NASA Technical Reports Server (NTRS)
Harrison, Phillip; Frady, Greg; Duvall, Lowery; Fulcher, Clay; LaVerde, Bruce
2010-01-01
The development of new launch vehicles in the Aerospace industry often relies on response measurements taken from previously developed vehicles during various stages of liftoff and ascent, and from wind tunnel models. These measurements include sound pressure levels, dynamic pressures in turbulent boundary layers and accelerations. Rigorous statistical scaling methods are applied to the data to derive new environments and estimate the performance of new skin panel structures. Scaling methods have proven to be reliable, particularly for designs similar to the vehicles used as the basis for scaling, and especially in regions of smooth acreage without exterior protuberances or heavy components mounted to the panel. To account for response attenuation of a panel-mounted component due to its apparent mass at higher frequencies, the vibroacoustics engineer often reduces the acreage vibration according to a weight ratio first suggested by Barrett. The accuracy of the reduction is reduced with increased weight of the panel-mounted component, and does not account for low-frequency amplification of the component/panel response as a system. A method is proposed that combines acreage vibration from scaling methods with finite element analysis to account for the frequency-dependent dynamics of heavy panel-mounted components. Since the acreage and mass-loaded skins respond to the same dynamic input pressure, such pressure may be eliminated in favor of a frequency-dependent scaling function applied to the acreage vibration to predict the mass-loaded panel response. The scaling function replaces the Barrett weight ratio, and contains all of the dynamic character of the loaded and unloaded skin panels. The solution simplifies for spatially uncorrelated and fully correlated input pressures. Since the prediction uses finite element models of the loaded and unloaded skins, a rich suite of response data are available to the design engineer, including interface forces, stress and strain, as well as acceleration and displacement. An extension of the method is also developed to incorporate the effect of a local protuberance near a heavy component. Acreage environments from traditional scaling methods with and without protuberance effects serve as the basis for the extension. Authors:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, John; Gilchrist, Phillip Charles
Processes, systems, devices, and articles of manufacture are provided. Each may include adapting micro-inverters initially configured for frame-mounting to mounting on a frameless solar panel. This securement may include using an adaptive clamp or several adaptive clamps secured to a micro-inverter or its components, and using compressive forces applied directly to the solar panel to secure the adaptive clamp and the components to the solar panel. The clamps can also include compressive spacers and safeties for managing the compressive forces exerted on the solar panels. Friction zones may also be used for managing slipping between the clamp and the solarmore » panel during or after installation. Adjustments to the clamps may be carried out through various means and by changing the physical size of the clamps themselves.« less
Updates on Force Limiting Improvements
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; Scharton, Terry
2013-01-01
The following conventional force limiting methods currently practiced in deriving force limiting specifications assume one-dimensional translation source and load apparent masses: Simple TDOF model; Semi-empirical force limits; Apparent mass, etc.; Impedance method. Uncorrelated motion of the mounting points for components mounted on panels and correlated, but out-of-phase, motions of the support structures are important and should be considered in deriving force limiting specifications. In this presentation "rock-n-roll" motions of the components supported by panels, which leads to a more realistic force limiting specifications are discussed.
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.
2011-01-01
A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.
Stevens, D.J.
1962-01-23
A multiple-contact electrical connector is designed for facilitating correct alignment of the contacts of a movable component with the contacts in a normally stationary component. The stationary connector component, which is normally positioned in a panel, is provided with a fiangemount which permits rotary adjustment of the normally stationary connector component to a desired aligned position with respeet to contacts in the other connector component. The fiange-mount which comprises a fiange on the connector component and a clamping ring may then be secured to the panel by drawing the clamping ring tightly against the flange, thus binding the latter between the ring and the panel for securing the eomponent in desired fixed position. (AEC)
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.
2011-01-01
rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.
Solar panel truss mounting systems and methods
Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel
2015-10-20
An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.
Solar panel truss mounting systems and methods
Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel
2016-06-28
An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.
Solar panel truss mounting systems and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell
An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the basemore » rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.« less
Heat pipe thermal conditioning panel
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Loose, J. D.; Mccoy, K. E.
1974-01-01
Thermal control of electronic hardware and experiments on future space vehicles is critical to proper functioning and long life. Thermal conditioning panels (cold plates) are a baseline control technique in current conceptual studies. Heat generating components mounted on the panels are typically cooled by fluid flowing through integral channels within the panel. However, replacing the pumped fluid coolant loop within the panel with heat pipes offers attractive advantages in weight, reliability, and installation. This report describes the development and fabrication of two large 0.76 x 0.76 m heat pipe thermal conditioning panels to verify performance and establish the design concept.
Solar panel parallel mounting configuration
NASA Technical Reports Server (NTRS)
Mutschler, Jr., Edward Charles (Inventor)
1998-01-01
A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.
Signal Selector, Spectrum Receivers and Touch Panel Control for the SATCOM Signal Analyzer.
1980-06-01
that the entire system may be exercised in a test mode with the push of a single button. Normally test functions are divided into separate areas so that...source. The major com- ponents of the SS include power dividers and RF switches. The second of the two modules is the Spectrum Receiver (SR). Four... dividers and adjustable attenuators may be mounted on the opposite side of the panel. Component size is res- tricted on the panel back side due to a two
Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA
2009-01-06
An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.
Photoelectric panel with equatorial mounting of drive
NASA Astrophysics Data System (ADS)
Kukhta, M. S.; Krauinsh, P. Y.; Krauinsh, D. P.; Sokolov, A. P.; Mainy, S. B.
2018-03-01
The relevance of the work is determined by the need to create effective models for sunny energy. The article considers a photoelectric panel equipped with a system for tracking the sun. Efficiency of the system is provided by equatorial mounting, which compensates for the rotation of the Earth by rotating the sunny panel in the plane of the celestial equator. The specificity of climatic and geographical conditions of Tomsk is estimated. The dynamics of power variations of photoelectric panels with equatorial mounting during seasonal fluctuations in Tomsk is calculated. A mobile photovoltaic panel with equatorial mounting of the drive has been developed. The methods of design strategy for placing photovoltaic panels in the architectural environment of the city are presented. Key words: sunny energy, photovoltaics, equatorial mounting, mechatronic model, wave reducer, electric drive.
Photovoltaic module mounting system
Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H
2012-09-18
A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.
Photovoltaic module mounting system
Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA
2012-04-17
A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.
NASA Technical Reports Server (NTRS)
Hughes, T.; Mennell, R.
1974-01-01
Experimental aerodynamic investigations were conducted on a stingmounted 0.0405-scale representation of the 140A/B space shuttle orbiter in a 7.75 by 11-Foot low speed wind tunnel from April 24 to April 26, 1974. Differential inboard/outboard elevon panel deflections with the 6-inch gap were investigated to determine outboard panel aileron effectiveness. The elevons were deflected from +20 degrees to -40 degrees in various combinations. Aerodynamic force and moment data for the orbiter were measured in the body axis system by an internally mounted, six-component strain gage balance. The model was sting mounted with the center of rotation located at F.S. 60.172. The angle of attack range was from -10 degrees to +24 degrees.
Mounting clips for panel installation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph
2017-02-14
An exemplary mounting clip for removably attaching panels to a supporting structure comprises a base, spring locking clips, a lateral flange, a lever flange, and a spring bonding pad. The spring locking clips extend upwardly from the base. The lateral flange extends upwardly from a first side of the base. The lateral flange comprises a slot having an opening configured to receive at least a portion of one of the one or more panels. The lever flange extends outwardly from the lateral flange. The spring bonding flange extends downwardly from the lever flange. At least a portion of the firstmore » spring bonding flange comprises a serrated edge for gouging at least a portion of the one or more panels when the one or more panels are attached to the mounting clip to electrically and mechanically couple the one or more panels to the mounting clip.« less
NASA Astrophysics Data System (ADS)
Lee, Chang-Kun; Moon, Seokil; Lee, Byounghyo; Jeong, Youngmo; Lee, Byoungho
2016-10-01
A head-mounted compressive three-dimensional (3D) display system is proposed by combining polarization beam splitter (PBS), fast switching polarization rotator and micro display with high pixel density. According to the polarization state of the image controlled by polarization rotator, optical path of image in the PBS can be divided into transmitted and reflected components. Since optical paths of each image are spatially separated, it is possible to independently focus both images at different depth positions. Transmitted p-polarized and reflected s-polarized images can be focused by convex lens and mirror, respectively. When the focal lengths of the convex lens and mirror are properly determined, two image planes can be located in intended positions. The geometrical relationship is easily modulated by replacement of the components. The fast switching of polarization realizes the real-time operation of multi-focal image planes with a single display panel. Since it is possible to conserve the device characteristic of single panel, the high image quality, reliability and uniformity can be retained. For generating 3D images, layer images for compressive light field display between two image planes are calculated. Since the display panel with high pixel density is adopted, high quality 3D images are reconstructed. In addition, image degradation by diffraction between physically stacked display panels can be mitigated. Simple optical configuration of the proposed system is implemented and the feasibility of the proposed method is verified through experiments.
Sound transmission through a double panel structure periodically coupled with vibration insulators
NASA Astrophysics Data System (ADS)
Legault, Julien; Atalla, Noureddine
2010-07-01
In this paper, sound transmission through an aircraft sidewall representative double panel structure is investigated theoretically and parametric and validation studies are conducted. The studied configuration is composed of a trim panel (receiver side panel) attached to a ribbed skin panel (source side panel) with periodically spaced resilient mounts. The structure is considered infinite in order to use space harmonic expansion. The partition is also assumed planar for simplicity. The model allows for a 3D incident field and the panels can be metallic and/or composite. A four-pole formulation is employed for modeling of the mounts and the absorption provided by the fiberglass that fills the cavity between the leaves is addressed with an equivalent fluid model. The investigation of mount stiffness, damping and spacing show that properly designed mounts can increase the TL significantly (up to 20 dB of difference between rigid and resilient mounts). However, they can create undesirable resonances resulting from their interaction with the panels. The influence of cavity absorption is also studied and results illustrate the fact that it is not worth investing in a highly absorbent fiber if the structure-borne transmission path is not adequately insulated, and likewise that it is not worth investing in highly resilient mounts without sufficient cavity absorption. Moreover, the investigation of panel damping confirms that when structure-borne transmission is present, raising skin damping can increase the TL even below coincidence, but that on average, greater improvements are achieved by raising trim damping. Finally, comparison between the periodic model and finite element simulations for structure-borne transmission shows that the average level of transmitted energy is well reproduced with the periodic approach. However, the modes are only captured approximately due to the assumption of an infinite structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph
A photovoltaic panel mounting clip comprising a base, central indexing tabs, flanges, lateral indexing tabs, and vertical indexing tabs. The mounting clip removably attaches one or more panels to a beam or the like structure, both mechanically and electrically. It provides secure locking of the panels in all directions, while providing guidance in all directions for accurate installation of the panels to the beam or the like structure.
DOT National Transportation Integrated Search
2012-06-01
This project evaluates the physical and economic feasibility of using existing traffic infrastructure to mount wind power : generators. Some possible places to mount a light weight wind generator and solar panel hybrid system are: i) Traffic : signal...
Operation and maintenance cost data for residential photovoltaic modules/panels
NASA Technical Reports Server (NTRS)
Oster, J. R., Jr.; Zaremski, D. R., Jr.; Albert, E. M.; Hawkins, S. L.
1980-01-01
Costs associated with the operation and maintenance of residential photovoltaic modules and arrays are studied. Six basic topics related to operation and maintenance to photovoltaic arrays are investigated: maintenance; cleaning; panel replacement; gasket repair/replacement; wiring repair/replacement; and termination repair/replacement. The effects of the mounting types (rack mount, stand off mount, direct mount and integral mount) and the installation/replacement type (sequential, partial interruption and independent) are identified and described. Methods of reducing maintenance costs are suggested.
NASA Technical Reports Server (NTRS)
Parsons, David; Smith, Andrew; Knight, Brent; Hunt, Ron; LaVerde, Bruce; Craigmyle, Ben
2012-01-01
Particle dampers provide a mechanism for diverting energy away from resonant structural vibrations. This experimental study provides data from trials to determine how effective use of these dampers might be for equipment mounted to a curved orthogrid vehicle panel. Trends for damping are examined for variations in damper fill level, component mass, and excitation energy. A significant response reduction at the component level would suggest that comparatively small, thoughtfully placed, particle dampers might be advantageously used in vehicle design. The results of this test will be compared with baseline acoustic response tests and other follow-on testing involving a range of isolation and damping methods. Instrumentation consisting of accelerometers, microphones, and still photography data will be collected to correlate with the analytical results.
NASA Astrophysics Data System (ADS)
Zhang, Peng; Zhang, Lifu; Wu, Taixia; Zhang, Hongming; Sun, Xuejian
2017-01-01
Due to weathering and external forces, solar panels are subject to fouling and defects after a certain amount of time in service. These fouling and defects have direct adverse consequences such as low-power efficiency. Because solar power plants usually have large-scale photovoltaic (PV) panels, fast detection and location of fouling and defects across large PV areas are imperative. A drone-mounted infrared thermography system was designed and developed, and its ability to detect rapid fouling on large-scale PV panel systems was investigated. The infrared images were preprocessed using the K neighbor mean filter, and the single PV module on each image was recognized and extracted. Combining the local and global detection method, suspicious sites were located precisely. The results showed the flexible drone-mounted infrared thermography system to have a strong ability to detect the presence and determine the position of PV fouling. Drone-mounted infrared thermography also has good technical feasibility and practical value in the detection of PV fouling detection.
Performance of PV panels for solar energy conversion at the South Pole
NASA Astrophysics Data System (ADS)
Peeran, Syed M.
Expanding research facilities at the Amundson-Scott South pole station require increased electric power generation. Presently, electric power generation is by diesel generators using the JP8 fuel. As the station is accessible only for a short supply period during the austral summer, there are limitations upon the supply of fuel for power generation. This makes it necessary to seriously consider the use of the renewable energy sources. Although there is no sunlight for six months in the year, abundant solar energy is available during the remaining 6 months because of the clear skies, the clarity of air and the low humidity at the south pole. As the buildings at the south pole are built either without windows or with only porthole type windows, large areas on the walls and the roof are available for mounting the photovoltaic (PV) panels. In addition there is unlimited space around the station for constructing a PV panel 'farm'. In this paper four types of PV panels are evaluated; the 2-axis tracking panels, vertical 1-axis tracking panels, fixed vertical panels on the walls of buildings and mounted outdoors, and fixed horizontal panels on the roofs of the buildings. Equations are developed for the power output in KW/sq. ft and annual energy in kWh/sq. ft for each type of panel. The equations include the effects of the inclination of the sun above the horizon, the movement of the sun around the horizon, the direct, reflected and diffused components of the solar radiation, the characteristics of the solar cells and the types of dc/ac inverters used to interface the output of the cells with the existing ac power. A conceptual design of a 150-kW PV generation system suitable for the south pole is also discussed in this paper.
F-15B in on ramp with close-up of test panels covered with advanced spray-on foam insulation materia
NASA Technical Reports Server (NTRS)
1999-01-01
Test panels covered with an advanced foam insulation material for the Space Shuttle's giant external fuel tank were test flown aboard an F-15B research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Six panels were mounted on the left side of a heavily instrumented Flight Text Fixture mounted underneath the F-15B's fuselage. Insulation on this panel was finely machined over a horizontal rib structure to simulate in-line airflow past the tank; other panels had the ribs mounted vertically or had the insulation left in a rough as-sprayed surface. The tests were part of an effort by NASA's Marshall Space Flight Center to determine why small particles of the new insulation flaked off the tank on recent Shuttle missions. The tests with Dryden's F-15B were designed to replicate the pressure environment the Shuttle encounters during the first minute after launch. No noticeable erosion of the insulation material was noted after the flight experiment at Dryden.
Concealed hinge permits flush mounting of doors and hatches
NASA Technical Reports Server (NTRS)
Holman, E. V.
1966-01-01
Hinge assembly permits flush mounting of doors and hatches of considerable thickness so that the axis of instant rotation, produced by the hinge, lies outside the panel surface and beyond the perimeter adjacent to the hinge. In operation, motion of the assembly is initially parallel, changing to angular after clearing the panel perimeter.
Astronauts Gibson and Pogue at Apollo Telescope Mount display/control panel
1973-09-10
S73-32837 (10 Sept. 1973) --- Scientist-astronaut Edward G. Gibson, seated, and astronaut William R. Pogue discuss a mission procedure at the Apollo Telescope Mount (ATM) display and control panel mock-up in the one-G trainer for the Multiple Docking Adapter (MDA) at Johnson Space Center. Photo credit: NASA
Power System Implementation and Demonstration at Camp Katuu, Palau
2011-05-11
Horizontal Rows 3 Vertical Rows 3 Vertical Rows with Center Walkway 6 Vertical Rows 1 Amount of rail mounting (lf) 1440’ 1800’ 1800’ 1440’ 2 Ease of rail...installation some rail cutting required to clear walkway requires two level rail mounting system requires two level rail mounting system no rail...Maintenance access 21" horizontal & vertical walkway , does not have direct access to all panels Accessible with 15" walkways Direct access to each panel and
Evolution of integrated panel structural design and interfaces for PV power plants
NASA Technical Reports Server (NTRS)
Arnett, J. C.; Anderson, A. J.; Robertson, R. E.
1983-01-01
The evolution of integrated photovoltaic (PV) panel design at ARCO Solar is discussed. Historically, framed PV modules of about 1 x 4-ft size were individually mounted in the field on fixed support structures and interconnected electrically with cables to build higher-power arrays. When ARCO Solar saw the opportunity in 1982 to marry its PV modules with state-of-the-art heliostat trackers developed by ARCO Power Systems, it became obvious that mounting individual modules was impractical. For this project, the framed modules were factory-assembled into panels and interconnected with cables before being mounted on the trackers. Since then, ARCO Solar made considerable progress and gained substantial experience in the design and fabrication of large PV panels. Constraints and criteria considered in these design activities included static and dynamic loads; assembly and transportation equipment and logistics, structural and electrical interfaces, and safety and grounding concerns.
Prediction of break-out sound from a rectangular cavity via an elastically mounted panel.
Wang, Gang; Li, Wen L; Du, Jingtao; Li, Wanyou
2016-02-01
The break-out sound from a cavity via an elastically mounted panel is predicted in this paper. The vibroacoustic system model is derived based on the so-called spectro-geometric method in which the solution over each sub-domain is invariably expressed as a modified Fourier series expansion. Unlike the traditional modal superposition methods, the continuity of the normal velocities is faithfully enforced on the interfaces between the flexible panel and the (interior and exterior) acoustic media. A fully coupled vibro-acoustic system is obtained by taking into account the strong coupling between the vibration of the elastic panel and the sound fields on the both sides. The typical time-consuming calculations of quadruple integrals encountered in determining the sound power radiation from a panel has been effectively avoided by reducing them, via discrete cosine transform, into a number of single integrals which are subsequently calculated analytically in a closed form. Several numerical examples are presented to validate the system model, understand the effects on the sound transmissions of panel mounting conditions, and demonstrate the dependence on the size of source room of the "measured" transmission loss.
Floating device aligns blind connections
NASA Technical Reports Server (NTRS)
Resel, J. E.
1966-01-01
Panel-mounted connectors overcome the misalignment of blind connectors in electronic rack mounted equipment. The connector is free to move in the vertical direction by the action of a parallelogram mount. This freedom of motion maintains the guide pin hole centerline parallel to the guide pin centerline at all times.
Cooling system for three hook ring segment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Christian X.; Eng, Darryl; Lee, Ching-Pang
2014-08-26
A triple hook ring segment including forward, midsection and aft mounting hooks for engagement with respective hangers formed on a ring segment carrier for supporting a ring segment panel, and defining a forward high pressure chamber and an aft low pressure chamber on opposing sides of the midsection mounting hook. An isolation plate is provided on the aft side of the midsection mounting hook to form an isolation chamber between the aft low pressure chamber and the ring segment panel. High pressure air is supplied to the forward chamber and flows to the isolation chamber through crossover passages in themore » midsection hook. The isolation chamber provides convection cooling air to an aft portion of the ring segment panel and enables a reduction of air pressure in the aft low pressure chamber to reduce leakage flow of cooling air from the ring segment.« less
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor A.
2012-01-01
Initial optical communications experiments with a Vertex polished aluminum panel have been described. The polished panel was mounted on the main reflector of the DSN's research antenna at DSS-13. The PSF was recorded via remotely controlled digital camera mounted on the subreflector structure. Initial PSF generated by Jupiter showed significant tilt error and some mechanical deformation. After upgrades, the PSF improved significantly, leading to much better concentration of light. Communications performance of the initial and upgraded panel structure were compared. After the upgrades, simulated PPM symbol error probability decreased by six orders of magnitude. Work is continuing to demonstrate closed-loop tracking of sources from zenith to horizon, and better characterize communications performance in realistic daytime background environments.
Bioburden release of Ariane 5 Fairing Acoustic Protection Panels
NASA Astrophysics Data System (ADS)
Stieglmeier, Michaela; Rohr, Thomas; Schmeitzky, Olivier; Rumler, Peter; Kminek, Gerhard
The ESA-NASA ExoMars mission will be subject to strict Planetary Protection constrictions. The original ExoMars mission concept was based on an Ariane 5 launch system. Like all launch systems, the Ariane 5 fairing is lined with acoustic protection panels. These panels consist of an outer polyester/cotton fabric and an inner open celled foam. During launch the panels will be exposed to vibrations and a decrease in pressure. A release of possible external and/ or embedded microbes would cause a contamination of the satellite. Planetary Protection requirements for ExoMars imply the determination of the bioburden release from the Ariane 5 Fairing Acoustic Protection Panels (FAP-panels). Thus a study at ESTEC was performed comparing the bioburden release of a sterilized and non-sterilized panel by simulating a launch environment. Panels were mounted in test jigs above a sterile ground plate. Sterile stainless steel witness plates for the determination of bioburden release were mounted on the latter. The launch environment was simulated in two different tests. In a vacuum chamber the panels were exposed to a depressurization event. For the simulation of the vibrations the jigs were mounted in the Large European Acoustic Facility (LEAF) at ESTEC. After each test witness plates were demounted under sterile conditions and analyzed for microbial growth by incubating them in agar. Furthermore pieces of the outer fabric as well as the inner foam were taken and examined for embedded microbes. In total the amount of embedded microbes was very low and there was no significant difference between the sterilized and non-sterilized panel concerning the released bioburden. Thus sterilization of the Ariane 5 FAP-panels seems not necessary to comply with Planetary Protection constraints. Although the ExoMars project will use a different launch system in the new mission concept, the data acquired during these tests can be used for future scientific satellites launched with Ariane 5.
Characterization of explosive devices in luggage: Initial results of the ART-IIC test series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerman, M.A.; Kass, M.D.; Clough, B.T.
1993-12-31
Characteristics and damage associated with exploded luggage aboard aircraft are presented in this paper. Plastic-sided suitcases filled with typical travel possessions were exploded inside the fuselage of decomissioned B-52 aircraft. Multilayered shield panels, mounted to one side of the fuselage, served to protect the aircraft body and flight system components from both the blast wave and exploded fragments. The resulting damage produced by the explosions was characterized and the absorbing characteristics of the shielding were evaluated. In addition, the energy of the luggage fragments was estimated.
Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display
NASA Astrophysics Data System (ADS)
Nelson, Scott A.
1994-06-01
The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.
Effect of Krueger nose flaps on the experimental force and moment characteristics of an oblique wing
NASA Technical Reports Server (NTRS)
Hopkins, E. J.; Lovette, G. H.
1976-01-01
Experimental force and moment data are presented for an oblique wing mounted on a body of revolution and equipped with Krueger type nose flaps. The effectiveness of these flaps in making the moment curves more linear by controlling the flow separation on the downstream wing panel at high lift coefficients was determined. The investigation of the effects of the Krueger flaps covered two cases: (1) use of the flaps on the downstream wing panel only and (2) use of the flaps on both wing panels. For part of the tests, the Krueger flaps were mounted on nose flaps that were drooped either 5 deg or 10 deg. The wing was elliptical in planform, had an aspect ratio of 6.0 (based on the unswept span) and was tested at sweep angles of 0, 45 deg, and 50 deg. The Mach-number range covered was from 0.25 to 0.95. It was found that the most effective arrangement of the Krueger flaps for making the pitching-, rolling-, and yawing-moment curves more linear at high lift coefficients was having the Krueger flaps mounted on the nose flaps drooped 5 deg and only on the downstream wing panel.
Evaluation of Thermal Protection Tile Transmissibility for Ground Vibration Test
NASA Technical Reports Server (NTRS)
Chung, Y. T.; Fowler, Samuel B.; Lo, Wenso; Towner, Robert
2005-01-01
Transmissibility analyses and tests were conducted on a composite panel with thermal protection system foams to evaluate the quality of the measured frequency response functions. Both the analysis and the test results indicate that the vehicle dynamic responses are fully transmitted to the accelerometers mounted on the thermal protection system in the normal direction below a certain frequency. In addition, the in-plane motions of the accelerometer mounted on the top surface of the thermal protection system behave more actively than those on the composite panel due to the geometric offset of the accelerometer from the panel in the test set-up. The transmissibility tests and analyses show that the frequency response functions measured from the accelerometers mounted on the TPS will provide accurate vehicle responses below 120 Hz for frequency and mode shape identification. By confirming that accurate dynamic responses below a given frequency can be obtained, this study increases the confidence needed for conducting the modal testing, model correlation, and model updating for a vehicle installed with TPS. '
Performance of Emcore Third Generation CPV Modules in the Low Latitude Marine Environment of Hawaii
NASA Astrophysics Data System (ADS)
Hoffman, Richard; Buie, Damien; King, David; Glesne, Thomas
2011-12-01
Emcore third generation concentrating photovoltaic (CPV) modules were evaluated in the low latitude location of Kihei, Hawaii. For comparison, the best available monocrystalline silicon flat panel modules were included in both dual-axis tracked and fixed mount configurations. The daily DC uncorrected efficiency value for the CPV modules averaged over the six-month performance period was 25.9% compared to 16% to 17% for the flat panels. Higher daily energy was obtained from CPV modules than tracked flat panels when daily direct solar insolation was greater than 5 kWh/m2 and more than fixed mount flat panel when direct insolation was greater than 3 kWh/m2. The module energy conversion performance was demonstrated to be predictable using a parametric model developed by Sandia National Laboratory. Soiling accumulation on module entrance surface was surprisingly rapid in the local environment. Measured energy loss rate due to soiling were two to six times larger for CPV compared to flat panel losses.
Effect of drooped-nose flaps on the experimental force and moment characteristics of an oblique wing
NASA Technical Reports Server (NTRS)
Hopkins, E. J.; Lovette, G. H.
1976-01-01
Six-component experimental force and moment data are presented for a low aspect ratio, oblique wing equipped with drooped-nose flaps and mounted on top of a body of revolution. These flaps were investigated on the downstream wing panel with the nose drooped 5 deg, 10 deg, 20 deg, and 30 deg, and on both wing panels with the nose drooped 30 deg. It was to determine if such flaps would make the moment curves more linear by controlling the flow separation on the downstream wing panel at high lift coefficients. The wing was elliptical in planform and had an aspect ratio of 6.0 (based on the unswept wing span). The wing was tested at sweep angles of 45 deg and 50 deg throughout the Mach number range from 0.25 to 0.95. The drooped-nose flaps alone were not effective in making the moment curves more linear; however, a previous study showed that Kruger nose flaps improved the linearity of the moment curves when the Kruger flaps were used on only the downstream wing panel equipped with drooped-nose flaps deflected 5 deg.
CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels
NASA Astrophysics Data System (ADS)
Irtaza, Hassan; Agarwal, Ashish
2018-06-01
Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.
CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels
NASA Astrophysics Data System (ADS)
Irtaza, Hassan; Agarwal, Ashish
2018-02-01
Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.
Solar heated office complex--Greenwood, South Carolina
NASA Technical Reports Server (NTRS)
1981-01-01
Report contains thorough docuumentation of project meeting 85 percent of building heat requirements. System uses roof mounted recirculating water solar panels and underground hot water energy storage. Aluminum film reflectors increase total solar flux captured by panels.
Concentrating photovoltaic solar panel
Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F
2014-04-15
The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.
Flat panel displays in the helmet-mounted display
NASA Astrophysics Data System (ADS)
Bartlett, Christopher T.; Freeman, Jonathan P.
2002-08-01
The Helmet Mounted Display has been in development for over 25 years and with few exceptions those systems in service have incorporated a miniature Cathode Ray Tube as the display source. The exceptions have been the use of Light Emitting Diodes in Helmet Sighting displays. The argument for Flat Panel Displays has been well rehearsed and this paper provides a summary of the available technologies but with a rationale for a decision to use Reflective Liquid Crystal devices. The Paper then describes sources of illumination and derives the luminance required from that source.
Dynamic Data Driven Methods for Self-aware Aerospace Vehicles
2015-04-08
structural response model that incorporates multiple degradation or failure modes including damaged panel strength (BVID, thru- hole ), damaged panel...stiffness (BVID, thru- hole ), loose fastener, fretted fastener hole , and disbonded surface. • A new data-driven approach for the online updating of the flight...between the first and second plies. The panels were reinforced around the boarders of the panel with through holes to simulate mounting the wing skins to
Foust, Donald Franklin [Scotia, NY; Duggal, Anil Raj [Niskayuna, NY; Shiang, Joseph John [Niskayuna, NY; Nealon, William Francis [Gloversville, NY; Bortscheller, Jacob Charles [Clifton Park, NY
2008-03-25
The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.
52. VIEW OF REMAINS OF ORIGINAL 1907 CONTROL PANEL, LOCATED ...
52. VIEW OF REMAINS OF ORIGINAL 1907 CONTROL PANEL, LOCATED ON NORTH WALL OF EAST END OF CONTROL ROOM. PORTIONS OF THIS PANEL REMAINED IN USE UNTIL THE PLANT CLOSED. THE METERS AND CONTROLS ARE MOUNTED ON SOAPSTONE PANELS. THE INSTRUMENT IN THE LEFT CENTER OF THE PHOTOGRAPH IS A TIRRILL VOLTAGE REGULATOR. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
Solar-Powered Cooler and Heater for an Automobile Interior
NASA Technical Reports Server (NTRS)
Howard, Richard T.
2006-01-01
The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.
Tracking a head-mounted display in a room-sized environment with head-mounted cameras
NASA Astrophysics Data System (ADS)
Wang, Jih-Fang; Azuma, Ronald T.; Bishop, Gary; Chi, Vernon; Eyles, John; Fuchs, Henry
1990-10-01
This paper presents our efforts to accurately track a Head-Mounted Display (HMD) in a large environment. We review our current benchtop prototype (introduced in {WCF9O]), then describe our plans for building the full-scale system. Both systems use an inside-oui optical tracking scheme, where lateraleffect photodiodes mounted on the user's helmet view flashing infrared beacons placed in the environment. Church's method uses the measured 2D image positions and the known 3D beacon locations to recover the 3D position and orientation of the helmet in real-time. We discuss the implementation and performance of the benchtop prototype. The full-scale system design includes ceiling panels that hold the infrared beacons and a new sensor arrangement of two photodiodes with holographic lenses. In the full-scale system, the user can walk almost anywhere under the grid of ceiling panels, making the working volume nearly as large as the room.
Mount assembly for porous transition panel at annular combustor outlet
NASA Technical Reports Server (NTRS)
Sweeney, Ralph B. (Inventor); Verdouw, Albert J. (Inventor)
1980-01-01
A gas turbine engine combustor assembly of annular configuration has outer and inner walls made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween and each outer and inner wall including a transition panel of porous metal defining a combustor assembly outlet supported by a combustor mount assembly including a stiffener ring having a side undercut thereon fit over a transition panel end face; and wherein an annular weld joins the ring to the end face to transmit exhaust heat from the end face to the stiffener ring for dissipation from the combustor; a combustor pilot member is located in axially spaced, surrounding relationship to the end face and connector means support the stiffener ring in free floating relationship with the pilot member to compensate for both radial and axial thermal expansion of the transition panel; and said connector means includes a radial gap for maintaining a controlled flow of coolant from outside of the transition panel into cooling relationship with the stiffener ring and said weld to further cool the end face against excessive heat build-up therein during flow of hot gas exhaust through said outlet.
Application of a Broadband Active Vibration Control System to a Helicopter Trim Panel
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Schiller, Noah H.; Simon, Frank
2013-01-01
This paper discusses testing of a broadband active vibration control concept on an interior trim panel in a helicopter cabin mockup located at ONERA's Centre de Toulouse. The control system consisted of twelve diamond-shaped piezoelectric actuators distributed around a 1.2m x 1.2m trim panel. Accelerometers were mounted at the four vertices of each diamond. The aspect ratio of the diamond was based on the dielectric constants of the piezoelectric material in order to create an actuator-sensor pair that was collocated over a broad frequency range. This allowed robust control to be implemented using simple, low power analog electronics. Initial testing on a thick acrylic window demonstrated the capability of the controller, but actuator performance was less satisfactory when mounted on a composite sandwich trim panel. This may have been due to the orthotropic nature of the trim panel, or due to its much higher stiffness relative to the acrylic window. Insights gained from a finite element study of the actuator-sensor-structural system are discussed.
LWH and ACH Helmet Hardware Study
2015-11-30
initial attempts to perform impact tests using screws mounted in Kevlar composite panels resulted in little damage to the screws, but a lot of...stiffer and stronger than Kevlar panels, does not plastically deform (and therefore Figure 11. Typical ductile fracture surface resulting from a
NASA Astrophysics Data System (ADS)
Berbeco, Ross I.; Jiang, Steve B.; Sharp, Gregory C.; Chen, George T. Y.; Mostafavi, Hassan; Shirato, Hiroki
2004-01-01
The design of an integrated radiotherapy imaging system (IRIS), consisting of gantry mounted diagnostic (kV) x-ray tubes and fast read-out flat-panel amorphous-silicon detectors, has been studied. The system is meant to be capable of three main functions: radiographs for three-dimensional (3D) patient set-up, cone-beam CT and real-time tumour/marker tracking. The goal of the current study is to determine whether one source/panel pair is sufficient for real-time tumour/marker tracking and, if two are needed, the optimal position of each relative to other components and the isocentre. A single gantry-mounted source/imager pair is certainly capable of the first two of the three functions listed above and may also be useful for the third, if combined with prior knowledge of the target's trajectory. This would be necessary because only motion in two dimensions is visible with a single imager/source system. However, with previously collected information about the trajectory, the third coordinate may be derived from the other two with sufficient accuracy to facilitate tracking. This deduction of the third coordinate can only be made if the 3D tumour/marker trajectory is consistent from fraction to fraction. The feasibility of tumour tracking with one source/imager pair has been theoretically examined here using measured lung marker trajectory data for seven patients from multiple treatment fractions. The patients' selection criteria include minimum mean amplitudes of the tumour motions greater than 1 cm peak-to-peak. The marker trajectory for each patient was modelled using the first fraction data. Then for the rest of the data, marker positions were derived from the imager projections at various gantry angles and compared with the measured tumour positions. Our results show that, due to the three dimensionality and irregular trajectory characteristics of tumour motion, on a fraction-to-fraction basis, a 'monoscopic' system (single source/imager) is inadequate for consistent real-time tumour tracking, even with prior knowledge. We found that, among the seven patients studied with peak-to-peak marker motion greater than 1 cm, five cases have mean localization errors greater than 2 mm and two have mean errors greater than 3 mm. Because of this uncertainty associated with a monoscopic system, two source/imager pairs are necessary for robust 3D target localization. Dual orthogonal x-ray source/imager pairs mounted on the linac gantry are chosen for the IRIS. We further studied the placement of the x-ray sources/panel based on the geometric specifications of the Varian 21EX Clinac. The best configuration minimizes the localization error while maintaining a large field of view and avoiding collisions with the floor/ceiling or couch.
NASA Technical Reports Server (NTRS)
Kierein, J. W.
1977-01-01
The baseline configuration defined has the SERGE antenna panel array mounted on the OFT-2 pallet sufficiently high in the bay that negligible amounts of radiation from the beam are reflected from orbiter surfaces into the shuttle payload bay. The array is symmetrically mounted to the pallet along the array long dimension with the pallet at the center. It utilizes a graphite epoxy trusswork support structure. The antenna panels are of SEASAT engineering model design and construction. The antenna array has 7 panels and a 7-way naturally tapered coax corporate feed system. The performance of the system is predicted to exceed 33 db gain, have -15 db sidelobes in the E-plane and even lower in the H-plane, and have and E-plane beamwidth less than 2.2 deg, all within performance specification. The primary support structure is predicted to exceed the specified greater than 25 hertz fundamental frequency, although individual panels will have hertz fundamental frequency.
Numerical simulation of wind loads on solar panels
NASA Astrophysics Data System (ADS)
Su, Kao-Chun; Chung, Kung-Ming; Hsu, Shu-Tsung
2018-05-01
Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.
77 FR 4989 - Turning Point Solar LLC: Notice of Availability of an Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... constructing a 49.9 megawatt (MW) ground- mounted solar photovoltaic generating facility in Noble County, Ohio... monocrystalline photovoltaic panels mounted on fixed solar racking equipment and the construction of access roads... DEPARTMENT OF AGRICULTURE Rural Utilities Service Turning Point Solar LLC: Notice of Availability...
Real-time interactive simulation: using touch panels, graphics tablets, and video-terminal keyboards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1983-01-01
A Simulation Laboratory utilizing only digital computers for interactive computing must rely on CRT based graphics devices for output devices, and keyboards, graphics tablets, and touch panels, etc., for input devices. The devices all work well, with the combination of a CRT with a touch panel mounted on it as the most flexible combination of input/output devices for interactive simulation.
Tests of Zinc Rich Anticorrosion Coatings
NASA Technical Reports Server (NTRS)
Morrison, J. D.; Paton, W. J.; Rowe, A.
1986-01-01
Condition of zinc-rich anticorrosion coatings after 10 years of exposure discussed in status report, which follows up on 18-month study of anticorrosion coatings on steel started in 1971. Test panels with various coatings mounted on racks on beach and checked periodically. Of panels with inorganic zinc-rich coatings, only one slightly rusted. Panels were in such good condition they were returned to beach for more exposure.
The electrical power subsystem design for the high energy solar physics spacecraft concepts
NASA Technical Reports Server (NTRS)
Kulkarni, Milind
1993-01-01
This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.
16 CFR 1209.6 - Test procedures for critical radiant flux.
Code of Federal Regulations, 2011 CFR
2011-01-01
... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...
16 CFR 1209.6 - Test procedures for critical radiant flux.
Code of Federal Regulations, 2012 CFR
2012-01-01
... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...
16 CFR 1209.6 - Test procedures for critical radiant flux.
Code of Federal Regulations, 2014 CFR
2014-01-01
... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...
16 CFR 1209.6 - Test procedures for critical radiant flux.
Code of Federal Regulations, 2010 CFR
2010-01-01
... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...
Spartan Auxiliary Mount Panel (SPAM): A Metal Matrix Composite Honeycomb Panel for Space Flight Use
NASA Technical Reports Server (NTRS)
Segal, Kenneth N.; Stevens, Edward J.
1998-01-01
This presentation focus on the use of metal matrix composite (MMC) material option in spaceflight hardware applications. It addresses the important questions and issues such as: what is SPAM; why the use of MMC; design requirements and flexibility; qualification testing; and flight concerns.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... (MW) ground-mounted solar photovoltaic generating facility in Noble County, Ohio. Turning Point Solar... installation of high- efficiency monocrystalline photovoltaic panels mounted on fixed solar racking equipment... DEPARTMENT OF AGRICULTURE Rural Utilities Service Turning Point Solar LLC; Notice of Intent To...
Composite armor, armor system and vehicle including armor system
Chu, Henry S.; Jones, Warren F.; Lacy, Jeffrey M.; Thinnes, Gary L.
2013-01-01
Composite armor panels are disclosed. Each panel comprises a plurality of functional layers comprising at least an outermost layer, an intermediate layer and a base layer. An armor system incorporating armor panels is also disclosed. Armor panels are mounted on carriages movably secured to adjacent rails of a rail system. Each panel may be moved on its associated rail and into partially overlapping relationship with another panel on an adjacent rail for protection against incoming ordnance from various directions. The rail system may be configured as at least a part of a ring, and be disposed about a hatch on a vehicle. Vehicles including an armor system are also disclosed.
NASA Technical Reports Server (NTRS)
Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)
1996-01-01
An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.
NASA Technical Reports Server (NTRS)
Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)
1994-01-01
An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.
