Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping.
Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian
2016-12-31
For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.
Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping
Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian
2016-01-01
For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable. PMID:28042855
NASA Technical Reports Server (NTRS)
Nabors, Sammy
2015-01-01
NASA offers companies an optical system that provides a unique panoramic perspective with a single camera. NASA's Marshall Space Flight Center has developed a technology that combines a panoramic refracting optic (PRO) lens with a unique detection system to acquire a true 360-degree field of view. Although current imaging systems can acquire panoramic images, they must use up to five cameras to obtain the full field of view. MSFC's technology obtains its panoramic images from one vantage point.
The Panoramic Camera (Pancam) Investigation on the NASA 2003 Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.
2003-01-01
The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover.
Statis omnidirectional stereoscopic display system
NASA Astrophysics Data System (ADS)
Barton, George G.; Feldman, Sidney; Beckstead, Jeffrey A.
1999-11-01
A unique three camera stereoscopic omnidirectional viewing system based on the periscopic panoramic camera described in the 11/98 SPIE proceedings (AM13). The 3 panoramic cameras are equilaterally combined so each leg of the triangle approximates the human inter-ocular spacing allowing each panoramic camera to view 240 degree(s) of the panoramic scene, the most counter clockwise 120 degree(s) being the left eye field and the other 120 degree(s) segment being the right eye field. Field definition may be by green/red filtration or time discrimination of the video signal. In the first instance a 2 color spectacle is used in viewing the display or in the 2nd instance LCD goggles are used to differentiate the R/L fields. Radially scanned vidicons or re-mapped CCDs may be used. The display consists of three vertically stacked 120 degree(s) segments of the panoramic field of view with 2 fields/frame. Field A being the left eye display and Field B the right eye display.
NASA Astrophysics Data System (ADS)
Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.
2017-09-01
Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.
The Panoramic Camera (PanCam) Instrument for the ESA ExoMars Rover
NASA Astrophysics Data System (ADS)
Griffiths, A.; Coates, A.; Jaumann, R.; Michaelis, H.; Paar, G.; Barnes, D.; Josset, J.
The recently approved ExoMars rover is the first element of the ESA Aurora programme and is slated to deliver the Pasteur exobiology payload to Mars by 2013. The 0.7 kg Panoramic Camera will provide multispectral stereo images with 65° field-of- view (1.1 mrad/pixel) and high resolution (85 µrad/pixel) monoscopic "zoom" images with 5° field-of-view. The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission as well as providing multispectral geological imaging, colour and stereo panoramic images, solar images for water vapour abundance and dust optical depth measurements and to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. Additionally the High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls.
Design, demonstration and testing of low F-number LWIR panoramic imaging relay optics
NASA Astrophysics Data System (ADS)
Furxhi, Orges; Frascati, Joe; Driggers, Ronald
2018-04-01
Panoramic imaging is inherently wide field of view. High sensitivity uncooled Long Wave Infrared (LWIR) imaging requires low F-number optics. These two requirements result in short back working distance designs that, in addition to being costly, are challenging to integrate with commercially available uncooled LWIR cameras and cores. Common challenges include the relocation of the shutter flag, custom calibration of the camera dynamic range and NUC tables, focusing, and athermalization. Solutions to these challenges add to the system cost and make panoramic uncooled LWIR cameras commercially unattractive. In this paper, we present the design of Panoramic Imaging Relay Optics (PIRO) and show imagery and test results with one of the first prototypes. PIRO designs use several reflective surfaces (generally two) to relay a panoramic scene onto a real, donut-shaped image. The PIRO donut is imaged on the focal plane of the camera using a commercially-off-the-shelf (COTS) low F-number lens. This approach results in low component cost and effortless integration with pre-calibrated commercially available cameras and lenses.
Thermal infrared panoramic imaging sensor
NASA Astrophysics Data System (ADS)
Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey
2006-05-01
Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to serve in a wide range of applications of homeland security, as well as serve the Army in tasks of improved situational awareness (SA) in defense and offensive operations, and as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The novel ViperView TM high-resolution panoramic thermal imager is the heart of the APTIS system. It features an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS system include network communications, advanced power management, and wakeup capability. Recent developments include image processing, optical design being expanded into the visible spectral range, and wireless communications design. This paper describes the development status of the APTIS system.
Photogrammetry of Apollo 15 photography, part C
NASA Technical Reports Server (NTRS)
Wu, S. S. C.; Schafer, F. J.; Jordan, R.; Nakata, G. M.; Derick, J. L.
1972-01-01
In the Apollo 15 mission, a mapping camera system and a 61 cm optical bar, high resolution panoramic camera, as well as a laser altimeter were used. The panoramic camera is described, having several distortion sources, such as cylindrical shape of the negative film surface, the scanning action of the lens, the image motion compensator, and the spacecraft motion. Film products were processed on a specifically designed analytical plotter.
Automatic panoramic thermal integrated sensor
NASA Astrophysics Data System (ADS)
Gutin, Mikhail A.; Tsui, Eddy K.; Gutin, Olga N.
2005-05-01
Historically, the US Army has recognized the advantages of panoramic imagers with high image resolution: increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The novel ViperViewTM high-resolution panoramic thermal imager is the heart of the Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) in support of the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to improve situational awareness (SA) in many defense and offensive operations, as well as serve as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The ViperView is as an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS sensor suite include ancillary sensors, advanced power management, and wakeup capability. This paper describes the development status of the APTIS system.
Registration of Vehicle-Borne Point Clouds and Panoramic Images Based on Sensor Constellations.
Yao, Lianbi; Wu, Hangbin; Li, Yayun; Meng, Bin; Qian, Jinfei; Liu, Chun; Fan, Hongchao
2017-04-11
A mobile mapping system (MMS) is usually utilized to collect environmental data on and around urban roads. Laser scanners and panoramic cameras are the main sensors of an MMS. This paper presents a new method for the registration of the point clouds and panoramic images based on sensor constellation. After the sensor constellation was analyzed, a feature point, the intersection of the connecting line between the global positioning system (GPS) antenna and the panoramic camera with a horizontal plane, was utilized to separate the point clouds into blocks. The blocks for the central and sideward laser scanners were extracted with the segmentation feature points. Then, the point clouds located in the blocks were separated from the original point clouds. Each point in the blocks was used to find the accurate corresponding pixel in the relative panoramic images via a collinear function, and the position and orientation relationship amongst different sensors. A search strategy is proposed for the correspondence of laser scanners and lenses of panoramic cameras to reduce calculation complexity and improve efficiency. Four cases of different urban road types were selected to verify the efficiency and accuracy of the proposed method. Results indicate that most of the point clouds (with an average of 99.7%) were successfully registered with the panoramic images with great efficiency. Geometric evaluation results indicate that horizontal accuracy was approximately 0.10-0.20 m, and vertical accuracy was approximately 0.01-0.02 m for all cases. Finally, the main factors that affect registration accuracy, including time synchronization amongst different sensors, system positioning and vehicle speed, are discussed.
Registration of Vehicle-Borne Point Clouds and Panoramic Images Based on Sensor Constellations
Yao, Lianbi; Wu, Hangbin; Li, Yayun; Meng, Bin; Qian, Jinfei; Liu, Chun; Fan, Hongchao
2017-01-01
A mobile mapping system (MMS) is usually utilized to collect environmental data on and around urban roads. Laser scanners and panoramic cameras are the main sensors of an MMS. This paper presents a new method for the registration of the point clouds and panoramic images based on sensor constellation. After the sensor constellation was analyzed, a feature point, the intersection of the connecting line between the global positioning system (GPS) antenna and the panoramic camera with a horizontal plane, was utilized to separate the point clouds into blocks. The blocks for the central and sideward laser scanners were extracted with the segmentation feature points. Then, the point clouds located in the blocks were separated from the original point clouds. Each point in the blocks was used to find the accurate corresponding pixel in the relative panoramic images via a collinear function, and the position and orientation relationship amongst different sensors. A search strategy is proposed for the correspondence of laser scanners and lenses of panoramic cameras to reduce calculation complexity and improve efficiency. Four cases of different urban road types were selected to verify the efficiency and accuracy of the proposed method. Results indicate that most of the point clouds (with an average of 99.7%) were successfully registered with the panoramic images with great efficiency. Geometric evaluation results indicate that horizontal accuracy was approximately 0.10–0.20 m, and vertical accuracy was approximately 0.01–0.02 m for all cases. Finally, the main factors that affect registration accuracy, including time synchronization amongst different sensors, system positioning and vehicle speed, are discussed. PMID:28398256
Low-cost panoramic infrared surveillance system
NASA Astrophysics Data System (ADS)
Kecskes, Ian; Engel, Ezra; Wolfe, Christopher M.; Thomson, George
2017-05-01
A nighttime surveillance concept consisting of a single surface omnidirectional mirror assembly and an uncooled Vanadium Oxide (VOx) longwave infrared (LWIR) camera has been developed. This configuration provides a continuous field of view spanning 360° in azimuth and more than 110° in elevation. Both the camera and the mirror are readily available, off-the-shelf, inexpensive products. The mirror assembly is marketed for use in the visible spectrum and requires only minor modifications to function in the LWIR spectrum. The compactness and portability of this optical package offers significant advantages over many existing infrared surveillance systems. The developed system was evaluated on its ability to detect moving, human-sized heat sources at ranges between 10 m and 70 m. Raw camera images captured by the system are converted from rectangular coordinates in the camera focal plane to polar coordinates and then unwrapped into the users azimuth and elevation system. Digital background subtraction and color mapping are applied to the images to increase the users ability to extract moving items from background clutter. A second optical system consisting of a commercially available 50 mm f/1.2 ATHERM lens and a second LWIR camera is used to examine the details of objects of interest identified using the panoramic imager. A description of the components of the proof of concept is given, followed by a presentation of raw images taken by the panoramic LWIR imager. A description of the method by which these images are analyzed is given, along with a presentation of these results side-by-side with the output of the 50 mm LWIR imager and a panoramic visible light imager. Finally, a discussion of the concept and its future development are given.
Fisheye camera around view monitoring system
NASA Astrophysics Data System (ADS)
Feng, Cong; Ma, Xinjun; Li, Yuanyuan; Wu, Chenchen
2018-04-01
360 degree around view monitoring system is the key technology of the advanced driver assistance system, which is used to assist the driver to clear the blind area, and has high application value. In this paper, we study the transformation relationship between multi coordinate system to generate panoramic image in the unified car coordinate system. Firstly, the panoramic image is divided into four regions. By using the parameters obtained by calibration, four fisheye images pixel corresponding to the four sub regions are mapped to the constructed panoramic image. On the basis of 2D around view monitoring system, 3D version is realized by reconstructing the projection surface. Then, we compare 2D around view scheme and 3D around view scheme in unified coordinate system, 3D around view scheme solves the shortcomings of the traditional 2D scheme, such as small visual field, prominent ground object deformation and so on. Finally, the image collected by a fisheye camera installed around the car body can be spliced into a 360 degree panoramic image. So it has very high application value.
You are here: Earth as seen from Mars
2004-03-11
This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see. The inset shows a combination of four panoramic camera images zoomed in on Earth. The arrow points to Earth. Earth was too faint to be detected in images taken with the panoramic camera's color filters. http://photojournal.jpl.nasa.gov/catalog/PIA05547
Endoscopic measurements using a panoramic annular lens
NASA Technical Reports Server (NTRS)
Gilbert, John A.; Matthys, Donald R.
1992-01-01
The objective of this project was to design, build, demonstrate, and deliver a prototype system for making measurements within cavities. The system was to utilize structured lighting as the means for making measurements and was to rely on a stationary probe, equipped with a unique panoramic annular lens, to capture a cylindrical view of the illuminated cavity. Panoramic images, acquired with a digitizing camera and stored in a desk top computer, were to be linearized and analyzed by mouse-driven interactive software.
NASA Astrophysics Data System (ADS)
Gaddam, Vamsidhar Reddy; Griwodz, Carsten; Halvorsen, Pâl.
