EB018896. Qian Cao is a Howard Hughes Medical Institute International Student Research Fellow. Disclosures: W Zbijewski, J Siewerdsen and A Sisniega receive research funding from Carestream Health.« less
NASA Astrophysics Data System (ADS)
Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schmitt, C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.
2017-07-01
We report the first measurement of the total muon flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were performed using the MAJORANADEMONSTRATOR muon veto system arranged in two different configurations. The measured total flux is (5.31 ± 0.17) ×10-9 μ /s/cm2. Demonstrate a path forward to achieving a background rate at or below 1 count/(ROI-t-y)in the 4-keV region of interest (ROI) around the 2039-keV Q-value for 76Ge ββ(0ν) decay. This is required for tonne-scale germanium-based searches that will probe the inverted-ordering neutrino-mass parameter space for the effective Majorana neutrino mass in ββ(0ν) decay. Show technical and engineering scalability toward a tonne-scale instrument. Perform searches for additional physics beyond the Standard Model, such as dark matter and axions. The MAJORANA Collaboration has designed a modular instrument composed of two cryostats built from ultra-pure electroformed copper, with each cryostat capable of housing over 20 kg of HPGe detectors. The MAJORANADEMONSTRATOR contains 30 kg of detectors fabricated from Ge material enriched to 88% in 76Ge and another 15 kg fabricated from natural Ge (7.8% 76Ge). The modular approach allows us to assemble and optimize each cryostat independently, providing a fast deployment with minimal effect on already-operational detectors.Starting from the innermost cavity, the cryostats are surrounded by a compact graded shield composed of an inner layer of electroformed copper, a layer of commercially sourced C10100 copper, high-purity lead, an active muon veto, borated polyethylene, and pure polyethylene shielding. The cryostats, copper, and lead shielding are enclosed in a radon exclusion box and rest on an over-floor table that has openings for the active muon veto and polyethylene shielding panels situated below the detector. The entire experiment is located in a clean room at the 4850 ft level of SURF. A high-level summary of shield components is shown in Fig. 1.A large fraction of the plastic scintillator panels comprising the active muon-veto system were operated in different configurations at the experimental site during Ge detector constructions and commissioning. We used the resulting data to measure the total muon flux at the Davis Campus at SURF for the first time.
NASA Astrophysics Data System (ADS)
Jeram, Sarik; Ge, Jian; Jiang, Peng; Phillips, Blayne
2016-01-01
Silicon moth-eye antireflective structures have emerged to be an excellent approachfor reducing the amount of light that is lost upon incidence on a given surface of optics made of silicon. This property has been exploited for a wide variety of products ranging from eyeglasses and flat-panel displays to solar panels. These materials typically come in the form of coatings that are applied to an optical substrate such as glass. Moth-eye coatings, made of a periodic array of subwavelength pillars on silicon substrates or other substrates, can produce the desired antireflection (AR) performance for a broad wavelength range and over a wide range of incident angles. In the field of astronomy, every photon striking a detector is significant - and thus, losses from reflectivity at the various optical interfaces before a detector can have significant implications to the science at hand. Moth-eye AR coatings on these optical interfaces may minimize their reflection losses while maximizing light throughput for a multitude of different astronomical instruments. In addition, moth-eye AR coatings, which are patterned directly on silicon surfaces, can significantly enhance the coating durability. At the University of Florida, we tested two moth-eye filters designed for use in the near-infrared regime at 1-8 microns by examining their optical properties, such as transmission, the scattered light, and wavefront quality, and testing the coatings at cryogenic temperatures to characterize their viability for use in both ground- and space-based infrared instruments. This presentation will report our lab evaluation results.
Dosimetry on the Spacelab missions IML1 and IML2, and D2 and on MIR.
Reitz, G; Beaujean, R; Heilmann, C; Kopp, J; Leicher, M; Strauch, K
1996-11-01
Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and thermoluminescence detectors were exposed inside BIORACK during the Spacelab missions IML1 and IML2, in different sections of the MIR space station, and inside the Spacelab module at rack front panels or stowage lockers and in the Spacelab tunnel during D2. In addition, during D2, each Payload Specialist (PS) has worn three permanent detector packages; one at the neck; one at the waist; and one at the ankle. Total dose measurements, particle fluence rate and LET spectra, number of nuclear disintegrations and neutron dose from this exposure are given in this report. The results are compared to theoretical calculations and to previous missions results. The dose equivalent (total radiation exposure) received by the PSs were calculated from the measurements and range from 190 to 770 microSv d-1. Finally, a cursory investigation of results from a particle telescope from two silicon detectors, first used in the last BIORACK mission on STS76, is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X
Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteriamore » of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.« less
Cao, Q; Brehler, M; Sisniega, A; Stayman, J W; Yorkston, J; Siewerdsen, J H; Zbijewski, W
2017-03-01
CMOS x-ray detectors offer small pixel sizes and low electronic noise that may support the development of novel high-resolution imaging applications of cone-beam CT (CBCT). We investigate the effects of CsI scintillator thickness on the performance of CMOS detectors in high resolution imaging tasks, in particular in quantitative imaging of bone microstructure in extremity CBCT. A scintillator thickness-dependent cascaded systems model of CMOS x-ray detectors was developed. Detectability in low-, high- and ultra-high resolution imaging tasks (Gaussian with FWHM of ~250 μ m, ~80 μ m and ~40 μ m, respectively) was studied as a function of scintillator thickness using the theoretical model. Experimental studies were performed on a CBCT test bench equipped with DALSA Xineos3030 CMOS detectors (99 μ m pixels) with CsI scintillator thicknesses of 400 μ m and 700 μ m, and a 0.3 FS compact rotating anode x-ray source. The evaluation involved a radiographic resolution gauge (0.6-5.0 lp/mm), a 127 μm tungsten wire for assessment of 3D resolution, a contrast phantom with tissue-mimicking inserts, and an excised fragment of human tibia for visual assessment of fine trabecular detail. Experimental studies show ~35% improvement in the frequency of 50% MTF modulation when using the 400 μ m scintillator compared to the standard nominal CsI thickness of 700 μ m. Even though the high-frequency DQE of the two detectors is comparable, theoretical studies show a 14% to 28% increase in detectability index ( d' 2 ) of high- and ultrahigh resolution tasks, respectively, for the detector with 400 μ m CsI compared to 700 μ m CsI. Experiments confirm the theoretical findings, showing improvements with the adoption of 400 μ m panel in the visibility of the radiographic pattern (2× improvement in peak-to-through distance at 4.6 lp/mm) and a 12.5% decrease in the FWHM of the tungsten wire. Reconstructions of the tibial plateau reveal enhanced visibility of trabecular structures with the CMOS detector with 400 μ m scinitllator. Applications on CMOS detectors in high resolution CBCT imaging of trabecular bone will benefit from using a thinner scintillator than the current standard in general radiography. The results support the translation of the CMOS sensor with 400 μ m CsI onto the clinical prototype of CMOS-based extremity CBCT.
Cao, Q.; Brehler, M.; Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.
2017-01-01
Purpose CMOS x-ray detectors offer small pixel sizes and low electronic noise that may support the development of novel high-resolution imaging applications of cone-beam CT (CBCT). We investigate the effects of CsI scintillator thickness on the performance of CMOS detectors in high resolution imaging tasks, in particular in quantitative imaging of bone microstructure in extremity CBCT. Methods A scintillator thickness-dependent cascaded systems model of CMOS x-ray detectors was developed. Detectability in low-, high- and ultra-high resolution imaging tasks (Gaussian with FWHM of ~250 μm, ~80 μm and ~40 μm, respectively) was studied as a function of scintillator thickness using the theoretical model. Experimental studies were performed on a CBCT test bench equipped with DALSA Xineos3030 CMOS detectors (99 μm pixels) with CsI scintillator thicknesses of 400 μm and 700 μm, and a 0.3 FS compact rotating anode x-ray source. The evaluation involved a radiographic resolution gauge (0.6–5.0 lp/mm), a 127 μm tungsten wire for assessment of 3D resolution, a contrast phantom with tissue-mimicking inserts, and an excised fragment of human tibia for visual assessment of fine trabecular detail. Results Experimental studies show ~35% improvement in the frequency of 50% MTF modulation when using the 400 μm scintillator compared to the standard nominal CsI thickness of 700 μm. Even though the high-frequency DQE of the two detectors is comparable, theoretical studies show a 14% to 28% increase in detectability index (d′2) of high- and ultrahigh resolution tasks, respectively, for the detector with 400 μm CsI compared to 700 μm CsI. Experiments confirm the theoretical findings, showing improvements with the adoption of 400 μm panel in the visibility of the radiographic pattern (2× improvement in peak-to-through distance at 4.6 lp/mm) and a 12.5% decrease in the FWHM of the tungsten wire. Reconstructions of the tibial plateau reveal enhanced visibility of trabecular structures with the CMOS detector with 400 μm scinitllator. Conclusion Applications on CMOS detectors in high resolution CBCT imaging of trabecular bone will benefit from using a thinner scintillator than the current standard in general radiography. The results support the translation of the CMOS sensor with 400 μm CsI onto the clinical prototype of CMOS-based extremity CBCT. PMID:28989220
Characterization of a multi-axis ion chamber array.
Simon, Thomas A; Kozelka, Jakub; Simon, William E; Kahler, Darren; Li, Jonathan; Liu, Chihray
2010-11-01
The aim of this work was to characterize a multi-axis ion chamber array (IC PROFILER; Sun Nuclear Corporation, Melbourne, FL, USA) that has the potential to simplify the acquisition of LINAC beam data. The IC PROFILER (or panel) measurement response was characterized with respect to radiation beam properties, including dose, dose per pulse, pulse rate frequency (PRF), and energy. Panel properties were also studied, including detector-calibration stability, power-on time, backscatter dependence, and the panel's agreement with water tank measurements [profiles, fractional depth dose (FDD), and output factors]. The panel's relative deviation was typically within (+/-) 1% of an independent (or nominal) response for all properties that were tested. Notable results were (a) a detectable relative field shape change of approximately 1% with linear accelerator PRF changes; (b) a large range in backscatter thickness had a minimal effect on the measured dose distribution (typically less than 1%); (c) the error spread in profile comparison between the panel and scanning water tank (Blue Phantom, CC13; IBA Schwarzenbruck, DE) was approximately (+/-) 0.75%. The ability of the panel to accurately reproduce water tank profiles, FDDs, and output factors is an indication of its abilities as a dosimetry system. The benefits of using the panel versus a scanning water tank are less setup time and less error susceptibility. The same measurements (including device setup and breakdown) for both systems took 180 min with the water tank versus 30 min with the panel. The time-savings increase as the measurement load is increased.
Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V
2003-10-01
Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.
Detective quantum efficiency of photon-counting x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanguay, Jesse, E-mail: jessetan@mail.ubc.ca; Yun, Seungman; Kim, Ho Kyung
Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfermore » through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.« less
Detective quantum efficiency of photon-counting x-ray detectors.
Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A
2015-01-01
Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20-45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J; Sisniega, A; Zbijewski, W
Purpose: To design a dedicated x-ray cone-beam CT (CBCT) system suitable to deployment at the point-of-care and offering reliable detection of acute intracranial hemorrhage (ICH), traumatic brain injury (TBI), stroke, and other head and neck injuries. Methods: A comprehensive task-based image quality model was developed to guide system design and optimization of a prototype head scanner suitable to imaging of acute TBI and ICH. Previously reported models were expanded to include the effects of x-ray scatter correction necessary for detection of low contrast ICH and the contribution of bit depth (digitization noise) to imaging performance. Task-based detectablity index provided themore » objective function for optimization of system geometry, x-ray source, detector type, anti-scatter grid, and technique at 10–25 mGy dose. Optimal characteristics were experimentally validated using a custom head phantom with 50 HU contrast ICH inserts imaged on a CBCT imaging bench allowing variation of system geometry, focal spot size, detector, grid selection, and x-ray technique. Results: The model guided selection of system geometry with a nominal source-detector distance 1100 mm and optimal magnification of 1.50. Focal spot size ∼0.6 mm was sufficient for spatial resolution requirements in ICH detection. Imaging at 90 kVp yielded the best tradeoff between noise and contrast. The model provided quantitation of tradeoffs between flat-panel and CMOS detectors with respect to electronic noise, field of view, and readout speed required for imaging of ICH. An anti-scatter grid was shown to provide modest benefit in conjunction with post-acquisition scatter correction. Images of the head phantom demonstrate visualization of millimeter-scale simulated ICH. Conclusions: Performance consistent with acute TBI and ICH detection is feasible with model-based system design and robust artifact correction in a dedicated head CBCT system. Further improvements can be achieved with incorporation of model-based iterative reconstruction techniques also within the scope of the task-based optimization framework. David Foos and Xiaohui Wang are employees of Carestream Health.« less
Abdul-Majid, S
1987-01-01
The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.
Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.
Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John
2015-07-07
The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.
Evaluation of a Cone Beam Computed Tomography Geometry for Image Guided Small Animal Irradiation
Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John
2015-01-01
The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (“tubular” geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (“pancake” geometry). The small animal radiation research platform (SARRP) developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Notwithstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e., pancake and tubular geometry, respectively. PMID:26083659
Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib
2011-03-01
The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.
A direct reading exposure monitor for radiation processing
NASA Astrophysics Data System (ADS)
Kantz, A. D.; Humpherys, K. C.
Various plastic films have been utilized to measure radiation fields. In general such films are rugged, easily handled, small enough to cause neligible perturbation on the radiation fields, and relatively inexpensive. The radiachromic materials have been shown to have advantages over other plastic fabrications in stability, reproducibility, equivalent response to electron and gamma ray processing fields, dose rate independence, and ready availability of calibration standards. Using a nylon matrix radiachromic detector, a system of direct read-out of absorbed dose has been developed to facilitate monitoring in the megarad region. When an exposed detector is inserted into the reader, the optical transmission signal is processed through an analog to digital converter. The digitized signal addresses a memory bank where the standard response curve is stored. The corresponding absorbed dose is displayed on a digital panel meter. The variation of relative sensitivity of detectors, the background of unirradiated detectors, environmental parameters, and the capacity of the memory bank are contributing factors to the total precision of the read-out system.
Smith, Peter D [Santa Fe, NM; Claytor, Thomas N [White Rock, NM; Berry, Phillip C [Albuquerque, NM; Hills, Charles R [Los Alamos, NM
2010-10-12
An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza
Purpose: The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Methods: Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously publishedmore » design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 deg. to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. Results: The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. Conclusions: The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.« less
Prototype of IGZO-TFT preamplifier and analog counter for pixel detector
NASA Astrophysics Data System (ADS)
Shimazoe, K.; Koyama, A.; Takahashi, H.; Shindoh, T.; Miyoshi, H.
2017-02-01
IGZO-TFT (Indium Galium Zinc Oxide-Thin Film Transistor) is a promising technology for controlling large display areas and large area sensors because of its very low leakage current in the off state and relatively low cost. IGZO has been used as a switching gate for a large area flat-panel detector. The photon counting capability for X-ray medical imaging has been investigated and expected for low-dose exposure and material determination. Here the design and fabrication of a charge sensitive preamplifier and analog counter using IGZO-TFT processes and its performance are reported for the first time to be used for radiation photon counting applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teymurazyan, A.; Rowlands, J. A.; Thunder Bay Regional Research Institute
2014-04-15
Purpose: Electronic Portal Imaging Devices (EPIDs) have been widely used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Our aim is to develop a new high quantum efficiency (QE) Čerenkov Portal Imaging Device (CPID) that is quantum noise limited at dose levels corresponding to a single Linac pulse. Methods: Recently a new concept of CPID for MV x-ray imaging in radiation therapy was introduced. It relies on Čerenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibers aligned with the incident x-raysmore » and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few Čerenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required in order to overcome the readout noise for portal imaging application. In this work the authors propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index (∼1 versus 1.38 in a typical cladding layer), a much superior light collection efficiency is achieved. Results: A Monte Carlo simulation of the new design has been conducted to investigate its feasibility. Detector quantities such as quantum efficiency (QE), spatial resolution (MTF), and frequency dependent detective quantum efficiency (DQE) have been evaluated. The detector signal and the quantum noise have been compared to the readout noise. Conclusions: Our studies show that the modified new CPID has a QE and DQE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current low-QE flat-panel based EPIDs. Furthermore it was demonstrated that the new CPID does not require an avalanche gain in the AMFPI and is quantum noise limited at dose levels corresponding to a single Linac pulse.« less
Physical evaluation of a needle photostimulable phosphor based CR mammography system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Nicholas W.; Lemmens, Kim; Bosmans, Hilde
2012-02-15
Purpose: Needle phosphor based computed radiography (CR) systems promise improved image quality compared to powder phosphor based CR units for x-ray screening mammography. This paper compares the imaging performance of needle CR cassettes, powder based CR cassettes and a well established amorphous selenium (a-Se) based flat panel based mammography system, using consistent beam qualities. Methods: Detector performance was assessed using modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE). Mammography system performance was assessed against levels from the European Guidelines, including threshold gold thickness (c-d), relative signal difference to noise (SdNR) and mean glandular dose,more » for automatic exposure control settings suggested by the manufacturers. The needle based Agfa HM5.0 CR detector was compared against the single sided readout Agfa MM3.0R and dual sided readout Fuji Profect CS powder CR plates using a 28 kV Mo/Rh spectrum, while a 28 kV W/Rh spectrum was used to compare the Agfa HM5.0 against the Siemens MAMMOMAT Inspiration a-Se based system. Results: MTF at 5 mm{sup -1} was 0.16 and 0.24 for the needle CR detector in the fast and slow scan directions, respectively, indicating a slight improvement ({approx}20%) over the two powder CR systems but remained 50% lower than the result at 5 mm{sup -1} for the a-Se detector ({approx}0.55). Structured screen noise was lower for the needle phosphor compared to the powder plates. CR system gain, estimated from the measured absorption fraction and NNPS results, was 6.3 for the (single sided) needle phosphor and 5.1 and 7.2 for the single sided and dual sided powder phosphor systems. Peak DQE at {approx}100 {mu}Gy was 0.47 for the needle system compared to peak DQE figures of 0.33 and 0.46 for the single sided readout powder plates and dual sided readout plates. The high frequency DQE (at 5 mm{sup -1}) was 0.19 for the needle CR plates, a factor of approximately 3 greater than for the powder CR plates. At 28 kV W/Rh, 2 mm Al, peak DQE for the needle CR system was 0.45 against a value of 0.50 for the a-Se detector. The needle CR detector reached the Acceptable limit for 0.1 mm details in the European Guidelines at a mean glandular dose (MGD) of approximately 1.31 mGy imaged at 28 kV Mo/Rh, compared to figures of 2.19 and 1.43 mGy for the single sided and dual sided readout powder CR systems. The a-Se detector could reach the limit at 0.65 mGy using a 28 kV W/Rh spectrum, while the needle CR system required 1.09 mGy for the same spectrum. Conclusions: Imaging performance for the needle CR phosphor technology, characterized using MTF and DQE and threshold gold thickness demonstrated a clear improvement compared to both single and dual sided reading powder phosphor based CR systems.« less
Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Z.; Gang, G. J.; Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu
2014-06-15
Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σ{sub Q}), electronic noise (σ{sub E}), and view aliasing (σ{sub view}). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (N{sub proj}),more » dose (D{sub tot}), and voxel size (b{sub vox}). Results: The results reveal a nonmonotonic relationship between image noise andN{sub proj} at fixed total dose: for the CBCT system considered, noise decreased with increasing N{sub proj} due to reduction of view sampling effects in the regime N{sub proj} <∼200, above which noise increased with N{sub proj} due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f {sup β}—and a general model of individual noise components (σ{sub Q}, σ{sub E}, and σ{sub view}) demonstrated agreement with measurements over a broad range in N{sub proj}, D{sub tot}, and b{sub vox}. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeN{sub proj} ∼ 250–350, nearly an order of magnitude lower in N{sub proj} than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis explicitly relates view aliasing and quantum noise in a manner that includes aspects of the object (“clutter”) and imaging chain (including nonidealities of detector blur and electronic noise) to provide a more rigorous basis for commonly held intuition and heurism in CBCT system design and operation.« less
Examining nanoparticle assemblies using high spatial resolution x-ray microtomography
NASA Astrophysics Data System (ADS)
Jenneson, P. M.; Luggar, R. D.; Morton, E. J.; Gundogdu, O.; Tüzün, U.
2004-09-01
An experimental system has been designed to examine the assembly of nanoparticles in a variety of process engineering applications. These applications include the harvesting from solutions of nanoparticles into green parts, and the subsequent sintering into finished components. The system is based on an x-ray microtomography with a spatial resolution down to 5μm. The theoretical limitations in x-ray imaging are considered to allow experimental optimization. A standard nondestructive evaluation type apparatus with a small focal-spot x-ray tube, high-resolution complementary metal oxide semiconductor flat-panel pixellated detector, and a mechanical rotational stage is used to image the static systems. Dynamic sintering processes are imaged using the same x-ray source and detector but a custom rotational stage which is contained in an environmental chamber where the temperature, atmospheric pressure, and compaction force can be controlled. Three-dimensional tomographic data sets are presented here for samples from the pharmaceutical, nutraceutical, biotechnology, and nanoparticle handling industries and show the microscopic features and defects which can be resolved with the system.
[Flat-panel detector technology -State-of-the-art and future prospects-].
Yamazaki, Tatsuya
2002-01-01
A flat-panel detector (FPD) is a long-awaited technology to implement the digital X-ray imaging technology into the radiological department. This paper describes the state-of-the-art technology and future prospects on the FPD technology. State-of-the-art technology was reviewed taking the CXDI series as an example. Several FPD-based systems have been introduced into the Japanese market since CXDI-11 opened it in November 1998. Accompanying CXDI-C2 for control, CXDI-22 for table position and CXDI-31 for portable, the CXDI series fulfills the requirement of the radiography room being a fully digitalized room. The FPD on the CXDI series is comprised of a scintillator (Gd(2)O(2)S:Tb(3+)) as a primary sensor in which the X-ray is captured and an amorphous silicon detector (LANMIT) as a secondary sensor in which the fluorescent light is detected. Since the scintillator is identical to that of the screen-film systems, it can be said as proven, durable and chemically stable and it is expected to produce the same image quality as the screen-film systems. CXDI-31, a portable FPD-based system, was developed targeting thinner dimensions, lightweight, durability and high spatial resolution. Thoroughly re-designing the mechanical structure and reducing the power consumption at the readout IC realized thinner dimensions. Introducing the portable note PC technologies successfully combined lightweight with durability. Improving the sensor process and re-designing the layout made the sensor high resolution without compromising the signal-to-noise ratio. Future prospects were overviewed in the aspect of technology and applications. Sensitivity, spatial resolution, frame rate and portability were described as the upcoming technology. Increasing gain and reducing noise will realize higher sensitivity, especially by adopting the PbI(2), HgI(2) or such photoconductor materials as the primary sensor. Pixelized amplifier will also achieve higher sensitivity. Layered sensor designed such that TFT layer and sensitive layer are constructed separately will decrease the pixel pitch lower than 100 microm. The FPD has been applied in radiography, mammography and angiography. It will expand the applications into low-dose fluoroscopy to replace the X-ray image intensifiers and into cone-beam computer tomography. What the FPD brought was mainly the efficient workflow of the X-ray technologist. However, diagnosis efficiency and patient benefit must be improved further more by combining FPD technology into computer-aided diagnosis, tele-radiography or other IT-based technologies. Such prospect may come true in the near future.
Flat Panel Space Based Space Surveillance Sensor
NASA Astrophysics Data System (ADS)
Kendrick, R.; Duncan, A.; Wilm, J.; Thurman, S. T.; Stubbs, D. M.; Ogden, C.
2013-09-01
Traditional electro-optical (EO) imaging payloads consist of an optical telescope to collect the light from the object scene and map the photons to an image plane to be digitized by a focal plane detector array. The size, weight, and power (SWaP) for the traditional EO imager is dominated by the optical telescope, driven primarily by the large optics, large stiff structures, and the thermal control needed to maintain precision free-space optical alignments. We propose a non-traditional Segmented Planar Imaging Detector for EO Reconnaissance (SPIDER) imager concept that is designed to substantially reduce SWaP, by at least an order of magnitude. SPIDER maximizes performance by providing a larger effective diameter (resolution) while minimizing mass and cost. SPIDER replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies. Lenslets couple light from the object into a set of waveguides on a PIC. Light from each lenslet is distributed among different waveguides by both field angle and optical frequency, and the lenslets are paired up to form unique interferometer baselines by combining light from different waveguides. The complex spatial coherence of the object (for each field angle, frequency, and baseline) is measured with a balanced four quadrature detection scheme. By the Van-Cittert Zernike Theorem, each measurement corresponds to a unique Fourier component of the incoherent object intensity distribution. Finally, an image reconstruction algorithm is used to invert all the data and form an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., CMOS fabrication). The standard EO payload integration and test process which involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication that substantially reduces associated schedule and cost. The low profile and low SWaP of a SPIDER system enables high resolution imaging with a payload that is similar in size and aspect ratio to a solar panel. This allows high resolution low cost options for space based space surveillance telescopes. The low SWaP design enables hosted payloads, cubesat designs as well as traditional bus options that are lower cost. We present a description of the concept and preliminary simulation and experimental data that demonstrate the imaging capabilities of the SPIDER technique.
Characterization of a multi-axis ion chamber array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Thomas A.; Kozelka, Jakub; Simon, William E.
Purpose: The aim of this work was to characterize a multi-axis ion chamber array (IC PROFILER; Sun Nuclear Corporation, Melbourne, FL USA) that has the potential to simplify the acquisition of LINAC beam data. Methods: The IC PROFILER (or panel) measurement response was characterized with respect to radiation beam properties, including dose, dose per pulse, pulse rate frequency (PRF), and energy. Panel properties were also studied, including detector-calibration stability, power-on time, backscatter dependence, and the panel's agreement with water tank measurements [profiles, fractional depth dose (FDD), and output factors]. Results: The panel's relative deviation was typically within ({+-}) 1% ofmore » an independent (or nominal) response for all properties that were tested. Notable results were (a) a detectable relative field shape change of {approx}1% with linear accelerator PRF changes; (b) a large range in backscatter thickness had a minimal effect on the measured dose distribution (typically less than 1%); (c) the error spread in profile comparison between the panel and scanning water tank (Blue Phantom, CC13; IBA Schwarzenbruck, DE) was approximately ({+-}) 0.75%. Conclusions: The ability of the panel to accurately reproduce water tank profiles, FDDs, and output factors is an indication of its abilities as a dosimetry system. The benefits of using the panel versus a scanning water tank are less setup time and less error susceptibility. The same measurements (including device setup and breakdown) for both systems took 180 min with the water tank versus 30 min with the panel. The time-savings increase as the measurement load is increased.« less
Portable source identification device
NASA Astrophysics Data System (ADS)
Andersen, Eric S.; Samuel, Todd J.; Gervais, Kevin L.
2005-05-01
U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. As the deployment of radiation detection systems proceeds, there is a need to adapt the baseline radiation portal monitor (RPM) system technology to operations at these diverse ports of entry. When screening produces an alarm in the primary inspection RPM, the alarming vehicle is removed from the flow of commerce and the alarm is typically confirmed in a secondary inspection RPM. The portable source identification device (PSID) is a radiation sensor panel (RSP), based on thallium-doped sodium iodide (NaI(Tl)) scintillation detector and gamma spectroscopic analysis hardware and software, mounted on a scissor lift on a small truck. The lift supports a box containing a commercial off-the-shelf (COTS) sodium iodide detector that provides real-time isotopic identification, including neutron detectors to interdict Weapons of Mass Destruction (WMD) and radiation dispersion devices (RDD). The scissor lift will lower the detectors to within a foot off the ground and raise them to approximately 24 feet (7.3 m) in the air, allowing a wide vertical scanning range.
Keuschnigg, Peter; Kellner, Daniel; Fritscher, Karl; Zechner, Andrea; Mayer, Ulrich; Huber, Philipp; Sedlmayer, Felix; Deutschmann, Heinz; Steininger, Philipp
2017-01-01
Couch-mounted cone-beam computed tomography (CBCT) imaging devices with independently rotatable x-ray source and flat-panel detector arms for acquisitions of arbitrary regions of interest (ROI) have recently been introduced in image-guided radiotherapy (IGRT). This work analyzes mechanical limitations and gravity-induced effects influencing the geometric accuracy of images acquired with arbitrary angular constellations of source and detector in nonisocentric trajectories, which is considered essential for IGRT. In order to compensate for geometric inaccuracies of this modality, a 9-degrees-of-freedom (9-DOF) flexmap correction approach is presented, focusing especially on the separability of the flexmap parameters of the independently movable components of the device. The 9-DOF comprise a 3D translation of the x-ray source focal spot, a 3D translation of the flat-panel's active area center and three Euler-rotations of the detector's row and column vectors. The flexmap parameters are expressed with respect to the angular position of each of the devices arms. Estimation of the parameters is performed, using a CT-based structure set of a table-mounted, cylindrical ball-bearing phantom. Digitally reconstructed radiograph (DRR) patches are derived from the structure set followed by local 2D in-plane registration and subsequent 3D transform estimation by nonlinear regression with outlier detection. Flexmap parameter evaluations for the factory-calibrated system in clockwise and counter-clockwise rotation direction have shown only minor differences for the overall set of flexmap parameters. High short-term reproducibility of the flexmap parameters has been confirmed by experiments over 10 acquisitions for both directions, resulting in standard deviation values of ≤0.183 mm for translational components and ≤0.0219 deg for rotational components, respectively. A comparison of isocentric and nonisocentric flexmap evaluations showed that the mean differences of the parameter curves reside within their standard deviations, confirming the ability of the proposed calibration method to handle both types of trajectories equally well. Reconstructions of 0.1 mm and 0.25 mm steel wires showed similar results for the isocentric and nonisocentric cases. The full-width at half maximum (FWHM) measure indicates an average improvement of the calibrated reconstruction of 85% over the uncalibrated reconstruction. The contrast of the point spread function (PSF) improved by 310% on average over all experiments. Moreover, a reduced amount of artifacts visible in nonisocentric reconstructions of a head phantom and a line-pair phantom has been achieved by separate application of the 9-DOF flexmap on the geometry described by the independently moving source arm and detector arm. Using a 9-DOF flexmap approach for correcting the geometry of projections acquired with a device capable of independent movements of the source and panel arms has been shown to be essential for IGRT use cases such as CBCT reconstruction and 2D/3D registration tasks. The proposed pipeline is able to create flexmap curves which are easy to interpret, useful for mechanical description of the device and repetitive quality assurance as well as system-level preventive maintenance. Application of the flexmap has shown improvements of image quality for planar imaging and volumetric imaging which is crucial for patient alignment accuracy. © 2016 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Heinrichs, D; Biswas, D
2009-05-27
Neutron detectors and control panels transferred from the Rocky Flats Plant (RFP) were recalibrated and retested for redeployment to the CEF. Testing and calibration were successful with no failure to any equipment. Detector sensitivity was tested at a TRIGA reactor, and the response to thermal neutron flux was satisfactory. MCNP calculated minimum fission yield ({approx} 2 x 10{sup 15} fissions) was applied to determine the thermal flux at selected detector positions at the CEF. Thermal flux levels were greater than 6.39 x 10{sup 6} (n/cm{sup 2}-sec), which was about four orders of magnitude greater than the minimum alarm flux. Calculationsmore » of detector survivable distances indicate that, to be out of lethal area, a detector needs to be placed greater than 15 ft away from a maximum credible source. MCNP calculated flux/dose results were independently verified by COG. CAAS calibration and the testing confirmed that the RFP CAAS system is performing its functions as expected. New criteria for the CAAS detector placement and 12-rad zone boundaries at the CEF are established. All of the CAAS related documents and hardware have been transferred from LLNL to NSTec for installation at the CEF high bay areas.« less
3D modeling of electric fields in the LUX detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerib, D. S.; Alsum, S.; Araújo, H. M.
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generatedmore » on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m 2. Here, from our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.« less
3D modeling of electric fields in the LUX detector
Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...
2017-11-24
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generatedmore » on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m 2. Here, from our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.« less
3D modeling of electric fields in the LUX detector
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.
2017-11-01
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.
Kuttig, Jan D; Steiding, Christian; Kolditz, Daniel; Hupfer, Martin; Karolczak, Marek; Kalender, Willi A
2015-06-01
To investigate the dose saving potential of direct-converting CdTe photon-counting detector technology for dedicated breast CT. We analyzed the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of two detector technologies, suitable for breast CT (BCT): a flat-panel energy-integrating detector with a 70 μm and a 208 μm thick gadolinium oxysulfide (GOS) and a 150 μm thick cesium iodide (CsI) scintillator and a photon-counting detector with a 1000 μm thick CdTe sensor. The measurements for GOS scintillator thicknesses of 70 μm and 208 μm delivered 10% pre-sampled MTF values of 6.6 mm(-1) and 3.2 mm(-1), and DQE(0) values of 23% and 61%. The 10% pre-sampled MTF value for the 150 μm thick CsI scintillator 6.9 mm(-1), and the DQE(0) value was 49%. The CdTe sensor reached a 10% pre-sampled MTF value of 8.5 mm(-1) and a DQE(0) value of 85%. The photon-counting CdTe detector technology allows for significant dose reduction compared to the energy-integrating scintillation detector technology used in BCT today. Our comparative evaluation indicates that a high potential dose saving may be possible for BCT by using CdTe detectors, without loss of spatial resolution. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Torque Sensor Based on Tunnel-Diode Oscillator; Shaft-Angle Sensor Based on Tunnel-Diode Oscillator; Ground Facility for Vicarious Calibration of Skyborne Sensors; Optical Pressure-Temperature Sensor for a Combustion Chamber; Impact-Locator Sensor Panels; Low-Loss Waveguides for Terahertz Frequencies; MEMS/ECD Method for Making Bi(2-x)Sb(x)Te3 Thermoelectric Devices; Low-Temperature Supercapacitors; Making a Back-Illuminated Imager with Back-Side Contact and Alignment Markers; Compact, Single-Stage MMIC InP HEMT Amplifier; Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors; Improved Sand-Compaction Method for Lost-Foam Metal Casting; Improved Probe for Evaluating Compaction of Mold Sand; Polymer-Based Composite Catholytes for Li Thin-Film Cells; Using ALD To Bond CNTs to Substrates and Matrices; Alternating-Composition Layered Ceramic Barrier Coatings; Variable-Structure Control of a Model Glider Airplane; Axial Halbach Magnetic Bearings; Compact, Non-Pneumatic Rock-Powder Samplers; Biochips Containing Arrays of Carbon-Nanotube Electrodes; Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors; Neon as a Buffer Gas for a Mercury-Ion Clock; Miniature Incandescent Lamps as Fiber-Optic Light Sources; Bidirectional Pressure-Regulator System; and Prism Window for Optical Alignment. Single-Grid-Pair Fourier Telescope for Imaging in Hard-X Rays and gamma Rays Range-Gated Metrology with Compact Optical Head Lossless, Multi-Spectral Data Compressor for Improved Compression for Pushbroom-Typetruments.