NASA Technical Reports Server (NTRS)
Knight, Brent; Parsons, David; Smith, Andrew; Hunt, Ron; LaVerde, Bruce; Towner, Robert; Craigmyle, Ben
2013-01-01
Particle dampers provide a mechanism for diverting energy away from resonant structural vibrations. This experimental study provides data from a series of acoustically excited tests to determine the effectiveness of these dampers for equipment mounted to a curved orthogrid panel for a launch vehicle application. Vibration attenuation trends are examined for variations in particle damper fill level, component mass, and excitation energy. A significant response reduction at the component level was achieved, suggesting that comparatively small, strategically placed, particle damper devices might be advantageously used in launch vehicle design. These test results were compared to baseline acoustic response tests without particle damping devices, over a range of isolation and damping parameters. Instrumentation consisting of accelerometers, microphones, and still photography data will be collected to correlate with the analytical results.
3D vision upgrade kit for TALON robot
NASA Astrophysics Data System (ADS)
Edmondson, Richard; Vaden, Justin; Hyatt, Brian; Morris, James; Pezzaniti, J. Larry; Chenault, David B.; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Pettijohn, Brad
2010-04-01
In this paper, we report on the development of a 3D vision field upgrade kit for TALON robot consisting of a replacement flat panel stereoscopic display, and multiple stereo camera systems. An assessment of the system's use for robotic driving, manipulation, and surveillance operations was conducted. The 3D vision system was integrated onto a TALON IV Robot and Operator Control Unit (OCU) such that stock components could be electrically disconnected and removed, and upgrade components coupled directly to the mounting and electrical connections. A replacement display, replacement mast camera with zoom, auto-focus, and variable convergence, and a replacement gripper camera with fixed focus and zoom comprise the upgrade kit. The stereo mast camera allows for improved driving and situational awareness as well as scene survey. The stereo gripper camera allows for improved manipulation in typical TALON missions.
Noise level reduction inside helicopter cabins
NASA Astrophysics Data System (ADS)
Laudien, Eckehard; Niesl, George
1990-09-01
A number of measures to reduce the noise level in helicopter cabins are discussed. Laboratory test results of various panellings are presented as well as the insulation capacities of different panel mounts. Experiments in acoustic facilities (anechoic chamber and reverberation room) with the original cabin door and its frame led to an optimization of the transmission losses of door components such as window, sealing, and frame. The reduction of the cabin noise level by adding absorption is illustrated in the case of a honeycomb bulkhead with Helmholtz resonators. These sound absorption elements were designed to damp discrete gearbox frequencies. Resonators were also used for noise attenuation of an oil cooler fan. Cabin noise comfort can be improved by eliminating discrete frequencies. This was achieved in an experimental set up where properly tuned resonators were placed as close as possible to the passenger's ear in the headrest of the seat. In order to reduce structureborne transmission system noise, ground and flight test data of gearbox strut impedance were used for the design of specially tuned vibration absorbers.
Hagelstein, P.L.
1984-06-25
A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.
16 CFR § 1209.6 - Test procedures for critical radiant flux.
Code of Federal Regulations, 2013 CFR
2013-01-01
... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...
Curiosity heads to active Martian dunes on This Week @NASA – November 20, 2015
2015-11-20
NASA’s Curiosity rover is making an unscheduled stop on its way up Mount Sharp on Mars, for a close-up look at a collection of actively moving sand dunes. Images from orbit indicate that the Bagnold Dunes are migrating as much as about 3 feet per Earth year, and includes one particular dune that is about two-stories high and as broad as a football field. Researchers plan to have the rover take samples for analysis. No active dunes have ever been visited anywhere else in the solar system besides Earth. Also, Orion cone panels welded, Launch approaches for Cygnus, Student CubeSat onboard Cygnus, New crew access tower components and more!
STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment
1988-09-29
During STS-26, inertial upper stage (IUS) with tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is positioned into its proper deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). In the foreground, the ASE forward cradle is visible. The IUS is mounted in the ASE aft frame tilt actuator (AFTA) table. TDRS-C components in stowed configuration include solar array panels, TDRS single access #1 and #2, TDRS SGL, and S-Band omni antenna. In the background are the orbital maneuvering system (OMS) pods, the Earth's cloud-covered surface, and the Earth's limb.
NASA Technical Reports Server (NTRS)
1981-01-01
Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.
NASA Technical Reports Server (NTRS)
Park, Brian V. (Inventor); Smith, Jr., Malcolm C. (Inventor); McGrath, Ralph D. (Inventor); Gilley, Michael D. (Inventor); Criscuolo, Lance (Inventor); Nelson, John L. (Inventor)
1996-01-01
A refrigerator is provided which combines the benefits of superinsulation materials with thermoelectric devices and phase change materials to provide an environmentally benign system that is energy efficient and can maintain relatively uniform temperatures for extended periods of time with relatively low electrical power requirements. The refrigerator includes a thermoelectric assembly having a thermoelectric device with a hot sink and a cold sink. The superinsulation materials include a plurality of vacuum panels. The refrigerator is formed from an enclosed structure having a door. The vacuum panels may be contained within the walls of the enclosed structure and the door. By mounting the thermoelectric assembly on the door, the manufacturer of the enclosed structure is simplified and the overall R rating of the refrigerator increased. Also an electrical motor and propellers may be mounted on the door to assist in the circulation of air to improve the efficiency of the cold sink and the hot sink. A propeller and/or impeller is preferably mounted within the refrigerator to assist in establishing the desired air circulation flow path.
Seasonal control skylight glazing panel with passive solar energy switching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J.V.
1983-10-25
A substantially transparent one-piece glazing panel is provided for generally horizontal mounting in a skylight. The panel is comprised of an repeated pattern of two alternating and contiguous linear optical elements; a first optical element being an upstanding generally right-triangular linear prism, and the second optical element being an upward-facing plano-cylindrical lens in which the planar surface is reflectively opaque and is generally in the same plane as the base of the triangular prism.
Arthroscopic knee surgery using the advanced flat panel high-resolution color head-mounted display
NASA Astrophysics Data System (ADS)
Nelson, Scott A.; Jones, D. E. Casey; St. Pierre, Patrick; Sampson, James B.
1997-06-01
The first ever deployed arthroscopic knee surgeries have been performed using a high resolution color head-mounted display (HMD) developed under the DARPA Advanced Flat Panel HMD program. THese procedures and several fixed hospital procedures have allowed both the system designers and surgeons to gain new insight into the use of a HMD for medical procedures in both community and combat support hospitals scenarios. The surgeons demonstrated and reported improved head-body orientation and awareness while using the HMD and reported several advantages and disadvantages of the HMD as compared to traditional CRT monitor viewing of the arthroscopic video images. The surgeries, the surgeon's comments, and a human factors overview of HMDs for Army surgical applications are discussed here.
NASA Technical Reports Server (NTRS)
Maynard, J. D.
1983-01-01
This project involves the development of the Nearfield Acoustic Holography (NAH) technique (in particular its extension from single frequency to wideband noise measurement) and its application in a detailed study of the noise radiation characteristics of several samples of aircraft sidewall panels. With the extensive amount of information provided by the NAH technique, the properties of the sound field radiated by the panels may be correlated with their structure, mounting, and excitation (single frequency or wideband, spatially correlated or uncorrelated, structure-borne). The work accomplished at the beginning of this grant period included: (1) Calibration of the 256 microphone array and test of its accuracy. (2) extension of the facility to permit measurements on wideband noise sources. The extensions incuded the addition of high-speed data acquisition hardware and an array processor, and the development of new software. (3) Installation of motion picture graphics for correlating panel motion with structure, mounting, radiation, etc. (4) Development of new holographic data processing techniques.
Survivable pulse power space radiator
Mims, James; Buden, David; Williams, Kenneth
1989-01-01
A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.
Vehicle Tracking System using Nanotechnology Satellites and Tags
NASA Technical Reports Server (NTRS)
Lorenzini, Dino A.; Tubis, Chris
1995-01-01
This paper describes a joint project to design, develop, and deploy a satellite based tracking system incorporating micro-nanotechnology components. The system consists of a constellation of 'nanosats', a satellite command station and data collection sites, and a large number of low-cost electronic 'tags'. Both government and commercial applications are envisioned for the satellite based tracking system. The projected low price for the tracking service is made possible by the lightweight nanosats and inexpensive electronic tags which use high production volume single chip transceivers and microprocessor devices. The nanosat consists of a five inch aluminum cube with body mounted solar panels (GaAs solar cells) on all six faces. A UHF turnstile antenna and a simple, spring release mechanism complete the external configuration of the spacecraft.
2007-05-01
criteria, specifically occupational and organizational retention criteria; and (c) indices of career success (cf. Barrick & Mount, 1991; Hogan & Holland... career success (cf. Barrick & Mount, 1991; Hogan & Holland, 2003; Hough & Furnham, 2003; Hurtz & Donovan, 2000; Judge et al., 1999; Ozer, & Benet...traits, general mental ability, and career success across the life span. Personnel Psychology, 52, 621-652. Knapp, D. J., & Campbell, R. C. (Eds.) (2006
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... module on the P4 panel with improved switches and doing the associated wiring changes. That AD also requires, for certain airplanes, installation of a mounting bracket for the new indicator lights. In... control module on the P4 panel with improved switches; and do the associated wiring changes. Accomplish...
2017-08-21
panels only produce power when the sun is out, turbines only produce power when there xiii is wind , etc. For these sources to be fully utilized...hybrid energy system mounted on a towable trailer consisting of an onboard diesel generator, solar panels, wind turbines , and an energy storage...limited to certain times of day—solar panels only produce power when the sun is out, turbines only produce power when there is wind , etc. For these
Chen, Brian R; Poon, Emily; Alam, Murad
2018-01-01
Lighting is an important component of consistent, high-quality dermatologic photography. There are different types of lighting solutions available. To evaluate currently available lighting equipment and methods suitable for procedural dermatology. Overhead lighting, built-in camera flashes, external flash units, studio strobes, and light-emitting diode (LED) light panels were evaluated with regard to their utility for dermatologic surgeons. A set of ideal lighting characteristics was used to examine the capabilities and limitations of each type of lighting solution. Recommendations regarding lighting solutions and optimal usage configurations were made in terms of the context of the clinical environment and the purpose of the image. Overhead lighting may be a convenient option for general documentation. An on-camera lighting solution using a built-in camera flash or a camera-mounted external flash unit provides portability and consistent lighting with minimal training. An off-camera lighting solution with studio strobes, external flash units, or LED light panels provides versatility and even lighting with minimal shadows and glare. The selection of an optimal lighting solution is contingent on practical considerations and the purpose of the image.
Scattering Effects of Solar Panels on Space Station Antenna Performance
NASA Technical Reports Server (NTRS)
Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.
1994-01-01
Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.
Survivable pulse power space radiator
Mims, J.; Buden, D.; Williams, K.
1988-03-11
A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.
Field emitter displays for future avionics applications
NASA Astrophysics Data System (ADS)
Jones, Susan K.; Jones, Gary W.; Zimmerman, Steven M.; Blazejewski, Edward R.
1995-06-01
Field emitter array-based display technology offers CRT-like characteristics in a thin flat-panel display with many potential applications for vehicle-mounted, crew workstation, and helmet-mounted displays, as well as many other military and commercial applications. In addition to thinness, high brightness, wide viewing angle, wide temperature range, and low weight, field emitter array displays also offer potential advantages such as row-at-a-time matrix addressability and the ability to be segmented.
Electromagnetically Clean Solar Arrays
NASA Technical Reports Server (NTRS)
Stem, Theodore G.; Kenniston, Anthony E.
2008-01-01
The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the wiring on the back of the panel. Each step increases the potential for occurrence of latent defects, loss of process control, and attrition of components. An EMCSA panel includes an integral cover made from a transparent material. The silicone cover supplants the individual cover glasses on the cells and serves as an additional unitary structural support that offers the advantage, relative to glass, of the robust, forgiving nature of the silcone material. The cover contains pockets that hold the solar cells in place during the lamination process. The cover is coated with indium tin oxide to make its surface electrically conductive, so that it serves as a contiguous, electrically grounded shield over the entire panel surface. The cells are mounted in proximity to metallic printed wiring. The painted-wiring layer comprises metal-film traces on a sheet of Kapton (or equivalent) polyimide. The traces include contact pads on one side of the sheet for interconnecting the cells. Return leads are on the opposite side of the sheet, positioned to form the return currents substantially as mirror images of, and in proximity to, the cell sheet currents, thereby minimizing magnetic moments. The printed-wiring arrangement mimics the back-wiring arrangement of conventional solar arrays, but the current-loop areas and the resulting magnetic moments are much smaller because the return-current paths are much closer to the solar-cell sheet currents. The contact pads are prepared with solder fo electrical and mechanical bonding to the cells. The pocketed cover/shield, the solar cells, the printed-wiring layer, an electrical bonding agent, a mechanical-bonding agent, a composite structural front-side face sheet, an aluminum honeycomb core, and a composite back-side face sheet are all assembled, then contact pads are soldered to the cells and the agents are cured in a single lamination process.
ACOSS Eight (Active Control of Space Structures), Phase 2
1981-09-01
A-2 A-2 Nominal Model - Equipment Section and Solar Panels ....... A-3 A-3 Nominal Model - Upper Support .-uss ...... ............ A-4 A...sensitivity analysis technique ef selecting critical system parameters is applied tc the Diaper tetrahedral truss structure (See Section 4-2...and solar panels are omitted. The precision section is mounted on isolators to inertially r•" I fixed rigid support. The mode frequencies of this
Mounting apparatus for a nozzle guide vane assembly
Boyd, G.L.; Shaffer, J.E.
1995-09-12
The present invention provides a ceramic nozzle guide assembly with an apparatus for mounting it to a metal nozzle case that includes an intermediate ceramic mounting ring. The mounting ring includes a plurality of projections that are received within a plurality of receptacles formed in the nozzle case. The projections of the mounting ring are secured within the receptacles by a ceramic retainer that allows contact between the two components only along arcuate surfaces thus eliminating sliding contact between the components. 8 figs.
Mounting apparatus for a nozzle guide vane assembly
Boyd, Gary L.; Shaffer, James E.
1995-01-01
The present invention provides a ceramic nozzle guide assembly with an apparatus for mounting it to a metal nozzle case that includes an intermediate ceramic mounting ring. The mounting ring includes a plurality of projections that are received within a plurality of receptacles formed in the nozzle case. The projections of the mounting ring are secured within the receptacles by a ceramic retainer that allows contact between the two components only along arcuate surfaces thus eliminating sliding contact between the components.
Shock absorbing mount for electrical components
NASA Technical Reports Server (NTRS)
Dillon, R. F., Jr.; Mayne, R. C. (Inventor)
1975-01-01
A shock mount for installing electrical components on circuit boards is described. The shock absorber is made of viscoelastic material which interconnects the electrical components. With this system, shocks imposed on one component of the circuit are not transmitted to other components. A diagram of a typical circuit is provided.
1969-12-01
The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.
Translations on Environmental Quality, Number 148
1977-10-03
Article 9. Designs for gas filtering installations must include the proper control and automation facilities as per articles 16 and 17. Article 10...mandatorily equipped with: 1. Locking armature at the gas entrance and exit with manual or remote control flanges for the installation of end-caps in...instruments shall be mounted on the control panel of the gas filtering system or the control panel for the technological process. Article 17. (1) The gas
NASA Technical Reports Server (NTRS)
Siegel, W. H.
1978-01-01
As part of NASA's continuing research into hypersonics and 85 square foot hypersonic wing test section of a proposed hypersonic research airplane was laboratory tested. The project reported on in this paper has carried the hypersonic wing test structure project one step further by testing a single beaded panel to failure. The primary interest was focused upon the buckling characteristics of the panel under pure compression with boundary conditions similar to those found in a wing mounted condition. Three primary phases of analysis are included in the report. These phases include: experimental testing of the beaded panel to failure; finite element structural analysis of the beaded panel with the computer program NASTRAN; a summary of the semiclassical buckling equations for the beaded panel under purely compressive loads. Comparisons between each of the analysis methods are also included.
VHF Transceiver Emissions in the GPS L1 Band
DOT National Transportation Integrated Search
1995-02-27
VHF transceiver tests described in this report were performed at the Volpe National Transportation Systems Center under Federal Aviation Administration (FAA) sponsorship. Laboratory tests were performed on ten different panel-mount type, General Avia...
Literal readout of identification signals in Morse code
NASA Technical Reports Server (NTRS)
Meissner, C. W., Jr.
1969-01-01
Instrument, designed for mounting in aircraft instrument panels, decodes identification signals received in Morse from VOR or ILS transmitters as they are received and displays the literal equivalent. Without elaboration it cannot decode numbers.
Reliability Parts Derating Guidelines
1982-06-01
226-30, October 1974. 66 I, 26. "Reliability of GAAS Injection Lasers", De Loach , B. C., Jr., 1973 IEEE/OSA Conference on Laser Engineering and...Vol. R-23, No. 4, 226-30, October 1974. 28. "Reliability of GAAS Injection Lasers", De Loach , B. C., Jr., 1973 IEEE/OSA Conference on Laser...opnatien ot deg C, mounted on a 4-inach square 0.250~ inch thick al~loy alum~nusi panel.. This mounting technique should be L~ ken into cunoidur~tiou
1971-12-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image depicts the sun end and spar of the ATM flight unit showing individual telescopes. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into a complex frame named the rack, and was protected by the solar shield.
Residential photovoltaic module and array requirements study
NASA Technical Reports Server (NTRS)
Nearhoof, S. L.; Oster, J. R.
1979-01-01
Design requirements for photovoltaic modules and arrays used in residential applications were identified. Building codes and referenced standards were reviewed for their applicability to residential photovoltaic array installations. Four installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Installation costs were developed for these mounting types as a function of panel/module size. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. It is concluded that there are no perceived major obstacles to the use of photovoltaic modules in residential arrays. However, there is no applicable building code category for residential photovoltaic modules and arrays and additional work with standards writing organizations is needed to develop residential module and array requirements.
NASA Technical Reports Server (NTRS)
1978-01-01
The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.
78 FR 9789 - Airworthiness Directives; Schweizer Aircraft Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... Certification Office, Engine & Propeller Directorate, 1600 Stewart Ave., suite 410, Westbury, NY 11590... inspection panel kit and stabilizer mount doublers. The Type Certificate for these helicopters transferred...: Stephen Kowalski, Aviation Safety Engineer, New York Aircraft Certification Office, Engine & Propeller...
21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON ...
21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON OF STEAM ENGINE NO. 4; CONTROL PANEL MOUNTED ON THE ENGINE; FLOOR VALVES CONTROL THE STEAM. - Deer Island Pumping Station, Boston, Suffolk County, MA
22. August 1974. BENCH SHOP, EAST WALL VIEW SHOWING HINGED ...
22. August 1974. BENCH SHOP, EAST WALL VIEW SHOWING HINGED PANEL AND WHEELPIT FOR MOUNTING SPOKES IN WHEEL HUB. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Rich, M. J.; Lowry, D. W.
1985-01-01
An assessment of composite helicopter structures, exposed to environmental effects, after four years of commercial service is presented. This assessment is supported by test results of helicopter components and test panels which have been exposed to environmental effects since late 1979. Full scale static and fatigue tests are being conducted on composite components obtained from S-76 helicopters in commercial operations in the Gulf Coast region of Louisiana. Small scale tests are being conducted on coupons obtained from panels being exposed to outdoor conditions in Stratford, Connecticut and West Palm Beach, Florida. The panel layups represent S-76 components. Moisture evaluations and strength tests are being conducted, on the S-76 components and panels, over a period of eight years. Results are discussed for components and panels with up to four years of exposure.
Laser housing having integral mounts and method of manufacturing same
Herron, Michael Alan; Brickeen, Brian Keith
2004-10-19
A housing adapted to position, support, and facilitate aligning various components, including an optical path assembly, of a laser. In a preferred embodiment, the housing is constructed from a single piece of material and broadly comprises one or more through-holes; one or more cavities; and one or more integral mounts, wherein the through-holes and the cavities cooperate to define the integral mounts. Securement holes machined into the integral mounts facilitate securing components within the integral mounts using set screws, adhesive, or a combination thereof. In a preferred method of making the housing, the through-holes and cavities are first machined into the single piece of material, with at least some of the remaining material forming the integral mounts.
Microscope collision protection apparatus
DeNure, Charles R.
2001-10-23
A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.
Mittan, Margaret Birmingham [Oakland, CA; Miros, Robert H. J. [Fairfax, CA; Brown, Malcolm P [San Francisco, CA; Stancel, Robert [Loss Altos Hills, CA
2012-06-05
A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.
Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert
2013-03-19
A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.
Filmless Radiographic System for Field Use.
1988-02-12
electronic circuits. The receptor assembly contains the x-ray grid , cassette holder or EPID panel and the sensor panel for the automatic exposure control... Grid lines were still resolved. The appearance of fine details was altered but most of the diagnostic value was retained. The choice of the screens must...A 6:1, 60 lines per inch grid is mounted to the frame on the x-ray entrance side. II.F.4. Ion Chamber The ion chamber is used by the automatic
Broadband Transmission Loss Due to Reverberant Excitation
NASA Technical Reports Server (NTRS)
Barisciano, Lawrence P. Jr.
1999-01-01
The noise transmission characteristics of candidate curved aircraft sidewall panel constructions is examined analytically using finite element models of the selected panel geometries. The models are validated by experimental modal analyses and transmission loss testing. The structural and acoustic response of the models are then examined when subjected to random or reverberant excitation, the simulation of which is also discussed. For a candidate curved honeycomb panel, the effect of add-on trim panel treatments is examined. Specifically, two different mounting configurations are discussed and their effect on the transmission loss of the panel is presented. This study finds that the add-on acoustical treatments do improve on the primary structures transmission loss characteristics, however, much more research is necessary to draw any valid conclusions about the optimal configuration for the maximum noise transmission loss. This paper describes several directions for the extension of this work.
Lightweight Solar Paddle with High Specific Power of 150 W/Kg
NASA Astrophysics Data System (ADS)
Shimazaki, Kazunori; Takahashi, Masato; Imaizumi, Mitsuru; Takamoto, Tatsuya; Ito, Takehiko; Nozaki, Yukishige; Kusawake, Hiroaki
2014-08-01
A lightweight solar paddle using space solar sheet (SSS) is currently being developed, which uses glass-type SSS (G-SSS) comprising InGaP/GaAs/InGaAs triple- junction high-efficiency thin-film solar cells. To avoid damage to the G-SSS due to vibration during launch, we adopted a new architecture on a panel. This panel employed a curved frame-type structure, on which the G-SSS is mounted and test models were manufactured to evaluate the vibration tolerance. The dimensions of the 1.0-cm-thick unit panel were about 1.0 × 1.0 m. Acoustic and sine vibration tests were performed on the model and the results demonstrated the high durability of the curved panel in an acoustic and vibration environments. The specific power of the solar paddle using the curved panel is estimated at approximately 150 W/kg at an array power of about 10 kW.
NASA Astrophysics Data System (ADS)
Wilcoski, James; Fischer, Chad; Allison, Tim; Malach, Kelly Jo
2002-04-01
Shear panels are used in light wood construction to resist lateral loads resulting from earthquakes or strong winds. These panels are typically made of wooden sheathing nailed to building frame members, but this standard panel design interferes with the installation of sheet insulation. A non-insulated shear panel conducts heat between the building interior and exterior wasting considerable amounts of energy. Several alternative shear panel designs were developed to avoid this insulation-mounting problem and sample panels were tested according to standard cyclic test protocols. One of the alternative designs consisted of diagonal steel straps nailed directly to the structural framing. Several others consisted of sheathing nailed to 2 x 4 framing then set into a larger 2 x 6 structural frame in such a way that no sheathing protruded beyond the edge of the 2 x 6 members. Also samples of industry-standard shear panels were constructed and tested in order to establish a performance baseline. Analytical models were developed to size test panels and predict panel behavior. A procedure was developed for establishing design capacities based on both test data and established baseline panel design capacity. The behavior of each panel configuration is documented and recommended design capacities are presented.
Assembling surface mounted components on ink-jet printed double sided paper circuit board.
Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik
2014-03-07
Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.
New reaction tester accurate within 56 microseconds
NASA Technical Reports Server (NTRS)
Brown, H.
1972-01-01
Testing device measures simple and disjunctive reaction time of human subject to light stimuli. Tester consists of reaction key, logic card, panel mounted neon indicators, and interconnecting wiring. Device is used for determining reaction times of patients undergoing postoperative neurological therapy.
Support means for a particle beam position monitor
VanZwienen, W.H.
1991-01-29
A support means is disclosed for a plurality of thermally deformable component parts that are concentrically mounted within a thermally expandable housing. The support means includes a plurality of pins that are mounted in relatively fixed or sliding relationship to either one of the concentrically positioned components or to the housing, and the pins are positioned to extend through aligned apertures in the remaining components or the housing in a manner such that the pins are free to slide in a snug relationship relative to the sides of the holes through those components or the housing. The support means enables the concentrically mounted components and the housing to undergo expansion and contraction movement, radially and longitudinally relative to one another, while maintaining concentricity of the components and the housing relative to one another. 3 figures.
Programmable Multi-Chip Module
Kautz, David; Morgenstern, Howard; Blazek, Roy J.
2005-05-24
A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.
Programmable Multi-Chip Module
Kautz, David; Morgenstern, Howard; Blazek, Roy J.
2004-11-16
A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.
Programmable multi-chip module
Kautz, David; Morgenstern, Howard; Blazek, Roy J.
2004-03-02
A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.
ATLS: Catheter and tube placement
NASA Technical Reports Server (NTRS)
Gosbee, John; Krupa, Debra T.; Pepper, L.; Orsak, Debra
1991-01-01
The specific objectives of this experiment are: to evaluate the rack mounted equipment and medical supplies necessary for medical procedures; to evaluate the attachments, mounting points, and inner drawer assemblies for the medical supplies; and to evaluate the procedures for performing medical scenarios. The resources available in the HMF miniracks to accomplish medical scenarios and/or procedures include: medical equipment mounted in the racks; a patch panel with places to attach tubing and catheters; self contained drawers full of critical care medical supplies; and an ALS 'backpack' for deploying supplies. The attachment lines, tubing and associated medical supplies will be deployed and used with the equipment and a patient mannequin. Data collection is provided by direct observations by the inflight experimenters, and analysis of still and video photography.
Piezoelectric Shunt Vibration Damping of F-15 Panel under High Acoustic Excitation
NASA Technical Reports Server (NTRS)
Wu, Shu-Yau; Turner, Travis L.; Rizzi, Stephen A.
2000-01-01
At last year's SPIE symposium, we reported results of an experiment on structural vibration damping of an F-15 underbelly panel using piezoelectric shunting with five bonded PZT transducers. The panel vibration was induced with an acoustic speaker at an overall sound pressure level (OASPL) of about 90 dB. Amplitude reductions of 13.45 and 10.72 dB were achieved for the first and second modes, respectively, using single- and multiple-mode shunting. It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to control structural vibration induced at higher acoustic excitation levels, and to examine the controllability and survivability of the bonded PZT transducers at these high levels. The shunting experiment was performed with the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley Research Center using the same F-15 underbelly panel. The TAFA is a progressive wave tube facility. The panel was mounted in one wall of the TAFA test section using a specially designed mounting fixture such that the panel was subjected to grazing-incidence acoustic excitation. Five PZT transducers were used with two shunt circuits designed to control the first and second modes of the structure between 200 and 400 Hz. We first determined the values of the shunt inductance and resistance at an OASPL of 130 dB. These values were maintained while we gradually increased the OASPL from 130 to 154 dB in 6-dB steps. During each increment, the frequency response function between accelerometers on the panel and the acoustic excitation measured by microphones, before and after shunting, were recorded. Good response reduction was observed up to the 148dB level. The experiment was stopped at 154 dB due to wire breakage from vibration at a transducer wire joint. The PZT transducers, however, were still bonded well on the panel and survived at this high dB level. We also observed shifting of the frequency peaks toward lower frequency when the OASPL was increased. Detailed experimental results will be presented.
Lunar Reconnaissance Orbiter (LRO) Rapid Thermal Design Development
NASA Technical Reports Server (NTRS)
Baker, Charles; Cottingham, Christine; Garrison, Matthew; Melak, Tony; Peabody, Sharon; Powers, Dan
2009-01-01
The Lunar Reconnaissance Orbiter (LRO) project had a rapid development schedule starting with project conception in spring of 2004, instrument and launch vehicle selection late in 2005 and then launch in early 2009. The lunar thermal environment is one of the harshest in our solar system with the heavy infrared loading of the moon due to low albedo, lack of lunar atmosphere, and low effective regolith conduction. This set of constraints required a thermal design which maximized performance (minimized radiator area and cold control heater power) and minimized thermal hardware build at the orbiter level (blanketing, and heater service). The orbiter design located most of the avionics on an isothermalized heat pipe panel called the IsoThermal Panel (ITP). The ITP was coupled by dual bore heat pipes to an Optical Solar Reflector (OSR) covered heat pipe radiator. By coupling all of the avionics to one system, the hardware was simplified. The seven instruments were mainly heritage instruments which resulted in their desired radiators being located by their heritage design. This minimized instrument redesigns and therefore allowed them to be delivered earlier, though it resulted in a more complex orbiter level blanket and heater service design. Three of the instruments were mounted on a tight pointing M55J optical bench that needed to be covered in heaters to maintain pointing. Two were mounted to spacecraft controlled radiators. One was mounted to the ITP Dual Bores. The last was mounted directly to the bus structure on the moon facing panel. The propulsion system utilized four-20 pound insertion thrusters and eight-5 pound attitude control thrusters (ACS) in addition to 1000 kg of fuel in two large tanks. The propulsion system had a heater cylinder and a heated mounting deck for the insertion thrusters which coupled most of the propulsion design together simplifying the heater design. The High Gain Antenna System (HGAS) and Solar Array System (SAS) used dual axis actuator gimbal systems. HGAS required additional boom heaters to cool the approximately 10 W of RF losses thru the rotary joints and wave guides from the 40 W Ka system. By design this module needed a fair amount of heater, blanketing, and radiator complexity. The SAS system required a separate cable wrap radiator to help cool the Solar Array harness which dissipated 30 W thru the actuators and cable wraps. This module also was complex.
Fixture for assembling solar panels
NASA Technical Reports Server (NTRS)
Dillard, P. A.; Fritz, W. M.
1979-01-01
Vacuum fixture attaches array of silicon solar cells to mounting plate made of clear glass which holds and protects cells. Glass plate transmits, rather than absorbs, solar energy thus cooling cells for efficient operation. Device therefore reduces handling of cells and interconnecting conductors to one operation.
Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V K
2017-10-01
The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.
NASA Astrophysics Data System (ADS)
Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V. K.
2017-10-01
The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.
75 FR 51286 - Certain Flat Panel Digital Televisions and Components Thereof; Notice of Investigation
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-733] Certain Flat Panel Digital Televisions and... importation, and the sale within the United States after importation of certain flat panel digital televisions... after importation of certain flat panel digital televisions and components thereof that infringe one or...
Indexing Mount For Rotation Of Optical Component
NASA Technical Reports Server (NTRS)
Reichle, Donald J., Jr.; Barnes, Norman P.
1993-01-01
Indexing mount for polarizer, wave plate, birefringent plate, or other optical component facilitates rotation of component to one or more preset angles. Includes hexagonal nut holding polarizer or other optical component. Ball bearing loaded by screw engages notch on cylindrical extension of nut engaging bracket. Time-consuming and tedious angular adjustment unnecessary: component turned quickly and easily, by hand or by use of wrench, to preset angular positions maintained by simple ball-detent mechanism.
Installation of a Roof Mounted Photovoltaic System
NASA Astrophysics Data System (ADS)
Lam, M.
2015-12-01
In order to create a safe and comfortable environment for students to learn, a lot of electricity, which is generated from coal fired power plants, is used. Therefore, ISF Academy, a school in Hong Kong with approximately 1,500 students, will be installing a rooftop photovoltaic (PV) system with 302 solar panels. Not only will these panels be used to power a classroom, they will also serve as an educational opportunity for students to learn about the importance of renewable energy technology and its uses. There were four different options for the installation of the solar panels, and the final choice was made based on the loading capacity of the roof, considering the fact that overstressing the roof could prove to be a safety hazard. Moreover, due to consideration of the risk of typhoons in Hong Kong, the solar panel PV system will include concrete plinths as counterweights - but not so much that the roof would be severely overstressed. During and after the installation of the PV system, students involved would be able to do multiple calculations, such as determining the reduction of the school's carbon footprint. This can allow students to learn about the impact renewable energy can have on the environment. Another project students can participate in includes measuring the efficiency of the solar panels and how much power can be produced per year, which in turn can help with calculate the amount of money saved per year and when we will achieve economic parity. In short, the installation of the roof mounted PV system will not only be able to help save money for the school but also provide learning opportunities for students studying at the ISF Academy.
Environmental stability study of holographic solar spectrum splitting materials
NASA Astrophysics Data System (ADS)
Chrysler, Benjamin D.; Ayala Pelaez, Silvana; Wu, Yuechen; Vorndran, Shelby D.; Kostuk, Raymond K.
2016-09-01
In this study the impact of outdoor temperature variations and solar illumination exposure on spectral filter material and holographic optical elements is examined. Although holographic components have been shown to be useful for solar spectrum splitting designs, relatively little quantitative data exist to demonstrate the extent to which these materials can withstand outdoor conditions. As researchers seek to investigate practical spectrum splitting designs, the environmental stability of holographic materials should be considered as an important factor. In the experiment presented, two holographic materials, Covestro Bayfol HX photopolymer and dichromated gelatin, and 3M reflective polymer filter materials are exposed to outdoor conditions for a period of several months. The environmental effect on absorption, spectral and angular bandwidth, peak efficiency, and Bragg matching conditions for the holograms are examined. Spectral bandwidth and transmittance of the 3M reflective filter material are also monitored. Holographic gratings are recorded, measured, and mounted on glass substrates and then sealed with a glass cover plate. The test samples are then mounted on a photovoltaic panel to simulate realistic temperature conditions and placed at an outdoor test facility in Tucson, Arizona. A duplicate set of holograms and 3M filter material is stored as a control group and periodically compared over the test period.
1999-10-07
KENNEDY SPACE CENTER, FLA. -- Escort vehicles prepare to leave the Shuttle Landing Facility with the S1 truss (at right) on its trek to the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The truss arrived at KSC aboard NASA's Super Guppy, seen in the background. The aircraft is uniquely built with a 25-foot diameter fuselage designed to handle oversized loads and a "fold-away" nose that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight
LH2 Tank Composite Coverplate Development and Flight Qualification for the X-33
NASA Technical Reports Server (NTRS)
Wright, Richard J.; Roule, Gerard M.
2000-01-01
In this paper, the development history for the first cryogenic pressurized fuel tank coverplates is presented along with a synopsis of the development strategy and technologies which led to success on this program. Coverplates are the large access panels used to access launch vehicle fuel tanks. These structures incorporate all of the requirements for a pressure vessel as well as the added requirement to mount all of the miscellaneous access points required for a fuel management system. The first composite coverplates to meet the requirements for flight qualification were developed on the X-33 program. The X-33 composite coverplates went from an open requirement to successful finished flight hardware with multiple unique configurations, complete with verification testing, in less than eighteen months. Besides the rapid development schedule, these components introduced several new technologies previously unseen in cryogenic composites including solutions to cryogenic shrinkage, self-supporting sealing surfaces, and highly loaded composite bosses with precision sealing interfaces. These components were proven to seal liquid hydrogen at cryogenic temperatures under maximum loading and pressure conditions.
High-temperature, flexible, thermal barrier seal
NASA Technical Reports Server (NTRS)
Sirocky, Paul J. (Inventor); Steinetz, Bruce M. (Inventor)
1991-01-01
This device seals the sliding interfaces between structural panels that are roughly perpendicular to each other or whose edges are butted against one another. The nonuniformity of the gap between the panels requires significant flexibility along the seal length. The seal is mounted in a rectangular groove in a movable structural panel. A plurality of particles or balls is densely packed in an outer sheathing. The balls are laterally preloaded to maintain sealing contact with the adjacent wall using a pressurized linear bellows. Distortions in the adjacent panel are accommodated by rearrangement of the particles within the outer sheathing. Leakage through the seal is minimized by densely compacting the internal particles and by maintaining positive preload along the back side of the seal. The braid architecture of the outer sheathing is selected to minimize leakage through the seal and to resist mechanical abrasion.
Beeswax as phase change material to improve solar panel’s performance
NASA Astrophysics Data System (ADS)
Thaib, R.; Rizal, S.; Riza, M.; Mahlia, T. M. I.; Rizal, T. A.
2018-02-01
One of the main obstacles faced during the operation of photovoltaic (PV) panels was overheating due to excessive solar radiation and high ambient temperatures. In this research, investigates the use of beeswax phase change materials (PCM) to maintain the temperature of the panels close to ambient. Solar panels used in this study has 839 mm length, 537 mm wide, and 50 mm thick, with maximum output power at 50 W. During the study, there were two solar panels was evaluated, one without phase change material while the other one was using beeswax phase change material. Solar panels were mounted at 15° slope. Variables observed was the temperature of solar panel’s surface, output voltage and current that produced by PV panels, wind speed around solar panels, and solar radiation. The observation was started at 07:00 am and ended at 06:00 pm. The research shows that maximum temperature of solar panels surface without phase change material is ranging between 46-49 °C, and electrical efficiency is about 7.2-8.8%. Meanwhile, for solar panels with beeswax phase change material, the maximum temperature solar panels surface is relatively low ranging between 33-34 °C, and its electrical efficiency seems to increase about 9.1-9.3%.
How low can you go: sunsensors for extreme sensing applications
NASA Astrophysics Data System (ADS)
Leijtens, J.; Uittenhout, J.; Los, A.; Schmidt, S.
2017-09-01
Lens R&D is currently working on an Artes 5-2 contract aimed at developing an ITAR free extended temperature sunsensor. This sensor should be able to survive the temperature excursions associated with mounting on an extendable solar panel of geostationary satellites.
1989-04-25
An STS-41D onboard photo shows the Solar Array Experiment (SAE) panel deployment for the Office of Aeronautics and space Technology-1 (OAST-1). OAST-1 is several advanced space technology experiments utilizing a common data system and is mounted on a platform in the Shuttle cargo bay.
Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.
2000-01-01
A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.
NASA Astrophysics Data System (ADS)
Deckard, Michael; Ratib, Osman M.; Rubino, Gregory
2002-05-01
Our project was to design and implement a ceiling-mounted multi monitor display unit for use in a high-field MRI surgical suite. The system is designed to simultaneously display images/data from four different digital and/or analog sources with: minimal interference from the adjacent high magnetic field, minimal signal-to-noise/artifact contribution to the MRI images and compliance with codes and regulations for the sterile neuro-surgical environment. Provisions were also made to accommodate the importing and exporting of video information via PACS and remote processing/display for clinical and education uses. Commercial fiber optic receivers/transmitters were implemented along with supporting video processing and distribution equipment to solve the video communication problem. A new generation of high-resolution color flat panel displays was selected for the project. A custom-made monitor mount and in-suite electronics enclosure was designed and constructed at UCLA. Difficulties with implementing an isolated AC power system are discussed and a work-around solution presented.
Field-incidence noise transmission loss of general aviation aircraft double wall configurations
NASA Astrophysics Data System (ADS)
Grosveld, F. W.
1984-01-01
Theoretical formulations have been developed to describe the transmission of reverberant sound through an infinite, semi-infinite and a finite double panel structure. The model incorporates the fundamental resonance frequencies of each of the panels, the mass-air-mass resonances of the structure, the standing wave resonances in the cavity between the panels and finally the coincidence resonance regions, where the exciting sound pressure wave and flexural waves of each of the panels coincide. It is shown that phase cancellation effects of pressure waves reflected from the cavity boundaries back into the cavity allows the transmission loss of a finite double panel structure to be approximated by a finite double panel mounted in an infinite baffle having no cavity boundaries. Comparison of the theory with high quality transmission loss data yields good agreement in the mass-controlled frequency region. It is shown that the application of acoustic blankets to the double panel structure does not eliminate the mass-air-mass resonances if those occur at low frequencies. It is concluded that this frequency region of low noise transmission loss is a potential interior noise problem area for propeller driven aircraft having a double panel fuselage construction.
NASA Technical Reports Server (NTRS)
Levison, W. H.
1978-01-01
A revised treatment of nonrandom inputs was incorporated in the model. Response behavior was observed for two display configurations (a pictorial EADI presentation and a flight-director configuration requiring use of a panel-mounted airspeed indicator), two control configurations (attitude and velocity control wheel steering), and two shear environments, each of which contained a head-to-tail shear and a vertical component. In general, performance trends predicted by the model were confirmed experimentally. Experimental and analytical results both indicated superiority to the EADI display with respect to regulation of height and airspeed errors. Velocity steering allowed tighter regulation of height errors, but control parameters had little influence on airspeed regulation. Model analysis indicated that display-related differences could be ascribed to differences in the quality of speed-related information provided by the two displays.