2014-02-01
One of the most common ways of capturing wide eld-of-view scenes is by recording panoramic videos. Using an array of cameras with limited overlapping in the corresponding images, one can generate good panorama images. Using the panorama, several immersive display options can be explored. There is a two fold synchronization problem associated to such a system. One is the temporal synchronization, but this challenge can easily be handled by using a common triggering solution to control the shutters of the cameras. The other synchronization challenge is the automatic exposure synchronization which does not have a straight forward solution, especially in a wide area scenario where the light conditions are uncontrolled like in the case of an open, outdoor football stadium. In this paper, we present the challenges and approaches for creating a completely automatic real-time panoramic capture system with a particular focus on the camera settings. One of the main challenges in building such a system is that there is not one common area of the pitch that is visible to all the cameras that can be used for metering the light in order to nd appropriate camera parameters. One approach we tested is to use the green color of the eld grass. Such an approach provided us with acceptable results only in limited light conditions.A second approach was devised where the overlapping areas between adjacent cameras are exploited, thus creating pairs of perfectly matched video streams. However, there still existed some disparity between di erent pairs. We nally developed an approach where the time between two temporal frames is exploited to communicate the exposures among the cameras where we achieve a perfectly synchronized array. An analysis of the system and some experimental results are presented in this paper. In summary, a pilot-camera approach running in auto-exposure mode and then distributing the used exposure values to the other cameras seems to give best visual results.
Orbital-science investigation: Part C: photogrammetry of Apollo 15 photography
Wu, Sherman S.C.; Schafer, Francis J.; Jordan, Raymond; Nakata, Gary M.; Derick, James L.
1972-01-01
Mapping of large areas of the Moon by photogrammetric methods was not seriously considered until the Apollo 15 mission. In this mission, a mapping camera system and a 61-cm optical-bar high-resolution panoramic camera, as well as a laser altimeter, were used. The mapping camera system comprises a 7.6-cm metric terrain camera and a 7.6-cm stellar camera mounted in a fixed angular relationship (an angle of 96° between the two camera axes). The metric camera has a glass focal-plane plate with reseau grids. The ground-resolution capability from an altitude of 110 km is approximately 20 m. Because of the auxiliary stellar camera and the laser altimeter, the resulting metric photography can be used not only for medium- and small-scale cartographic or topographic maps, but it also can provide a basis for establishing a lunar geodetic network. The optical-bar panoramic camera has a 135- to 180-line resolution, which is approximately 1 to 2 m of ground resolution from an altitude of 110 km. Very large scale specialized topographic maps for supporting geologic studies of lunar-surface features can be produced from the stereoscopic coverage provided by this camera.
Panoramic Epipolar Image Generation for Mobile Mapping System
NASA Astrophysics Data System (ADS)
Chen, T.; Yamamoto, K.; Chhatkuli, S.; Shimamura, H.
2012-07-01
The notable improvements on performance and low cost of digital cameras and GPS/IMU devices have caused MMSs (Mobile Mapping Systems) to be gradually becoming one of the most important devices for mapping highway and railway networks, generating and updating road navigation data and constructing urban 3D models over the last 20 years. Moreover, the demands for large scale visual street-level image database construction by the internet giants such as Google and Microsoft have made the further rapid development of this technology. As one of the most important sensors, the omni-directional cameras are being commonly utilized on many MMSs to collect panoramic images for 3D close range photogrammetry and fusion with 3D laser point clouds since these cameras could record much visual information of the real environment in one image at field view angle of 360° in longitude direction and 180° in latitude direction. This paper addresses the problem of panoramic epipolar image generation for 3D modelling and mapping by stereoscopic viewing. These panoramic images are captured with Point Grey's Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. Onboard GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided high accuracy position and attitude data for these panoramic images and laser data, this makes it possible to construct the epipolar geometric relationship between any two adjacent panoramic images and then the panoramic epipolar images could be generated. Three kinds of projection planes: sphere, cylinder and flat plane are selected as the epipolar images' planes. In final we select the flat plane and use its effective parts (middle parts of base line's two sides) for epipolar image generation. The corresponding geometric relations and results will be presented in this paper.
Camera Control and Geo-Registration for Video Sensor Networks
NASA Astrophysics Data System (ADS)
Davis, James W.
With the use of large video networks, there is a need to coordinate and interpret the video imagery for decision support systems with the goal of reducing the cognitive and perceptual overload of human operators. We present computer vision strategies that enable efficient control and management of cameras to effectively monitor wide-coverage areas, and examine the framework within an actual multi-camera outdoor urban video surveillance network. First, we construct a robust and precise camera control model for commercial pan-tilt-zoom (PTZ) video cameras. In addition to providing a complete functional control mapping for PTZ repositioning, the model can be used to generate wide-view spherical panoramic viewspaces for the cameras. Using the individual camera control models, we next individually map the spherical panoramic viewspace of each camera to a large aerial orthophotograph of the scene. The result provides a unified geo-referenced map representation to permit automatic (and manual) video control and exploitation of cameras in a coordinated manner. The combined framework provides new capabilities for video sensor networks that are of significance and benefit to the broad surveillance/security community.
NASA Astrophysics Data System (ADS)
Haase, I.; Oberst, J.; Scholten, F.; Wählisch, M.; Gläser, P.; Karachevtseva, I.; Robinson, M. S.
2012-05-01
Newly acquired high resolution Lunar Reconnaissance Orbiter Camera (LROC) images allow accurate determination of the coordinates of Apollo hardware, sampling stations, and photographic viewpoints. In particular, the positions from where the Apollo 17 astronauts recorded panoramic image series, at the so-called “traverse stations”, were precisely determined for traverse path reconstruction. We analyzed observations made in Apollo surface photography as well as orthorectified orbital images (0.5 m/pixel) and Digital Terrain Models (DTMs) (1.5 m/pixel and 100 m/pixel) derived from LROC Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images. Key features captured in the Apollo panoramic sequences were identified in LROC NAC orthoimages. Angular directions of these features were measured in the panoramic images and fitted to the NAC orthoimage by applying least squares techniques. As a result, we obtained the surface panoramic camera positions to within 50 cm. At the same time, the camera orientations, North azimuth angles and distances to nearby features of interest were also determined. Here, initial results are shown for traverse station 1 (northwest of Steno Crater) as well as the Apollo Lunar Surface Experiment Package (ALSEP) area.
Pancam: A Multispectral Imaging Investigation on the NASA 2003 Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.
2003-01-01
One of the six science payload elements carried on each of the NASA Mars Exploration Rovers (MER; Figure 1) is the Panoramic Camera System, or Pancam. Pancam consists of three major components: a pair of digital CCD cameras, the Pancam Mast Assembly (PMA), and a radiometric calibration target. The PMA provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. The calibration target provides a set of reference color and grayscale standards for calibration validation, and a shadow post for quantification of the direct vs. diffuse illumination of the scene. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover in up to 12 unique wavelengths. The major characteristics of Pancam are summarized.
Panoramic 3D Reconstruction by Fusing Color Intensity and Laser Range Data
NASA Astrophysics Data System (ADS)
Jiang, Wei; Lu, Jian
Technology for capturing panoramic (360 degrees) three-dimensional information in a real environment have many applications in fields: virtual and complex reality, security, robot navigation, and so forth. In this study, we examine an acquisition device constructed of a regular CCD camera and a 2D laser range scanner, along with a technique for panoramic 3D reconstruction using a data fusion algorithm based on an energy minimization framework. The acquisition device can capture two types of data of a panoramic scene without occlusion between two sensors: a dense spatio-temporal volume from a camera and distance information from a laser scanner. We resample the dense spatio-temporal volume for generating a dense multi-perspective panorama that has equal spatial resolution to that of the original images acquired using a regular camera, and also estimate a dense panoramic depth-map corresponding to the generated reference panorama by extracting trajectories from the dense spatio-temporal volume with a selecting camera. Moreover, for determining distance information robustly, we propose a data fusion algorithm that is embedded into an energy minimization framework that incorporates active depth measurements using a 2D laser range scanner and passive geometry reconstruction from an image sequence obtained using the CCD camera. Thereby, measurement precision and robustness can be improved beyond those available by conventional methods using either passive geometry reconstruction (stereo vision) or a laser range scanner. Experimental results using both synthetic and actual images show that our approach can produce high-quality panoramas and perform accurate 3D reconstruction in a panoramic environment.
Immersive Virtual Moon Scene System Based on Panoramic Camera Data of Chang'E-3
NASA Astrophysics Data System (ADS)
Gao, X.; Liu, J.; Mu, L.; Yan, W.; Zeng, X.; Zhang, X.; Li, C.
2014-12-01
The system "Immersive Virtual Moon Scene" is used to show the virtual environment of Moon surface in immersive environment. Utilizing stereo 360-degree imagery from panoramic camera of Yutu rover, the system enables the operator to visualize the terrain and the celestial background from the rover's point of view in 3D. To avoid image distortion, stereo 360-degree panorama stitched by 112 images is projected onto inside surface of sphere according to panorama orientation coordinates and camera parameters to build the virtual scene. Stars can be seen from the Moon at any time. So we render the sun, planets and stars according to time and rover's location based on Hipparcos catalogue as the background on the sphere. Immersing in the stereo virtual environment created by this imaged-based rendering technique, the operator can zoom, pan to interact with the virtual Moon scene and mark interesting objects. Hardware of the immersive virtual Moon system is made up of four high lumen projectors and a huge curve screen which is 31 meters long and 5.5 meters high. This system which take all panoramic camera data available and use it to create an immersive environment, enable operator to interact with the environment and mark interesting objects contributed heavily to establishment of science mission goals in Chang'E-3 mission. After Chang'E-3 mission, the lab with this system will be open to public. Besides this application, Moon terrain stereo animations based on Chang'E-1 and Chang'E-2 data will be showed to public on the huge screen in the lab. Based on the data of lunar exploration,we will made more immersive virtual moon scenes and animations to help the public understand more about the Moon in the future.
A panoramic coded aperture gamma camera for radioactive hotspots localization
NASA Astrophysics Data System (ADS)
Paradiso, V.; Amgarou, K.; Blanc De Lanaute, N.; Schoepff, V.; Amoyal, G.; Mahe, C.; Beltramello, O.; Liénard, E.
2017-11-01
A known disadvantage of the coded aperture imaging approach is its limited field-of-view (FOV), which often results insufficient when analysing complex dismantling scenes such as post-accidental scenarios, where multiple measurements are needed to fully characterize the scene. In order to overcome this limitation, a panoramic coded aperture γ-camera prototype has been developed. The system is based on a 1 mm thick CdTe detector directly bump-bonded to a Timepix readout chip, developed by the Medipix2 collaboration (256 × 256 pixels, 55 μm pitch, 14.08 × 14.08 mm2 sensitive area). A MURA pattern coded aperture is used, allowing for background subtraction without the use of heavy shielding. Such system is then combined with a USB color camera. The output of each measurement is a semi-spherical image covering a FOV of 360 degrees horizontally and 80 degrees vertically, rendered in spherical coordinates (θ,phi). The geometrical shapes of the radiation-emitting objects are preserved by first registering and stitching the optical images captured by the prototype, and applying, subsequently, the same transformations to their corresponding radiation images. Panoramic gamma images generated by using the technique proposed in this paper are described and discussed, along with the main experimental results obtained in laboratories campaigns.
NASA Astrophysics Data System (ADS)
Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen
2018-02-01
Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.