Measurement of the noise power spectrum in digital x-ray detectors
NASA Astrophysics Data System (ADS)
Aufrichtig, Richard; Su, Yu; Cheng, Yu; Granfors, Paul R.
2001-06-01
The noise power spectrum, NPS, is a key imaging property of a detector and one of the principle quantities needed to compute the detective quantum efficiency. NPS is measured by computing the Fourier transform of flat field images. Different measurement methods are investigated and evaluated with images obtained from an amorphous silicon flat panel x-ray imaging detector. First, the influence of fixed pattern structures is minimized by appropriate background corrections. For a given data set the effect of using different types of windowing functions is studied. Also different window sizes and amounts of overlap between windows are evaluated and compared to theoretical predictions. Results indicate that measurement error is minimized when applying overlapping Hanning windows on the raw data. Finally it is shown that radial averaging is a useful method of reducing the two-dimensional noise power spectrum to one dimension.
Flat-panel-detector chest radiography: effect of tube voltage on image quality.
Uffmann, Martin; Neitzel, Ulrich; Prokop, Mathias; Kabalan, Nahla; Weber, Michael; Herold, Christian J; Schaefer-Prokop, Cornelia
2005-05-01
To compare the visibility of anatomic structures in direct-detector chest radiographs acquired with different tube voltages at equal effective doses to the patient. The study protocol was approved by the institutional internal review board, and written informed consent was obtained from all patients. Posteroanterior chest radiographs of 48 consecutively selected patients were obtained at 90, 121, and 150 kVp by using a flat-panel-detector unit that was based on cesium iodide technology and automated exposure control. Monte Carlo simulations were used to verify that the effective dose for all kilovoltage settings was equal. Five radiologists subjectively and independently rated the delineation of anatomic structures on hard-copy images by using a five-point scale. They also ranked image quality in a blinded side-by-side comparison. Average ranking scores were compared by using one-way analysis of variance with repeated measures. Data were analyzed for the entire patient group and for two patient subgroups that were formed according to body mass index (BMI). The visibility scores of most anatomic structures were significantly superior with the 90-kVp images (mean score, 3.11), followed by the 121-kVp (mean score, 2.95) and 150-kVp images (mean score, 2.80). Differences did not reach significance (P > .05) only for the delineation of the peripheral vessels, the heart contours, and the carina. This was also true for the subgroup of patients (n = 24) with a BMI greater than and the subgroup of patients (n = 24) with a BMI less than the mean BMI (26.9 kg/m(2)). At side-by-side comparison, the readers rated 90-kVp images as having superior image quality in the majority of image triplets; the percentage of 90-kVp images rated as "first choice" ranged from 60% (29 of 48 patients) to 90% (43 of 48 patients), with a median of 88% (42 of 48 patients), among the readers. Delineation of most anatomic structures and overall image quality were ranked superior in digital radiographs acquired with lower kilovoltage at a constant effective patient dose. (c) RSNA, 2005.
Performance evaluation of G8, a high sensitivity benchtop preclinical PET/CT tomograph.
Gu, Zheng; Taschereau, Richard; Vu, Nam; Prout, David L; Silverman, Robert W; Lee, Jason; Chatziioannou, Arion F
2018-06-14
G8 is a bench top integrated PET/CT scanner dedicated to high sensitivity and high resolution imaging of mice. This work characterizes its National Electrical Manufacturers Association (NEMA) NU4-2008 performance where applicable and also provides an assessment of the basic imaging performance of the CT subsystem. Methods: The PET subsystem in G8 consists of four flat-panel type detectors arranged in a box like geometry. Each panel consists of two modules of a 26 × 26 pixelated bismuth germanate (BGO) scintillator array with individual crystals measuring 1.75 × 1.75 × 7.2 mm. The crystal arrays are coupled to multichannel photomultiplier tubes via a tapered, pixelated glass lightguide. A cone-beam CT consisting of a micro focus X-ray source and a Complementary Metal Oxide Semiconductor (CMOS) detector provides anatomical information. Sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance and the capability of phantom and mouse imaging were evaluated for the PET subsystem. Noise, dose level, contrast and resolution were evaluated for the CT subsystem. Results: With an energy window of 350-650 keV, the peak sensitivity was measured to be 9.0% near the center of the field of view (CFOV). The crystal energy resolution ranged from 15.0% to 69.6% full width at half maximum (FWHM), with a mean of 19.3 ± 3.7%. The average detector intrinsic spatial resolution was 1.30 mm and 1.38 mm FWHM in the transverse and axial directions. The maximum likelihood expectation maximization (ML-EM) reconstructed image of a point source in air, averaged 0.81 ± 0.11 mm FWHM. The peak noise equivalent count rate (NECR) for the mouse-sized phantom was 44 kcps for a total activity of 2.9 MBq (78 µCi) and the scatter fraction was 11%. For the CT subsystem, the value of the modulation transfer function (MTF) at 10% was 2.05 cycles/mm. Conclusion: The overall performance demonstrates that the G8 can produce high quality images for molecular imaging based biomedical research. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Yang, Deshan; Li, H. Harold; Goddu, S. Murty; Tan, Jun
2014-10-01
Onboard cone-beam CT (CBCT) has been widely used in image guided radiation therapy. However, the longitudinal coverage is only 15.5 cm in the pelvis scan mode. As a result, a single CBCT scan cannot cover the planning target volume in the longitudinal direction for over 80% of the patients. The common approach is to use double- or multiple-circular scans and then combine multiple CBCT volumes after reconstruction. However it raises concerns regarding doubled imaging dose at the imaging beam junctions due to beam divergence. In this work, we present a new method, DSCS (Dual Scan with Complementary Shifts), to address the CBCT coverage problem using a pair of complementary circular scans. In DSCS, two circular scans were performed at 39.5 cm apart longitudinally. In the superior scan, the detector panel was offset by 16 cm to the left, 15 cm to the inferior. In the inferior scan, the detector panel was shifted 16 cm to the right and 15 cm to the superior. The effective imaging volume is 39.5 cm longitudinally with a 45 cm lateral field-of-view (FOV). Half beam blocks were used to confine the imaging radiation inside the volume of interest. A new image reconstruction algorithm was developed, based on the Feldkamp-Davis-Kress cone-beam CT reconstruction algorithm, to support the DSCS scanning geometry. Digital phantom simulations were performed to demonstrate the feasibility of DSCS. Physical phantom studies were performed using an anthropomorphic phantom on a commercial onboard CBCT system. With basic scattering corrections, the reconstruction results were acceptable. Other issues, including the discrepancy in couch vertical at different couch longitudinal positions, and the inaccuracy in couch table longitudinal movement, were manually corrected during the reconstruction process. In conclusion, the phantom studies showed that, using DSCS, a 39.5 cm longitudinal coverage with a 45 cm FOV was accomplished. The efficiency of imaging dose usage was near 100%. This proposed method could be potentially useful for image guidance and subsequent treatment plan adaptation.
46 CFR 27.203 - What are the requirements for fire detection on towing vessels?
Code of Federal Regulations, 2014 CFR
2014-10-01
...— (a) Each detector, each control panel, and each fire alarm are approved under 46 CFR subpart 161.002...; (c) The system is arranged and installed so a fire in the engine room automatically sets off alarms... light; (2) Both an audible alarm to notify crew at the operating station of fire and visible alarms to...
46 CFR 27.203 - What are the requirements for fire detection on towing vessels?
Code of Federal Regulations, 2013 CFR
2013-10-01
...— (a) Each detector, each control panel, and each fire alarm are approved under 46 CFR subpart 161.002...; (c) The system is arranged and installed so a fire in the engine room automatically sets off alarms... light; (2) Both an audible alarm to notify crew at the operating station of fire and visible alarms to...
46 CFR 27.203 - What are the requirements for fire detection on towing vessels?
Code of Federal Regulations, 2011 CFR
2011-10-01
...— (a) Each detector, each control panel, and each fire alarm are approved under 46 CFR subpart 161.002...; (c) The system is arranged and installed so a fire in the engine room automatically sets off alarms... light; (2) Both an audible alarm to notify crew at the operating station of fire and visible alarms to...
46 CFR 27.203 - What are the requirements for fire detection on towing vessels?
Code of Federal Regulations, 2012 CFR
2012-10-01
...— (a) Each detector, each control panel, and each fire alarm are approved under 46 CFR subpart 161.002...; (c) The system is arranged and installed so a fire in the engine room automatically sets off alarms... light; (2) Both an audible alarm to notify crew at the operating station of fire and visible alarms to...
Development and operation of a high-throughput accurate-wavelength lens-based spectrometer a)
Bell, Ronald E.
2014-07-11
A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm -1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤ 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. The computer-controlled hardware allows automated control of wavelength, timing, f-number, automated datamore » collection, and wavelength calibration.« less
Performance Study of an aSi Flat Panel Detector for Fast Neutron Imaging of Nuclear Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumann, M.; Mauerhofer, E.; Engels, R.
Radioactive waste must be characterized to check its conformance for intermediate storage and final disposal according to national regulations. For the determination of radio-toxic and chemo-toxic contents of radioactive waste packages non-destructive analytical techniques are preferentially used. Fast neutron imaging is a promising technique to assay large and dense items providing, in complementarity to photon imaging, additional information on the presence of structures in radioactive waste packages. Therefore the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA) using 14 MeV neutrons is studied in a cooperation framework of Forschungszentrum Juelich GmbH, RWTH Aachen University and Siemensmore » AG. However due to the low neutron emission of neutron generators in comparison to research reactors the challenging task resides in the development of an imaging detector with a high efficiency, a low sensitivity to gamma radiation and a resolution sufficient for the purpose. The setup is composed of a commercial D-T neutron generator (Genie16GT, Sodern) with a surrounding shielding made of polyethylene, which acts as a collimator and an amorphous silicon flat panel detector (aSi, 40 x 40 cm{sup 2}, XRD-1642, Perkin Elmer). Neutron detection is achieved using a general propose plastic scintillator (EJ-260, Eljen Technology) linked to the detector. The thermal noise of the photodiodes is reduced by employing an entrance window made of aluminium. Optimal gain and integration time for data acquisition are set by measuring the response of the detector to the radiation of a 500 MBq {sup 241}Am-source. Detector performance was studied by recording neutron radiography images of materials with various, but well known, chemical compositions, densities and dimensions (Al, C, Fe, Pb, W, concrete, polyethylene, 5 x 8 x 10 cm{sup 3}). To simulate gamma-ray emitting waste radiographs in presence of a gamma-ray sources ({sup 60}Co, {sup 137}Cs, {sup 241}Am) were performed. A homemade algorithm was developed to determine a value which is related to the neutron absorption of the sample with the analysis of the raw detector data. The detector was placed 42 cm away from the neutron source. Distance between detector and the samples was 0.5 cm. At the sample position the fast neutron flux was estimated to 9x10{sup 3} n cm{sup -2} s{sup -1} for a neutron emission of 10{sup 8} n s{sup -1}. The acquisition time was 15 minutes. First neutron radiographs were successfully recorded despite the low detector efficiency and low neutron emission. Analysis of the data shows a correlation between the measured signal and determined neutron absorption. Thus discrimination between different materials of same thicknesses may be achieved. The measurements and results will be presented and discussed in details.« less
NASA Astrophysics Data System (ADS)
Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua
2016-03-01
Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ZHANG, H; Huang, J; Ma, J
2014-06-15
Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam on-board CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 mAs to 1.6 mAs per projection at threemore » fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are non-zero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second- order neighbors are about 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. Conclusion: Noise is correlated among nearest neighboring detector bins of CBCT projection data. An accurate noise model of CBCT projection data can improve the performance of the statistics-based projection restoration algorithm for low-dose CBCT.« less
SW-MW infrared spectrometer for lunar mission
NASA Astrophysics Data System (ADS)
Banerjee, Arup; Biswas, Amiya; Joshi, Shaunak; Kumar, Ankush; Rehman, Sami; Sharma, Satish; Somani, Sandip; Bhati, Sunil; Karelia, Jitendra; Saxena, Anish; Chowdhury, Arup R.
2016-04-01
SW-MW Imaging Infrared Spectrometer, the Hyperspectral optical imaging instrument is envisaged to map geomorphology and mineralogy of lunar surface. The instrument is designed to image the electro-magnetic energy emanating from moon's surface with high spectral and spatial resolution for the mission duration from an altitude of 100 km. It is designed to cover 0.8 to 5 μm in 250 spectral bands with GSD 80m and swath 20km. Primarily, there are three basic optical segments in the spectrometer. They are fore optics, dispersing element and focusing elements. The payload is designed around a custom developed multi-blaze convex grating optimized for system throughput. The considerations for optimization are lunar radiation, instrument background, optical throughput, and detector sensitivity. HgCdTe (cooled using a rotary stirling cooler) based detector array (500x256 elements, 30μm) is being custom developed for the spectrometer. Stray light background flux is minimized using a multi-band filter cooled to cryogenic temperature. Mechanical system realization is being performed considering requirements such as structural, opto-mechanical, thermal, and alignment. The entire EOM is planned to be maintained at 240K to reduce and control instrument background. Al based mirror, grating, and EOM housing is being developed to maintain structural requirements along with opto- mechanical and thermal. Multi-tier radiative isolation and multi-stage radiative cooling approach is selected for maintaining the EOM temperature. EOM along with precision electronics packages are planned to be placed on the outer and inner side of Anti-sun side (ASS) deck. Power and Cooler drive electronics packages are planned to be placed on bottom side of ASS panel. Cooler drive electronics is being custom developed to maintain the detector temperature within 100mK during the imaging phase. Low noise detector electronics development is critical for maintaining the NETD requirements at different target temperatures. Subsequent segments of the paper bring out system design aspects and trade-off analyses.
ISS Ammonia Leak Detection Through X-Ray Fluorescence
NASA Technical Reports Server (NTRS)
Camp, Jordan; Barthelmy, Scott; Skinner, Gerry
2013-01-01
Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge coupled device) focal plane detector that reads out the position and energy of the X-rays, allowing a determination of the leak location. The effective area of the detection system is approximately 2 cm(exp2) at 1 keV. The Lobster astrophysics instrument, designed for monitoring the sky for Xray transients, gives high sensitivity along with large field of view (30×30deg) and good spatial resolution (1 arc min). This offers a significant benefit for detecting ISS ammonia leaks, since the goal is to localize small leaks as efficiently as possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Wei; Li Dan; Reznik, Alla
2005-09-15
An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoidmore » pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.« less
A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.
Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu
2015-01-01
X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup.
High-fidelity artifact correction for cone-beam CT imaging of the brain
NASA Astrophysics Data System (ADS)
Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.
2015-02-01
CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement with the nominal blood contrast of 50 HU. Although noise was amplified by the corrections, the contrast-to-noise ratio (CNR) of simulated bleeds was improved by nearly a factor of 3.5 (CNR = 0.54 without corrections and 1.91 after correction). The resulting image quality motivates further development and translation of the FPD-CBCT system for imaging of acute TBI.
Solar panel truss mounting systems and methods
Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel
2015-10-20
An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.
Solar panel truss mounting systems and methods
Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel
2016-06-28
An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.
Broadly tunable thin-film intereference coatings: active thin films for telecom applications
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias
2003-06-01
Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.
2006-06-01
work by Marshak et al.,9 who was studying neutron diffusion, and by Hamaker ,10 who had calculated the light emitted from a layer of x-ray fluorescent...diffusion and slowing down of neutrons,” Nucleonics 4, 10–22 1949. 10H. C. Hamaker , “Radiation and heat conduction in light scattering mate- rials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheurig-Muenkler, Christian, E-mail: christian.scheurig@charite.de; Powerski, Maciej J., E-mail: maciej.powerski@med.ovgu.de; Mueller, Johann-Christoph, E-mail: johann-christoph.mueller@charite.de
PurposeEvaluation of patient radiation exposure during uterine artery embolization (UAE) and literature review to identify techniques minimizing required dose.MethodsA total of 224 of all included 286 (78 %) women underwent UAE according to a standard UAE-protocol (bilateral UAE from unilateral approach using a Rösch inferior mesenteric and a microcatheter, no aortography, no ovarian artery catheterization or embolization) and were analyzed for radiation exposure. Treatment was performed on three different generations of angiography systems: (I) new generation flat-panel detector (N = 108/151); (II) classical image amplifier and pulsed fluoroscopy (N = 79/98); (III) classical image amplifier and continuous fluoroscopy (N = 37/37). Fluoroscopy time (FT) and dose-area productmore » (DAP) were documented. Whenever possible, the following dose-saving measures were applied: optimized source-object, source-image, and object-image distances, pulsed fluoroscopy, angiographic runs in posterior-anterior direction with 0.5 frames per second, no magnification, tight collimation, no additional aortography.ResultsIn a standard bilateral UAE, the use of the new generation flat-panel detector in group I led to a significantly lower DAP of 3,156 cGy × cm{sup 2} (544–45,980) compared with 4,000 cGy × cm{sup 2} (1,400–13,000) in group II (P = 0.033). Both doses were significantly lower than those of group III with 8,547 cGy × cm{sup 2} (3,324–35,729; P < 0.001). Other reasons for dose escalation were longer FT due to difficult anatomy or a large leiomyoma load, additional angiographic runs, supplementary ovarian artery embolization, and obesity.ConclusionsThe use of modern angiographic units with flat panel detectors and strict application of methods of radiation reduction lead to a significantly lower radiation exposure. Target DAP for UAE should be kept below 5,000 cGy × cm{sup 2}.« less
Attic Retrofits Using Nail-Base Insulated Panels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallay, David; Kochkin, Vladimir
This project developed and demonstrated a roof/attic energy retrofit solution using nail-base insulated panels for existing homes where traditional attic insulation approaches are not effective or feasible. Nail-base insulated panels (retrofit panels) consist of rigid foam insulation laminated to one face of a wood structural panel. The prefabricated panels are installed above the existing roof deck during a reroofing effort.
Focal plane mechanical design of the NISP/Euclid instrument
NASA Astrophysics Data System (ADS)
Bonnefoi, Anne; Bon, William; Niclas, Mathieu; Solheim, Bjarte G. B.; Torvanger, Oyvind; Schistad, Robert; Foulon, Benjamin; Garcia, José; Vives, Sébastien
2016-07-01
Currently in phase C, the Euclid mission selected by ESA in the Cosmic Vision program is dedicated to understand dark energy and dark matter. NISP (standing for Near Infrared Spectro-Photometer) is one of the two instruments of the mission. NISP will combine a photometer and a spectrometer working in the near-IR (0.9-2 microns). Its detection subsystem (called NI-DS) is based on a mosaic of 16 IR detectors cooled down to 90K which are supported by a molybdenum plate. The front-end readout electronics (working at 130K) are supported by another structure in Aluminum. The NI-DS is mounted on the rest of the instrument thanks to a panel in Silicon Carbide (SiC). Finally an optical baffle in Titanium will prevent the rogue light to reach the detectors. On top of the complexity due to the wide range of temperatures and the various materials imposed at the interfaces; the NI-DS has also to incorporate an internal adjustment capability of the position of the focal plane in tip/tilt and focus. This article will present current status of the development of the detection system of NISP.
A Micromegas-based telescope for muon tomography: The WatTo experiment
NASA Astrophysics Data System (ADS)
Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.; Winkler, M.
2016-10-01
This paper reports about the first Micromegas-based telescope built for applications in muon tomography. The telescope consists of four, 50×50 cm2 resistive multiplexed Micromegas with a 2D layout and a self-triggering electronics based on the Dream chip. Thanks to the multiplexing, the four detectors were readout with a single Front-End Unit. The high voltages were provided by a dedicated card using low consumption CAEN miniaturized modules. A nano-PC (Hummingboard) ensured the HV control and monitoring coupled with a temperature feedback as well as the data acquisition and storage. The overall consumption of the instrument yielded 30 W only, i.e. the equivalent of a standard bulb. The telescope was operated outside during 3.5 months to image the water tower of the CEA-Saclay research center, including a 1.5-month campaign with solar panels. The development of autonomous, low consumption muon telescopes with unprecedented accuracy opens new applications in imaging as well as in the field of muon metrology.
NASA Astrophysics Data System (ADS)
Liu, Shuangquan; Zhang, Bin; Wang, Xin; Li, Lin; Chen, Yan; Liu, Xin; Liu, Fei; Shan, Baoci; Bai, Jing
2011-02-01
A dual-modality imaging system for simultaneous fluorescence molecular tomography (FMT) and positron emission tomography (PET) of small animals has been developed. The system consists of a noncontact 360°-projection FMT module and a flat panel detector pair based PET module, which are mounted orthogonally for the sake of eliminating cross interference. The FMT images and PET data are simultaneously acquired by employing dynamic sampling mode. Phantom experiments, in which the localization and range of radioactive and fluorescence probes are exactly indicated, have been carried out to verify the feasibility of the system. An experimental tumor-bearing mouse is also scanned using the dual-modality simultaneous imaging system, the preliminary fluorescence tomographic images and PET images demonstrate the in vivo performance of the presented dual-modality system.
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew; Fraenkel, E. D.; Glas, Dariusz; Legumina, Remigiusz
2013-12-01
The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. The Auger Engineering Radio Array currently suppresses the RFI by multiple time-to-frequency domain conversions using an FFT procedure as well as by a set of manually chosen IIR notch filters in the time-domain. An alternative approach developed in this paper is an adaptive FIR filter based on linear prediction (LP). The coefficients for the linear predictor are dynamically refreshed and calculated in the virtual NIOS processor. The radio detector is an autonomous system installed on the Argentinean pampas and supplied from a solar panel. Powerful calculation capacity inside the FPGA is a factor. Power consumption versus the degree of effectiveness of the calculation inside the FPGA is a figure of merit to be minimized. Results show that the RFI contamination can be significantly suppressed by the LP FIR filter for 64 or less stages.
X-ray coherent scattering tomography of textured material (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhu, Zheyuan; Pang, Shuo
2017-05-01
Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.
Two examples of intelligent systems based on smart materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unsworth, J.
1994-12-31
Two intelligent systems are described which are based on smart materials. The operation of the systems also rely on conventional well known technologies such as electronics, signal conditioning, signal processing, microprocessors and engineering design. However without the smart materials the development and integration into the intelligent systems would not have been possible. System 1 is a partial discharge monitor for on-line continuous checking of the condition of electrical power transformers. The ultrasonic and radio frequency detectors in this system rely on special piezoelectric composite integrated with a compact annular metal ring. Partial discharges set up ultrasonic and radio frequency signalsmore » which are received by the integrated detectors. The signals are amplified, conditioned, signal processed, the time interval between the two signals measured and the level of partial discharge activity averaged and assessed for numerous pairs and alarms triggered on remote control panels if the level is dangerous. The system has the capability of initiating automatic shutdown of the transformer once it is linked into the control computers of the electrical power authority. System 2 is called a Security Cradle and is an intelligent 3D shield designed to use the properties of electro active polymers to prevent hardware hackers from stealing valuable of sensitive information from memory devices (e.g., EPROMS) housed in computer or microprocessor installations.« less
Commissioning and Characterization of a Dedicated High-Resolution Breast PET Camera
2014-02-01
aim to achieve 1 mm3 resolution using a unique detector design that is able to measure annihilation radiation coming from the PET tracer in 3...undergoing a regular staging PET /CT. We will image with the novel two-panel system after the standard PET /CT scan , in order not to interfere with the...Resolution Breast PET Camera PRINCIPAL INVESTIGATOR: Arne Vandenbroucke, Ph.D. CONTRACTING ORGANIZATION: Stanford University
Development of 4-Sides Buttable CdTe-ASIC Hybrid Module for X-ray Flat Panel Detector
NASA Astrophysics Data System (ADS)
Tamaki, Mitsuru; Mito, Yoshio; Shuto, Yasuhiro; Kiyuna, Tatsuya; Yamamoto, Masaya; Sagae, Kenichi; Kina, Tooru; Koizumi, Tatsuhiro; Ohno, Ryoichi
2009-08-01
A 4-sides buttable CdTe-ASIC hybrid module suitable for use in an X-ray flat panel detector (FPD) has been developed by applying through silicon via (TSV) technology to the readout ASIC. The ASIC has 128 times 256 channels of charge integration type readout circuitry and an area of 12.9 mm times 25.7 mm. The CdTe sensor of 1 mm thickness, having the same area and pixel of 100 mum pitch, was fabricated from the Cl-doped CdTe single crystal grown by traveling heater method (THM). Then the CdTe pixel sensor was hybridized with the ASIC using the bump-bonding technology. The basic performance of this 4-sides buttable module was evaluated by taking X-ray images, and it was compared with that of a commercially available indirect type CsI(Tl) FPD. A prototype CdTe FPD was made by assembling 9 pieces of the 4-sides buttable modules into 3 times 3 arrays in which the neighboring modules were mounted on the interface board. The FPD covers an active area of 77 mm times 39 mm. The results showed the great potential of this 4-sides buttable module for the new real time X-ray FPD with high spatial resolution.
NASA Astrophysics Data System (ADS)
Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.
2018-01-01
Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.
Solar panel truss mounting systems and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell
An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the basemore » rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.« less
X-ray microscopy using reflection targets based on SEM with tungsten filament
NASA Astrophysics Data System (ADS)
Liu, Junbiao; Ma, Yutian; Zhao, Weixia; Niu, Geng; Chu, Mingzhang; Yin, Bohua; Han, Li; Liu, Baodong
2016-10-01
X-ray MicroandNano imaging is developed based on the conventional x-ray tomography, it can not only provide nondestructive testing with higher resolution measurement, but also be used to examine the material or the structure with low atomic number and low density. The source with micro-focal spot size is one of the key components of x-ray MicroandNano imaging. The focused electron beam from SEM bombarding the metal target can generate x-ray with ultra-small size. It is convenient to set up x-ray microscopy based on SEM for laboratory use. This paper describes a new x-ray microscopy using reflection targets based on FEI Quanta600 SEM with tungsten filament. The flat panel detector is placed outside of the vacuum chamber with 300μm thickness Be-window to isolate vacuum from the air. A stage with 3 DOFs is added to adjust the positions of the target, the SEM's sample stage is used to move sample. And the shape of target is designed as cone with 60° half cone angle to get the maximum x-ray dosage. The attenuation coefficient of Bewindow for x-ray is about 25%. Finally, the line pair card is used to evaluate the resolution and the result shows that the resolution of the system can receive less than 750nm, when the acceleration voltage is 30keV, the beam current is 160nA, the SEM working distance is 5mm and the acquisition time of the detector is 60s.
Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy.
Matsuura, N; Zhao, W; Huang, Z; Rowlands, J A
1999-05-01
Active matrix array technology has made possible the concept of flat panel imaging systems for radiography. In the conventional approach a thin-film circuit built on glass contains the necessary switching components (thin-film transistors or TFTs) to readout an image formed in either a phosphor or photoconductor layer. Extension of this concept to real time imaging--fluoroscopy--has had problems due to the very low noise required. A new design strategy for fluoroscopic active matrix flat panel detectors has therefore been investigated theoretically. In this approach, the active matrix has integrated thin-film amplifiers and readout electronics at each pixel and is called the amplified pixel detector array (APDA). Each amplified pixel consists of three thin-film transistors: an amplifier, a readout, and a reset TFT. The performance of the APDA approach compared to the conventional active matrix was investigated for two semiconductors commonly used to construct active matrix arrays--hydrogenated amorphous silicon and polycrystalline silicon. The results showed that with amplification close to the pixel, the noise from the external charge preamplifiers becomes insignificant. The thermal and flicker noise of the readout and the amplifying TFTs at the pixel become the dominant sources of noise. The magnitude of these noise sources is strongly dependent on the TFT geometry and its fabrication process. Both of these could be optimized to make the APDA active matrix operate at lower noise levels than is possible with the conventional approach. However, the APDA cannot be made to operate ideally (i.e., have noise limited only by the amount of radiation used) at the lowest exposure rate required in medical fluoroscopy.
2010-08-27
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician releases the bolts on a panel that protected the Alpha Magnetic Spectrometer, or AMS, during shipment. The Air Force C-5M flight crew that delivered AMS to Kennedy's Shuttle Landing Facility left their signatures and good wishes for the success of the mission on the panel. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2012-01-01
Certain free-flying spacecraft in low Earth orbit (LEO) or payloads on the International Space Station (ISS) are required to slew to point the telescopes at targets. Instrument detectors and electronics require cooling. Traditionally a planar thermal radiator is used. The temperature of such a radiator varies significantly when the spacecraft slews because its view factors to space vary significantly. Also for payloads on the ISS, solar impingement on the radiator is possible. These thermal adversities could lead to inadequate cooling for the instrument. This paper presents a novel thermal design concept that utilizes three canted radiator panels to mitigate this problem. It increases the overall radiator view factor to cold space and reduces the overall solar or albedo flux absorbed per unit area of the radiator.
Design, construction, and evaluation of new high resolution medical imaging detector/systems
NASA Astrophysics Data System (ADS)
Jain, Amit
Increasing need of minimally invasive endovascular image guided interventional procedures (EIGI) for accurate and successful treatment of vascular disease has set a quest for better image quality. Current state of the art detectors are not up to the mark for these complex procedures due to their inherent limitations. Our group has been actively working on the design and construction of a high resolution, region of interest CCD-based X-ray imager for some time. As a part of that endeavor, a Micro-angiographic fluoroscope (MAF) was developed to serve as a high resolution, ROI X-ray imaging detector in conjunction with large lower resolution full field of view (FOV) state-of-the-art x-ray detectors. The newly developed MAF is an indirect x-ray imaging detector capable of providing real-time images with high resolution, high sensitivity, no lag and low instrumentation noise. It consists of a CCD camera coupled to a light image intensifier (LII) through a fiber optic taper. The CsI(Tl) phosphor serving as the front end is coupled to the LII. For this work, the MAF was designed and constructed. The linear system cascade theory was used to evaluate the performance theoretically. Linear system metrics such as MTF and DQE were used to gauge the detector performance experimentally. The capabilities of the MAF as a complete system were tested using generalized linear system metrics. With generalized linear system metrics the effects of finite size focal spot, geometric magnification and the presence of scatter are included in the analysis and study. To minimize the effect of scatter, an anti-scatter grid specially designed for the MAF was also studied. The MAF was compared with the flat panel detector using signal-to-noise ratio and the two dimensional linear system metrics. The signal-to-noise comparison was carried out to point out the effect of pixel size and Point Spread Function of the detector. The two dimensional linear system metrics were used to investigate the comparative performance of both the detectors in similar simulated clinical neuro-vascular conditions. The last part of this work presents a unique quality of the MAF: operation in single photon mode. The successful operation of the MAF was demonstrated with considerable improvement in spatial and contrast resolution over conventional energy integrating mode. The work presented shows the evolution of a high resolution, high sensitivity, and region of interest x-ray imaging detector as an attractive and capable x-ray imager for the betterment of complex EIGI procedures. The capability of single photon counting mode imaging provides the potential for additional uses of the MAF including the possibility of use in dual modality imaging with radionuclide sources as well as x-rays.
Mooring Analysis of the Ocean Sentinel through Field Observation and Numerical Simulation
2013-11-22
DAS controls the Ocean Sentinel’s three power systems: a diesel generator, a wind turbine , and two solar panels. The DAS monitors sensors that detect...or floating wind turbines . A summary of different mooring configurations and their characteristics is shown in Table 2. 10 Figure 10...Table 3. Secondary wind speed and direction are measured with a Gill Windsonic Wind Sensor , which uses ultrasonic transmissions to calculate wind
NASA Astrophysics Data System (ADS)
Berbeco, Ross I.; Jiang, Steve B.; Sharp, Gregory C.; Chen, George T. Y.; Mostafavi, Hassan; Shirato, Hiroki
2004-01-01
The design of an integrated radiotherapy imaging system (IRIS), consisting of gantry mounted diagnostic (kV) x-ray tubes and fast read-out flat-panel amorphous-silicon detectors, has been studied. The system is meant to be capable of three main functions: radiographs for three-dimensional (3D) patient set-up, cone-beam CT and real-time tumour/marker tracking. The goal of the current study is to determine whether one source/panel pair is sufficient for real-time tumour/marker tracking and, if two are needed, the optimal position of each relative to other components and the isocentre. A single gantry-mounted source/imager pair is certainly capable of the first two of the three functions listed above and may also be useful for the third, if combined with prior knowledge of the target's trajectory. This would be necessary because only motion in two dimensions is visible with a single imager/source system. However, with previously collected information about the trajectory, the third coordinate may be derived from the other two with sufficient accuracy to facilitate tracking. This deduction of the third coordinate can only be made if the 3D tumour/marker trajectory is consistent from fraction to fraction. The feasibility of tumour tracking with one source/imager pair has been theoretically examined here using measured lung marker trajectory data for seven patients from multiple treatment fractions. The patients' selection criteria include minimum mean amplitudes of the tumour motions greater than 1 cm peak-to-peak. The marker trajectory for each patient was modelled using the first fraction data. Then for the rest of the data, marker positions were derived from the imager projections at various gantry angles and compared with the measured tumour positions. Our results show that, due to the three dimensionality and irregular trajectory characteristics of tumour motion, on a fraction-to-fraction basis, a 'monoscopic' system (single source/imager) is inadequate for consistent real-time tumour tracking, even with prior knowledge. We found that, among the seven patients studied with peak-to-peak marker motion greater than 1 cm, five cases have mean localization errors greater than 2 mm and two have mean errors greater than 3 mm. Because of this uncertainty associated with a monoscopic system, two source/imager pairs are necessary for robust 3D target localization. Dual orthogonal x-ray source/imager pairs mounted on the linac gantry are chosen for the IRIS. We further studied the placement of the x-ray sources/panel based on the geometric specifications of the Varian 21EX Clinac. The best configuration minimizes the localization error while maintaining a large field of view and avoiding collisions with the floor/ceiling or couch.