78 FR 32372 - Notice of Scope Rulings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
.... (``Clenergy''); Clenergy's solar panel mounting systems are not within the scope of the antidumping duty and... parts for automotive heating and cooling systems are within the scope of the antidumping duty and... sleeve systems are not within the scope of the antidumping and countervailing duty orders; October 31...
Best Pears for the Western Pacific Northwest
USDA-ARS?s Scientific Manuscript database
A "Favorite Pears" panel was held at the Northwest Washington Research and Extension Center in Mount Vernon, Washington in March 2017 featuring 6 Pacific Northwest pear experts. The panelists selected and described pear varieties they recommend for planting in the most western parts of Oregon and Wa...
Mounting improves heat-sink contact with beryllia washer
NASA Technical Reports Server (NTRS)
1966-01-01
To conduct heat away from electrical components that must be electrically insulated from a metal heat sink, a metal washer and a coil spring are placed between one end of the electrical component and the beryllia washer mounted on the heat sink. The thermal paths are formed by the component lead and base, the metal and beryllia washers, and the compressed spring.
Xin, F X; Lu, T J
2009-03-01
The air-borne sound insulation performance of a rectangular double-panel partition clamp mounted on an infinite acoustic rigid baffle is investigated both analytically and experimentally and compared with that of a simply supported one. With the clamped (or simply supported) boundary accounted for by using the method of modal function, a double series solution for the sound transmission loss (STL) of the structure is obtained by employing the weighted residual (Galerkin) method. Experimental measurements with Al double-panel partitions having air cavity are subsequently carried out to validate the theoretical model for both types of the boundary condition, and good overall agreement is achieved. A consistency check of the two different models (based separately on clamped modal function and simply supported modal function) is performed by extending the panel dimensions to infinite where no boundaries exist. The significant discrepancies between the two different boundary conditions are demonstrated in terms of the STL versus frequency plots as well as the panel deflection mode shapes.
Calculating the mounting parameters for Taylor Spatial Frame correction using computed tomography.
Kucukkaya, Metin; Karakoyun, Ozgur; Armagan, Raffi; Kuzgun, Unal
2011-07-01
The Taylor Spatial Frame uses a computer program-based six-axis deformity analysis. However, there is often a residual deformity after the initial correction, especially in deformities with a rotational component. This problem can be resolved by recalculating the parameters and inputting all new deformity and mounting parameters. However, this may necessitate repeated x-rays and delay treatment. We believe that error in the mounting parameters is the main reason for most residual deformities. To prevent these problems, we describe a new calculation technique for determining the mounting parameters that uses computed tomography. This technique is especially advantageous for deformities with a rotational component. Using this technique, exact calculation of the mounting parameters is possible and the residual deformity and number of repeated x-rays can be minimized. This new technique is an alternative method to accurately calculating the mounting parameters.
NASA Technical Reports Server (NTRS)
Hargrove, William T.
1991-01-01
This methodology is used to determine inspection procedures and intervals for components contained within tank mounted air compressor systems (TMAC) and base mounted air compressor systems (BMAC). These systems are included in the Pressure Vessel and System Recertification inventory at GSFC.
Use of Glass Reinforced Concrete (GRC) as a substrate for photovoltaic modules
NASA Technical Reports Server (NTRS)
Eirls, J. L.
1980-01-01
A substrate for flat plate photovoltaic solar panel arrays using a glass fiber reinforced concrete (GRC) material was developed. The installed cost of this GRC panel is 30% less than the cost goal of the Near Term Low-Cost Flat Plate Photovoltaic Solar Array Program. The 4 ft by 8 ft panel is fabricated from readily available inexpensive materials, weighs a nominal 190 lbs., has exceptionally good strength and durability properties (rigid and resists weathering), is amenable to mass production and is easily installed on simple mountings. Solar cells are encapsulated in ethylene/vinyl acetate with Tedlar backing and Korad cover film. The laminates are attached to the GRC substrate with acrylic transfer tape and edge sealed with silicone RTV adhesive.
Shin, Won-Ho; Yang, Se-Hoon; Kwon, Do-Hoon; Han, Sang-Kook
2016-10-31
We propose a self-reverse-biased solar panel optical receiver for energy harvesting and visible light communication. Since the solar panel converts an optical component into an electrical component, it provides both energy harvesting and communication. The signal component can be separated from the direct current component, and these components are used for communication and energy harvesting. We employed a self-reverse-biased receiver circuit to improve the communication and energy harvesting performance. The reverse bias on the solar panel improves the responsivity and response time. The proposed system achieved 17.05 mbps discrete multitone transmission with a bit error rate of 1.1 x 10-3 and enhanced solar energy conversion efficiency.
Vision systems for manned and robotic ground vehicles
NASA Astrophysics Data System (ADS)
Sanders-Reed, John N.; Koon, Phillip L.
2010-04-01
A Distributed Aperture Vision System for ground vehicles is described. An overview of the hardware including sensor pod, processor, video compression, and displays is provided. This includes a discussion of the choice between an integrated sensor pod and individually mounted sensors, open architecture design, and latency issues as well as flat panel versus head mounted displays. This technology is applied to various ground vehicle scenarios, including closed-hatch operations (operator in the vehicle), remote operator tele-operation, and supervised autonomy for multi-vehicle unmanned convoys. In addition, remote vision for automatic perimeter surveillance using autonomous vehicles and automatic detection algorithms is demonstrated.
NASA Technical Reports Server (NTRS)
Maasha, Rumaasha; Towner, Robert L.
2012-01-01
High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons
Predicting the vibroacoustic response of satellite equipment panels.
Conlon, S C; Hambric, S A
2003-03-01
Modern satellites are constructed of large, lightweight equipment panels that are strongly excited by acoustic pressures during launch. During design, performing vibroacoustic analyses to evaluate and ensure the integrity of the complex electronics mounted on the panels is critical. In this study the attached equipment is explicitly addressed and how its properties affect the panel responses is characterized. FEA and BEA methods are used to derive realistic parameters to input to a SEA hybrid model of a panel with multiple attachments. Specifically, conductance/modal density and radiation efficiency for nonhomogeneous panel structures with and without mass loading are computed. The validity of using the spatially averaged conductance of panels with irregular features for deriving the structure modal density is demonstrated. Maidanik's proposed method of modifying the traditional SEA input power is implemented, illustrating the importance of accounting for system internal couplings when calculating the external input power. The predictions using the SEA hybrid model agree with the measured data trends, and are found to be most sensitive to the assumed dynamic mass ratio (attachments/structure) and the attachment internal loss factor. Additional experimental and analytical investigations are recommended to better characterize dynamic masses, modal densities and loss factors.
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor A.
2012-01-01
The potential development of large aperture ground-based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation proposes to polish the aluminum reflector panels of 34-meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by even state-of-the-art polished aluminum panels. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. A custom designed aluminum panel has been mounted on the 34 meter research antenna at Deep-Space Station 13 (DSS-13), and a remotely controlled CCD camera with a large CCD sensor in a weather-proof container has been installed next to the subreflector, pointed directly at the custom polished panel. Using the planet Jupiter as the optical point-source, the point-spread function (PSF) generated by the polished panel has been characterized, the array data processed to determine the center of the intensity distribution, and expected communications performance of the proposed polished panel optical receiver has been evaluated.
The directivity of the sound radiation from panels and openings.
Davy, John L
2009-06-01
This paper presents a method for calculating the directivity of the radiation of sound from a panel or opening, whose vibration is forced by the incidence of sound from the other side. The directivity of the radiation depends on the angular distribution of the incident sound energy in the room or duct in whose wall or end the panel or opening occurs. The angular distribution of the incident sound energy is predicted using a model which depends on the sound absorption coefficient of the room or duct surfaces. If the sound source is situated in the room or duct, the sound absorption coefficient model is used in conjunction with a model for the directivity of the sound source. For angles of radiation approaching 90 degrees to the normal to the panel or opening, the effect of the diffraction by the panel or opening, or by the finite baffle in which the panel or opening is mounted, is included. A simple empirical model is developed to predict the diffraction of sound into the shadow zone when the angle of radiation is greater than 90 degrees to the normal to the panel or opening. The method is compared with published experimental results.
3. Credit BG. The interior of the control room appears ...
3. Credit BG. The interior of the control room appears in this view, looking north (0°). The control console in the room center permitted remote control of various propellant grinders and mixers in surrounding buildings. Television monitors (absent from their mounts in this view) permitted direct viewing of operating machinery. From foreground to background: Panel (1) contains OGAR warning light switches for Curing Buildings E-39, E-40, E-41 and E-86; (O=off, G=green safe, A=amber caution, R=red danger) Panel (2) E-85 Oxidizer Dryer Building console: OGAR switch Panel (3) E-84 Oxidizer Grinder Building console: controls for vibrator, feed, and hammer; Panel (4) E-36 Oxidizer Grinder Building console: controls for vibrator, feed, hammer, attritor, and SWECO ("SWECO" undefined) Panels (5) & (6) blank Panel (7) E-38 Mixer & Casting Building console: vacuum pump, blender, heating and cooling controls Panel (8) E-37 Mixer & Casting Building console: motor controls for 1 pint, 1 gallon, 5 gallon and 30 gallon mixers; vacuum pump, deluge (fire suppression), pot up/down, vibrator, feed, and SWECO. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Precision Cleaning and Protection of Coated Optical Components for NIF Small Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, Jim
The purpose of this procedure shall be to define the precision cleaning of finished, coated, small optical components for NIF at Lawrence Livermore National Laboratories. The term “small optical components” includes coated optics that are set into simple mounts, as well as coated, un-mounted optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Brij N.; Schmit, Christopher J.
A first driver portion comprises a set of first components mounted on or associated with a first circuit board. A second circuit board is spaced apart from the first circuit board. A second driver portion comprises a set of second components mounted on or associated with the second circuit board, where the first driver portion and the second driver portion collectively are adapted to provide input signals to the control terminal of each semiconductor switch of an inverter. A first edge connector is mounted on the first circuit board. A second edge connector is mounted on the second circuit board.more » An interface board has mating edges that mate with the first edge connector and the second edge connector.« less
NASA Technical Reports Server (NTRS)
Gott, Charles; Galicki, Peter; Shores, David
1990-01-01
The Helmet Mounted Display system and Part Task Trainer are two projects currently underway that are closely related to the in-flight crew training concept. The first project is a training simulator and an engineering analysis tool. The simulator's unique helmet mounted display actually projects the wearer into the simulated environment of 3-D space. Miniature monitors are mounted in front of the wearers eyes. Partial Task Trainer is a kinematic simulator for the Shuttle Remote Manipulator System. The simulator consists of a high end graphics workstation with a high resolution color screen and a number of input peripherals that create a functional equivalent of the RMS control panel in the back of the Orbiter. It is being used in the training cycle for Shuttle crew members. Activities are underway to expand the capability of the Helmet Display System and the Partial Task Trainer.
Use of cork as absorbent material
NASA Astrophysics Data System (ADS)
Trematerra, Amelia; Lombardi, Ilaria; D'Alesio, Andrea
2017-07-01
Cork is a green and sustainable material. At the end of its useful life, it can be disposed of into the environment without causing any damage. It can be used to improve the acoustics inside environments, as a system for the reduction of reverberation time. Sound absorption systems consist of cork panels mounted at a distance onto a rigid wall. The thickness of the cork panels considered are 1.5 mm and 2.5 mm. While the distances considered from the rigid wall are 3 cm, 5 cm, 10 cm and 15 cm. The absorption coefficient of the samples was measured in the frequency range from 100 Hz to 2,000 Hz with an impedance tube (tube of Kundt). Furthermore, the problems relating to the realization of sound-absorption systems composed of cork panels are also discussed.
NASA Astrophysics Data System (ADS)
Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.
2018-05-01
This paper presents a theoretical study of active control of turbulent boundary layer (TBL) induced sound transmission through the cavity-backed double panels. The aerodynamic model used is based on the Corcos wall pressure distribution. The structural-acoustic model encompasses a source panel (skin panel), coupled through an acoustic cavity to the radiating panel (trim panel). The radiating panel is backed by a larger acoustic enclosure (the back cavity). A feedback control unit is located inside the acoustic cavity between the two panels. It consists of a control force actuator and a sensor mounted at the actuator footprint on the radiating panel. The control actuator can react off the source panel. It is driven by an amplified velocity signal measured by the sensor. A fully coupled analytical structural-acoustic model is developed to study the effects of the active control on the sound transmission into the back cavity. The stability and performance of the active control system are firstly studied on a reduced order model. In the reduced order model only two fundamental modes of the fully coupled system are assumed. Secondly, a full order model is considered with a number of modes large enough to yield accurate simulation results up to 1000 Hz. It is shown that convincing reductions of the TBL-induced vibrations of the radiating panel and the sound pressure inside the back cavity can be expected. The reductions are more pronounced for a certain class of systems, which is characterised by the fundamental natural frequency of the skin panel larger than the fundamental natural frequency of the trim panel.
Effects of Structural Flexibility on Aircraft-Engine Mounts
NASA Technical Reports Server (NTRS)
Phillips, W. H.
1986-01-01
Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.
76 FR 64859 - Pilot Loading of Navigation and Terrain Awareness Database Updates
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... category the task of updating databases used in self-contained, front-panel or pedestal-mounted navigation... Rule This rulemaking would allow pilots of all certificated aircraft equipped with self-contained... verification, or by errors in ATC assignments which may occur during redirection of the flight. Both types of...
Solar Process Heat Basics | NREL
Process Heat Basics Solar Process Heat Basics Commercial and industrial buildings may use the same , black metal panel mounted on a south-facing wall to absorb the sun's heat. Air passes through the many nonresidential buildings. A typical system includes solar collectors that work along with a pump, heat exchanger
Thermal Interface Comparisons Under Flight Like Conditions
NASA Technical Reports Server (NTRS)
Rodriquez-Ruiz, Juan
2008-01-01
Thermal interface materials are used in bolted interfaces to promote good thermal conduction between the two. The mounting surface can include panels, heat pipes, electronics boxes, etc.. . On Lunar Reconnaissance Orbiter (LRO) project the results are directly applicable: a) Several high power avionics boxes b) Several interfaces from RWA to radiator through heat pipe network
77 FR 25131 - Turning Point Solar LLC: Notice of Finding of No Significant Impact
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-27
... monocrystalline photovoltaic panels mounted on fixed solar racking equipment and the construction of access roads... DEPARTMENT OF AGRICULTURE Rural Utilities Service Turning Point Solar LLC: Notice of Finding of No... Environmental Assessment (EA) associated with a solar generation project. The EA was prepared in accordance with...
Purging of a tank-mounted multilayer insulation system by gas diffusion
NASA Technical Reports Server (NTRS)
Sumner, I. E.
1978-01-01
The investigation was conducted on a multilayer insulation (MLI) system mounted on a spherical liquid hydrogen propellant tank. The MLI consisted of two blankets of insulation each containing 15 double-aluminized Mylar radiation shields separated by double silk net spacers. The gaseous nitrogen initially contained within the MLI system and vacuum chamber was purged with gaseous helium introduced both underneath the MLI and into the vacuum chamber. The MLI panels were assumed to be purged primarily by means of gas diffusion. Overall, test results indicated that nitrogen concentrations well below 1 percent could be achieved everywhere within the MLI system. Typical times to achieve 1 percent nitrogen concentration within the MLI panels ranged from 69 minutes at the top of the tank to 158 minutes at the bottom of the tank. Four space-hold thermal performance tests indicated no significant thermal degradation of the MLI system had occurred due to the purge tests conducted. The final measured heat input attributed to the MLI was 7.23 watts as compared to 7.18 watts for the initial baseline thermal performance test.
1999-10-06
KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, rolls to a stop at KSC's Shuttle Landing Facility. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building
1999-10-06
KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, arrives at KSC's Shuttle Landing Facility from Marshall Space Flight Center. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be moved to the Operations and Checkout Building
1999-10-07
KENNEDY SPACE CENTER, FLA. -- At KSC's Shuttle Landing Facility, NASA's Super Guppy opens to reveal its cargo, the International Space Station's (ISS) S1 truss. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building
1999-10-07
KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, workers attach cranes to the S1 truss, a segment of the International Space Station, to lift the truss to a payload transporter for its transfer to the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The truss arrived at KSC aboard NASA's Super Guppy, with a 25-foot diameter fuselage designed to handle oversized loads. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight
1999-10-07
KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the newly arrived S1 truss, a segment of the International Space Station (ISS), is offloaded from NASA's Super Guppy aircraft. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is being transferred to the Operations and Checkout Building
System requirements for head down and helmet mounted displays in the military avionics environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, M.F.; Kalmanash, M.; Sethna, V.
1996-12-31
The introduction of flat panel display technologies into the military avionics cockpit is a challenging proposition, due to the very difficult system level requirements which must be met. These relate to environmental extremes (temperature and vibrational), sever ambient lighting conditions (10,000 fL to nighttime viewing), night vision system compatibility, and wide viewing angle. At the same time, the display system must be packaged in minimal space and use minimal power. The authors will present details on the display system requirements for both head down and helmet mounted systems, as well as information on how these challenges may be overcome.
Definition of display/control requirements for assault transport night/adverse weather capability
NASA Technical Reports Server (NTRS)
Milelli, R. J.; Mowery, G. W.; Pontelandolfo, C.
1982-01-01
A Helicopter Night Vision System was developed to improve low-altitude night and/or adverse weather assult transport capabilities. Man-in-the-loop simulation experiments were performed to define the minimum display and control requirements for the assult transport mission and investigate forward looking infrared sensor requirements, along with alternative displays such as panel mounted displays (PMD) helmet mounted displays (HMD), and integrated control display units. Also explored were navigation requirements, pilot/copilot interaction, and overall cockpit arrangement. Pilot use of an HMD and copilot use of a PMD appear as both the preferred and most effective night navigation combination.
Nozzle and shroud assembly mounting structure
Faulder, Leslie J.; Frey, deceased, Gary A.; Nielsen, Engward W.; Ridler, Kenneth J.
1997-01-01
The present nozzle and shroud assembly mounting structure configuration increases component life and reduces maintenance by reducing internal stress between the mounting structure having a preestablished rate of thermal expansion and the nozzle and shroud assembly having a preestablished rate of thermal expansion being less than that of the mounting structure. The mounting structure includes an outer sealing portion forming a cradling member in which an annular ring member is slidably positioned. The mounting structure further includes an inner mounting portion to which a hooked end of the nozzle and shroud assembly is attached. As the inner mounting portion expands and contracts, the nozzle and shroud assembly slidably moves within the outer sealing portion.
Nozzle and shroud assembly mounting structure
Faulder, L.J.; Frey, G.A.; Nielsen, E.W.; Ridler, K.J.
1997-08-05
The present nozzle and shroud assembly mounting structure configuration increases component life and reduces maintenance by reducing internal stress between the mounting structure having a preestablished rate of thermal expansion and the nozzle and shroud assembly having a preestablished rate of thermal expansion being less than that of the mounting structure. The mounting structure includes an outer sealing portion forming a cradling member in which an annular ring member is slidably positioned. The mounting structure further includes an inner mounting portion to which a hooked end of the nozzle and shroud assembly is attached. As the inner mounting portion expands and contracts, the nozzle and shroud assembly slidably moves within the outer sealing portion. 3 figs.
Misol, Malte; Haase, Thomas; Monner, Hans Peter; Sinapius, Michael
2014-10-01
This paper provides experimental results of an aircraft-relevant double panel structure mounted in a sound transmission loss facility. The primary structure of the double panel system is excited either by a stochastic point force or by a diffuse sound field synthesized in the reverberation room of the transmission loss facility. The secondary structure, which is connected to the frames of the primary structure, is augmented by actuators and sensors implementing an active feedforward control system. Special emphasis is placed on the causality of the active feedforward control system and its implications on the disturbance rejection at the error sensors. The coherence of the sensor signals is analyzed for the two different disturbance excitations. Experimental results are presented regarding the causality, coherence, and disturbance rejection of the active feedforward control system. Furthermore, the sound transmission loss of the double panel system is evaluated for different configurations of the active system. A principal result of this work is the evidence that it is possible to strongly influence the transmission of stochastic disturbance sources through double panel configurations by means of an active feedforward control system.
Re-active Passive (RAP) Devices for Control of Noise Transmission through a Panel
NASA Technical Reports Server (NTRS)
Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Daniel L.
2008-01-01
Re-Active Passive (RAP) devices have been developed to control low frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The RAP device uses passive constrained layer damping to cover the relatively high frequency range (>200 Hz), reactive distributed vibration absorber) to cover the medium frequency range (75 to 250 Hz), and active control for controlling low frequencies (<200 Hz). The device was applied to control noise transmission through a panel mounted in a transmission loss test facility. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three RAP devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 grams to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.
Re-Active Passive devices for control of noise transmission through a panel
NASA Astrophysics Data System (ADS)
Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Dan
2008-01-01
Re-Active Passive devices have been developed to control low-frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The Re-Active Passive device uses passive constrained layer damping to cover relatively high-frequency range (>150 Hz), reactive distributed vibration absorber to cover the medium-frequency range (50-200 Hz), and active control for controlling low frequencies (<150 Hz). The actuator was applied to control noise transmission through a panel mounted in the Transmission Loss Test Facility at Virginia Tech. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three Re-Active Passive devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 g to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Mardoian, G. H.; Ezzo, M. B.
1986-01-01
This report presents an assessment of composite helicopter tail rotor spars and horizontal stabilizers, exposed to the effects of the environment, after up to five and a half years of commercial service. This evaluation is supported by test results of helicopter components and panels which have been exposed to outdoor environmental effects since September 1979. Full scale static and fatigue tests have been conducted on graphite/epoxy and Kevlar/epoxy composite components obtained from Sikorsky Model S-76 helicopters in commercial operations in the Gulf Coast region of Louisiana. Small scale static and fatigue tests are being conducted on coupons obtained from panels under exposure to outdoor conditions in Stratford, Connecticut and West Palm, Florida. The panel layups are representative of the S-76 components. Additionally, this report discusses the results of moisture absorption evaluations and strength tests on the S-76 components and composite panels with up to five years of outdoor exposure.
Antenna with distributed strip and integrated electronic components
Rodenbeck, Christopher T [Albuquerque, NM; Payne, Jason A [Albuquerque, NM; Ottesen, Cory W [Albuquerque, NM
2008-08-05
An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.
Acoustic fatigue and sound transmission characteristics of a ram composite panel design
NASA Technical Reports Server (NTRS)
Cockburn, J. A.; Chang, K. Y.; Kao, G. C.
1972-01-01
An experimental study to determine the acoustic fatigue characteristics of a flat multi-layered structural panel is described. The test panel represented a proposed design for the outer skin of a research application module to be housed within the space shuttle orbiter vehicle. The test specimen was mounted in one wall of the Wyle 100,000 cu ft reverberation room and exposed to a broadband acoustic environment having an overall level of 145 db. The test panel was exposed to nine separate applications of the acoustic environment, each application consisting of 250 seconds duration. Upon completion of the ninth test run, the specimen was exposed to a simulated micrometeoroid impact near the panel center. One additional test run of 250 seconds duration was then performed to complete the overall simulation of 50 flight missions. The experimental results show that no significant fatigue damage occurred until the test specimen was exposed to a simulated micrometeoroid impact. The intermediate foam layer forming the core of the test specimen suffered considerable damage due to this impact, causing a marked variation in the dynamic characteristics of the overall test panel. During the final application of the acoustic environment, the strain and acceleration response spectra showed considerable variation from those spectra obtained prior to impact of the panel. Fatigue damage from acoustic loading however, was limited to partial de-bonding around the edges of the composite panel.
Lightweight sidewalls for aircraft interior noise control
NASA Technical Reports Server (NTRS)
May, D. N.; Plotkin, K. J.; Selden, R. G.; Sharp, B. H.
1985-01-01
A theoretical and experimental study was performed to devise lightweight sidewalls for turboprop aircraft. Seven concepts for new sidewalls were analyzed and tested for noise reduction using flat panels of 1.2 m x 1.8 m (4 ft x 6 ft), some of which were aircraft-type constructions and some of which were simpler, easier-to-construct panels to test the functioning of an acoustic principle. Aircraft-application sidewalls were then conceived for each of the seven concepts, and were subjectively evaluated for their ability to meet aircraft nonacoustic design requirements. As a result of the above, the following sidewall concepts were recommended for further investigation: a sidewall in which the interior cavity is vented to ceiling and underfloor areas; sidewalls with wall-mounted resonators, one having a conventional trim panel and one a limp one; and a sidewall with a stiff outer wall and a limp trim panel. These sidewalls appear to promise lower weights than conventional sidewalls adjusted to meet similar acoustic requirements, and further development may prove them to be practical.
Solar Powered Automobile Interior Climate Control System
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor)
2003-01-01
There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.
NASA Astrophysics Data System (ADS)
Tăcutu, Laurenţiu; Nastase, Ilinca; Iordache, Vlad; Catalina, Tiberiu; Croitoru, Cristiana Verona
2018-02-01
Nowadays, there is an increasing emphasis on indoor air quality due to technological evolution and the fact that people spend most of the time in enclosed spaces. Also, energy efficiency is another related factor that gains more and more attention. Improving air distribution in an enclosure can lead to achieve these goals. This improvement can be done by adjustingthe air terminals position, theredimensions or the air diffuser perforations. The paper presents the study of 8 types of panels with different perforations shapes. The systems were characterized by flow, pressure loss and noise. Usualand special geometries were chosen, all having the same flowsurface. The perforated panels were mounted in a unidirectional air flow (UAF)diffuser, also called a laminar air flow (LAF)diffuser, that is placed in a real scale operating room (OR) in our laboratory.The purpose of this study is to determine whether changing the shape in the perforated panels can improve the technical parameters of the diffuser.
NASA Technical Reports Server (NTRS)
Runckel, Jack F.; Schmeer, James W.; Cassetti, Marlowe D.
1960-01-01
An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model (the "Swallow") with the outer wing panels swept 25 deg has been conducted in the Langley 16-foot transonic tunnel. The wing was uncambered and untwisted and had RAE 102 airfoil sections with a thickness-to-chord ratio of 0.14 normal to the leading edge. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. A pair of swept lateral fins and a single vertical fin were mounted on each engine nacelle to provide aerodynamic stability and control. Jets-off data were obtained with flow-through nacelles, stimulating the effects of inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained through a Mach number range of 0.40 to 0.90 at angles of attack and angles of sideslip from 0 deg to 15 deg. Longitudinal, directional, and lateral control were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control.
A new approach for vibration control in large space structures
NASA Technical Reports Server (NTRS)
Kumar, K.; Cochran, J. E., Jr.
1987-01-01
An approach for augmenting vibration damping characteristics in space structures with large panels is presented. It is based on generation of bending moments rather than forces. The moments are generated using bimetallic strips, suitably mounted at selected stations on both sides of the large panels, under the influence of differential solar heating, giving rise to thermal gradients and stresses. The collocated angular velocity sensors are utilized in conjunction with mini-servos to regulate the control moments by flipping the bimetallic strips. A simple computation of the rate of dissipation of vibrational energy is undertaken to assess the effectiveness of the proposed approach.
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Rich, M. J.; Lowry, D. W.
1983-01-01
This first interim report presents the technical background for including environmental effects in the design of helicopter composite structures, and test results after approximately two year field exposure of components and panels. Composite structural components were removed from Sikorsky S-76 helicopters commercially operated in the Gulf Coast region of Louisiana. Fatigue tests were conducted for a graphite/epoxy tail rotor spar and static test for a graphite/epoxy and Kevlar/epoxy stabilizer. Graphite/epoxy and Kevlar/epoxy panels are being exposed to the outdoor environment in Stratford, Connecticut and West Palm Beach, Florida. For this reporting period the two year panels were returned, moisture measurements taken, and strength tests conducted. Results are compared with initial type certificate strengths for components and with initial laboratory coupon tests for the exposed panels. Comparisons are also presented with predicted and measured moisture contents.
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Rich, M. J.; Lowry, D. W.
1982-01-01
This first interim report presents the technical background for including environmental effects in the design of helicopter composite structures, and test results after approximately two year field exposure of components and panels. Composite structural components were removed from Sikorsky S-76 helicopters commercially operated in the Gulf Coast region of Louisiana. Fatigue tests were conducted for a graphite/epoxy tail rotor spar and static test for a graphite/epoxy and Kevlar/epoxy stabilizer. Graphite/epoxy and Kevlar/epoxy panels are being exposed to the outdoor environment in Stratford, Connecticut and West Palm Beach, Florida. For this reporting period the two year panels were returned, moisture measurements taken, and strength tests conducted. Results are compared with initial type certificate strengths for components and with initial laboratory coupon tests for the exposed panels. Comparisons are also presented with predicted and measured moisture contents.
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored DAMVIBS (Design Analysis Methods for VIBrationS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AG-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, furl, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the NASTRAN FEM correlations are given.
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.
48. DETAIL OF REAR OF DEMULTIPLEX PANEL 5 SHOWING COMPONENTS ...
48. DETAIL OF REAR OF DEMULTIPLEX PANEL 5 SHOWING COMPONENTS OF VACUUM-TUBE OSCILLOSCOPE - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Columbia County Habitat for Humanity Passive Townhomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Alaigh, Kunal; Dadia, Devanshi
2016-03-18
Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18% of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-04-01
Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18 percent of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less
Support activities to maintain SUMS flight readiness, volume 2. Attachment A: Flight 61-C report
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation system (STS). The experiment mission operation begins about 1 hour to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, and STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume is the flight data report for flight 61-C.
NASA Technical Reports Server (NTRS)
Shrout, B. L.; Fournier, R. H.
1979-01-01
An investigation was made in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30, 2.96, and 3.30 to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise airplane. The configuration, with a design Mach number of 3.0, has a highly swept arrow wing with tip panels of lesser sweep, a fuselage chine, outboard vertical tails, and outboard engines mounted in nacelles beneath the wings. For wind tunnel test conditions, a trimmed value above 6.0 of the maximum lift-drag ratio was obtained at the design Mach number. The configuration was statically stable, both longitudinally and laterally. Data are presented for variations of vertical-tail roll-out and toe-in and for various combinations of components. Some roll control data are shown as are data for the various sand grit sizes used in fixing the boundary layer transition location.
Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality.
Medford, Andrew J; Lilliedal, Mathilde R; Jørgensen, Mikkel; Aarø, Dennis; Pakalski, Heinz; Fyenbo, Jan; Krebs, Frederik C
2010-09-13
Large solar panels were constructed from polymer solar cell modules prepared using full roll-to-roll (R2R) manufacture based on the previously published ProcessOne. The individual flexible polymer solar modules comprising multiple serially connected single cell stripes were joined electrically and laminated between a 4 mm tempered glass window and black Tetlar foil using two sheets of 0.5 mm thick ethylene vinyl acetate (EVA). The panels produced up to 8 W with solar irradiance of ~960 Wm⁻², and had outer dimensions of 1 m x 1.7 m with active areas up to 9180 cm². Panels were mounted on a tracking station and their output was grid connected between testing. Several generations of polymer solar cells and panel constructions were tested in this context to optimize the production of polymer solar panels. Cells lacking a R2R barrier layer were found to degrade due to diffusion of oxygen after less than a month, while R2R encapsulated cells showed around 50% degradation after 6 months but suffered from poor performance due to de-lamination during panel production. A third generation of panels with various barrier layers was produced to optimize the choice of barrier foil and it was found that the inclusion of a thin protective foil between the cell and the barrier foil is critical. The findings provide a preliminary foundation for the production and optimization of large-area polymer solar panels and also enabled a cost analysis of solar panels based on polymer solar cells.
Yu, Marcia M L; Sandercock, P Mark L
2012-01-01
During the forensic examination of textile fibers, fibers are usually mounted on glass slides for visual inspection and identification under the microscope. One method that has the capability to accurately identify single textile fibers without subsequent demounting is Raman microspectroscopy. The effect of the mountant Entellan New on the Raman spectra of fibers was investigated to determine if it is suitable for fiber analysis. Raman spectra of synthetic fibers mounted in three different ways were collected and subjected to multivariate analysis. Principal component analysis score plots revealed that while spectra from different fiber classes formed distinct groups, fibers of the same class formed a single group regardless of the mounting method. The spectra of bare fibers and those mounted in Entellan New were found to be statistically indistinguishable by analysis of variance calculations. These results demonstrate that fibers mounted in Entellan New may be identified directly by Raman microspectroscopy without further sample preparation. © 2011 American Academy of Forensic Sciences.
Active vibration control testing of the SPICES program: final demonstration article
NASA Astrophysics Data System (ADS)
Dunne, James P.; Jacobs, Jack H.
1996-05-01
The Synthesis and Processing of Intelligent Cost Effective Structures (SPICES) Program is a partnership program sponsored by the Advanced Research Projects Agency. The mission of the program is to develop cost effective material processing and synthesis technologies to enable new products employing active vibration suppression and control devices to be brought to market. The two year program came to fruition in 1995 through the fabrication of the final smart components and testing of an active plate combined with two trapezoidal rails, forming an active mount. Testing of the SPICES combined active mount took place at McDonnell Douglas facilities in St. Louis, MO, in October-December 1995. Approximately 15 dB reduction in overall response of a motor mounted on the active structure was achieved. Further details and results of the SPICES combined active mount demonstration testing are outlined. Results of numerous damping and control strategies that were developed and employed in the testing are presented, as well as aspects of the design and fabrication of the SPICES active mount components.
The CF6 jet engine performance improvement: New front mount
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1979-01-01
The New Front Mount was evaluated in component tests including stress, deflection/distortion and fatigue tests. The test results demonstrated a performance improvement of 0.1% in cruise sfc, 16% in compressor stall margin and 10% in compressor stator angle margin. The New Front Mount hardware successfully completed 35,000 simulated flight cycles endurance testing.
DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer
NASA Astrophysics Data System (ADS)
Miyazaki, Shingo; Kasuya, Syohei; Mawardi Saari, Mohd; Sakai, Kenji; Kiwa, Toshihiko; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi; Tsukada, Keiji
2014-05-01
Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Mardoian, George H.; Ezzo, Maureen B.
1990-01-01
An assessment is presented of ten composite tail rotor spars and four horizontal stabilizers exposed to the effects of in-flight commercial service for up to nine years to establish realistic environmental factors for use in future designs. This evaluation is supported by test results of helicopter components and panels which have been exposed to outdoor environmental effects since 1979. Full scale static and fatigue tests were conducted on graphite/epoxy and Kevlar/epoxy composite components removed from Sikorsky Model S-76 helicopters in commercial operations off the Gulf Coast of Louisiana. Small scale static and fatigue tests were conducted on coupons obtained from panels exposed to outdoor conditions in Stratford, CT and West Palm Beach, Florida. The panel materials and ply configurations were representative of the S-76 components. The results are discussed of moisture analyses and strength tests on both the S-76 components and composite panels after up to nine years of outdoor exposure. Full scale tests performed on the helicopter components did not disclose any significant reductions from the baseline strengths. The results increased confidence in the long term durability of advanced composite materials in helicopter structural applications.
Development of beryllium honeycomb sandwich composite for structural and other related applications
NASA Technical Reports Server (NTRS)
Vogan, J. W.; Grant, L. A.
1972-01-01
The feasibility of fabricating large beryllium honeycomb panels was demonstrated. Both flat and curved sandwich structures were manufactured using practical, braze bonding techniques. The processes developed prove that metallurgically assembled beryllium honeycomb panels show decided potential where rigid, lightweight structures are required. Three panels, each 10 square feet in surface area, were fabricated, and radiographically inspected to determine integrity. This examination revealed a 97 percent braze in the final panel. It is believed that ceramic dies for forming and brazing would facilitate the fabrication techniques for higher production rates. Ceramic dies would yield a lower thermal gradient in the panel during the braze cycle. This would eliminate the small amount of face sheet wrinkling present in the panels. Hot forming the various panel components demonstrated efficient manufacturing techniques for scaling up and producing large numbers of hot formed beryllium components and panels. The beryllium honeycomb panel demonstrated very good vibrational loading characteristics under test with desirable damping characteristics.
Analysis of Wind Forces on Roof-Top Solar Panel
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Kudav, Ganesh
2011-03-01
Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).
NASA Astrophysics Data System (ADS)
Farjoud, Alireza; Taylor, Russell; Schumann, Eric; Schlangen, Timothy
2014-02-01
This paper is focused on modelling, design, and testing of semi-active magneto-rheological (MR) engine and transmission mounts used in the automotive industry. The purpose is to develop a complete analysis, synthesis, design, and tuning tool that reduces the need for expensive and time-consuming laboratory and field tests. A detailed mathematical model of such devices is developed using multi-physics modelling techniques for physical systems with various energy domains. The model includes all major features of an MR mount including fluid dynamics, fluid track, elastic components, decoupler, rate-dip, gas-charged chamber, MR fluid rheology, magnetic circuit, electronic driver, and control algorithm. Conventional passive hydraulic mounts can also be studied using the same mathematical model. The model is validated using standard experimental procedures. It is used for design and parametric study of mounts; effects of various geometric and material parameters on dynamic response of mounts can be studied. Additionally, this model can be used to test various control strategies to obtain best vibration isolation performance by tuning control parameters. Another benefit of this work is that nonlinear interactions between sub-components of the mount can be observed and investigated. This is not possible by using simplified linear models currently available.
Scalable Energy Networks to Promote Energy Security
2011-07-01
commodity. Consider current challenges of converting energy and synchronizing sources with loads—for example, capturing solar energy to provide hot water...distributed micro-generation1 (for example, roof-mounted solar panels) and plug-in elec- tric/hybrid vehicles. The imperative extends to our national...transformers, battery chargers ■■ distribution: pumps, pipes, switches, cables ■■ applications: lighting, automobiles, personal electronic devices
High bit rate mass data storage device
NASA Technical Reports Server (NTRS)
1973-01-01
The HDDR-II mass data storage system consists of a Leach MTR 7114 recorder reproducer, a wire wrapped, integrated circuit flat plane and necessary power supplies for the flat plane. These units, with interconnecting cables and control panel are enclosed in a common housing mounted on casters. The electronics used in the HDDR-II double density decoding and encoding techniques are described.
The James Clerk Maxwell telescope - United Kingdom/Netherlands 15-metre antenna
NASA Astrophysics Data System (ADS)
Hills, R.
The 15-m James Clerk Maxwell (JCM) radiotelescope being installed on Mauna Kea was designed to achieve 35 micron surface accuracy and 1 arcsec rms tracking accuracy and relative pointing accuracy at frequencies over 700 GHz. The instrument will be housed in a steel building for protection against the occasionally severe weather. The surface of the antenna consists of 276 Al panels adhered to honeycombs beneath which is glued a second Al skin for stiffness. The temperature-controlled housing and insulation between layers will strongly inhibit distortions due to environmental temperature changes and thermal gradients between front and back layers. An all-steel frame was selected to further minimize temperature induced pointing aberrations. Adjustments can be made with the three jacking screws with which each panel is fitted. An f/12 Cassegrain focus behind the primary mirror is large enough for mounting up to four receivers, and another receiver can be sited at the f/35 Nasmyth focus at the side of the mount. Two Schottky diode receivers are currently being fabricated 220-280 GHz and 330-360 GHz measurements, and will be followed by InSb mixers for 460-490 GHz and 660-720 GHz.
GPS Attitude Determination Using Deployable-Mounted Antennas
NASA Technical Reports Server (NTRS)
Osborne, Michael L.; Tolson, Robert H.
1996-01-01
The primary objective of this investigation is to develop a method to solve for spacecraft attitude in the presence of potential incomplete antenna deployment. Most research on the use of the Global Positioning System (GPS) in attitude determination has assumed that the antenna baselines are known to less than 5 centimeters, or one quarter of the GPS signal wavelength. However, if the GPS antennas are mounted on a deployable fixture such as a solar panel, the actual antenna positions will not necessarily be within 5 cm of nominal. Incomplete antenna deployment could cause the baselines to be grossly in error, perhaps by as much as a meter. Overcoming this large uncertainty in order to accurately determine attitude is the focus of this study. To this end, a two-step solution method is proposed. The first step uses a least-squares estimate of the baselines to geometrically calculate the deployment angle errors of the solar panels. For the spacecraft under investigation, the first step determines the baselines to 3-4 cm with 4-8 minutes of data. A Kalman filter is then used to complete the attitude determination process, resulting in typical attitude errors of 0.50.