Measurement methods and accuracy analysis of Chang'E-5 Panoramic Camera installation parameters
NASA Astrophysics Data System (ADS)
Yan, Wei; Ren, Xin; Liu, Jianjun; Tan, Xu; Wang, Wenrui; Chen, Wangli; Zhang, Xiaoxia; Li, Chunlai
2016-04-01
Chang'E-5 (CE-5) is a lunar probe for the third phase of China Lunar Exploration Project (CLEP), whose main scientific objectives are to implement lunar surface sampling and to return the samples back to the Earth. To achieve these goals, investigation of lunar surface topography and geological structure within sampling area seems to be extremely important. The Panoramic Camera (PCAM) is one of the payloads mounted on CE-5 lander. It consists of two optical systems which installed on a camera rotating platform. Optical images of sampling area can be obtained by PCAM in the form of a two-dimensional image and a stereo images pair can be formed by left and right PCAM images. Then lunar terrain can be reconstructed based on photogrammetry. Installation parameters of PCAM with respect to CE-5 lander are critical for the calculation of exterior orientation elements (EO) of PCAM images, which is used for lunar terrain reconstruction. In this paper, types of PCAM installation parameters and coordinate systems involved are defined. Measurement methods combining camera images and optical coordinate observations are studied for this work. Then research contents such as observation program and specific solution methods of installation parameters are introduced. Parametric solution accuracy is analyzed according to observations obtained by PCAM scientifically validated experiment, which is used to test the authenticity of PCAM detection process, ground data processing methods, product quality and so on. Analysis results show that the accuracy of the installation parameters affects the positional accuracy of corresponding image points of PCAM stereo images within 1 pixel. So the measurement methods and parameter accuracy studied in this paper meet the needs of engineering and scientific applications. Keywords: Chang'E-5 Mission; Panoramic Camera; Installation Parameters; Total Station; Coordinate Conversion
NASA Astrophysics Data System (ADS)
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele; Pernechele, Claudio; Dionisio, Cesare
2017-11-01
This paper presents an innovative algorithm developed for attitude determination of a space platform. The algorithm exploits images taken from a multi-purpose panoramic camera equipped with hyper-hemispheric lens and used as star tracker. The sensor architecture is also original since state-of-the-art star trackers accurately image as many stars as possible within a narrow- or medium-size field-of-view, while the considered sensor observes an extremely large portion of the celestial sphere but its observation capabilities are limited by the features of the optical system. The proposed original approach combines algorithmic concepts, like template matching and point cloud registration, inherited from the computer vision and robotic research fields, to carry out star identification. The final aim is to provide a robust and reliable initial attitude solution (lost-in-space mode), with a satisfactory accuracy level in view of the multi-purpose functionality of the sensor and considering its limitations in terms of resolution and sensitivity. Performance evaluation is carried out within a simulation environment in which the panoramic camera operation is realistically reproduced, including perturbations in the imaged star pattern. Results show that the presented algorithm is able to estimate attitude with accuracy better than 1° with a success rate around 98% evaluated by densely covering the entire space of the parameters representing the camera pointing in the inertial space.
NASA Astrophysics Data System (ADS)
de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.
2011-05-01
Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.
NASA Astrophysics Data System (ADS)
Blaser, S.; Nebiker, S.; Cavegn, S.
2017-05-01
Image-based mobile mapping systems enable the efficient acquisition of georeferenced image sequences, which can later be exploited in cloud-based 3D geoinformation services. In order to provide a 360° coverage with accurate 3D measuring capabilities, we present a novel 360° stereo panoramic camera configuration. By using two 360° panorama cameras tilted forward and backward in combination with conventional forward and backward looking stereo camera systems, we achieve a full 360° multi-stereo coverage. We furthermore developed a fully operational new mobile mapping system based on our proposed approach, which fulfils our high accuracy requirements. We successfully implemented a rigorous sensor and system calibration procedure, which allows calibrating all stereo systems with a superior accuracy compared to that of previous work. Our study delivered absolute 3D point accuracies in the range of 4 to 6 cm and relative accuracies of 3D distances in the range of 1 to 3 cm. These results were achieved in a challenging urban area. Furthermore, we automatically reconstructed a 3D city model of our study area by employing all captured and georeferenced mobile mapping imagery. The result is a very high detailed and almost complete 3D city model of the street environment.
Visual Tour Based on Panaromic Images for Indoor Places in Campus
NASA Astrophysics Data System (ADS)
Bakirman, T.
2012-07-01
In this paper, it is aimed to create a visual tour based on panoramic images for Civil Engineering Faculty in Yildiz Technical University. For this purpose, panoramic images should be obtained. Thus, photos taken with a tripod to have the same angle of view in every photo and panoramic images were created with stitching photos. Two different cameras with different focal length were used. With the panoramic images, visual tour with navigation tools created.
360 degree vision system: opportunities in transportation
NASA Astrophysics Data System (ADS)
Thibault, Simon
2007-09-01
Panoramic technologies are experiencing new and exciting opportunities in the transportation industries. The advantages of panoramic imagers are numerous: increased areas coverage with fewer cameras, imaging of multiple target simultaneously, instantaneous full horizon detection, easier integration of various applications on the same imager and others. This paper reports our work on panomorph optics and potential usage in transportation applications. The novel panomorph lens is a new type of high resolution panoramic imager perfectly suitable for the transportation industries. The panomorph lens uses optimization techniques to improve the performance of a customized optical system for specific applications. By adding a custom angle to pixel relation at the optical design stage, the optical system provides an ideal image coverage which is designed to reduce and optimize the processing. The optics can be customized for the visible, near infra-red (NIR) or infra-red (IR) wavebands. The panomorph lens is designed to optimize the cost per pixel which is particularly important in the IR. We discuss the use of the 360 vision system which can enhance on board collision avoidance systems, intelligent cruise controls and parking assistance. 360 panoramic vision systems might enable safer highways and significant reduction in casualties.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Click on the image for 'Santa Anita' Panorama (QTVR) This color mosaic taken on May 21, 25 and 26, 2004, by the panoramic camera on NASA's Mars Exploration Rover Spirit was acquired from a position roughly three-fourths the way between 'Bonneville Crater' and the base of the 'Columbia Hills.' The area is within a low thermal inertia unit (an area that heats up and cools off quickly) identified from orbit by the Mars Odyssey thermal emission imaging system instrument. The rover was roughly 600 meters (1,968 feet) from the base of the hills. This mosaic, referred to as the 'Santa Anita Panorama,' is comprised of 64 pointings, acquired with six of the panoramic camera's color filters, including one designed specifically to allow comparisons between orbital and surface brightness data. A total of 384 images were acquired as part of this panorama. The mosaic is an approximate true-color rendering constructed from images using the camera's 750-, 530- and and 480-nanometer filters, and is presented at the full resolution of the camera.Stereoscopic wide field of view imaging system
NASA Technical Reports Server (NTRS)
Prechtl, Eric F. (Inventor); Sedwick, Raymond J. (Inventor); Jonas, Eric M. (Inventor)
2011-01-01
A stereoscopic imaging system incorporates a plurality of imaging devices or cameras to generate a high resolution, wide field of view image database from which images can be combined in real time to provide wide field of view or panoramic or omni-directional still or video images.
2004-03-13
This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. Earth is the tiny white dot in the center. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see. http://photojournal.jpl.nasa.gov/catalog/PIA05560
Development of the SEASIS instrument for SEDSAT
NASA Technical Reports Server (NTRS)
Maier, Mark W.
1996-01-01
Two SEASIS experiment objectives are key: take images that allow three axis attitude determination and take multi-spectral images of the earth. During the tether mission it is also desirable to capture images for the recoiling tether from the endmass perspective (which has never been observed). SEASIS must store all its imagery taken during the tether mission until the earth downlink can be established. SEASIS determines attitude with a panoramic camera and performs earth observation with a telephoto lens camera. Camera video is digitized, compressed, and stored in solid state memory. These objectives are addressed through the following architectural choices: (1) A camera system using a Panoramic Annular Lens (PAL). This lens has a 360 deg. azimuthal field of view by a +45 degree vertical field measured from a plan normal to the lens boresight axis. It has been shown in Mr. Mark Steadham's UAH M.S. thesis that his camera can determine three axis attitude anytime the earth and one other recognizable celestial object (for example, the sun) is in the field of view. This will be essentially all the time during tether deployment. (2) A second camera system using telephoto lens and filter wheel. The camera is a black and white standard video camera. The filters are chosen to cover the visible spectral bands of remote sensing interest. (3) A processor and mass memory arrangement linked to the cameras. Video signals from the cameras are digitized, compressed in the processor, and stored in a large static RAM bank. The processor is a multi-chip module consisting of a T800 Transputer and three Zoran floating point Digital Signal Processors. This processor module was supplied under ARPA contract by the Space Computer Corporation to demonstrate its use in space.
NASA Technical Reports Server (NTRS)
2004-01-01
This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.
2017-11-01
ARL-TR-8205 ● NOV 2017 US Army Research Laboratory Strategies for Characterizing the Sensory Environment: Objective and...Subjective Evaluation Methods using the VisiSonic Real Space 64/5 Audio-Visual Panoramic Camera By Joseph McArdle, Ashley Foots, Chris Stachowiak, and...return it to the originator. ARL-TR-8205 ● NOV 2017 US Army Research Laboratory Strategies for Characterizing the Sensory
Panoramic 3d Vision on the ExoMars Rover
NASA Astrophysics Data System (ADS)
Paar, G.; Griffiths, A. D.; Barnes, D. P.; Coates, A. J.; Jaumann, R.; Oberst, J.; Gao, Y.; Ellery, A.; Li, R.
The Pasteur payload on the ESA ExoMars Rover 2011/2013 is designed to search for evidence of extant or extinct life either on or up to ˜2 m below the surface of Mars. The rover will be equipped by a panoramic imaging system to be developed by a UK, German, Austrian, Swiss, Italian and French team for visual characterization of the rover's surroundings and (in conjunction with an infrared imaging spectrometer) remote detection of potential sample sites. The Panoramic Camera system consists of a wide angle multispectral stereo pair with 65° field-of-view (WAC; 1.1 mrad/pixel) and a high resolution monoscopic camera (HRC; current design having 59.7 µrad/pixel with 3.5° field-of-view) . Its scientific goals and operational requirements can be summarized as follows: • Determination of objects to be investigated in situ by other instruments for operations planning • Backup and Support for the rover visual navigation system (path planning, determination of subsequent rover positions and orientation/tilt within the 3d environment), and localization of the landing site (by stellar navigation or by combination of orbiter and ground panoramic images) • Geological characterization (using narrow band geology filters) and cartography of the local environments (local Digital Terrain Model or DTM). • Study of atmospheric properties and variable phenomena near the Martian surface (e.g. aerosol opacity, water vapour column density, clouds, dust devils, meteors, surface frosts,) 1 • Geodetic studies (observations of Sun, bright stars, Phobos/Deimos). The performance of 3d data processing is a key element of mission planning and scientific data analysis. The 3d Vision Team within the Panoramic Camera development Consortium reports on the current status of development, consisting of the following items: • Hardware Layout & Engineering: The geometric setup of the system (location on the mast & viewing angles, mutual mounting between WAC and HRC) needs to be optimized w.r.t. fields of view, ranging capability (distance measurement capability), data rate, necessity of calibration targets, hardware & data interfaces to other subsystems (e.g. navigation) as well as accuracy impacts of sensor design and compression ratio. • Geometric Calibration: The geometric properties of the individual cameras including various spectral filters, their mutual relations and the dynamic geometrical relation between rover frame and cameras - with the mast in between - are precisely described by a calibration process. During surface operations these relations will be continuously checked and updated by photogrammetric means, environmental influences such as temperature, pressure and the Mars gravity will be taken into account. • Surface Mapping: Stereo imaging using the WAC stereo pair is used for the 3d reconstruction of the rover vicinity to identify, locate and characterize potentially interesting spots (3-10 for an experimental cycle to be performed within approx. 10-30 sols). The HRC is used for high resolution imagery of these regions of interest to be overlaid on the 3d reconstruction and potentially refined by shape-from-shading techniques. A quick processing result is crucial for time critical operations planning, therefore emphasis is laid on the automatic behaviour and intrinsic error detection mechanisms. The mapping results will be continuously fused, updated and synchronized with the map used by the navigation system. The surface representation needs to take into account the different resolutions of HRC and WAC as well as uncommon or even unexpected image acquisition modes such as long range, wide baseline stereo from different rover positions or escape strategies in the case of loss of one of the stereo camera heads. • Panorama Mosaicking: The production of a high resolution stereoscopic panorama nowadays is state-of-art in computer vision. However, certain 2 challenges such as the need for access to accurate spherical coordinates, maintenance of radiometric & spectral response in various spectral bands, fusion between HRC and WAC, super resolution, and again the requirement of quick yet robust processing will add some complexity to the ground processing system. • Visualization for Operations Planning: Efficient operations planning is directly related to an ergonomic and well performing visualization. It is intended to adapt existing tools to an integrated visualization solution for the purpose of scientific site characterization, view planning and reachability mapping/instrument placement of pointing sensors (including the panoramic imaging system itself), and selection of regions of interest. The main interfaces between the individual components as well as the first version of a user requirement document are currently under definition. Beside the support for sensor layout and calibration the 3d vision system will consist of 2-3 main modules to be used during ground processing & utilization of the ExoMars Rover panoramic imaging system. 3
Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing
NASA Astrophysics Data System (ADS)
Li-Chee-Ming, J.; Armenakis, C.