Sawant, Amit; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Wang, Yi; Li, Yixin; Du, Hong; Perna, Louis
2006-04-01
Modern-day radiotherapy relies on highly sophisticated forms of image guidance in order to implement increasingly conformal treatment plans and achieve precise dose delivery. One of the most important goals of such image guidance is to delineate the clinical target volume from surrounding normal tissue during patient setup and dose delivery, thereby avoiding dependence on surrogates such as bony landmarks. In order to achieve this goal, it is necessary to integrate highly efficient imaging technology, capable of resolving soft-tissue contrast at very low doses, within the treatment setup. In this paper we report on the development of one such modality, which comprises a nonoptimized, prototype electronic portal imaging device (EPID) based on a 40 mm thick, segmented crystalline CsI(Tl) detector incorporated into an indirect-detection active matrix flat panel imager (AMFPI). The segmented detector consists of a matrix of 160 x 160 optically isolated, crystalline CsI(Tl) elements spaced at 1016 microm pitch. The detector was coupled to an indirect detection-based active matrix array having a pixel pitch of 508 microm, with each detector element registered to 2 x 2 array pixels. The performance of the prototype imager was evaluated under very low-dose radiotherapy conditions and compared to that of a conventional megavoltage AMFPI based on a Lanex Fast-B phosphor screen. Detailed quantitative measurements were performed in order to determine the x-ray sensitivity, modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE). In addition, images of a contrast-detail phantom and an anthropomorphic head phantom were also acquired. The prototype imager exhibited approximately 22 times higher zero-frequency DQE (approximately 22%) compared to that of the conventional AMFPI (approximately 1%). The measured zero-frequency DQE was found to be lower than theoretical upper limits (approximately 27%) calculated from Monte Carlo simulations, which were based solely on the x-ray energy absorbed in the detector-indicating the presence of optical Swank noise. Moreover, due to the nonoptimized nature of this prototype, the spatial resolution was observed to be significantly lower than theoretical expectations. Nevertheless, due to its high quantum efficiency (approximately 55%), the prototype imager exhibited significantly higher DQE than that of the conventional AMFPI across all spatial frequencies. In addition, the frequency-dependent DQE was observed to be relatively invariant with respect to the amount of incident radiation, indicating x-ray quantum limited behavior. Images of the contrast-detail phantom and the head phantom obtained using the prototype system exhibit good visualization of relatively large, low-contrast features, and appear significantly less noisy compared to similar images from a conventional AMFPI. Finally, Monte Carlo-based theoretical calculations indicate that, with proper optimization, further, significant improvements in the DQE performance of such imagers could be achieved. It is strongly anticipated that the realization of optimized versions of such very high-DQE EPIDs would enable megavoltage projection imaging at very low doses, and tomographic imaging from a "beam's eye view" at clinically acceptable doses.
Online pretreatment verification of high-dose rate brachytherapy using an imaging panel
NASA Astrophysics Data System (ADS)
Fonseca, Gabriel P.; Podesta, Mark; Bellezzo, Murillo; Van den Bosch, Michiel R.; Lutgens, Ludy; Vanneste, Ben G. L.; Voncken, Robert; Van Limbergen, Evert J.; Reniers, Brigitte; Verhaegen, Frank
2017-07-01
Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.
Online pretreatment verification of high-dose rate brachytherapy using an imaging panel.
Fonseca, Gabriel P; Podesta, Mark; Bellezzo, Murillo; Van den Bosch, Michiel R; Lutgens, Ludy; Vanneste, Ben G L; Voncken, Robert; Van Limbergen, Evert J; Reniers, Brigitte; Verhaegen, Frank
2017-07-07
Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192 Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.
All-Sky Earth Occultation Observations with the Fermi Gamma-Ray Burst Monitor
NASA Technical Reports Server (NTRS)
Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Jenke, P.; Chaplin, V.; Cherry, M.; Connaughton, V.;
2009-01-01
Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/ soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels.
Analysis of Patients' X-ray Exposure in 146 Percutaneous Radiologic Gastrostomies.
Petersen, Tim-Ole; Reinhardt, Martin; Fuchs, Jochen; Gosch, Dieter; Surov, Alexey; Stumpp, Patrick; Kahn, Thomas; Moche, Michael
2017-09-01
Purpose Analysis of patient´s X-ray exposure during percutaneous radiologic gastrostomies (PRG) in a larger population. Materials and Methods Data of primary successful PRG-procedures, performed between 2004 and 2015 in 146 patients, were analyzed regarding the exposition to X-ray. Dose-area-product (DAP), dose-length-product (DLP) respectively, and fluoroscopy time (FT) were correlated with the used x-ray systems (Flatpanel Detector (FD) vs. Image Itensifier (BV)) and the necessity for periprocedural placement of a nasogastric tube. Additionally, the effective X-ray dose for PRG placement using fluoroscopy (DL), computed tomography (CT), and cone beam CT (CBCT) was estimated using a conversion factor. Results The median DFP of PRG-placements under fluoroscopy was 163 cGy*cm 2 (flat panel detector systems: 155 cGy*cm 2 ; X-ray image intensifier: 175 cGy*cm 2 ). The median DLZ was 2.2 min. Intraprocedural placement of a naso- or orogastric probe (n = 68) resulted in a significant prolongation of the median DLZ to 2.5 min versus 2 min in patients with an already existing probe. In addition, dose values were analyzed in smaller samples of patients in which the PRG was placed under CBCT (n = 7, median DFP = 2635 cGy*cm 2 ), or using CT (n = 4, median DLP = 657 mGy*cm). Estimates of the median DFP and DLP showed effective doses of 0.3 mSv for DL-assisted placements (flat panel detector 0.3 mSv, X-ray image converter 0.4 mSv), 7.9 mSv using a CBCT - flat detector, and 9.9 mSv using CT. This corresponds to a factor 26 of DL versus CBCT, or a factor 33 of DL versus CT. Conclusion In order to minimize X-ray exposure during PRG-procedures for patients and staff, fluoroscopically-guided interventions should employ flat detector systems with short transmittance sequences in low dose mode and with slow image frequency. Series recordings can be dispensed with. The intraprocedural placement of a naso- or orogastric probe significantly extends FT, but has little effect on the overall dose of the intervention. Due to the significantly higher X-ray exposure, the use of a CBCT as well as PRG-placements using CT should be limited to clinically absolutely necessary exceptions with strict indication. Key Points · Fluoroscopically-guided PRG placements are interventions with low X-ray exposure.. · X-ray exposure from fluoroscopy is lower using flat panel detector systems as compared to image intensifier systems.. · The concomitant placement of an oro- or nasogastric probe extends the fluoroscopy time.. · Gastric probe placement is worthwhile to prevent the premature use of the significantly radiation-intensive CT.. · The use of the C-arm CT or the CT increases the beam exposure by 26 or 33 times, respectively.. · The PRG placement using C-arm CT and CT should only be performed in exceptional cases.. Citation Format · Petersen TO, Reinhardt M, Fuchs J et al. Analysis of Patients' X-ray Exposure in 146 Percutaneous Radiologic Gastrostomies. Fortschr Röntgenstr 2017; 189: 820 - 827. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew
2016-06-01
The paper presents first results from the Front-End Board (FEB) with the biggest Cyclone® V E FPGA 5CEFA9F31I7N, supporting 8 channels sampled up to 250 MSps @ 14-bit resolution. Considered sampling for the planned upgrade of the Pierre Auger surface detector array is 120 MSps, however, the FEB has been developed with external anti-aliasing filters to keep a maximal flexibility. Six channels are targeted to the SD, two the rest for other experiments like: Auger Engineering Radio Array and additional muon counters. More channels and higher sampling generate larger size of registered events. We used the standard radio channel for a radio transmission from the detectors to the Central Data Acquisition Station (CDAS) to avoid at present a significant modification of a software in both sides: the detector and the CDAS (planned in a future for a final design). Several variants of the FPGA code were tested for 120, 160, 200 and even 240 MSps DAQ. Tests confirmed a stability and reliability of the FEB design in real pampas conditions with more than 40°C daily temperature variation and a strong sun exposition with a limited power budget only from a single solar panel. Seven FEBs have been deployed in a hexagon of test detectors on a dedicated Engineering Array.
Scatter measurement and correction method for cone-beam CT based on single grating scan
NASA Astrophysics Data System (ADS)
Huang, Kuidong; Shi, Wenlong; Wang, Xinyu; Dong, Yin; Chang, Taoqi; Zhang, Hua; Zhang, Dinghua
2017-06-01
In cone-beam computed tomography (CBCT) systems based on flat-panel detector imaging, the presence of scatter significantly reduces the quality of slices. Based on the concept of collimation, this paper presents a scatter measurement and correction method based on single grating scan. First, according to the characteristics of CBCT imaging, the scan method using single grating and the design requirements of the grating are analyzed and figured out. Second, by analyzing the composition of object projection images and object-and-grating projection images, the processing method for the scatter image at single projection angle is proposed. In addition, to avoid additional scan, this paper proposes an angle interpolation method of scatter images to reduce scan cost. Finally, the experimental results show that the scatter images obtained by this method are accurate and reliable, and the effect of scatter correction is obvious. When the additional object-and-grating projection images are collected and interpolated at intervals of 30 deg, the scatter correction error of slices can still be controlled within 3%.
Performance evaluation for 120 four-layer DOI block detectors of the jPET-D4.
Inadama, Naoko; Murayama, Hideo; Ono, Yusuke; Tsuda, Tomoaki; Hamamoto, Manabu; Yamaya, Taiga; Yoshida, Eiji; Shibuya, Kengo; Nishikido, Fumihiko; Takahashi, Kei; Kawai, Hideyuki
2008-01-01
The jPET-D4 is a brain positron emission tomography (PET) scanner that we have developed to meet user demands for high sensitivity and high spatial resolution. For this scanner, we developed a four-layer depth-of-interaction (DOI) detector. The four-layer DOI detector is a key component for the jPET-D4, its performance has great influence on the overall system performance. Previously, we reported the original technique for encoding four-layer DOI. Here, we introduce the final design of the jPET-D4 detector and present the results of an investigation on uniformity in performance of the detector. The performance evaluation was done over the 120 DOI crystal blocks for the detectors, which are to be assembled into the jPET-D4 scanner. We also introduce the crystal assembly method, which is simple enough, even though each DOI crystal block is composed of 1,024 crystal elements. The jPET-D4 detector consists of four layers of 16 x 16 Gd(2)SiO(5) (GSO) crystals and a 256-channel flat-panel position-sensitive photomultiplier tube (256ch FP-PMT). To identify scintillated crystals in the four-layer DOI detector, we use pulse shape discrimination and position discrimination on the two-dimensional (2D) position histogram. For pulse shape discrimination, two kinds of GSO crystals that show different scintillation decay time constants are used in the upper two and lower two layers, respectively. Proper reflector arrangement in the crystal block then allows the scintillated crystals to be identified in these two-layer groupings with two 2D position histograms. We produced the 120 DOI crystal blocks for the jPET-D4 system, and measured their characteristics such as the accuracy of pulse shape discrimination, energy resolution, and the pulse height of the full energy peak. The results show a satisfactory and uniform performance of the four-layer DOI crystal blocks; for example, misidentification rate in each GSO layer is <5% based on pulse shape discrimination, the averaged energy resolutions for the central four crystals of the first (farthest from the FP-PMT), second, third, and 4th layers are 15.7 +/- 1.0, 15.8 +/- 0.6, 17.7 +/- 1.2, and 17.3 +/- 1.4%, respectively, and variation in pulse height of the full energy peak among the four layers is <5% on average.
Use of Internet panels to conduct surveys.
Hays, Ron D; Liu, Honghu; Kapteyn, Arie
2015-09-01
The use of Internet panels to collect survey data is increasing because it is cost-effective, enables access to large and diverse samples quickly, takes less time than traditional methods to obtain data for analysis, and the standardization of the data collection process makes studies easy to replicate. A variety of probability-based panels have been created, including Telepanel/CentERpanel, Knowledge Networks (now GFK KnowledgePanel), the American Life Panel, the Longitudinal Internet Studies for the Social Sciences panel, and the Understanding America Study panel. Despite the advantage of having a known denominator (sampling frame), the probability-based Internet panels often have low recruitment participation rates, and some have argued that there is little practical difference between opting out of a probability sample and opting into a nonprobability (convenience) Internet panel. This article provides an overview of both probability-based and convenience panels, discussing potential benefits and cautions for each method, and summarizing the approaches used to weight panel respondents in order to better represent the underlying population. Challenges of using Internet panel data are discussed, including false answers, careless responses, giving the same answer repeatedly, getting multiple surveys from the same respondent, and panelists being members of multiple panels. More is to be learned about Internet panels generally and about Web-based data collection, as well as how to evaluate data collected using mobile devices and social-media platforms.
Suomi-NPP VIIRS Solar Diffuser Stability Monitor Performance
NASA Technical Reports Server (NTRS)
Fulbright, Jon; Lei, Ning; Efremova, Boryana; Xiong, Xiaoxiong
2015-01-01
When illuminated by the Sun, the onboard solar diffuser (SD) panel provides a known spectral radiance source to calibrate the reflective solar bands of the Visible Infrared Imaging Radiometer Suite on the Suomi-NPP satellite. The SD bidirectional reflectance distribution function (BRDF) degrades over time due to solar exposure, and this degradation is measured using the SD stability monitor (SDSM). The SDSM acts as a ratioing radiometer, comparing solar irradiance measurements off the SD panel to those from a direct Sun view. We discuss the design and operations of the SDSM, the SDSM data analysis, including improvements incorporated since launch, and present the results through 1000 days after launch. After 1000 days, the band-dependent H-factors, a quantity describing the relative degradation of the BRDF of the SD panel since launch, range from 0.716 at 412 nanometers to 0.989 at 926 nanometers. The random uncertainty of these H-factors is about 0.1 percent, which is confirmed by the similar standard deviation values computed from the residuals of quadratic exponential fits to the H-factor time trends. The SDSM detector gains have temperature sensitivity of up to about 0.36 percent per kelvin, but this does not affect the derived H-factors. An initial error in the solar vector caused a seasonal bias to the H-factors of up to 0.5 percent. The total exposure of the SD panel to UV light after 1000 orbits is equivalent to about 100 hours of direct sunlight illumination perpendicular to the SD panel surface.
Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies
Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong
2014-01-01
Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS were found to be different due to the difference in the tomosynthesis image reconstruction algorithms. Conclusions: It is feasible to simultaneously generate x-ray differential phase contrast, phase contrast, and absorption contrast tomosynthesis images using a grating-based data acquisition setup. The method shows promise in improving the visibility of several low-density materials and therefore merits further investigation. PMID:24387511
Mabray, Marc C; Datta, Sanjit; Lillaney, Prasheel V; Moore, Teri; Gehrisch, Sonja; Talbott, Jason F; Levitt, Michael R; Ghodke, Basavaraj V; Larson, Paul S; Cooke, Daniel L
2016-07-01
Fluoroscopic systems in modern interventional suites have the ability to perform flat panel detector CT (FDCT) with navigational guidance. Fusion with MR allows navigational guidance towards FDCT occult targets. We aim to evaluate the accuracy of this system using single-pass needle placement in a deep brain stimulation (DBS) phantom. MR was performed on a head phantom with DBS lead targets. The head phantom was placed into fixation and FDCT was performed. FDCT and MR datasets were automatically fused using the integrated guidance system (iGuide, Siemens). A DBS target was selected on the MR dataset. A 10 cm, 19 G needle was advanced by hand in a single pass using laser crosshair guidance. Radial error was visually assessed against measurement markers on the target and by a second FDCT. Ten needles were placed using CT-MR fusion and 10 needles were placed without MR fusion, with targeting based solely on FDCT and fusion steps repeated for every pass. Mean radial error was 2.75±1.39 mm as defined by visual assessment to the centre of the DBS target and 2.80±1.43 mm as defined by FDCT to the centre of the selected target point. There were no statistically significant differences in error between MR fusion and non-MR guided series. Single pass needle placement in a DBS phantom using FDCT guidance is associated with a radial error of approximately 2.5-3.0 mm at a depth of approximately 80 mm. This system could accurately target sub-centimetre intracranial lesions defined on MR. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Cone-Beam CT with a Flat-Panel Detector: From Image Science to Image-Guided Surgery
Siewerdsen, Jeffrey H.
2011-01-01
The development of large-area flat-panel x-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions - for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck / skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical performance under CBCT guidance, and early clinical trials demonstrate feasibility, workflow, and image quality within the surgical theatre. PMID:22942510
Noise correlation in CBCT projection data and its application for noise reduction in low-dose CBCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hua; Ouyang, Luo; Wang, Jing, E-mail: jhma@smu.edu.cn, E-mail: jing.wang@utsouthwestern.edu
2014-03-15
Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, the authors systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam onboard CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 to 1.6 mAs per projection at threemore » fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are nonzero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second-order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. At the 2.0 mm resolution level in the axial-plane noise resolution tradeoff analysis, the noise level of the PWLS-Cor reconstruction is 6.3% lower than that of the PWLS-Dia reconstruction. Conclusions: Noise is correlated among nearest neighboring detector bins of CBCT projection data. An accurate noise model of CBCT projection data can improve the performance of the statistics-based projection restoration algorithm for low-dose CBCT.« less
Absolute radiometric calibration of advanced remote sensing systems
NASA Technical Reports Server (NTRS)
Slater, P. N.
1982-01-01
The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loughran, B; Singh, V; Jain, A
Purpose: Although generalized linear system analytic metrics such as GMTF and GDQE can evaluate performance of the whole imaging system including detector, scatter and focal-spot, a simplified task-specific measured metric may help to better compare detector systems. Methods: Low quantum-noise images of a neuro-vascular stent with a modified ANSI head phantom were obtained from the average of many exposures taken with the high-resolution Micro-Angiographic Fluoroscope (MAF) and with a Flat Panel Detector (FPD). The square of the Fourier Transform of each averaged image, equivalent to the measured product of the system GMTF and the object function in spatial-frequency space, wasmore » then divided by the normalized noise power spectra (NNPS) for each respective system to obtain a task-specific generalized signal-to-noise ratio. A generalized measured relative object detectability (GM-ROD) was obtained by taking the ratio of the integral of the resulting expressions for each detector system to give an overall metric that enables a realistic systems comparison for the given detection task. Results: The GM-ROD provides comparison of relative performance of detector systems from actual measurements of the object function as imaged by those detector systems. This metric includes noise correlations and spatial frequencies relevant to the specific object. Additionally, the integration bounds for the GM-ROD can be selected to emphasis the higher frequency band of each detector if high-resolution image details are to be evaluated. Examples of this new metric are discussed with a comparison of the MAF to the FPD for neuro-vascular interventional imaging. Conclusion: The GM-ROD is a new direct-measured task-specific metric that can provide clinically relevant comparison of the relative performance of imaging systems. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less
Labview Interface Concepts Used in NASA Scientific Investigations and Virtual Instruments
NASA Technical Reports Server (NTRS)
Roth, Don J.; Parker, Bradford H.; Rapchun, David A.; Jones, Hollis H.; Cao, Wei
2001-01-01
This article provides an overview of several software control applications developed for NASA using LabVIEW. The applications covered here include (1) an Ultrasonic Measurement System for nondestructive evaluation of advanced structural materials, an Xray Spectral Mapping System for characterizing the quality and uniformity of developing photon detector materials, (2) a Life Testing System for these same materials, (3) and the instrument panel for an aircraft mounted Cloud Absorption Radiometer that measures the light scattered by clouds in multiple spectral bands. Many of the software interface concepts employed are explained. Panel layout and block diagram (code) strategies for each application are described. In particular, some of the more unique features of the applications' interfaces and source code are highlighted. This article assumes that the reader has a beginner-to-intermediate understanding of LabVIEW methods.
Cone-beam micro computed tomography dedicated to the breast.
Sarno, Antonio; Mettivier, Giovanni; Di Lillo, Francesca; Cesarelli, Mario; Bifulco, Paolo; Russo, Paolo
2016-12-01
We developed a scanner for micro computed tomography dedicated to the breast (BµCT) with a high resolution flat-panel detector and a microfocus X-ray tube. We evaluated the system spatial resolution via the 3D modulation transfer function (MTF). In addition to conventional absorption-based X-ray imaging, such a prototype showed capabilities for propagation-based phase-contrast and related edge enhancement effects in 3D imaging. The system limiting spatial resolution is 6.2mm -1 (MTF at 10%) in the vertical direction and 3.8mm -1 in the radial direction, values which compare favorably with the spatial resolution reached by mini focus breast CT scanners of other groups. The BµCT scanner was able to detect both microcalcification clusters and masses in an anthropomorphic breast phantom at a dose comparable to that of two-view mammography. The use of a breast holder is proposed in order to have 1-2min long scan times without breast motion artifacts. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haag, Justin M.; Van Gorp, Byron E.; Mouroulis, Pantazis; Thompson, David R.
2017-09-01
The airborne Portable Remote Imaging Spectrometer (PRISM) instrument is based on a fast (F/1.8) Dyson spectrometer operating at 350-1050 nm and a two-mirror telescope combined with a Teledyne HyViSI 6604A detector array. Raw PRISM data contain electronic and optical artifacts that must be removed prior to radiometric calibration. We provide an overview of the process transforming raw digital numbers to calibrated radiance values. Electronic panel artifacts are first corrected using empirical relationships developed from laboratory data. The instrument spectral response functions (SRF) are reconstructed using a measurement-based optimization technique. Removal of SRF effects from the data improves retrieval of true spectra, particularly in the typically low-signal near-ultraviolet and near-infrared regions. As a final step, radiometric calibration is performed using corrected measurements of an object of known radiance. Implementation of the complete calibration procedure maximizes data quality in preparation for subsequent processing steps, such as atmospheric removal and spectral signature classification.
An ultrasensitive universal detector based on neutralizer displacement
NASA Astrophysics Data System (ADS)
Das, Jagotamoy; Cederquist, Kristin B.; Zaragoza, Alexandre A.; Lee, Paul E.; Sargent, Edward H.; Kelley, Shana O.
2012-08-01
Diagnostic technologies that can provide the simultaneous detection of nucleic acids for gene expression, proteins for host response and small molecules for profiling the human metabolome will have a significant advantage in providing comprehensive patient monitoring. Molecular sensors that report changes in the electrostatics of a sensor's surface on analyte binding have shown unprecedented sensitivity in the detection of charged biomolecules, but do not lend themselves to the detection of small molecules, which do not carry significant charge. Here, we introduce the neutralizer displacement assay that allows charge-based sensing to be applied to any class of molecule irrespective of the analyte charge. The neutralizer displacement assay starts with an aptamer probe bound to a neutralizer. When analyte binding occurs the neutralizer is displaced, which results in a dramatic change in the surface charge for all types of analytes. We have tested the sensitivity, speed and specificity of this system in the detection of a panel of molecules: (deoxy)ribonucleic acid, ribonucleic acid, cocaine, adenosine triphosphate and thrombin.
Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.
Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu
2012-01-01
Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.
NASA Astrophysics Data System (ADS)
Feng, Yefeng; He, Cheng-En; Xu, Zhichao; Hu, Jianbing; Peng, Cheng
2018-01-01
Interface induced polarization has been found to have a significant impact on dielectric properties of 2-2 type polymer composites bearing Si based semi-conducting ceramic sheets. Inherent overall polarity of polymer layers in 2-2 composites has been verified to be closely connected with interface effect and achieved permittivity in composites. In present work, conducting performances of monocrystalline Si sheets coated by varied high polarity material layers were deeply researched. The positive results inspired us to propose a novel strategy to improve separated electron-hole dipoles in commercial Si based solar cell panel for assisting photovoltaic effect, based on strong interface induced polarization. Conducting features of solar panels coated by two different high polarity polymer layers were detected to be greatly elevated compared with solar panel standalone, thanks to interface induced polarization between panel and polymer. Polymer coating with higher polarity would lead to more separated electron-hole dipole pairs in solar panel contributing to higher conductivity of panel. Valid synergy of interface effect and photovoltaic effect was based on their unidirectional traits of electron transfer. Dielectric properties of solar panels in composites further confirmed that strategy. This work might provide a facile route to prepare promising Si based solar panels with higher photoelectric conversion efficiency by enhancing interface induced polarization between panel and polymer coating.
1981-02-01
cabinet and the field. The momentary contacts from the switches of the control panel trigger the respective circuits in module I. This circuit then... module (approximately 40 milliamperes at 70-100 detector, filter, threshold circuit and alarm relay. A block volts) Into microwave energy at X-band...advantageous to use different N.C. Terminals. NOTE: If open circuit tamper switch is modulation frequencies on links operating within close prox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwood, L. R.; Cantaloub, M. G.; Burnett, J. L.
PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). Furthermore, the combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.
Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality
NASA Astrophysics Data System (ADS)
Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.
2005-12-01
The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.
NASA Astrophysics Data System (ADS)
Tsuchiya, Yuichiro; Kodera, Yoshie
2006-03-01
In the picture archiving and communication system (PACS) environment, it is important that all images be stored in the correct location. However, if information such as the patient's name or identification number has been entered incorrectly, it is difficult to notice the error. The present study was performed to develop a system of patient collation automatically for dynamic radiogram examination by a kinetic analysis, and to evaluate the performance of the system. Dynamic chest radiographs during respiration were obtained by using a modified flat panel detector system. Our computer algorithm developed in this study was consisted of two main procedures, kinetic map imaging processing, and collation processing. Kinetic map processing is a new algorithm to visualize a movement for dynamic radiography; direction classification of optical flows and intensity-density transformation technique was performed. Collation processing consisted of analysis with an artificial neural network (ANN) and discrimination for Mahalanobis' generalized distance, those procedures were performed to evaluate a similarity of combination for the same person. Finally, we investigated the performance of our system using eight healthy volunteers' radiographs. The performance was shown as a sensitivity and specificity. The sensitivity and specificity for our system were shown 100% and 100%, respectively. This result indicated that our system has excellent performance for recognition of a patient. Our system will be useful in PACS management for dynamic chest radiography.
Development of autonomous gamma dose logger for environmental monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.
2012-03-15
Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system ismore » totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify {sup 41}Ar, proving its utility for real-time plume tracking and source term estimation.« less
Development of autonomous gamma dose logger for environmental monitoring
NASA Astrophysics Data System (ADS)
Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.; Kumari, Anju; Baskaran, R.; Venkatraman, B.
2012-03-01
Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify 41Ar, proving its utility for real-time plume tracking and source term estimation.
NASA Astrophysics Data System (ADS)
Samant, Sanjiv S.; Gopal, Arun; DiBianca, Frank A.
2003-06-01
Megavoltage x-ray imaging suffers from relatively poor contrast and spatial resolution compared to diagnostic kilovoltage x-ray imaging due to the dominant Compton scattering in the former. Recently available amorphous silicon/selenium based flat-panel imagers overcome many of the limitations of poor contrast and spatial resolution that affect conventional video based electronic portal imaging devices (EPIDs). An alternative technology is presented here: kinestatic charge detection (KCD). The KCD uses a slot photon beam, high-pressure gas (xenon, 100 atm) and a multi-ion rectangular chamber in scanning mode. An electric field is used to regulate the cation drift velocity. By matching the scanning speed with that of the cation drift, the cations remain static in the object frame of reference, allowing temporal integration of the signal. KCD imaging is characterized by reduced scatter and a high signal-to-noise ratio. Measurements and Monte Carlo simulations of modulation transfer function (MTF), noise power spectrum (NPS) and the detective quantum efficiency (DQE) of a prototype small field of view KCD detector (384 channels, 0.5 mm spacing) were carried out. Measurements yield DQE[0]=0.19 and DQE[0.5cy/mm]=0.01. KCD imaging is compared to film and commercial EPID systems using phantoms, with the KCD requiring an extremely low dose (0.1 cGy) per image. A proposed cylindrical chamber design with a higher ion-collection depth is expected to further improve image quality (DQE[0]>0.25).
NASA Astrophysics Data System (ADS)
Heo, D.; Jeon, S.; Kim, J.-S.; Kim, R. K.; Cha, B. K.; Moon, B. J.; Yoon, J.
2013-02-01
We developed a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography. The pixel resolution is 512 × 512 with 200 μm pixel and the overall active dimensions of the X-ray imaging panel is 10.24 cm × 10.24 cm. The detector consists of an X-ray absorption layer of amorphous selenium, a charge accumulation layer of metal, and a PID readout layer of amorphous silicon. In particular, the charge accumulation is pixelated because image charges generated by X-ray should be stored pixel by pixel. Here the image charges, or holes, are recombined with electrons generated by the PID method. We used a 405 nm laser diode and cylindrical lens to make a line beam source with a width of 50 μm for PID readout, which generates charges for each pixel lines during the scan. We obtained spatial frequencies of about 1.0 lp/mm for the X-direction (lateral direction) and 0.9 lp/mm for the Y-direction (scanning direction) at 50% modulation transfer function.
Simultaneous MRI and PET imaging of a rat brain
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.
2006-12-01
Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.
Improved fatigue performance for wood-based structural panels using slot and tab construction
Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai
2016-01-01
This paper presents static and fatigue bending behavior for a wood-based structural panel having a slot and tab (S/T) construction technique. Comparisons were made with similarly fabricated panels without the S/T construction technique. Experimental results showed that both types of panels had similar bending properties in the static tests. However, the panels with S/T...
Quantitative 1D diffraction signatures during dual detector scatter VOI breast CBCT
NASA Astrophysics Data System (ADS)
LeClair, Robert J.
2017-03-01
Dual detector VOI scatter CBCT is similar to dual detector VOI CBCT except that during the high resolution scan, the low resolution flat panel detector is also used to capture the scattered photons. Simulations show a potential use of scatter to diagnose suspicious VOIs. Energy integrated signals due to scatter (EISs) were computed for a specific imaging task involving a malignant lesion and was labelled as a hypothetical experiment (expt) result. The signal was compared to predictions (pred) using benign and malignant lesions. The ΔEISs=EISs|expt - EISs|pred displayed eye catching diffraction structure when the prediction calculation used a benign lesion. The structure occurred even when the phantom compositions were different for prediction and experiment calculations. Since the diffraction structure has a circularly symmetric behaviour because the tissues are amorphous in nature, the 2D ΔEISs patterns were transformed to 1D signals. The 1D signals were obtained by calculating the mean ΔEISs signals in rings. The mean pixel values were a function of the momentum transfer argument q = 4π sin(θ/2)/λ which ranged from 12 to 46 nm-1. The 1D signals correlated well with the 2D profiles. Of particular interest were scatter signatures between q = 20 and 30 nm-1 where malignant tissue is predicted to scatter more than benign fibroglandular tissue. The 1D diffraction signatures could allow a better method to diagnose a suspicious lesion during dual detector scatter VOI CBCT.
NASA Astrophysics Data System (ADS)
Allec, N.; Abbaszadeh, S.; Karim, K. S.
2011-09-01
The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.
Allec, N; Abbaszadeh, S; Karim, K S
2011-09-21
The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml(-1) in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.
High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.
Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro
2015-10-01
To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at central slices of the cerebrum.
A nonlinear lag correction algorithm for a-Si flat-panel x-ray detectors
Starman, Jared; Star-Lack, Josh; Virshup, Gary; Shapiro, Edward; Fahrig, Rebecca
2012-01-01
Purpose: Detector lag, or residual signal, in a-Si flat-panel (FP) detectors can cause significant shading artifacts in cone-beam computed tomography reconstructions. To date, most correction models have assumed a linear, time-invariant (LTI) model and correct lag by deconvolution with an impulse response function (IRF). However, the lag correction is sensitive to both the exposure intensity and the technique used for determining the IRF. Even when the LTI correction that produces the minimum error is found, residual artifact remains. A new non-LTI method was developed to take into account the IRF measurement technique and exposure dependencies. Methods: First, a multiexponential (N = 4) LTI model was implemented for lag correction. Next, a non-LTI lag correction, known as the nonlinear consistent stored charge (NLCSC) method, was developed based on the LTI multiexponential method. It differs from other nonlinear lag correction algorithms in that it maintains a consistent estimate of the amount of charge stored in the FP and it does not require intimate knowledge of the semiconductor parameters specific to the FP. For the NLCSC method, all coefficients of the IRF are functions of exposure intensity. Another nonlinear lag correction method that only used an intensity weighting of the IRF was also compared. The correction algorithms were applied to step-response projection data and CT acquisitions of a large pelvic phantom and an acrylic head phantom. The authors collected rising and falling edge step-response data on a Varian 4030CB a-Si FP detector operating in dynamic gain mode at 15 fps at nine incident exposures (2.0%–92% of the detector saturation exposure). For projection data, 1st and 50th frame lag were measured before and after correction. For the CT reconstructions, five pairs of ROIs were defined and the maximum and mean signal differences within a pair were calculated for the different exposures and step-response edge techniques. Results: The LTI corrections left residual 1st and 50th frame lag up to 1.4% and 0.48%, while the NLCSC lag correction reduced 1st and 50th frame residual lags to less than 0.29% and 0.0052%. For CT reconstructions, the NLCSC lag correction gave an average error of 11 HU for the pelvic phantom and 3 HU for the head phantom, compared to 14–19 HU and 2–11 HU for the LTI corrections and 15 HU and 9 HU for the intensity weighted non-LTI algorithm. The maximum ROI error was always smallest for the NLCSC correction. The NLCSC correction was also superior to the intensity weighting algorithm. Conclusions: The NLCSC lag algorithm corrected for the exposure dependence of lag, provided superior image improvement for the pelvic phantom reconstruction, and gave similar results to the best case LTI results for the head phantom. The blurred ring artifact that is left over in the LTI corrections was better removed by the NLCSC correction in all cases. PMID:23039642
Study on a novel panel support concept for radio telescopes with active surface
NASA Astrophysics Data System (ADS)
Yang, Dehua; Zhou, Guohua; Okoh, Daniel; Li, Guoping; Cheng, Jingquan
2010-07-01
Generally, panels of radio telescopes are mainly shaped in trapezoid and each is supported/positioned by four adjustors beneath its vertexes. Such configuration of panel supporting system is essentially hyper-static, and the panel is overconstrained from a kinematic point of view. When the panel is to be adjusted and/or actuated, it will suffer stress from its adjusters and hence its shape is to be distorted. This situation is not desirable for high precision panels, such as glass based panels especially used for sub-millimeter and shorter wavelength telescopes with active optics/active panel technology. This paper began with a general overview of panel patterns and panel supports of existing radio telescopes. Thereby, we proposed a preferable master-slave active surface concept for triangular and/or hexagonal panel pattern. In addition, we carry out panel error sensitivity analysis for all the 6 degrees of freedom (DOF) of a panel to identify what DOFs are most sensitive for an active surface. And afterwards, based on the error sensitivity analysis, we suggested an innovative parallel-series concept hexapod well fitted for an active panel to correct for all of its 6 rigid errors. A demonstration active surface using the master-slave concept and the hexapod manifested a great save in cost, where only 486 precision actuators are needed for 438 panels, which is 37% of those actuators needed by classic segmented mirror active optics. Further, we put forward a swaying-arm based design concept for the related connecting joints between panels, which ensures that all the panels attached on to it free from over-constraints when they are positioned and/or actuated. Principle and performance of the swaying-arm connecting mechanism are elaborated before a practical cablemesh based prototype active surface is presented with comprehensive finite element analysis and simulation.
Low-background gamma-ray spectrometry for the international monitoring system
Greenwood, L. R.; Cantaloub, M. G.; Burnett, J. L.; ...
2016-12-28
PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). Furthermore, the combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.