Miniaturized Cassegrainian concentrator concept demonstration
NASA Technical Reports Server (NTRS)
Patterson, R. E.; Rauschenbach, H. S.
1982-01-01
High concentration ratio photovoltaic systems for space applications have generally been considered impractical because of perceived difficulties in controlling solar cell temperatures to reasonably low values. A miniaturized concentrator system is now under development which surmounts this objection by providing acceptable solar cell temperatures using purely passive cell cooling methods. An array of identical miniaturized, rigid Cassegrainian optical systems having a low f-number with resulting short dimensions along their optical axes are rigidly mounted into a frame to form a relatively thin concentrator solar array panel. A number of such panels, approximately 1.5 centimeters thick, are wired as an array and are folded against one another for launch in a stowed configuration. Deployment on orbit is similar to the deployment of conventional planar honeycomb panel arrays or flexible blanket arrays. The miniaturized concept was conceived and studied in the 1978-80 time frame. Progress in the feasibility demonstration to date is reported.
NASA Astrophysics Data System (ADS)
Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter
2015-03-01
Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.
Keuschnigg, Peter; Kellner, Daniel; Fritscher, Karl; Zechner, Andrea; Mayer, Ulrich; Huber, Philipp; Sedlmayer, Felix; Deutschmann, Heinz; Steininger, Philipp
2017-01-01
Couch-mounted cone-beam computed tomography (CBCT) imaging devices with independently rotatable x-ray source and flat-panel detector arms for acquisitions of arbitrary regions of interest (ROI) have recently been introduced in image-guided radiotherapy (IGRT). This work analyzes mechanical limitations and gravity-induced effects influencing the geometric accuracy of images acquired with arbitrary angular constellations of source and detector in nonisocentric trajectories, which is considered essential for IGRT. In order to compensate for geometric inaccuracies of this modality, a 9-degrees-of-freedom (9-DOF) flexmap correction approach is presented, focusing especially on the separability of the flexmap parameters of the independently movable components of the device. The 9-DOF comprise a 3D translation of the x-ray source focal spot, a 3D translation of the flat-panel's active area center and three Euler-rotations of the detector's row and column vectors. The flexmap parameters are expressed with respect to the angular position of each of the devices arms. Estimation of the parameters is performed, using a CT-based structure set of a table-mounted, cylindrical ball-bearing phantom. Digitally reconstructed radiograph (DRR) patches are derived from the structure set followed by local 2D in-plane registration and subsequent 3D transform estimation by nonlinear regression with outlier detection. Flexmap parameter evaluations for the factory-calibrated system in clockwise and counter-clockwise rotation direction have shown only minor differences for the overall set of flexmap parameters. High short-term reproducibility of the flexmap parameters has been confirmed by experiments over 10 acquisitions for both directions, resulting in standard deviation values of ≤0.183 mm for translational components and ≤0.0219 deg for rotational components, respectively. A comparison of isocentric and nonisocentric flexmap evaluations showed that the mean differences of the parameter curves reside within their standard deviations, confirming the ability of the proposed calibration method to handle both types of trajectories equally well. Reconstructions of 0.1 mm and 0.25 mm steel wires showed similar results for the isocentric and nonisocentric cases. The full-width at half maximum (FWHM) measure indicates an average improvement of the calibrated reconstruction of 85% over the uncalibrated reconstruction. The contrast of the point spread function (PSF) improved by 310% on average over all experiments. Moreover, a reduced amount of artifacts visible in nonisocentric reconstructions of a head phantom and a line-pair phantom has been achieved by separate application of the 9-DOF flexmap on the geometry described by the independently moving source arm and detector arm. Using a 9-DOF flexmap approach for correcting the geometry of projections acquired with a device capable of independent movements of the source and panel arms has been shown to be essential for IGRT use cases such as CBCT reconstruction and 2D/3D registration tasks. The proposed pipeline is able to create flexmap curves which are easy to interpret, useful for mechanical description of the device and repetitive quality assurance as well as system-level preventive maintenance. Application of the flexmap has shown improvements of image quality for planar imaging and volumetric imaging which is crucial for patient alignment accuracy. © 2016 American Association of Physicists in Medicine.
Method of mounting a PC board to a hybrid
NASA Technical Reports Server (NTRS)
O'Coin, James R. (Inventor)
1999-01-01
A system for mounting a hybrid electronic component to a PC board is disclosed. The system includes a set of brackets for mutually engaging a first surface of the PC board and a cover surface of the hybrid electronic component, wherein the cover surface has an arcuate shape when in a vacuum environment. The brackets are designed with legs having lengths and thicknesses for providing clearance between the cover surface of the hybrid and the first surface of the PC board for use when the hybrid electronic component is in a vacuum environment.
Veligdan, James T.
2005-05-31
A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.
Veligdan, James T [Manorville, NY
2007-05-29
A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.
Kronberg, James W.
1990-08-07
A device for bending and trimming the pins of a dual-inline-package component and the like for surface mounting rather than through mounting to a circuit board comprises, in a first part, in pin cutter astride a holder having a recess for holding the component, a first spring therebetween, and, in a second part, two flat members pivotally interconnected by a hinge and urged to an upward peaked position from a downward peaked position by a second spring. As a downward force is applied to the pin cutter it urges the holder downward, assisted by the first spring and a pair of ridges riding on shoulders of the holder, to carry the component against the upward peaked flat members which guide the pins outwardly. As the holder continues downwardly, the flat members pivot to the downward peaked position bending the pins upwardly against the sides of the holder. When the downward movement is met with sufficient resistance, the ridges of the pin cutter ride over the holder's shoulders to continue downward to cut any excess length of pin.
1999-10-07
KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the S1 truss, a segment of the International Space Station, is moved away from the Super Guppy that brought it to KSC from Marshall Space Flight Center. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is being transferred to the Operations and Checkout Building
STS-112 S1 Truss Payload arrives at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, rolls to a stop at KSC's Shuttle Landing Facility. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the I SS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communicatio ns systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique 'fold-away' nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an elec tric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building
Installation/Removal Tool for Screw-Mounted Components
NASA Technical Reports Server (NTRS)
Ash, J. P.
1984-01-01
Tweezerlike tool simplifies installation of screws in places reached only through narrow openings. With changes in size and shape, basic tool concept applicable to mounting and dismounting of transformers, sockets, terminal strips and mechanical parts. Inexpensive tool fabricated as needed by bending two pieces of steel wire. Exact size and shape selected to suit part manipulated and nature of inaccessible mounting space.
Aircraft interior noise reduction by alternate resonance tuning
NASA Technical Reports Server (NTRS)
Bliss, Donald B.; Gottwald, James A.; Gustaveson, Mark B.; Burton, James R., III
1988-01-01
Model problem development and analysis continues with the Alternate Resonance Tuning (ART) concept. The various topics described are presently at different stages of completion: investigation of the effectiveness of the ART concept under an external propagating pressure field associated with propeller passage by the fuselage; analysis of ART performance with a double panel wall mounted in a flexible frame model; development of a data fitting scheme using a branch analysis with a Newton-Raphson scheme in multiple dimensions to determine values of critical parameters in the actual experimental apparatus; and investigation of the ART effect with real panels as opposed to the spring-mass-damper systems currently used in much of the theory.
A Cost-Effective Energy-Recovering Sustain Driving Circuit for ac Plasma Display Panels
NASA Astrophysics Data System (ADS)
Lim, Jae Kwang; Tae, Heung-Sik; Choi, Byungcho; Kim, Seok Gi
A new sustain driving circuit, featuring an energy-recovering function with simple structure and minimal component count, is proposed as a cost-effective solution for driving plasma display panels during the sustaining period. Compared with existing solutions, the proposed circuit reduces the number of semiconductor switches and reactive circuit components without compromising the circuit performance and gas-discharging characteristics. In addition, the proposed circuit utilizes the harness wire as an inductive circuit component, thereby further simplifying the circuit structure. The performance of the proposed circuit is confirmed with a 42-inch plasma display panel.
Design of Fiber Reinforced Foam Sandwich Panels for Large Ares V Structural Applications
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.; Hopkins, Dale A.
2010-01-01
The preliminary design of three major structural components within NASA's Ares V heavy lift vehicle using a novel fiber reinforced foam composite sandwich panel concept is presented. The Ares V payload shroud, interstage, and core intertank are designed for minimum mass using this panel concept, which consists of integral composite webs separated by structural foam between two composite facesheets. The HyperSizer structural sizing software, in conjunction with NASTRAN finite element analyses, is used. However, since HyperSizer does not currently include a panel concept for fiber reinforced foam, the sizing was performed using two separate approaches. In the first, the panel core is treated as an effective (homogenized) material, whose properties are provided by the vendor. In the second approach, the panel is treated as a blade stiffened sandwich panel, with the mass of the foam added after completion of the panel sizing. Details of the sizing for each of the three Ares V components are given, and it is demonstrated that the two panel sizing approaches are in reasonable agreement for thinner panel designs, but as the panel thickness increases, the blade stiffened sandwich panel approach yields heavier panel designs. This is due to the effects of local buckling, which are not considered in the effective core property approach.
Cleaning of printed circuit assemblies with surface-mounted components
NASA Astrophysics Data System (ADS)
Arzigian, J. S.
The need for ever-increasing miniaturization of airborne instrumentation through the use of surface mounted components closely placed on printed circuit boards highlights problems with traditional board cleaning methods. The reliability of assemblies which have been cleaned with vapor degreasing and spray cleaning can be seriously compromised by residual contaminants leading to solder joint failure, board corrosion, and even electrical failure of the mounted parts. In addition, recent government actions to eliminate fully halogenated chlorofluorocarbons (CFC) and chlorinated hydrocarbons from the industrial environment require the development of new cleaning materials and techniques. This paper discusses alternative cleaning materials and techniques and results that can be expected with them. Particular emphasis is placed on problems related to surface-mounted parts. These new techniques may lead to improved circuit reliability and, at the same time, be less expensive and less environmentally hazardous than the traditional systems.
F-16XL Wing Pressure Distributions and Shock Fence Results from Mach 1.4 to Mach 2.0
NASA Technical Reports Server (NTRS)
Landers, Stephen F.; Saltzman, John A.; Bjarke, Lisa J.
1997-01-01
Chordwise pressure distributions were obtained in-flight on the upper and lower surfaces of the F-16XL ship 2 aircraft wing between Mach 1.4 and Mach 2.0. This experiment was conducted to determine the location of shock waves which could compromise or invalidate a follow-on test of a large chord laminar flow control suction panel. On the upper surface, the canopy closure shock crossed an area which would be covered by a proposed laminar flow suction panel. At the laminar flow experiment design Mach number of 1.9, 91 percent of the suction panel area would be forward of the shock. At Mach 1.4, that value reduces to 65 percent. On the lower surface, a shock from the inlet diverter would impinge on the proposed suction panel leading edge. A chordwise plate mounted vertically to deflect shock waves, called a shock fence, was installed between the inlet diverter and the leading edge. This plate was effective in reducing the pressure gradients caused by the inlet shock system.
Local feedback control of light honeycomb panels.
Hong, Chinsuk; Elliott, Stephen J
2007-01-01
This paper summarizes theoretical and experimental work on the feedback control of sound radiation from honeycomb panels using piezoceramic actuators. It is motivated by the problem of sound transmission in aircraft, specifically the active control of trim panels. Trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently mounted to the fuselage for the passive reduction of noise transmission. Local coupling of the closely spaced sensor and actuator was observed experimentally and modeled using a single degree of freedom system. The effect of the local coupling was to roll off the response between the actuator and sensor at high frequencies, so that a feedback control system can have high gain margins. Unfortunately, only relatively poor global performance is then achieved because of localization of reduction around the actuator. This localization prompts the investigation of a multichannel active control system. Globalized reduction was predicted using a model of 12-channel direct velocity feedback control. The multichannel system, however, does not appear to yield a significant improvement in the performance because of decreased gain margin.
Modeling of trim panels in the energy finite element analysis
NASA Astrophysics Data System (ADS)
Moravaeji, Seyed-Javid
Modeling a trim panel is divided into finding the power exchange through two different paths: (i) the connection of the outer and inner panels (ii) through the layers directly. The vibrational power exchanged through the mounts is modeled as the connection of two parallel plates connected via a beam. Wave matrices representing plates and beams are derived separately; then a matrix method is proposed to solve for the wave amplitudes and hence the vibrational power exchange between the plates accordingly. A closed form formula for the case of connection of two identical plates is derived. For the power transmission loss directly through the layers, first transfer matrices representing layers made of different materials is considered. New matrices for a porous layer are derived. A method of finding the layered structure transfer matrix is proposed. It is concluded that in general a single isotropic layer cannot replace a structure accurately. Finally, on the basis of an equivalent transfer matrix, an optimization process for is proposed to replace the panel by a suitable set of layers.
Bioreactor for acid mine drainage control
Zaluski, Marek H.; Manchester, Kenneth R.
2001-01-01
A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.
Effect of wing bend on the experimental force and moment characteristics of an oblique wing
NASA Technical Reports Server (NTRS)
Hopkins, E. J.; Nelson, E. R.
1976-01-01
Static longitudinal and lateral/directional force and moment characteristics are presented for an elliptical oblique wing mounted on top of a Sears-Haack body of revolution. The wing had an aspect ratio of 6 (based on the unswept span) and was tested at various sweep angles relative to the body axis ranging from 0 to 60 deg. In an attempt to create more symmetrical spanwise wing stalling characteristics, both wing panels were bent upward to produce washout on the trailing wing panel and washing on the leading wing panel. Small fluorescent tufts were attached to the wing surface to indicate the stall progression on the wing. The tests were conducted throughout a Mach number range from 0.6 to 1.4 at a constant unit Reynolds number of 8.2 x 10 per meter. The test results indicate that upward bending of the wing panels had only a small effect on the linearity of the moment curves and would require an impractical wing-pivot location at low lift to eliminate the rolling moment resulting from this bending.
Experiments in teleoperator and autonomous control of space robotic vehicles
NASA Technical Reports Server (NTRS)
Alexander, Harold L.
1990-01-01
A research program and strategy are described which include fundamental teleoperation issues and autonomous-control issues of sensing and navigation for satellite robots. The program consists of developing interfaces for visual operation and studying the consequences of interface designs as well as developing navigation and control technologies based on visual interaction. A space-robot-vehicle simulator is under development for use in virtual-environment teleoperation experiments and neutral-buoyancy investigations. These technologies can be utilized in a study of visual interfaces to address tradeoffs between head-tracking and manual remote cameras, panel-mounted and helmet-mounted displays, and stereoscopic and monoscopic display systems. The present program can provide significant data for the development of control experiments for autonomously controlled satellite robots.
Analysis and design of a mechanical system to use with the Ronchi and Fizeau tests
NASA Astrophysics Data System (ADS)
Galán-Martínez, Arturo D.; Santiago-Alvarado, Agustín.; González-García, Jorge; Cruz-Martínez, Víctor M.; Cordero-Dávila, Alberto; Granados-Agustin, Fermin S.; Robledo-Sánchez, Calos
2013-11-01
Nowadays, there is a demand for more efficient opto-mechanical mounts which allow for the implementation of robust optical arrays in a quick and simple fashion. That is to say, mounts are needed which facilitate alignment of the optical components in order to perform the desired movements of each component. Optical testing systems available in the market today are costly, heavy and sometimes require multiple kits depending on the dimensions of the optical components. In this paper, we present the design and analysis of a mechanical system with some interchangeable basic mounts which allow for the application of both Ronchi and Fizeau tests for the evaluation of concave reflective surfaces with a diameter of 2 to 10 cm. The mechanical system design is done using the methodology of product design process, while the analysis is performed using the commercial software SolidWorks.
High temperature, flexible, fiber-preform seal
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Strocky, Paul J. (Inventor)
1992-01-01
A seal is mounted in a rectangular groove in a movable structural panel. The seal comprises a fiber preform constructed of multiple layers of fiber having a uniaxial core. Helical fibers are wound over the core. The fibers are of materials capable of withstanding high temperatures and are both left-hand and right-hand wound. An outer layer wrapped over said helical fibers prevents abrasion damage.
The Bilirubin Binding Panel: A Henderson-Hasselbalch Approach to Neonatal Hyperbilirubinemia.
Ahlfors, Charles E
2016-10-01
Poor plasma bilirubin binding increases the risk of bilirubin neurotoxicity in newborns with hyperbilirubinemia. New laboratory tests may soon make it possible to obtain a complete bilirubin binding panel when evaluating these babies. The 3 measured components of the panel are the plasma total bilirubin concentration (B Total ), which is currently used to guide clinical care; the bilirubin binding capacity (BBC); and the concentration of non-albumin bound or free bilirubin (B Free ). The fourth component is the bilirubin-albumin equilibrium dissociation constant, K D , which is calculated from B Total , BBC, and B Free The bilirubin binding panel is comparable to the panel of components used in the Henderson-Hasselbalch approach to acid-base assessment. Bilirubin binding population parameters (not prospective studies to determine whether the new bilirubin binding panel components are better predictors of bilirubin neurotoxicity than B Total ) are needed to expedite the clinical use of bilirubin binding. At any B Total , the B Free and the relative risk of bilirubin neurotoxicity increase as the K D /BBC ratio increases (ie, bilirubin binding worsens). Comparing the K D /BBC ratio of newborns with B Total of concern with that typical for the population helps determine whether the risk of bilirubin neurotoxicity varies significantly from the inherent risk at that B Total Furthermore, the bilirubin binding panel individualizes care because it helps to determine how aggressive intervention should be at any B Total , irrespective of whether it is above or below established B Total guidelines. The bilirubin binding panel may reduce anxiety, costs, unnecessary treatment, and the likelihood of undetected bilirubin neurotoxicity. Copyright © 2016 by the American Academy of Pediatrics.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-10
... in activities related to the production of solar panel production machines. The products manufactured... attributable to a future shift of solar panel production to Asia. Machines used to produce solar panels are not component parts of solar panels and are neither like nor directly competitive with solar panels. The...
Methods and apparatus for radially compliant component mounting
Bulman, David Edward [Cincinnati, OH; Darkins, Jr., Toby George; Stumpf, James Anthony [Columbus, IN; Schroder, Mark S [Greenville, SC; Lipinski, John Joseph [Simpsonville, SC
2012-03-27
Methods and apparatus for a mounting assembly for a liner of a gas turbine engine combustor are provided. The combustor includes a combustor liner and a radially outer annular flow sleeve. The mounting assembly includes an inner ring surrounding a radially outer surface of the liner and including a plurality of axially extending fingers. The mounting assembly also includes a radially outer ring coupled to the inner ring through a plurality of spacers that extend radially from a radially outer surface of the inner ring to the outer ring.
The Carnegie Quick Deploy Box (QDB) for use with broadband and intermediate period sensors
NASA Astrophysics Data System (ADS)
Wagner, L. S.; Roman, D.; Bartholomew, T.; Golden, S.; Schleigh, B.
2017-12-01
Recent data processing advances have increased the call for dense recordings of teleseismic data. However, traditional broadband field installations typically comprise 1) a sensor vault 2) a field box to hold the recording and power systems, and 3) a solar panel mount. The construction of these installations is time consuming and requires bulky construction materials, limiting the number of stations that can be installed from a single vehicle without repeated trips to a storage facility. Depending on the deployment location, watertight containers for both vault and field box can be difficult to find, resulting in a loss of data due to flooding. Recent technological improvements have made possible the direct burial of sensors (no vault required) and a reduction in the size of the solar panels needed to run a station. With support from the Brinson Foundation, we take advantage of these advances to create a field box/shipping container that will greatly simplify these types of seismic deployments. The goal of the Carnegie Quick Deploy Box (QDB) is to have everything needed for an intermediate period station install (except battery and shovel) contained in a single box for shipment, and to be able to leave everything (except the shovel) in that box when the station is deployed. The box is small enough ( 13"x13"x21") and lightweight enough (< 35 lbs) to be checked as airline luggage. The solar panel mount can be attached securely to the top of the box, but it can also be pole mounted with U-bolts or hose clamps. The sensor can be direct-buried. The sensor cable and solar panel cable plug into watertight bulkhead-fitted plugs on the outside of the box that are in turn plugged into the digitizer and power regulator inside the box. Our prototype boxes (Pelican Cases) have proved watertight when submerged for days. This equipment has been tested in Alaska in winter and Nicaragua in summer without failure due to flooding or power. The cost for parts for a single box (not including sensor cable, sensor, or digitizer) is $500. The setup is simple, and can be completed in a matter of minutes once the sensor is installed. QDBs such as ours will make possible a dramatic increase in the number of stations that can be installed, while also significantly decreasing the cost of deployment per station by reducing vehicle time, fuel, personnel time, and shipping costs.
Loaded transducer for downhole drilling components
Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT; Daly, Jeffery E [Cypress, TX
2009-05-05
A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.
Thermal Modeling of the Mars Reconnaissance Orbiter's Solar Panel and Instruments during Aerobraking
NASA Technical Reports Server (NTRS)
Dec, John A.; Gasbarre, Joseph F.; Amundsen, Ruth M.
2007-01-01
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.
The FIA Panel Design and Compatible Estimators for the Components of Change
Francis A. Roesch
2006-01-01
The FIA annual panel design and its relation to compatible estimation systems for the components of change are discussed. Estimation for the traditional components of growth, as presented by Meyer (1953, Forest Mensuration) is bypassed in favor of a focus on estimation for the discrete analogs to Erikssonâs (1995, For. Sci. 41(4):796- 822) time invariant redefinitions...
Using a Fuzzy Light Sensor to Improve the Efficiency of Solar Panels
NASA Astrophysics Data System (ADS)
Suryono; Suseno, Jatmiko Endro; Sulistiati, Ainie Khuriati Riza; Prahara, Tahan
2018-02-01
Solar panel efficiency can be increased by improving the quality of photovoltaic material, the effectiveness of electronic circuit, and the light source tracking model. This research is aimed at improving the quality of solar panels by tracking light source using a fuzzy logic sensor. A fuzzy light sensor property is obtained from two LDR (light dependent resistor) light sensors installed in parallel to each other and is given a light separator in between them. Both sensors are mounted on a solar panel. Sensor output is acquired using a 12 bit ADC from an ATSAM3XE microcontroller and is then sent to a computer using WIFI radio. A PID (Proportional-Integral-Derivative) control algorithm is used to manage the position of the solar panel in line with the input given by the fuzzy light sensor. This control mechanism works based on the margin of fuzzy membership from both sensors that is used to move a motor DC that in turn moves the solar panel. Experimental results show a characteristically symmetrical fuzzy membership of both sensors with a reflected correlation of R=0.9981 after gains from both sensors are arranged with a program. Upon being tested in the field, this system was capable of improving the performance of solar panels in gaining power compared to their original fixed position. The discrepancy was evident when the angle of incoming sunlight approached both 0° and 180°. Further calculations of data acquired by the fuzzy light sensor show increased solar panel power efficiency by up to 5.6%.
SCBUCKLE user's manual: Buckling analysis program for simple supported and clamped panels
NASA Technical Reports Server (NTRS)
Cruz, Juan R.
1993-01-01
The program SCBUCKLE calculates the buckling loads and mode shapes of cylindrically curved, rectangular panels. The panel is assumed to have no imperfections. SCBUCKLE is capable of analyzing specially orthotropic symmetric panels (i.e., A(sub 16) = A(sub 26) = 0.0, D(sub 16) = D(sub 26) = 0.0, B(sub ij) = 0.0). The analysis includes first-order transverse shear theory and is capable of modeling sandwich panels. The analysis supports two types of boundary conditions: either simply supported or clamped on all four edges. The panel can be subjected to linearly varying normal loads N(sub x) and N(sub y) in addition to a constant shear load N(sub xy). The applied loads can be divided into two parts: a preload component; and a variable (eigenvalue-dependent) component. The analysis is based on the modified Donnell's equations for shallow shells. The governing equations are solved by Galerkin's method.
NASA Technical Reports Server (NTRS)
Vilnrotter, V.
2011-01-01
The potential development of large aperture ground?based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation is to polish the aluminum reflector panels of 34?meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by state of?the?art polished aluminum panels. Theoretical analyses of receiving antenna pointing, temporal synchronization and data detection have been addressed in previous papers. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. Two polished aluminum panels (a standard DSN panel polished to high reflectance, and a custom designed aluminum panel with much better surface quality) have been mounted on the 34 meter research antenna at Deep?Space Station 13 (DSS?13), and a remotely controlled CCD camera with a large CCD sensor in a weather?proof container has been installed next to the subreflector, pointed directly at the custom polished panel. The point?spread function (PSF) generated by the Vertex polished panel has been determined to be smaller than the sensor of the CCD camera, hence a detailed picture of the PSF can be obtained every few seconds, and the sensor array data processed to determine the center of the intensity distribution. In addition to estimating the center coordinates, expected communications performance can also been evaluated with the recorded data. The results of preliminary pointing experiments with the Vertex polished panel receiver using the planet Jupiter to simulate the PSF generated by a deep?space optical transmitter are presented and discussed in this paper.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-733] In the Matter of Certain Flat Panel Digital... importation, and the sale within the United States after importation of certain flat panel digital televisions... sale within the United States after importation of certain flat panel digital televisions and...
ELECTRONIC BIVANE WIND DIRECTION INDICATOR
Moses, H.
1961-05-01
An apparatus is described for determining and recording three dimensional wind vectors. The apparatus comprises a rotatably mounted azimuthal wind component sensing head and an elevational wind component sensing head mounted to the azimuthal head and adapted to rotate therewith in the azimuthal plane and independently in the elevational plane. A heat source and thermocouples disposed thereabout are mounted within each of the sensing heads, the thermocouples providing electrical signals responsive to the temperature differential created by the passage of air through the sensing tuhes. The thermocouple signals are applied to drive mechanisms which position the sensing heads to a null wind position. Recording means are provided responsive to positional data from the drive mechanisms which are a measurement of the three dimensional wind vectors.
Blundy, Jon; Cashman, Katharine V.; Berlo, Kim; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
O contents, consistent with magma extraction from shallow depths. Highly enriched Li in melt inclusions suggests that vapor transport of Li is a characteristic feature of Mount St. Helens. Melt inclusions from the current eruption have subtly different trace-element chemistry from all but one of the 1980-86 melt inclusions, with steeper rareearth-element (REE) patterns and low U, Th, and high-fieldstrength elements (HFSE), indicating addition of a new melt component to the magma system. It is anticipated that increasing involvement of the new melt component will be evident as the current eruption proceeds.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... Re Certain Flat Panel Digital Televisions and Components Thereof''; the Commission is soliciting... importation of certain flat panel digital televisions and components thereof. The complaint names as..., competitive conditions in the United States economy, the production of like or directly competitive articles...
NASA Technical Reports Server (NTRS)
Kling, Daniel (Inventor)
2014-01-01
An end-configuration of components to be moved or positioned is first obtained. This end-configuration determines the relative positioning and orientation of the components with respect to each other when in a final, desired configuration. A folding pattern is then obtained that is formed by interior vertices defining corresponding tessellation facets. The folding pattern can be induced to transition from a first folded configuration to a second folded configuration. When in the second folded configuration mounting facets, which are a subset of the tessellation facets, are arranged by the geometry of the folding pattern into positions and orientations with respect to each other that correspond to the end-configuration of the components. A foldable structure is then obtained that folds in accordance with the folding pattern, and the components are affixed to their respective mounting facets.
NASA Technical Reports Server (NTRS)
Cunningham, Herbert J.
1987-01-01
The body surface-panel method SOUSSA is applied to calculate steady and unsteady lift and pitching moment coefficients on a thin fighter-type wing model with and without a tip-mounted missile. Comparisons are presented with experimental results and with PANAIR and PANAIR-related calculations for Mach numbers from 0.6 to 0.9. In general the SOUSSA program, the experiments, and the PANAIR (and related) programs give lift and pitching-moment results which agree at least fairly well, except for the unsteady clean-wing experimental moment and the unsteady moment on the wing tip body calculated by a PANAIR-predecessor program at a Mach number of 0.8.
EMI from solar panels and inverters
NASA Astrophysics Data System (ADS)
1983-01-01
Results are given of an exploratory investigation to ascertain the potential of electromagnetic interference (EMI) caused by radiation from photovoltaic (PV) systems. This includes a determination of the appropriate parameters to be measured and a review of present standards with emphasis on the FCC docket on incidental radiators. It also includes small residential installations having roof-mounted PV arrays. The results will be used to make recommendations as to what further work, if any, is needed to ensure that EMI from a PV system is negligible. Measured data so far show that the inverters in the solar-panel system tested caused severe EMI problems in the AM broadcast band (0.5 to 1.6 MH2), while FM and television reception was not significantly affected.
Installation package for concentrating solar collector panels
NASA Technical Reports Server (NTRS)
1978-01-01
The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.
STS-44 Atlantis, OV-104, MS Musgrave on FB-SMS middeck during JSC training
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) F. Story Musgrave, wearing lightweight headset (HDST), adjusts controls on communications module mounted on a middeck overhead panel. Musgrave is on the middeck of the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. The STS-44 crewmembers are participating in a flight simulation.
NASA Technical Reports Server (NTRS)
1986-01-01
The main objective was to design and build a minimum of three photovoltaic test panels for plasma interaction experiments. These experiments are intended to provide data on the interactions between high-voltage solar arrays and the space plasma environment. Data gathered will significantly contribute to the development of design criteria for the space station solar arrays. Electrical isolation between the solar cell strings and the module mounting plate is required for high-voltage bias.
Takano, Kouji; Hata, Naoki; Kansaku, Kenji
2011-01-01
The brain–machine interface (BMI) or brain–computer interface is a new interface technology that uses neurophysiological signals from the brain to control external machines or computers. This technology is expected to support daily activities, especially for persons with disabilities. To expand the range of activities enabled by this type of interface, here, we added augmented reality (AR) to a P300-based BMI. In this new system, we used a see-through head-mount display (HMD) to create control panels with flicker visual stimuli to support the user in areas close to controllable devices. When the attached camera detects an AR marker, the position and orientation of the marker are calculated, and the control panel for the pre-assigned appliance is created by the AR system and superimposed on the HMD. The participants were required to control system-compatible devices, and they successfully operated them without significant training. Online performance with the HMD was not different from that using an LCD monitor. Posterior and lateral (right or left) channel selections contributed to operation of the AR–BMI with both the HMD and LCD monitor. Our results indicate that AR–BMI systems operated with a see-through HMD may be useful in building advanced intelligent environments. PMID:21541307
Generalization of a tactile stimulus in horses.
Dougherty, D M; Lewis, P
1993-01-01
Using horses, we investigated the control of operant behavior by a tactile stimulus (the training stimulus) and the generalization of behavior to six other similar test stimuli. In a stall, the experimenters mounted a response panel in the doorway. Located on this panel were a response lever and a grain dispenser. The experimenters secured a tactile-stimulus belt to the horse's back. The stimulus belt was constructed by mounting seven solenoids along a piece of burlap in a manner that allowed each to provide the delivery of a tactile stimulus, a repetitive light tapping, at different locations (spaced 10.0 cm apart) along the horse's back. Two preliminary steps were necessary before generalization testing: training a measurable response (lip pressing) and training on several reinforcement schedules in the presence of a training stimulus (tapping by one of the solenoids). We then gave each horse two generalization test sessions. Results indicated that the horses' behavior was effectively controlled by the training stimulus. Horses made the greatest number of responses to the training stimulus, and the tendency to respond to the other test stimuli diminished as the stimuli became farther away from the training stimulus. These findings are discussed in the context of behavioral principles and their relevance to the training of horses. PMID:8315368
Generalization of a tactile stimulus in horses.
Dougherty, D M; Lewis, P
1993-05-01
Using horses, we investigated the control of operant behavior by a tactile stimulus (the training stimulus) and the generalization of behavior to six other similar test stimuli. In a stall, the experimenters mounted a response panel in the doorway. Located on this panel were a response lever and a grain dispenser. The experimenters secured a tactile-stimulus belt to the horse's back. The stimulus belt was constructed by mounting seven solenoids along a piece of burlap in a manner that allowed each to provide the delivery of a tactile stimulus, a repetitive light tapping, at different locations (spaced 10.0 cm apart) along the horse's back. Two preliminary steps were necessary before generalization testing: training a measurable response (lip pressing) and training on several reinforcement schedules in the presence of a training stimulus (tapping by one of the solenoids). We then gave each horse two generalization test sessions. Results indicated that the horses' behavior was effectively controlled by the training stimulus. Horses made the greatest number of responses to the training stimulus, and the tendency to respond to the other test stimuli diminished as the stimuli became farther away from the training stimulus. These findings are discussed in the context of behavioral principles and their relevance to the training of horses.
Investigation of discrete component chip mounting technology for hybrid microelectronic circuits
NASA Technical Reports Server (NTRS)
Caruso, S. V.; Honeycutt, J. O.
1975-01-01
The use of polymer adhesives for high reliability microcircuit applications is a radical deviation from past practices in electronic packaging. Bonding studies were performed using two gold-filled conductive adhesives, 10/90 tin/lead solder and Indalloy no. 7 solder. Various types of discrete components were mounted on ceramic substrates using both thick-film and thin-film metallization. Electrical and mechanical testing were performed on the samples before and after environmental exposure to MIL-STD-883 screening tests.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
...-80C2 forward engine mounts (skinny cast yoke) does not meet the Design Service Goal (DSG) requirements... forward engine mount. * * * * * The unsafe condition is possible separation of the engine from the engine... that, among the types of yokes in service, one component on the CF6-80C2 forward engine mounts (skinny...
12. Examples of the elaborate and plain pressedsteel ceiling panels, ...
12. Examples of the elaborate and plain pressed-steel ceiling panels, here removed to the exterior of the building for photographing. A segment of the cornice has been placed above the larger panel. The panel on the left is comprised of four square components; the panel on the right is a single piece. Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ
Nindl, Bradley C; Alvar, Brent A; R Dudley, Jason; Favre, Mike W; Martin, Gerard J; Sharp, Marilyn A; Warr, Brad J; Stephenson, Mark D; Kraemer, William J
2015-11-01
The National Strength and Conditioning Association's tactical strength and conditioning program sponsored the second Blue Ribbon Panel on military physical readiness: military physical performance testing, April 18-19, 2013, Norfolk, VA. This meeting brought together a total of 20 subject matter experts (SMEs) from the U.S. Air Force, Army, Marine Corps, Navy, and academia representing practitioners, operators, researchers, and policy advisors to discuss the current state of physical performance testing across the Armed Services. The SME panel initially rated 9 common military tasks (jumping over obstacles, moving with agility, carrying heavy loads, dragging heavy loads, running long distances, moving quickly over short distances, climbing over obstacles, lifting heavy objects, loading equipment) by the degree to which health-related fitness components (e.g., aerobic fitness, muscular strength, muscular endurance, flexibility, and body composition) and skill-related fitness components (e.g., muscular power, agility, balance, coordination, speed, and reaction time) were required to accomplish these tasks. A scale from 1 to 10 (10 being highest) was used. Muscular strength, power, and endurance received the highest rating scores. Panel consensus concluded that (a) selected fitness components (particularly for skill-related fitness components) are currently not being assessed by the military; (b) field-expedient options to measure both health-based and skill-based fitness components are currently available; and (c) 95% of the panel concurred that all services should consider a tier II test focused on both health-related and skill-related fitness components based on occupational, functional, and tactical military performance requirements.
Experiments in teleoperator and autonomous control of space robotic vehicles
NASA Technical Reports Server (NTRS)
Alexander, Harold L.
1991-01-01
A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.
An improved loopless mounting method for cryocrystallography
NASA Astrophysics Data System (ADS)
Qi, Jian-Xun; Jiang, Fan
2010-01-01
Based on a recent loopless mounting method, a simplified loopless and bufferless crystal mounting method is developed for macromolecular crystallography. This simplified crystal mounting system is composed of the following components: a home-made glass capillary, a brass seat for holding the glass capillary, a flow regulator, and a vacuum pump for evacuation. Compared with the currently prevalent loop mounting method, this simplified method has almost the same mounting procedure and thus is compatible with the current automated crystal mounting system. The advantages of this method include higher signal-to-noise ratio, more accurate measurement, more rapid flash cooling, less x-ray absorption and thus less radiation damage to the crystal. This method can be extended to the flash-freeing of a crystal without or with soaking it in a lower concentration of cryoprotectant, thus it may be the best option for data collection in the absence of suitable cryoprotectant. Therefore, it is suggested that this mounting method should be further improved and extensively applied to cryocrystallographic experiments.
Crespin, Oscar M; Okrainec, Allan; Kwong, Andrea V; Habaz, Ilay; Jimenez, Maria Carolina; Szasz, Peter; Weiss, Ethan; Gonzalez, Cecilia G; Mosko, Jeffrey D; Liu, Louis W C; Swanstrom, Lee L; Perretta, Silvana; Shlomovitz, Eran
2018-06-01
The fundamentals of laparoscopic surgery (FLS) training box is a validated tool, already accessible to surgical trainees to hone their laparoscopic skills. We aim to investigate the feasibility of adapting the FLS box for the practice and assessment of endoscopic skills. This would allow for a highly available, reusable, low-cost, mechanical trainer. The design and development process was based on a user-centered design, which is a combination of the design thinking method and cognitive task analysis. The process comprises four phases: empathy, cognitive, prototyping/adaptation, and end user testing. The underlying idea was to utilize as many of the existing components of FLS training to maintain simplicity and cost effectiveness while allowing for the practice of clinically relevant endoscopic skills. A sample size of 18 participants was calculated to be sufficient to detect performance differences between experts and trainees using a two tailed t test with alpha set at 0.05, standard deviation of 5.5, and a power of 80%. Adaptation to the FLS box included two fundamental attachments: a front panel with an insertion point for an endoscope and a shaft which provides additional support and limits movement of the scope. The panel also allows for mounting of retroflexion tasks. Six endoscopic tasks inspired by FLS were designed (two of which utilize existing FLS components). Pilot testing with 38 participants showed high user's satisfaction and demonstrated that the trainer was robust and reliable. Task performance times was able to discriminate between trainees and experts for all six tasks. A mechanical, reusable, low-cost adaptation of the FLS training box for endoscopic skills is feasible and has high user satisfaction. Preliminary testing shows that the simulator is able to discriminate between trainees and experts. Following further validation, this adaptation may act as a supplement to the FES program.
The Iowa Flood Center's River Stage Sensors—Technical Details
NASA Astrophysics Data System (ADS)
Niemeier, J. J.; Kruger, A.; Ceynar, D.; Fahim Rezaei, H.
2012-12-01
The Iowa Flood Center (IFC), along with support from the Iowa Department of Transportation (DOT) and the Iowa Department of Natural Resources (DNR) have developed a bridge-mounted river stage sensor. Each sensor consists of an ultrasonic distance measuring module, cellular modem, a GPS unit that provides accurate time and an embedded controller that orchestrates the sensors' operation. A sensor is powered by a battery and solar panel along with a solar charge controller. All the components are housed in/on a sturdy metal box that is then mounted on the side of a bridge. Additionally, each sensor incorporates a water-intrusion sensor and an internal temperature sensor. In operation, the microcontroller wakes, and turns on the electronics every 15 minutes and then measures the distance between the ultrasonic sensor and the water surface. Several measurements are averaged and transmitted along with system health information (battery voltage, state of water intrusion sensor, and internal temperature) via cellular modem to remote servers on the internet. The microcontroller then powers the electronics down and enters a sleep/power savings mode. The sensor's firmware allows the remote server to adjust the measurement rate to 5, 15, and 60 minutes. Further, sensors maintain a 24-day buffer of previous measurements. If a sensor could not successfully transmit its data because of cellular network connection problems, it will transmit the backlog on subsequent transmissions. We paid meticulous attention to all engineering aspects and sensors are very robust and have operated essentially continuously through two Iowa winters and summers, including the 2012 record-breaking warm summer.
Installation effects on the tonal noise generated by axial flow fans
NASA Astrophysics Data System (ADS)
Canepa, Edward; Cattanei, Andrea; Mazzocut Zecchin, Fabio
2015-03-01
The paper presents the results of experiments on a low-speed axial-flow fan flush mounted on flat panels typically employed in tests on automotive cooling fans. The experiments have been conducted in a hemi-anechoic chamber and were aimed at evaluating the installation effects of the whole test configuration, including chamber floor and size and shape of the mounting panel. The largest panels cause important SPL variations in a narrow, low frequency range. Their effect on the propagation function has been verified by means of parametric BEM computations. A regular wavy trend associated with reflections from the floor is also present. In both cases, the tonal noise is more strongly affected than the broadband one. The analysis is performed by means of an existing spectral decomposition technique and a new one, which allows to consider different noise generating mechanisms and also to separate the emitted tonal and broadband noise from the associated propagation effects. In order to better identify the features of the noise at the blade passing frequency (BPF) harmonics, the phase of the acoustic pressure is also analysed. Measurements are taken during speed ramps, which allow to obtain both constant-Strouhal number SPL data and constant-speed data. The former data set is employed in the new technique, while the latter may be employed in the standard spectral decomposition techniques. Based on both the similarity theory and the analysis of the Green's function of the problem, a theoretical description of the structure of the received SPL spectrum is given. Then, the possibility of discriminating between tonal and broadband noise generating mechanisms is analysed and a theoretical base for the new spectral decomposition technique is provided.