2017-05-01
This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.
Rover imaging system for the Mars rover/sample return mission
NASA Technical Reports Server (NTRS)
1993-01-01
In the past year, the conceptual design of a panoramic imager for the Mars Environmental Survey (MESUR) Pathfinder was finished. A prototype camera was built and its performace in the laboratory was tested. The performance of this camera was excellent. Based on this work, we have recently proposed a small, lightweight, rugged, and highly capable Mars Surface Imager (MSI) instrument for the MESUR Pathfinder mission. A key aspect of our approach to optimization of the MSI design is that we treat image gathering, coding, and restoration as a whole, rather than as separate and independent tasks. Our approach leads to higher image quality, especially in the representation of fine detail with good contrast and clarity, without increasing either the complexity of the camera or the amount of data transmission. We have made significant progress over the past year in both the overall MSI system design and in the detailed design of the MSI optics. We have taken a simple panoramic camera and have upgraded it substantially to become a prototype of the MSI flight instrument. The most recent version of the camera utilizes miniature wide-angle optics that image directly onto a 3-color, 2096-element CCD line array. There are several data-taking modes, providing resolution as high as 0.3 mrad/pixel. Analysis tasks that were performed or that are underway with the test data from the prototype camera include the following: construction of 3-D models of imaged scenes from stereo data, first for controlled scenes and later for field scenes; and checks on geometric fidelity, including alignment errors, mast vibration, and oscillation in the drive system. We have outlined a number of tasks planned for Fiscal Year '93 in order to prepare us for submission of a flight instrument proposal for MESUR Pathfinder.
Experiments in interactive panoramic cinema
NASA Astrophysics Data System (ADS)
Fisher, Scott S.; Anderson, Steve; Ruiz, Susana; Naimark, Michael; Hoberman, Perry; Bolas, Mark; Weinberg, Richard
2005-03-01
For most of the past 100 years, cinema has been the premier medium for defining and expressing relations to the visible world. However, cinematic spectacles delivered in darkened theaters are predicated on a denial of both the body and the physical surroundings of the spectators who are watching it. To overcome these deficiencies, filmmakers have historically turned to narrative, seducing audiences with compelling stories and providing realistic characters with whom to identify. This paper describes several research projects in interactive panoramic cinema that attempt to sidestep the narrative preoccupations of conventional cinema and instead are based on notions of space, movement and embodied spectatorship rather than traditional storytelling. Example projects include interactive works developed with the use of a unique 360 degree camera and editing system, and also development of panoramic imagery for a large projection environment with 14 screens on 3 adjacent walls in a 5-4-5 configuration with observations and findings from an experiment projecting panoramic video on 12 of the 14, in a 4-4-4 270 degree configuration.
NASA Astrophysics Data System (ADS)
García-Moreno, Angel-Iván; González-Barbosa, José-Joel; Ramírez-Pedraza, Alfonso; Hurtado-Ramos, Juan B.; Ornelas-Rodriguez, Francisco-Javier
2016-04-01
Computer-based reconstruction models can be used to approximate urban environments. These models are usually based on several mathematical approximations and the usage of different sensors, which implies dependency on many variables. The sensitivity analysis presented in this paper is used to weigh the relative importance of each uncertainty contributor into the calibration of a panoramic camera-LiDAR system. Both sensors are used for three-dimensional urban reconstruction. Simulated and experimental tests were conducted. For the simulated tests we analyze and compare the calibration parameters using the Monte Carlo and Latin hypercube sampling techniques. Sensitivity analysis for each variable involved into the calibration was computed by the Sobol method, which is based on the analysis of the variance breakdown, and the Fourier amplitude sensitivity test method, which is based on Fourier's analysis. Sensitivity analysis is an essential tool in simulation modeling and for performing error propagation assessments.
NASA Technical Reports Server (NTRS)
2004-01-01
The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.
Optics to rectify CORONA panoramic photographs for map making
NASA Astrophysics Data System (ADS)
Hilbert, Robert S.
2006-08-01
In the 1960's, accurate maps of the United States were available to all, from the U.S. Government, but maps of the Soviet Union were not, and in fact were classified. Maps of the Soviet Union were needed by the U.S. Government, including for U.S. targeting of Soviet ICBM sites, and for negotiating the SALT ICBM disarmament treaty. Although mapping cameras were historically frame cameras with low distortion, the CORONA panoramic film coverage was used to identify any ICBM sites. If distortion-free photographs could be produced from this inherently distorted panoramic material, accurate maps could be produced that would be valuable. Use of the stereo photographs from CORONA, for developing accurate topographical maps, was the mission of Itek's Gamma Rectifier. Bob Shannon's department at Itek was responsible for designing the optics for the Gamma Rectifier. He assigned the design to the author. The optical requirements of this system are described along with the optical design solution, which allowed the inherent panoramic distortion of the original photographs to be "rectified" to a very high level of accuracy, in enlarged photographs. These rectifiers were used three shifts a day, for over a decade, and produced the most accurate maps of the earth's surface, that existed at that time. The results facilitated the success of the Strategic Arms Limitation Talks (SALT) Treaty signed by the US and the Soviet Union in 1972, which were verified by "national means of verification" (i.e. space reconnaissance).
Photogrammetry using Apollo 16 orbital photography, part B
NASA Technical Reports Server (NTRS)
Wu, S. S. C.; Schafer, F. J.; Jordan, R.; Nakata, G. M.
1972-01-01
Discussion is made of the Apollo 15 and 16 metric and panoramic cameras which provided photographs for accurate topographic portrayal of the lunar surface using photogrammetric methods. Nine stereoscopic models of Apollo 16 metric photographs and three models of panoramic photographs were evaluated photogrammetrically in support of the Apollo 16 geologic investigations. Four of the models were used to collect profile data for crater morphology studies; three models were used to collect evaluation data for the frequency distributions of lunar slopes; one model was used to prepare a map of the Apollo 16 traverse area; and one model was used to determine elevations of the Cayley Formation. The remaining three models were used to test photogrammetric techniques using oblique metric and panoramic camera photographs. Two preliminary contour maps were compiled and a high-oblique metric photograph was rectified.
NASA Technical Reports Server (NTRS)
2004-01-01
Two views of a sundial called the MarsDial can be seen in this image taken on Mars by the Mars Exploration Rover Spirit's panoramic camera. These calibration instruments, positioned on the solar panels of both Spirit and the Mars Exploration Rover Opportunity, are tools for both scientists and educators. Scientists use the sundial to adjust the rovers' panoramic cameras, while students participating in NASA's Red Rover Goes to Mars program will monitor the dial to track time on Mars. Students worldwide will also have the opportunity to build their own Earth sundial and compare it to that on Mars.The left image was captured near martian noon when the Sun was very high in the sky. The right image was acquired later in the afternoon when the Sun was lower in sky, casting longer shadows. The colored blocks in the corners of the sundial are used to fine-tune the panoramic camera's sense of color. Shadows cast on the sundial help scientists adjust the brightness of images.The sundial is embellished with artwork from children, and displays the word Mars in 17 different languages.NASA Technical Reports Server (NTRS)
2004-01-01
This false-color panoramic camera composite traverse map depicts the Mars Exploration Rover Spirit's journey since landing at Gusev Crater, Mars. It was generated from three of the camera's different wavelength filters (750 nanometers, 530 nanometers and 480 nanometers). This map was created on the 65th martian day, or sol, of Spirit's mission, after Spirit had traveled 328 meters (1076 feet) from its lander to the rim of the crater dubbed 'Bonneville.' From this high point, Spirit was able to capture with its panoramic camera the entire rover traverse. The map points out major stops that Spirit made along the way, including features nicknamed 'Adirondack;' 'Stone Council;' 'Laguna Hollow;' and 'Humphrey.' Also highlighted is the landscape feature informally named 'Grissom Hill' and Spirit's landing site, the Columbia Memorial Station.
Mobile Panoramic Video Applications for Learning
ERIC Educational Resources Information Center
Multisilta, Jari
2014-01-01
The use of videos on the internet has grown significantly in the last few years. For example, Khan Academy has a large collection of educational videos, especially on STEM subjects, available for free on the internet. Professional panoramic video cameras are expensive and usually not easy to carry because of the large size of the equipment.…
NASA Astrophysics Data System (ADS)
Schonlau, William J.
2006-05-01
An immersive viewing engine providing basic telepresence functionality for a variety of application types is presented. Augmented reality, teleoperation and virtual reality applications all benefit from the use of head mounted display devices that present imagery appropriate to the user's head orientation at full frame rates. Our primary application is the viewing of remote environments, as with a camera equipped teleoperated vehicle. The conventional approach where imagery from a narrow field camera onboard the vehicle is presented to the user on a small rectangular screen is contrasted with an immersive viewing system where a cylindrical or spherical format image is received from a panoramic camera on the vehicle, resampled in response to sensed user head orientation and presented via wide field eyewear display, approaching 180 degrees of horizontal field. Of primary interest is the user's enhanced ability to perceive and understand image content, even when image resolution parameters are poor, due to the innate visual integration and 3-D model generation capabilities of the human visual system. A mathematical model for tracking user head position and resampling the panoramic image to attain distortion free viewing of the region appropriate to the user's current head pose is presented and consideration is given to providing the user with stereo viewing generated from depth map information derived using stereo from motion algorithms.
Road sign recognition using Viapix module and correlation
NASA Astrophysics Data System (ADS)
Ouerhani, Y.; Desthieux, M.; Alfalou, A.
2015-03-01
In this paper, we propose and validate a new system used to explore road assets. In this work we are interested on the vertical road signs. To do this, we are based on the combination of road signs detection, recognition and identification using data provides by sensors. The proposed approach consists on using panoramic views provided by the innovative device, VIAPIX®1, developed by our company ACTRIS2. We are based also on the optimized correlation technique for road signs recognition and identification on pictures. Obtained results shows the interest on using panoramic views compared to results obtained using images provided using only one camera.
Trench Reveals Two Faces of Soils
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true-color image mosaic from the panoramic camera on the Mars Exploration Rover Opportunity shows a trench dug by the rover in the vicinity of the 'Anatolia' region. Two imprints from the rover's Mossbauer spectrometer instrument were left in the exposed soils. Detailed comparisons between soils exposed at the surface and those found at depth reveal that surface soils have higher levels of hematite while subsurface soils show fine particles derived from basalt. The trench is approximately 11 centimeters deep. This image was taken on sol 81 with the panoramic camera's 430-, 530- and 750-nanometer filters.Similar on the Inside (pre-grinding)
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity show the rock called 'Pilbara' located in the small crater dubbed 'Fram.' The rock appears to be dotted with the same 'blueberries,' or spherules, found at 'Eagle Crater.' Spirit drilled into this rock with its rock abrasion tool. After analyzing the hole with the rover's scientific instruments, scientists concluded that Pilbara has a similar chemical make-up, and thus watery past, to rocks studied at Eagle Crater. This image was taken with the panoramic camera's 480-, 530- and 600-nanometer filters.Similar on the Inside (post-grinding)
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity show the hole drilled into the rock called 'Pilbara,' which is located in the small crater dubbed 'Fram.' Spirit drilled into this rock with its rock abrasion tool. The rock appears to be dotted with the same 'blueberries,' or spherules, found at 'Eagle Crater.' After analyzing the hole with the rover's scientific instruments, scientists concluded that Pilbara has a similar chemical make-up, and thus watery past, to rocks studied at Eagle Crater. This image was taken with the panoramic camera's 480-, 530- and 600-nanometer filters.'El Capitan's' Scientific Gems
NASA Technical Reports Server (NTRS)
2004-01-01
This mosaic of images taken by the panoramic camera onboard the Mars Exploration Rover Opportunity shows the rock region dubbed 'El Capitan,' which lies within the larger outcrop near the rover's landing site. 'El Capitan' is being studied in great detail using the scientific instruments on the rover's arm; images from the panoramic camera help scientists choose the locations for this compositional work. The millimeter-scale detail of the lamination covering these rocks can be seen. The face of the rock to the right of the mosaic may be a future target for grinding with the rover's rock abrasion tool.
Design and Implementation of a Novel Portable 360° Stereo Camera System with Low-Cost Action Cameras
NASA Astrophysics Data System (ADS)
Holdener, D.; Nebiker, S.; Blaser, S.