Aircraft Survivability: Space Survivability - Time to Get Serious, Summer 2008
2008-01-01
modified to allow a capabil- ity to launch MANPADS with live warheads. Thus, METS was born. METS is a single - stage cold gas gun that uses compressed...30 feet from the target (see Figure 3). API projectiles or frag- ments fired from the gun passed through a sabot catcher (a thick metal plate with a...Body (T=2040K) Fit Water (T=2010K) Detectors Sabot catcher Shot line Gun Test Fixture Target Panel Figure 2 An Instantaneous Temperature Measurement in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Va'Vra, J.
The publication of the ICFA Instrumentation Bulletin is an activity of the Panel on Future Innovation and Development of ICFA (International Committee for Future Accelerators). The Bulletin reports on research and progress in the field of instrumentation with emphasis on application in the field of high-energy physics. It encourages issues of generic instrumentation. This volume contains the following articles: (1) ''Gaseous Micropattern Detectors: High-Energy Physics and Beyond''; (2) ''DIRC Dreams Redux: Research Directions for the Next Generation of Internally Reflected Imaging Counters''; and (3) ''Corrosion of Glass Windows in DIRC PMTs''.
Overview of the AFRL’s Demonstration and Science Experiments (DSX) Program
2006-09-01
most of the space weather data to-date has been accumulated in the LEO and GEO regimes, as illustrated in Figure 11 with data from dosimeters aboard...Composed of two dosimeters , two particle telescopes and a Single Event Effect detector, CEASE has the capability to monitor a broad range of space...panel of the payload module. One change for DSX is that CEASE will capture and downlink the full dose spectra from each dosimeter , whereas prior
2008-09-01
sodium carbonate, and extracted with 2-mL chloroform. The chloroform layer was analyzed for residual agent by Gas Chromatography /Atomic Emission...agent remaining on the panel. Solutions were analyzed by Gas Chromatography /Flame-Ionization Detector (GC/FID) to determine the amounts of agent...transferred to glass scintillation vials. A 100-µL aliquot of the DEP was diluted with 900-µL chloroform (1:10 dilution) in a Gas Chromatography
Design of a prototype tri-electrode ion-chamber for megavoltage X-ray imaging
NASA Astrophysics Data System (ADS)
Samant, Sanjiv S.; Gopal, Arun; Jain, Jinesh; Xia, Junyi; DiBianca, Frank A.
2007-04-01
High-energy (megavoltage) X-ray imaging is widely used in industry (e.g., aerospace, construction, material sciences) as well as in health care (radiation therapy). One of the fundamental problems with megavoltage imaging is poor contrast and spatial resolution in the detected images due to the dominance of Compton scattering at megavoltage X-ray energies. Therefore, although megavoltage X-rays can be used to image highly attenuating objects that cannot be imaged at kilovoltage energies, the former does not provide the high image quality that is associated with the latter. A high contrast and spatial resolution detector for high-energy X-ray fields called the kinestatic charge detector (KCD) is presented here. The KCD is a tri-electrode ion-chamber based on highly pressurized noble gas. The KCD operates in conjunction with a strip-collimated X-ray beam (for high scatter rejection) to scan across the imaging field. Its thick detector design and unique operating principle provides enhanced charge signal integration for high quality imaging (quantum efficiency ˜50%) despite the unfavorable implications of high-energy X-ray interactions on image quality. The proposed design for a large-field prototype KCD includes a cylindrical pressure chamber along with 576 signal-collecting electrodes capable of resolving at 2 mm -1. The collecting electrodes are routed out of the chamber through the flat end-cap, thereby optimizing the mechanical strength of the chamber. This article highlights the simplified design of the chamber using minimal components for simple assembly. In addition, fundamental imaging measurements and estimates of ion recombination that were performed on a proof-of-principle test chamber are presented. The imaging performance of the prototype KCD was found to be an order-of-magnitude greater than commercial phosphor screen based flat-panel systems, demonstrating the potential for high-quality megavoltage imaging for a variety of industrial applications.
61. Upper panel in cornerpower panel lcpa lower panel in ...
61. Upper panel in corner-power panel lcpa lower panel in corner-oxygen regeneration unit, at right-air conditioner control panel, on floor-bio-pack 45 for emergency breathing, looking northwest - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD
Takao, Masaki; Nishii, Takashi; Sakai, Takashi; Sugano, Nobuhiko
2014-06-01
Anterior sacroiliac joint plate fixation for unstable pelvic ring fractures avoids soft tissue problems in the buttocks; however, the lumbosacral nerves lie in close proximity to the sacroiliac joint and may be injured during the procedure. A 49 year-old woman with a type C pelvic ring fracture was treated with an anterior sacroiliac plate using a computed tomography (CT)-three-dimensional (3D)-fluoroscopy matching navigation system, which visualized the lumbosacral nerves as well as the iliac and sacral bones. We used a flat panel detector 3D C-arm, which made it possible to superimpose our preoperative CT-based plan on the intra-operative 3D-fluoroscopic images. No postoperative complications were noted. Intra-operative lumbosacral nerve visualization using computer navigation was useful to recognize the 'at-risk' area for nerve injury during anterior sacroiliac plate fixation. Copyright © 2013 John Wiley & Sons, Ltd.
Deblurring in digital tomosynthesis by iterative self-layer subtraction
NASA Astrophysics Data System (ADS)
Youn, Hanbean; Kim, Jee Young; Jang, SunYoung; Cho, Min Kook; Cho, Seungryong; Kim, Ho Kyung
2010-04-01
Recent developments in large-area flat-panel detectors have made tomosynthesis technology revisited in multiplanar xray imaging. However, the typical shift-and-add (SAA) or backprojection reconstruction method is notably claimed by a lack of sharpness in the reconstructed images because of blur artifact which is the superposition of objects which are out of planes. In this study, we have devised an intuitive simple method to reduce the blur artifact based on an iterative approach. This method repeats a forward and backward projection procedure to determine the blur artifact affecting on the plane-of-interest (POI), and then subtracts it from the POI. The proposed method does not include any Fourierdomain operations hence excluding the Fourier-domain-originated artifacts. We describe the concept of the self-layer subtractive tomosynthesis and demonstrate its performance with numerical simulation and experiments. Comparative analysis with the conventional methods, such as the SAA and filtered backprojection methods, is addressed.
Latest achievements in PET techniques
NASA Astrophysics Data System (ADS)
Del Guerra, Alberto; Belcari, Nicola; Motta, Alfonso; Di Domenico, Giovanni; Sabba, Nicola; Zavattini, Guido
2003-11-01
Positron emission tomography (PET) has moved from a distinguished research tool in physiology, cardiology and neurology to become a major tool for clinical investigation in oncology, in cardiac applications and in neurological disorders. Much of the PET accomplishments is due to the remarkable improvements in the last 10 years both in hardware and software aspects. Nowadays a similar effort is made by many research groups towards the construction of dedicated PET apparatus in new emerging fields such as molecular medicine, gene therapy, breast cancer imaging and combined modalities. This paper reports on some recent results we have obtained in small animal imaging and positron emission mammography, based on the use of advanced technology in the field of scintillators and photodetectors, such as Position-Sensitive Detectors coupled to crystal matrices, combined use of scintillating fibers and Hybrid-Photo-Diodes readout, and Hamamatsu flat panels. New ideas and future developments are discussed.
Panel positioning error and support mechanism for a 30-m THz radio telescope
NASA Astrophysics Data System (ADS)
Yang, De-Hua; Okoh, Daniel; Zhou, Guo-Hua; Li, Ai-Hua; Li, Guo-Ping; Cheng, Jing-Quan
2011-06-01
A 30-m TeraHertz (THz) radio telescope is proposed to operate at 200 μm with an active primary surface. This paper presents sensitivity analysis of active surface panel positioning errors with optical performance in terms of the Strehl ratio. Based on Ruze's surface error theory and using a Monte Carlo simulation, the effects of six rigid panel positioning errors, such as piston, tip, tilt, radial, azimuthal and twist displacements, were directly derived. The optical performance of the telescope was then evaluated using the standard Strehl ratio. We graphically illustrated the various panel error effects by presenting simulations of complete ensembles of full reflector surface errors for the six different rigid panel positioning errors. Study of the panel error sensitivity analysis revealed that the piston error and tilt/tip errors are dominant while the other rigid errors are much less important. Furthermore, as indicated by the results, we conceived of an alternative Master-Slave Concept-based (MSC-based) active surface by implementating a special Series-Parallel Concept-based (SPC-based) hexapod as the active panel support mechanism. A new 30-m active reflector based on the two concepts was demonstrated to achieve correction for all the six rigid panel positioning errors in an economically feasible way.
Lightweight composites for modular panelized construction
NASA Astrophysics Data System (ADS)
Vaidya, Amol S.
Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction site. Keywords: Modular panelized construction, sandwich composites, composite structural insulated panels (CSIPs).
NASA Astrophysics Data System (ADS)
Shankar, A.; Russ, M.; Vijayan, S.; Bednarek, D. R.; Rudin, S.
2017-03-01
Apodized Aperture Pixel (AAP) design, proposed by Ismailova et.al, is an alternative to the conventional pixel design. The advantages of AAP processing with a sinc filter in comparison with using other filters include non-degradation of MTF values and elimination of signal and noise aliasing, resulting in an increased performance at higher frequencies, approaching the Nyquist frequency. If high resolution small field-of-view (FOV) detectors with small pixels used during critical stages of Endovascular Image Guided Interventions (EIGIs) could also be extended to cover a full field-of-view typical of flat panel detectors (FPDs) and made to have larger effective pixels, then methods must be used to preserve the MTF over the frequency range up to the Nyquist frequency of the FPD while minimizing aliasing. In this work, we convolve the experimentally measured MTFs of an Microangiographic Fluoroscope (MAF) detector, (the MAF-CCD with 35μm pixels) and a High Resolution Fluoroscope (HRF) detector (HRF-CMOS50 with 49.5μm pixels) with the AAP filter and show the superiority of the results compared to MTFs resulting from moving average pixel binning and to the MTF of a standard FPD. The effect of using AAP is also shown in the spatial domain, when used to image an infinitely small point object. For detectors in neurovascular interventions, where high resolution is the priority during critical parts of the intervention, but full FOV with larger pixels are needed during less critical parts, AAP design provides an alternative to simple pixel binning while effectively eliminating signal and noise aliasing yet allowing the small FOV high resolution imaging to be maintained during critical parts of the EIGI.
Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen
2010-03-01
The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.
Highly stretchable, transparent ionic touch panel
NASA Astrophysics Data System (ADS)
Kim, Chong-Chan; Lee, Hyun-Hee; Oh, Kyu Hwan; Sun, Jeong-Yun
2016-08-01
Because human-computer interactions are increasingly important, touch panels may require stretchability and biocompatibility in order to allow integration with the human body. However, most touch panels have been developed based on stiff and brittle electrodes. We demonstrate an ionic touch panel based on a polyacrylamide hydrogel containing lithium chloride salts. The panel is soft and stretchable, so it can sustain a large deformation. The panel can freely transmit light information because the hydrogel is transparent, with 98% transmittance for visible light. A surface-capacitive touch system was adopted to sense a touched position. The panel can be operated under more than 1000% areal strain without sacrificing its functionalities. Epidermal touch panel use on skin was demonstrated by writing words, playing a piano, and playing games.
NASA Astrophysics Data System (ADS)
Reifler, Felix A.; Lehmann, Eberhard H.; Frei, Gabriel; May, Hans; Rossi, René
2006-07-01
A new non-destructive method based on neutron imaging (neutron radiography) to determine the exact water content in aramid-based soft body armour panels is presented. While investigating the ballistic resistance of aramid-based body armour panels under a wet condition, it is important to precisely determine their water content and its chronological development. Using the presented method, the influence of water amount and location on impact testing as well as its time dependence was shown. In the ballistic panels used, spreading of water strongly depended on the kind of quilting. Very fast water migration could be observed when the panels were held vertically. Some first results regarding the water distribution in wet panels immediately after the impact are presented. On the basis of the presented results, requirements for a standard for testing the performance of ballistic panels in the wet state are deduced.
High Strength Wood-based Sandwich Panels reinforced with fiberglass and foam
Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai
2014-01-01
Mechanical analysis is presented for new high-strengthsandwich panels made from wood-based phenolic impregnated laminated paper assembled with an interlocking tri-axial ribbed core. Four different panel configurations were tested, including panels with fiberglass fabric bonded to both outside faces with self-expanding urethane foam used to fill the ribbed core. The...
PLC-controlled cryostats for the BlackGEM and MeerLICHT detectors
NASA Astrophysics Data System (ADS)
Raskin, Gert; Morren, Johan; Pessemier, Wim; Bloemen, Steven; Klein-Wolt, Marc; Roelfsema, Ronald; Groot, Paul; Aerts, Conny
2016-08-01
BlackGEM is an array of telescopes, currently under development at the Radboud University Nijmegen and at NOVA (Netherlands Research School for Astronomy). It targets the detection of the optical counterparts of gravitational waves. The first three BlackGEM telescopes are planned to be installed in 2018 at the La Silla observatory (Chile). A single prototype telescope, named MeerLICHT, will already be commissioned early 2017 in Sutherland (South Africa) to provide an optical complement for the MeerKAT radio array. The BlackGEM array consists of, initially, a set of three robotic 65-cm wide-field telescopes. Each telescope is equipped with a single STA1600 CCD detector with 10.5k x 10.5k 9-micron pixels that covers a 2.7 square degrees field of view. The cryostats for housing these detectors are developed and built at the KU Leuven University (Belgium). The operational model of BlackGEM requires long periods of reliable hands-off operation. Therefore, we designed the cryostats for long vacuum hold time and we make use of a closed-cycle cooling system, based on Polycold PCC Joule-Thomson coolers. A single programmable logic controller (PLC) controls the cryogenic systems of several BlackGEM telescopes simultaneously, resulting in a highly reliable, cost-efficient and maintenance-friendly system. PLC-based cryostat control offers some distinct advantages, especially for a robotic facility. Apart of temperature monitoring and control, the PLC also monitors the vacuum quality, the power supply and the status of the PCC coolers (compressor power consumption and temperature, pressure in the gas lines, etc.). Furthermore, it provides an alarming system and safe and reproducible procedures for automatic cool down and warm up. The communication between PLC and higher-level software takes place via the OPC-UA protocol, offering a simple to implement, yet very powerful interface. Finally, a touch-panel display on the PLC provides the operator with a user-friendly and robust technical interface. In this contribution, we present the design of the BlackGEM cryostats and of the PLC-based control system.
Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.
Zhu, Zheyuan; Pang, Shuo
2018-04-01
X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to the reconstruction of two-dimensional samples with anisotropic scattering profile by introducing additional degree of freedom on the detector. The presented method has the potential to achieve low-cost, high-specificity material discrimination based on x-ray coherent scattering. © 2018 American Association of Physicists in Medicine.
Development of fire-resistant wood structural panels
NASA Technical Reports Server (NTRS)
Vaughan, T. W.; Etzold, R.
1977-01-01
Structural panels made with Xylok 210 resin as the binder had a burn-through resistance at least equal to the structural panels made with Kerimid 500. Therefore, because of its comparative ease of handling, Xylok 210 was selected as the resin binder to provide the baseline panel for the study of a means of improving the flame-spread resistance of the structural panels. The final resin-filler system consisted of Xylok 210 binder with the addition of ammonium oxalate and ammonium phosphate to the strands of the surface layers, using 24% of each salt based upon the air-dry weight of the strands. This system resulted in a panel with a flame-spread code of about 60, a Class 2 classification. A standard phenolic based structural panel had a flame-spread greater than 200 for laboratory prepared panels. The burn-through tests indicated an average burn-through time of 588 seconds for the specimens made with the final system. This compares to an average burn-through time of 287 seconds for the standard phenolic base structural specimen. One full-size panel was made with the final system.
Tsuboi, Satoshi; Yoshida, Honami; Ae, Ryusuke; Kojo, Takao; Nakamura, Yosikazu; Kitamura, Kunio
2015-03-01
To investigate the selection bias of an Internet panel survey organized by a commercial company. A descriptive study was conducted. The authors compared the characteristics of the Internet panel survey with a national paper-based survey and with national governmental statistics in Japan. The participants in the Internet panel survey were composed of more women, were older, and resided in large cities. Regardless of age and sex, the prevalence of highly educated people in the Internet panel survey was higher than in the paper-based survey and the national statistics. In men, the prevalence of heavy drinkers among the 30- to 49-year-old population and of habitual smokers among the 20- to 49-year-old population in the Internet panel survey was lower than what was found in the national statistics. The estimated characteristics of commercial Internet panel surveys were quite different from the national statistical data. In a commercial Internet panel survey, selection bias should not be underestimated. © 2012 APJPH.
NASA Astrophysics Data System (ADS)
Setlur Nagesh, S. V.; Russ, M.; Ionita, C. N.; Bednarek, D.; Rudin, S.
2017-03-01
Modern 3D printing technology can fabricate vascular phantoms based on an actual human patient with a high degree of precision facilitating a realistic simulation environment for an intervention. We present two experimental setups using 3D printed patient-specific neurovasculature to simulate different disease anatomies. To simulate the human neurovasculature in the Circle of Willis, patient-based phantoms with aneurysms were 3D printed using a Objet Eden 260V printer. Anthropomorphic head phantoms and a human skull combined with acrylic plates simulated human head bone anatomy and x-ray attenuation. For dynamic studies the 3D printed phantom was connected to a pulsatile flow loop with the anthropomorphic phantom underneath. By combining different 3D printed phantoms and the anthropomorphic phantoms, different patient pathologies can be simulated. For static studies a 3D printed neurovascular phantom was embedded inside a human skull and used as a positional reference for treatment devices such as stents. To simulate tissue attenuation acrylic layers were added. Different combinations can simulate different patient treatment procedures. The Complementary-Metal-Oxide-Semiconductor (CMOS) based High Resolution Fluoroscope (HRF) with 75μm pixels offers an advantage over the state-of-the-art 200 μm pixel Flat Panel Detector (FPD) due to higher Nyquist frequency and better DQE performance. Whether this advantage is clinically useful during an actual clinical neurovascular intervention can be addressed by qualitatively evaluating images from a cohort of various cases performed using both detectors. The above-mentioned method can offer a realistic substitute for an actual clinical procedure. Also a large cohort of cases can be generated and used for a HRF clinical utility determination study.
Technical characterization of five x-ray detectors for paediatric radiography applications
NASA Astrophysics Data System (ADS)
Marshall, N. W.; Smet, M.; Hofmans, M.; Pauwels, H.; De Clercq, T.; Bosmans, H.
2017-12-01
Physical image quality of five x-ray detectors used in the paediatric imaging department is characterized with the aim of establishing the range/scope of imaging performance provided by these detectors for neonatal imaging. Two computed radiography (CR) detectors (MD4.0 powder imaging plate (PIP) and HD5.0 needle imaging plate (NIP), Agfa HealthCare NV, B-2640 Mortsel, Belgium) and three flat panel detectors (FPD) (the Agfa DX-D35C and DX-D45C and the DRX-2530C (Carestream Health Inc., Rochester, NY 14608, USA)) were assessed. Physical image quality was characterized using the detector metrics given by the International Electrotechnical Commission (IEC 62220-1) to measure modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) using the IEC-specified beam qualities of RQA3 and RQA5. The DQE was evaluated at the normal operating detector air kerma (DAK) level, defined at 2.5 µGy for all detectors, and at factors of 1/3.2 and 3.2 times the normal level. MTF curves for the different detectors were similar at both RQA3 and RQA5 energies; the average spatial frequency for the 50% point (MTF0.5) at RQA3 was 1.26 mm-1, with a range from 1.20 mm-1 to 1.37 mm-1. The DQE of the NIP CR compared to the PIP CR was notably greater and similar to that for the FPD devices. At RQA3, average DQE for the FPD and NIP (at 0.5 mm-1 2.5 µGy) was 0.57 compared to 0.26 for the PIP CR. At the RQA5 energy, the DRX-2530C and the DX-D45C had the highest DQE (~0.6 at 0.5 mm-1 2.5 µGy). Noise separation analysis using the polynomial model showed higher electronic noise for the DX-D35C and DRX-2530C detectors; this explains the reduced DQE seen at 0.7 µGy/image. The NIP CR detector offers notably improved DQE performance compared to the PIP CR system and a value similar to the DQE for FPD devices at the RQA3 energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russ, M; Nagesh, S Setlur; Ionita, C
2015-06-15
Purpose: To evaluate the task specific imaging performance of a new 25µm pixel pitch, 1000µm thick amorphous selenium direct detection system with CMOS readout for typical angiographic exposure parameters using the relative object detectability (ROD) metric. Methods: The ROD metric uses a simulated object function weighted at each spatial frequency by the detectors’ detective quantum efficiency (DQE), which is an intrinsic performance metric. For this study, the simulated objects were aluminum spheres of varying diameter (0.05–0.6mm). The weighted object function is then integrated over the full range of detectable frequencies inherent to each detector, and a ratio is taken ofmore » the resulting value for two detectors. The DQE for the 25µm detector was obtained from a simulation of a proposed a-Se detector using an exposure of 200µR for a 50keV x-ray beam. This a-Se detector was compared to two microangiographic fluoroscope (MAF) detectors [the MAF-CCD with pixel size of 35µm and Nyquist frequency of 14.2 cycles/mm and the MAF-CMOS with pixel size of 75µm and Nyquist frequency of 6.6 cycles/mm] and a standard flat-panel detector (FPD with pixel size of 194µm and Nyquist frequency of 2.5cycles/mm). Results: ROD calculations indicated vastly superior performance by the a-Se detector in imaging small aluminum spheres. For the 50µm diameter sphere, the ROD values for the a-Se detector compared to the MAF-CCD, the MAF-CMOS, and the FPD were 7.3, 9.3 and 58, respectively. Detector performance in the low frequency regime was dictated by each detector’s DQE(0) value. Conclusion: The a-Se with CMOS readout is unique and appears to have distinctive advantages of incomparable high resolution, low noise, no readout lag, and expandable design. The a-Se direct detection system will be a powerful imaging tool in angiography, with potential break-through applications in diagnosis and treatment of neuro-vascular disease. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less
Fukao, Mari; Kawamoto, Kiyosumi; Matsuzawa, Hiroaki; Honda, Osamu; Iwaki, Takeshi; Doi, Tsukasa
2015-01-01
We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40-80 kVp and 20-100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.
Solid-state flat panel imager with avalanche amorphous selenium
NASA Astrophysics Data System (ADS)
Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei
2016-03-01
Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.
75 FR 66734 - Proposed Voluntary Product Standard PS 2-10, Structural Plywood
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... to Voluntary Product Standard (PS) 2-04, Performance Standard for Wood-Based Structural-Use Panels... acceptability of wood-based structural-use panels for construction sheathing and single-floor applications. It... acceptability of wood-based structural-use panels for construction sheathing and single- floor application, and...
Buckling Design and Analysis of a Payload Fairing One-Sixth Cylindrical Arc-Segment Panel
NASA Technical Reports Server (NTRS)
Kosareo, Daniel N.; Oliver, Stanley T.; Bednarcyk, Brett A.
2013-01-01
Design and analysis results are reported for a panel that is a 16th arc-segment of a full 33-ft diameter cylindrical barrel section of a payload fairing structure. Six such panels could be used to construct the fairing barrel, and, as such, compression buckling testing of a 16th arc-segment panel would serve as a validation test of the buckling analyses used to design the fairing panels. In this report, linear and nonlinear buckling analyses have been performed using finite element software for 16th arc-segment panels composed of aluminum honeycomb core with graphiteepoxy composite facesheets and an alternative fiber reinforced foam (FRF) composite sandwich design. The cross sections of both concepts were sized to represent realistic Space Launch Systems (SLS) Payload Fairing panels. Based on shell-based linear buckling analyses, smaller, more manageable buckling test panel dimensions were determined such that the panel would still be expected to buckle with a circumferential (as opposed to column-like) mode with significant separation between the first and second buckling modes. More detailed nonlinear buckling analyses were then conducted for honeycomb panels of various sizes using both Abaqus and ANSYS finite element codes, and for the smaller size panel, a solid-based finite element analysis was conducted. Finally, for the smaller size FRF panel, nonlinear buckling analysis was performed wherein geometric imperfections measured from an actual manufactured FRF were included. It was found that the measured imperfection did not significantly affect the panel's predicted buckling response
Abbaszadeh, Shiva; Gu, Yi; Reynolds, Paul D; Levin, Craig S
2016-09-21
Cadmium zinc telluride (CZT) offers key advantages for small animal positron emission tomography (PET), including high spatial and energy resolution and simple metal deposition for fabrication of very small pixel arrays. Previous studies have investigated the intrinsic spatial, energy, and timing resolution of an individual sub-millimeter resolution CZT detector. In this work we present the first characterization results of a system of these detectors. The 3D position sensitive dual-CZT detector module and readout electronics developed in our lab was scaled up to complete a significant portion of the final PET system. This sub-system was configured as two opposing detection panels containing a total of twelve [Formula: see text] mm monolithic CZT crystals for proof of concept. System-level characterization studies, including optimizing the trigger threshold of each channel's comparators, were performed. 68 Ge and 137 Cs radioactive isotopes were used to characterize the energy resolution of all 468 anode channels in the sub-system. The mean measured global 511 keV photopeak energy resolution over all anodes was found to be [Formula: see text]% FWHM after correction for photon interaction depth-dependent signal variation. The measured global time resolution was 37 ns FWHM, a parameter to be further optimized, and the intrinsic spatial resolution was 0.76 mm FWHM.
Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Numano, Tomokazu; Abe, Shinji; Sabol, John M; Suzuki, Shigeru; Ueno, Eiko
2012-06-01
Using an anthropomorphic phantom, we have investigated the feasibility of digital tomosynthesis (DT) of flat-panel detector (FPD) radiography to reduce radiation dose for sinonasal examination compared to multi-detector computed tomography (MDCT). A female Rando phantom was scanned covering frontal to maxillary sinus using the clinically routine protocol by both 64-detector CT (120 kV, 200 mAs, and 1.375-pitch) and DT radiography (80 kV, 1.0 mAs per projection, 60 projections, 40° sweep, and posterior-anterior projections). Glass dosimeters were used to measure the radiation dose to internal organs including the thyroid gland, brain, submandibular gland, and the surface dose at various sites including the eyes during those scans. We compared the radiation dose to those anatomies between both modalities. In DT radiography, the doses of the thyroid gland, brain, submandibular gland, skin, and eyes were 230 ± 90 μGy, 1770 ± 560 μGy, 1400 ± 80 μGy, 1160 ± 2100 μGy, and 112 ± 6 μGy, respectively. These doses were reduced to approximately 1/5, 1/8, 1/12, 1/17, and 1/290 of the respective MDCT dose. For sinonasal examinations, DT radiography enables dramatic reduction in radiation exposure and dose to the head and neck region, particularly to the lens of the eye. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization
NASA Astrophysics Data System (ADS)
Xu, J.; Sisniega, A.; Zbijewski, W.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.
2016-04-01
Detection of acute intracranial hemorrhage (ICH) is important for diagnosis and treatment of traumatic brain injury, stroke, postoperative bleeding, and other head and neck injuries. This paper details the design and development of a cone-beam CT (CBCT) system developed specifically for the detection of low-contrast ICH in a form suitable for application at the point of care. Recognizing such a low-contrast imaging task to be a major challenge in CBCT, the system design began with a rigorous analysis of task-based detectability including critical aspects of system geometry, hardware configuration, and artifact correction. The imaging performance model described the three-dimensional (3D) noise-equivalent quanta using a cascaded systems model that included the effects of scatter, scatter correction, hardware considerations of complementary metal-oxide semiconductor (CMOS) and flat-panel detectors (FPDs), and digitization bit depth. The performance was analyzed with respect to a low-contrast (40-80 HU), medium-frequency task representing acute ICH detection. The task-based detectability index was computed using a non-prewhitening observer model. The optimization was performed with respect to four major design considerations: (1) system geometry (including source-to-detector distance (SDD) and source-to-axis distance (SAD)); (2) factors related to the x-ray source (including focal spot size, kVp, dose, and tube power); (3) scatter correction and selection of an antiscatter grid; and (4) x-ray detector configuration (including pixel size, additive electronics noise, field of view (FOV), and frame rate, including both CMOS and a-Si:H FPDs). Optimal design choices were also considered with respect to practical constraints and available hardware components. The model was verified in comparison to measurements on a CBCT imaging bench as a function of the numerous design parameters mentioned above. An extended geometry (SAD = 750 mm, SDD = 1100 mm) was found to be advantageous in terms of patient dose (20 mGy) and scatter reduction, while a more isocentric configuration (SAD = 550 mm, SDD = 1000 mm) was found to give a more compact and mechanically favorable configuration with minor tradeoff in detectability. An x-ray source with a 0.6 mm focal spot size provided the best compromise between spatial resolution requirements and x-ray tube power. Use of a modest anti-scatter grid (8:1 GR) at a 20 mGy dose provided slight improvement (~5-10%) in the detectability index, but the benefit was lost at reduced dose. The potential advantages of CMOS detectors over FPDs were quantified, showing that both detectors provided sufficient spatial resolution for ICH detection, while the former provided a potentially superior low-dose performance, and the latter provided the requisite FOV for volumetric imaging in a centered-detector geometry. Task-based imaging performance modeling provides an important starting point for CBCT system design, especially for the challenging task of ICH detection, which is somewhat beyond the capabilities of existing CBCT platforms. The model identifies important tradeoffs in system geometry and hardware configuration, and it supports the development of a dedicated CBCT system for point-of-care application. A prototype suitable for clinical studies is in development based on this analysis.
Wood-based panels : supply, trade and consumption
Henry Spelter
2000-01-01
Preliminary figures of wood-based panels consumption in Europe show a small increase in 1999 to 52.1 million m3 a new record level. However, according to the European Panel Federation (EPF), real consumption taking into account particle board stock changes, was higher due to the recovery of markets in the second half of 1999. Particle board is the main panel in Europe...
The MPGD-based photon detectors for the upgrade of COMPASS RICH-1
NASA Astrophysics Data System (ADS)
Alexeev, M.; Azevedo, C. D. R.; Birsa, R.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Finger, M.; Finger, M.; Fischer, H.; Gobbo, B.; Gregori, M.; Hamar, G.; Herrmann, F.; Levorato, S.; Maggiora, A.; Makke, A.; Martin, A.; Menon, G.; Steiger, K.; Novy, J.; Panzieri, D.; Pereira, F. A. B.; Santos, C. A.; Sbrizzai, G.; Schopferer, S.; Slunecka, M.; Steiger, L.; Sulc, M.; Tessarotto, F.; Veloso, J. F. C. A.
2017-12-01
The RICH-1 Detector of the COMPASS experiment at CERN SPS has undergone an important upgrade for the 2016 physics run. Four new photon detectors, based on Micro Pattern Gaseous Detector technology and covering a total active area larger than 1.2 m2 have replaced the previously used MWPC-based photon detectors. The upgrade answers the challenging efficiency and stability quest for the new phase of the COMPASS spectrometer physics programme. The new detector architecture consists in a hybrid MPGD combination of two Thick Gas Electron Multipliers and a MicroMegas stage. Signals, extracted from the anode pad by capacitive coupling, are read-out by analog F-E based on the APV25 chip. The main aspects of the COMPASS RICH-1 photon detectors upgrade are presented focussing on detector design, engineering aspects, mass production, the quality assessment and assembly challenges of the MPGD components. The status of the detector commissioning is also presented.
On-Orbit Noise Characterization for MODIS Reflective Solar Bands
NASA Technical Reports Server (NTRS)
Xiong, X.; Xie, X.; Angal, A.
2008-01-01
Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) has operated successfully on-board the NASA Earth Observing System (EOS) Terra and EOS Aqua spacecraft. MODIS is a passive cross-track scanning radiometer that makes observations in 36 spectral bands with spectral wavelengths from visible (VIS) to long-wave infrared. MODIS bands 1-19 and 26 are the reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers. They are calibrated on-orbit using an on-board solar diffuser (SD) and a SD stability monitor (SDSM) system. For MODIS RSB, the level 1B calibration algorithm produces top of the atmosphere reflectance factors and radiances for every pixel of the Earth view. The sensor radiometric calibration accuracy, specified at each spectral band's typical scene radiance, is 2% for the RSB reflectance factors and 5% for the RSB radiances. Also specified at the typical scene radiance is the detector signal-to-noise ratio (SNR), a key sensor performance parameter that directly impacts its radiometric calibration accuracy and stability, as well as the image quality. This paper describes an on-orbit SNR characterization approach developed to evaluate and track MODIS RSB detector performance. In order to perform on-orbit SNR characterization, MODIS RSB detector responses to the solar illumination reflected from the SD panel must be corrected for factors due to variations of the solar angles and the SD bi-directional reflectance factor. This approach enables RSB SNR characterization to be performed at different response levels for each detector. On-orbit results show that both Terra and Aqua MODIS RSB detectors have performed well since launch. Except for a few noisy or inoperable detectors which were identified pre-launch, most RSB detectors continue to meet the SNR design requirements and are able to maintain satisfactory short-term stability. A comparison of on-orbit noise characterization results with results derived from pre-launch calibration and characterization are also provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
... Advisory Board Panel To Review EPA's Web-Based Report on the Environment AGENCY: Environmental Protection... nominations of technical experts to form an SAB panel to review the Agency's Web-based Report on the... procedural policies. EPA's Web-based Report on the Environment (ROE) has been developed to provide a...
Continuously pumping and reactivating gas pump
Batzer, T.H.; Call, W.R.
Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.
Continuously pumping and reactivating gas pump
Batzer, Thomas H.; Call, Wayne R.
1984-01-01
Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.
Large Coded Aperture Mask for Spaceflight Hard X-ray Images
NASA Technical Reports Server (NTRS)
Vigneau, Danielle N.; Robinson, David W.
2002-01-01
The 2.6 square meter coded aperture mask is a vital part of the Burst Alert Telescope on the Swift mission. A random, but known pattern of more than 50,000 lead tiles, each 5 mm square, was bonded to a large honeycomb panel which projects a shadow on the detector array during a gamma ray burst. A two-year development process was necessary to explore ideas, apply techniques, and finalize procedures to meet the strict requirements for the coded aperture mask. Challenges included finding a honeycomb substrate with minimal gamma ray attenuation, selecting an adhesive with adequate bond strength to hold the tiles in place but soft enough to allow the tiles to expand and contract without distorting the panel under large temperature gradients, and eliminating excess adhesive from all untiled areas. The largest challenge was to find an efficient way to bond the > 50,000 lead tiles to the panel with positional tolerances measured in microns. In order to generate the desired bondline, adhesive was applied and allowed to cure to each tile. The pre-cured tiles were located in a tool to maintain positional accuracy, wet adhesive was applied to the panel, and it was lowered to the tile surface with synchronized actuators. Using this procedure, the entire tile pattern was transferred to the large honeycomb panel in a single bond. The pressure for the bond was achieved by enclosing the entire system in a vacuum bag. Thermal vacuum and acoustic tests validated this approach. This paper discusses the methods, materials, and techniques used to fabricate this very large and unique coded aperture mask for the Swift mission.
Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng
2016-01-01
A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm2. By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R0) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs. PMID:27809222
Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng
2016-10-31
A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm². By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R₀) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs.
Assessment of MODIS and VIIRS Solar Diffuser On-Orbit Degradation
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim
2015-01-01
Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94 micrometers. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).
Assessment of MODIS and VIIRS solar diffuser on-orbit degradation
NASA Astrophysics Data System (ADS)
Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim
2015-09-01
Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94μm. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).
[Study on the application of pyroelectric infrared sensor to safety protection system].
Wang, Song-de; Zhang, Shuan-ji; Zhu, Xiao-long; Yang, Jie-hui
2006-11-01
Using the infrared ray of human body, which is received and magnified by pyroelectric infrared sensor to form a certain voltage control signal, and using the control signal to trigger a voice recording-reproducing circuit, a pyroelectric infrared detector voice device with auto-control function designed. The circuit adopted new pyroelectric infrared detector assembly and voice recording-reproducing assembly. When someone is present in the detectable range of the pyroelectric infrared detector, first, the pyroelectric infrared sensor will transform the incepted radiation energy to a electric signal, which is then magnified and compared by an inside circuit, and an output control signal, touches off the voice recording-reproducing assembly with the reproducer sending out a beforehand transcribed caution voice to wise the man who does not know well the surrounding condition that the frontage is a danger zone and should not be approched. With the design of integrated structures, the distance-warning device has the advantages of strong anti-jamming ability, low temperature resistance, working stability and use-convenience, and it can be suitably installed and used in several locations which may endanger person safety, such as substation, high voltage switch panel, electric transformer, etc.
An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom
NASA Astrophysics Data System (ADS)
Dragusin, O.; Bosmans, H.; Pappas, C.; Desmet, W.
2008-09-01
Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 μGy/im. Radiation doses (IAK ~40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s-1, detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 μGy/im to 0.17 μGy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters the quality of the images independently of radiation exposure settings. The SAM anthropomorphic phantom has the advantage of visualization of stenotic lesions during the injection of a contrast agent and using an anatomical background. In the future, this phantom could potentially bridge the gap between physics tests and the clinical reality in the catheterization laboratory.
Togno, M; Wilkens, J J; Menichelli, D; Oechsner, M; Perez-Andujar, A; Morin, O
2016-05-01
To characterize a new air vented ionization chamber technology, suitable to build detector arrays with small pixel pitch and independence of sensitivity on dose per pulse. The prototype under test is a linear array of air vented ionization chambers, consisting of 80 pixels with 3.5 mm pixel pitch distance and a sensitive volume of about 4 mm(3). The detector has been characterized with (60)Co radiation and MV x rays from different linear accelerators (with flattened and unflattened beam qualities). Sensitivity dependence on dose per pulse has been evaluated under MV x rays by changing both the source to detector distance and the beam quality. Bias voltage has been varied in order to evaluate the charge collection efficiency in the most critical conditions. Relative dose profiles have been measured for both flattened and unflattened distributions with different field sizes. The reference detectors were a commercial array of ionization chambers and an amorphous silicon flat panel in direct conversion configuration. Profiles of dose distribution have been measured also with intensity modulated radiation therapy (IMRT), stereotactic radiosurgery (SRS), and volumetric modulated arc therapy (VMAT) patient plans. Comparison has been done with a commercial diode array and with Gafchromic EBT3 films. Repeatability and stability under continuous gamma irradiation are within 0.3%, in spite of low active volume and sensitivity (∼200 pC/Gy). Deviation from linearity is in the range [0.3%, -0.9%] for a dose of at least 20 cGy, while a worsening of linearity is observed below 10 cGy. Charge collection efficiency with 2.67 mGy/pulse is higher than 99%, leading to a ±0.9% sensitivity change in the range 0.09-2.67 mGy/pulse (covering all flattened and unflattened beam qualities). Tissue to phantom ratios show an agreement within 0.6% with the reference detector up to 34 cm depth. For field sizes in the range 2 × 2 to 15 × 15 cm(2), the output factors are in agreement with a thimble chamber within 2%, while with 25 × 25 cm(2) field size, an underestimation of 4.0% was found. Agreement of field and penumbra width measurements with the flat panel is of the order of 1 mm down to 1 × 1 cm(2) field size. Flatness and symmetry values measured with the 1D array and the reference detectors are comparable, and differences are always smaller than 1%. Angular dependence of the detector, when compared to measurements taken with a cylindrical chamber in the same phantom, is as large as 16%. This includes inhomogeneity and asymmetry of the design, which during plan verification are accounted for by the treatment planning system (TPS). The detector is capable to reproduce the dose distributions of IMRT and VMAT plans with a maximum deviation from TPS of 3.0% in the target region. In the case of VMAT and SRS plans, an average (maximum) deviation of the order of 1% (4%) from films has been measured. The investigated technology appears to be useful both for Linac QA and patient plan verification, especially in treatments with steep dose gradients and nonuniform dose rates such as VMAT and SRS. Major limitations of the present prototype are the linearity at low dose, which can be solved by optimizing the readout electronics, and the underestimation of output factors with large field sizes. The latter problem is presently not completely understood and will require further investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Togno, M., E-mail: michele.togno@iba-group.com; Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich 81675; IBA Dosimetry GmbH, Schwarzenbruck 90592
Purpose: To characterize a new air vented ionization chamber technology, suitable to build detector arrays with small pixel pitch and independence of sensitivity on dose per pulse. Methods: The prototype under test is a linear array of air vented ionization chambers, consisting of 80 pixels with 3.5 mm pixel pitch distance and a sensitive volume of about 4 mm{sup 3}. The detector has been characterized with {sup 60}Co radiation and MV x rays from different linear accelerators (with flattened and unflattened beam qualities). Sensitivity dependence on dose per pulse has been evaluated under MV x rays by changing both themore » source to detector distance and the beam quality. Bias voltage has been varied in order to evaluate the charge collection efficiency in the most critical conditions. Relative dose profiles have been measured for both flattened and unflattened distributions with different field sizes. The reference detectors were a commercial array of ionization chambers and an amorphous silicon flat panel in direct conversion configuration. Profiles of dose distribution have been measured also with intensity modulated radiation therapy (IMRT), stereotactic radiosurgery (SRS), and volumetric modulated arc therapy (VMAT) patient plans. Comparison has been done with a commercial diode array and with Gafchromic EBT3 films. Results: Repeatability and stability under continuous gamma irradiation are within 0.3%, in spite of low active volume and sensitivity (∼200 pC/Gy). Deviation from linearity is in the range [0.3%, −0.9%] for a dose of at least 20 cGy, while a worsening of linearity is observed below 10 cGy. Charge collection efficiency with 2.67 mGy/pulse is higher than 99%, leading to a ±0.9% sensitivity change in the range 0.09–2.67 mGy/pulse (covering all flattened and unflattened beam qualities). Tissue to phantom ratios show an agreement within 0.6% with the reference detector up to 34 cm depth. For field sizes in the range 2 × 2 to 15 × 15 cm{sup 2}, the output factors are in agreement with a thimble chamber within 2%, while with 25 × 25 cm{sup 2} field size, an underestimation of 4.0% was found. Agreement of field and penumbra width measurements with the flat panel is of the order of 1 mm down to 1 × 1 cm{sup 2} field size. Flatness and symmetry values measured with the 1D array and the reference detectors are comparable, and differences are always smaller than 1%. Angular dependence of the detector, when compared to measurements taken with a cylindrical chamber in the same phantom, is as large as 16%. This includes inhomogeneity and asymmetry of the design, which during plan verification are accounted for by the treatment planning system (TPS). The detector is capable to reproduce the dose distributions of IMRT and VMAT plans with a maximum deviation from TPS of 3.0% in the target region. In the case of VMAT and SRS plans, an average (maximum) deviation of the order of 1% (4%) from films has been measured. Conclusions: The investigated technology appears to be useful both for Linac QA and patient plan verification, especially in treatments with steep dose gradients and nonuniform dose rates such as VMAT and SRS. Major limitations of the present prototype are the linearity at low dose, which can be solved by optimizing the readout electronics, and the underestimation of output factors with large field sizes. The latter problem is presently not completely understood and will require further investigations.« less
Advanced optical instruments technology
NASA Technical Reports Server (NTRS)
Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William
1992-01-01
The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.
Advanced optical instruments technology
NASA Astrophysics Data System (ADS)
Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William
1992-08-01
The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.
Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP)
Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai
2015-01-01
The static and fatigue bending behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP) has been investigated by four-point bending tests. Fatigue panels and weakened panels (wESCP) with an initial interface defect were manufactured for the fatigue tests. Stress Ï vs. number of cycles curves (S-N) were recorded under the different stress...
Willis, Charles E; Vinogradskiy, Yevgeniy Y; Lofton, Brad K; White, R Allen
2011-07-01
The conditions under which vendor performance criteria for digital radiography systems are obtained do not adequately simulate the conditions of actual clinical imaging with respect to radiographic technique factors, scatter production, and scatter control. Therefore, the relationship between performance under ideal conditions and performance in clinical practice remains unclear. Using data from a large complement of systems in clinical use, the authors sought to develop a method to establish expected performance criteria for digital flat-panel radiography systems with respect to signal-to-noise ratio (SNR) versus detector exposure under clinical conditions for thoracic imaging. The authors made radiographic exposures of a patient-equivalent chest phantom at 125 kVp and 180 cm source-to-image distance. The mAs value was modified to produce exposures above and below the mAs delivered by automatic exposure control. Exposures measured free-in-air were corrected to the imaging plane by the inverse square law, by the attenuation factor of the phantom, and by the Bucky factor of the grid for the phantom, geometry, and kilovolt peak. SNR was evaluated as the ratio of the mean to the standard deviation (SD) of a region of interest automatically selected in the center of each unprocessed image. Data were acquired from 18 systems, 14 of which were tested both before and after gain and offset calibration. SNR as a function of detector exposure was interpolated using a double logarithmic function to stratify the data into groups of 0.2, 0.5, 1.0, 2.0, and 5.0 mR exposure (1.8, 4.5, 9.0, 18, and 45 microGy air KERMA) to the detector. The mean SNR at each exposure interval after calibration exhibited linear dependence on the mean SNR before calibration (r2=0.9999). The dependence was greater than unity (m = 1.101 +/- 0.006), and the difference from unity was statistically significant (p <0.005). The SD of mean SNR after calibration also exhibited linear dependence on the SD of the mean SNR before calibration (r2 = 0.9997). This dependence was less than unity (m = 0.822 +/- 0.008), and the difference from unity was also statistically significant (p < 0.005). Systems were separated into two groups: systems with a precalibration SNR higher than the median SNR (N = 7), and those with a precalibration SNR lower than the median SNR (N= 7). Posthoc analysis was performed to correct for expanded false positive results. After calibration, the authors noted differences in mean SNR within both high and low groups, but these differences were not statistically significant at the 0.05 level. SNR data from four additional systems and one system from those previously tested after replacement of its detector were compared to the 95% confidence intervals (CI) calculated from the postcalibration SNR data. The comparison indicated that four of these five systems were consistent with the CI derived from the previously tested 14 systems after calibration. Two systems from the paired group that remained outside the CI were studied further. One system was remedied with a grid replacement. The nonconformant behavior of the other system was corrected by replacing the image receptor. Exposure-dependent SNR measurements under conditions simulating thoracic imaging allowed us to develop criteria for digital flat-panel imaging systems from a single manufacturer. These measurements were useful in identifying systems with discrepant performance, including one with a defective grid, one with a defective detector, and one that had not been calibrated for gain and offset. The authors also found that the gain and offset calibration reduces variation in exposure-dependent SNR performance among the systems.
Samant, Sanjiv S; Gopal, Arun
2006-09-01
Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a significantly reduced imaging dose, enhancing the imaging signal-to-noise ratio (SNR) and leading to high DQE. While thick detectors usually suffer from reduced spatial resolution, the KCD provides good spatial resolution due to high gas pressure that limits the spread of scattered electrons, and a strip-collimated beam that significantly reduces the inclusion of scatter in the imaging signal. A 10 cm wide small-field-of-view (SFOV) prototype of the KCD is presented with a complete analysis of its imaging performance. Measurements of modulation transfer function (MTF), noise power spectrum (NPS), and DQE were in good agreement with Monte Carlo simulations. Imaging signal loss from recombination within the KCD chamber was measured at different gas pressures, ion drift velocities, and strip-collimation widths. Image quality for the prototype KCD was also observed with anthropomorphic phantom imaging in comparison with various commercial and research portal imaging systems, including VEPID, flat-panel imager, and conventional and high contrast film systems. KCD-based imaging provided very good contrast and good spatial resolution at very low imaging dose (0.1 cGy per image). For the prototype KCD, measurements yielded DQE(0)=0.19 and DQE(1 cy/mm)=0.004.
Composite panels based on woven sandwich-fabric preforms
NASA Astrophysics Data System (ADS)
van Vuure, Aart Willem
A new type of sandwich material was investigated, based on woven sandwich-fabric preforms. Because of the integrally woven nature of the sandwich-fabric the skin-core debonding resistance of panels and structures based on the preform is very high. As the sandwich-fabrics are produced by a large scale textile weaving process (velvet weaving or distance weaving) and already a preform of a sandwich is available, the cost of the final panel or structure can potentially stay limited. Most attention in this work is focussed on the mechanical performance of sandwich-fabric panels. The high skin-core debonding resistance was verified and also indications were found of a good damage tolerance. Both unfoamed and foamed panels were evaluated and compared with existing sandwich panels. Microstructural parameters investigated for unfoamed cores are pile length, pile density, woven pile angles, degree of pile stretching, tilt angles of the piles induced during panel production and resin content and distribution. For foamed panels it is especially the foam density which has an important influence. There appears to be a synergistic effect between piles and foam in the sandwich core, leading to very acceptable mechanical properties. For panels for (semi) structural applications, foaming is almost indispensable once the panel thickness is higher than about 15 mm. To understand the behaviour of foamed panels, attention was paid to the modelling of the mechanics of pure foam. The foam microstructure was modelled with the model of an anisotropic tetrakaidecahedron. The mechanical properties of unfoamed panels were modelled with the help of finite elements. A detailed geometrical description of the core layout was made which was incorporated into a preprocessing program for a finite element code. Attention is paid to the production of panels based on the woven preforms. A newly developed Adhesive Foil Stretching process was investigated. Also the foaming of panels was studied. A lot of attention was paid to a special application in the field of structural damping, where sandwich-fabric panels could be used as spacer in a constrained layer application. The vibrations and damping were modelled with the help of finite elements.
2010-08-27
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians remove a side panel that protected the Alpha Magnetic Spectrometer, or AMS, during shipment. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
1993-11-01
chambers responding primarily to the muon component which for solar cosmic rays represents a threshold of 4-5 GV. Four GLEs were reported between 1942...record the cosmic ray intensity above - 1 GV which is a considerably lower threshold than the threshold of a muon detector. There have been 50 ground...Glaciology Antarctic Panel for two days in Washington, D.C. 3) G. Dreschhoff presented a paper at the 23rd Cosmic Ray Conference in Calgary (see Appendix B
Remotely Operating a Fourier Transform Spectrometer for Atmospheric Remote Sensing
NASA Technical Reports Server (NTRS)
Blavier, J.-F.; Toon, G. C.; Sen, B.
2000-01-01
This paper describes how the MkIV instrument was adapted for remote operation from the Barcroft site, where the harsh winter conditions make access difficult. Some of the main technical challenges will be discussed including, (i) operation from solar panels and batteries, (ii) cooling the detectors with LN2, (iii) instrument control and monitoring over a cellular phone, and (iv) data storage, processing and analysis. Finally, MkIV spectra measured from Barcroft and compared with those measured from JPL to highlight the advantages of the higher altitude site.
Carbon-containing cathodes for enhanced electron emission
Cao, Renyu; Pan, Lawrence; Vergara, German; Fox, Ciaran
2000-01-01
A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.
Luminance uniformity compensation for OLED panels based on FPGA
NASA Astrophysics Data System (ADS)
Ou, Peng; Yang, Gang; Jiang, Quan; Yu, Jun-Sheng; Wu, Qi-Peng; Shang, Fu-Hai; Yin, Wei; Wang, Jun; Zhong, Jian; Luo, Kai-Jun
2009-09-01
Aiming at the problem of luminance uniformity for organic lighting-emitting diode (OLED) panels, a new brightness calculating method based on bilinear interpolation is proposed. The irradiance time of each pixel reaching the same luminance is figured out by Matlab. Adopting the 64×32-pixel, single color and passive matrix OLED panel as adjusting luminance uniformity panel, a new circuit compensating scheme based on FPGA is designed. VHDL is used to make each pixel’s irradiance time in one frame period written in program. The irradiance brightness is controlled by changing its irradiance time, and finally, luminance compensation of the panel is realized. The simulation result indicates that the design is reasonable.
C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation
NASA Astrophysics Data System (ADS)
Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E.; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong
2008-03-01
The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.
C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation.
Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong
2008-01-01
The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... ``Performance Standard for Wood-Based Structural-Use Panels,'' and appears in the body of the notice. NIST is... correct title of the proposed standard is ``Performance Standard for Wood-Based Structural-Use Panels... Product Standard (PS) 2-04, Performance Standard for Wood-Based Structural-Use Panels. This revised...
Smith, Ryan L; Haworth, Annette; Panettieri, Vanessa; Millar, Jeremy L; Franich, Rick D
2016-05-01
Verification of high dose rate (HDR) brachytherapy treatment delivery is an important step, but is generally difficult to achieve. A technique is required to monitor the treatment as it is delivered, allowing comparison with the treatment plan and error detection. In this work, we demonstrate a method for monitoring the treatment as it is delivered and directly comparing the delivered treatment with the treatment plan in the clinical workspace. This treatment verification system is based on a flat panel detector (FPD) used for both pre-treatment imaging and source tracking. A phantom study was conducted to establish the resolution and precision of the system. A pretreatment radiograph of a phantom containing brachytherapy catheters is acquired and registration between the measurement and treatment planning system (TPS) is performed using implanted fiducial markers. The measured catheter paths immediately prior to treatment were then compared with the plan. During treatment delivery, the position of the (192)Ir source is determined at each dwell position by measuring the exit radiation with the FPD and directly compared to the planned source dwell positions. The registration between the two corresponding sets of fiducial markers in the TPS and radiograph yielded a registration error (residual) of 1.0 mm. The measured catheter paths agreed with the planned catheter paths on average to within 0.5 mm. The source positions measured with the FPD matched the planned source positions for all dwells on average within 0.6 mm (s.d. 0.3, min. 0.1, max. 1.4 mm). We have demonstrated a method for directly comparing the treatment plan with the delivered treatment that can be easily implemented in the clinical workspace. Pretreatment imaging was performed, enabling visualization of the implant before treatment delivery and identification of possible catheter displacement. Treatment delivery verification was performed by measuring the source position as each dwell was delivered. This approach using a FPD for imaging and source tracking provides a noninvasive method of acquiring extensive information for verification in HDR prostate brachytherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Ryan L., E-mail: ryan.smith@wbrc.org.au; Millar, Jeremy L.; Franich, Rick D.
Purpose: Verification of high dose rate (HDR) brachytherapy treatment delivery is an important step, but is generally difficult to achieve. A technique is required to monitor the treatment as it is delivered, allowing comparison with the treatment plan and error detection. In this work, we demonstrate a method for monitoring the treatment as it is delivered and directly comparing the delivered treatment with the treatment plan in the clinical workspace. This treatment verification system is based on a flat panel detector (FPD) used for both pre-treatment imaging and source tracking. Methods: A phantom study was conducted to establish the resolutionmore » and precision of the system. A pretreatment radiograph of a phantom containing brachytherapy catheters is acquired and registration between the measurement and treatment planning system (TPS) is performed using implanted fiducial markers. The measured catheter paths immediately prior to treatment were then compared with the plan. During treatment delivery, the position of the {sup 192}Ir source is determined at each dwell position by measuring the exit radiation with the FPD and directly compared to the planned source dwell positions. Results: The registration between the two corresponding sets of fiducial markers in the TPS and radiograph yielded a registration error (residual) of 1.0 mm. The measured catheter paths agreed with the planned catheter paths on average to within 0.5 mm. The source positions measured with the FPD matched the planned source positions for all dwells on average within 0.6 mm (s.d. 0.3, min. 0.1, max. 1.4 mm). Conclusions: We have demonstrated a method for directly comparing the treatment plan with the delivered treatment that can be easily implemented in the clinical workspace. Pretreatment imaging was performed, enabling visualization of the implant before treatment delivery and identification of possible catheter displacement. Treatment delivery verification was performed by measuring the source position as each dwell was delivered. This approach using a FPD for imaging and source tracking provides a noninvasive method of acquiring extensive information for verification in HDR prostate brachytherapy.« less
NASA Astrophysics Data System (ADS)
Frey, Joel Brandon
Recently, the world of diagnostic radiography has seen the integration of digital flat panel x-ray image detectors into x-ray imaging systems, replacing analog film screens. These flat panel x-ray imagers (FPXIs) have been shown to produce high quality x-ray images and provide many advantages that are inherent to a fully digital technology. Direct conversion FPXIs based on a photoconductive layer of stabilized amorphous selenium (a-Se) have been commercialized and have proven particularly effective in the field of mammography. In the operation of these detectors, incident x-ray photons are converted directly to charge carriers in the a-Se layer and drifted to electrodes on either side of the layer by a large applied field (10 V/microm). The applied field causes a dark current to flow which is not due to the incident radiation and this becomes a source of noise which can reduce the dynamic range of the detector. The level of dark current in commercialized detectors has been reduced by the deposition of thin n- and p- type blocking layers between the electrodes and the bulk of the a-Se. Despite recent research into the dark current in metal/a-Se/metal sandwich structures, much is still unknown about the true cause and nature of this phenomenon. The work in this Ph.D. thesis describes an experimental and theoretical study of the dark current in these structures. Experiments have been performed on five separate sets of a-Se samples which approximate the photoconductive layer in an FPXI. The dark current has been measured as a function of time, sample structure, applied field, sample thickness and contact metal used. This work has conclusively shown that the dark current is almost entirely due to the injection of charge carriers from the contacts and the contribution of Poole-Frenkel enhanced bulk thermal generation is negligible. There is also evidence that while the dark current is initially controlled by the injection of holes from the positive contact, several minutes after the application of the bias, the dark current due to hole injection may decay to the point where the electron current becomes significant and even dominant. These conclusions are supported by numerical calculations of the dark current transients which have been calibrated to match experimental results. Work detailed in this Ph.D. thesis also focuses on Monte Carlo modeling of the x-ray sensitivity of a-Se FPXIs. The higher the x-ray sensitivity of a detector, the lower the radiation dose required to acquire an acceptable image. FPXIs can experience a decrease in the x-ray sensitivity of the photoconductive layer with accumulating exposure, leading to a phenomenon known as "ghosting". Modeling this decrease in sensitivity can uncover the reasons behind it. The Monte Carlo model described in this thesis is a continuation of a previous model which now considers the effects of the n- and p-like blocking layers and the flow of dark current between x-ray exposures. The simulation results explain how deep trapping of photogenerated charge carriers, and the resulting effect on the electric field distribution, contribute to sensitivity loss. The model has shown excellent agreement with experimental data and has accurately predicted a sensitivity recovery once exposure has ceased which is due to primarily to the relaxation of metastable x-ray-induced carrier trap states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Michael; Spindler, Jeff
For this DOE award, Acuity Brands Lighting developed a novel OLED luminaire system featuring panel-integrated drivers at each individual OLED panel. The luminaire has a base station that receives user commands and performs AC/DC conversion. A power line communication (PLC) protocol is used to provide both power and digital control to each panel. A 66-panel CanvisTM luminaire using state-of-art OLED panels based on this system was successfully constructed. This is a first demonstration of such a luminaire architecture. It is also the first known implementation of this number of independently addressable nodes with a PLC protocol. This luminaire system architecturemore » has added benefits in the flexibility of using multiple panel vendors for a given product, forward compatibility with future panels, and reduced luminaire wiring complexity and assembly time.« less
Polarimetric subspace target detector for SAR data based on the Huynen dihedral model
NASA Astrophysics Data System (ADS)
Larson, Victor J.; Novak, Leslie M.
1995-06-01
Two new polarimetric subspace target detectors are developed based on a dihedral signal model for bright peaks within a spatially extended target signature. The first is a coherent dihedral target detector based on the exact Huynen model for a dihedral. The second is a noncoherent dihedral target detector based on the Huynen model with an extra unknown phase term. Expressions for these polarimetric subspace target detectors are developed for both additive Gaussian clutter and more general additive spherically invariant random vector clutter including the K-distribution. For the case of Gaussian clutter with unknown clutter parameters, constant false alarm rate implementations of these polarimetric subspace target detectors are developed. The performance of these dihedral detectors is demonstrated with real millimeter-wave fully polarimetric SAR data. The coherent dihedral detector which is developed with a more accurate description of a dihedral offers no performance advantage over the noncoherent dihedral detector which is computationally more attractive. The dihedral detectors do a better job of separating a set of tactical military targets from natural clutter compared to a detector that assumes no knowledge about the polarimetric structure of the target signal.
Primary Care Physician Panel Size and Quality of Care: A Population-Based Study in Ontario, Canada.
Dahrouge, Simone; Hogg, William; Younger, Jaime; Muggah, Elizabeth; Russell, Grant; Glazier, Richard H
2016-01-01
The purpose of this study was to determine the relationship between the number of patients under a primary care physician's care (panel size) and primary care quality indicators. We conducted a cross-sectional, population-based study of fee-for-service and capitated interprofessional and non-interprofessional primary health care practices in Ontario, Canada between April 2008 and March 2010, encompassing 4,195 physicians with panel sizes ≥1,200 serving 8.3 million patients. Data was extracted from multiple linked, health-related administrative databases and covered 16 quality indicators spanning 5 dimensions of care: access, continuity, comprehensiveness, and evidence-based indicators of cancer screening and chronic disease management. The likelihood of being up-to-date on cervical, colorectal, and breast cancer screening showed relative decreases of 7.9% (P <.001), 5.9% (P = .01), and 4.6% (P <.001), respectively, with increasing panel size (from 1,200 to 3,900). Eight chronic care indicators (4 medication-based and 4 screening-based) showed no significant association with panel size. The likelihood of individuals with a new diagnosis of congestive heart failure having an echocardiogram, however, increased by a relative 8.1% (P <.001) with higher panel size. Increasing panel size was also associated with a 10.8% relative increase in hospitalization rates for ambulatory-care-sensitive conditions (P = .04) and a 10.8% decrease in non-urgent emergency department visits (P = .004). Continuity was highest with medium panel sizes (P <.001), and comprehensiveness had a small decrease (P = .03) with increasing panel size. Increasing panel size was associated with small decreases in cancer screening, continuity, and comprehensiveness, but showed no consistent relationships with chronic disease management or access indicators. We found no panel size threshold above which quality of care suffered. © 2016 Annals of Family Medicine, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoeberg, J; Bujila, R; Omar, A
2015-06-15
Purpose: To measure and compare the performance of X-ray imaging detectors in a clinical setting using a dedicated instrument for the quantitative determination of detector performance. Methods: The DQEPro (DQE Instruments Inc., London, Ontario Canada) was used to determine the MTF, NPS and DQE using an IEC compliant methodology for three different imaging modalities: conventional radiography (CsI-based detector), general-purpose radioscopy (CsI-based detector), and mammography (a-Se based detector). The radiation qualities (IEC) RQA-5 and RQA-M-2 were used for the CsI-based and a-Se-based detectors, respectively. The DQEPro alleviates some of the difficulties associated with DQE measurements by automatically positioning test devices overmore » the detector, guiding the user through the image acquisition process and providing software for calculations. Results: A comparison of the NPS showed that the image noise of the a-Se detector was less correlated than the CsI detectors. A consistently higher performance was observed for the a-Se detector at all spatial frequencies (MTF: 0.97@0.25 cy/mm, DQE: 0.72@0.25 cy/mm) and the DQE drops off slower than for the CsI detectors. The CsI detector used for conventional radiography displayed a higher performance at low spatial frequencies compared to the CsI detector used for radioscopy (DQE: 0.65 vs 0.60@0.25 cy/mm). However, at spatial frequencies above 1.3 cy/mm, the radioscopy detector displayed better performance than the conventional radiography detector (DQE: 0.35 vs 0.24@2.00 cy/mm). Conclusion: The difference in the MTF, NPS and DQE that was observed for the two different CsI detectors and the a-Se detector reflect the imaging tasks that the different detector types are intended for. The DQEPro has made the determination and calculation of quantitative metrics of X-ray imaging detector performance substantially more convenient and accessible to undertake in a clinical setting.« less
6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA ...
6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA 1957; AT RIGHT, FACING CAMERA, 10,000 P.S.I. PANEL. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA
45 CFR 1801.23 - Recommendation by panel.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Recommendation by panel. 1801.23 Section 1801.23... HARRY S. TRUMAN SCHOLARSHIP PROGRAM The Competition § 1801.23 Recommendation by panel. (a) Each Panel is... recommend additional Scholars from the States in its region. (b) A panel's recommendations are based on the...
45 CFR 1801.23 - Recommendation by panel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false Recommendation by panel. 1801.23 Section 1801.23... HARRY S. TRUMAN SCHOLARSHIP PROGRAM The Competition § 1801.23 Recommendation by panel. (a) Each Panel is... recommend additional Scholars from the States in its region. (b) A panel's recommendations are based on the...
Mounting clips for panel installation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph
2017-02-14
An exemplary mounting clip for removably attaching panels to a supporting structure comprises a base, spring locking clips, a lateral flange, a lever flange, and a spring bonding pad. The spring locking clips extend upwardly from the base. The lateral flange extends upwardly from a first side of the base. The lateral flange comprises a slot having an opening configured to receive at least a portion of one of the one or more panels. The lever flange extends outwardly from the lateral flange. The spring bonding flange extends downwardly from the lever flange. At least a portion of the firstmore » spring bonding flange comprises a serrated edge for gouging at least a portion of the one or more panels when the one or more panels are attached to the mounting clip to electrically and mechanically couple the one or more panels to the mounting clip.« less
Individual-specific antibody identification methods
Francoeur, Ann -Michele
1989-11-14
An identification method, applicable to the identification of animals or inanimate objects, is described. The method takes advantage of a hithertofore unknown set of individual-specific, or IS antibodies, that are part of the unique antibody repertoire present in animals, by reacting an effective amount of IS antibodies with a particular panel, or n-dimensional array (where n is typically one or two) consisting of an effective amount of many different antigens (typically greater than one thousand), to give antibody-antigen complexes. The profile or pattern formed by the antigen-antibody complexes, termed an antibody fingerprint, when revealed by an effective amount of an appropriate detector molecule, is uniquely representative of a particular individual. The method can similarly by used to distinguish genetically, or otherwise similar individuals, or their body parts containing IS antibodies. Identification of inanimate objects, particularly security documents, is similarly affected by associating with the documents, an effective amount of a particular individual's IS antibodies, or conversely, a particular panel of antigens, and forming antibody-antigen complexes with a particular panel of antigens, or a particular individual's IS antibodies, respectively. One embodiment of the instant identification method, termed the blocked fingerprint assay, has applications in the area of allergy testing, autoimmune diagnostics and therapeutics, and the detection of environmental antigens such as pathogens, chemicals, and toxins.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
.... FDA-2012-N-0159] Microbiology Devices; Reclassification of Nucleic Acid-Based Systems for... convened a meeting of the Microbiology Devices Panel of the Medical Devices Advisory Committee (Microbiology Devices Panel) on June 29, 2011 (Ref. 2). Although not a formal reclassification meeting, panel...
65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...
65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Technical Reports Server (NTRS)
Mulholland, J. Derral; Singer, S. Fred; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Kassel, Philip C.; Wortman, Jim J.; Montague, Nancy L.; Kinard, William H.
1991-01-01
During the first 12 months of the Long Duration Exposure Facility (LDEF) mission, the Interplanetary Dust Experiment (IDE) recorded over 15,000 total impacts on six orthogonal faces with a time resolution on the order of 15 to 20 seconds. When combined with the orbital data and the stabilized configuration of the spacecraft, this permits a detailed analysis of the micro-particulate environment. The functional status of each of the 459 detectors was monitored every 2.4 hours, and post-flight analyses of these data has now permitted an evaluation of the effective active detection area as a function of time, panel by panel and separately for the two sensitivity levels. Thus, total impacts were transformed into areal fluxes, and are presented here for the first time. Also discussed are possible effects of these fluxes on previously announced results: apparent debris events, meteor stream detections, and beta meteoroids in observationally significant numbers.
NASA Astrophysics Data System (ADS)
Tsuchiya, Yuichiro; Kodera, Yoshie; Tanaka, Rie; Sanada, Shigeru
2007-03-01
Early detection and treatment of lung cancer is one of the most effective means to reduce cancer mortality; chest X-ray radiography has been widely used as a screening examination or health checkup. The new examination method and the development of computer analysis system allow obtaining respiratory kinetics by the use of flat panel detector (FPD), which is the expanded method of chest X-ray radiography. Through such changes functional evaluation of respiratory kinetics in chest has become available. Its introduction into clinical practice is expected in the future. In this study, we developed the computer analysis algorithm for the purpose of detecting lung nodules and evaluating quantitative kinetics. Breathing chest radiograph obtained by modified FPD was converted into 4 static images drawing the feature, by sequential temporal subtraction processing, morphologic enhancement processing, kinetic visualization processing, and lung region detection processing, after the breath synchronization process utilizing the diaphragmatic analysis of the vector movement. The artificial neural network used to analyze the density patterns detected the true nodules by analyzing these static images, and drew their kinetic tracks. For the algorithm performance and the evaluation of clinical effectiveness with 7 normal patients and simulated nodules, both showed sufficient detecting capability and kinetic imaging function without statistically significant difference. Our technique can quantitatively evaluate the kinetic range of nodules, and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.
NASA Astrophysics Data System (ADS)
Kim, D. H.; Ahn, M. H.