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents data from the reentry of flight STS-35 in tabular and graphical format.
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents tabular and graphical spectral data of the reentry of flight STS-35.
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, and STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents flight data for flight STS-35 in graphical format.
Study of multi-kilowatt solar arrays for Earth orbit applications
NASA Technical Reports Server (NTRS)
Patterson, R. E.
1983-01-01
A miniaturized Cassegrainian concentrator (MCC) solar array concept is being developed with the objective of significantly reducing the recurring cost of multikilowatt solar arrays. The desired cost reduction is obtained as a result of using very small high efficiency solar cells in conjuction with low cost optics. The MCC single element concept incident slar radiation is reflected rom a primary parabolic reflector to a secondary hyperbolic reflector and finally to a 4 millimeter diameter solar cell. A light catcher cone is used to improve off axis performance. The solar cell is mounted to a heat fin. An element is approximately 13 millimeters thick which permits efficient launch stowage of the concentrator system panels without complex optical component deployments or retractions. The MCC elements are packed in bays within graphite epoxy frames and are electrically connected into appropriate series-parallel circuits. A MCC sngle element with a 21 sq cm entrance aperture and a 20 efficient, 0.25 sq cm gallium arsenide solar cell has the same power output as 30 sq cm of 11-percent efficiency (at 68 C) silicon solar cells.
Engineering education using a remote laboratory through the Internet
NASA Astrophysics Data System (ADS)
Axaopoulos, Petros J.; Moutsopoulos, Konstantinos N.; Theodoridis, Michael P.
2012-03-01
An experiment using real hardware and under real test conditions can be remotely conducted by engineering students and other interested individuals in the world via the Internet and with the capability of live video streaming from the test site. The presentation of this innovative experiment refers to the determination of the current voltage characteristic curve of a photovoltaic panel installed on the roof of a laboratory, facing south and with the ability to alter its tilt angle, using a closed loop servo motor mounted on the horizontal axis of the panel. The user has the sense of a direct contact with the system since they can intervene and alter the tilt of the panel and get a live visual feedback besides the remote instrumentation panel. The whole procedure takes a few seconds to complete and the characteristic curve is displayed in a chart giving the student and anyone else interested the chance to analyse the results and understand the respective theory; meanwhile, the test data are stored in a file for future use. This type of remote experiment could be used for distance education, training, part-time study and to help students with disabilities to participate in a laboratory environment.
Light redirecting system using sine-wave based panels for dense urban areas
NASA Astrophysics Data System (ADS)
Mohamed, Mohamed W. N.; Mashaly, Islam A.; Mohamed, Osama N.; El-Henawy, Sally I.; Galal, Ola; Taha, Iman; Nassar, Khaled; Safwat, Amr M. E.
2014-09-01
Cities and towns around the world are becoming more condensed due to the shrinking amount of buildable areas, which significantly reduces the amount of light that occupants have access to. This lack of natural lighting results in health, safety and quality of life degradation. This paper presents a new technique of transmitting sunlight downward into narrow alleys and streets, by using a daylighting guiding acrylic panel that is capable of changing the direction and distribution of the incident light. The core of the proposed daylight guidance system is made up of light transmission panels with high quality. The corrugations have sine wave shaped cross-section so that the panel functions as an optical diffuser perpendicular to the direction of sunlight propagation. The day lighting system consists of the corrugated panels and a lattice frame, which supports the panel. The proposed system is to be mounted on the building roof facing the sun so as to redirect the incident sunlight downward into the narrow alleys or streets. Since building sizes and orientations are different the frame is arranged such that substantially deep light penetration and high luminance level can be achieved. Simulation results show that the proposed panel improves the illuminance values by more than 200% and 400% in autumn and winter, respectively, provides fan-out angle that exceeds 80° for certain solar altitudes and the transmitted power percentage varies from 40% to 90% as the solar altitude varies from 10° to 80°. Experimental results are in a good agreement with the simulations.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Kim, Yong H.
1995-01-01
The results of a detailed study of the buckling and postbuckling responses of composite panels with central circular cutouts are presented. The panels are subjected to combined edge shear and temperature change. The panels are discretized by using a two-field degenerate solid element with each of the displacement components having a linear variation throughout the thickness of the panel. The fundamental unknowns consist of the average mechanical strains through the thickness and the displacement components. The effects of geometric nonlinearities and laminated anisotropic material behavior are included. The stability boundary, postbuckling response and the hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the buckling and postbuckling responses to variations in the panel stiffnesses, and the material properties of both the individual layers and the constituents (fibers and matrix). Numerical results are presented for composite panels with central circular cutouts subjected to combined edge shear and temperature change, showing the effects of variations in the hole diameter, laminate stacking sequence and fiber orientation, on the stability boundary and postbuckling response and their sensitivity to changes in the various panel parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, J. G.; Petrak, D. R.; Pillai, T. A. K.
1998-04-01
Continuous fiber ceramic matrix composites are currently being developed for a variety of high-temperature applications. Because of the high costs of making these components, minor damage incurred during manufacturing or operation must be rewired in order to extend the life of the components. In this study, five ceramic-grade Nicalon{trademark} fiber/SiNC-matrix composite panels were intentionally damaged with a pendulum-type impactor during an impact test. The damaged panels were then repaired at Dow Corning Corporation. Three nondestructive evaluation (NDE) methods were used to study the characteristics of the panels after the damage and again after the panels were repaired. The NDE methodsmore » were X-ray radiography, infrared thermal imaging, and air-coupled ultrasound. The results showed that the impact test induced various types of damage in the panels. The NDE data that were obtained by the three NDE methods were correlated with each other.« less
Development and Analysis of Closed Cycle Circulator Elements.
1980-05-01
circuits are mounted on cards accessible through a hinged rear panel for service or adjustments. Cards may be removed in groups of 3 for servicing without...voltage signal is processed in such a way that it became linearly related to velocity of the gas flow. The use of these modules ensures the frequency...most important idiagnostic to be measured optically. This test is broken down into two categories: a medium homogeneity category *1 in which
Design package for concentrating solar collector panels
NASA Technical Reports Server (NTRS)
1978-01-01
Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.
Implementation of Remote Corrosion-Monitoring Sensor for Mission-Essential Structures at Okinawa
2009-08-01
with voluminous corrosion products. Martensitic stainless steels are susceptible to pitting and chlo- ride stress corrosion cracking in marine... steel , zinc- rich epoxy-coated steel , phenolic coated steel and bare type 410 stainless steel . (The steel panels were A36 steel .) The racks were...and ER probes were installed on building number 125. The coupons were mounted to an aluminum frame using stainless steel bolts and nylon spacer
NASA Technical Reports Server (NTRS)
Maskew, B.
1983-01-01
A general low-order surface-singularity panel method is used to predict the aerodynamic characteristics of a problem where a wing-tip vortex from one wing closely interacts with an aft mounted wing in a low Reynolds Number flow; i.e., 125,000. Nonlinear effects due to wake roll-up and the influence of the wings on the vortex path are included in the calculation by using a coupled iterative wake relaxation scheme. The interaction also affects the wing pressures and boundary layer characteristics: these effects are also considered using coupled integral boundary layer codes and preliminary calculations using free vortex sheet separation modelling are included. Calculated results are compared with water tunnel experimental data with generally remarkably good agreement.
Architecture of PAU survey camera readout electronics
NASA Astrophysics Data System (ADS)
Castilla, Javier; Cardiel-Sas, Laia; De Vicente, Juan; Illa, Joseph; Jimenez, Jorge; Maiorino, Marino; Martinez, Gustavo
2012-07-01
PAUCam is a new camera for studying the physics of the accelerating universe. The camera will consist of eighteen 2Kx4K HPK CCDs: sixteen for science and two for guiding. The camera will be installed at the prime focus of the WHT (William Herschel Telescope). In this contribution, the architecture of the readout electronics system is presented. Back- End and Front-End electronics are described. Back-End consists of clock, bias and video processing boards, mounted on Monsoon crates. The Front-End is based on patch panel boards. These boards are plugged outside the camera feed-through panel for signal distribution. Inside the camera, individual preamplifier boards plus kapton cable completes the path to connect to each CCD. The overall signal distribution and grounding scheme is shown in this paper.
Scanning Tunneling Microscope For Use In Vacuum
NASA Technical Reports Server (NTRS)
Abel, Phillip B.
1993-01-01
Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians cover a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians prepare to cover a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a United Space Alliance technician inspects a wing leading edge of space shuttle Atlantis following removal of the reinforced carbon carbon panels, or RCC panels. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a United Space Alliance technician inspects a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians remove a reinforced carbon carbon panel, or RCC panel, from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
Ultralightweight Fresnel Lens Solar Concentrators for Space Power
NASA Technical Reports Server (NTRS)
ONeill, M. J.; McDanal, A. J.
2000-01-01
The first phase of this project was completed in March 2000, and included the successful technology demonstration of a new ultralightweight photovoltaic concentrator array at the fully functional panel level. The new array is called the Stretched Lens Aurora (SLA) array, and uses deployable, flexible, thin-film silicone rubber Fresnel lenses to focus sunlight onto high efficiency multijunction solar cells, which are mounted to a composite radiator surface for waste heat dissipation. A prototype panel was delivered to NASA Marshall in March 2000, and comprised four side-by-side lenses focussing sunlight onto four side-by-side photovoltaic receivers. This prototype panel was tested by NASA Glenn prior to delivery to NASA Marshall. The best of the four lens/receiver modules achieved 27.4% efficiency at room temperature in the NASA Glenn solar simulator tests. This performance equates to 375 W/sq.m. areal power and 378 W/kg specific power at the fully functional panel level. We believe this to be the first space solar array of any kind to simulataneously meet the two long-standing NASA goals of 300 W/sq.m. and 300 W/kg at the functional panel level. Key results for the first phase of the program have been documented by ENTECH in a Draft Final Technical Report, which is presently being reviewed by NASA, and which should be published in the near future.
Expert Systems on Multiprocessor Architectures. Volume 2. Technical Reports
1991-06-01
Report RC 12936 (#58037). IBM T. J. Wartson Reiearch Center. July 1987. Alan Jay Smith. Cache memories. Coniputing Sitrry., 1.1(3): I.3-5:30...basic-shared is an instrument for ashared memory design. The components panels are processor- qload-scrolling-bar-panel, memory-qload-scrolling-bar-panel
Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, Michael W; Miner, Kris
The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then completemore » the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.« less
Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.
1993-01-01
A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.
Playback Station #2 for Cal Net and 5-day-recorder tapes
Eaton, Jerry P.
1978-01-01
A second system (Playback Station #2) has been set up to play back Cal Net 1" tapes and 5-day-recorder 1/2" tapes. As with the first playback system (Playback Station #1) the tapes are played back on a Bell and Howell VR3700B tape deck and the records are written out on a 16-channel direct-writing Siemens "0scillomink." Separate reproduce heads, tape guides, and tape tension sensor rollers are required for playing back 111 tapes and 1/2" tapes, but changing these tape deck components is a simple task that requires only a few minutes. The discriminators, patch panels, selector switches, filters, time code translators, and signal conditioning circuits for the time code translators and for the tape-speed-compensation signal are all mounted in an equipment rack that stands beside the playback tape deck. Changing playback speeds (15/16 ips or 3 3/4 ips) or changing from Cal Net tapes to 5-day-recorder tapes requires only flipping a few switches and/or changing a few patch cables on the patch panel (in addition to changing the reproduce heads, etc., to change from 1" tape to 1/2" tape). For the Cal Net tapes, the system provides for playback of 9 data channels (680 Hz thru 3060 Hz plus 400 Hz) and 3 time signals (IRIG-E, IRIG-C, and WWVB) at both 15/16 ips (x1 speed) and 3 3/4 ips (x4 speed). Available modes of compensation (using either a 4688 Hz reference or a 3125 Hz reference) are subtractive, capstan, capstan plus subtractive, or no compensation.
Stackable multi-port gas nozzles
Poppe, Steve; Rozenzon, Yan; Ding, Peijun
2015-03-03
One embodiment provides a reactor for material deposition. The reactor includes a chamber and at least one gas nozzle. The chamber includes a pair of susceptors, each having a front side and a back side. The front side mounts a number of substrates. The susceptors are positioned vertically so that the front sides of the susceptors face each other, and the vertical edges of the susceptors are in contact with each other, thereby forming a substantially enclosed narrow channel between the substrates mounted on different susceptors. The gas nozzle includes a gas-inlet component situated in the center and a detachable gas-outlet component stacked around the gas-inlet component. The gas-inlet component includes at least one opening coupled to the chamber, and is configured to inject precursor gases into the chamber. The detachable gas-outlet component includes at least one opening coupled to the chamber, and is configured to output exhaust gases from the chamber.
Graphite Composite Panel Polishing Fixture
NASA Technical Reports Server (NTRS)
Hagopian, John; Strojny, Carl; Budinoff, Jason
2011-01-01
The use of high-strength, lightweight composites for the fixture is the novel feature of this innovation. The main advantage is the light weight and high stiffness-to-mass ratio relative to aluminum. Meter-class optics require support during the grinding/polishing process with large tools. The use of aluminum as a polishing fixture is standard, with pitch providing a compliant layer to allow support without deformation. Unfortunately, with meter-scale optics, a meter-scale fixture weighs over 120 lb (.55 kg) and may distort the optics being fabricated by loading the mirror and/or tool used in fabrication. The use of composite structures that are lightweight yet stiff allows standard techniques to be used while providing for a decrease in fixture weight by almost 70 percent. Mounts classically used to support large mirrors during fabrication are especially heavy and difficult to handle. The mount must be especially stiff to avoid deformation during the optical fabrication process, where a very large and heavy lap often can distort the mount and optic being fabricated. If the optic is placed on top of the lapping tool, the weight of the optic and the fixture can distort the lap. Fixtures to support the mirror during fabrication are often very large plates of aluminum, often 2 in. (.5 cm) or more in thickness and weight upwards of 150 lb (68 kg). With the addition of a backing material such as pitch and the mirror itself, the assembly can often weigh over 250 lb (.113 kg) for a meter-class optic. This innovation is the use of a lightweight graphite panel with an aluminum honeycomb core for use as the polishing fixture. These materials have been used in the aerospace industry as structural members due to their light weight and high stiffness. The grinding polishing fixture consists of the graphite composite panel, fittings, and fixtures to allow interface to the polishing machine, and introduction of pitch buttons to support the optic under fabrication. In its operation, the grinding polishing fixture acts as a reaction structure to the polishing tool. It must be stiff enough to avoid imparting a distorted shape to the optic under fabrication and light enough to avoid self-deflection. The fixture must also withstand significant tangential loads from the polishing machine during operations.
Compatible estimators of the components of change for a rotating panel forest inventory design
Francis A. Roesch
2007-01-01
This article presents two approaches for estimating the components of forest change utilizing data from a rotating panel sample design. One approach uses a variant of the exponentially weighted moving average estimator and the other approach uses mixed estimation. Three general transition models were each combined with a single compatibility model for the mixed...
The Interplay of Surface Mount Solder Joint Quality and Reliability of Low Volume SMAs
NASA Technical Reports Server (NTRS)
Ghaffarian, R.
1997-01-01
Spacecraft electronics including those used at the Jet Propulsion Laboratory (JPL), demand production of highly reliable assemblies. JPL has recently completed an extensive study, funded by NASA's code Q, of the interplay between manufacturing defects and reliability of ball grid array (BGA) and surface mount electronic components.
50th Annual Fuze Conference. Session 1 and 2
2006-05-11
PROGRAM OFFICE AMSRD-AAR-AIJ J. Goldman X6060 STRATEGIC MGT OFFICE AMSRD-AAR-EMS D. Denery X6081 KNOWLEDGE MANAGEMENT OFFICE AMSRD-AAR-EMK G. Albinson...Tail-Mounted Configuration (MK-82 Demo) UHF to L-Band Pulse Doppler Radar Using Low Cost COTS Components Nose and Tail Mount Configurations Only
NASA Technical Reports Server (NTRS)
Frost, R. K.; Jones, J. S.; Dynes, P. J.; Wykes, D. H.
1981-01-01
The development and demonstration of manufacturing technologies for the structural application of Celion graphite/LARC-160 polyimide composite material is discussed. Process development and fabrication of demonstration components are discussed. Process development included establishing quality assurance of the basic composite material and processing, nondestructive inspection of fabricated components, developing processes for specific structural forms, and qualification of processes through mechanical testing. Demonstration components were fabricated. The demonstration components consisted of flat laminates, skin/stringer panels, honeycomb panels, chopped fiber compression moldings, and a technology demonstrator segment (TDS) representative of the space shuttle aft body flap.
Man-Portable Vector EMI Sensor for Full UXO Characterization
2012-03-01
receivers (for survey in forest and/or in steep terrain). Left inset shows data acquisition (DAQ) and power unit mounted on a backpack frame. Right panel...survey list was created such as to minimize the overall travel distance to visit every anomaly. After the daily IVS survey field operators walked to...the red star at coordinates (0, 0), is generally offset from the signal peak. This observation motivated use of a conservative 3x3-point-grid survey
Fabrication of prepackaged superalloy honeycomb Thermal Protection System (TPS) panels
NASA Technical Reports Server (NTRS)
Blair, W.; Meaney, J. E.; Rosenthal, H. A.
1985-01-01
High temperature materials were surveyed, and Inconel 617 and titanium were selected for application to a honeycomb TPS configuration designed to withstand 2000 F. The configuration was analyzed both thermally and structurally. Component and full-sized panels were fabricated and tested to obtain data for comparison with analysis. Results verified the panel design. Twenty five panels were delivered to NASA Langley Research Center for additional evaluation.
High-temperature, high-pressure bonding of nested tubular metallic components
Quinby, T.C.
A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.
Hardware-Based Non-Optimum Factors for Launch Vehicle Structural Design
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Cerro, Jeffrey A.
2010-01-01
During aerospace vehicle conceptual and preliminary design, empirical non-optimum factors are typically applied to predicted structural component weights to account for undefined manufacturing and design details. Non-optimum factors are developed here for 32 aluminum-lithium 2195 orthogrid panels comprising the liquid hydrogen tank barrel of the Space Shuttle External Tank using measured panel weights and manufacturing drawings. Minimum values for skin thickness, axial and circumferential blade stiffener thickness and spacing, and overall panel thickness are used to estimate individual panel weights. Panel non-optimum factors computed using a coarse weights model range from 1.21 to 1.77, and a refined weights model (including weld lands and skin and stiffener transition details) yields non-optimum factors of between 1.02 and 1.54. Acreage panels have an average 1.24 non-optimum factor using the coarse model, and 1.03 with the refined version. The observed consistency of these acreage non-optimum factors suggests that relatively simple models can be used to accurately predict large structural component weights for future launch vehicles.
... Testing Leptin Levetiracetam Lipase Lipid Panel Lipoprotein (a) Lithium Liver Panel Lp-PLA2 Lupus Anticoagulant Testing Luteinizing ... thrombin time is just one component of the battery of tests typically required to evaluate a bleeding ...
NASA Technical Reports Server (NTRS)
Bryson, L. L.; Mccarty, J. E.
1973-01-01
Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.
NASA Astrophysics Data System (ADS)
Jiang, Hao
A method is developed for modeling, detecting, and locating material damage in homogeneous thin metallic sheets and sandwich panels. Analytical and numerical models are used along with non-contact, passive acoustic transmission measurements. It is shown that global and local damage mechanisms characterized by both material and geometrical changes in structural components can be detected using passive acoustic transmission measurements. Theoretical models of a flat sheet and sandwich panel are developed to describe the effects of global material damage due to density, modulus, or thickness changes on backplane radiated sound pressure level distributions. To describe the effects of local material damage, a three-segment stepped beam model and finite element beam, plate, and sandwich panel models are developed and analyzed using the acoustic transmission approach. It is shown that increases or decreases in transmitted sound energy occur behind a damaged material component that exhibits changes in thickness or other geometric or material properties. The damage due to thickness and density changes can be detected from the acoustic transmission, but modulus changes cannot. If the damage is located at an anti-node of a certain forced vibration pattern, the damage can be more readily observed in the data. Higher excitation frequencies within the operating spectrum are preferred to lower frequencies for damage detection. With the finite element beam, plate, and sandwich panel models, local damage detection has been performed in simulations. Experiments on a baffled homogeneous sheet and sandwich panel subjected to broadband acoustic energy show that transmitted intensity measurements with non-contact probes can be used to identify and locate material defects in the sheet and sandwich panel. Material damage is most readily identified where the changes in transmitted sound intensity are largest in the resonant frequency range of the panel. The three main contributions of this research are: (1) the use of non-contact sensing to detect global and localized damage in structural components; (2) the analytical and numerical modeling of material and geometrical damage mechanisms in structural components; and, (3) the experimental verification of acoustic transmission measurements for detecting both material and geometric damage mechanisms.
3D-additive manufactured optical mount
NASA Astrophysics Data System (ADS)
Mammini, Paul V.; Ciscel, David; Wooten, John
2015-09-01
The Area Defense Anti-Munitions (ADAM) is a low cost and effective high power laser weapon system. It's designed to address and negate important threats such as short-range rockets, UAVs, and small boats. Many critical optical components operate in the system. The optics and mounts must accommodate thermal and mechanical stresses, plus maintain an exceptional wave front during operation. Lockheed Martin Space Systems Company (LMSSC) developed, designed, and currently operates ADAM. This paper covers the design and development of a key monolithic, flexured, titanium mirror mount that was manufactured by CalRAM using additive processes.
NASA Astrophysics Data System (ADS)
Crump, D. A.; Dulieu-Barton, J. M.; Savage, J.
2010-01-01
This paper describes the design of a test rig, which is used to apply a representative pressure load to a full-scale composite sandwich secondary aircraft structure. A generic panel was designed with features to represent those in the composite sandwich secondary aircraft structure. To provide full-field strain data from the panels, the test rig was designed for use with optical measurement techniques such as thermoelastic stress analysis (TSA) and digital image correlation (DIC). TSA requires a cyclic load to be applied to a structure for the measurement of the strain state; therefore, the test rig has been designed to be mounted on a standard servo-hydraulic test machine. As both TSA and DIC require an uninterrupted view of the surface of the test panel, an important consideration in the design is facilitating the optical access for the two techniques. To aid the test rig design a finite element (FE) model was produced. The model provides information on the deflections that must be accommodated by the test rig, and ensures that the stress and strain levels developed in the panel when loaded in the test rig would be sufficient for measurement using TSA and DIC. Finally, initial tests using the test rig have shown it to be capable of achieving the required pressure and maintaining a cyclic load. It was also demonstrated that both TSA and DIC data can be collected from the panels under load, which are used to validate the stress and deflection derived from the FE model.
Imaging the Mount St. Helens Magmatic Systems using Magnetotellurics
NASA Astrophysics Data System (ADS)
Hill, G. J.; Caldwell, T. G.; Heise, W.; Bibby, H. M.; Chertkoff, D. G.; Burgess, M. K.; Cull, J. P.; Cas, R. A.
2009-05-01
A detailed magnetotelluric survey of Mount St. Helens shows that a conduit like zone of high electrical conductivity beneath the volcano is connected to a larger zone of high conductivity at 15 km depth that extends eastward to Mount Adams. We interpret this zone to be a region of connected melt that acts as the reservoir for the silicic magma being extruded at the time of the magnetotelluric survey. This interpretation is consistent with a mid-crustal origin for the silicic component of the Mount St. Helens' magmas and provides an elegant explanation for a previously unexplained feature of the seismicity observed at the time of the catastrophic eruption in 1980. This zone of high mid-crustal conductivity extends northwards to near Mount Rainier suggesting a single region of connected melt comparable in size to the largest silicic volcanic systems known.
75 FR 81287 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... Housing Authority for the purchase and installation of through-the-wall air conditioners, floor-mounted... exception was granted by HUD on the basis that the relevant manufactured goods (through-the-wall air conditioners, floor-mounted water closets, and low voltage electrical components) are not produced in the U.S...
Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.
Rumyantsev, Valery D
2010-04-26
High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.
NASA Astrophysics Data System (ADS)
Kasthurirengan, S.; Vivek, G. A.; Verma, Ravi; Behera, Upendra; Udgata, Swarup; Gangradey, Ranjana
2017-02-01
Cryosorption pumps are the only solution for pumping helium and hydrogen in fusion systems, due to their high pumping speeds and suitability in harsh environments. Their development requires the right Activated Carbons (ACs) and suitable adhesives to bind them to metallic panels with liquid helium (LHe) flow channels. However, their performance evaluation will require large quantities of LHe. Alternatively, these pumps can be built with small size panels adhered with ACs and cooled by a cryocooler. The paper describes the development of a cryopump using a commercial cryocooler (Sumitomo RDK415D), with 1.5W@4.2 K, integrated with small size AC panel mounted on 2nd stage, with the 1st stage acting as radiation shield. Under no load, the cryopump reaches the ultimate pressure of 2.1E-7 mbar. The pump is built using panels with different indigenously developed ACs such as granules, pellets, ACF-FK2 and activated carbon of knitted IPR cloth. We present the experimental results of pumping speeds for gases such as nitrogen, argon and helium using the procedures outlined by American Vacuum Society (AVS). These studies will enable to arrive at the right ACs and adhesives for the development of large scale cryosorption pumps with liquid helium flow.
Development status of the PDC-1 Parabolic Dish Concentrator
NASA Technical Reports Server (NTRS)
Thostesen, T.; Soczak, I. F.; Pons, R. L.
1982-01-01
The status of development of the 12 m diameter parabolic dish concentrator which is planned for use with the Small Community Solar Thermal Power System. The PDC-1 unit features the use of plastic reflector film bonded to structural plastic gores supported by front-bracing steel ribs. An elevation-over-azimuth mount arrangement is employed, with a conventional wheel-and-track arrangement; outboard trunnions permit the dish to be stored in the face down position, with the added advantage of easy access to the power conversion assembly. The control system is comprised of a central computer (LSI 1123), a manual control panel, a concentrator control unit, two motor controllers, a Sun sensor, and two angular position resolvers. The system is designed for the simultaneous control of several concentrators. The optical testing of reflective panels is described.
Determining Transmission Loss from Measured External and Internal Acoustic Environments
NASA Technical Reports Server (NTRS)
Scogin, Tyler; Smith, A. M.
2012-01-01
An estimate of the internal acoustic environment in each internal cavity of a launch vehicle is needed to ensure survivability of Space Launch System (SLS) avionics. Currently, this is achieved by using the noise reduction database of heritage flight vehicles such as the Space Shuttle and Saturn V for liftoff and ascent flight conditions. Marshall Space Flight Center (MSFC) is conducting a series of transmission loss tests to verify and augment this method. For this test setup, an aluminum orthogrid curved panel representing 1/8th of the circumference of a section of the SLS main structure was mounted in between a reverberation chamber and an anechoic chamber. Transmission loss was measured across the panel using microphones. Data measured during this test will be used to estimate the internal acoustic environments for several of the SLS launch vehicle internal spaces.
NASA Astrophysics Data System (ADS)
Hallman, Sydney N.; Huck, Robert C.; Sluss, James J.
2016-05-01
The use of a wireless charging system for small, unmanned aircraft system applications is useful for both military and commercial consumers. An efficient way to keep the aircraft's batteries charged without interrupting flight would be highly marketable. While the general concepts behind highly resonant wireless power transfer are discussed in a few publications, the details behind the system designs are not available even in academic journals, especially in relation to avionics. Combining a highly resonant charging system with a solar panel charging system can produce enough power to extend the flight time of a small, unmanned aircraft system without interruption. This paper provides an overview of a few of the wireless-charging technologies currently available and outlines a preliminary design for an aircraft-mounted battery charging system.
Apparatus for insulating windows and the like
Mitchell, R.A.
1984-06-19
Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.
Labview Interface Concepts Used in NASA Scientific Investigations and Virtual Instruments
NASA Technical Reports Server (NTRS)
Roth, Don J.; Parker, Bradford H.; Rapchun, David A.; Jones, Hollis H.; Cao, Wei
2001-01-01
This article provides an overview of several software control applications developed for NASA using LabVIEW. The applications covered here include (1) an Ultrasonic Measurement System for nondestructive evaluation of advanced structural materials, an Xray Spectral Mapping System for characterizing the quality and uniformity of developing photon detector materials, (2) a Life Testing System for these same materials, (3) and the instrument panel for an aircraft mounted Cloud Absorption Radiometer that measures the light scattered by clouds in multiple spectral bands. Many of the software interface concepts employed are explained. Panel layout and block diagram (code) strategies for each application are described. In particular, some of the more unique features of the applications' interfaces and source code are highlighted. This article assumes that the reader has a beginner-to-intermediate understanding of LabVIEW methods.
Apparatus for insulating windows and the like
Mitchell, Robert A.
1984-01-01
Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.
Hildreth, Wes; Fierstein, Judy; Lanphere, Marvin A.; Siems, David F.
2000-01-01
Mount Mageik is an ice-clad 2,165-m andesite-dacite stratovolcano in the Katmai volcanic cluster at the head of the Valley of Ten Thousand Smokes. New K-Ar ages indicate that the volcano is as old as 93±8 ka. It has a present-day volume of 20 km3 but an eruptive volume of about 30 km3, implying a longterm average volumetric eruption rate of about 0.33 km3 per 1,000 years. Mount Mageik consists of four overlapping edi- fices, each with its own central summit vent, lava-flow apron, and independent eruptive history. Three of them have small fragmental summit cones with ice-filled craters, but the fourth and highest is topped by a dacite dome. Lava flows predominate on each edifice; many flows have levees and ice-contact features, and many thicken downslope into piedmont lava lobes 50–200 m thick. Active lifetimes of two (or three) of the component edifices may have been brief, like that of their morphological and compositional analog just across Katmai Pass, the Southwest (New) Trident edifice of 1953–74. The North Summit edi- fice of Mageik may have been constructed very late in the Pleistocene and the East Summit edifice (along with nearby Mount Martin) largely or entirely in the Holocene. Substantial Holocene debris avalanches have broken loose from three sites on the south side of Mount Mageik, the youngest during the Novarupta fallout of 6 June 1912. The oldest one was especially mobile, being rich in hydrothermal clay, and is preserved for 16 km downvalley, probably having run out to the sea. Mageik's fumarolically active crater, which now contains a hot acid lake, was never a magmatic vent but was reamed by phreatic explosions through the edge of the dacite summit dome. There is no credible evidence of historical eruptions of Mount Mageik, but the historically persistent fumarolic plumes of Mageik and Martin have animated many spurious eruption reports. Lavas and ejecta of all four component edifices of Mageik are plagioclaserich, pyroxene-dacites and andesites (57–68 weight percent SiO2) that form a calcic, medium-K, typically low-Ti arc suite. The Southwest Summit edifice is larger, longer lived, and compositionally more complex than its companions. Compared to other centers in the Katmai cluster, products of Mount Mageik are readily distinguishable chemically from those of Mount Griggs, Falling Mountain, Mount Cerberus, and all prehistoric components of the Trident group, but some are similar to the products of Mount Martin, Southwest Trident, and Novarupta. The crater lake, vigorous superheated fumaroles, persistent seismicity, steep ice blanket, and numerous Holocene dacites warrant monitoring Mount Mageik as a potential source of explosive eruptions and derivative debris flows.
Illumination system for a projector composed of three LCD panels
NASA Astrophysics Data System (ADS)
Ho, Fang C.; Chu, Cheng-Wei; Lee, William
2004-10-01
A novel compound prism device consisting of a cubic polarizing beam splitter (PBS) and a non-polarizing dichroic prism is configured as the core component of the illumination unit of a full color projection display system of three pieces of reflective type liquid crystal imaging panels. When the in-coming light beam impinging on the PBS at 45 deg. of incidence, the beam component polarized perpendicularly to the plane of incidence is reflected and directed toward a LCD panel of red-image signal addressed after transmitted through a red-passing dichroic filter. The beam component polarized in parallel with the plane of incidence of the PBS is transmitted and passing through a red-cut dichroic filter. The rest portion of the light beam is then got the blue and green color bands separated by the dichroic filter at 30 deg. of incidence and directed to a blue and green signal addressed LCD panel respectively. All the dichroic filters are designed polarization independent and the PBS has a high contrast ratio of 1000 for the on/off states of teh addressed pixels of the image panels. The color separation and re-combination prism unit will provide a screen uniformity of d(u',v') <0.01 when it is accomodated in the projector with a projection lens assembly of F/#2.4.
NASA Technical Reports Server (NTRS)
Stone, R. H.
1979-01-01
Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after five years' service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 150 C (300 F) service aft engine fairing. The fairings have accumulated a total of 40,534 hours, with one ship set having 16,091 hours service as of Feb. 11, 1979. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings.
DOE Zero Energy Ready Home Case Study: United Way of Long Island, United Veterans Beacon House
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacific Northwest National Laboratory
United Way of Long Island’s Housing Development Corporation built this 3,719-ft2 two–story, 5-bedroom home in Huntington Station, New York, to the rigorous performance requirements of the U.S. Department of Energy’s Zero Energy Ready Home Program. The home is packed with high-performance features like LED lighting and ENERGY STAR appliances. The asymmetrical, optimally angled roof provides plenty of space for roof-mounted solar panels for electric generation and hot water.
Acousto-ultrasonic system for the inspection of composite armored vehicles
NASA Astrophysics Data System (ADS)
Godinez, Valery F.; Carlos, Mark F.; Delamere, Michael; Hoch, William; Fotopoulos, Christos; Dai, Weiming; Raju, Basavaraju B.
2001-04-01
In this paper the design and implementation of a unique acousto-ultrasonics system for the inspection of composite armored vehicles is discussed. The system includes a multi-sensor probe with a position-tracking device mounted on a computer controlled scanning bridge. The system also includes an arbitrary waveform generator with a multiplexer and a multi-channel acoustic emission board capable of simultaneously collecting and processing up to four acoustic signals in real time. C-scans of an armored vehicle panel with defects are presented.
Fasteners and fastening techniques: A compilation
NASA Technical Reports Server (NTRS)
1972-01-01
Technology on fasteners and fastening devices is presented, as part of NASA's TU program to provide technical information on devices, methods, and techniques resulting from aerospace research. The material is divided into two sections which include: (1) data concerning a selected group of fasteners and concept for fasteners such as locking devices, couplings, and connect and release mechanisms; and (2) discussions on a number of fastening techniques such as those for mounting panel lamps, clamping flange bolts, stretching fasteners, and transferring fuel from a tanker to another vehicle.
Control system design for the large space systems technology reference platform
NASA Technical Reports Server (NTRS)
Edmunds, R. S.
1982-01-01
Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.
Two-axis tracker for solar panels and the like
Liao, Henry H.
2013-04-16
A tracker including an outer post having elongated bore and a lower end mounted on a sub-structure, an inner pole rotatably received in the elongated bore, a lower bearing in the bore adjacent a lower end of the outer post and attached thereto to be constrained from lateral movement and mounted on the sub-structure such that a lower end of the inner pole rests on and is supported by the lower bearing, an upper bearing near an upper end of the outer post, a circumferential drive supported on the outer post for rotating the inner pole relative to the outer post, such that substantially a full weight of a load on the inner pole is directly transmitted to the sub-structure and lateral force and torque leverage are placed on a full length of the outer post by way of the upper and lower bearing.
Wind pressure testing of tornado safe room components made from wood
Robert Falk; Deepak Shrestha
2016-01-01
To evaluate the ability of a wood tornado safe room to resist wind pressures produced by a tornado, two safe room com-ponents were tested for wind pressure strength. A tornado safe room ceiling panel and door were static-pressure-tested according to ASTM E 330 using a vacuum test system. Re-sults indicate that the panels had load capacities from 2.4 to 3.5 times that...
Integrated smart panel and support structure response
NASA Astrophysics Data System (ADS)
DeGiorgi, Virginia G.
1998-06-01
The performance of smart structures is a complex interaction between active and passive components. Active components, even when non-activated, can have an impact on structural performance and, conversely, structural characteristics of passive components can have a measurable impact on active component performance. The present work is an evaluation of the structural characteristics of an active panel designed for acoustic quieting. The support structure is included in the panel design as evaluated. Finite element methods are used to determine the active panel-support structure response. Two conditions are considered; a hollow unfilled support structure and the same structure filled with a polymer compound. Finite element models were defined so that stiffness values corresponding to the center of individual pistons could be determined. Superelement techniques were used to define mass and stiffness values representative of the combined active and support structure at the center of each piston. Results of interest obtained from the analysis include mode shapes, natural frequencies, and equivalent spring stuffiness for use in structural response models to represent the support structure. The effects on plate motion on piston performance cannot be obtained from this analysis, however mass and stiffness matrices for use in an integrated system model to determine piston head velocities can be obtained from this work.
Sound Transmission Through Multi-Panel Structures Lined with Elastic Porous Materials
NASA Astrophysics Data System (ADS)
Bolton, J. S.; Shiau, N.-M.; Kang, Y. J.
1996-04-01
Theory and measurements related to sound transmission through double panels lined with elastic porous media are presented. The information has application to the design of noise control barriers and to the optimization of aircraft fuselage transmission loss, for example. The major difference between the work described here and earlier research in this field relates to the treatment of the porous material that is used to line the cavity between the two panels of the double panel structure. Here we have used the porous material theory proposed by Biot since it takes explicit account of all the wave types known to propagate in elastic porous materials. As a result, it is possible to use the theory presented here to calculate the transmission loss of lined double panels at arbitrary angles of incidence; results calculated over a range of incidence angles may then be combined to yield the random incidence transmission loss. In this paper, the equations governing wave propagation in an elastic porous material are first considered briefly and then the general forms for the stresses and displacements within the porous material are given. Those solutions are expressed in terms of a number of constants that can be determined by application of appropriate boundary conditions. The boundary conditions required to model double panels having linings that are either directly attached to the facing panels or separated?!from them by air gaps are presented and discussed. Measurements of the random incidence transmission loss of aluminium double-panel structures lined with polyurethane foam are presented and have been found to be in good agreement with theoretical predictions. Both the theoretical predictions and the measured results have shown that the method by which an elastic porous lining material is attached to the facing panels can have a profound influence on the transmission loss of the panel system. It has been found, for example, that treatments in which the lining material is not directly attached to the facing panels are generally to be preferred to those in which the lining is directly bonded to the panels. These effects may be explained by considering the degree to which the various wave types within the elastic porous material are excited, which in turn can be related to the method by which the lining is mounted to the facing panels.
NASA Technical Reports Server (NTRS)
Stone, R. H.
1977-01-01
Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.
Apparatus for integrating a rigid structure into a flexible wall of an inflatable structure
NASA Technical Reports Server (NTRS)
Johnson, Christopher J. (Inventor); Patterson, Ross M. (Inventor); Spexarth, Gary R. (Inventor)
2009-01-01
For an inflatable structure having a flexible outer shell or wall structure having a flexible restraint layer comprising interwoven, load-bearing straps, apparatus for integrating one or more substantially rigid members into the flexible shell. For each rigid member, a corresponding opening is formed through the flexible shell for receiving the rigid member. A plurality of connection devices are mounted on the rigid member for receiving respective ones of the load-bearing straps. In one embodiment, the connection devices comprise inner connecting mechanisms and outer connecting mechanisms, the inner and outer connecting mechanisms being mounted on the substantially rigid structure and spaced along a peripheral edge portion of the structure in an interleafed array in which respective outer connecting mechanisms are interposed between adjacent pairs of inner connecting mechanisms, the outer connecting mechanisms projecting outwardly from the peripheral edge portion of the substantially rigid structure beyond the adjacent inner connecting mechanisms to form a staggered array of connecting mechanisms extending along the panel structure edge portion. In one embodiment, the inner and outer connecting mechanisms form part of an integrated, structure rotatably mounted on the rigid member peripheral edge portion.
Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers.
Huang, Bo; Li, Mingyu; Mei, Tao; McCoul, David; Qin, Shihao; Zhao, Zhanfeng; Zhao, Jianwen
2017-11-23
Motion capture of the human body potentially holds great significance for exoskeleton robots, human-computer interaction, sports analysis, rehabilitation research, and many other areas. Dielectric elastomer sensors (DESs) are excellent candidates for wearable human motion capture systems because of their intrinsic characteristics of softness, light weight, and compliance. In this paper, DESs were applied to measure all component motions of the wrist joints. Five sensors were mounted to different positions on the wrist, and each one is for one component motion. To find the best position to mount the sensors, the distribution of the muscles is analyzed. Even so, the component motions and the deformation of the sensors are coupled; therefore, a decoupling method was developed. By the decoupling algorithm, all component motions can be measured with a precision of 5°, which meets the requirements of general motion capture systems.