2017-11-01
The demand for capturing indoor spaces is rising with the digitalization trend in the construction industry. An efficient solution for measuring challenging indoor environments is mobile mapping. Image-based systems with 360° panoramic coverage allow a rapid data acquisition and can be processed to georeferenced 3D images hosted in cloud-based 3D geoinformation services. For the multiview stereo camera system presented in this paper, a 360° coverage is achieved with a layout consisting of five horizontal stereo image pairs in a circular arrangement. The design is implemented as a low-cost solution based on a 3D printed camera rig and action cameras with fisheye lenses. The fisheye stereo system is successfully calibrated with accuracies sufficient for the applied measurement task. A comparison of 3D distances with reference data delivers maximal deviations of 3 cm on typical distances in indoor space of 2-8 m. Also the automatic computation of coloured point clouds from the stereo pairs is demonstrated.
NASA Astrophysics Data System (ADS)
Swain, Pradyumna; Mark, David
2004-09-01
The emergence of curved CCD detectors as individual devices or as contoured mosaics assembled to match the curved focal planes of astronomical telescopes and terrestrial stereo panoramic cameras represents a major optical design advancement that greatly enhances the scientific potential of such instruments. In altering the primary detection surface within the telescope"s optical instrumentation system from flat to curved, and conforming the applied CCD"s shape precisely to the contour of the telescope"s curved focal plane, a major increase in the amount of transmittable light at various wavelengths through the system is achieved. This in turn enables multi-spectral ultra-sensitive imaging with much greater spatial resolution necessary for large and very large telescope applications, including those involving infrared image acquisition and spectroscopy, conducted over very wide fields of view. For earth-based and space-borne optical telescopes, the advent of curved CCD"s as the principle detectors provides a simplification of the telescope"s adjoining optics, reducing the number of optical elements and the occurrence of optical aberrations associated with large corrective optics used to conform to flat detectors. New astronomical experiments may be devised in the presence of curved CCD applications, in conjunction with large format cameras and curved mosaics, including three dimensional imaging spectroscopy conducted over multiple wavelengths simultaneously, wide field real-time stereoscopic tracking of remote objects within the solar system at high resolution, and deep field survey mapping of distant objects such as galaxies with much greater multi-band spatial precision over larger sky regions. Terrestrial stereo panoramic cameras equipped with arrays of curved CCD"s joined with associative wide field optics will require less optical glass and no mechanically moving parts to maintain continuous proper stereo convergence over wider perspective viewing fields than their flat CCD counterparts, lightening the cameras and enabling faster scanning and 3D integration of objects moving within a planetary terrain environment. Preliminary experiments conducted at the Sarnoff Corporation indicate the feasibility of curved CCD imagers with acceptable electro-optic integrity. Currently, we are in the process of evaluating the electro-optic performance of a curved wafer scale CCD imager. Detailed ray trace modeling and experimental electro-optical data performance obtained from the curved imager will be presented at the conference.
NASA Technical Reports Server (NTRS)
Ward, J. F.
1981-01-01
Procedures were developed and tested for using KA-80A optical bar camera panoramic photography for timber typing forest land and classifying nonforest land. The study area was the south half of the Lake Tahoe Basin Management Unit. Final products from this study include four timber type map overlays on 1:24,000 orthophoto maps. The following conclusions can be drawn from this study: (1) established conventional timber typing procedures can be used on panoramic photography if the necessary equipment is available, (2) The classification and consistency results warrant further study in using panoramic photography for timber typing; and (3) timber type mapping can be done as fast or faster with panoramic photography than with resource photography while maintaining comparable accuracy.
The Beagle 2 Stereo Camera System: Scientific Objectives and Design Characteristics
NASA Astrophysics Data System (ADS)
Griffiths, A.; Coates, A.; Josset, J.; Paar, G.; Sims, M.
2003-04-01
The Stereo Camera System (SCS) will provide wide-angle (48 degree) multi-spectral stereo imaging of the Beagle 2 landing site in Isidis Planitia with an angular resolution of 0.75 milliradians. Based on the SpaceX Modular Micro-Imager, the SCS is composed of twin cameras (with 1024 by 1024 pixel frame transfer CCD) and twin filter wheel units (with a combined total of 24 filters). The primary mission objective is to construct a digital elevation model of the area in reach of the lander’s robot arm. The SCS specifications and following baseline studies are described: Panoramic RGB colour imaging of the landing site and panoramic multi-spectral imaging at 12 distinct wavelengths to study the mineralogy of landing site. Solar observations to measure water vapour absorption and the atmospheric dust optical density. Also envisaged are multi-spectral observations of Phobos &Deimos (observations of the moons relative to background stars will be used to determine the lander’s location and orientation relative to the Martian surface), monitoring of the landing site to detect temporal changes, observation of the actions and effects of the other PAW experiments (including rock texture studies with a close-up-lens) and collaborative observations with the Mars Express orbiter instrument teams. Due to be launched in May of this year, the total system mass is 360 g, the required volume envelope is 747 cm^3 and the average power consumption is 1.8 W. A 10Mbit/s RS422 bus connects each camera to the lander common electronics.
A method and results of color calibration for the Chang'e-3 terrain camera and panoramic camera
NASA Astrophysics Data System (ADS)
Ren, Xin; Li, Chun-Lai; Liu, Jian-Jun; Wang, Fen-Fei; Yang, Jian-Feng; Liu, En-Hai; Xue, Bin; Zhao, Ru-Jin
2014-12-01
The terrain camera (TCAM) and panoramic camera (PCAM) are two of the major scientific payloads installed on the lander and rover of the Chang'e 3 mission respectively. They both use a Bayer color filter array covering CMOS sensor to capture color images of the Moon's surface. RGB values of the original images are related to these two kinds of cameras. There is an obvious color difference compared with human visual perception. This paper follows standards published by the International Commission on Illumination to establish a color correction model, designs the ground calibration experiment and obtains the color correction coefficient. The image quality has been significantly improved and there is no obvious color difference in the corrected images. Ground experimental results show that: (1) Compared with uncorrected images, the average color difference of TCAM is 4.30, which has been reduced by 62.1%. (2) The average color differences of the left and right cameras in PCAM are 4.14 and 4.16, which have been reduced by 68.3% and 67.6% respectively.
NASA Astrophysics Data System (ADS)
Griffiths, Andrew; Coates, Andrew; Muller, Jan-Peter; Jaumann, Ralf; Josset, Jean-Luc; Paar, Gerhard; Barnes, David
2010-05-01
The ExoMars mission has evolved into a joint European-US mission to deliver a trace gas orbiter and a pair of rovers to Mars in 2016 and 2018 respectively. The European rover will carry the Pasteur exobiology payload including the 1.56 kg Panoramic Camera. PanCam will provide multispectral stereo images with 34 deg horizontal field-of-view (580 microrad/pixel) Wide-Angle Cameras (WAC) and (83 microrad/pixel) colour monoscopic "zoom" images with 5 deg horizontal field-of-view High Resolution Camera (HRC). The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage [1]. Integrated with the WACs and HRC into the PanCam optical bench (which helps the instrument meet its planetary protection requirements) is the PanCam interface unit (PIU); which provides image storage, a Spacewire interface to the rover and DC-DC power conversion. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission [2] as well as providing multispectral geological imaging, colour and stereo panoramic images and solar images for water vapour abundance and dust optical depth measurements. The High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls. Additionally HRC will be used to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. In short, PanCam provides the overview and context for the ExoMars experiment locations, required to enable the exobiology aims of the mission. In addition to these baseline capabilities further enhancements are possible to PanCam to enhance it's effectiveness for astrobiology and planetary exploration: 1. Rover Inspection Mirror (RIM) 2. Organics Detection by Fluorescence Excitation (ODFE) LEDs [3-6] 3. UVIS broadband UV Flux and Opacity Determination (UVFOD) photodiode This paper will discuss the scientific objectives and resource impacts of these enhancements. References: 1. Griffiths, A.D., Coates, A.J., Josset, J.-L., Paar, G., Hofmann, B., Pullan, D., Ruffer, P., Sims, M.R., Pillinger, C.T., The Beagle 2 stereo camera system, Planet. Space Sci. 53, 1466-1488, 2005. 2. Paar, G., Oberst, J., Barnes, D.P., Griffiths, A.D., Jaumann, R., Coates, A.J., Muller, J.P., Gao, Y., Li, R., 2007, Requirements and Solutions for ExoMars Rover Panoramic Camera 3d Vision Processing, abstract submitted to EGU meeting, Vienna, 2007. 3. Storrie-Lombardi, M.C., Hug, W.F., McDonald, G.D., Tsapin, A.I., and Nealson, K.H. 2001. Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Rev. Sci. Ins., 72 (12), 4452-4459. 4. Nealson, K.H., Tsapin, A., and Storrie-Lombardi, M. 2002. Searching for life in the universe: unconventional methods for an unconventional problem. International Microbiology, 5, 223-230. 5. Mormile, M.R. and Storrie-Lombardi, M.C. 2005. The use of ultraviolet excitation of native fluorescence for identifying biomarkers in halite crystals. Astrobiology and Planetary Missions (R. B. Hoover, G. V. Levin and A. Y. Rozanov, Eds.), Proc. SPIE, 5906, 246-253. 6. Storrie-Lombardi, M.C. 2005. Post-Bayesian strategies to optimize astrobiology instrument suites: lessons from Antarctica and the Pilbara. Astrobiology and Planetary Missions (R. B. Hoover, G. V. Levin and A. Y. Rozanov, Eds.), Proc. SPIE, 5906, 288-301.
'Illinois' and 'New York' Wiped Clean
NASA Technical Reports Server (NTRS)
2004-01-01
This panoramic camera image was taken by NASA's Mars Exploration Rover Spirit on sol 79 after completing a two-location brushing on the rock dubbed 'Mazatzal.' A coating of fine, dust-like material was successfully removed from targets named 'Illinois' (right) and 'New York' (left), revealing the weathered rock underneath. In this image, Spirit's panoramic camera mast assembly, or camera head, can be seen shadowing Mazatzal's surface. This approximate true color image was taken with the 601, 535 and 482 nanometer filters.
The center of the two brushed spots are approximately 10 centimeters (3.9 inches) apart and will be aggressively analyzed by the instruments on the robotic arm on sol 80. Plans for sol 81 are to grind into the New York target to get past any weathered rock and expose the original, internal rock underneath.Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation
Bell, J.F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.N.; Arneson, H.M.; Brown, D.; Collins, S.A.; Dingizian, A.; Elliot, S.T.; Hagerott, E.C.; Hayes, A.G.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.; Lemmon, M.T.; Morris, R.V.; Scherr, L.; Schwochert, M.; Shepard, M.K.; Smith, G.H.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Sullivan, W.T.; Wadsworth, M.
2003-01-01
The Panoramic Camera (Pancam) investigation is part of the Athena science payload launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The scientific goals of the Pancam investigation are to assess the high-resolution morphology, topography, and geologic context of each MER landing site, to obtain color images to constrain the mineralogic, photometric, and physical properties of surface materials, and to determine dust and aerosol opacity and physical properties from direct imaging of the Sun and sky. Pancam also provides mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high-resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach products. The Pancam optical, mechanical, and electronics design were optimized to achieve these science and mission support goals. Pancam is a multispectral, stereoscopic, panoramic imaging system consisting of two digital cameras mounted on a mast 1.5 m above the Martian surface. The mast allows Pancam to image the full 360?? in azimuth and ??90?? in elevation. Each Pancam camera utilizes a 1024 ?? 1024 active imaging area frame transfer CCD detector array. The Pancam optics have an effective focal length of 43 mm and a focal ratio f/20, yielding an instantaneous field of view of 0.27 mrad/pixel and a field of view of 16?? ?? 16??. Each rover's two Pancam "eyes" are separated by 30 cm and have a 1?? toe-in to provide adequate stereo parallax. Each eye also includes a small eight position filter wheel to allow surface mineralogic studies, multispectral sky imaging, and direct Sun imaging in the 400-1100 nm wavelength region. Pancam was designed and calibrated to operate within specifications on Mars at temperatures from -55?? to +5??C. An onboard calibration target and fiducial marks provide the capability to validate the radiometric and geometric calibration on Mars. Copyright 2003 by the American Geophysical Union.