2014-08-01
The first geostationary Earth observation satellite of Korea - the Communication, Ocean, and Meteorological Satellite (COMS) - was successfully launched on 27 June 2010. After arrival at its operational orbit, the satellite underwent an in-orbit test (IOT) that lasted for about 8 months. During the IOT period, the main payload for the weather application, the meteorological imager, went through successful tests for demonstrating its function and performance, and the test results are introduced here. The radiometric performance of the meteorological imager (MI) is tested by means of signal-to-noise ratio (SNR) for the visible channel, noise-equivalent differential temperature (NEdT) for the infrared channels, and pixel-to-pixel nonuniformity for both the visible and infrared channels. In the case of the visible channel, the SNR of all eight detectors is obtained using the ground-measured parameters with the background signals obtained in orbit. The overall performance shows a value larger than 26 at 5% albedo, exceeding the user requirement of 10 by a significant margin. Also, the relative variability of detector responsivity among the eight visible channels meets the user requirement, showing values within 10% of the user requirement. For the infrared channels, the NEdT of each detector is well within the user requirement and is comparable with or better than the legacy instruments, except for the water vapor channel, which is slightly noisier than the legacy instruments. The variability of detector responsivity of infrared channels is also below the user requirement, within 40% of the requirement, except for the shortwave infrared channel. The improved performance result is partly due to the stable and low detector temperature obtained due to spacecraft design, i.e., by installing a single solar panel on the opposite side of the MI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheuermann, J; Howansky, A; Goldan, A
Purpose: We present the first active matrix flat panel imager (AMFPI) capable of producing x-ray quantum noise limited images at low doses by overcoming the electronic noise through signal amplification by photoconductive avalanche gain (gav). The indirect detector fabricated uses an optical sensing layer of amorphous selenium (a-Se) known as High-Gain Avalanche Rushing Photoconductor (HARP). The detector design is called Scintillator HARP (SHARP)-AMFPI. This is the first image sensor to utilize solid-state HARP technology. Methods: The detector’s electronic readout is a 24 × 30 cm{sup 2} array of thin film transistors (TFT) with a pixel pitch of 85 µm. Themore » HARP structure consists of a 15 µm layer of a-Se isolated from the high voltage (HV) and signal electrode by a 2 µm thick hole blocking layer and electron blocking layer, respectively, to reduce dark current. A 150 µm thick structured CsI scintillator with reflective backing and a fiber optic faceplate (FOP) was coupled to the semi-transparent HV bias electrode of the HARP structure. Images were acquired using a 30 kVp Mo/Mo spectrum typically used in mammography. Results: Optical sensitivity measurements demonstrate that gav = 76 ± 5 can be achieved over the entire active area of the detector. At a constant dose to the detector of 6.67 µGy, image quality increases with gav until the effective electronic noise is negligible. Quantum noise limited images can be obtained with doses as low as 0.18 µGy. Conclusion: We demonstrate the feasibility of utilizing avalanche gain to overcome electronic noise. The indirect detector fabricated is the first solid-state imaging sensor to use HARP, and the largest active area HARP sensor to date. Our future work is to improve charge transport within the HARP structure and utilize a transparent HV electrode.« less
HECTOR: A 240kV micro-CT setup optimized for research
NASA Astrophysics Data System (ADS)
Masschaele, Bert; Dierick, Manuel; Van Loo, Denis; Boone, Matthieu N.; Brabant, Loes; Pauwels, Elin; Cnudde, Veerle; Van Hoorebeke, Luc
2013-10-01
X-ray micro-CT has become a very powerful and common tool for non-destructive three-dimensional (3D) visualization and analysis of objects. Many systems are commercially available, but they are typically limited in terms of operational freedom both from a mechanical point of view as well as for acquisition routines. HECTOR is the latest system developed by the Ghent University Centre for X-ray Tomography (http://www.ugct.ugent.be) in collaboration with X-Ray Engineering (XRE bvba, Ghent, Belgium). It consists of a mechanical setup with nine motorized axes and a modular acquisition software package and combines a microfocus directional target X-ray source up to 240 kV with a large flat-panel detector. Provisions are made to install a line-detector for a maximal operational range. The system can accommodate samples up to 80 kg, 1 m long and 80 cm in diameter while it is also suited for high resolution (down to 4 μm) tomography. The bi-directional detector tiling is suited for large samples while the variable source-detector distance optimizes the signal to noise ratio (SNR) for every type of sample, even with peripheral equipment such as compression stages or climate chambers. The large vertical travel of 1 m can be used for helical scanning and a vertical detector rotation axis allows laminography experiments. The setup is installed in a large concrete bunker to allow accommodation of peripheral equipment such as pumps, chillers, etc., which can be integrated in the modular acquisition software to obtain a maximal correlation between the environmental control and the CT data taken. The acquisition software does not only allow good coupling with the peripheral equipment but its scripting feature is also particularly interesting for testing new and exotic acquisition routines.
GEANT4 simulations of a novel 3He-free thermalization neutron detector
NASA Astrophysics Data System (ADS)
Mazzone, A.; Finocchiaro, P.; Lo Meo, S.; Colonna, N.
2018-05-01
A novel concept for 3He-free thermalization detector is here investigated by means of GEANT4 simulations. The detector is based on strips of solid-state detectors with 6Li deposit for neutron conversion. Various geometrical configurations have been investigated in order to find the optimal solution, in terms of value and energy dependence of the efficiency for neutron energies up to 10 MeV. The expected performance of the new detector are compared with those of an optimized thermalization detector based on standard 3He tubes. Although an 3He-based detector is superior in terms of performance and simplicity, the proposed solution may become more appealing in terms of costs in case of shortage of 3He supply.
Gu, Z; Prout, D L; Silverman, R W; Herman, H; Dooraghi, A; Chatziioannou, A F
2015-06-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm 3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm 3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm 2 ) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm 2 ), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.
Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.
2015-01-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system. PMID:26478600
NASA Astrophysics Data System (ADS)
Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.
2015-06-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass lightguide and a light detector. The annihilation photon entrance (top) layer is a 48×48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.
NASA Astrophysics Data System (ADS)
Pietropaolo, A.; Claps, G.; Fedrigo, A.; Grazzi, F.; Höglund, C.; Murtas, F.; Scherillo, A.; Schmidt, S.; Schooneveld, E. M.
2018-03-01
The upgraded version of the GEM side-on thermal neutron detector was successfully tested in a neutron diffraction experiment on a reference sample using the INES diffractometer at the ISIS spallation neutron source, UK. The performance of the new 10B4C-based detector is compared to that of a standard 3He tube, operating at the instrument as a part of the detectors assembly. The results show that the upgraded detector has a better resolution and an efficiency of the same order of magnitude of a 3He-based detector.
A study on metallic thermal protection system panel for Reusable Launch Vehicle
NASA Astrophysics Data System (ADS)
Caogen, Yao; Hongjun, Lü; Zhonghua, Jia; Xinchao, Jia; Yan, Lu; Haigang, Li
2008-07-01
A Ni-based superalloy honeycomb thermal protection system (TPS) panel has been fabricated. And a curved Ni-based superalloy honeycomb sandwich has also been fabricated. The preliminary thermal insulation results of a fabricated Ni-based superalloy honeycomb TPS panel (the areal density of this panel is 6.7 kg /m2 and total height is 32 mm) indicate that the maximum temperature of the lower surfaces of the panel is lower than 150∘ C when the temperature of outer surface is held at 650∘ C for 30 min. The flatwise tensile strength and compressive properties of a fabricated Ni-based superalloy honeycomb sandwich coupon was studied at room temperature. A multilayered coating has been developed on the surface of the superalloy honeycomb TPS panel for environmental protection and thermal control. The oxidation weight-change results show that the weight change of the Ni-based superalloy honeycomb sandwich with the oxidation resistant coating is extremely small at 1100∘ C in air for 10 h. The emittance layer of the multilayered coating imparts an emittance in excess of 0.85 during exposure at 850∘ C, which was at least 14% greater than that of the substrate with oxidation resistant alone.
Mechanical and physical properties of agro-based fiberboard
S. Lee; T.F. Shupe; C.Y. Hse
2006-01-01
In order to better utilize agricultural fibers as an alternative resource for composite panels, several variables were investigated to improve mechanical and physical properties of agm-based fiberboard. This study focused on the effect of fiber morphology, slenderness ratios (UD), and fiber mixing combinations on panel properties. The panel construction types were also...
Characterization of on-site digital mammography systems: Direct versus indirect conversion detectors
NASA Astrophysics Data System (ADS)
Youn, Hanbean; Han, Jong Chul; Yun, Seungman; Kam, Soohwa; Cho, Seungryong; Kim, Ho Kyung
2015-06-01
We investigated the performances of two digital mammography systems. The systems use a cesium-iodide (CsI) scintillator and an amorphous selenium ( a-Se) photoconductor for X-ray detection and are installed in the same hospital. As physical metrics, we measured the modulationtransfer function (MTF), the noise-power spectrum (NPS), and the detective quantum efficiency (DQE). In addition, we analyzed the contrast-detail performances of the two systems by using a commercial contrast-detail phantom. The CsI-based indirect conversion detector provided better MTF and DQE performances than the a-Se-based direct conversion detector whereas the former provided a poorer NPS performance than the latter. These results are explained by the fact that the CsI-based detector used an MTF restoration preprocessing algorithm. The a-Se-based detector showed better contrast-detail performance than the CsI-based detector. We believe that the highfrequency noise characteristic of a detector is more responsible for the visibility of small details than its spatial-resolution performance.
Pillar-structured neutron detector based multiplicity system
Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...
2017-10-04
This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less
Pillar-structured neutron detector based multiplicity system
NASA Astrophysics Data System (ADS)
Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.
2018-01-01
This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.
NASA Astrophysics Data System (ADS)
Panchal, N.; Mohanraj, S.; Kumar, A.; Dey, T.; Majumder, G.; Shinde, R.; Verma, P.; Satyanarayana, B.; Datar, V. M.
2017-11-01
The motivation for a cosmic muon veto (CMV) detector is to explore the possibility of locating the proposed large Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) at a shallow depth. An initial effort in that direction, through the assembly and testing of a ~1 m × 1 m × 0.3 m plastic scintillator based detector, is described. The plan for making a CMV detector for a smaller prototype mini-ICAL is also outlined.
NASA Astrophysics Data System (ADS)
Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.
2016-12-01
Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.
NASA Technical Reports Server (NTRS)
Anderson, R. A.; Arnold, D. B.; Johnson, G. A.
1979-01-01
A NASA-funded program is described which aims to develop a resin system for use in the construction of lavatory wall panels, sidewall panels, and ceiling panels possessing flammability, smoke and gas emission, and toxicity (FS&T) characteristics superior to the existing epoxy resin. Candidate resins studied were phenolic, polyimide, and bismaleimide. Based on the results of a series of FS&T as well as mechanical and aesthetic property tests, a phenolic resin was chosen as the superior material. Material and process specifications covering the phenolic resin based materials were prepared and a method of rating sandwich panel performance was developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yu; Cao, Ruifen; Pei, Xi
2015-06-15
Purpose: The flat-panel detector response characteristics are investigated to optimize the scanning parameter considering the image quality and less radiation dose. The signal conversion model is also established to predict the tumor shape and physical thickness changes. Methods: With the ELEKTA XVI system, the planar images of 10cm water phantom were obtained under different image acquisition conditions, including tube voltage, electric current, exposure time and frames. The averaged responses of square area in center were analyzed using Origin8.0. The response characteristics for each scanning parameter were depicted by different fitting types. The transmission measured for 10cm water was compared tomore » Monte Carlo simulation. Using the quadratic calibration method, a series of variable-thickness water phantoms images were acquired to derive the signal conversion model. A 20cm wedge water phantom with 2cm step thickness was used to verify the model. At last, the stability and reproducibility of the model were explored during a four week period. Results: The gray values of image center all decreased with the increase of different image acquisition parameter presets. The fitting types adopted were linear fitting, quadratic polynomial fitting, Gauss fitting and logarithmic fitting with the fitting R-Square 0.992, 0.995, 0.997 and 0.996 respectively. For 10cm water phantom, the transmission measured showed better uniformity than Monte Carlo simulation. The wedge phantom experiment show that the radiological thickness changes prediction error was in the range of (-4mm, 5mm). The signal conversion model remained consistent over a period of four weeks. Conclusion: The flat-panel response decrease with the increase of different scanning parameters. The preferred scanning parameter combination was 100kV, 10mA, 10ms, 15frames. It is suggested that the signal conversion model could effectively be used for tumor shape change and radiological thickness prediction. Supported by National Natural Science Foundation of China (81101132, 11305203) and Natural Science Foundation of Anhui Province (11040606Q55, 1308085QH138)« less
50. DETAIL OF TYPICAL PANELS IN ANALOG RECORD BAY. LEFT ...
50. DETAIL OF TYPICAL PANELS IN ANALOG RECORD BAY. LEFT PANEL CONTAINS OSCILLOGRAPH AND CONTROLS. RIGHT PANEL CONTAINS CATHODE RAY TUBE AND INK-TYPE CHART RECORDER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Astrophysics Data System (ADS)
Nishiyama, T.; Kataoka, J.; Kishimoto, A.; Fujita, T.; Iwamoto, Y.; Taya, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Sakurai, N.; Adachi, S.; Uchiyama, T.
2014-12-01
After the Japanese nuclear disaster in 2011, large amounts of radioactive isotopes were released and still remain a serious problem in Japan. Consequently, various gamma cameras are being developed to help identify radiation hotspots and ensure effective decontamination operation. The Compton camera utilizes the kinematics of Compton scattering to contract images without using a mechanical collimator, and features a wide field of view. For instance, we have developed a novel Compton camera that features a small size (13 × 14 × 15 cm3) and light weight (1.9 kg), but which also achieves high sensitivity thanks to Ce:GAGG scintillators optically coupled wiith MPPC arrays. By definition, in such a Compton camera, gamma rays are expected to scatter in the ``scatterer'' and then be fully absorbed in the ``absorber'' (in what is called a forward-scattered event). However, high energy gamma rays often interact with the detector in the opposite direction - initially scattered in the absorber and then absorbed in the scatterer - in what is called a ``back-scattered'' event. Any contamination of such back-scattered events is known to substantially degrade the quality of gamma-ray images, but determining the order of gamma-ray interaction based solely on energy deposits in the scatterer and absorber is quite difficult. For this reason, we propose a novel yet simple Compton camera design that includes a rear-panel shield (a few mm thick) consisting of W or Pb located just behind the scatterer. Since the energy of scattered gamma rays in back-scattered events is much lower than that in forward-scattered events, we can effectively discriminate and reduce back-scattered events to improve the signal-to-noise ratio in the images. This paper presents our detailed optimization of the rear-panel shield using Geant4 simulation, and describes a demonstration test using our Compton camera.
Sato, Naoki; Fujibuchi, Toshioh; Toyoda, Takatoshi; Ishida, Takato; Ohura, Hiroki; Miyajima, Ryuichi; Orita, Shinichi; Sueyoshi, Tomonari
2017-06-15
To decrease radiation exposure to medical staff performing angiography, the dose distribution in the angiography was calculated in room using the particle and heavy ion transport code system (PHITS), which is based on Monte Carlo code, and the source of scattered radiation was confirmed using a tungsten sheet by considering the difference shielding performance among different sheet placements. Scattered radiation generated from a flat panel detector, X-ray tube and bed was calculated using the PHITS. In this experiment, the source of scattered radiation was identified as the phantom or acrylic window attached to the X-ray tube thus, a protection curtain was placed on the bed to shield against scattered radiation at low positions. There was an average difference of 20% between the measured and calculated values. The H*(10) value decreased after placing the sheet on the right side of the phantom. Thus, the curtain could decrease scattered radiation. © Crown copyright 2016.
Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging
NASA Astrophysics Data System (ADS)
Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas
2016-03-01
In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.
NASA Astrophysics Data System (ADS)
Sanchez, M.; Probst, L.; Blazevic, E.; Nakao, B.; Northrup, M. A.
2011-11-01
We describe a fully automated and autonomous air-borne biothreat detection system for biosurveillance applications. The system, including the nucleic-acid-based detection assay, was designed, built and shipped by Microfluidic Systems Inc (MFSI), a new subsidiary of PositiveID Corporation (PSID). Our findings demonstrate that the system and assay unequivocally identify pathogenic strains of Bacillus anthracis, Yersinia pestis, Francisella tularensis, Burkholderia mallei, and Burkholderia pseudomallei. In order to assess the assay's ability to detect unknown samples, our team also challenged it against a series of blind samples provided by the Department of Homeland Security (DHS). These samples included natural occurring isolated strains, near-neighbor isolates, and environmental samples. Our results indicate that the multiplex assay was specific and produced no false positives when challenged with in house gDNA collections and DHS provided panels. Here we present another analytical tool for the rapid identification of nine Centers for Disease Control and Prevention category A and B biothreat organisms.
All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor
NASA Technical Reports Server (NTRS)
Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.;
2010-01-01
Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. New sources are added to our catalog as they become active or upon request. In addition to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results will be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation.
High-speed large angle mammography tomosynthesis system
NASA Astrophysics Data System (ADS)
Eberhard, Jeffrey W.; Staudinger, Paul; Smolenski, Joe; Ding, Jason; Schmitz, Andrea; McCoy, Julie; Rumsey, Michael; Al-Khalidy, Abdulrahman; Ross, William; Landberg, Cynthia E.; Claus, Bernhard E. H.; Carson, Paul; Goodsitt, Mitchell; Chan, Heang-Ping; Roubidoux, Marilyn; Thomas, Jerry A.; Osland, Jacqueline
2006-03-01
A new mammography tomosynthesis prototype system that acquires 21 projection images over a 60 degree angular range in approximately 8 seconds has been developed and characterized. Fast imaging sequences are facilitated by a high power tube and generator for faster delivery of the x-ray exposure and a high speed detector read-out. An enhanced a-Si/CsI flat panel digital detector provides greater DQE at low exposure, enabling tomo image sequence acquisitions at total patient dose levels between 150% and 200% of the dose of a standard mammographic view. For clinical scenarios where a single MLO tomographic acquisition per breast may replace the standard CC and MLO views, total tomosynthesis breast dose is comparable to or below the dose in standard mammography. The system supports co-registered acquisition of x-ray tomosynthesis and 3-D ultrasound data sets by incorporating an ultrasound transducer scanning system that flips into position above the compression paddle for the ultrasound exam. Initial images acquired with the system are presented.
Building A New Kind of Graded-Z Shield for Swift's Burst Alert Telescope
NASA Technical Reports Server (NTRS)
Robinson, David W.
2002-01-01
The Burst Alert Telescope (BAT) on Swift has a graded-Z Shield that closes out the volume between the coded aperture mask and the Cadmium-Zinc-Telluride (CZT) detector array. The purpose of the 37 kilogram shield is to attenuate gamma rays that have not penetrated the coded aperture mask of the BAT instrument and are therefore a major source of noise on the detector array. Unlike previous shields made from plates and panels, this shield consists of multiple layers of thin metal foils (lead, tantalum, tin, and copper) that are stitched together much like standard multi-layer insulation blankets. The shield sections are fastened around BAT, forming a curtain around the instrument aperture. Strength tests were performed to validate and improve the design, and the shield will be vibration tested along with BAT in late 2002. Practical aspects such as the layup design, methods of manufacture, and testing of this new kind of graded-Z Shield are presented.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
2007-01-01
This informal report summarizes the development and the design specifications of a recessed nomex core honeycomb panel in fulfillment of the deliverable in Task Order 13RBE, Revision 10, Subtask 17. The honeycomb panel, with 0.020-inch thick aluminum face sheets, has 0.016-inch thick aluminum patches applied to twenty-five, 6 by 6 inch, quarter inch thick recessed cores. A 10 dB higher transmission loss over the frequency range 250 - 1000 Hz was predicted by a MSC/NASTRAN finite element model when compared with the transmission loss of the base nomex core honeycomb panel. The static displacement, due to a unit force applied at either the core or recessed core area, was of the same order of magnitude as the static displacement of the base honeycomb panel when exposed to the same unit force. The mass of the new honeycomb design is 5.1% more than the base honeycomb panel. A physical model was constructed and is being tested.
Efficiency of geometric designs of flexible solar panels: mathematical simulation
NASA Astrophysics Data System (ADS)
Marciniak, Malgorzata; Hassebo, Yasser; Enriquez-Torres, Delfino; Serey-Roman, Maria Ignacia
2017-09-01
The purpose of this study is to analyze various surfaces of flexible solar panels and compare them to the traditional at panels mathematically. We evaluated the efficiency based on the integral formulas that involve flux. We performed calculations for flat panels with different positions, a cylindrical panel, conical panels with various opening angles and segments of a spherical panel. Our results indicate that the best efficiency per unit area belongs to particular segments of spherically-shaped panels. In addition, we calculated the optimal opening angle of a cone-shaped panel that maximizes the annual accumulation of the sun radiation per unit area. The considered shapes are presented below with a suggestion for connections of the cells.
NASA Astrophysics Data System (ADS)
Karch, J.; Dudák, J.; Žemlička, J.; Vavřík, D.; Kumpová, I.; Kvaček, J.; Heřmanová, Z.; Šoltés, J.; Viererbl, L.; Morgano, M.; Kaestner, A.; Trtík, P.
2017-12-01
Computed tomography provides 3D information of inner structures of investigated objects. The obtained information is, however, strongly dependent on the used radiation type. It is known that as X-rays interact with electron cloud and neutrons with atomic nucleus, the obtained data often provide different contrast of sample structures. In this work we present a set of comparative radiographic and CT measurements of rare fossil plant samples using X-rays and thermal neutrons. The X-ray measurements were performed using large area photon counting detectors Timepix at IEAP CTU in Prague and Perkin Elmer flat-panel detector at Center of Excellence Telč. The neutron CT measurement was carried out at Paul Scherrer Institute using BOA beam-line. Furthermore, neutron radiography of fossil samples, provided by National Museum, were performed using a large-area Timepix detector with a neutron-sensitive converting 6LiF layer at Research Centre Rez, Czech Republic. The obtained results show different capabilities of both imaging approaches. While X-ray micro-CT provides very high resolution and enables visualization of fine cracks or small cavities in the samples neutron imaging provides high contrast of morphological structures of fossil plant samples, where X-ray imaging provides insufficient contrast.
NASA Astrophysics Data System (ADS)
Boudousq, V.; Bordy, T.; Gonon, G.; Dinten, J. M.
2005-04-01
The LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. Technical principles and performances for BMD measurements have been presented in previous papers. Bone densitometers are also used on small animals for drug development. In this paper, we show how the LEXXOS system can be adapted to small animals examinations, and its performances are evaluated. At first, in order to take advantage of the whole area of the digital flat panel X-ray detector, the geometrical configuration has been adapted. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the total body BMD has been measured. This evaluation has shown that the right order of BMD magnitude has been obtained and, as expected, BMD increases on the two sets until age of puberty and after this period, decreases significantly for the ovariectomized set. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing with useful complementary information on bone morphometry and architecture.
Structural composite panel performance under long-term load
Theodore L. Laufenberg
1988-01-01
Information on the performance of wood-based structural composite panels under long-term load is currently needed to permit their use in engineered assemblies and systems. A broad assessment of the time-dependent properties of panels is critical for creating databases and models of the creep-rupture phenomenon that lead to reliability-based design procedures. This...
Russo, Paolo; Mettivier, Giovanni
2011-04-01
The goal of this study is to evaluate a new method based on a coded aperture mask combined with a digital x-ray imaging detector for measurements of the focal spot sizes of diagnostic x-ray tubes. Common techniques for focal spot size measurements employ a pinhole camera, a slit camera, or a star resolution pattern. The coded aperture mask is a radiation collimator consisting of a large number of apertures disposed on a predetermined grid in an array, through which the radiation source is imaged onto a digital x-ray detector. The method of the coded mask camera allows one to obtain a one-shot accurate and direct measurement of the two dimensions of the focal spot (like that for a pinhole camera) but at a low tube loading (like that for a slit camera). A large number of small apertures in the coded mask operate as a "multipinhole" with greater efficiency than a single pinhole, but keeping the resolution of a single pinhole. X-ray images result from the multiplexed output on the detector image plane of such a multiple aperture array, and the image of the source is digitally reconstructed with a deconvolution algorithm. Images of the focal spot of a laboratory x-ray tube (W anode: 35-80 kVp; focal spot size of 0.04 mm) were acquired at different geometrical magnifications with two different types of digital detector (a photon counting hybrid silicon pixel detector with 0.055 mm pitch and a flat panel CMOS digital detector with 0.05 mm pitch) using a high resolution coded mask (type no-two-holes-touching modified uniformly redundant array) with 480 0.07 mm apertures, designed for imaging at energies below 35 keV. Measurements with a slit camera were performed for comparison. A test with a pinhole camera and with the coded mask on a computed radiography mammography unit with 0.3 mm focal spot was also carried out. The full width at half maximum focal spot sizes were obtained from the line profiles of the decoded images, showing a focal spot of 0.120 mm x 0.105 mm at 35 kVp and M = 6.1, with a detector entrance exposure as low as 1.82 mR (0.125 mA s tube load). The slit camera indicated a focal spot of 0.112 mm x 0.104 mm at 35 kVp and M = 3.15, with an exposure at the detector of 72 mR. Focal spot measurements with the coded mask could be performed up to 80 kVp. Tolerance to angular misalignment with the reference beam up to 7 degrees in in-plane rotations and 1 degrees deg in out-of-plane rotations was observed. The axial distance of the focal spot from the coded mask could also be determined. It is possible to determine the beam intensity via measurement of the intensity of the decoded image of the focal spot and via a calibration procedure. Coded aperture masks coupled to a digital area detector produce precise determinations of the focal spot of an x-ray tube with reduced tube loading and measurement time, coupled to a large tolerance in the alignment of the mask.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Rana, V; Nagesh, S Setlur
Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detectormore » was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873.« less
Advancements to the planogram frequency–distance rebinning algorithm
Champley, Kyle M; Raylman, Raymond R; Kinahan, Paul E
2010-01-01
In this paper we consider the task of image reconstruction in positron emission tomography (PET) with the planogram frequency–distance rebinning (PFDR) algorithm. The PFDR algorithm is a rebinning algorithm for PET systems with panel detectors. The algorithm is derived in the planogram coordinate system which is a native data format for PET systems with panel detectors. A rebinning algorithm averages over the redundant four-dimensional set of PET data to produce a three-dimensional set of data. Images can be reconstructed from this rebinned three-dimensional set of data. This process enables one to reconstruct PET images more quickly than reconstructing directly from the four-dimensional PET data. The PFDR algorithm is an approximate rebinning algorithm. We show that implementing the PFDR algorithm followed by the (ramp) filtered backprojection (FBP) algorithm in linogram coordinates from multiple views reconstructs a filtered version of our image. We develop an explicit formula for this filter which can be used to achieve exact reconstruction by means of a modified FBP algorithm applied to the stack of rebinned linograms and can also be used to quantify the errors introduced by the PFDR algorithm. This filter is similar to the filter in the planogram filtered backprojection algorithm derived by Brasse et al. The planogram filtered backprojection and exact reconstruction with the PFDR algorithm require complete projections which can be completed with a reprojection algorithm. The PFDR algorithm is similar to the rebinning algorithm developed by Kao et al. By expressing the PFDR algorithm in detector coordinates, we provide a comparative analysis between the two algorithms. Numerical experiments using both simulated data and measured data from a positron emission mammography/tomography (PEM/PET) system are performed. Images are reconstructed by PFDR+FBP (PFDR followed by 2D FBP reconstruction), PFDRX (PFDR followed by the modified FBP algorithm for exact reconstruction) and planogram filtered backprojection image reconstruction algorithms. We show that the PFDRX algorithm produces images that are nearly as accurate as images reconstructed with the planogram filtered backprojection algorithm and more accurate than images reconstructed with the PFDR+FBP algorithm. Both the PFDR+FBP and PFDRX algorithms provide a dramatic improvement in computation time over the planogram filtered backprojection algorithm. PMID:20436790
Final Environmental Assessment: Solar Panel Systems at Joint Base McGuire-Dix-Lakehurst New Jersey
2012-03-01
FINAL ENVIRONMENTAL ASSESSMENT Solar Panel Systems at Joint Base McGuire-Dix-Lakehurst, New Jersey MARCH 2012...Final Environmental Assessment : Solar Panel Systems at Joint Base McGuire-Dix-Lakehurst New Jersey 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Purpose Finding of No Significant Impact (FONSI) Environmental Assessment (EA
Bardo, Dianna M E; Brown, Paul
2008-08-01
Cardiac MDCT is here to stay. And, it is more than just imaging coronary arteries. Understanding the differences in and the benefits of one CT scanner from another will help you to optimize the capabilities of the scanner, but requires a basic understanding of the MDCT imaging physics.This review provides key information needed to understand the differences in the types of MDCT scanners, from 64 - 320 detectors, flat panels, single and dual source configurations, step and shoot prospective and retrospective gating, and how each factor influences radiation dose, spatial and temporal resolution, and image noise.
An LFMCW detector with new structure and FRFT based differential distance estimation method.
Yue, Kai; Hao, Xinhong; Li, Ping
2016-01-01
This paper describes a linear frequency modulated continuous wave (LFMCW) detector which is designed for a collision avoidance radar. This detector can estimate distance between the detector and pedestrians or vehicles, thereby it will help to reduce the likelihood of traffic accidents. The detector consists of a transceiver and a signal processor. A novel structure based on the intermediate frequency signal (IFS) is designed for the transceiver which is different from the traditional LFMCW transceiver using the beat frequency signal (BFS) based structure. In the signal processor, a novel fractional Fourier transform (FRFT) based differential distance estimation (DDE) method is used to detect the distance. The new IFS based structure is beneficial for the FRFT based DDE method to reduce the computation complexity, because it does not need the scan of the optimal FRFT order. Low computation complexity ensures the feasibility of practical applications. Simulations are carried out and results demonstrate the efficiency of the detector designed in this paper.
Sahu, Atanu; Bhattacharya, Partha; Niyogi, Arup Guha; Rose, Michael
2017-06-01
Double-wall panels are known for their superior sound insulation properties over single wall panels as a sound barrier. The sound transmission phenomenon through a double-wall structure is a complex process involving vibroacoustic interaction between structural panels, the air-cushion in between, and the secondary acoustic domain. It is in this context a versatile and a fully coupled technique based on the finite-element-boundary element model is developed that enables estimation of sound transfer through a double-wall panel into an adjacent enclosure while satisfying the displacement compatibility across the interface. The contribution of individual components in the transmitted energy is identified through numerical simulations.
Material identification based upon energy-dependent attenuation of neutrons
Marleau, Peter
2015-10-06
Various technologies pertaining to identifying a material in a sample and imaging the sample are described herein. The material is identified by computing energy-dependent attenuation of neutrons that is caused by presence of the sample in travel paths of the neutrons. A mono-energetic neutron generator emits the neutron, which is downscattered in energy by a first detector unit. The neutron exits the first detector unit and is detected by a second detector unit subsequent to passing through the sample. Energy-dependent attenuation of neutrons passing through the sample is computed based upon a computed energy of the neutron, wherein such energy can be computed based upon 1) known positions of the neutron generator, the first detector unit, and the second detector unit; or 2) computed time of flight of neutrons between the first detector unit and the second detector unit.
NASA Astrophysics Data System (ADS)
Jebali, R.; Scherzinger, J.; Annand, J. R. M.; Chandra, R.; Davatz, G.; Fissum, K. G.; Friederich, H.; Gendotti, U.; Hall-Wilton, R.; Håkansson, E.; Kanaki, K.; Lundin, M.; Murer, D.; Nilsson, B.; Rosborg, A.; Svensson, H.
2015-09-01
A first comparison has been made between the pulse-shape discrimination characteristics of a novel 4He-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, due to the size and pressure of the 4He gas volume, the 4He-based detector registered a maximum scintillation-light yield of 750keVee to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750keVee was excellent in the case of the 4He-based detector. Above 750keVee its signal was unambiguously neutron, enabling particle identification based entirely upon the amount of scintillation light produced.
Design of FPGA-based radiation tolerant quench detectors for LHC
NASA Astrophysics Data System (ADS)
Steckert, J.; Skoczen, A.
2017-04-01
The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.
Wu, Sean F; Moondra, Manmohan; Beniwal, Ravi
2015-04-01
The Helmholtz equation least squares (HELS)-based nearfield acoustical holography (NAH) is utilized to analyze panel acoustic contributions toward the acoustic field inside the interior region of an automobile. Specifically, the acoustic power flows from individual panels are reconstructed, and relative contributions to sound pressure level and spectrum at any point of interest are calculated. Results demonstrate that by correlating the acoustic power flows from individual panels to the field acoustic pressure, one can correctly locate the panel allowing the most acoustic energy transmission into the vehicle interior. The panel on which the surface acoustic pressure amplitude is the highest should not be used as indicative of the panel responsible for the sound field in the vehicle passenger compartment. Another significant advantage of this HELS-based NAH is that measurements of the input data only need to be taken once by using a conformal array of microphones in the near field, and ranking of panel acoustic contributions to any field point can be readily performed. The transfer functions between individual panels of any vibrating structure to the acoustic pressure anywhere in space are calculated not measured, thus significantly reducing the time and effort involved in panel acoustic contributions analyses.
Gating characteristics of photomultiplier tubes for Lidar applications
NASA Technical Reports Server (NTRS)
Barrick, J. D. W.
1986-01-01
A detector test facility was developed and applied in the evaluation and characterization of lidar detectors in support of the multipurpose airborne differential absorption lidar (DIAL) system based at the Langley Research Center (LaRC). A performance data base of various detector configurations available to the DIAL system was obtained for optimum lidar detector selection. Photomultiplier tubes (PMT's) with multialkaline and bialkaline photocathodes were evaluated in voltage-divider networks (bases) by using either the focusing electrode or dynodes as a gating mechanism. Characteristics used for detector evaluation included gain stability, signal rise time, and the ability to block unwanted high light levels.
Modular, security enclosure and method of assembly
Linker, Kevin L.; Moyer, John W.
1995-01-01
A transportable, reusable rapidly assembled and disassembled, resizable modular, security enclosure utilizes a stepped panel construction. Each panel has an inner portion and an outer portion which form joints. A plurality of channels can be affixed to selected joints of the panels. Panels can be affixed to a base member and then affixed to one another by the use of elongated pins extending through the channel joints. Alternatively, the base member can be omitted and the panels themselves can be used as the floor of the enclosure. The pins will extend generally parallel to the joint in which they are located. These elongated pins are readily inserted into and removable from the channels in a predetermined sequence to allow assembly and disassembly of the enclosure. A door constructed from panels is used to close the opening to the enclosure.