A bacterial bioreporter panel to assay the cytotoxicity of atmospheric particulate matter
NASA Astrophysics Data System (ADS)
Kessler, Nivi; Schauer, James J.; Yagur-Kroll, Sharon; Melamed, Sahar; Tirosh, Ofir; Belkin, Shimshon; Erel, Yigal
2012-12-01
Numerous studies have demonstrated that elevated concentrations of suspended atmospheric particulate matter (PM) are associated with adverse health effects. In order to minimize the adverse public health effects of atmospheric PM by exposure management, there is a need for a greater understanding of the toxic mechanisms and the components that are responsible for the toxic effects. The aim of this study was to utilize bioassay techniques to investigate these aspects. For this purpose a reporter panel of 9 genetically engineered bacterial (Escherichia coli) strains was composed. Each panel member was designed to report on a different stress condition with a measurable light signal produced by the luciferase enzyme. Toxic mechanisms and components were studied using six anthropogenic PM source samples, including two vehicle combustion particles, three coal fly ash (CFA) samples and an urban dust sample. The most prominent outcome of the panel exposure results were broad panel responses observed for two of the CFA samples, indicating oxidative stress, respiration inhibition and iron deficiency. These responses were relieved when the samples were treated with EDTA, a non-specific metal chelator, suggesting the involvement of metals in the observed effects. Bioavailability analysis of the samples suggests that chromium was related to the toxic responses induced by two of the CFA samples. Oxidative stress was also observed in several samples of ambient atmospheric aerosols and excess metal toxicity in an urban dust sample collected in a parking lot. The reporter panel approach, as demonstrated in this study, has the potential of providing novel insights as to the mechanisms of atmospheric PM toxicity. Furthermore, combining the panel's results with bioavailability data can enlighten about the role of different PM components in the observed toxicity.
Biased insert for installing data transmission components in downhole drilling pipe
Hall, David R [Provo, UT; Briscoe, Michael A [Lehi, UT; Garner, Kory K [Payson, UT; Wilde, Tyson J [Spanish Fork, UT
2007-04-10
An apparatus for installing data transmission hardware in downhole tools includes an insert insertable into the box end or pin end of drill tool, such as a section of drill pipe. The insert typically includes a mount portion and a slide portion. A data transmission element is mounted in the slide portion of the insert. A biasing element is installed between the mount portion and the slide portion and is configured to create a bias between the slide portion and the mount portion. This biasing element is configured to compensate for varying tolerances encountered in different types of downhole tools. In selected embodiments, the biasing element is an elastomeric material, a spring, compressed gas, or a combination thereof.
Jicha, B.R.; Hart, G.L.; Johnson, C.M.; Hildreth, Wes; Beard, B.L.; Shirey, S.B.; Valley, J.W.
2009-01-01
Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P)n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. ??18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal interaction in this juvenile arc, in stark contrast to Os isotopes, which are highly sensitive to interaction with young, mafic material in the lower crust. ?? Springer-Verlag 2008.
Fixture for mounting small parts for processing
Foreman, Larry R.; Gomez, Veronica M.; Thomas, Michael H.
1990-01-01
A fixture for mounting small parts, such as fusion target spheres or microelectronic components. A glass stalk is drawn and truncated near its tip. The truncated end of the glass stalk is dipped into silicone rubber forming an extending streamer. After the rubber cures for approximately 24 hours, a small part is touched to the streamer, and will be held securely throughout processing.
An innovative deployable solar panel system for Cubesats
NASA Astrophysics Data System (ADS)
Santoni, Fabio; Piergentili, Fabrizio; Donati, Serena; Perelli, Massimo; Negri, Andrea; Marino, Michele
2014-02-01
One of the main Cubesat bus limitations is the available on-board power. The maximum power obtained using body mounted solar panels and advanced triple junction solar cells on a triple unit Cubesat is typically less than 10 W. The Cubesat performance and the mission scenario opened to these small satellite systems could be greatly enhanced by an increase of the available power. This paper describes the design and realization of a modular deployable solar panel system for Cubesats, consisting of a modular hinge and spring system that can be potentially used on-board single (1U), double(2U), triple (3U) and six units (6U) Cubesats. The size of each solar panels is the size of a lateral Cubesat surface. The system developed is the basis for a SADA (Solar Array Drive Assembly), in which a maneuvering capability is added to the deployed solar array in order to follow the apparent motion of the sun. The system design trade-off is discussed, comparing different deployment concepts and architectures, leading to the final selection for the modular design. A prototype of the system has been realized for a 3U Cubesat, consisting of two deployable solar panel systems, made of three solar panels each, for a total of six deployed solar panels. The deployment system is based on a plastic fiber wire and thermal cutters, guaranteeing a suitable level of reliability. A test-bed for the solar panel deployment testing has been developed, supporting the solar array during deployment reproducing the dynamical situation in orbit. The results of the deployment system testing are discussed, including the design and realization of the test-bed, the mechanical stress given to the solar cells by the deployment accelerations and the overall system performance. The maximum power delivered by the system is about 50.4 W BOL, greatly enhancing the present Cubesat solar array performance.
High-temperature, high-pressure bonding of nested tubular metallic components
Quinby, Thomas C.
1980-01-01
This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-17
... component parts for the construction, industrial, agricultural and automotive markets. Sakco Precision, Inc... Street, 9/11/2013 The firm manufactures Mount Pleasant, PA components comprised of 15666. densified wood...
Device serves as hinge and electrical connector for circuit boards
NASA Technical Reports Server (NTRS)
Bethel, P. G.; Harris, G. G.
1966-01-01
Hinge makes both sides of electrical circuit boards readily accessible for component checkout and servicing. The hinge permits mounting of two circuit boards and incorporates connectors to maintain continuous electrical contact between the components on both boards.
1983-06-01
PANEL WORKING GROUP 14 on SUITABLE AVERAGING TECHNIQUES IN NON-UNIFORM INTERNAL FLOWS Edited by M.Pianko Office National d’Etudes et de...d’Etudes et de Recherches Aerospatiales Pratt and Whitney Government Products Division Rocketdyne Division of Rockwell International , Inc. Teledyne CAE...actions exerted by individual components on the gas flow must be known. These specific component effects are distributed internally within the
Design and fabrication of titanium multi-wall Thermal Protection System (TPS) test panels
NASA Technical Reports Server (NTRS)
Blair, W.; Meaney, J. E., Jr.; Rosenthal, H. A.
1980-01-01
A titanium multiwall thermal protection system panel was designed. The panel is a nine sheet sandwich structure consisting of an upper and lower face sheet; four dimpled sheets, three septum sheets, and clips for attachment to a vehicle structure. An acceptable fabrication process was developed, and the panel design was verified through mechanical and thermal testing of component specimens. A design was completed which takes into consideration fabrication techniques, thermal properties, mechanical properties, and materials availability.
Extreme ultraviolet lithography machine
Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.
2000-01-01
An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.
Passive cooling system for a vehicle
Hendricks, Terry Joseph; Thoensen, Thomas
2005-11-15
A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).
Passive Cooling System for a Vehicle
Hendricks, T. J.; Thoensen, T.
2005-11-15
A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).
A modal analysis of lamellar diffraction gratings in conical mountings
NASA Technical Reports Server (NTRS)
Li, Lifeng
1992-01-01
A rigorous modal analysis of lamellar grating, i.e., gratings having rectangular grooves, in conical mountings is presented. It is an extension of the analysis of Botten et al. which considered non-conical mountings. A key step in the extension is a decomposition of the electromagnetic field in the grating region into two orthogonal components. A computer program implementing this extended modal analysis is capable of dealing with plane wave diffraction by dielectric and metallic gratings with deep grooves, at arbitrary angles of incidence, and having arbitrary incident polarizations. Some numerical examples are included.
Microprocessor controlled proof-mass actuator
NASA Technical Reports Server (NTRS)
Horner, Garnett C.
1987-01-01
The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.
Evaluation of beryllium for space shuttle components
NASA Technical Reports Server (NTRS)
Trapp, A. E.
1972-01-01
Application of beryllium to specific full-scale space shuttle structural components and assemblies was studied. Material evaluations were conducted to check the mechanical properties of as-received material to gain design information on characteristics needed for the material in the space shuttle environment, and to obtain data needed for evaluating component and panel tests. Four beryllium structural assemblies were analyzed and designed. Selected components of these assemblies, representing areas of critical loading or design/process uncertainty, were designed and tested, and two panel assemblies were fabricated. Trends in cost and weight factors were determined by progressive estimation at key points of preliminary design, final design, and fabrication to aid in a cost/weight evaluation of the use of beryllium.
NASA Technical Reports Server (NTRS)
Lopez, O. F.
1984-01-01
Part of the NASA/ACEE Program was to determine the effect of long-term durability testing on the residual strength of graphite-epoxy cover panel and spar components of the Lockheed L-1011 aircraft vertical stabilizer. The results of these residual strength tests are presented herein. The structural behavior and failure mode of both cover panel and spar components were addressed, and the test results obtained were compared with the static test results generated by Lockheed. The effect of damage on one of the spar specimens was described.
Innovative Ballasted Flat Roof Solar PV Racking System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peek, Richard T.
2014-12-15
The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction ofmore » the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.« less
2009-11-19
CAPE CANAVERAL, Fla. – Florida Power & Light Company Vice President and Chief Development Officer Eric Silagy, left, and NASA Kennedy Space Center Director Bob Cabana, center, examine one of the solar panels at the unveiling of NASA's first large-scale solar power generation facility at Kennedy in Florida. Representatives from NASA, Florida Power & Light Company, or FPL, and SunPower Corporation formally commissioned the one-megawatt facility and announced plans to pursue a new research, development and demonstration project at Kennedy to advance America's use of renewable energy. The facility is the first element of a major renewable energy project currently under construction at Kennedy. The completed system features a fixed-tilt, ground-mounted solar power system designed and built by SunPower, along with SunPower solar panels. A 10-megawatt solar farm, which SunPower is building on nearby Kennedy property, will supply power to FPL's customers when it is completed in April 2010. Photo credit: NASA/Jim Grossmann
Flat-panel video resolution LED display system
NASA Astrophysics Data System (ADS)
Wareberg, P. G.; Kennedy, D. I.
The system consists of a 128 x 128 element X-Y addressable LED array fabricated from green-emitting gallium phosphide. The LED array is interfaced with a 128 x 128 matrix TV camera. Associated electronics provides for seven levels of grey scale above zero with a grey scale ratio of square root of 2. Picture elements are on 0.008 inch centers resulting in a resolution of 125 lines-per-inch and a display area of approximately 1 sq. in. The LED array concept lends itself to modular construction, permitting assembly of a flat panel screen of any desired size from 1 x 1 inch building blocks without loss of resolution. A wide range of prospective aerospace applications exist extending from helmet-mounted systems involving small dedicated arrays to multimode cockpit displays constructed as modular screens. High-resolution LED arrays are already used as CRT replacements in military film-marking reconnaissance applications.
VSTOL Systems Research Aircraft (VSRA) Harrier
NASA Technical Reports Server (NTRS)
1994-01-01
NASA's Ames Research Center has developed and is testing a new integrated flight and propulsion control system that will help pilots land aircraft in adverse weather conditions and in small confined ares (such as, on a small ship or flight deck). The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems research Aircraft (VSRA), which is a modified version of the U.S. Marine Corps's AV-8B Harrier jet fighter, which can take off and land vertically. The new automated flight control system features both head-up and panel-mounted computer displays and also automatically integrates control of the aircraft's thrust and thrust vector control, thereby reducing the pilot's workload and help stabilize the aircraft for landing. Visiting pilots will be encouraged to test the new system and provide formal evaluation flights data and feedback. An actual flight test and the display panel of control system are shown in this video.
Fixture for mounting small parts for processing
Foreman, L.R.; Gomez, V.M.; Thomas, M.H.
1990-05-29
A fixture for mounting small parts, such as fusion target spheres or microelectronic components is disclosed. A glass stalk is drawn and truncated near its tip. The truncated end of the glass stalk is dipped into silicone rubber forming an extending streamer. After the rubber cures for approximately 24 hours, a small part is touched to the streamer, and will be held securely throughout processing. 5 figs.
Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2003-01-01
The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in identifying design solutions and validating thermal performance models under a very aggressive development schedule. The test data have assisted Johns Hopkins engineers in selecting a flight solar array vendor and a thermal shield design. MESSENGER is one in a series of missions in NASA's Discovery Program. Infrared thermography provides data on the thermal gradients in the MESSENGER components during high solar insolation vacuum testing.
A panel of 74 AISNPs: Improved ancestry inference within Eastern Asia.
Li, Cai-Xia; Pakstis, Andrew J; Jiang, Li; Wei, Yi-Liang; Sun, Qi-Fan; Wu, Hong; Bulbul, Ozlem; Wang, Ping; Kang, Long-Li; Kidd, Judith R; Kidd, Kenneth K
2016-07-01
Many ancestry informative SNP (AISNP) panels have been published. Ancestry resolution in them varies from three to eight continental clusters of populations depending on the panel used. However, none of these panels differentiates well among East Asian populations. To meet this need, we have developed a 74 AISNP panel after analyzing a much larger number of SNPs for Fst and allele frequency differences between two geographically close population groups within East Asia. The 74 AISNP panel can now distinguish at least 10 biogeographic groups of populations globally: Sub-Saharan Africa, North Africa, Europe, Southwest Asia, South Asia, North Asia, East Asia, Southeast Asia, Pacific and Americas. Compared with our previous 55-AISNP panel, Southeast Asia and North Asia are two newly assignable clusters. For individual ancestry assignment, the likelihood ratio and ancestry components were analyzed on a different set of 500 test individuals from 11 populations. All individuals from five of the test populations - Yoruba (YRI), European (CEU), Han Chinese in Henan (CHNH), Rondonian Surui (SUR) and Ticuna (TIC) - were assigned to their appropriate geographical regions unambiguously. For the other test populations, most of the individuals were assigned to their self-identified geographical regions with a certain degree of overlap with adjacent populations. These alternative ancestry components for each individual thus help give a clearer picture of the possible group origins of the individual. We have demonstrated that the new AISNP panel can achieve a deeper resolution of global ancestry. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fusion Simulation Project Workshop Report
NASA Astrophysics Data System (ADS)
Kritz, Arnold; Keyes, David
2009-03-01
The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved 46 physicists, applied mathematicians and computer scientists, from 21 institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a 3-day workshop in May 2007.
Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber
NASA Astrophysics Data System (ADS)
Mansour, H.; Arzanpour, S.; Golnaraghi, M. F.; Parameswaran, A. M.
2011-03-01
Engine mounts are used in the automotive industry to isolate engine and chassis by reducing the noise and vibration imposed from one to the other. This paper describes modelling, simulation and design of a semi-active engine mount that is designed specifically to address the complicated vibration pattern of variable displacement engines (VDE). The ideal isolation for VDE requires the stiffness to be switchable upon cylinder activation/deactivation operating modes. In order to have a modular design, the same hydraulic engine mount components are maintained and a novel auxiliary magneto-rheological (MR) fluid chamber is developed and retrofitted inside the pumping chamber. The new compliance chamber is a controllable pressure regulator, which can effectively alter the dynamic performance of the mount. Switching between different modes happens by turning the electrical current to the MR chamber magnetic coil on and off. A model has been developed for the passive hydraulic mount and then it is extended to include the MR auxiliary chamber as well. A proof-of-concept prototype of the design has been fabricated which validates the mathematical model. The results demonstrate unique capability of the developed semi-active mount to be used for VDE application.
NASA Technical Reports Server (NTRS)
Wennhold, W. F.
1974-01-01
The use of high strength and modulus of advanced filamentary composites to reduce the structural weight of aerospace vehicles was investigated. Application of the technology to space shuttle components was the primary consideration. The mechanical properties for the boron/epoxy, graphite/epoxy, and polyimide data are presented. Structural testing of two compression panel components was conducted in a simulated space shuttle thermal environment. Results of the tests are analyzed.
Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components
NASA Astrophysics Data System (ADS)
Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.
2017-12-01
In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.
Optimal read/write memory system components
NASA Technical Reports Server (NTRS)
Kozma, A.; Vander Lugt, A.; Klinger, D.
1972-01-01
Two holographic data storage and display systems, voltage gradient ionization system, and linear strain manipulation system are discussed in terms of creating fast, high bit density, storage device. Components described include: novel mounting fixture for photoplastic arrays; corona discharge device; and block data composer.
Absorptive coating for aluminum solar panels
NASA Technical Reports Server (NTRS)
Desmet, D.; Jason, A.; Parr, A.
1979-01-01
Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.
Modular, Microprocessor-Controlled Flash Lighting System
NASA Technical Reports Server (NTRS)
Kiefer, Dwayne; Gray, Elizabeth; Skupinski, Robert; Stachowicz, Arthur; Birchenough, William
2006-01-01
A microprocessor-controlled lighting system generates brief, precisely timed, high-intensity flashes of light for scientific imaging at frame rates up to about 1 kHz. The system includes an array of light-emitting diodes (LEDs) that are driven in synchronism with an externally generated timing signal (for example, a timing signal generated by a video camera). The light output can be varied in peak intensity, pulse duration, pulse delay, and pulse rate, all depending on the timing signal and associated externally generated control signals. The array of LEDs comprises as many as 16 LED panels that can be attached together. Each LED panel is a module consisting of a rectangular subarray of 10 by 20 LEDs of advanced design on a printed-circuit board in a mounting frame with a power/control connector. The LED panels are controlled by an LED control module that contains an AC-to-DC power supply, a control board, and 8 LED-panel driver boards. In prior LED panels, the LEDs are packaged at less than maximum areal densities in bulky metal housings that reduce effective active areas. In contrast, in the present LED panels, the LEDs are packed at maximum areal density so as to afford 100-percent active area and so that when panels are joined side by side to form the array, there are no visible seams between them and the proportion of active area is still 100 percent. Each panel produces an illuminance of .5 x 10( exp 4) lux at a distance of 5.8 in. (approx.1.6 cm). The LEDs are driven according to a pulse-width-modulation control scheme that makes it safe to drive the LEDs beyond their rated steady-state currents in order to generate additional light during short periods. The drive current and the pulse-width modulation for each LED panel can be controlled independently of those of the other 15 panels. The maximum allowable duration of each pulse of drive current is a function of the amount of overdrive, the total time to be spent in overdrive operation, and the limitations of the LEDs. The system is configured to limit the overdrive according to values specific to each type of LED in the array. These values are coded into firmware to prevent inadvertent damage to the LED panels.
Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear
NASA Astrophysics Data System (ADS)
Labib, Moheb
The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads. The applied out-of-plane shear load was resolved in two equal out-of-plane shear components to construct tri-directional shear interaction diagrams.
NASA Technical Reports Server (NTRS)
Cramer, B. A.; Davis, J. W.
1975-01-01
Analysis methods for predicting cyclic creep deflection in stiffened metal panel structures, were applied to full size panels. Results were compared with measured deflections from cyclic tests of thin gage L605, Rene' 41, and TDNiCr full size corrugation stiffened panels. A design criteria was then formulated for metallic thermal protection panels subjected to creep. A computer program was developed to calculate creep deflections.
Optimizing Opto-mechanical Performance Using Simple Tools and Techniques
NASA Astrophysics Data System (ADS)
Krajci, Tom
2009-05-01
You just purchased a modest setup for your observatory - perhaps a mass produced Schmidt-Cassegrain on a German equatorial mount. However, optically and mechanically it's not performing as well as you would like. What can you do? Some simple assessments and repairs may make all the difference. Assessments can be as easy as visual inspection of various mount components, such as the tripod, where gaps between components reduce stiffness or allow unexpected shifts when loads change. Some assessments are only slightly more involved. Main mirror flop can be evaluated by aligning the main telescope and finder on a bright star and then slewing to various parts of the sky. Pointing differences between the two will be readily apparent if this problem exists. Most mid-level mounts use worm drives, but often excessive spacing between worm and worm gear produces large, and unnecessary amounts of backlash. Visual inspection of your dovetail mounting system may leave doubts in your mind as to adequate stiffness. Imaging through the entire night may show you that your aluminum tube telescope causes excessive focus shift as temperature drops. Over time, your Schmidt-Cassegrain corrector plate may no longer be securely held by its retaining ring, and the same may apply to the secondary mirror cell. Repairs for these problems are often not difficult if you're mechanically inclined. Gaps in mount components can be eliminated with shims. Combating mirror flop may be the most difficult task. This can involve re-gluing the main mirror and bolting the main mirror cell in a fixed position. Corrector plate and secondary mirror cells can be improved with setscrews and shims - implementing sound kinematic principles. Worm gear spacing can often be adjusted with simple tools. This brief paper can't possibly cover all problems and solutions, but it can give you the proper mindset to looking at your system with a critical eye and implementing simple, inexpensive fixes. You may be pleasantly surprised by the improvements.
Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.
Rumyantsev, Valery D
2010-04-26
High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.
The United States Air Force Academy Solar Energy Research
1980-07-01
controller, ir the solar sy .4tem, is malfunctioning. Put simply, the house will get cold. lf oh cUrs the occupant will notify civil engineering mainte...with this product has been Revere Copper Laminated Panel Sys - trial uses, condenser tubing, electrical of vital assistance in accumulating the tern...Laminated Panel require water temperatures near the additional components Include tubes,. Construction. In the Revere Panel Sys - boiling point,whereas
Harpoon Pyrotechnic Shock Study
1979-09-01
Air Systems Command, was performed from July 1973 to July 1979. In the Interest of economy and timeliness in presenting the information, the report is...Both actual test data and predicted shock levey are presented. .L{U’Shock spectra environment predictions are made for several types of explosive ...mounting structure 5 to 10 inches (127 to 254 mm) from the explosive device. Attenuation across the component mounting interface is the only loss
NASA Technical Reports Server (NTRS)
Stone, R. H.
1980-01-01
Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 6 years' service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings.
Han, In-taek; Kim, Jong-min
2003-01-01
A triode carbon nanotube field emission display (FED) using a barrier rib structure and a manufacturing method thereof are provided. In a triode carbon nanotube FED employing barrier ribs, barrier ribs are formed on cathode lines by a screen printing method, a mesh structure is mounted on the barrier ribs, and a spacer is inserted between the barrier ribs through slots of the mesh structure, thereby stably fixing the mesh structure and the spacer within a FED panel due to support by the barrier ribs.
Nuclear Storage Overpack Door Actuator and Alignment Apparatus
Andreyko, Gregory M.
2005-05-11
The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.
Nuclear storage overpack door actuator and alignment apparatus
Andreyko, Gregory M.
2005-05-10
The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.
1992-01-01
Oxford University Press, NY, 1984. 24. Neisser , U ., Cognitive Psychology; Chap. 2, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1967. 25. Enoch, J.M...in this study. (ýRA•,’&l AI IC TA U J Ia oiic ti .y ......... .......... ........ DTIC ~ZTL7 c ~T~DIBy Distribu fo. I "". ’.1’...•’.. - , . 1 ii •0... u -der low-ambient lighting conditions, visual search inside the cockpit on a CRT monitor mounted in the instrument panel is not disrupted by laser
1965-10-22
N-222; 2 x 2ft Transonic Wind Tunnel is a closed return, variable-density tunnel equipped with an adjustable flexible-wall nozzle and a slotted test section. Airflow is produced by a two-stage, axial-flow compressor powered by four, variable-speed induction motors mounted in tandem, delivering a total of 4,000 horsepower. For conventional, steady-state testing models are generally supported on a sting. Internal, strain-gage balances are used for measuring forces and moments. This facility is also used for panel-flutter testing (one test-section wall is replaced with another containing the test specimen.
SKYLAB (SL)-4 - CREW TRAINING (ORBITAL WORKSHOP [OWS]) - JSC
1973-08-22
S73-32839 (10 Sept. 1973) --- Scientist-astronaut Edward G. Gibson, science pilot for the third manned Skylab mission (Skylab 4), enters a notation in a manual while seated at the control and display panel for the Apollo Telescope Mount (ATM) during simulations inside the one-G trainer for the Multiple Docking Adapter (MDA) at the Johnson Space Center (JSC). Dr. Gibson will be joined by astronauts Gerald P. Carr, commander, and William R. Pogue, pilot, when the Skylab 4 mission begins in November 1973. Photo credit: NASA
Skylab (SL)-4 Astronauts - "Open House" Press Day - SL Mockup - MSC
1972-01-20
S72-17512 (19 Jan. 1972) --- These three men are the crewmen for the first manned Skylab mission. They are astronaut Charles Conrad Jr., commander, standing left; scientist-astronaut Joseph P. Kerwin, seated; and astronaut Paul J. Weitz, pilot. They were photographed and interviewed during an "open house" press day in the realistic atmosphere of the Multiple Docking Adapter (MDA) trainer in the Mission Simulation and Training Facility at the Manned Spacecraft Center (MSC). The control and display panel for the Apollo Telescope Mount (ATM) is at right. Photo credit: NASA
Rolling contact mounting arrangement for a ceramic combustor
Boyd, G.L.; Shaffer, J.E.
1995-10-17
A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components. 3 figs.
Rolling contact mounting arrangement for a ceramic combustor
Boyd, Gary L.; Shaffer, James E.
1995-01-01
A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components.
A feasibility work on the applications of MRE to automotive components
NASA Astrophysics Data System (ADS)
Kim, S. H.; Park, Y. J.; Cha, A. R.; Kim, G. W.; Bang, J. H.; Lim, C. S.; Choi, S. B.
2018-03-01
A feasibility work on the application of magneto-rheological elastomers (MREs) to automotive components, such as engine mounts is presented. While vehicle components require the high resonance frequency in terms of ride quality and handling, it is required to have the low resonance frequency to isolate the incoming vibration. With the conventional automotive technologies, it is challenging to combine these two conflicting performance trade-offs, ride quality including handling, and NVH (noise, vibration and harshness). Over the last decades, MREs, one of the new emerging smart materials, have been widely used to resolve this technical limitation. For example, an advanced engine mount was developed by using MRE to isolate the vibration transmitting from engines. In this paper, we will focus on rear cross member bushes, which is a key component for isolating the vibration from the road, and demonstrate their improved performance by utilizing MRE. The resonance frequency shift induced by the stiffness change of MRE will be presented through the frequency response functions estimated by simulation result.
Temporally-stable active precision mount for large optics.
Reinlein, Claudia; Damm, Christoph; Lange, Nicolas; Kamm, Andreas; Mohaupt, Matthias; Brady, Aoife; Goy, Matthias; Leonhard, Nina; Eberhardt, Ramona; Zeitner, Uwe; Tünnermann, Andreas
2016-06-13
We present a temporally-stable active mount to compensate for manufacturing-induced deformations of reflective optical components. In this paper, we introduce the design of the active mount, and its evaluation results for two sample mirrors: a quarter mirror of 115 × 105 × 9 mm3, and a full mirror of 228 × 210 × 9 mm3. The quarter mirror with 20 actuators shows a best wavefront error rms of 10 nm. Its installation position depending deformations are addressed by long-time measurements over 14 weeks indicating no significance of the orientation. Size-induced differences of the mount are studied by a full mirror with 80 manual actuators arranged in the same actuator pattern as the quarter mirror. This sample shows a wavefront error rms of (27±2) nm over a measurement period of 46 days. We conclude that the developed mount is suitable to compensate for manufacturing-induced deformations of large reflective optics, and likely to be included in the overall systems alignment procedure.
Perceptual issues for color helmet-mounted displays: luminance and color contrast requirements
NASA Astrophysics Data System (ADS)
Harding, Thomas H.; Rash, Clarence E.; Lattimore, Morris R.; Statz, Jonathan; Martin, John S.
2016-05-01
Color is one of the latest design characteristics of helmet-mounted displays (HMDs). It's inclusion in design specifications is based on two suppositions: 1) color provides an additional method of encoding information, and 2) color provides a more realistic, and hence more intuitive, presentation of information, especially pilotage imagery. To some degree, these two perceived advantages have been validated with head-down panel-mounted displays, although not without a few problems associated with visual physiology and perception. These problems become more prevalent when the user population expands beyond military aviators to a general user population, of which a significant portion may have color vision deficiencies. When color is implemented in HMDs, which are eyes-out, see-through displays, visual perception issues become an increased concern. A major confound with HMDs is their inherent see-through (transparent) property. The result is color in the displayed image combines with color from the outside (or in-cockpit) world, possibly producing a false perception of either or both images. While human-factors derived guidelines based on trial and error have been developed, color HMD systems still place more emphasis on colorimetric than perceptual standards. This paper identifies the luminance and color contrast requirements for see-through HMDs. Also included is a discussion of ambient scene metrics and the choice of symbology color.
RE-Powering Success Stories: Green Manufacturing
These success stories discuss sites on formerly contaminated lands, landfills, and mine sites that are manufacturing components for renewable energy, either solar panels, wind turbines, or other components.
Surface properties of thermally treated composite wood panels
NASA Astrophysics Data System (ADS)
Croitoru, Catalin; Spirchez, Cosmin; Lunguleasa, Aurel; Cristea, Daniel; Roata, Ionut Claudiu; Pop, Mihai Alin; Bedo, Tibor; Stanciu, Elena Manuela; Pascu, Alexandru
2018-04-01
Composite finger-jointed spruce and oak wood panels have been thermally treated under standard pressure and oxygen content conditions at two different temperatures, 180 °C and respectively 200 °C for short time periods (3 and 5 h). Due to the thermally-aided chemical restructuration of the wood components, a decrease in water uptake and volumetric swelling values with up to 45% for spruce and 35% for oak have been registered, comparing to the reference samples. In relation to water resistance, a 15% increase of the dispersive component of the surface energy has been registered for the thermal-treated spruce panels, which impedes water spreading on the surface. The thermal-treated wood presents superior resistance to accelerated UV exposure and subsequently, with up to 10% higher Brinell hardness values than reference wood. The proposed thermal treatment improves the durability of the finger-jointed wood through a more economically and environmental friendly method than traditional impregnation, with minimal degradative impact on the structural components of wood.
Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance
NASA Technical Reports Server (NTRS)
Saha, Timo T.; Rohrbach, Scott; Zhang, William W.
2011-01-01
Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.
NASA Technical Reports Server (NTRS)
Stone, R. H.
1983-01-01
Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.
Turbine rotor-stator leaf seal and related method
Herron, William Lee; Butkiewicz, Jeffrey John
2003-01-01
A seal assembly for installation between rotating and stationary components of a machine includes a first plurality of leaf spring segments secured to the stationary component in a circumferential array surrounding the rotating component, the leaf spring segments each having a radial mounting portion and a substantially axial sealing portion, the plurality of leaf spring segments shingled in a circumferential direction.
NASA Technical Reports Server (NTRS)
Bencze, D. P.
1976-01-01
Detailed interference force and pressure data were obtained on a representative wing-body nacelle combination at Mach numbers of 0.9 to 1.4. The model consisted of a delta wing-body aerodynamic force model with four independently supported nacelles located beneath the wing-body combination. The model was mounted on a six component force balance, and the left hand wing was pressure instrumented. Each of the two right hand nacelles was mounted on a six component force balance housed in the thickness of the nacelle, while each of the left hand nacelles was pressure instrumented. The primary variables examined included Mach number, angle of attack, nacelle position, and nacelle mass flow ratio. Nacelle axial location, relative to both the wing-body combination and to each other, was the most important variable in determining the net interference among the components.
Sahu, Atanu; Bhattacharya, Partha; Niyogi, Arup Guha; Rose, Michael
2017-06-01
Double-wall panels are known for their superior sound insulation properties over single wall panels as a sound barrier. The sound transmission phenomenon through a double-wall structure is a complex process involving vibroacoustic interaction between structural panels, the air-cushion in between, and the secondary acoustic domain. It is in this context a versatile and a fully coupled technique based on the finite-element-boundary element model is developed that enables estimation of sound transfer through a double-wall panel into an adjacent enclosure while satisfying the displacement compatibility across the interface. The contribution of individual components in the transmitted energy is identified through numerical simulations.
Stability of Evoked Potentials during Auditory Attention
1988-12-01
attention ef- (S2), to which the subject made a behavioral response and fects upon NI components of the evoked potential received food reinforcement for a... food dipper mounted in the floor, and a driver, with a sound tube attached, mounted in the top of the box. Histology Four weeks after surgery, the cats...response paradigm dose of intravenous sodium pentobarbital. Electrolytic lesions were using food reinforcement. They were gradually deprived of food
Experimental Aerodynamic Facilities of the Aerodynamics Research and Concepts Assistance Section
1983-02-01
experimental data desired. Internal strain gage balances covering a range of sizes and load capabilities are available for static force and moment tests...tunnel. Both sting and side wall model mounts are available which can be adapted to a variety of internal strain gage balance systems for force and...model components or liquids in the test section. A selection of internal and external strain gage balances and associated mounting fixtures are
Cutburth, Ronald W.; Silva, Leonard L.
1988-01-01
An improved mounting stage of the type used for the detection of laser beams is disclosed. A stage center block is mounted on each of two opposite sides by a pair of spaced ball bearing tracks which provide stability as well as simplicity. The use of the spaced ball bearing pairs in conjunction with an adjustment screw which also provides support eliminates extraneous stabilization components and permits maximization of the area of the center block laser transmission hole.
Two Possible Ways Boron Got into Veins on Mount Sharp
2016-12-13
This graphic portrays two hypotheses about how the element boron ended up in calcium sulfate veins found within mudstone layers of the Murray formation on Mars' lower Mount Sharp. Hypothesis A is presented left-to-right in the upper four panels; hypothesis B in the lower four. Note that the two final panels are identical, depicting conditions found by NASA's Curiosity Mars rover. Calcium sulfate is the veins' main ingredient. The mudstone matrix around the veins resulted from deposition of sediments in a lake environment in Mars' Gale Crater billions of years ago. In hypothesis A: (1) Boron dissolved in the lake and was incorporated into the lake bottom clays that became the Murray formation. (2) The lake then dried and the bedrock fractured. (3) Later groundwater interacted with the clays under conditions that released the boron into the groundwater. (4) Then, the boron was deposited along with the calcium sulfate that makes up the bulk of these veins. In hypothesis B: (1) Boron was not incorporated into the clays as the lake was active. (2) Instead, when the lake dried out, it left a layer of boron-containing salts, and likely other types of salts, such as sodium chloride (table salt) and calcium sulfates, in an overlying layer that Curiosity has not yet visited. The bedrock fractured. (3) Groundwater later dissolved this layer of evaporite salts and moved the salts down into the older layers the rover has investigated. (4) The groundwater deposited the evaporite salts with the calcium sulfate that makes up the bulk of these veins. http://photojournal.jpl.nasa.gov/catalog/PIA21253
Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming
NASA Astrophysics Data System (ADS)
Allazadeh, M. R.; Zuelli, N.
2017-10-01
A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni
2011-01-01
Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability or future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185oC to +125oC) covers military specifications (-55oC to +100oC), extreme old Martian (-120oC to +115oC), asteroid Nereus (-180oC to +25oC) and JUNO (-150oC to +120oC) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185oC to +125oC) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2011-02-01
Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability for future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185°C to +125°C) covers military specifications (-55°C to +100°C), extreme cold Martian (-120°C to +115°C), asteroid Nereus (-180°C to +25°C) and JUNO (-150°C to +120°C) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185°C to +125°C) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.
Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A
2017-01-23
We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.
Hall, David R.; Pixton, David S.; Briscoe, Michael; McPherson, James
2007-12-04
A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.
2013-06-01
boundary was also considered. The panel must be slightly smaller than the repair area to allow the panel to be installed easily with little resistance ...beam between simple supports that offer no resistance and is more flexible. The actual support conditions are somewhere in between since the...slenderness of the keyway components, and thin bolt tab were not sufficient to resist rotation. The keyway was removed since it offered little structural
Transient loads identification for a standoff metallic thermal protection system panel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hundhausen, R. J.; Adams, Douglas E.; Derriso, Mark
2004-01-01
Standoff thermal protection system (TPS) panels are critical structural components in future aerospace vehicles because they protect the vehicle from the hostile environment encountered during space launch and reentry. Consequently, the panels are exposed to a variety of loads including high temperature thermal stresses, thermal shock, acoustic pressure, and foreign object impacts. Transient impacts are especially detrimental because they can cause immediate and severe degradation of the panel in the form of, for example, debonding and buckling of the face sheet, cracking of the fasteners, or deformation of the standoffs. Loads identification methods for determining the magnitude and location ofmore » impact loads provide an indication of TPS components that may be more susceptible to failure. Furthermore, a historical database of impact loads encountered can be retained for use in the development of statistical models that relate impact loading to panel life. In this work, simulated inservice transient loads are identified experimentally using two methods: a physics-based approach and an inverse Frequency Response Function (FRF) approach. It is shown that by applying the inverse FRF method, the location and magnitude of these simulated impacts can be identified with a high degree of accuracy. The identified force levels vary significantly with impact location due to the differences in panel deformation at the impact site indicating that resultant damage due to impacts would vary with location as well.« less
NASA Technical Reports Server (NTRS)
Cramer, B. A.; Davis, J. W.
1975-01-01
A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.
Xenakis, Nancy
2015-10-01
In July 2012, The Mount Sinai Medical Center was selected by the Centers for Medicare and Medicaid to join the first cohort of Accountable Care Organizations (ACOs) in this country under its Medicare Shared Savings Program. A critical component of an ACO is care coordination of patients, which is a complex concept, intertwined with other concepts related to quality, delivery and organization of health care. This article provides an overview of the development, structure and functionality of Mount Sinai Care, the ACO of The Mount Sinai Health System, and how it was the beginning of its work in population health management. It describes the important role of social work leadership in the development and operation of its care coordination model. The model's successes and challenges and recommendations for future development of care coordination and population health management are outlined.
NASA Technical Reports Server (NTRS)
Dominek, Allen; Wood, Richard; Gilreath, Mel
1992-01-01
Almond shaped test body developed for use in electromagnetic anechoic chamber for evaluation of range and measurement of components has low radar cross section that varies with angle over large dynamic range. Surface is composite formed by joining properly scaled ellipsoidal surfaces. Used to mount components whose radar cross sections are to be measured, and simulate backscatter characteristics of component as though it were over infinite ground plane.
Yang, Lei; Wei, Ran; Shen, Henggen
2017-01-01
New principal component analysis (PCA) respirator fit test panels had been developed for current American and Chinese civilian workers based on anthropometric surveys. The PCA panels used the first two principal components (PCs) obtained from a set of 10 facial dimensions. Although the PCA panels for American and Chinese subjects adopted the bivairate framework with two PCs, the number of the PCs retained in the PCA analysis was different between Chinese subjects and Americans. For the Chinese youth group, the third PC should be retained in the PCA analysis for developing new fit test panels. In this article, an additional number label (ANL) is used to explain the third PC in PCA analysis when the first two PCs are used to construct the PCA half-facepiece respirator fit test panel for Chinese group. The three-dimensional box-counting method is proposed to estimate the ANLs by calculating fractal dimensions of the facial anthropometric data of the Chinese youth. The linear regression coefficients of scale-free range R 2 are all over 0.960, which demonstrates that the facial anthropometric data of the Chinese youth has fractal characteristic. The youth subjects born in Henan province has an ANL of 2.002, which is lower than the composite facial anthropometric data of Chinese subjects born in many provinces. Hence, Henan youth subjects have the self-similar facial anthropometric characteristic and should use the particular ANL (2.002) as the important tool along with using the PCA panel. The ANL method proposed in this article not only provides a new methodology in quantifying the characteristics of facial anthropometric dimensions for any ethnic/racial group, but also extends the scope of PCA panel studies to higher dimensions.
Analysis of Faint Glints from Stabilized GEO Satellites
NASA Astrophysics Data System (ADS)
Hall, D.; Kervin, P.
2013-09-01
Ground-based telescopes routinely acquire temporal brightness measurements of satellites in geo-stationary and geo-synchronous orbit that provide valuable characterization information. For instance, GEO satellites that are not stabilized tend to rotate, and produce brightnesses that vary in time with frequencies corresponding to rotation rates. Temporal brightness patterns can also be exploited to characterize stabilized GEO satellites. For example, many operational GEO satellites have solar panels that glint when they reflect sunlight towards an observer in a mirror-like fashion. These well-known solar panel glints can be remarkably bright, often exceeding several stellar magnitudes in amplitude. Measured brightnesses and times of these glints can be exploited to estimate the size, segmentation, and alignment of the solar array, valuable information about the satellite's power generation and consumption capabilities. However, satellites can produce other glints in addition to those originating from solar panels. These glints can be much fainter, with amplitudes as small as 0.2 magnitudes. Several observations of GEO satellites show several such glints occurring during the span of a single night. Furthermore, many of these recur from night to night when observed from a single ground-based site, but with subtle, incremental changes in both peak times and brightnesses. These fainter glints must originate from reflective elements mounted on the satellite's main bus, solar panel structure, or other peripheral structures that might be stationary or moving with respect to the main bus. Our analysis indicates that such glints can be exploited for GEO satellite characterization.