Layered Outcrops in Gusev Crater (False Color)
NASA Technical Reports Server (NTRS)
2004-01-01
One of the ways scientists collect mineralogical data about rocks on Mars is to view them through filters that allow only specific wavelengths of light to pass through the lens of the panoramic camera. NASA's Mars Exploration Rover Spirit took this false-color image of the rock nicknamed 'Tetl' at 1:05 p.m. martian time on its 270th martian day, or sol (Oct. 5, 2004) using the panoramic camera's 750-, 530-, and 430-nanometer filters. Darker red hues in the image correspond to greater concentrations of oxidized soil and dust. Bluer hues correspond to portions of rock that are not as heavily coated with soils or are not as highly oxidized.Cobbles in Troughs Between Meridiani Ripples
NASA Technical Reports Server (NTRS)
2006-01-01
As NASA's Mars Exploration Rover Opportunity continues to traverse from 'Erebus Crater' toward 'Victoria Crater,' the rover navigates along exposures of bedrock between large, wind-blown ripples. Along the way, scientists have been studying fields of cobbles that sometimes appear on trough floors between ripples. They have also been studying the banding patterns seen in large ripples. This view, obtained by Opportunity's panoramic camera on the rover's 802nd Martian day (sol) of exploration (April 27, 2006), is a mosaic spanning about 30 degrees. It shows a field of cobbles nestled among wind-driven ripples that are about 20 centimeters (8 inches) high. The origin of cobble fields like this one is unknown. The cobbles may be a lag of coarser material left behind from one or more soil deposits whose finer particles have blown away. The cobbles may be eroded fragments of meteoritic material, secondary ejecta of Mars rock thrown here from craters elsewhere on the surface, weathering remnants of locally-derived bedrock, or a mixture of these. Scientists will use the panoramic camera's multiple filters to study the rock types, variability and origins of the cobbles. This is an approximately true-color rendering that combines separate images taken through the panoramic camera's 753-nanometer, 535-nanometer and 432-nanometer filters.Novel fast catadioptric objective with wide field of view
NASA Astrophysics Data System (ADS)
Muñoz, Fernando; Infante Herrero, José M.; Benítez, Pablo; Miñano, Juan C.; Lin, Wang; Vilaplana, Juan; Biot, Guillermo; de la Fuente, Marta
2010-08-01
Using the Simultaneous Multiple Surface method in 2D (SMS2D), we present a fast catadioptric objective with a wide field of view (125°×96°) designed for a microbolometer detector with 640×480 pixels and 25 microns pixel pitch Keywords: Infrared lens design, thermal imaging, Schwarzschild configuration, SMS2D, wide field of view, driving cameras, panoramic systems
Saying Goodbye to 'Bonneville' Crater
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Annotated Image NASA's Mars Exploration Rover Spirit took this panoramic camera image on sol 86 (March 31, 2004) before driving 36 meters (118 feet) on sol 87 toward its future destination, the Columbia Hills. This is probably the last panoramic camera image that Spirit will take from the high rim of 'Bonneville' crater, and provides an excellent view of the ejecta-covered path the rover has journeyed thus far. The lander can be seen toward the upper right of the frame and is approximately 321 meters (1060 feet) away from Spirit's current location. The large hill on the horizon is Grissom Hill. The Colombia Hills, located to the left, are not visible in this image.NASA Technical Reports Server (NTRS)
2006-01-01
At least three different kinds of rocks await scientific analysis at the place where NASA's Mars Exploration Rover Spirit will likely spend several months of Martian winter. They are visible in this picture, which the panoramic camera on Spirit acquired during the rover's 809th sol, or Martian day, of exploring Mars (April 12, 2006). Paper-thin layers of light-toned, jagged-edged rocks protrude horizontally from beneath small sand drifts; a light gray rock with smooth, rounded edges sits atop the sand drifts; and several dark gray to black, angular rocks with vesicles (small holes) typical of hardened lava lie scattered across the sand. This view is an approximately true-color rendering that combines images taken through the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.ATTICA family of thermal cameras in submarine applications
NASA Astrophysics Data System (ADS)
Kuerbitz, Gunther; Fritze, Joerg; Hoefft, Jens-Rainer; Ruf, Berthold
2001-10-01
Optronics Mast Systems (US: Photonics Mast Systems) are electro-optical devices which enable a submarine crew to observe the scenery above water during dive. Unlike classical submarine periscopes they are non-hull-penetrating and therefore have no direct viewing capability. Typically they have electro-optical cameras both for the visual and for an IR spectral band with panoramic view and a stabilized line of sight. They can optionally be equipped with laser range- finders, antennas, etc. The brand name ATTICA (Advanced Two- dimensional Thermal Imager with CMOS-Array) characterizes a family of thermal cameras using focal-plane-array (FPA) detectors which can be tailored to a variety of requirements. The modular design of the ATTICA components allows the use of various detectors (InSb, CMT 3...5 μm , CMT 7...11 μm ) for specific applications. By means of a microscanner ATTICA cameras achieve full standard TV resolution using detectors with only 288 X 384 (US:240 X 320) detector elements. A typical requirement for Optronics-Mast Systems is a Quick- Look-Around capability. For FPA cameras this implies the need for a 'descan' module which can be incorporated in the ATTICA cameras without complications.
Lunar orbital photogaphic planning charts for candidate Apollo J-missions
NASA Technical Reports Server (NTRS)
Hickson, P. J.; Piotrowski, W. L.
1971-01-01
A technique is presented for minimizing Mapping Camera film usage by reducing redundant coverage while meeting the desired sidelap of greater than or equal to 55%. The technique uses the normal groundtrack separation determined as a function of the number of revolutions between the respective tracks, of the initial and final nodal azimuths (or orbital inclination), and of the lunar latitude. The technique is also applicable for planning Panoramic Camera photography such that photographic contiguity is attained but redundant coverage is minimized. Graphs are included for planning mapping camera (MC) and panoramic camera (PC) photographic passes for a specific mission (i.e., specific groundtracks) to Descartes (Apollo 16), for specific missions to potential Apollo 17 sites such as Alphonsus, Proclus, Gassendi, Davy, and Tycho, and for a potential Apollo orbit-only mission with a nodal azimuth of 85 deg. Graphs are also included for determining the maximum number of revolutions which can elapse between successive MC and PC passes, for greater than or equal 55% sidelap and rectified contiguity respectively, for nodal azimuths between 5 deg and 85 deg.
Cobbles in Troughs Between Meridiani Ripples (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
As NASA's Mars Exploration Rover Opportunity continues to traverse from 'Erebus Crater' toward 'Victoria Crater,' the rover navigates along exposures of bedrock between large, wind-blown ripples. Along the way, scientists have been studying fields of cobbles that sometimes appear on trough floors between ripples. They have also been studying the banding patterns seen in large ripples. This view, obtained by Opportunity's panoramic camera on the rover's 802nd Martian day (sol) of exploration (April 27, 2006), is a mosaic spanning about 30 degrees. It shows a field of cobbles nestled among wind-driven ripples that are about 20 centimeters (8 inches) high. The origin of cobble fields like this one is unknown. The cobbles may be a lag of coarser material left behind from one or more soil deposits whose finer particles have blown away. The cobbles may be eroded fragments of meteoritic material, secondary ejecta of Mars rock thrown here from craters elsewhere on the surface, weathering remnants of locally-derived bedrock, or a mixture of these. Scientists will use the panoramic camera's multiple filters to study the rock types, variability and origins of the cobbles. This is a false-color rendering that combines separate images taken through the panoramic camera's 753-nanometer, 535-nanometer and 432-nanometer filters. The false color is used to enhance differences between types of materials in the rocks and soil.Range and Panoramic Image Fusion Into a Textured Range Image for Culture Heritage Documentation
NASA Astrophysics Data System (ADS)
Bila, Z.; Reznicek, J.; Pavelka, K.
2013-07-01
This paper deals with a fusion of range and panoramic images, where the range image is acquired by a 3D laser scanner and the panoramic image is acquired with a digital still camera mounted on a panoramic head and tripod. The fused resulting dataset, called "textured range image", provides more reliable information about the investigated object for conservators and historians, than using both datasets separately. A simple example of fusion of a range and panoramic images, both obtained in St. Francis Xavier Church in town Opařany, is given here. Firstly, we describe the process of data acquisition, then the processing of both datasets into a proper format for following fusion and the process of fusion. The process of fusion can be divided into a two main parts: transformation and remapping. In the first, transformation, part, both images are related by matching similar features detected on both images with a proper detector, which results in transformation matrix enabling transformation of the range image onto a panoramic image. Then, the range data are remapped from the range image space into a panoramic image space and stored as an additional "range" channel. The process of image fusion is validated by comparing similar features extracted on both datasets.
Spirit Scans Winter Haven (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
At least three different kinds of rocks await scientific analysis at the place where NASA's Mars Exploration Rover Spirit will likely spend several months of Martian winter. They are visible in this picture, which the panoramic camera on Spirit acquired during the rover's 809th sol, or Martian day, of exploring Mars (April 12, 2006). Paper-thin layers of light-toned, jagged-edged rocks protrude horizontally from beneath small sand drifts; a light gray rock with smooth, rounded edges sits atop the sand drifts; and several dark gray to black, angular rocks with vesicles (small holes) typical of hardened lava lie scattered across the sand. This view is a false-color rendering that combines images taken through the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.The NASA 2003 Mars Exploration Rover Panoramic Camera (Pancam) Investigation
NASA Astrophysics Data System (ADS)
Bell, J. F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Morris, R. V.; Athena Team
2002-12-01
The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360o of azimuth and from zenith to nadir, providing a complete view of the scene around the rover. Pancam utilizes two 1024x2048 Mitel frame transfer CCD detector arrays, each having a 1024x1024 active imaging area and 32 optional additional reference pixels per row for offset monitoring. Each array is combined with optics and a small filter wheel to become one "eye" of a multispectral, stereoscopic imaging system. The optics for both cameras consist of identical 3-element symmetrical lenses with an effective focal length of 42 mm and a focal ratio of f/20, yielding an IFOV of 0.28 mrad/pixel or a rectangular FOV of 16o\\x9D 16o per eye. The two eyes are separated by 30 cm horizontally and have a 1o toe-in to provide adequate parallax for stereo imaging. The cameras are boresighted with adjacent wide-field stereo Navigation Cameras, as well as with the Mini-TES instrument. The Pancam optical design is optimized for best focus at 3 meters range, and allows Pancam to maintain acceptable focus from infinity to within 1.5 meters of the rover, with a graceful degradation (defocus) at closer ranges. Each eye also contains a small 8-position filter wheel to allow multispectral sky imaging, direct Sun imaging, and surface mineralogic studies in the 400-1100 nm wavelength region. Pancam has been designed and calibrated to operate within specifications from -55oC to +5oC. An onboard calibration target and fiducial marks provide the ability to validate the radiometric and geometric calibration on Mars. Pancam relies heavily on use of the JPL ICER wavelet compression algorithm to maximize data return within stringent mission downlink limits. The scientific goals of the Pancam investigation are to: (a) obtain monoscopic and stereoscopic image mosaics to assess the morphology, topography, and geologic context of each MER landing site; (b) obtain multispectral visible to short-wave near-IR images of selected regions to determine surface color and mineralogic properties; (c) obtain multispectral images over a range of viewing geometries to constrain surface photometric and physical properties; and (d) obtain images of the Martian sky, including direct images of the Sun, to determine dust and aerosol opacity and physical properties. In addition, Pancam also serves a variety of operational functions on the MER mission, including (e) serving as the primary Sun-finding camera for rover navigation; (f) resolving objects on the scale of the rover wheels to distances of ~100 m to help guide navigation decisions; (g) providing stereo coverage adequate for the generation of digital terrain models to help guide and refine rover traverse decisions; (h) providing high resolution images and other context information to guide the selection of the most interesting in situ sampling targets; and (i) supporting acquisition and release of exciting E/PO products.
Optical designs for the Mars '03 rover cameras
NASA Astrophysics Data System (ADS)
Smith, Gregory H.; Hagerott, Edward C.; Scherr, Lawrence M.; Herkenhoff, Kenneth E.; Bell, James F.