Wang-Schweig, Meme; Miller, Brenda A; Buller, David B; Byrnes, Hilary F; Bourdeau, Beth; Rogers, Veronica
2017-01-01
Use of online panel vendors in research has grown over the past decade. Panel vendors are organizations that recruit participants into a panel to take part in web-based surveys and match panelists to a target audience for data collection. We used two panel vendors to recruit families ( N = 411) with a 16- to 17-year-old teen to participate in a randomized control trial (RCT) of an online family-based program to prevent underage drinking and risky sexual behaviors. Our article addresses the following research questions: (1) How well do panel vendors provide a sample of families who meet our inclusion criteria to participate in a RCT? (2) How well do panel vendors provide a sample of families who reflect the characteristics of the general population? and (3) Does the choice of vendor influence the characteristics of families that we engage in research? Despite the screening techniques used by the panel vendors to identify families who met our inclusion criteria, 23.8% were found ineligible when research staff verified their eligibility by direct telephone contact. Compared to the general U.S. population, our sample had more Whites and more families with higher education levels. Finally, across the two panel vendors, there were no significant differences in the characteristics of families, except for mean age. The online environment provides opportunities for new methods to recruit participants in research studies. However, innovative recruitment methods need careful study to ensure the quality of their samples.
NASA Astrophysics Data System (ADS)
Gorecki, A.; Brambilla, A.; Moulin, V.; Gaborieau, E.; Radisson, P.; Verger, L.
2013-11-01
Multi-energy (ME) detectors are becoming a serious alternative to classical dual-energy sandwich (DE-S) detectors for X-ray applications such as medical imaging or explosive detection. They can use the full X-ray spectrum of irradiated materials, rather than disposing only of low and high energy measurements, which may be mixed. In this article, we intend to compare both simulated and real industrial detection systems, operating at a high count rate, independently of the dimensions of the measurements and independently of any signal processing methods. Simulations or prototypes of similar detectors have already been compared (see [1] for instance), but never independently of estimation methods and never with real detectors. We have simulated both an ME detector made of CdTe - based on the characteristics of the MultiX ME100 and - a DE-S detector - based on the characteristics of the Detection Technology's X-Card 1.5-64DE model. These detectors were compared to a perfect spectroscopic detector and an optimal DE-S detector. For comparison purposes, two approaches were investigated. The first approach addresses how to distinguise signals, while the second relates to identifying materials. Performance criteria were defined and comparisons were made over a range of material thicknesses and with different photon statistics. Experimental measurements in a specific configuration were acquired to checks simulations. Results showed good agreement between the ME simulation and the ME100 detector. Both criteria seem to be equivalent, and the ME detector performs 3.5 times better than the DE-S detector with same photon statistics based on simulations and experimental measurements. Regardless of the photon statistics ME detectors appeared more efficient than DE-S detectors for all material thicknesses between 1 and 9 cm when measuring plastics with an attenuation signature close that of explosive materials. This translates into an improved false detection rate (FDR): DE-S detectors have an FDR 2.87±0.03-fold higher than ME detectors for 4 cm of POM with 20 000 incident photons, when identifications are screened against a two-material base.
Shear-Panel Test Fixture Eliminates Corner Stresses
NASA Technical Reports Server (NTRS)
Kiss, J. J.; Farley, G. L.; Baker, D. J.
1984-01-01
New design eliminates corner stresses while maintaining uniform stress across panel. Shear panel test fixture includes eight frames and eight corner pins. Fixture assembled in two halves with shear panel sandwiched in between. Results generated from this fixture will result in good data base for design of efficient aircraft structures and other applications.
Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai
2017-01-01
This paper presents an analysis of 3-dimensional engineered structural panels (3DESP) made from wood-fiber-based laminated paper composites. Since the existing models for calculating the mechanical behavior of core configurations within sandwich panels are very complex, a new simplified orthogonal model (SOM) using an equivalent element has been developed. This model...
Method and system for improved resolution of a compensated calorimeter detector
Dawson, John W.
1991-01-01
An improved method and system for a depleted uranium calorimeter detector used in high energy physics experiments. In a depleted uranium calorimeter detector, the energy of a particle entering the calorimeter detector is determined and the output response of the calorimeter detector is compensated so that the ratio of the integrated response of the calorimeter detector from a lepton to the integrated response of the calorimeter detector from a hadron of the same energy as the lepton is approximately equal to 1. In the present invention, the energy of a particle entering the calorimeter detector is determined as a function of time and the hadron content of the response of the calorimeter detector is inferred based upon the time structure of the energy pulse measured by the calorimeter detector. The energy measurement can be corrected based on the inference of the hadron content whereby the resolution of the calorimeter can be improved.
New Thermal Infrared Hyperspectral Imagers
2009-10-01
involve imaging systems based on both MCT and microbolometer detector . All the systems base on push-broom imaging spectrograph with transmission grating...application requirements. The studies involve imaging systems based on both MCT and microbolometer detector . All the systems base on push-broom...remote sensing imager utilizes MCT detector combined with BMC-technique (background monitoring on-chip), background suppression and temperature
A beta-ray spectrometer based on a two-or three silicon detector coincidence telescope
NASA Astrophysics Data System (ADS)
Horowitz, Y. S.; Weizman, Y.; Hirning, C. R.
1996-02-01
This report describes the operation of a beta-ray energy spectrometer based on a silicon detector telescope using two or three elements. The front detector is a planar, totally-depleted, silicon surface barrier detector that is 97 μm thick, the back detector is a room-temperature, lithium compensated, silicon detector that is 5000 μm thick, and the intermediate detector is similar to the front detector but 72 μm thick and intended to be used only in intense photon fields. The three detectors are mounted in a light-tight aluminum housing. The capability of the spectrometer to reject photons is based upon the fact that the incident photon will have a small probability of simultaneously losing detectable energy in two detectors, and an even smaller probability of losing detectable energy in all three detectors. Electrons will, however, almost always record measurable events in either the front two or all three detectors. A coincidence requirement between the detectors thus rejects photon induced events. With a 97 μm thick detector the lower energy coincidence threshold is approximately 110 keV. With an ultra-thin 40 μm thick front detector, and operated at 15°C, the spectrometer is capable of detecting even 60-70 keV electrons with a coincidence efficiency of 60%. The spectrometer has been used to measure beta radiation fields in CANDU reactor working environments, and the spectral information is intended to support dose algorithms for the LiF TLD chips used in the Ontario Hydro dosimetry program.
Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator
1992-12-01
Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the
Family Medicine Panel Size with Care Teams: Impact on Quality.
Angstman, Kurt B; Horn, Jennifer L; Bernard, Matthew E; Kresin, Molly M; Klavetter, Eric W; Maxson, Julie; Willis, Floyd B; Grover, Michael L; Bryan, Michael J; Thacher, Tom D
2016-01-01
The demand for comprehensive primary health care continues to expand. The development of team-based practice allows for improved capacity within a collective, collaborative environment. Our hypothesis was to determine the relationship between panel size and access, quality, patient satisfaction, and cost in a large family medicine group practice using a team-based care model. Data were retrospectively collected from 36 family physicians and included total panel size of patients, percentage of time spent on patient care, cost of care, access metrics, diabetic quality metrics, patient satisfaction surveys, and patient care complexity scores. We used linear regression analysis to assess the relationship between adjusted physician panel size, panel complexity, and outcomes. The third available appointments (P < .01) and diabetic quality (P = .03) were negatively affected by increased panel size. Patient satisfaction, cost, and percentage fill rate were not affected by panel size. A physician-adjusted panel size larger than the current mean (2959 patients) was associated with a greater likelihood of poor-quality rankings (≤25th percentile) compared with those with a less than average panel size (odds ratio [OR], 7.61; 95% confidence interval [CI], 1.13-51.46). Increased panel size was associated with a longer time to the third available appointment (OR, 10.9; 95% CI, 1.36-87.26) compared with physicians with panel sizes smaller than the mean. We demonstrated a negative impact of larger panel size on diabetic quality results and available appointment access. Evaluation of a family medicine practice parameters while controlling for panel size and patient complexity may help determine the optimal panel size for a practice. © Copyright 2016 by the American Board of Family Medicine.
Gamma-ray Irradiation Effects on InAs/GaSb-based nBn IR Detector
2011-01-01
very low noise performance. When properly passivated, conventional mercury cadmium telluride ( MCT )?based infrared detectors have been shown to...Gamma-ray Irradiation Effects on InAs/GaSb-based nBn IR Detector Vincent M. Cowan*1, Christian P. Morath1, Seth M. Swift1, Stephen Myers2...2Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87106, USA ABSTRACT IR detectors operated in a space environment are
Superlinear threshold detectors in quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydersen, Lars; Maroey, Oystein; Skaar, Johannes
2011-09-15
We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systemsmore » using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.« less
Detector location selection based on VIP analysis in near-infrared detection of dural hematoma.
Sun, Qiuming; Zhang, Yanjun; Ma, Jun; Tian, Feng; Wang, Huiquan; Liu, Dongyuan
2018-03-01
Detection of dural hematoma based on multi-channel near-infrared differential absorbance has the advantages of rapid and non-invasive detection. The location and number of detectors around the light source are critical for reducing the pathological characteristics of the prediction model on dural hematoma degree. Therefore, rational selection of detector numbers and their distances from the light source is very important. In this paper, a detector position screening method based on Variable Importance in the Projection (VIP) analysis is proposed. A preliminary modeling based on Partial Least Squares method (PLS) for the prediction of dural position μ a was established using light absorbance information from 30 detectors located 2.0-5.0 cm from the light source with a 0.1 cm interval. The mean relative error (MRE) of the dural position μ a prediction model was 4.08%. After VIP analysis, the number of detectors was reduced from 30 to 4 and the MRE of the dural position μ a prediction was reduced from 4.08% to 2.06% after the reduction in detector numbers. The prediction model after VIP detector screening still showed good prediction of the epidural position μ a . This study provided a new approach and important reference on the selection of detector location in near-infrared dural hematoma detection.
Liu, Yi-Hung; Chen, Yan-Jen
2011-01-01
Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms. PMID:22016625
Liu, Yi-Hung; Chen, Yan-Jen
2011-01-01
Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doan, T. C.; Li, J.; Lin, J. Y.
2016-07-15
Solid-state neutron detectors with high performance are highly sought after for the detection of fissile materials. However, direct-conversion neutron detectors based on semiconductors with a measureable efficiency have not been realized. We report here the first successful demonstration of a direct-conversion semiconductor neutron detector with an overall detection efficiency for thermal neutrons of 4% and a charge collection efficiency as high as 83%. The detector is based on a 2.7 μm thick {sup 10}B-enriched hexagonal boron nitride (h-BN) epitaxial layer. The results represent a significant step towards the realization of practical neutron detectors based on h-BN epilayers. Neutron detectors basedmore » on h-BN are expected to possess all the advantages of semiconductor devices including wafer-scale processing, compact size, light weight, and ability to integrate with other functional devices.« less
High-numerical-aperture-based virtual point detectors for photoacoustic tomography
NASA Astrophysics Data System (ADS)
Li, Changhui; Wang, Lihong V.
2008-07-01
The focal point of a high-numerical-aperture (NA) ultrasonic transducer can be used as a virtual point detector. This virtual point detector detects omnidirectionally over a wide acceptance angle. It also combines a large active transducer surface and a small effective virtual detector size. Thus the sensitivity is high compared with that of a real point detector, and the aperture effect is small compared with that of a finite size transducer. We present two kinds of high-NA-based virtual point detectors and their successful application in photoacoustic tomography. They can also be applied in other ultrasound-related fields.
Fission-fragment detector for DANCE based on thin scintillating films
NASA Astrophysics Data System (ADS)
Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.
2015-12-01
A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.
Novel field cage design for the PandaX III double beta decay experiment
NASA Astrophysics Data System (ADS)
Chaiyabin, P.; Giboni, K. L.; Han, K.; Ji, X.; Juyal, P.; Kobdaj, C.; Liu, J.; Lomon, J.; Pasaja, N.; Poolcharuansin, P.; Rujirawat, S.; Songsiriritthigul, P.; Yan, Y.; Zhao, L.
2017-10-01
PandaX III is a High Pressure gaseous xenon Time Projection Chamber for Double Beta Decay detection. It will be installed deep underground in the JinPing Laboratory in Szechuan province, China. During its first phase the detector will operate with 200 kg of enriched 136Xe. The detector consists of a mesh cathode in the center of a cylindrical vessel and Micro-Bulk Micro-Megas at both ends to read out the drifting charges. The active volume is surrounded by an array of electrodes to shape the homogeneous drift field, the so called field cage. Gaseous xenon, however, is a poor dielectric. It would require in excess of 10 cm to safely stand off the HV between these electrodes and the grounded detector walls. Nearly a quarter of our available xenon would be wasted in this dead space. In a new design the electric field outside the field shaping is totally contained in a cylinder 1.6 m diameter and 2 m long. For manufacturing two 50 mm thick Acrylic plates are bend into half cylinders and bonded together. The outside surface of the cylinder is covered with a copper mesh as ground plane. The gap between field cage and detector vessel can be now reduced to 1 mm, and this gap is field free. The amount of wasted xenon is reduced by a factor 100. The field shaping electrodes and the resistive divider network are mounted on 5 mm thick Acrylic panels suspended on the inside of the field cage. This design is realized with low radioactivity materials.
ERIC Educational Resources Information Center
Boyle, Tom; And Others
Six conference panel discussions on uses of technology in education are presented. The first panel, "The Use of Hypermedia in the Teaching and Learning of Programming" (Tom Boyle, Chair, and others) discusses achievements in hypermedia-based instruction, design needs, and experiences. The second panel, "Virtual Clayoquot Video…
NASA Astrophysics Data System (ADS)
Wang, Kai; Ou, Hai; Chen, Jun
2015-06-01
Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The "smart" pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients.
Davlouros, Periklis A; Chefneux, Corina; Xanthopoulou, Ioanna; Papathanasiou, Maria; Zaharioglou, Evaggelia; Tsigkas, Grigorios; Alexopoulos, Dimitrios
2012-05-03
Coronary stent fracture (SF), is rare and confined mainly in patients treated with sirolimus eluting stents (SES). The role of flat panel digital detector (FPDD) fluoroscopy in detecting SF has not been investigated. Assessment with FPDD fluoroscopy of asymptomatic patients, with 200 SES (Cypher, Cordis, J&J, Miami, Florida, US), and 200 bare metal stents (BMS), at 45.5 ± 15.7 and 38.4 ± 3.9 months post-stenting respectively. SF was defined as discontinuity of stent struts on fluoroscopy. Coronary angiography was reserved for patients with documented SF. Effective radiation dose was 0.26 ± 0.14 mSv. SF was depicted in 6 (3%) SES, and 1 BMS (0.5%). Stent length was an independent predictor of SF (OR 1.19, 95% CI 1.03-1.4, p=0.024). RCA location and vessel angulation were marginally significant (OR 7.7, 95% CI 0.8-74.2, p=0.077 and OR 5.1, 95% CI 0.8-34, p=0.089). Significant angiographic restenosis was detected in 4 SES (66.6%), and 1 BMS (0.5%). Re-intervention was needed in 3 (42.8%) cases, (2 SES and 1 BMS). Detection of SF with FPDD cinefluoroscopy late following coronary stenting is feasible, involves low radiation and is confined mainly to SES compared to BMS. Application of cinefluoroscopy as part of a routine stent surveillance programme in asymptomatic patients may be more appropriate in "high risk" settings (SES, long stents and adverse angiographic characteristics). The role of invasive imaging and subsequent management of such patients need further studying. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Heidrich, G; Hassepass, F; Dullin, C; Attin, T; Grabbe, E; Hannig, C
2005-12-01
Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as denticles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 microm. Only around 73 % of the main root canals detected with FD-VCT and 87 % of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. FD-VCT is an innovative diagnostic modality in preclinical and experimental use for non-destructive three-dimensional analysis of teeth. Thanks to the high isotropic spatial resolution compared with conventional X-rays, even the minutest structures, such as side canals, can be detected and evaluated. Potential applications in endodontics include diagnostics and evaluation of all steps of root canal treatment, ranging from trepanation through determination of the length of the root canal to obturation.
Kakeda, S; Korogi, Y; Ohnari, N; Hatakeyama, Y; Moriya, J; Oda, N; Nishino, K; Miyamoto, W
2007-05-01
Compared with the image intensifier (I.I.)-TV system, the flat panel detector (FPD) system of direct conversion type has several theoretic advantages, such as higher spatial resolution, wide dynamic range, and no image distortion. The purpose of this study was to compare the image quality of 3D digital subtraction angiography (DSA) in the FPD and conventional I.I.-TV systems using a vascular phantom. An anthropomorphic vascular phantom was designed to simulate the various intracranial aneurysms with aneurysmal bleb. The tubes of this vascular phantom were filled with 2 concentrations of contrast material (300 and 150 mg I/mL), and we obtained 3D DSA using the FPD and I.I.-TV systems. First, 2 blinded radiologists compared the volume-rendering images for 3D DSA on the FPD and I.I.-TV systems, looking for pseudostenosis artifacts. Then, 2 other radiologists independently evaluated both systems for the depiction of the simulated aneurysm and aneurysmal bleb using a 5-point scale. For the degree of the pseudostenosis artifacts at the M1 segment of the middle cerebral artery at 300 mg I/mL, 3D DSA with FPD system showed mild stenoses, whereas severe stenoses were observed at 3D DSA with I.I.-TV system. At both concentrations, the FPD system was significantly superior to I.I.-TV system regarding the depiction of aneurysm and aneurysmal bleb. Compared with the I.I.-TV system, the FPD system could create high-resolution 3D DSA combined with a reduction of the pseudostenosis artifacts.
Position detectors, methods of detecting position, and methods of providing positional detectors
Weinberg, David M.; Harding, L. Dean; Larsen, Eric D.
2002-01-01
Position detectors, welding system position detectors, methods of detecting various positions, and methods of providing position detectors are described. In one embodiment, a welding system positional detector includes a base that is configured to engage and be moved along a curved surface of a welding work piece. At least one position detection apparatus is provided and is connected with the base and configured to measure angular position of the detector relative to a reference vector. In another embodiment, a welding system positional detector includes a weld head and at least one inclinometer mounted on the weld head. The one inclinometer is configured to develop positional data relative to a reference vector and the position of the weld head on a non-planar weldable work piece.
Assessment of a Solar Cell Panel Spatial Arrangement Influence on Electricity Generation
NASA Astrophysics Data System (ADS)
Anisimov, I. A.; Burakova, L. N.; Burakova, A. D.; Burakova, O. D.
2017-05-01
The research evaluates the impact of the spatial arrangement of solar cell panels on the amount of electricity generated (power generated by solar cell panel) in Tyumen. Dependences of the power generated by the solar panel on the time of day, air temperature, weather conditions and the spatial arrangement are studied. Formulas for the calculation of the solar cell panel inclination angle which provides electricity to urban infrastructure are offered. Based on the data in the future, changing of inclination angle of solar cell panel will be confirmed experimentally during the year in Tyumen, and recommendations for installing solar cell panels in urban infrastructure will be developed.
Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit
2017-06-01
Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies.
Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit
2017-01-01
Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies. PMID:28401899
Star centroiding error compensation for intensified star sensors.
Jiang, Jie; Xiong, Kun; Yu, Wenbo; Yan, Jinyun; Zhang, Guangjun
2016-12-26
A star sensor provides high-precision attitude information by capturing a stellar image; however, the traditional star sensor has poor dynamic performance, which is attributed to its low sensitivity. Regarding the intensified star sensor, the image intensifier is utilized to improve the sensitivity, thereby further improving the dynamic performance of the star sensor. However, the introduction of image intensifier results in star centroiding accuracy decrease, further influencing the attitude measurement precision of the star sensor. A star centroiding error compensation method for intensified star sensors is proposed in this paper to reduce the influences. First, the imaging model of the intensified detector, which includes the deformation parameter of the optical fiber panel, is established based on the orthographic projection through the analysis of errors introduced by the image intensifier. Thereafter, the position errors at the target points based on the model are obtained by using the Levenberg-Marquardt (LM) optimization method. Last, the nearest trigonometric interpolation method is presented to compensate for the arbitrary centroiding error of the image plane. Laboratory calibration result and night sky experiment result show that the compensation method effectively eliminates the error introduced by the image intensifier, thus remarkably improving the precision of the intensified star sensors.
Mori, Shinichiro; Inaniwa, Taku; Kumagai, Motoki; Kuwae, Tsunekazu; Matsuzaki, Yuka; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji
2012-06-01
To increase the accuracy of carbon ion beam scanning therapy, we have developed a graphical user interface-based digitally-reconstructed radiograph (DRR) software system for use in routine clinical practice at our center. The DRR software is used in particular scenarios in the new treatment facility to achieve the same level of geometrical accuracy at the treatment as at the imaging session. DRR calculation is implemented simply as the summation of CT image voxel values along the X-ray projection ray. Since we implemented graphics processing unit-based computation, the DRR images are calculated with a speed sufficient for the particular clinical practice requirements. Since high spatial resolution flat panel detector (FPD) images should be registered to the reference DRR images in patient setup process in any scenarios, the DRR images also needs higher spatial resolution close to that of FPD images. To overcome the limitation of the CT spatial resolution imposed by the CT voxel size, we applied image processing to improve the calculated DRR spatial resolution. The DRR software introduced here enabled patient positioning with sufficient accuracy for the implementation of carbon-ion beam scanning therapy at our center.
Analysis of laser jamming to satellite-based detector
NASA Astrophysics Data System (ADS)
Wang, Si-wen; Guo, Li-hong; Guo, Ru-hai
2009-07-01
The reconnaissance satellite, communication satellite and navigation satellite used in the military applications have played more and more important role in the advanced technique wars and already become the significant support and aid system for military actions. With the development of all kinds of satellites, anti-satellite laser weapons emerge as the times require. The experiments and analyses of laser disturbing CCD (charge coupled detector) in near ground have been studied by many research groups, but their results are not suitable to the case that using laser disturbs the satellite-based detector. Because the distance between the satellite-based detector and the ground is very large, it is difficult to damage it directly. However the optical receive system of satellite detector has large optical gain, so laser disturbing satellite detector is possible. In order to determine its feasibility, the theoretical analyses and experimental study are carried out in the paper. Firstly, the influence factors of laser disturbing satellite detector are analyzed in detail, which including laser power density on the surface of the detector after long distance transmission, and laser power density threshold for disturbing etc. These factors are not only induced by the satellite orbit, but dependence on the following parameters: laser average power in the ground, laser beam quality, tracing and aiming precision and atmospheric transmission. A calculation model is developed by considering all factors which then the power density entering into the detector can be calculated. Secondly, the laser disturbing experiment is performed by using LD (laser diode) with the wavelength 808 nm disturbing CCD 5 kilometer away, which the disturbing threshold value is obtained as 3.55×10-4mW/cm2 that coincides with other researcher's results. Finally, using the theoretical model, the energy density of laser on the photosensitive surface of MSTI-3 satellite detector is estimated as about 100mW/cm2, which is largely exceed the disturbing threshold and therefore verify the feasibility of using this kind of laser disturbing the satellite-based detector. According to the results. using the similar laser power density absolutely saturate the requirements to laser disturbing satellite-based detector. If considering the peak power of pulsed laser, even decrease laser average power, it is also possible to damage the detector. This result will provide the reliable evidences to evaluate the effect of laser disturbing satellite-based detector.
A DBN based anomaly targets detector for HSI
NASA Astrophysics Data System (ADS)
Ma, Ning; Wang, Shaojun; Yu, Jinxiang; Peng, Yu
2017-10-01
Due to the assumption that Hyperspectral image (HSI) should conform to Gaussian distribution, traditional Mahalanobis distance-based anomaly targets detectors perform poor because the assumption may not always hold. In order to solve those problems, a deep learning based detector, Deep Belief Network(DBN) anomaly detector(DBN-AD), was proposed to fit the unknown distribution of HSI by energy modeling, the reconstruction errors of this encode-decode processing are used for discriminating the anomaly targets. Experiments are implemented on real and synthesized HSI dataset which collection by Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS). Comparing to classic anomaly detector, the proposed method shows better performance, it performs about 0.17 higher in Area Under ROC Curve (AUC) than that of Reed-Xiaoli detector(RXD) and Kernel-RXD (K-RXD).
Analysis and Tests of Reinforced Carbon-Epoxy/Foam-Core Sandwich Panels with Cutouts
NASA Technical Reports Server (NTRS)
Baker, Donald J.; Rogers, Charles
1996-01-01
The results of a study of a low-cost structurally efficient minimum-gage shear-panel design that can be used in light helicopters are presented. The shear-panel design is based on an integrally stiffened syntactic-foam stabilized-skin with an all-bias-ply tape construction for stabilized-skin concept with an all-bias-ply tape construction for the skins. This sandwich concept is an economical way to increase the panel bending stiffness weight penalty. The panels considered in the study were designed to be buckling resistant up to 100 lbs/in. of shear load and to have an ultimate strength of 300 lbs/in. The panel concept uses unidirectional carbon-epoxy tape on a syntactic adhesive as a stiffener that is co-cured with the skin and is an effective concept for improving panel buckling strength. The panel concept also uses pultruded carbon-epoxy rods embedded in a syntactic adhesive and over-wrapped with a bias-ply carbon-epoxy tape to form a reinforcing beam which is an effective method for redistributing load around rectangular cutout. The buckling strength of the reinforced panels is 83 to 90 percent of the predicted buckling strength based on a linear buckling analysis. The maximum experimental deflection exceeds the maximum deflection predicted by a nonlinear analysis by approximately one panel thickness. The failure strength of the reinforced panels was two and a half to seven times of the buckling strength. This efficient shear-panel design concept exceeds the required ultimate strength requirement of 300 lbs/in by more than 100 percent.
From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal
2016-02-01
X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.
Favazza, Christopher P; Fetterly, Kenneth A; Hangiandreou, Nicholas J; Leng, Shuai; Schueler, Beth A
2015-01-01
Evaluation of flat-panel angiography equipment through conventional image quality metrics is limited by the scope of standard spatial-domain image quality metric(s), such as contrast-to-noise ratio and spatial resolution, or by restricted access to appropriate data to calculate Fourier domain measurements, such as modulation transfer function, noise power spectrum, and detective quantum efficiency. Observer models have been shown capable of overcoming these limitations and are able to comprehensively evaluate medical-imaging systems. We present a spatial domain-based channelized Hotelling observer model to calculate the detectability index (DI) of our different sized disks and compare the performance of different imaging conditions and angiography systems. When appropriate, changes in DIs were compared to expectations based on the classical Rose model of signal detection to assess linearity of the model with quantum signal-to-noise ratio (SNR) theory. For these experiments, the estimated uncertainty of the DIs was less than 3%, allowing for precise comparison of imaging systems or conditions. For most experimental variables, DI changes were linear with expectations based on quantum SNR theory. DIs calculated for the smallest objects demonstrated nonlinearity with quantum SNR theory due to system blur. Two angiography systems with different detector element sizes were shown to perform similarly across the majority of the detection tasks.
Novel high-resolution VGA QWIP detector
NASA Astrophysics Data System (ADS)
Kataria, H.; Asplund, C.; Lindberg, A.; Smuk, S.; Alverbro, J.; Evans, D.; Sehlin, S.; Becanovic, S.; Tinghag, P.; Höglund, L.; Sjöström, F.; Costard, E.
2017-02-01
Continuing with its legacy of producing high performance infrared detectors, IRnova introduces its high resolution LWIR IDDCA (Integrated Detector Dewar Cooler assembly) based on QWIP (quantum well infrared photodetector) technology. The Focal Plane Array (FPA) has 640×512 pixels, with small (15μm) pixel pitch, and is based on the FLIRIndigo ISC0403 Readout Integrated Circuit (ROIC). The QWIP epitaxial structures are grown by metal-organic vapor phase epitaxy (MOVPE) at IRnova. Detector stability and response uniformity inherent to III/V based material will be demonstrated in terms of high performing detectors. Results showing low NETD at high frame rate will be presented. This makes it one of the first 15μm pitch QWIP based LWIR IDDCA commercially available on the market. High operability and stability of our other QWIP based products will also be shared.
Pipeline Processing with an Iterative, Context-based Detection Model
2014-04-19
stripping the incoming data stream of repeating and irrelevant signals prior to running primary detectors , adaptive beamforming and matched field processing...framework, pattern detectors , correlation detectors , subspace detectors , matched field detectors , nuclear explosion monitoring 16. SECURITY CLASSIFICATION...10 5. Teleseismic paths from earthquakes in
Technical advances of interventional fluoroscopy and flat panel image receptor.
Lin, Pei-Jan Paul
2008-11-01
In the past decade, various radiation reducing devices and control circuits have been implemented on fluoroscopic imaging equipment. Because of the potential for lengthy fluoroscopic procedures in interventional cardiovascular angiography, these devices and control circuits have been developed for the cardiac catheterization laboratories and interventional angiography suites. Additionally, fluoroscopic systems equipped with image intensifiers have benefited from technological advances in x-ray tube, x-ray generator, and spectral shaping filter technologies. The high heat capacity x-ray tube, the medium frequency inverter generator with high performance switching capability, and the patient dose reduction spectral shaping filter had already been implemented on the image intensified fluoroscopy systems. These three underlying technologies together with the automatic dose rate and image quality (ADRIQ) control logic allow patients undergoing cardiovascular angiography procedures to benefit from "lower patient dose" with "high image quality." While photoconductor (or phosphor plate) x-ray detectors and signal capture thin film transistor (TFT) and charge coupled device (CCD) arrays are analog in nature, the advent of the flat panel image receptor allowed for fluoroscopy procedures to become more streamlined. With the analog-to-digital converter built into the data lines, the flat panel image receptor appears to become a digital device. While the transition from image intensified fluoroscopy systems to flat panel image receptor fluoroscopy systems is part of the on-going "digitization of imaging," the value of a flat panel image receptor may have to be evaluated with respect to patient dose, image quality, and clinical application capabilities. The advantage of flat panel image receptors has yet to be fully explored. For instance, the flat panel image receptor has its disadvantages as compared to the image intensifiers; the cost of the equipment is probably the most obvious. On the other hand, due to its wide dynamic range and linearity, lowering of patient dose beyond current practice could be achieved through the calibration process of the flat panel input dose rate being set to, for example, one half or less of current values. In this article various radiation saving devices and control circuits are briefly described. This includes various types of fluoroscopic systems designed to strive for reduction of patient exposure with the application of spectral shaping filters. The main thrust is to understand the ADRIQ control logic, through equipment testing, as it relates to clinical applications, and to show how this ADRIQ control logic "ties" those three technological advancements together to provide low radiation dose to the patient with high quality fluoroscopic images. Finally, rotational angiography with computed tomography (CT) and three dimensional (3-D) images utilizing flat panel technology will be reviewed as they pertain to diagnostic imaging in cardiovascular disease.
24. INTERIOR OF CENTRAL ROOM. BASE POWER PANEL VISIBLE ON ...
24. INTERIOR OF CENTRAL ROOM. BASE POWER PANEL VISIBLE ON RIGHT WALL OF HALLWAY. - Chollas Heights Naval Radio Transmitting Facility, Transmitter Building, 6410 Zero Road, San Diego, San Diego County, CA
Software-Based Real-Time Acquisition and Processing of PET Detector Raw Data.
Goldschmidt, Benjamin; Schug, David; Lerche, Christoph W; Salomon, André; Gebhardt, Pierre; Weissler, Bjoern; Wehner, Jakob; Dueppenbecker, Peter M; Kiessling, Fabian; Schulz, Volkmar
2016-02-01
In modern positron emission tomography (PET) readout architectures, the position and energy estimation of scintillation events (singles) and the detection of coincident events (coincidences) are typically carried out on highly integrated, programmable printed circuit boards. The implementation of advanced singles and coincidence processing (SCP) algorithms for these architectures is often limited by the strict constraints of hardware-based data processing. In this paper, we present a software-based data acquisition and processing architecture (DAPA) that offers a high degree of flexibility for advanced SCP algorithms through relaxed real-time constraints and an easily extendible data processing framework. The DAPA is designed to acquire detector raw data from independent (but synchronized) detector modules and process the data for singles and coincidences in real-time using a center-of-gravity (COG)-based, a least-squares (LS)-based, or a maximum-likelihood (ML)-based crystal position and energy estimation approach (CPEEA). To test the DAPA, we adapted it to a preclinical PET detector that outputs detector raw data from 60 independent digital silicon photomultiplier (dSiPM)-based detector stacks and evaluated it with a [(18)F]-fluorodeoxyglucose-filled hot-rod phantom. The DAPA is highly reliable with less than 0.1% of all detector raw data lost or corrupted. For high validation thresholds (37.1 ± 12.8 photons per pixel) of the dSiPM detector tiles, the DAPA is real time capable up to 55 MBq for the COG-based CPEEA, up to 31 MBq for the LS-based CPEEA, and up to 28 MBq for the ML-based CPEEA. Compared to the COG-based CPEEA, the rods in the image reconstruction of the hot-rod phantom are only slightly better separable and less blurred for the LS- and ML-based CPEEA. While the coincidence time resolution (∼ 500 ps) and energy resolution (∼12.3%) are comparable for all three CPEEA, the system sensitivity is up to 2.5 × higher for the LS- and ML-based CPEEA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph
A photovoltaic panel mounting clip comprising a base, central indexing tabs, flanges, lateral indexing tabs, and vertical indexing tabs. The mounting clip removably attaches one or more panels to a beam or the like structure, both mechanically and electrically. It provides secure locking of the panels in all directions, while providing guidance in all directions for accurate installation of the panels to the beam or the like structure.
Modeling Microalgae Productivity in Industrial-Scale Vertical Flat Panel Photobioreactors.
Endres, Christian H; Roth, Arne; Brück, Thomas B
2018-05-01
Potentially achievable biomass yields are a decisive performance indicator for the economic viability of mass cultivation of microalgae. In this study, a computer model has been developed and applied to estimate the productivity of microalgae for large-scale outdoor cultivation in vertical flat panel photobioreactors. Algae growth is determined based on simulations of the reactor temperature and light distribution. Site-specific weather and irradiation data are used for annual yield estimations in six climate zones. Shading and reflections between opposing panels and between panels and the ground are dynamically computed based on the reactor geometry and the position of the sun. The results indicate that thin panels (≤0.05 m) are best suited for the assumed cell density of 2 g L -1 and that reactor panels should face in north-south direction. Panel spacings of 0.4-0.75 m at a panel height of 1 m appear most suitable for commercial applications. Under these preconditions, yields of around 10 kg m -2 a -1 are possible for most locations in the U.S. Only in hot climates significantly lower yields have to be expected, as extreme reactor temperatures limit overall productivity.
Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai
2015-01-01
This paper presented construction and strain distributions for light-weight wood-fiber-based structural panels with tri-grid core made from phenolic impregnated laminated paper composites under bending. A new fastening configuration of slots in the faces and tabs on the core was applied to the face/core interfaces of the sandwich panel in addition to epoxy resin. Both...
A Weibull distribution accrual failure detector for cloud computing.
Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.
A scalable multi-photon coincidence detector based on superconducting nanowires.