NASA Astrophysics Data System (ADS)
Canestrari, R.; Motta, G.; Pareschi, G.; Basso, S.; Doro, M.; Giro, E.; Lessio, L.
2010-07-01
In the last decade a new window for ground-based high energy astrophysics has been opened. It explores the energy band from about 100 GeV to 10 TeV making use of Imaging Atmospheric Cherenkov Telescopes (IACTs). Research in Very High Energy (VHE) gamma-ray astronomy is improving rapidly and thanks to the newest facilities as MAGIC, HESS and VERITAS astronomers and particle physicists are obtaining surprising implications in the theoretical models. New projects have been started as the European Cherenkov Telescope Array (CTA) and the U.S. Advanced Gamma-ray Imaging System (AGIS). The aim is to enhance both the sensitivity and the energy band coverage to perform imaging, photometry and spectroscopy of sources. In this framework, tens of thousands of optical mirror panels have to be manufactured, tested and mounted into the telescopes. Because of this high number of mirrors it is mandatory to develop a technique easily transferable to industrial mass production, but keeping the technical and cost-effectiveness requirements of the next generation of TeV telescopes. In this context the Astronomical Observatory of Brera (INAF-OAB) is investigating a technique for the manufacturing of stiff and lightweight glass mirror panels with modest angular resolution. These panels have a composite sandwich-like structure with two thin glass skins on both sides of a core material; the reflecting skin is optically shaped using an ad-hoc slumping procedure. The technology here presented is particularly attractive for the mass production of cost-effective mirror segments with long radius of curvature like those required in the primary mirrors of the next generation of Cherenkov telescopes. In this paper we present and discuss some relevant results we have obtained from the latest panels realized.
Photovoltaic cell electrical heating system for removing snow on panel including verification.
Weiss, Agnes; Weiss, Helmut
2017-11-16
Small photovoltaic plants in private ownership are typically rated at 5 kW (peak). The panels are mounted on roofs at a decline angle of 20° to 45°. In winter time, a dense layer of snow at a width of e.g., 10 cm keeps off solar radiation from the photovoltaic cells for weeks under continental climate conditions. Practically, no energy is produced over the time of snow coverage. Only until outside air temperature has risen high enough for a rather long-time interval to allow partial melting of snow; the snow layer rushes down in an avalanche. Following this proposal, snow removal can be arranged electrically at an extremely positive energy balance in a fast way. A photovoltaic cell is a large junction area diode inside with a threshold voltage of about 0.6 to 0.7 V (depending on temperature). This forward voltage drop created by an externally driven current through the modules can be efficiently used to provide well-distributed heat dissipation at the cell and further on at the glass surface of the whole panel. The adhesion of snow on glass is widely reduced through this heating in case a thin water film can be produced by this external short time heating. Laboratory experiments provided a temperature increase through rated panel current of more than 10 °C within about 10 min. This heating can initiate the avalanche for snow removal on intention as described before provided the clamping effect on snow at the edge of the panel frame is overcome by an additional heating foil. Basics of internal cell heat production, heating thermal effects in time course, thermographic measurements on temperature distribution, power circuit opportunities including battery storage elements and snow-removal under practical conditions are described.
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Mardoian, George H.; Ezzo, Maureen B.
1994-01-01
This paper presents the results of a NASA funded contract and Sikorsky research and development programs to evaluate structural composite components in flight service on Sikorsky Model S-76 helicopters. Selected components were removed and tested at prescribed intervals over a nine year time frame. Four horizontal stabilizers and thirteen tail rotor spars were returned from commercial service in West Palm Beach, Florida and in the Gulf Coast region of Louisiana to determine the long term effects of operations in hot and humid climates on component performance. Concurrent with the flight component evaluation, panels of materials used in their fabrication were exposed to the environment in ground racks. Selected panels were tested annually to determine the effects of exposure on physical and mechanical properties. The results of 55,741 component flight hours and 911 months of field exposure are reported and compared with initial Federal Aviation Administration (FAA) certification data. The findings of this program have provided increased confidence in the long term durability of advanced composite materials used in helicopter structural applications.
Projection display technology for avionics applications
NASA Astrophysics Data System (ADS)
Kalmanash, Michael H.; Tompkins, Richard D.
2000-08-01
Avionics displays often require custom image sources tailored to demanding program needs. Flat panel devices are attractive for cockpit installations, however recent history has shown that it is not possible to sustain a business manufacturing custom flat panels in small volume specialty runs. As the number of suppliers willing to undertake this effort shrinks, avionics programs unable to utilize commercial-off-the-shelf (COTS) flat panels are placed in serious jeopardy. Rear projection technology offers a new paradigm, enabling compact systems to be tailored to specific platform needs while using a complement of COTS components. Projection displays enable improved performance, lower cost and shorter development cycles based on inter-program commonality and the wide use of commercial components. This paper reviews the promise and challenges of projection technology and provides an overview of Kaiser Electronics' efforts in developing advanced avionics displays using this approach.
Variable Spaced Grating (VSG) Snout, Rotator and Rails for use at LLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S K; Emig, J A; Griffith, L V
2010-01-25
The Variable Spaced Grating (VSG) is a spectrometer snout mounted to an X-Ray Framing Camera (XRFC) through the Unimount flange. This equipment already exists and is used at the University of Rochester, Laboratory for Laser Energetics (LLE) facility. The XRFC and the Unimount flange are designed by LLE. The Tilt Rotator fixture that mounts next to the XRFC and the cart rails are designed by LLNL, and are included in this safety note. The other related components, such as the TIM rails and the Unimount flange, are addressed in a separate safety note, EDSN09-500005-AA. The Multipurpose Spectrometer (MSPEC) and VSGmore » are mounted on the TIM Boat through the cart rails that are very similar in design. The tilt rotator combination with the Unimount flange is also a standard mounting procedure. The later mounting system has been included in this safety note. Figure-1 shows the interface components and the VSG snout. Figure-2 shows the VSG assembly mounted on the Unimount flange. The calibration pointer attachment is shown in place of the snout. There are two types of VSG, one made of 6061-T6 aluminum, weighing approximately 3 pounds, and the other made of 304 stainless steel, weighing approximately 5.5 pounds. This safety note examines the VSG steel design. Specific experiments may require orienting the VSG snout in 90 degrees increment with respect to the Unimount flange. This is done by changing the bolts position on the VSG-main body adapter flange to the Unimount adapter plate. There is no hazard involved in handling the VSG during this procedure as it is done outside the target chamber on the cart rail before installing on the TIM. This safety note addresses the mechanical integrity of the VSG structure, the tilt rotating fixture, the cart rails with handle and their connections. Safety Factors are also calculated for the MSPEC in place of the VSG.« less
NASA Astrophysics Data System (ADS)
Lorenzo, J. M.; Saanumi, A. A.; Westbrook, C. C.; Egnew, S. F.; Bentley, S. J.
2004-12-01
Towed land-geophone seismic arrays have the potential to increase markedly the efficiency for collecting near-surface (0-100m) high-resolution seismic data, but viable cases are few and have been limited to a narrow range of near-surface sedimentary facies. During November 2003 through June 2004 we conducted extensive seismic tests with traditional geophones mounted on low-cost Π -shaped sleds. We targeted human habitation surfaces within the upper few meters of a crevasse splay complex in the Atchafalaya Basin study area, Indian Bayou Wildlife Management Area, Louisiana, U.S. For seismic-to-core correlation, sealed, continuous test cores were run through a multi-sensor to test for magnetic susceptibility, bulk sediment density and electrical resistivity. We compared 24-channel seismic data using a variety of seismic source-receiver combinations. Sources comprised a 12-gauge pipe-gun, a 0.22 caliber-powered piston gun, an accelerated weight drop, and a small claw hammer. Commercial blanks, 2g-black-powder, and primer-only shells were fired by the pipe gun. Receivers included 100-Hz vertical-, and 14-Hz-horizontal-component geophones. For comparison, both ground-planted and geophones mounted on wooden and iron sleds 0.3 and 1.2m long respectively. Geophones mounted on steel sleds produced data of adequate quality. Whereas traditional ground-planted geophones showed better data quality, time and cost efficiency make mounted phones more feasible for regional studies as traditional arrays are prohibitively expensive. Because of the high seismic attenuation, only horizontal-component geophones mounted on heavy (9-kg) steel sleds provided useful data, although the shallowest reflection observed in the shear wave data came from a boundary at ~ 19m depth, too far below the target depth of 4-5 m. Instead, we forward-modeled refraction traveltime data to derive the acoustic and SH velocity structure.
NASA Technical Reports Server (NTRS)
Kalcic, Maria; Iturriaga, Rodolfo H.; Kuper, Philip D.; O'Neal, Stanford Duane; Underwood, Lauren; Fletcher, Rose
2012-01-01
Major changes in salinity (approx.14 ppt.) and temperature (approx.40C) were continuously registered by two prototype NASA DRIFTERs, surface moored floaters, that NASA's Applied Science and Technology Project Office (ASTPO) has developed. The DRIFTER floating sensor module is equipped with an Arduino open-source electronics prototyping platform and programming language (http://www.arduino.cc), a GPS (Global Positioning System) module with antenna, a cell phone SIM (Subscriber Identity Module) card and a cellular antenna which is used to transmit data, and a probe to measure temperature and conductivity (from which salinity can be derived). The DRIFTER is powered by a solar cell panel and all the electronic components are mounted and sealed in [ waterproof encasement. Position and measurement data are transmitted via short message service (SMS) messaging to a Twitter site (DRIFTER 002@NASADRIFTER_002 and DRIFTER 004@NASADRIFTER_004), which provides a live feed. These data are the imported into a Google spreadsheet where conductivity is converted to salinity, and graphed in real-time. The spreadsheet data will be imported into a webpage maintained by ASTPO, where it will be displayed available for dO\\\\1lload.
Coenraad F. A. Moorrees: Journey to the top of Mons Scolaris (Mount Scholar).
Ghafari, Joseph G
2015-08-01
Coenraad F. A. Moorrees was a pioneer in orthodontic education and research. He was the first academic leader to merge clinical and research requirements in a 3-year residency. Beyond his lifelong association with the Harvard School of Dental Medicine and the Forsyth Dental Center (now the Forsyth Institute), his scholarly impact has reached worldwide through his multifaceted publications, but perhaps more potently through his postdoctoral fellows, 52% of whom achieved professorial ranks at academic institutions, and 15% became heads of orthodontic departments. His scholarly productivity cut across various components of facial growth and development, including the critical consideration of the soft tissue profile in evaluating the total face and the assessment of constitutional and psychobiologic panels in diagnosis and treatment of the individual patient. His investigations on dental development yielded cornerstone knowledge that was readily transferred to clinical applications. His contributions in various organizations included extended service for the prestigious National Institute for Dental Research, which oversees the most important research output in the United States. Numerous national and international recognitions were bestowed on him. He combined in his person the attributes of "renaissance educator" and "citizen of the world," reflecting a unique combination of science and humanity. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
2010-11-05
the Banana River to the West and mosquito control lagoons to the East. The building components that are to be treated are from inside the structure... peeling /removal) is given. Untreated areas of panel 3 and 4 were tested as a control, to determine the adhesion qualities of the paint prior to...similarly shows untreated panel 4. Both panels (untreated) were scored a 5, indicating no peeling or removal of the paint upon removal of the pressure
The Stretched Lens Array (SLA): An Ultra-Light Photovoltaic Concentrator
NASA Technical Reports Server (NTRS)
ONeill, Mark J.; Pisczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.
2002-01-01
A high-performance, ultralight, photovoltaic concentrator array is being developed for space power. The stretched lens array (SLA) uses stretched-membrane, silicone Fresnel lenses to concentrate sunlight onto triple-junction photovoltaic cells. The cells are mounted to a composite radiator structure. The entire solar array wing, including lenses, photovoltaic cell flex circuits, composite panels, hinges, yoke, wiring harness, and deployment mechanisms, has a mass density of 1.6 kg/sq.m. NASA Glenn has measured 27.4% net SLA panel efficiency, or 375 W/sq.m. power density, at room temperature. At GEO operating cell temperature (80 C), this power density will be 300 W/sq.m., resulting in more than 180 W/kg specific power at the full wing level. SLA is a direct ultralight descendent of the successful SCARLET array on NASA's Deep Space 1 spacecraft. This paper describes the evolution from SCARLET to SLA, summarizes the SLA's key features, and provides performance and mass data for this new concentrator array.
Receiver System: Lessons Learned from Solar Two
NASA Astrophysics Data System (ADS)
Litwin, R. Z.
2002-03-01
The Boeing Company fabricated the Solar Two receiver as a subcontractor for the Solar Two project. The receiver absorbed sunlight reflected from the heliostat field. A molten-nitrate-salt heat transfer fluid was pumped from a storage tank at grade level, heated from 290 to 565DGC by the receiver mounted on top of a tower, then flowed back down into another storage tank. To make electricity, the hot salt was pumped through a steam generator to produce steam that powered a conventional Rankine steam turbine/generator. This evaluation identifies the most significant Solar Two receiver system lessons learned from the Mechanical Design, Instrumentation and Control, Panel Fabrication, Site Construction, Receiver System Operation, and Management from the perspective of the receiver designer/manufacturer. The lessons learned on the receiver system described here consist of two parts: the Problem and one or more identified Solutions. The appendix summarizes an inspection of the advanced receiver panel developed by Boeing that was installed and operated in the Solar Two receiver.
Receiver System: Lessons Learned From Solar Two
DOE Office of Scientific and Technical Information (OSTI.GOV)
LITWIN, ROBERT Z.; PACHECO, JAMES E.
The Boeing Company fabricated the Solar Two receiver as a subcontractor for the Solar Two project. The receiver absorbed sunlight reflected from the heliostat field. A molten-nitrate-salt heat transfer fluid was pumped from a storage tank at grade level, heated from 290 to 565 C by the receiver mounted on top of a tower, then flowed back down into another storage tank. To make electricity, the hot salt was pumped through a steam generator to produce steam that powered a conventional Rankine steam turbine/generator. This evaluation identifies the most significant Solar Two receiver system lessons learned from the Mechanical Design,more » Instrumentation and Control, Panel Fabrication, Site Construction, Receiver System Operation, and Management from the perspective of the receiver designer/manufacturer. The lessons learned on the receiver system described here consist of two parts: the Problem and one or more identified Solutions. The appendix summarizes an inspection of the advanced receiver panel developed by Boeing that was installed and operated in the Solar Two receiver.« less
Antifouling Transparent ZnO Thin Films Fabricated by Atmospheric Pressure Cold Plasma Deposition
NASA Astrophysics Data System (ADS)
Suzaki, Yoshifumi; Du, Jinlong; Yuji, Toshifumi; Miyagawa, Hayato; Ogawa, Kazufumi
2015-09-01
One problem with outdoor-mounted solar panels is that power generation efficiency is reduced by face plate dirt; a problem with electronic touch panels is the deterioration of screen visibility caused by finger grease stains. To solve these problems, we should fabricate antifouling surfaces which have superhydrophobic and oil-repellent properties without spoiling the transparency of the transparent substrate. In this study, an antifouling surface with both superhydrophobicity and oil-repellency was fabricated on a glass substrate by forming a fractal microstructure. The fractal microstructure was constituted of transparent silica particles 100 nm in diameter and transparent zinc-oxide columns grown on silica particles through atmospheric pressure cold plasma deposition; the sample surface was coated with a chemically adsorbed monomolecular layer. Samples were obtained which had a superhydrophobic property (with a water droplet contact angle of more than 150°) and a high average transmittance of about 90% (with wavelengths ranging from 400 nm to 780 nm).
NASA Astrophysics Data System (ADS)
Gangadevi, R.; Vinayagam, B. K.; Senthilraja, S.
2017-05-01
In this paper, the PV/T (Photovoltaic thermal unit) system is investigated experimentally to examine the thermal, electrical and overall efficiency by circulating Al2O3/water nanofluid of 1wt% and 2wt% with an optimum flow rate of 40L/H. The overall efficiency of PVT system is largely influenced by various factors such as heat due to photovoltaic action; energy radiated at the infrared wavelength of the solar spectrum, solar irradiance, mounting structure, tilt angle, wind speed direction, Ambient temperature and panel material composition. However, the major factor is considered in this study to extract the heat generated in the PV panel by using nanofluid as a coolant to increase the overall system efficiency. Therefore, the result shows that by using 2 wt% Al2O3/water nanofluid the electrical efficiency, thermal efficiency and overall efficiency of the PVT system enhanced by 13%, 45%, and 58% respectively compared with water.
NASA Technical Reports Server (NTRS)
Klich, G. F.
1976-01-01
A description of the Langley thermal protection system test facility is presented. This facility was designed to provide realistic environments and times for testing thermal protection systems proposed for use on high speed vehicles such as the space shuttle. Products from the combustion of methane-air-oxygen mixtures, having a maximum total enthalpy of 10.3 MJ/kg, are used as a test medium. Test panels with maximum dimensions of 61 cm x 91.4 cm are mounted in the side wall of the test region. Static pressures in the test region can range from .005 to .1 atm and calculated equilibrium temperatures of test panels range from 700 K to 1700 K. Test times can be as long as 1800 sec. Some experimental data obtained while using combustion products of methane-air mixtures are compared with theory, and calibration of the facility is being continued to verify calculated values of parameters which are within the design operating boundaries.
Effect of wing flexibility on the experimental aerodynamic characteristics of an oblique wing
NASA Technical Reports Server (NTRS)
Hopkins, E. J.; Yee, S. C.
1977-01-01
A solid-aluminum oblique wing was designed to deflect considerably under load so as to relieve the asymmetric spanwise stalling that is characteristic of this type of wing by creating washout on the trailing wing panel and washin on the leading wing panel. Experimental forces, and pitching, rolling and yawing moments were measured with the wing mounted on a body of revolution. In order to vary the dynamic pressure, measurements were made at several unit Reynolds numbers, and at Mach numbers. The wing was investigated when unswept (at subsonic Mach numbers only) and when swept 45 deg, 50 deg, and 60 deg. The wing was straight tapered in planform, had an aspect ratio of 7.9 (based on the unswept span), and a profile with a maximum thickness of 4 percent chord. The results substantiate the concept that an oblique wing designed with the proper amount of flexibility self relieves itself of asymmetric spanwise stalling and the associated nonlinear moment curves.
Global Warming - Myth or Reality?, The Erring Ways of Climatology
NASA Astrophysics Data System (ADS)
Leroux, Marcel
In the global-warming debate, definitive answers to questions about ultimate causes and effects remain elusive. In Global Warming: Myth or Reality? Marcel Leroux seeks to separate fact from fiction in this critical debate from a climatological perspective. Beginning with a review of the dire hypotheses for climate trends, the author describes the history of the 1998 Intergovernmental Panel on Climate Change (IPCC) and many subsequent conferences. He discusses the main conclusions of the three IPCC reports and the predicted impact on global temperatures, rainfall, weather and climate, while highlighting the mounting confusion and sensationalism of reports in the media.
Skylab 2 crew during "open house" press day at Manned Spacecraft Center (MSC)
1972-01-19
S72-17509 (19 Jan. 1972) --- These three men are the crewmen for the first manned Skylab mission. They are astronaut Charles Conrad Jr., commander, standing left; scientist-astronaut Joseph P. Kerwin, seated; and astronaut Paul J. Weitz, pilot. They were photographed and interviewed during an "open house" press day in the realistic atmosphere of the Multiple Docking Adapter (MDA) trainer in the Mission Simulation and Training Facility at the Manned Spacecraft Center (MSC). The control and display panel for the Apollo Telescope Mount (ATM) is at right. Photo credit: NASA
1987-04-01
capabilities. The antennas are mounted to two-dimensional scanning mechanisms (gimbal) which provide fast and accurate motion of the antennas over...important for the ovet—all antenna weight which should be as low as possible to allow fast scanning). The slots in the waveguide walls are fed by the...degree of beam flexibility and the fast reconfigurability required for hopping and scanning beams with TDMA. Ultimately, BFNs are expected to include
Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1999-01-01
Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.
NASA Astrophysics Data System (ADS)
Ratzloff, Jeff; Law, Nicholas M.; Fors, Octavi; Wulfken, Philip J.
2015-01-01
We designed, tested, prototyped and built a compact 27-camera robotic telescope that images 10,000 square degrees in 2-minute exposures. We exploit mass produced interline CCD Cameras with Rokinon consumer lenses to economically build a telescope that covers this large part of the sky simultaneously with a good enough pixel sampling to avoid the confusion limit over most of the sky. We developed the initial concept into a 3-d mechanical design with the aid of computer modeling programs. Significant design components include the camera assembly-mounting modules, the hemispherical support structure, and the instrument base structure. We simulated flexure and material stress in each of the three main components, which helped us optimize the rigidity and materials selection, while reducing weight. The camera mounts are CNC aluminum and the support shell is reinforced fiberglass. Other significant project components include optimizing camera locations, camera alignment, thermal analysis, environmental sealing, wind protection, and ease of access to internal components. The Evryscope will be assembled at UNC Chapel Hill and deployed to the CTIO in 2015.
Safety Assessment of Polyether Lanolins as Used in Cosmetics.
Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan; Heldreth, Bart
The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 39 polyether lanolin ingredients as used in cosmetics. These ingredients function mostly as hair conditioning agents, skin conditioning agent-emollients, and surfactant-emulsifying agents. The Panel reviewed available animal and clinical data, from previous CIR safety assessments of related ingredients and components. The similar structure, properties, functions, and uses of these ingredients enabled grouping them and using the available toxicological data to assess the safety of the entire group. The Panel concluded that these polyether lanolin ingredients are safe in the practices of use and concentration as given in this safety assessment.
Fabrication and installation of the Solar Two central receiver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litwin, R.Z.; Rogers, R.D.
The heart of the Solar Two power plant is the molten salt central receiver that has been designed, fabricated, and installed over an 18 month schedule. During this time, the receiver system from Solar One was also completely disassembled and removed. The receiver tower structure, for the most part, was left intact because Solar Two was designed to fit this structure such that construction time and costs could be minimized. In order to meet this aggressive schedule, receiver panel fabrication required the parallel production of many components. The sequence for assembly of the four major receiver panel components (i.e., tubes,more » header assembly, strongback, and header oven covers) and key fabrication activities such as welding are described. Once the receiver panels were complete, their installation at the site was begun, and the order in which receiver system components were installed in the tower is described. The completion of the Solar Two receiver proved the fabricability of this important system. However, successful operation of the system at Solar Two is needed to demonstrate the technical feasibility of the molten salt central receiver concept.« less
NASA Astrophysics Data System (ADS)
Ellmer, Claudia; Adams, Douglas E.; White, Jonathan R.; Jata, Kumar
2008-02-01
Combined vibration, thermal, and acoustic environments cause significant changes in the free and forced response characteristics of spacecraft metallic, ceramic, and carbon thermal protection systems, exhaust wash structures in fixed wing aircraft, and ground vehicle components exposed to blast loading. When structural components become damaged, the effects of combined loads are even more apparent on the structural response. A new combined vibration-acoustic-thermal apparatus designed to simultaneously expose specimens up to 4' by 4' with 10 g vibration up to either 100 Hz or 1 inch displacement vibrations, 140 dB acoustic pressures, and >400 °F temperatures will first be described in this paper. Then observations from experiments conducted on a sandwich metallic panel exposed to thermal loads will be described. Modal impact and active sensor data will be utilized to extract frequency response function models that change as a function of the loading. These frequency response models indicate significant changes in the free response properties of the panel. For example, it will be shown that temperature changes cause the resonant frequencies of the panel to decrease resulting in higher response amplitudes. Likewise, acoustic pressure loads distributed across the panel will be shown to change as a function of temperature.
Multi-scale roughness spectra of Mount St. Helens debris flows
NASA Technical Reports Server (NTRS)
Austin, Richard T.; England, Anthony W.
1993-01-01
A roughness spectrum allows surface structure to be interpreted as a sum of sinusoidal components with differing wavelengths. Knowledge of the roughness spectrum gives insight into the mechanisms responsible for electromagnetic scattering at a given wavelength. Measured spectra from 10-year-old primary debris flow surfaces at Mount St. Helens conform to a power-law spectral model, suggesting that these surfaces are scaling over the measured range of spatial frequencies. Measured spectra from water-deposited surfaces deviate from this model.
Structural materials and components
NASA Technical Reports Server (NTRS)
Gagliani, John (Inventor); Lee, Raymond (Inventor)
1982-01-01
High density structural (blocking) materials composed of a polyimide filled with glass microballoons and methods for making such materials. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.
NASA Astrophysics Data System (ADS)
Kachejian, Kerry C.; Vujcic, Doug
1998-08-01
The combat cueing (CBT-Q) research effort will develop and demonstrate a portable tactical information system that will enhance the effectiveness of small unit military operations by providing real-time target cueing information to individual warfighters and teams. CBT-Q consists of a network of portable radio frequency (RF) 'modules' and is controlled by a body-worn 'user station' utilizing a head mounted display . On the battlefield, CBT-Q modules will detect an enemy transmitter and instantly provide the warfighter with an emitter's location. During the 'fog of battle', CBT-Q would tell the warfighter, 'Look here, right now individuals into the RF spectrum, resulting in faster target engagement times, increased survivability, and reduce the potential for fratricide. CBT-Q technology can support both mounted and dismounted tactical forces involved in land, sea and air warfighting operations. The CBT-Q system combines robust geolocation and signal sorting algorithms with hardware and software modularity to offer maximum utility to the warfighter. A single CBT-Q module can provide threat RF detection. Three networked CBT-Q modules can provide emitter positions using a time difference of arrival (TDOA) technique. The TDOA approach relies on timing and positioning data derived from a global positioning systems. The information will be displayed on a variety of displays, including a flat-panel head mounted display. The end results of the program will be the demonstration of the system with US Army Scouts in an operational environment.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Results of an investigation of the aerodynamic loads on a canard airplane model are presented without detailed analysis for the Mach number range of 0.70 t o 2.22. The model consisted of a triangular wing and canard of aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and either a single body-mounted vertical tail or twin wing mounted vertical tails of low aspect ratio and sweptback plan form. The body, right wing panel, single vertical tail, and left twin vertical tail were instrumented for measuring pressures. Data were obtained for angles of attack ranging from -4 degrees to +16 degrees, nominal canard deflection angles of 0 degrees and 10 degrees, and angles of sideslip of 0 degrees and 5.3 degrees. The Reynolds number was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data are presented in graphical form and attention is directed to some of the results of the investigation. All of the experimental results have been tabulated in the form of pressure coefficients and integrations of the pressure coefficients and are available as supplements to this paper. A brief summary of the contents of the tabular material is given.
Thin film photovoltaic panel and method
Ackerman, Bruce; Albright, Scot P.; Jordan, John F.
1991-06-11
A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.
Implementation of a self-controlling heater
NASA Technical Reports Server (NTRS)
Strange, M. G.
1973-01-01
Temperature control of radiation sensors, targets, and other critical components is a common requirement in modern scientific instruments. Conventional control systems use a heater and a temperature sensor mounted on the body to be controlled. For proportional control, the sensor provides feedback to circuitry which drives the heater with an amount of power proportional to the temperature error. It is impractical or undesirable to mount both a heater and a sensor on certain components such as ultra-small parts or thin filaments. In principle, a variable current through the element is used for heating, and the change in voltage drop due to the element's temperature coefficient is separated and used to monitor or control its own temperature. Since there are no thermal propagation delays between heater and sensor, such control systems are exceptionally stable.
Troubleshooting of signal power supply system for Shanghai metro line 7
NASA Astrophysics Data System (ADS)
Lu, Kaixia; Xiao, Jie
2018-03-01
With the rapid development of Urban Rail Transit Signal Technology, the demand of signal power supply system for signal equipment is higher and higher. The signal intelligent power supply panel is the main component of the urban rail traffic signal power supply system. Whether the intelligent power supply panel working or not is directly related to traffic safety. The maintenance of intelligent signal power supply panel is particularly important. Line 7 of Shanghai Metro adopts PMZG Signal Intelligent Power Supply Panel, which is produced by Beijing Jinyujiaxin Polytron Technologies Inc. Maintenance of power supply system mainly includes routine maintenance and troubleshooting. This article will make clear the routine maintenance contents of PMZG Signal Intelligent Power Supply Panel, and put forward the common fault information and troubleshooting methods of PMZG Signal Intelligent Power Supply Panel. In accordance with the steps of fault handling, the faults can be eliminated in the shortest possible time, and PMZG Signal Intelligent Power Supply Panel can be quickly restored to normal working state.
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Gibbs, Gary P.
2000-01-01
There has been considerable interest over the past several years in applying feedback control methods to problems of structural acoustics. One problem of particular interest is the control of sound radiation from aircraft panels excited on one side by a turbulent boundary layer (TBL). TBL excitation appears as many uncorrelated sources acting on the panel, which makes it difficult to find a single reference signal that is coherent with the excitation. Feedback methods have no need for a reference signal, and are thus suited to this problem. Some important considerations for the structural acoustics problem include the fact that the required controller bandwidth can easily extend to several hundred Hertz, so a digital controller would have to operate at a few kilohertz. In addition, aircraft panel structures have a reasonably high modal density over this frequency range. A model based controller must therefore handle the modally dense system, or have some way to reduce the bandwidth of the problem. Further complicating the problem is the fact that the stiffness and dynamic properties of an aircraft panel can vary considerably during flight due to altitude changes resulting in significant resonant frequency shifts. These considerations make the tradeoff between robustness to changes in the system being controlled and controller performance especially important. Recent papers concerning the design and implementation of robust controllers for structural acoustic problems highlight the need to consider both performance and robustness when designing the controller. While robust control methods such as H1 can be used to balance performance and robustness, their implementation is not easy and requires assumptions about the types of uncertainties in the plant being controlled. Achieving a useful controller design may require many tradeoff studies of different types of parametric uncertainties in the system. Another approach to achieving robustness to plant changes is to make the controller adaptive. For example, a mathematical model of the plant could be periodically updated as the plant changes, and the feedback gains recomputed from the updated model. To be practical, this approach requires a simple plant model that can be updated quickly with reasonable computational requirements. A recent paper by the authors discussed one way to simplify a feedback controller, by reducing the number of actuators and sensors needed for good performance. The work was done on a tensioned aircraft-style panel excited on one side by TBL flow in a low speed wind tunnel. Actuation was provided by a piezoelectric (PZT) actuator mounted on the center of the panel. For sensing, the responses of four accelerometers, positioned to approximate the response of the first radiation mode of the panel, were summed and fed back through the controller. This single input-single output topology was found to have nearly the same noise reduction performance as a controller with fifteen accelerometers and three PZT patches. This paper extends the previous results by looking at how constrained layer damping (CLD) on a panel can be used to enhance the performance of the feedback controller thus providing a more robust and efficient hybrid active/passive system. The eventual goal is to use the CLD to reduce sound radiation at high frequencies, then implement a very simple, reduced order, low sample rate adaptive controller to attenuate sound radiation at low frequencies. Additionally this added damping smoothes phase transitions over the bandwidth which promotes robustness to natural frequency shifts. Experiments were conducted in a transmission loss facility on a clamped-clamped aluminum panel driven on one side by a loudspeaker. A generalized predictive control (GPC) algorithm, which is suited to online adaptation of its parameters, was used in single input-single output and multiple input-single output configurations. Because this was a preliminary look at the potential constrained layer damping for adaptive control, static feedback control with no online adaptation was used. Two configurations of CLD in addition to a bare panel configuration were studied. For each CLD configuration, two sensor arrangements for the feedback controller were compared. The first arrangement used fifteen accelerometers on the panel to estimate the responses of the first six radiation modes of the panel. The second sensor arrangement was simpler, using the summed responses of only four accelerometers to approximate the response of the first radiation mode of the panel. In all cases a PZT patch was mounted at the center of the panel for control input. The performance of the controller was quantified using the responses of the fifteen accelerometers on the panel to estimate radiated sound power. The paper begins with a brief discussion of the GPC algorithm and the experimental setup. The experimental results are discussed next, comparing the CLD and sensor configurations, followed by discussion and conclusions.
Surtsey and Mount St. Helens: a comparison of early succession rates
NASA Astrophysics Data System (ADS)
del Moral, R.; Magnússon, B.
2014-04-01
Surtsey and Mount St. Helens are celebrated but very different volcanoes. Permanent plots allow for comparisons that reveal mechanisms that control succession and its rate and suggest general principles. We estimated rates from structure development, species composition using detrended correspondence analysis (DCA), changes in Euclidean distance (ED) of DCA vectors, and by principal components analysis (PCA) of DCA. On Surtsey, rates determined from DCA trajectory analyses decreased as follows: gull colony on lava with sand > gull colony on lava, no sand ≫ lava with sand > sand spit > block lava > tephra. On Mount St. Helens, plots on lahar deposits near woodlands were best developed. The succession rates of open meadows declined as follows: Lupinus-dominated pumice > protected ridge with Lupinus > other pumice and blasted sites > isolated lahar meadows > barren plain. Despite the prominent contrasts between the volcanoes, we found several common themes. Isolation restricted the number of colonists on Surtsey and to a lesser degree on Mount St. Helens. Nutrient input from outside the system was crucial. On Surtsey, seabirds fashioned very fertile substrates, while on Mount St. Helens wind brought a sparse nutrient rain, then Lupinus enhanced fertility to promote succession. Environmental stress limits succession in both cases. On Surtsey, bare lava, compacted tephra and infertile sands restrict development. On Mount St. Helens, exposure to wind and infertility slow succession.
Surtsey and Mount St. Helens: a comparison of early succession rates
NASA Astrophysics Data System (ADS)
del Moral, R.; Magnússon, B.
2013-12-01
Surtsey and Mount St. Helens are celebrated, but very different volcanoes. Permanent plots allow comparisons that reveal mechanisms that control succession and its rate and suggest general principles. We estimated rates from structure development, species composition using detrended correspondence analysis (DCA), changes in Euclidean distance (ED) of DCA vectors and by principal components analysis (PCA) of DCA. On Surtsey, rates determined from DCA trajectory analyses decreased as follows: gull colony on lava with sand > gull colony on lava, no sand ≫ lava with sand > sand spit > block lava > tephra. On Mount St. Helens, plots on lahar deposits near woodlands were best developed. The succession rates of open meadows declined as follows: Lupinus-dominated pumice > protected ridge with Lupinus > other pumice and blasted sites > isolated lahar meadows > barren plain. Despite the prominent contrasts between the volcanoes, common themes were revealed. Isolation restricted the number of colonists on Surtsey and to a lesser degree on Mount St. Helens. Nutrient input from outside the system was crucial. On Surtsey, seabirds fashioned very fertile substrates, while on Mount St. Helens wind brought a sparse nutrient rain, then Lupinus enhanced fertility to promote succession. Environmental stress limits succession in both cases. On Surtsey, bare lava, compacted tephra and infertile sands restrict development. On Mount St. Helens, exposure to wind and infertility slow succession.
Ahmad, Meraj; Sinha, Anubhav; Ghosh, Sreya; Kumar, Vikrant; Davila, Sonia; Yajnik, Chittaranjan S; Chandak, Giriraj R
2017-07-27
Imputation is a computational method based on the principle of haplotype sharing allowing enrichment of genome-wide association study datasets. It depends on the haplotype structure of the population and density of the genotype data. The 1000 Genomes Project led to the generation of imputation reference panels which have been used globally. However, recent studies have shown that population-specific panels provide better enrichment of genome-wide variants. We compared the imputation accuracy using 1000 Genomes phase 3 reference panel and a panel generated from genome-wide data on 407 individuals from Western India (WIP). The concordance of imputed variants was cross-checked with next-generation re-sequencing data on a subset of genomic regions. Further, using the genome-wide data from 1880 individuals, we demonstrate that WIP works better than the 1000 Genomes phase 3 panel and when merged with it, significantly improves the imputation accuracy throughout the minor allele frequency range. We also show that imputation using only South Asian component of the 1000 Genomes phase 3 panel works as good as the merged panel, making it computationally less intensive job. Thus, our study stresses that imputation accuracy using 1000 Genomes phase 3 panel can be further improved by including population-specific reference panels from South Asia.
Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Gurdal, Zafer
2006-01-01
Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.
Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.
2010-01-01
Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.
Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang
2018-01-01
Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of “cantilever beam and elastic foundation beam” was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation direction will be roughly along the central line between the initial broken point and the support position. Otherwise, the roof strata will bend with the support shields moving forward, then the fracture angle will be close to the initiation angle and the fault surface will be stepped. PMID:29513703
Yang, Jing-Hu; Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang
2018-01-01
Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of "cantilever beam and elastic foundation beam" was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation direction will be roughly along the central line between the initial broken point and the support position. Otherwise, the roof strata will bend with the support shields moving forward, then the fracture angle will be close to the initiation angle and the fault surface will be stepped.
2002-10-01
This is a ground level view of Test Stand 300 at the east test area of the Marshall Space Flight Center. Test Stand 300 was constructed in 1964 as a gas generator and heat exchanger test facility to support the Saturn/Apollo Program. Deep-space simulation was provided by a 1960 modification that added a 20-ft thermal vacuum chamber and a 1981 modification that added a 12-ft vacuum chamber. The facility was again modified in 1989 when 3-ft and 15-ft diameter chambers were added to support Space Station and technology programs. This multiposition test stand is used to test a wide range of rocket engine components, systems, and subsystems. It has the capability to simulate launch thermal and pressure profiles. Test Stand 300 was designed for testing solid rocket booster (SRB) insulation panels and components, super-insulated tanks, external tank (ET) insulation panels and components, Space Shuttle components, solid rocket motor materials, and advanced solid rocket motor materials.
Optical mounts for harsh environments
NASA Astrophysics Data System (ADS)
Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.
2009-08-01
Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.
Environmental Influences on Well-Being: A Dyadic Latent Panel Analysis of Spousal Similarity
ERIC Educational Resources Information Center
Schimmack, Ulrich; Lucas, Richard E.
2010-01-01
This article uses dyadic latent panel analysis (DLPA) to examine environmental influences on well-being. DLPA requires longitudinal dyadic data. It decomposes the observed variance of both members of a dyad into a trait, state, and an error component. Furthermore, state variance is decomposed into initial and new state variance. Total observed…
78 FR 19183 - Notice of Funding Availability for the Rural Energy for America Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... project contains a wind and solar photovoltaic components. The wind system will cost $30,000 (75 percent... facilities. For example, a rural small business owner owns five retail stores and wishes to install solar... solar panels on the five stores. However, if this same owner wishes to install solar panels on three of...
Test fixture design for boron-aluminum and beryllium test panels
NASA Technical Reports Server (NTRS)
Breaux, C. G.
1973-01-01
A detailed description of the test fixture design and the backup analysis of the fixture assembly and its components are presented. The test fixture is required for the separate testing of two boron-aluminum and two beryllium compression panels. This report is presented in conjunction with a complete set of design drawings on the test fixture system.
Modeling Force Transfer around Openings in Wood-Frame Shear Walls
Minghao Li; Frank Lam; Borjen Yeh; Tom Skaggs; Doug Rammer; James Wacker
2012-01-01
This paper presented a modeling study on force transfer around openings (FTAO) in wood-frame shear walls detailed for FTAO. To understand the load transfer in the walls, this study used a finite-element model WALL2D, which is able to model individual wall components, including framing members, sheathing panels, oriented panel-frame nailed connections, framing...
Standardized UXO Technology Demonstration Site, Open Field Scoring Record No. 893
2008-07-01
EM) AMOS metal detector is a linear multichannel sensor array consisting of a 2-meter-wide transmitter coil and 16 receiver coils, mounted on a...ferrous and nonferrous metals : Will detect ammunition components 20-mm caliber and over at depths of up to 0.4 meter and ammunition components 100...robust, all-terrain trailer (fig. 1). b. The AMOS detector unit consists of the following main components: (1) Lower sensor level (dimensions
Design, construction, and testing of the direct absorption receiver panel research experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, J.M.; Rush, E.E.; Matthews, C.W.