2001-12-01
In 2003, NASA is planning to send two robotic rover vehicles to explore the surface of Mars. The spacecraft will land on airbags in different, carefully chosen locations. The search for evidence indicating conditions favorable for past or present life will be a high priority. Each rover will carry a total of ten cameras of five various types. There will be a stereo pair of color panoramic cameras, a stereo pair of wide- field navigation cameras, one close-up camera on a movable arm, two stereo pairs of fisheye cameras for hazard avoidance, and one Sun sensor camera. This paper discusses the lenses for these cameras. Included are the specifications, design approaches, expected optical performances, prescriptions, and tolerances.
Near-infrared high-resolution real-time omnidirectional imaging platform for drone detection
NASA Astrophysics Data System (ADS)
Popovic, Vladan; Ott, Beat; Wellig, Peter; Leblebici, Yusuf
2016-10-01
Recent technological advancements in hardware systems have made higher quality cameras. State of the art panoramic systems use them to produce videos with a resolution of 9000 x 2400 pixels at a rate of 30 frames per second (fps).1 Many modern applications use object tracking to determine the speed and the path taken by each object moving through a scene. The detection requires detailed pixel analysis between two frames. In fields like surveillance systems or crowd analysis, this must be achieved in real time.2 In this paper, we focus on the system-level design of multi-camera sensor acquiring near-infrared (NIR) spectrum and its ability to detect mini-UAVs in a representative rural Swiss environment. The presented results show the UAV detection from the trial that we conducted during a field trial in August 2015.
Field Test of the ExoMars Panoramic Camera in the High Arctic - First Results and Lessons Learned
NASA Astrophysics Data System (ADS)
Schmitz, N.; Barnes, D.; Coates, A.; Griffiths, A.; Hauber, E.; Jaumann, R.; Michaelis, H.; Mosebach, H.; Paar, G.; Reissaus, P.; Trauthan, F.
2009-04-01
The ExoMars mission as the first element of the ESA Aurora program is scheduled to be launched to Mars in 2016. Part of the Pasteur Exobiology Payload onboard the ExoMars rover is a Panoramic Camera System (‘PanCam') being designed to obtain high-resolution color and wide-angle multi-spectral stereoscopic panoramic images from the mast of the ExoMars rover. The PanCam instrument consists of two wide-angle cameras (WACs), which will provide multispectral stereo images with 34° field-of-view (FOV) and a High-Resolution RGB Channel (HRC) to provide close-up images with 5° field-of-view. For field testing of the PanCam breadboard in a representative environment the ExoMars PanCam team joined the 6th Arctic Mars Analogue Svalbard Expedition (AMASE) 2008. The expedition took place from 4-17 August 2008 in the Svalbard archipelago, Norway, which is considered to be an excellent site, analogue to ancient Mars. 31 scientists and engineers involved in Mars Exploration (among them the ExoMars WISDOM, MIMA and Raman-LIBS team as well as several NASA MSL teams) combined their knowledge, instruments and techniques to study the geology, geophysics, biosignatures, and life forms that can be found in volcanic complexes, warm springs, subsurface ice, and sedimentary deposits. This work has been carried out by using instruments, a rover (NASA's CliffBot), and techniques that will/may be used in future planetary missions, thereby providing the capability to simulate a full mission environment in a Mars analogue terrain. Besides demonstrating PanCam's general functionality in a field environment, test and verification of the interpretability of PanCam data for in-situ geological context determination and scientific target selection was a main objective. To process the collected data, a first version of the preliminary PanCam 3D reconstruction processing & visualization chain was used. Other objectives included to test and refine the operational scenario (based on ExoMars Rover Reference Surface Mission), to investigate data commonalities and data fusion potential w.r.t. other instruments, and to collect representative image data to evaluate various influences, such as viewing distance, surface structure, and availability of structures at "infinity" (e.g. resolution, focus quality and associated accuracy of the 3D reconstruction). Airborne images with the HRSC-AX camera (airborne camera with heritage from the Mars Express High Resolution Stereo Camera HRSC), collected during a flight campaign over Svalbard in June 2008, provided large-scale geological context information for all field sites.
Cameras on the moon with Apollos 15 and 16.
NASA Technical Reports Server (NTRS)
Page, T.
1972-01-01
Description of the cameras used for photography and television by Apollo 15 and 16 missions, covering a hand-held Hasselblad camera for black and white panoramic views at locations visited by the astronauts, a special stereoscopic camera designed by astronomer Tom Gold, a 16-mm movie camera used on the Apollo 15 and 16 Rovers, and several TV cameras. Details are given on the far-UV camera/spectrograph of the Apollo 16 mission. An electronographic camera converts UV light to electrons which are ejected by a KBr layer at the focus of an f/1 Schmidt camera and darken photographic films much more efficiently than far-UV. The astronomical activity of the Apollo 16 astronauts on the moon, using this equipment, is discussed.
Creating 3D models of historical buildings using geospatial data
NASA Astrophysics Data System (ADS)
Alionescu, Adrian; Bǎlǎ, Alina Corina; Brebu, Floarea Maria; Moscovici, Anca-Maria
2017-07-01
Recently, a lot of interest has been shown to understand a real world object by acquiring its 3D images of using laser scanning technology and panoramic images. A realistic impression of geometric 3D data can be generated by draping real colour textures simultaneously captured by a colour camera images. In this context, a new concept of geospatial data acquisition has rapidly revolutionized the method of determining the spatial position of objects, which is based on panoramic images. This article describes an approach that comprises inusing terrestrial laser scanning and panoramic images captured with Trimble V10 Imaging Rover technology to enlarge the details and realism of the geospatial data set, in order to obtain 3D urban plans and virtual reality applications.
NASA Technical Reports Server (NTRS)
2004-01-01
This segment of the first color image from the panoramic camera on the Mars Exploration Rover Spirit shows the rover's airbag trails. These depressions in the soil were made when the airbags were deflated and retracted after landing.Endeavour on the Horizon False Color
2010-04-30
NASA Mars Exploration Rover Opportunity used its panoramic camera Pancam to capture this false-color view of the rim of Endeavour crater, the rover destination in a multi-year traverse along the sandy Martian landscape.
2010-04-30
NASA Mars Exploration Rover Opportunity used its panoramic camera Pancam to capture this view approximately true-color view of the rim of Endeavour crater, the rover destination in a multi-year traverse along the sandy Martian landscape.
Adirondack Under the Microscope-2
NASA Technical Reports Server (NTRS)
2004-01-01
This overhead look at the martian rock dubbed Adirondack was captured by the Mars Exploration Rover Spirit's panoramic camera. It shows the approximate region where the rover's microscopic imager began its first close-up inspection.
Layers in Burns Cliff Examined by Opportunity
2011-11-21
NASA Mars Exploration Rover Opportunity studied layers in the Burns Cliff slope of Endurance Crater in 2004. The layers show different types of deposition of sulfate-rich sediments. Opportunity panoramic camera recorded this image.
Martian Eclipses: Deimos and Phobos
2004-03-08
The panoramic camera on NASA Opportunity combines the first photographs of solar eclipses by Mars two moons, Deimos and Phobos. Deimos appears as a speck in front of the Sun and Phobos grazes its edge.
True 3-D View of 'Columbia Hills' from an Angle
NASA Technical Reports Server (NTRS)
2004-01-01
This mosaic of images from NASA's Mars Exploration Rover Spirit shows a panorama of the 'Columbia Hills' without any adjustment for rover tilt. When viewed through 3-D glasses, depth is much more dramatic and easier to see, compared with a tilt-adjusted version. This is because stereo views are created by producing two images, one corresponding to the view from the panoramic camera's left-eye camera, the other corresponding to the view from the panoramic camera's right-eye camera. The brain processes the visual input more accurately when the two images do not have any vertical offset. In this view, the vertical alignment is nearly perfect, but the horizon appears to curve because of the rover's tilt (because the rover was parked on a steep slope, it was tilted approximately 22 degrees to the west-northwest). Spirit took the images for this 360-degree panorama while en route to higher ground in the 'Columbia Hills.' The highest point visible in the hills is 'Husband Hill,' named for space shuttle Columbia Commander Rick Husband. To the right are the rover's tracks through the soil, where it stopped to perform maintenance on its right front wheel in July. In the distance, below the hills, is the floor of Gusev Crater, where Spirit landed Jan. 3, 2004, before traveling more than 3 kilometers (1.8 miles) to reach this point. This vista comprises 188 images taken by Spirit's panoramic camera from its 213th day, or sol, on Mars to its 223rd sol (Aug. 9 to 19, 2004). Team members at NASA's Jet Propulsion Laboratory and Cornell University spent several weeks processing images and producing geometric maps to stitch all the images together in this mosaic. The 360-degree view is presented in a cylindrical-perspective map projection with geometric seam correction.NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D perspective image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because it has a flat surface and is relatively free of dust - ideal conditions for grinding into the rock to expose fresh rock underneath. Clean surfaces also are better for examining a rock's top coating.Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.' Data from the panoramic camera's red, green and blue filters were combined to create this approximate true color image.
NASA Technical Reports Server (NTRS)
2007-01-01
A promontory nicknamed 'Cape Verde' can be seen jutting out from the walls of Victoria Crater in this false-color picture taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity. The rover took this picture on martian day, or sol, 1329 (Oct. 20, 2007), more than a month after it began descending down the crater walls -- and just 9 sols shy of its second Martian birthday on sol 1338 (Oct. 29, 2007). Opportunity landed on the Red Planet on Jan. 25, 2004. That's nearly four years ago on Earth, but only two on Mars because Mars takes longer to travel around the sun than Earth. One Martian year equals 687 Earth days. This view was taken using three panoramic-camera filters, admitting light with wavelengths centered at 750 nanometers (near infrared), 530 nanometers (green) and 430 nanometers (violet).Mars Cameras Make Panoramic Photography a Snap
NASA Technical Reports Server (NTRS)
2008-01-01
If you wish to explore a Martian landscape without leaving your armchair, a few simple clicks around the NASA Web site will lead you to panoramic photographs taken from the Mars Exploration Rovers, Spirit and Opportunity. Many of the technologies that enable this spectacular Mars photography have also inspired advancements in photography here on Earth, including the panoramic camera (Pancam) and its housing assembly, designed by the Jet Propulsion Laboratory and Cornell University for the Mars missions. Mounted atop each rover, the Pancam mast assembly (PMA) can tilt a full 180 degrees and swivel 360 degrees, allowing for a complete, highly detailed view of the Martian landscape. The rover Pancams take small, 1 megapixel (1 million pixel) digital photographs, which are stitched together into large panoramas that sometimes measure 4 by 24 megapixels. The Pancam software performs some image correction and stitching after the photographs are transmitted back to Earth. Different lens filters and a spectrometer also assist scientists in their analyses of infrared radiation from the objects in the photographs. These photographs from Mars spurred developers to begin thinking in terms of larger and higher quality images: super-sized digital pictures, or gigapixels, which are images composed of 1 billion or more pixels. Gigapixel images are more than 200 times the size captured by today s standard 4 megapixel digital camera. Although originally created for the Mars missions, the detail provided by these large photographs allows for many purposes, not all of which are limited to extraterrestrial photography.
2010-12-01
including thermal optics Much more precise target engagement and stabilization method Drawbacks Mechanical malfunctions more common Gunner has...complete panorama view that extends from 0–180 degrees off-center, from our camera system. Figure 20 360° view dome projection Figure 21 shows the...method can incorporate various types of synthetic vision aids, such as thermal or electro-optical sensors, to give the user the capability to see in
NASA Technical Reports Server (NTRS)
2004-01-01
The smooth surfaces of angular and rounded rocks seen in this image of the martian terrain may be the result of wind-polishing debris. The picture was taken by the panoramic camera on the Mars Exploration Rover Spirit.2006-01-03
This is the Opportunity panoramic camera Erebus Rim panorama, acquired on sols 652 to 663 Nov. 23 to Dec. 5, 2005 , as NASA Mars Exploration Rover Opportunity was exploring sand dunes and outcrop rocks in Meridiani Planum.
2011-12-07
This false-color view of a mineral vein called Homestake comes from the panoramic camera Pancam on NASA Mars Exploration Rover Opportunity. The vein is about the width of a thumb and about 18 inches 45 centimeters long.