Zhu, Di; Zhao, Qing-Yuan; Choi, Hyeongrak; Lu, Tsung-Ju; Dane, Andrew E; Englund, Dirk; Berggren, Karl K
2018-06-04
Coincidence detection of single photons is crucial in numerous quantum technologies and usually requires multiple time-resolved single-photon detectors. However, the electronic readout becomes a major challenge when the measurement basis scales to large numbers of spatial modes. Here, we address this problem by introducing a two-terminal coincidence detector that enables scalable readout of an array of detector segments based on superconducting nanowire microstrip transmission line. Exploiting timing logic, we demonstrate a sixteen-element detector that resolves all 136 possible single-photon and two-photon coincidence events. We further explore the pulse shapes of the detector output and resolve up to four-photon events in a four-element device, giving the detector photon-number-resolving capability. This new detector architecture and operating scheme will be particularly useful for multi-photon coincidence detection in large-scale photonic integrated circuits.
Experimental and theoretical sound transmission. [reduction of interior noise in aircraft
NASA Technical Reports Server (NTRS)
Roskam, J.; Muirhead, V. U.; Smith, H. W.; Durenberger, D. W.
1978-01-01
The capabilities of the Kansas University- Flight Research Center for investigating panel sound transmission as a step toward the reduction of interior noise in general aviation aircraft were discussed. Data obtained on panels with holes, on honeycomb panels, and on various panel treatments at normal incidence were documented. The design of equipment for panel transmission loss tests at nonnormal (slanted) sound incidence was described. A comprehensive theory-based prediction method was developed and shows good agreement with experimental observations of the stiffness controlled, the region, the resonance controlled region, and the mass-law region of panel vibration.
2017-09-04
10 years @ 90% depth of discharge o Weight – 170 lb/374 kg PV panels: 12 panels with a 3.36 kW solar array capacity Generator: 10 kW TQG...lightweight thin-film PV panels ( solar modules or “ solar blankets”). These solar blankets were Door Sensor Figure 92: Temperature and Humidity Tripod...collected by various PV panels, and charging times for BB2590 batteries. 4.5.2 Operational Script The experimental nano-coated solar panel
A Comparison of Image Quality and Radiation Exposure Between the Mini C-Arm and the Standard C-Arm.
van Rappard, Juliaan R M; Hummel, Willy A; de Jong, Tijmen; Mouës, Chantal M
2018-04-01
The use of intraoperative fluoroscopy has become mandatory in osseous hand surgery. Due to its overall practicality, the mini C-arm has gained popularity among hand surgeons over the standard C-arm. This study compares image quality and radiation exposure for patient and staff between the mini C-arm and the standard C-arm, both with flat panel technology. An observer-based subjective image quality study was performed using a contrast detail (CD) phantom. Five independent observers were asked to determine the smallest circles discernable to them. The results were plotted in a graph, forming a CD curve. From each curve, an image quality figure (IQF) was derived. A lower IQF equates to a better image quality. The patients' entrance skin dose was measured, and to obtain more information about the staff exposure dose, a perspex hand phantom was used. The scatter radiation was measured at various distances and angles relative to a central point on the detector. The IQF was significantly lower for the mini C-arm resulting in a better image quality. The patients' entrance dose was 10 times higher for the mini C-arm as compared with the standard C-arm, and the scatter radiation threefold. Due to its improved image quality and overall practicality, the mini C-arm is recommended for hand surgical procedures. To ensure that the surgeons' radiation exposure is not exceeding the safety limits, monitoring radiation exposure using mini C-arms with flat panel technology during surgery should be done in a future clinical study.
MATHEMATICS PANEL QUARTERLY PROGRESS REPORT FOR PERIOD ENDING JULY 31, 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, C.L. ed.
1952-10-27
The background and status of the following projects of the Mathematics Panel are reported: test problems for the ORAC arithmetic units errors in matrix operations; basic studies in the Monte Carlo methods A Sturm-Liouville problems approximate steady-state solution of the equation of continuity; estimation of volume of lymph space; xradiation effects on respiration rates in grasshopper embnyos; temperature effects in irradiation experiments with yeast; LD/sub 50/ estimation for burros and swine exposed to gamma radiation; thermal-neutron penetration in tissues; kinetics of HBr-HBrO/sub 3/ reaction; isotope effect in reaction rate constants; experimental determination of diffusivity coefficientss Dirac wave equationss fitting amore » calibration curves beta decay (field factors); neutron decay theorys calculation of internal conversion coefficients with screening; estimation of alignment ratios; optimum allocation of counting times calculation of coincidence probabilities for a double-crystal detectors reactor inequalities; heat flow in long rectangular tubes; solving an equation by numerical methods; numerical integration; evalvation of a functions depigmentation of a biological dosimeter. (L.M.T.)« less
Development of panel loudspeaker system: design, evaluation and enhancement.
Bai, M R; Huang, T
2001-06-01
Panel speakers are investigated in terms of structural vibration and acoustic radiation. A panel speaker primarily consists of a panel and an inertia exciter. Contrary to conventional speakers, flexural resonance is encouraged such that the panel vibrates as randomly as possible. Simulation tools are developed to facilitate system integration of panel speakers. In particular, electro-mechanical analogy, finite element analysis, and fast Fourier transform are employed to predict panel vibration and the acoustic radiation. Design procedures are also summarized. In order to compare the panel speakers with the conventional speakers, experimental investigations were undertaken to evaluate frequency response, directional response, sensitivity, efficiency, and harmonic distortion of both speakers. The results revealed that the panel speakers suffered from a problem of sensitivity and efficiency. To alleviate the problem, a woofer using electronic compensation based on H2 model matching principle is utilized to supplement the bass response. As indicated in the result, significant improvement over the panel speaker alone was achieved by using the combined panel-woofer system.
Rural Panel Surveys in Developing Countries: A Selective Review
Hao, Lingxin; Wang, Weidong; Xie, Guihua
2017-01-01
Rural panel surveys are the most appropriate means to provide data for studying the unprecedented rapid migration and urbanization currently taking place in China and other developing countries. To maximize heterogeneity in urbanization and development over the last three decades, we selected rural panel surveys from five Asian countries, including India, Indonesia, Nepal, Thailand, and China. This paper provides a selective review, focusing on their panel survey methodology, which is organized based on our proposed four basics of panel surveys – representativeness, retrospect-prospect, multilevel tracking, and temporality. We analyzed the strengths and weaknesses of the selected panel surveys to provide directions for designing future rural panel studies in China and elsewhere in the developing world. PMID:29201494
Aerosol-based detectors for liquid chromatography.
Magnusson, Lars-Erik; Risley, Donald S; Koropchak, John A
2015-11-20
Aerosol-based detectors developed within the last few decades have increasingly addressed the need for sensitive, universal liquid chromatography detection in a wide variety of applications. Herein, we review the operating principles, instrumentation, analytical characteristics, and recent applications of the three general types of such detectors: evaporative light scattering detection (ELSD), condensation nucleation light scattering detection (CNLSD); commercially known as the nano-quantity analyte detector (NQAD), and charged aerosol detection (CAD). Included is a comparative evaluation of the operational and analytical characteristics of these detectors. Copyright © 2015 Elsevier B.V. All rights reserved.
Novel infrared detector based on a tunneling displacement transducer
NASA Technical Reports Server (NTRS)
Kenny, T. W.; Kaiser, W. J.; Waltman, S. B.; Reynolds, J. K.
1991-01-01
The paper describes the design, fabrication, and characteristics of a novel infrared detector based on the principle of Golay's (1947) pneumatic infrared detector, which uses the expansion of a gas to detect infrared radiation. The present detector is constructed entirely from micromachined silicon and uses an electron tunneling displacement transducer for the detection of gas expansion. The sensitivity of the new detector is competitive with the best commercial pyroelectric sensors and can be readily improved by an order of magnitude through the use of an optimized transducer.
Open-field mouse brain PET: design optimisation and detector characterisation.
Kyme, Andre Z; Judenhofer, Martin S; Gong, Kuang; Bec, Julien; Selfridge, Aaron; Du, Junwei; Qi, Jinyi; Cherry, Simon R; Meikle, Steven R
2017-07-13
'Open-field' PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal's behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner. However, this approach of 'retro-fitting' motion compensation techniques to an existing system is limited by the inherent geometric and performance constraints of the system. The goal of this project is to develop a purpose-built PET scanner with geometry, motion tracking and imaging performance tailored and optimised for open-field imaging of the mouse brain. The design concept is a rail-based sliding tomograph which moves according to the animal's motion. Our specific aim in this work was to evaluate candidate scanner designs and characterise the performance of a depth-of-interaction detector module for the open-field system. We performed Monte Carlo simulations to estimate and compare the sensitivity and spatial resolution performance of four scanner geometries: a ring, parallel plate, and two box variants. Each system was based on a detector block consisting of a 23 × 23 array of 0.785 × 0.785 × 20 mm 3 LSO crystals (overall dim. 19.6 × 19.6 × 20 mm). We found that a DoI resolution capability of 3 mm was necessary to achieve approximately uniform sub-millimetre spatial resolution throughout the FoV for all scanners except the parallel-plate geometry. With this DoI performance, the sensitivity advantage afforded by the box geometry with overlapping panels (16% peak absolute sensitivity, a 36% improvement over the ring design) suggests this unconventional design is best suited for imaging the mouse brain. We also built and characterised the block detector modelled in the simulations, including a dual-ended readout based on 6 × 6 arrays of through-silicon-via silicon photomultipliers (active area 84%) for DoI estimation. Identification of individual crystals in the flood map was excellent, energy resolution varied from 12.4% ± 0.6% near the centre to 24.4% ± 3.4% at the ends of the crystal, and the average DoI resolution was 2.8 mm ± 0.35 mm near the central depth (10 mm) and 3.5 mm ± 1.0 mm near the ends. Timing resolution was 1.4 ± 0.14 ns. Therefore, the DoI detector module meets the target specifications for the application and will be used as the basis for a prototype open-field mouse PET scanner.
Open-field mouse brain PET: design optimisation and detector characterisation
NASA Astrophysics Data System (ADS)
Kyme, Andre Z.; Judenhofer, Martin S.; Gong, Kuang; Bec, Julien; Selfridge, Aaron; Du, Junwei; Qi, Jinyi; Cherry, Simon R.; Meikle, Steven R.
2017-08-01
‘Open-field’ PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal’s behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner. However, this approach of ‘retro-fitting’ motion compensation techniques to an existing system is limited by the inherent geometric and performance constraints of the system. The goal of this project is to develop a purpose-built PET scanner with geometry, motion tracking and imaging performance tailored and optimised for open-field imaging of the mouse brain. The design concept is a rail-based sliding tomograph which moves according to the animal’s motion. Our specific aim in this work was to evaluate candidate scanner designs and characterise the performance of a depth-of-interaction detector module for the open-field system. We performed Monte Carlo simulations to estimate and compare the sensitivity and spatial resolution performance of four scanner geometries: a ring, parallel plate, and two box variants. Each system was based on a detector block consisting of a 23 × 23 array of 0.785 × 0.785 × 20 mm3 LSO crystals (overall dim. 19.6 × 19.6 × 20 mm). We found that a DoI resolution capability of 3 mm was necessary to achieve approximately uniform sub-millimetre spatial resolution throughout the FoV for all scanners except the parallel-plate geometry. With this DoI performance, the sensitivity advantage afforded by the box geometry with overlapping panels (16% peak absolute sensitivity, a 36% improvement over the ring design) suggests this unconventional design is best suited for imaging the mouse brain. We also built and characterised the block detector modelled in the simulations, including a dual-ended readout based on 6 × 6 arrays of through-silicon-via silicon photomultipliers (active area 84%) for DoI estimation. Identification of individual crystals in the flood map was excellent, energy resolution varied from 12.4% ± 0.6% near the centre to 24.4% ± 3.4% at the ends of the crystal, and the average DoI resolution was 2.8 mm ± 0.35 mm near the central depth (10 mm) and 3.5 mm ± 1.0 mm near the ends. Timing resolution was 1.4 ± 0.14 ns. Therefore, the DoI detector module meets the target specifications for the application and will be used as the basis for a prototype open-field mouse PET scanner.
The Efficiency of Split Panel Designs in an Analysis of Variance Model
Wang, Wei-Guo; Liu, Hai-Jun
2016-01-01
We consider split panel design efficiency in analysis of variance models, that is, the determination of the cross-sections series optimal proportion in all samples, to minimize parametric best linear unbiased estimators of linear combination variances. An orthogonal matrix is constructed to obtain manageable expression of variances. On this basis, we derive a theorem for analyzing split panel design efficiency irrespective of interest and budget parameters. Additionally, relative estimator efficiency based on the split panel to an estimator based on a pure panel or a pure cross-section is present. The analysis shows that the gains from split panel can be quite substantial. We further consider the efficiency of split panel design, given a budget, and transform it to a constrained nonlinear integer programming. Specifically, an efficient algorithm is designed to solve the constrained nonlinear integer programming. Moreover, we combine one at time designs and factorial designs to illustrate the algorithm’s efficiency with an empirical example concerning monthly consumer expenditure on food in 1985, in the Netherlands, and the efficient ranges of the algorithm parameters are given to ensure a good solution. PMID:27163447
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faby, Sebastian; Maier, Joscha; Sawall, Stefan
2016-07-15
Purpose: To introduce and evaluate an increment matrix approach (IMA) describing the signal statistics of energy-selective photon counting detectors including spatial–spectral correlations between energy bins of neighboring detector pixels. The importance of the occurring correlations for image-based material decomposition is studied. Methods: An IMA describing the counter increase patterns in a photon counting detector is proposed. This IMA has the potential to decrease the number of required random numbers compared to Monte Carlo simulations by pursuing an approach based on convolutions. To validate and demonstrate the IMA, an approximate semirealistic detector model is provided, simulating a photon counting detector inmore » a simplified manner, e.g., by neglecting count rate-dependent effects. In this way, the spatial–spectral correlations on the detector level are obtained and fed into the IMA. The importance of these correlations in reconstructed energy bin images and the corresponding detector performance in image-based material decomposition is evaluated using a statistically optimal decomposition algorithm. Results: The results of IMA together with the semirealistic detector model were compared to other models and measurements using the spectral response and the energy bin sensitivity, finding a good agreement. Correlations between the different reconstructed energy bin images could be observed, and turned out to be of weak nature. These correlations were found to be not relevant in image-based material decomposition. An even simpler simulation procedure based on the energy bin sensitivity was tested instead and yielded similar results for the image-based material decomposition task, as long as the fact that one incident photon can increase multiple counters across neighboring detector pixels is taken into account. Conclusions: The IMA is computationally efficient as it required about 10{sup 2} random numbers per ray incident on a detector pixel instead of an estimated 10{sup 8} random numbers per ray as Monte Carlo approaches would need. The spatial–spectral correlations as described by IMA are not important for the studied image-based material decomposition task. Respecting the absolute photon counts and thus the multiple counter increases by a single x-ray photon, the same material decomposition performance could be obtained with a simpler detector description using the energy bin sensitivity.« less
Barron, Leon; Nesterenko, Pavel N; Diamond, Dermot; O'Toole, Martina; Lau, King Tong; Paull, Brett
2006-09-01
The use of a low pressure ion chromatograph based upon short (25 mm x 4.6 mm) surfactant coated monolithic columns and a low cost paired emitter-detector diode (PEDD) based detector, for the determination of alkaline earth metals in aqueous matrices is presented. The system was applied to the separation of magnesium, calcium, strontium and barium in less than 7min using a 0.15M KCl mobile phase at pH 3, with post-column reaction detection at 570 nm using o-cresolphthalein complexone. A comparison of the performance of the PEDD detector with a standard laboratory absorbance detector is shown, with limits of detection for magnesium and calcium using the low cost PEDD detector equal to 0.16 and 0.23 mg L(-1), respectively. Finally, the developed system was used for the determination of calcium and magnesium in a commercial spring water sample.
Pipeline Processing With an Iterative, Context-Based Detection Model
2015-04-19
pattern detectors , correlation detectors , subspace detectors , matched field detectors , nuclear explosion monitoring 16. SECURITY CLASSIFICATION OF: 17...38 13. 3 days of SPAO-BHZ data which is dominated by signals from nearby icequakes. .... 39 14. (Top) 94 detections produced by detector ...92532 and (bottom) 148 detections from detector 92541 produced during the first run of the framework. .................................. 40 15. The 49
Fast neutron sensitivity of neutron detectors based on Boron-10 converter layers
NASA Astrophysics Data System (ADS)
Mauri, G.; Messi, F.; Kanaki, K.; Hall-Wilton, R.; Karnickis, E.; Khaplanov, A.; Piscitelli, F.
2018-03-01
In the last few years many detector technologies for thermal neutron detection have been developed in order to face the shortage of 3He, which is now much less available and more expensive. Moreover the 3He-based detectors can not fulfil the requirements in performance, e.g. the spatial resolution and the counting rate capability needed for the new instruments. The Boron-10-based gaseous detectors have been proposed as a suitable choice. This and other alternative technologies are being developed at ESS. Higher intensities mean higher signals but higher background as well. The signal-to-background ratio is an important feature to study, in particular the γ-ray and the fast neutron contributions. This paper investigates, for the first time, the fast neutrons sensitivity of 10B-based thermal neutron detector. It presents the study of the detector response as a function of energy threshold and the underlying physical mechanisms. The latter are explained with the help of theoretical considerations and simulations.
2010-08-27
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the protective panels that covered the Alpha Magnetic Spectrometer, or AMS, have been removed so that the technicians can begin preparing it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
1981-01-01
SELCAL FLT ALT ATNI AUO ALT BRK CANSELCAL OVSO CALL CONTRL ALRT _ I7CT be SPLR b 0 11CALL Figure 5.4.4-1 Pilot’s Response Panel Figure 5.4.4-2 Flight...Galley bus off 27 GLY BUS OFF A RP ELEC CYCLE SWITCH Utility bus off 28 UTIL BUS OFF A RP ELEC CYCLE SWITCH Right engine 29 R ENG HYD PUMP A RP HYD...CYCLE SWITCH hydraulic pump Left engine 30 L ENG FIRE DET A RP FIRE RP FIRE fire detector Left brake overheat 31 L BRAKE OVHT A RP BRK RP BRK Right
An experimental study on the noise correlation properties of CBCT projection data
NASA Astrophysics Data System (ADS)
Zhang, Hua; Ouyang, Luo; Ma, Jianhua; Huang, Jing; Chen, Wufan; Wang, Jing
2014-03-01
In this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam on-board CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 mAs to 1.6 mAs per projection at three fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. The analyses of the repeated measurements show that noise correlation coefficients are non-zero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second- order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation results in a lower noise level as compared to the PWLS criterion without considering the noise correlation at the matched resolution.
67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST ...
67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST OF ASSISTANT LAUNCH CONDUCTOR PANEL SHOWN IN CA-133-1-A-66 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
117. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ...
117. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ROOM (111), LSB (BLDG. 770), FACING NORTH. CONTROLS FOR FLOW AND PRESSURE REGULATION OF HELIUM ON LEFT SIDE OF PANEL; CONTROLS FOR NITROGEN ON RIGHT SIDE OF PANEL (AT RIGHT EDGE OF PHOTO). - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
116. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ...
116. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ROOM (111) OF LSB (BLDG. 770), FACING NORTH. CONTROLS FOR FLOW AND PRESSURE REGULATION OF NITROGEN ON RIGHT SIDE OF PANEL; CONTROLS FOR HELIUM ON LEFT SIDE OF PANEL (AT LEFT EDGE OF PHOTO). - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. ...
44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. DOORS FOR THE UMBILICAL MAST TRENCH RAISED FOR MAINTENANCE POSITION OF 10 DEGREES. LAUNCHER IS RIGHT OF MAST; RAILS PARALLEL TO MAST. CONTROL PANELS LEFT TO RIGHT: ELECTRICAL PANEL, COMMUNICATIONS PANEL, AND MAST CONTROL PANEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement
NASA Astrophysics Data System (ADS)
Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing
2010-10-01
In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.
Parallel detecting super-resolution microscopy using correlation based image restoration
NASA Astrophysics Data System (ADS)
Yu, Zhongzhi; Liu, Shaocong; Zhu, Dazhao; Kuang, Cuifang; Liu, Xu
2017-12-01
A novel approach to achieve the image restoration is proposed in which each detector's relative position in the detector array is no longer a necessity. We can identify each detector's relative location by extracting a certain area from one of the detector's image and scanning it on other detectors' images. According to this location, we can generate the point spread functions (PSF) for each detector and perform deconvolution for image restoration. Equipped with this method, the microscope with discretionally designed detector array can be easily constructed without the concern of exact relative locations of detectors. The simulated results and experimental results show the total improvement in resolution with a factor of 1.7 compared to conventional confocal fluorescence microscopy. With the significant enhancement in resolution and easiness for application of this method, this novel method should have potential for a wide range of application in fluorescence microscopy based on parallel detecting.
A Weibull distribution accrual failure detector for cloud computing
Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229
Syndromic Panel-Based Testing in Clinical Microbiology.
Ramanan, Poornima; Bryson, Alexandra L; Binnicker, Matthew J; Pritt, Bobbi S; Patel, Robin
2018-01-01
The recent development of commercial panel-based molecular diagnostics for the rapid detection of pathogens in positive blood culture bottles, respiratory specimens, stool, and cerebrospinal fluid has resulted in a paradigm shift in clinical microbiology and clinical practice. This review focuses on U.S. Food and Drug Administration (FDA)-approved/cleared multiplex molecular panels with more than five targets designed to assist in the diagnosis of bloodstream, respiratory tract, gastrointestinal, or central nervous system infections. While these panel-based assays have the clear advantages of a rapid turnaround time and the detection of a large number of microorganisms and promise to improve health care, they present certain challenges, including cost and the definition of ideal test utilization strategies (i.e., optimal ordering) and test interpretation. Copyright © 2017 American Society for Microbiology.
Home Camera-Based Fall Detection System for the Elderly.
de Miguel, Koldo; Brunete, Alberto; Hernando, Miguel; Gambao, Ernesto
2017-12-09
Falls are the leading cause of injury and death in elderly individuals. Unfortunately, fall detectors are typically based on wearable devices, and the elderly often forget to wear them. In addition, fall detectors based on artificial vision are not yet available on the market. In this paper, we present a new low-cost fall detector for smart homes based on artificial vision algorithms. Our detector combines several algorithms (background subtraction, Kalman filtering and optical flow) as input to a machine learning algorithm with high detection accuracy. Tests conducted on over 50 different fall videos have shown a detection ratio of greater than 96%.
Home Camera-Based Fall Detection System for the Elderly
de Miguel, Koldo
2017-01-01
Falls are the leading cause of injury and death in elderly individuals. Unfortunately, fall detectors are typically based on wearable devices, and the elderly often forget to wear them. In addition, fall detectors based on artificial vision are not yet available on the market. In this paper, we present a new low-cost fall detector for smart homes based on artificial vision algorithms. Our detector combines several algorithms (background subtraction, Kalman filtering and optical flow) as input to a machine learning algorithm with high detection accuracy. Tests conducted on over 50 different fall videos have shown a detection ratio of greater than 96%. PMID:29232846
NASA Astrophysics Data System (ADS)
Parker, J. D.; Harada, M.; Hattori, K.; Iwaki, S.; Kabuki, S.; Kishimoto, Y.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nishimura, H.; Oku, T.; Sawano, T.; Shinohara, T.; Suzuki, J.-I.; Takada, A.; Tanimori, T.; Ueno, K.; Ikeno, M.; Tanaka, M.; Uchida, T.
2014-04-01
The realization of high-intensity, pulsed spallation neutron sources such as J-PARC in Japan and SNS in the US has brought time-of-flight (TOF) based neutron techniques to the fore and spurred the development of new detector technologies. When combined with high-resolution imaging, TOF-based methods become powerful tools for direct imaging of material properties, including crystal structure/internal strain, isotopic/temperature distributions, and internal and external magnetic fields. To carry out such measurements in the high-intensities and high gamma backgrounds found at spallation sources, we have developed a new time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber (μPIC) coupled with a field-programmable-gate-array-based data acquisition system. The detector combines 100μm-level (σ) spatial and sub-μs time resolutions with low gamma sensitivity of less than 10-12 and a rate capability on the order of Mcps (mega-counts-per-second). Here, we demonstrate the application of our detector to TOF-based techniques with examples of Bragg-edge transmission and neutron resonance transmission imaging (with computed tomography) carried out at J-PARC. We also consider the direct imaging of magnetic fields with our detector using polarized neutrons.
Nurse practitioner caseload in primary health care: Scoping review.
Martin-Misener, Ruth; Kilpatrick, Kelley; Donald, Faith; Bryant-Lukosius, Denise; Rayner, Jennifer; Valaitis, Ruta; Carter, Nancy; Miller, Patricia A; Landry, Véronique; Harbman, Patricia; Charbonneau-Smith, Renee; McKinlay, R James; Ziegler, Erin; Boesveld, Sarah; Lamb, Alyson
2016-10-01
To identify recommendations for determining patient panel/caseload size for nurse practitioners in community-based primary health care settings. Scoping review of the international published and grey literature. The search included electronic databases, international professional and governmental websites, contact with experts, and hand searches of reference lists. Eligible papers had to (a) address caseload or patient panels for nurse practitioners in community-based primary health care settings serving an all-ages population; and (b) be published in English or French between January 2000 and July 2014. Level one testing included title and abstract screening by two team members. Relevant papers were retained for full text review in level two testing, and reviewed by two team members. A third reviewer acted as a tiebreaker. Data were extracted using a structured extraction form by one team member and verified by a second member. Descriptive statistics were estimated. Content analysis was used for qualitative data. We identified 111 peer-reviewed articles and grey literature documents. Most of the papers were published in Canada and the United States after 2010. Current methods to determine panel/caseload size use large administrative databases, provider work hours and the average number of patient visits. Most of the papers addressing the topic of patient panel/caseload size in community-based primary health care were descriptive. The average number of patients seen by nurse practitioners per day varied considerably within and between countries; an average of 9-15 patients per day was common. Patient characteristics (e.g., age, gender) and health conditions (e.g., multiple chronic conditions) appear to influence patient panel/caseload size. Very few studies used validated tools to classify patient acuity levels or disease burden scores. The measurement of productivity and the determination of panel/caseload size is complex. Current metrics may not capture activities relevant to community-based primary health care nurse practitioners. Tools to measure all the components of these role are needed when determining panel/caseload size. Outcomes research is absent in the determination of panel/caseload size. There are few systems in place to track and measure community-based primary health care nurse practitioner activities. The development of such mechanisms is an important next step to assess community-based primary health care nurse practitioner productivity and determine patient panel/caseload size. Decisions about panel/caseload size must take into account the effects of nurse practitioner activities on outcomes of care. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sulistianingsih, E.; Kiftiah, M.; Rosadi, D.; Wahyuni, H.
2017-04-01
Gross Domestic Product (GDP) is an indicator of economic growth in a region. GDP is a panel data, which consists of cross-section and time series data. Meanwhile, panel regression is a tool which can be utilised to analyse panel data. There are three models in panel regression, namely Common Effect Model (CEM), Fixed Effect Model (FEM) and Random Effect Model (REM). The models will be chosen based on results of Chow Test, Hausman Test and Lagrange Multiplier Test. This research analyses palm oil about production, export, and government consumption to five district GDP are in West Kalimantan, namely Sanggau, Sintang, Sambas, Ketapang and Bengkayang by panel regression. Based on the results of analyses, it concluded that REM, which adjusted-determination-coefficient is 0,823, is the best model in this case. Also, according to the result, only Export and Government Consumption that influence GDP of the districts.
SU-E-I-11: A New Cone-Beam CT System for Bedside Head Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, H; Zeng, W; Xu, P
Purpose: To design and develop a new mobile cone-beam CT (CBCT) system for head imaging with good soft-tissue visibility, to be used bedside in ICU and neurosurgery department to monitor treatment and operation outcome in brain patients. Methods: The imaging chain consists of a 30cmx25cm amorphous silicon flat panel detector and a pulsed, stationary anode monoblock x-ray source of 100kVp at a maximal tube current of 10mA. The detector and source are supported on motorized mechanisms to provide detector lateral shift and source angular tilt, enabling a centered digital radiographic imaging mode and half-fan CBCT, while maximizing the use ofmore » the x-ray field and keep the source to detector distance short. A focused linear anti-scatter grid is mounted on the detector, and commercial software with scatter and other corrective algorithms is used for data processing and image reconstruction. The gantry rotates around a horizontal axis, and is able to adjust its height for different patient table positions. Cables are routed through a custom protective sleeve over a large bore with an in-plane twister band, facilitating single 360-degree rotation without a slip-ring at a speed up to 5 seconds per rotation. A UPS provides about 10 minutes of operation off the battery when unplugged. The gantry is on locked casters, whose brake is control by two push handles on both sides for easy reposition. The entire system is designed to have a light weight and a compact size for excellent maneuverability. Results: System design is complete and main imaging components are tested. Initial results will be presented and discussed later in the presentation. Conclusion: A new mobile CBCT system for head imaging is being developed. With its compact size, a large bore, and quality design, it is expected to be a useful imaging tool for bedside uses. The work is supported by a grant from Chinese Academy of Sciences.« less
Composition Studies with the Telescope Array Surface Detector
NASA Astrophysics Data System (ADS)
Kuznetsov, Mikhail; Piskunov, Maxim; Rubtsov, Grigory; Troitsky, Sergey; Zhezher, Yana
The results on ultra-high-energy cosmic-ray chemical composition based on the data from the Telescope Array surface-detector are presented. The method is based on the multivariate boosted decision tree (BDT) analysis which uses surface-detector observables. The results on average atomic mass in the energy range 1018.0-1020.0 eV are presented. A comparison with the Telescope Array hybrid results and the Pierre Auger Observatory surface detector results is shown.
Code of Federal Regulations, 2012 CFR
2012-04-01
... rated wood-based structural-use panels. 200.944 Section 200.944 Housing and Urban Development... product standards and certification program for plywood and other performance rated wood-based structural... building product certification program. In the case of plywood and wood-based structural-use panels...
Code of Federal Regulations, 2014 CFR
2014-04-01
... rated wood-based structural-use panels. 200.944 Section 200.944 Housing and Urban Development... product standards and certification program for plywood and other performance rated wood-based structural... building product certification program. In the case of plywood and wood-based structural-use panels...
Code of Federal Regulations, 2013 CFR
2013-04-01
... rated wood-based structural-use panels. 200.944 Section 200.944 Housing and Urban Development... product standards and certification program for plywood and other performance rated wood-based structural... building product certification program. In the case of plywood and wood-based structural-use panels...
Code of Federal Regulations, 2011 CFR
2011-04-01
... rated wood-based structural-use panels. 200.944 Section 200.944 Housing and Urban Development... product standards and certification program for plywood and other performance rated wood-based structural... building product certification program. In the case of plywood and wood-based structural-use panels...
Code of Federal Regulations, 2010 CFR
2010-04-01
... rated wood-based structural-use panels. 200.944 Section 200.944 Housing and Urban Development... product standards and certification program for plywood and other performance rated wood-based structural... building product certification program. In the case of plywood and wood-based structural-use panels...
Composite armor, armor system and vehicle including armor system
Chu, Henry S.; Jones, Warren F.; Lacy, Jeffrey M.; Thinnes, Gary L.
2013-01-01
Composite armor panels are disclosed. Each panel comprises a plurality of functional layers comprising at least an outermost layer, an intermediate layer and a base layer. An armor system incorporating armor panels is also disclosed. Armor panels are mounted on carriages movably secured to adjacent rails of a rail system. Each panel may be moved on its associated rail and into partially overlapping relationship with another panel on an adjacent rail for protection against incoming ordnance from various directions. The rail system may be configured as at least a part of a ring, and be disposed about a hatch on a vehicle. Vehicles including an armor system are also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Rana, V; Setlur Nagesh, S
2014-06-15
Purpose: Our real-time skin dose tracking system (DTS) has been upgraded to monitor dose for the micro-angiographic fluoroscope (MAF), a high-resolution, small field-of-view x-ray detector. Methods: The MAF has been mounted on a changer on a clinical C-Arm gantry so it can be used interchangeably with the standard flat-panel detector (FPD) during neuro-interventional procedures when high resolution is needed in a region-of-interest. To monitor patient skin dose when using the MAF, our DTS has been modified to automatically account for the change in scatter for the very small MAF FOV and to provide separated dose distributions for each detector. Themore » DTS is able to provide a color-coded mapping of the cumulative skin dose on a 3D graphic model of the patient. To determine the correct entrance skin exposure to be applied by the DTS, a correction factor was determined by measuring the exposure at the entrance surface of a skull phantom with an ionization chamber as a function of entrance beam size for various beam filters and kVps. Entrance exposure measurements included primary radiation, patient backscatter and table forward scatter. To allow separation of the dose from each detector, a parameter log is kept that allows a replay of the procedure exposure events and recalculation of the dose components.The graphic display can then be constructed showing the dose distribution from the MAF and FPD separately or together. Results: The DTS is able to provide separate displays of dose for the MAF and FPD with field-size specific scatter corrections. These measured corrections change from about 49% down to 10% when changing from the FPD to the MAF. Conclusion: The upgraded DTS allows identification of the patient skin dose delivered when using each detector in order to achieve improved dose management as well as to facilitate peak skin-dose reduction through dose spreading. Research supported in part by Toshiba Medical Systems Corporation and NIH Grants R43FD0158401, R44FD0158402 and R01EB002873.« less
NASA Astrophysics Data System (ADS)
Wells, Jered R.; Segars, W. Paul; Kigongo, Christopher J. N.; Dobbins, James T., III
2011-03-01
This paper describes a recently developed post-acquisition motion correction strategy for application to lower-cost computed tomography (LCCT) for under-resourced regions of the world. Increased awareness regarding global health and its challenges has encouraged the development of more affordable healthcare options for underserved people worldwide. In regions such as sub-Saharan Africa, intermediate level medical facilities may serve millions with inadequate or antiquated equipment due to financial limitations. In response, the authors have proposed a LCCT design which utilizes a standard chest x-ray examination room with a digital flat panel detector (FPD). The patient rotates on a motorized stage between the fixed cone-beam source and FPD, and images are reconstructed using a Feldkamp algorithm for cone-beam scanning. One of the most important proofs-of-concept in determining the feasibility of this system is the successful correction of undesirable motion. A 3D motion correction algorithm was developed in order to correct for potential patient motion, stage instabilities and detector misalignments which can all lead to motion artifacts in reconstructed images. Motion will be monitored by the radiographic position of fiducial markers to correct for rigid body motion in three dimensions. Based on simulation studies, projection images corrupted by motion were re-registered with average errors of 0.080 mm, 0.32 mm and 0.050 mm in the horizontal, vertical and depth dimensions, respectively. The overall absence of motion artifacts in motion-corrected reconstructions indicates that reasonable amounts of motion may be corrected using this novel technique without significant loss of image quality.