1990-01-01
A panel research experiment (PRE) was designed, built, and tested as a scaled-down model of a direct absorption receiver (DAR). The PRE is a 3-MW{sub t}DAR experiment that will allow flow testing with molten nitrate salt and provide a test bed for DAR testing with actual solar heating. In a solar central receiver system DAR, the heat absorbing fluid (a blackened molten nitrate salt) flows in a thin film down a vertical panel (rather than through tubes as in conventional receiver designs) and absorbs the concentrated solar flux directly. The ability of the flowing salt film to absorb flux directly.more » The ability of the flowing salt film to absorb the incident solar flux depends on the panel design, hydraulic and thermal fluid flow characteristics, and fluid blackener properties. Testing of the PRE is being conducted to demonstrate the engineering feasibility of the DAR concept. The DAR concept is being investigated because it offers numerous potential performance and economic advantages for production of electricity when compared to other solar receiver designs. The PRE utilized a 1-m wide by 6-m long absorber panel. The salt flow tests are being used to investigate component performance, panel deformations, and fluid stability. Salt flow testing has demonstrated that all the DAR components work as designed and that there are fluid stability issues that need to be addressed. Future solar testing will include steady-state and transient experiments, thermal loss measurements, responses to severe flux and temperature gradients and determination of peak flux capability, and optimized operation. In this paper, we describe the design, construction, and some preliminary flow test results of the Panel Research Experiment. 11 refs., 8 figs., 2 tabs.« less
Novel Composites for Wing and Fuselage Applications
NASA Technical Reports Server (NTRS)
Suarez, J. A.; Buttitta, C.
1996-01-01
Design development was successfully completed for textile preforms with continuous cross-stiffened epoxy panels with cut-outs. The preforms developed included 3-D angle interlock weaving of graphite structural fibers impregnated by resin film infiltration (RFI) and shown to be structurally suitable under conditions requiring minimum acquisition costs. Design guidelines/analysis methodology for such textile structures are given. The development was expanded to a fuselage side-panel component of a subsonic commercial airframe and found to be readily scalable. The successfully manufactured panel was delivered to NASA Langley for biaxial testing. This report covers the work performed under Task 3 -- Cross-Stiffened Subcomponent; Task 4 -- Design Guidelines/Analysis of Textile-Reinforced Composites; and Task 5 -- Integrally Woven Fuselage Panel.
High capacity demonstration of honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Tanzer, H. J.
1989-01-01
The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.
Thermo-mechanical performance of precision C/SiC mounts
NASA Astrophysics Data System (ADS)
Goodman, William A.; Mueller, Claus E.; Jacoby, Marc T.; Wells, Jim D.
2001-12-01
For complex shaped, lightweight, high precision opto- mechanical structures that must operate in adverse environments and over wide ranges of temperature, we consider IABG's optical grade silicon carbide composite ceramic (C/SiC) as the material of choice. C/SiC employs conventional NC machining/milling equipment to rapidly fabricate near-net shape parts, providing substantial schedule, cost, and risk savings for high precision components. Unlike powder based SiC ceramics, C/SiC does not experience significant shrinkage during processing, nor does it suffer from incomplete densification. If required, e.g. for large-size components, a fully-monolithic ceramic joining technique can be applied. Generally, the thermal and mechanical properties of C/SiC are tunable in certain ranges by modifying certain process steps. This paper focuses on the thermo-mechanical performance of new, high precision mounts designed by Schafer Corporation and manufactured by IABG. The mounts were manufactured using standard optical grade C/SiC (formulation internally called A-3). The A-3 formulation has a near-perfect CTE match with silicon, making it the ideal material to athermally support Schafer produced Silicon Lightweight Mirrors (SLMs) that will operate in a cryogenic environment. Corresponding thermo- mechanical testing and analysis is presented in this manuscript.
The Design of a Power System for the PETSAT Modular Small Spacecraft Bus
NASA Astrophysics Data System (ADS)
Clark, C. S.; Lopez Mazarias, A.; Kobayashi, C.; Nakasuka, S.
2008-08-01
There is considerable interest in the benefits of having a modular spacecraft where it is possible to construct a satellite using a number of modules with identical mechanical and electrical interfaces, but with each performing a specific function to achieve the required platform specification. In recent years, steps have been made towards modular spacecraft becoming a reality and the concept is due to be demonstrated in-orbit later this year with the first flight of the PETSAT spacecraft concept on the mission, SOHLA-2. This paper describes the approach to the design of the SOHLA-2 power system. The approach is significant; PETSAT is an excellent example of a modular approach to spacecraft design. The PETSAT concept consists of a number of 'Panel Modules', roughly the same size as a pizza box. The panels stack together in stowed configuration for launch, and unfold once in orbit. Apart from being a very novel approach to spacecraft design and construction, this concept offers advantages in power generation as, once unfolded, there is significant surface area on which to mount solar cells for power generation. The power system for PETSAT has been designed such that each Panel Module contains a power system that can either operate in isolation for the purpose of unit testing, or as part of a larger spacecraft power system once connected to other Panel Modules. When connected together, the power systems on each module share the energy from the solar arrays and the batteries. The approach to the design of the system has provided a simple solution to difficult problem.
NASA Astrophysics Data System (ADS)
Valsecchi, G.; Banham, R.; Bianucci, G.; Eder, J.; Ghislanzoni, R.; Ritucci, A.; Terraneo, M.; Zocchi, F. E.; Smith, D.; Gale, D.; Hughes, D.
2016-07-01
The Large Millimeter Telescope (LMT) Alfonso Serrano is a 50 m diameter single-dish radio telescope optimized for astronomical observations at wavelengths of about a millimeter. Built and operated by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in collaboration with the University of Massachusetts (UMASS), the telescope is located at the 4600 m summit of volcano Sierra Negra, Mexico. Anticipating the completion of the main reflector, currently operating over a 32 m subaperture, INAOE has contracted Media Lario for the design and manufacturing of a new 2.63 m subreflector that will enable higher efficiency astronomical observations with the entire main reflector surface. The new subreflector manufactured by Media Lario is segmented in 9 smaller panels, one central dome and eight identical petals, assembled and precisely aligned on a steel truss structure that will be connected to the hexapod mounted on the tetrapod head. Each panel was fabricated with Media Lario's unique laminated technology consisting of front and rear Nickel skins, electroformed from precise molds and bonded to a lightweight Aluminum honeycomb core. The reflecting surface of each panel was given a thin galvanic Rhodium coating that ensures that the reflector survives the harsh environmental conditions at the summit of Sierra Negra during the 30 year lifetime of the telescope. Finally, the 2.63 m subreflector produced by Media Lario was qualified for typical cold night through hot day observation conditions with a maximum RMS error of 24.8 μm, which meets INAOE's requirements.
Thermal energy management process experiment
NASA Technical Reports Server (NTRS)
Ollendorf, S.
1984-01-01
The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.
Design and Construction of a Field Capable Snapshot Hyperspectral Imaging Spectrometer
NASA Technical Reports Server (NTRS)
Arik, Glenda H.
2005-01-01
The computed-tomography imaging spectrometer (CTIS) is a device which captures the spatial and spectral content of a rapidly evolving same in a single image frame. The most recent CTIS design is optically all reflective and uses as its dispersive device a stated the-art reflective computer generated hologram (CGH). This project focuses on the instrument's transition from laboratory to field. This design will enable the CTIS to withstand a harsh desert environment. The system is modeled in optical design software using a tolerance analysis. The tolerances guide the design of the athermal mount and component parts. The parts are assembled into a working mount shell where the performance of the mounts is tested for thermal integrity. An interferometric analysis of the reflective CGH is also performed.
Developing targets for radiation transport experiments at the Omega laser facility
Capelli, Deanna; Charsley-Groffman, C. A.; Randolph, Randall Blaine; ...
2017-07-13
Targets have been developed to measure supersonic radiation transport in aerogel foams using absorption spectroscopy. The target consists of an aerogel foam uniformly doped with either titanium or scandium inserted into an undoped aerogel foam package. This creates a localized doped foam region to provide spatial resolution for the measurement. Development and characterization of the foams is a key challenge in addition to machining and assembling the two foams so they mate without gaps. The foam package is inserted into a beryllium sleeve and mounted on a gold hohlraum. The target is mounted to a holder created using additive manufacturingmore » and mounted on a stalk. As a result, the manufacturing of the components, along with assembly and metrology of the target are described here.« less
Developing targets for radiation transport experiments at the Omega laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capelli, Deanna; Charsley-Groffman, C. A.; Randolph, Randall Blaine
Targets have been developed to measure supersonic radiation transport in aerogel foams using absorption spectroscopy. The target consists of an aerogel foam uniformly doped with either titanium or scandium inserted into an undoped aerogel foam package. This creates a localized doped foam region to provide spatial resolution for the measurement. Development and characterization of the foams is a key challenge in addition to machining and assembling the two foams so they mate without gaps. The foam package is inserted into a beryllium sleeve and mounted on a gold hohlraum. The target is mounted to a holder created using additive manufacturingmore » and mounted on a stalk. As a result, the manufacturing of the components, along with assembly and metrology of the target are described here.« less
Mount Protects Thin-Walled Glass or Ceramic Tubes from Large Thermal and Vibration Loads
NASA Technical Reports Server (NTRS)
Amato, Michael; Schmidt, Stephen; Marsh. James; Dahya, Kevin
2011-01-01
The design allows for the low-stress mounting of fragile objects, like thin walled glass, by using particular ways of compensating, isolating, or releasing the coefficient of thermal expansion (CTE) differences between the mounted object and the mount itself. This mount profile is lower than true full kinematic mounting. Also, this approach enables accurate positioning of the component for electrical and optical interfaces. It avoids the higher and unpredictable stress issues that often result from potting the object. The mount has been built and tested to space-flight specifications, and has been used for fiber-optic, optical, and electrical interfaces for a spaceflight mission. This mount design is often metal and is slightly larger than the object to be mounted. The objects are optical or optical/electrical, and optical and/or electrical interfaces are required from the top and bottom. This requires the mount to be open at both ends, and for the object s position to be controlled. Thin inside inserts at the top and bottom contact the housing at defined lips, or edges, and hold the fragile object in the mount. The inserts can be customized to mimic the outer surface of the object, which further reduces stress. The inserts have the opposite CTE of the housing material, partially compensating for the CTE difference that causes thermal stress. A spring washer is inserted at one end to compensate for more CTE difference and to hold the object against the location edge of the mount for any optical position requirements. The spring also ensures that any fiber-optic or optic interface, which often requires some pressure to ensure a good interface, does not overstress the fragile object. The insert thickness, material, and spring washer size can be traded against each other to optimize the mount and stresses for various thermal and vibration load ranges and other mounting requirements. The alternate design uses two separate, unique features to reduce stress and hold the object. A release agent is applied to the inside surface of the mount just before the binding potting material is injected in the mount. This prevents the potting material from bonding to the mount, and thus prevents stress from being applied, at very low temperatures, to the fragile object being mounted. The potting material mixing and curing is temperature- and humidity-controlled. The mount has radial grooves cut in it that the potting material fills, thus controlling the vertical position of the mounted object. The design can easily be used for long and thin objects, short and wide objects, and any shape in between. The design s advantages are amplified for long and thin fragile objects. The general testing range was 45 to +45 C, but multiple mounts were successfully tested down to 60 and up to 50 C and the design can be adjusted for larger ranges.
1971-06-01
The Apollo Telescope Mount (ATM), one of four major components comprising the Skylab, was designed and developed by the Marshall Space Flight Center. In this image, the ATM is shown undergoing horizontal vibration testing in a vibration test unit.
Implementing local agency safety management
DOT National Transportation Integrated Search
2003-12-17
For local agencies to mount a successful effort toward reducing motor vehicle collisions and their costs, an effective systematic approach must be taken. A Safety Management System (SMS) has two basic components: a collaborative information exchange ...
NASA Technical Reports Server (NTRS)
Kenner, Winfred S.; Rhodes, Marvin D.
1994-01-01
Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.
Measurement of minority-carrier drift mobility in solar cells using a modulated electron beam
NASA Technical Reports Server (NTRS)
Othmer, S.; Hopkins, M. A.
1980-01-01
A determination of diffusivity on solar cells is here reported which utilizes a one dimensional treatment of diffusion under sinusoidal excitation. An intensity-modulated beam of a scanning electron microscope was used as a source of excitation. The beam was injected into the rear of the cell, and the modulated component of the induced terminal current was recovered phase sensitively. A Faraday cup to measure the modulated component of beam current was mounted next to the sample, and connected to the same electronics. A step up transformer and preamplifier were mounted on the sample holder. Beam currents on the order of 400-pA were used in order to minimize effects of high injection. The beam voltage was 34-kV, and the cell bias was kept at 0-V.
Turbine nozzle positioning system
Norton, Paul F.; Shaffer, James E.
1996-01-30
A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.
Turbine nozzle positioning system
Norton, P.F.; Shaffer, J.E.
1996-01-30
A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.
Experimental evaluation of the Skylab orbital workshop ventilation system concept
NASA Technical Reports Server (NTRS)
Allums, S. L.; Hastings, L. J.; Ralston, J. T.
1972-01-01
Extensive testing was conducted to evaluate the Orbital Workshop ventilation concept. Component tests were utilized to determine the relationship between operating characteristics at 1 and 0.34 atm. System tests were conducted at 1 atm within the Orbital Workshop full-scale mockup to assess delivered volumetric flow rate and compartment air velocities. Component tests with the Anemostat circular diffusers (plenum- and duct-mounted) demonstrated that the diffuser produced essentially equivalent airflow patterns and velocities in 1- and 0.34-atm environments. The tests also showed that the pressure drop across the diffuser could be scaled from 1 to 0.34 atm using the atmosphere pressure ratio. Fan tests indicated that the performance of a multiple, parallel-mounted fan cluster could be predicted by summing the single-fan flow rates at a given delta P.
NASA Astrophysics Data System (ADS)
Mathieson, Haley Aaron
This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels, accounting for P-Delta effects, inherent out-of-straightness profile of any shape at initial conditions, and the excessive shear deformation of soft core and its effect on buckling capacity. Another model was developed to predict the load-deflection response and failure modes of in-plane loaded sandwich beams. After successful verification of the models using experimental results, comprehensive parametric studies were carried out using these models to cover parameters beyond the limitations of the experimental program.
NASA Technical Reports Server (NTRS)
Stone, R. H.
1982-01-01
Kevlar-49 fairing panels, installed as flight service components on three l-1011's, were inspected after 8 years service. The fairings had accumulated a total of 62,000 hours, with one ship set having 20,850 hours service. Kevlar-49 components were found to be performing satisfactorily in service with no major problems. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structures.
Photovoltaic solar panels of crystalline silicon: Characterization and separation.
Dias, Pablo Ribeiro; Benevit, Mariana Gonçalves; Veit, Hugo Marcelo
2016-03-01
Photovoltaic panels have a limited lifespan and estimates show large amounts of solar modules will be discarded as electronic waste in a near future. In order to retrieve important raw materials, reduce production costs and environmental impacts, recycling such devices is important. Initially, this article investigates which silicon photovoltaic module's components are recyclable through their characterization using X-ray fluorescence, X-ray diffraction, energy dispersion spectroscopy and atomic absorption spectroscopy. Next, different separation methods are tested to favour further recycling processes. The glass was identified as soda-lime glass, the metallic filaments were identified as tin-lead coated copper, the panel cells were made of silicon and had silver filaments attached to it and the modules' frames were identified as aluminium, all of which are recyclable. Moreover, three different components segregation methods have been studied. Mechanical milling followed by sieving was able to separate silver from copper while chemical separation using sulphuric acid was able to detach the semiconductor material. A thermo gravimetric analysis was performed to evaluate the use of a pyrolysis step prior to the component's removal. The analysis showed all polymeric fractions present degrade at 500 °C. © The Author(s) 2016.
Hurrell, Andrew M
2008-06-01
The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface.
NASA Technical Reports Server (NTRS)
Stone, R. H.
1981-01-01
Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.
Marengo, Emilio; Robotti, Elisa; Gennaro, Maria Carla; Bertetto, Mariella
2003-03-01
The optimisation of the formulation of a commercial bubble bath was performed by chemometric analysis of Panel Tests results. A first Panel Test was performed to choose the best essence, among four proposed to the consumers; the best essence chosen was used in the revised commercial bubble bath. Afterwards, the effect of changing the amount of four components (the amount of primary surfactant, the essence, the hydratant and the colouring agent) of the bubble bath was studied by a fractional factorial design. The segmentation of the bubble bath market was performed by a second Panel Test, in which the consumers were requested to evaluate the samples coming from the experimental design. The results were then treated by Principal Component Analysis. The market had two segments: people preferring a product with a rich formulation and people preferring a poor product. The final target, i.e. the optimisation of the formulation for each segment, was obtained by the calculation of regression models relating the subjective evaluations given by the Panel and the compositions of the samples. The regression models allowed to identify the best formulations for the two segments ofthe market.
NASA Technical Reports Server (NTRS)
Stone, R. H.
1984-01-01
Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.
NASA Technical Reports Server (NTRS)
Bhombal, B. D.; Wykes, D. H.; Hong, K. C.; Stenersen, A. A.
1982-01-01
The technology required to produce graphite-polyimide structural components with operational capability at 598 K (600 F) is considered. A series of polyimide adhesives was screened for mechanical and physical properties and processibility in fabricating large midplane bonded panels and honeycomb sandwich panels in an effort to fabricate a structural test component of the space shuttle aft body flap. From 41 formulations, LaRC-13, FM34B-18, and a modified LaRC-13 adhesive were selected for further evaluation. The LaRC-13 adhesive was rated as the best of the three adhesives in terms of availability, cost, processibility, properties, and ability to produce void fee large area (12" x 12") midplane bonds. Surface treatments and primers for the adhesives were evaluated and processes were developed for the fabrication of honeycomb sandwich panels of very good quality which was evidenced by rupture in the honeycomb core rather than in the facesheet bands on flatwise tensile strength testing. The fabrication of the adhesively bonded honeycomb sandwich cover panels, ribs, and leading edge covers of Celion graphite/LARC-160 polyimide laminates is described.
Detailed analysis and test correlation of a stiffened composite wing panel
NASA Technical Reports Server (NTRS)
Davis, D. Dale, Jr.
1991-01-01
Nonlinear finite element analysis techniques are evaluated by applying them to a realistic aircraft structural component. A wing panel from the V-22 tiltrotor aircraft is chosen because it is a typical modern aircraft structural component for which there is experimental data for comparison of results. From blueprints and drawings supplied by the Bell Helicopter Textron Corporation, a very detailed finite element model containing 2284 9-node Assumed Natural-Coordinate Strain (ANS) elements was generated. A novel solution strategy which accounts for geometric nonlinearity through the use of corotating element reference frames and nonlinear strain displacements relations is used to analyze this detailed model. Results from linear analyses using the same finite element model are presented in order to illustrate the advantages and costs of the nonlinear analysis as compared with the more traditional linear analysis. Strain predictions from both the linear and nonlinear stress analyses are shown to compare well with experimental data up through the Design Ultimate Load (DUL) of the panel. However, due to the extreme nonlinear response of the panel, the linear analysis was not accurate at loads above the DUL. The nonlinear analysis more accurately predicted the strain at high values of applied load, and even predicted complicated nonlinear response characteristics, such as load reversals, at the observed failure load of the test panel. In order to understand the failure mechanism of the panel, buckling and first ply failure analyses were performed. The buckling load was 17 percent above the observed failure load while first ply failure analyses indicated significant material damage at and below the observed failure load.
NASA Technical Reports Server (NTRS)
2004-01-01
This cutaway illustration shows the Saturn V S-IC (first) stage with detailed callouts of the components. The S-IC Stage is 138 feet long and 33 feet in diameter, producing 7,500,000 pounds of thrust through five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.
2004-04-15
This cutaway illustration shows the Saturn V S-IC (first) stage with detailed callouts of the components. The S-IC Stage is 138 feet long and 33 feet in diameter, producing 7,500,000 pounds of thrust through five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.
1967-01-01
This illustration shows a cutaway drawing with callouts of the major components for the S-IC (first) stage of the Saturn V launch vehicle. The S-IC stage is 138 feet long and 33 feet in diameter, producing more than 7,500,000 pounds of thrust through five F-1 engines powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimball for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.
Determination of fiber volume in graphite/epoxy materials using computer image analysis
NASA Technical Reports Server (NTRS)
Viens, Michael J.
1990-01-01
The fiber volume of graphite/epoxy specimens was determined by analyzing optical images of cross sectioned specimens using image analysis software. Test specimens were mounted and polished using standard metallographic techniques and examined at 1000 times magnification. Fiber volume determined using the optical imaging agreed well with values determined using the standard acid digestion technique. The results were found to agree within 5 percent over a fiber volume range of 45 to 70 percent. The error observed is believed to arise from fiber volume variations within the graphite/epoxy panels themselves. The determination of ply orientation using image analysis techniques is also addressed.
Space Station Freedom solar array containment box mechanisms
NASA Technical Reports Server (NTRS)
Johnson, Mark E.; Haugen, Bert; Anderson, Grant
1994-01-01
Space Station Freedom will feature six large solar arrays, called solar array wings, built by Lockheed Missiles & Space Company under contract to Rockwell International, Rocketdyne Division. Solar cells are mounted on flexible substrate panels which are hinged together to form a 'blanket.' Each wing is comprised of two blankets supported by a central mast, producing approximately 32 kW of power at beginning-of-life. During launch, the blankets are fan-folded and compressed to 1.5 percent of their deployed length into containment boxes. This paper describes the main containment box mechanisms designed to protect, deploy, and retract the solar array blankets: the latch, blanket restraint, tension, and guidewire mechanisms.
Standard Engineering Installation Package, Standard Remote Terminals (SRT).
1981-10-30
6L L o 0 100 BOLT // M 0 (NOTE 3) N o @ 12 P o 13 NOTE: USE MiTN SAAD-D-4053 AND 0 14 • STD-SD-00SS DWS. 1I USE 3(4 CONDUIT AND BOX CONN. PUNCH OUT 3/4...TERMINAL STRIP. USE # BOLT TO MOUNT CONNECTOR TO DLII. USE OG STD-SO-007 FOR TERMINAL STRIP TERMINA- TION TO 153 PATCH PANEL. *1 f DUS1 is not or’dered... BOLTED TO FLOOR AS PER DUG 3I ®STu-SD-OO69 PROVIDING THERE IS INO CROSS OVLR WITH POWER AND SIGNAL CABLES. CROSSOVER WILL BE SEPERATED BY 4" MINIMUM
Development of selective solar absorbers on the basis of aluminum roll-bond heat exchangers
NASA Astrophysics Data System (ADS)
Moeller, M.
1981-11-01
A deposition technique comparable to two-stage anodizing and especially suited for solar absorber panels, using roll-bond Al 99.5 and AlMnZr alloys as a substrate, was developed. The coating is of the nickel structure filter type and provides average solar absorptivity values of 94% and thermal emission values of 14%. The setup of a production plant capable of coating surfaces up to 2 sq m is described as well as the development of corrosion resistent hermetically sealed collectors. By means of an appropriate surface treatment the same corrosion resistance was achieved for absorbers mounted in ventilated collectors.
Skylab sleep monitoring experiment (experiment M133)
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.
1975-01-01
A summary of the conceptual design of the Skylab sleep monitoring experiment and a comprehensive compilation of the data-analysis results from the three Skylab missions is presented. One astronaut was studied per flight, electroencephalographic, electro-oculographic, and headmotion signals acquired during sleep by use of an elastic recording cap containing sponge electrodes and an attached miniature preamplifier/accelerometer unit are shown. A control-panel assembly, mounted in the sleep compartment, tested electrodes, preserved analog signals, and automatically analyzed data in real time (providing a telemetered indication of sleep stage). Results indicate that men are able to obtain adequate sleep in regularly scheduled eight-hour rest periods during extended space missions.
NASA Technical Reports Server (NTRS)
Dyer, Edward F.
1992-01-01
In view of the serious performance deficiencies inherent in conventional modular and welded shielding EMC test enclosures, in which multipath reflections and resonant standing waves can damage flight hardware during RF susceptibility tests, NASA-Goddard has undertaken the modification of a 20 x 24 ft modular-shielded enclosure through installation of steel panels to which ferrite tiles will be mounted with epoxy. The internally reflected RF energy will thereby be absorbed, and exterior power-line noise will be reduced. Isolation of power-line filters and control of 60-Hz ground connections will also be undertaken in the course of upgrading.
Electronic waste disassembly with industrial waste heat.
Chen, Mengjun; Wang, Jianbo; Chen, Haiyian; Ogunseitan, Oladele A; Zhang, Mingxin; Zang, Hongbin; Hu, Jiukun
2013-01-01
Waste printed circuit boards (WPCBs) are resource-rich but hazardous, demanding innovative strategies for post-consumer collection, recycling, and mining for economically precious constituents. A novel technology for disassembling electronic components from WPCBs is proposed, using hot air to melt solders and to separate the components and base boards. An automatic heated-air disassembling equipment was designed to operate at a heating source temperature at a maximum of 260 °C and an inlet pressure of 0.5 MPa. A total of 13 individual WPCBs were subjected to disassembling tests at different preheat temperatures in increments of 20 °C between 80 and 160 °C, heating source temperatures ranging from 220 to 300 °C in increments of 20 °C, and incubation periods of 1, 2, 4, 6, or 8 min. For each experimental treatment, the disassembly efficiency was calculated as the ratio of electronic components released from the board to the total number of its original components. The optimal preheat temperature, heating source temperature, and incubation period to disassemble intact components were 120 °C, 260 °C, and 2 min, respectively. The disassembly rate of small surface mount components (side length ≤ 3 mm) was 40-50% lower than that of other surface mount components and pin through hole components. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to electronic-waste recycling is proposed, providing an efficient, promising, and green method for both electronic component recovery and industrial exhaust heat reutilization.
Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load
NASA Technical Reports Server (NTRS)
Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan
2008-01-01
NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.
Correcting for motion artifact in handheld laser speckle images
NASA Astrophysics Data System (ADS)
Lertsakdadet, Ben; Yang, Bruce Y.; Dunn, Cody E.; Ponticorvo, Adrien; Crouzet, Christian; Bernal, Nicole; Durkin, Anthony J.; Choi, Bernard
2018-03-01
Laser speckle imaging (LSI) is a wide-field optical technique that enables superficial blood flow quantification. LSI is normally performed in a mounted configuration to decrease the likelihood of motion artifact. However, mounted LSI systems are cumbersome and difficult to transport quickly in a clinical setting for which portability is essential in providing bedside patient care. To address this issue, we created a handheld LSI device using scientific grade components. To account for motion artifact of the LSI device used in a handheld setup, we incorporated a fiducial marker (FM) into our imaging protocol and determined the difference between highest and lowest speckle contrast values for the FM within each data set (Kbest and Kworst). The difference between Kbest and Kworst in mounted and handheld setups was 8% and 52%, respectively, thereby reinforcing the need for motion artifact quantification. When using a threshold FM speckle contrast value (KFM) to identify a subset of images with an acceptable level of motion artifact, mounted and handheld LSI measurements of speckle contrast of a flow region (KFLOW) in in vitro flow phantom experiments differed by 8%. Without the use of the FM, mounted and handheld KFLOW values differed by 20%. To further validate our handheld LSI device, we compared mounted and handheld data from an in vivo porcine burn model of superficial and full thickness burns. The speckle contrast within the burn region (KBURN) of the mounted and handheld LSI data differed by <4 % when accounting for motion artifact using the FM, which is less than the speckle contrast difference between superficial and full thickness burns. Collectively, our results suggest the potential of handheld LSI with an FM as a suitable alternative to mounted LSI, especially in challenging clinical settings with space limitations such as the intensive care unit.
Test and Analysis of Sub-Components of Aluminum-Lithium Alloy Cylinders
NASA Technical Reports Server (NTRS)
Haynie, Waddy T.; Chunchu, Prasad B.; Satyanarayana, Arunkumar; Hilburger, Mark W.; Smith, Russell W.
2012-01-01
Integrally machined blade-stiffened panels subjected to an axial compressive load were tested and analyzed to observe the buckling, crippling, and postcrippling response of the panels. The panels were fabricated from aluminum-lithium alloys 2195 and 2050, and both alloys have reduced material properties in the short transverse material direction. The tests were designed to capture a failure mode characterized by the stiffener separating from the panel in the postbuckling range. This failure mode is attributed to the reduced properties in the short transverse direction. Full-field measurements of displacements and strains using three-dimensional digital image correlation systems and local measurements using strain gages were used to capture the deformation of the panel leading up to the failure of the panel for specimens fabricated from 2195. High-speed cameras were used to capture the initiation of the failure. Finite element models were developed using an isotropic strain-hardening material model. Good agreement was observed between the measured and predicted responses for both alloys.
Origami-Inspired Folding of Thick, Rigid Panels
NASA Technical Reports Server (NTRS)
Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert
2014-01-01
To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.
Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens
NASA Astrophysics Data System (ADS)
Xiong, Xiaoyan; Niu, Linkai; Gu, Chengxiang; Wang, Yinhua
2017-12-01
A banana flip-flow screen is an effective solution for the screening of high-viscosity, high-water and fine materials. As one of the key components, the vibration characteristics of the inclined flip-flow screen panel largely affects the screen performance and the processing capacity. In this paper, a mathematical model for the vibration characteristic of the inclined flip-flow screen panel is proposed based on Catenary theory. The reasonability of Catenary theory in analyzing the vibration characteristic of flip-flow screen panels is verified by a published experiment. Moreover, the effects of the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen on the vertical deflection, the vertical velocity and the vertical acceleration of the screen panel are investigated parametrically. The results show that the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen have significant effects on the vibrations of an inclined flip-flow screen panel, and these parameters should be optimized.
NASA Astrophysics Data System (ADS)
Czirjak, Daniel
2017-04-01
Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.
Ellison, Kenneth; Whike, Alan S.
1980-04-22
An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.
Seismic component of the STEEP project, Alaska: Results of the first field season
NASA Astrophysics Data System (ADS)
Hansen, R. A.; Estes, S.; Stachnik, J.; Lafevers, M.; Roush, J.; Sanches, R.; Fuerst, E.; Sandru, J.; Ruppert, N.; Pavlis, G.; Bauer, M.
2005-12-01
STEEP (SainT Elias Erosion/tectonics Project) is a five year, multi-disciplinary study that addresses evolution of the highest coastal mountain range on Earth - the St. Elias Mountains of southern Alaska and northwestern Canada. The overall goal of the project is to develop a comprehensive model for the St. Elias orogen that accounts for the interaction of regional plate tectonic processes, structural development, and rapid erosion. The seismic component of this project includes passive seismic experiment utilizing the IRIS PASSCAL Program instruments. The total project consists of 22 new, telemetered, digital broad band seismic stations, most accessible by helicopter only. There are 12 existing short period stations in the area. Eight new stations were installed in the coastal region in June 2005. Freewave IP radios provide the telemetry to the newly installed VSAT at the Bering Glacier camp site. The challenge was to find ice-free locations, on bedrock, large enough to install equipment and still have a helicopter landing zone nearby. The stations consist of Quanterra Q330 digitizers with baler, a STS-2 seismometer installed in a vault, a Freewave IP radio, a Scala 900 Mhz antenna, twenty 100 AH rechargeable batteries with a 2400AH backup Celair primary battery, and three solar panels mounted on hut. The acquired data is recorded in real time at the Alaska Earthquake Information Center located in Fairbanks and is incorporated into the standard data processing procedures. High quality data allows for more reliable automatic earthquake detections in the region with lower magnitude threshold. In addition to tectonic earthquakes, glacial events that occur within the vast ice fields of the region are also regularly detected. Broadband instruments complement regional broadband network for more reliable calculations of the regional moment tensors.
2012-08-21
This image of NASA Curiosity rover shows the location of the two components of the Dynamic Albedo of Neutrons instrument. The neutron generator is mounted on the right hip and the detectors are on the opposite hip.
NASA Technical Reports Server (NTRS)
Ko, William L.
1999-01-01
Increasing use of curved sandwich panels as aerospace structure components makes it vital to fully understand their thermostructural behavior and identify key factors affecting the open-mode debonding failure. Open-mode debonding analysis is performed on a family of curved honeycomb-core sandwich panels with different radii of curvature. The curved sandwich panels are either simply supported or clamped, and are subjected to uniform heating on the convex side and uniform cryogenic cooling on the concave side. The finite-element method was used to study the effects of panel curvature and boundary condition on the open-mode stress (radial tensile stress) and displacement fields in the curved sandwich panels. The critical stress point, where potential debonding failure could initiate, was found to be at the midspan (or outer span) of the inner bonding interface between the sandwich core and face sheet on the concave side, depending on the boundary condition and panel curvature. Open-mode stress increases with increasing panel curvature, reaching a maximum value at certain high curvature, and then decreases slightly as the panel curvature continues to increase and approach that of quarter circle. Changing the boundary condition from simply supported to clamped reduces the magnitudes of open-mode stresses and the associated sandwich core depth stretching.
Wildiers, Hans; Heeren, Pieter; Puts, Martine; Topinkova, Eva; Janssen-Heijnen, Maryska L.G.; Extermann, Martine; Falandry, Claire; Artz, Andrew; Brain, Etienne; Colloca, Giuseppe; Flamaing, Johan; Karnakis, Theodora; Kenis, Cindy; Audisio, Riccardo A.; Mohile, Supriya; Repetto, Lazzaro; Van Leeuwen, Barbara; Milisen, Koen; Hurria, Arti
2014-01-01
Purpose To update the International Society of Geriatric Oncology (SIOG) 2005 recommendations on geriatric assessment (GA) in older patients with cancer. Methods SIOG composed a panel with expertise in geriatric oncology to develop consensus statements after literature review of key evidence on the following topics: rationale for performing GA; findings from a GA performed in geriatric oncology patients; ability of GA to predict oncology treatment–related complications; association between GA findings and overall survival (OS); impact of GA findings on oncology treatment decisions; composition of a GA, including domains and tools; and methods for implementing GA in clinical care. Results GA can be valuable in oncology practice for following reasons: detection of impairment not identified in routine history or physical examination, ability to predict severe treatment-related toxicity, ability to predict OS in a variety of tumors and treatment settings, and ability to influence treatment choice and intensity. The panel recommended that the following domains be evaluated in a GA: functional status, comorbidity, cognition, mental health status, fatigue, social status and support, nutrition, and presence of geriatric syndromes. Although several combinations of tools and various models are available for implementation of GA in oncology practice, the expert panel could not endorse one over another. Conclusion There is mounting data regarding the utility of GA in oncology practice; however, additional research is needed to continue to strengthen the evidence base. PMID:25071125
Wildiers, Hans; Heeren, Pieter; Puts, Martine; Topinkova, Eva; Janssen-Heijnen, Maryska L G; Extermann, Martine; Falandry, Claire; Artz, Andrew; Brain, Etienne; Colloca, Giuseppe; Flamaing, Johan; Karnakis, Theodora; Kenis, Cindy; Audisio, Riccardo A; Mohile, Supriya; Repetto, Lazzaro; Van Leeuwen, Barbara; Milisen, Koen; Hurria, Arti
2014-08-20
To update the International Society of Geriatric Oncology (SIOG) 2005 recommendations on geriatric assessment (GA) in older patients with cancer. SIOG composed a panel with expertise in geriatric oncology to develop consensus statements after literature review of key evidence on the following topics: rationale for performing GA; findings from a GA performed in geriatric oncology patients; ability of GA to predict oncology treatment–related complications; association between GA findings and overall survival (OS); impact of GA findings on oncology treatment decisions; composition of a GA, including domains and tools; and methods for implementing GA in clinical care. GA can be valuable in oncology practice for following reasons: detection of impairment not identified in routine history or physical examination, ability to predict severe treatment-related toxicity, ability to predict OS in a variety of tumors and treatment settings, and ability to influence treatment choice and intensity. The panel recommended that the following domains be evaluated in a GA: functional status, comorbidity, cognition, mental health status, fatigue, social status and support, nutrition, and presence of geriatric syndromes. Although several combinations of tools and various models are available for implementation of GA in oncology practice, the expert panel could not endorse one over another. There is mounting data regarding the utility of GA in oncology practice; however, additional research is needed to continue to strengthen the evidence base.
Ultralightweight Space Deployable Primary Reflector Demonstrator
NASA Technical Reports Server (NTRS)
Montgomery, Edward E., IV; Zeiders, Glenn W.; Smith, W. Scott (Technical Monitor)
2002-01-01
A concept has been developed and analyzed and several generational prototypes built for a gossamer-class deployable truss for a mirror or reflector with many smaller precisely-figured solid elements attached will, for at least the next several decades, minimize the mass of a large primary mirror assembly while still providing the high image quality essential for planet-finding and cosmological astronomical missions. Primary mirror segments are mounted in turn on ultralightweight thermally-formed plastic panels that hold clusters of mirror segments in rigid arrays whose tip/tilt and piston would be corrected over the scale of the plastic panels by the control segments. Prototype panels developed under this program are 45 cm wide and fabricated from commercially available Kaplan sheets. A three-strut octahedral tensegrity is the basis for the overall support structure. Each fundamental is composed of two such octahedrons, rotated oppositely about a common triangular face. Adjacent modules are joined at the nodes of the upper and lower triangles to form a deployable structure that could be made arbitrarily large. A seven-module dowel-and-wire prototype has been constructed. Deployment techniques based on the use of collapsing toggled struts with diagonal tensional elements allows an assembly of tensegrities to be fully collapsed and redeployed. The prototype designs will be described and results of a test program for measuring strength and deformation will be presented.
Airborne sound transmission loss characteristics of wood-frame construction
NASA Astrophysics Data System (ADS)
Rudder, F. F., Jr.
1985-03-01
This report summarizes the available data on the airborne sound transmission loss properties of wood-frame construction and evaluates the methods for predicting the airborne sound transmission loss. The first part of the report comprises a summary of sound transmission loss data for wood-frame interior walls and floor-ceiling construction. Data bases describing the sound transmission loss characteristics of other building components, such as windows and doors, are discussed. The second part of the report presents the prediction of the sound transmission loss of wood-frame construction. Appropriate calculation methods are described both for single-panel and for double-panel construction with sound absorption material in the cavity. With available methods, single-panel construction and double-panel construction with the panels connected by studs may be adequately characterized. Technical appendices are included that summarize laboratory measurements, compare measurement with theory, describe details of the prediction methods, and present sound transmission loss data for common building materials.
Panel acoustic contribution analysis.
Wu, Sean F; Natarajan, Logesh Kumar
2013-02-01
Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.
The minimization of ac phase noise in interferometric systems
NASA Astrophysics Data System (ADS)
Filinski, I.; Gordon, R. A.
1994-03-01
A simple step-by-step procedure, including several novel techniques discussed in the Appendices, is given for minimizing ac phase noise in typical interferometric systems such as two-beam interferometers, holographic setups, four-wave mixers, etc. Special attention is given to index of refraction fluctuations, direct mechanical coupling, and acoustic coupling, whose importance in determining ac phase noise in interferometric systems has not been adequately treated. The minimization procedure must be carried out while continuously monitoring the phase noise which can be done very simply by using a photodiode measurement of the interferometer output. Supplementary measurements using a microphone and accelerometer will also be helpful in identifying the sources of phase noise. Emphasis is placed on new techniques or new modifications of older techniques which will not usually be familiar to most workers in optics. Thus, the necessity of eliminating the effects of index of refraction fluctuations which degrade the performance of all interferometers is pointed out as the first priority. A substantial decrease of the effects of all vibrating, rotating, or flowing masses (e.g., cooling lines) in direct contact with the optical table will also have to be carefully carried out regardless of the type of interferometric system employed. It is recommended that this be followed by a simple, inexpensive change to a novel type of interferometer discussed in Appendix A which is inherently less sensitive to mechanical vibration. Such a change will lead to a reduction of both low-frequency and high-frequency ac phase noise by more than an order of magnitude and can be carried out for all interferometers with the exception of multiple pass optical systems and high-resolution FFT spectrometers. It is pointed out that most homemade air bladder vibration isolators are used incorrectly and do not provide sufficient reduction in the contribution of floor vibrations to phase noise. Several simple trampoline-type air bladder vibration isolator systems are described which are comparable in performance to commercial systems. With the exception of very nonrigid or undamped optical tables, the dominant source of ac phase noise at this point will usually be due to acoustic coupling to the optical components and mounts themselves. This means not only that the optical components and mounts must be rigid but that the mechanical coupling between the table and the mounts, as well as the coupling between the mounts and components themselves, be as rigid as possible. An additional damping of optical mounts beyond that generally found in commercial mountings will also have to be carried out to obtain a further reduction of phase noise. A simple damping technique employing an additional mass and an intermediate damping layer is described which will significantly improve the performance of both homemade and commercial optical mounts. Similar damping techniques which are especially suitable for homemade optical tables and breadboards are also considered.