View of 'Cape Verde' from 'Cape St. Mary' in Mid-Afternoon
NASA Technical Reports Server (NTRS)
2006-01-01
As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape Verde' from the vantage point of 'Cape St. Mary,' the next promontory clockwise around the crater's deeply scalloped rim. This view of Cape Verde combines several exposures taken by the rover's panoramic camera into an approximately true-color mosaic. The exposures were taken during mid-afternoon lighting conditions. The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. The images combined into this mosaic were taken during the 1,006th Martian day, or sol, of Opportunity's Mars-surface mission (Nov. 22, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.View of 'Cape Verde' from 'Cape St. Mary' in Late Morning
NASA Technical Reports Server (NTRS)
2006-01-01
As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape Verde' from the vantage point of 'Cape St. Mary,' the next promontory clockwise around the crater's deeply scalloped rim. This view of Cape Verde combines several exposures taken by the rover's panoramic camera into an approximately true-color mosaic. The exposures were taken during late-morning lighting conditions. The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. The images combined into this mosaic were taken during the 1,006th Martian day, or sol, of Opportunity's Mars-surface mission (Nov. 22, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.Opportunity's Second Martian Birthday at Cape Verde
NASA Technical Reports Server (NTRS)
2007-01-01
A promontory nicknamed 'Cape Verde' can be seen jutting out from the walls of Victoria Crater in this approximate true-color picture taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity. The rover took this picture on martian day, or sol, 1329 (Oct. 20, 2007), more than a month after it began descending down the crater walls -- and just 9 sols shy of its second Martian birthday on sol 1338 (Oct. 29, 2007). Opportunity landed on the Red Planet on Jan. 25, 2004. That's nearly four years ago on Earth, but only two on Mars because Mars takes longer to travel around the sun than Earth. One Martian year equals 687 Earth days. The overall soft quality of the image, and the 'haze' seen in the lower right portion, are the result of scattered light from dust on the front sapphire window of the rover's camera. This view was taken using three panoramic-camera filters, admitting light with wavelengths centered at 750 nanometers (near infrared), 530 nanometers (green) and 430 nanometers (violet).2005-09-11
Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. The first two images in this sequence show gradual enhancements in the surface detail of Mars' largest moon, Phobos, made possible through a combination technique known as "stacking." In "stacking," scientists use a mathematical process known as Laplacian sharpening to reinforce features that appear consistently in repetitive images and minimize features that show up only intermittently. In this view of Phobos, the large crater named Stickney is just out of sight on the moon's upper right limb. Spirit acquired the first two images with the panoramic camera on the night of sol 585 (Aug. 26,2005). The far right image of Phobos, for comparison, was taken by the High Resolution Stereo Camera on Mars Express, a European Space Agency orbiter. The third image in this sequence was derived from the far right image by making it blurrier for comparison with the panoramic camera images to the left http://photojournal.jpl.nasa.gov/catalog/PIA06335
Fisheye Multi-Camera System Calibration for Surveying Narrow and Complex Architectures
NASA Astrophysics Data System (ADS)
Perfetti, L.; Polari, C.; Fassi, F.
2018-05-01
Narrow spaces and passages are not a rare encounter in cultural heritage, the shape and extension of those areas place a serious challenge on any techniques one may choose to survey their 3D geometry. Especially on techniques that make use of stationary instrumentation like terrestrial laser scanning. The ratio between space extension and cross section width of many corridors and staircases can easily lead to distortions/drift of the 3D reconstruction because of the problem of propagation of uncertainty. This paper investigates the use of fisheye photogrammetry to produce the 3D reconstruction of such spaces and presents some tests to contain the degree of freedom of the photogrammetric network, thereby containing the drift of long data set as well. The idea is that of employing a multi-camera system composed of several fisheye cameras and to implement distances and relative orientation constraints, as well as the pre-calibration of the internal parameters for each camera, within the bundle adjustment. For the beginning of this investigation, we used the NCTech iSTAR panoramic camera as a rigid multi-camera system. The case study of the Amedeo Spire of the Milan Cathedral, that encloses a spiral staircase, is the stage for all the tests. Comparisons have been made between the results obtained with the multi-camera configuration, the auto-stitched equirectangular images and a data set obtained with a monocular fisheye configuration using a full frame DSLR. Results show improved accuracy, down to millimetres, using a rigidly constrained multi-camera.
Rock with Odd Coating Beside a Young Martian Crater
2010-03-24
This image from the panoramic camera on NASA Mars Exploration Rover Opportunity shows a rock called Chocolate Hills, which the rover found and examined at the edge of a young crater called Concepción.
NASA Technical Reports Server (NTRS)
2004-01-01
This segment of the first color image from the panoramic camera on the Mars Exploration Rover Spirit shows the rover's airbag trails (upper left). These depressions in the soil were made when the airbags were deflated and retracted after landing.2004-06-17
This 3-D image taken by the left and right eyes of the panoramic camera on NASA Mars Exploration Rover Spirit shows the odd rock formation dubbed Cobra Hoods center. 3D glasses are necessary to view this image.
'Algonquin' Outcrop on Spirit's Sol 680
NASA Technical Reports Server (NTRS)
2005-01-01
This view combines four frames from Spirit's panoramic camera, looking in the drive direction on the rover's 680th Martian day, or sol (Dec. 1, 2005). The outcrop of apparently layered bedrock has the informal name 'Algonquin.'2010-02-16
This false-color image, taken by the panoramic camera on NASA rover Opportunity, shows the rock Chocolate Hills, perched on the rim of the 10-meter 33-foot wide Concepcion crater. This rock has a thick, dark-colored coating resembling chocolate.
NASA Technical Reports Server (NTRS)
2004-01-01
The rust color of the Martian landscape is apparent in this low-resolution thumbnail image taken by the panoramic camera on the Mars Exploration Rover Spirit. This image is part of a larger image currently stored onboard the rover in its memory.Churned-Up Rocky Debris and Dust (True Color)
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Mars Exploration Rover Spirit has been analyzing sulfur-rich rocks and surface materials in the 'Columbia Hills' in Gusev Crater on Mars. This image shows rocky debris and dust, which planetary scientists call 'regolith' or 'soil,' that has been churned up by the rover wheels. This 40-centimeter-wide (16-inch-wide) patch of churned-up dirt, nicknamed 'Paso Robles,' contains brighter patches measured to be high in sulfur by Spirit's alpha particle X-ray Spectrometer. Spirit's panoramic camera took this image on martian day, or sol, 400 (Feb. 16, 2005). The image represents the panoramic camera team's best current attempt at generating a true color view of what this scene would look like if viewed by a human on Mars. The image was generated from a combination of six calibrated, left-eye images acquired through filters ranging from 430-nanometer to 750-nanometer wavelengths.Frost on Mars Rover Opportunity
NASA Technical Reports Server (NTRS)
2004-01-01
Frost can form on surfaces if enough water is present and the temperature is sufficiently low. On each of NASA's Mars Exploration Rovers, the calibration target for the panoramic camera provides a good place to look for such events. A thin frost was observed by Opportunity's panoramic camera on the rover's 257th sol (Oct. 13, 2004) 11 minutes after sunrise (left image). The presence of the frost is most clearly seen on the post in the center of the target, particularly when compared with the unsegmented outer ring of the target, which is white. The post is normally black. For comparison, note the difference in appearance in the image on the right, taken about three hours later, after the frost had dissipated. Frost has not been observed at Spirit, where the amount of atmospheric water vapor is observed to be appreciably lower. Both images were taken through a filter centered at a wavelength of 440 nanometers (blue).Achieving real-time capsule endoscopy (CE) video visualization through panoramic imaging
NASA Astrophysics Data System (ADS)
Yi, Steven; Xie, Jean; Mui, Peter; Leighton, Jonathan A.
2013-02-01
In this paper, we mainly present a novel and real-time capsule endoscopy (CE) video visualization concept based on panoramic imaging. Typical CE videos run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. To date, there is no commercially available tool capable of providing stabilized and processed CE video that is easy to analyze in real time. The burden on physicians' disease finding efforts is thus big. In fact, since the CE camera sensor has a limited forward looking view and low image frame rate (typical 2 frames per second), and captures very close range imaging on the GI tract surface, it is no surprise that traditional visualization method based on tracking and registration often fails to work. This paper presents a novel concept for real-time CE video stabilization and display. Instead of directly working on traditional forward looking FOV (field of view) images, we work on panoramic images to bypass many problems facing traditional imaging modalities. Methods on panoramic image generation based on optical lens principle leading to real-time data visualization will be presented. In addition, non-rigid panoramic image registration methods will be discussed.
NASA Astrophysics Data System (ADS)
Kinch, K. M.; Bell, J. F.; Madsen, M. B.
2012-12-01
The Panoramic Cameras (Pancams) [1] on NASA's Mars Exploration Rovers have each returned in excess of 17000 images of their external calibration targets (caltargets), a set of optically well-characterized patches of materials with differing reflectance properties. During the mission dust deposition on the caltargets changed their optical reflectance properties [2]. The thickness of dust on the caltargets can be derived with high confidence from the contrast between brighter and darker colored patches. The dustier the caltarget the less contrast. We present a new history of dust deposition and removal at the two MER landing sites. Our data reveals two quite distinct dust environments. At the Spirit landing site half the Martian year is dominated by dust deposition, the other half by dust removal that usually happens during brief sharp wind events. At the Opportunity landing site the Martian year has a four-season cycle of deposition-removal-deposition-removal with dust removal happening gradually throughout the two removal seasons. Comparison to atmospheric optical depth measurements [3] shows that dust removals happen during dusty high-wind periods and that dust deposition rates are roughly proportional to the atmospheric dust load. We compare with dust deposition studies from other Mars landers and also present some early results from observation of dust on a similar camera calibration target on the Mars Science Laboratory mission. References: 1. Bell, J.F., III, et al., Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res., 2003. 108(E12): p. 8063. 2. Kinch, K.M., et al., Dust Deposition on the Mars Exploration Rover Panoramic Camera (Pancam) Calibration Targets. J. Geophys. Res., 2007. 112(E06S03): p. doi:10.1029/2006JE002807. 3. Lemmon, M., et al., Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 2004. 306: p. 1753-1756. Deposited dust optical depth on the Pancam caltargets as a function of time. The lower x-axes show sol number, the upper x-axes shows the areocentric longitude of the sun, Ls. Data shown are from caltarget observations with solar incidence angle i < 45°. Left column is Spirit. Right column is Opportunity. Top row shows our derived deposited optical depth in the L5 (535 nm) filter. Bottom row shows the atmospheric optical depth in the L8 (440 nm) filter as reported by the MER atmospheric team [3].
A Unified Framework for Street-View Panorama Stitching
Li, Li; Yao, Jian; Xie, Renping; Xia, Menghan; Zhang, Wei
2016-01-01
In this paper, we propose a unified framework to generate a pleasant and high-quality street-view panorama by stitching multiple panoramic images captured from the cameras mounted on the mobile platform. Our proposed framework is comprised of four major steps: image warping, color correction, optimal seam line detection and image blending. Since the input images are captured without a precisely common projection center from the scenes with the depth differences with respect to the cameras to different extents, such images cannot be precisely aligned in geometry. Therefore, an efficient image warping method based on the dense optical flow field is proposed to greatly suppress the influence of large geometric misalignment at first. Then, to lessen the influence of photometric inconsistencies caused by the illumination variations and different exposure settings, we propose an efficient color correction algorithm via matching extreme points of histograms to greatly decrease color differences between warped images. After that, the optimal seam lines between adjacent input images are detected via the graph cut energy minimization framework. At last, the Laplacian pyramid blending algorithm is applied to further eliminate the stitching artifacts along the optimal seam lines. Experimental results on a large set of challenging street-view panoramic images captured form the real world illustrate that the proposed system is capable of creating high-quality panoramas. PMID:28025481
Astronaut Ronald Evans photographed during transearth coast EVA
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The cylindrical object at Evans left side is the mapping camera cassette. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.
It's a Bird, It's a Plane, It's a... Spacecraft?
NASA Technical Reports Server (NTRS)
2004-01-01
Observing the sky with the green filter of it panoramic camera, the Mars Exploration Rover Spirit came across a surprise: a streak across the sky. The streak, seen in the middle of this mosaic of images taken by the navigation and panoramic cameras, was probably the brightest object in the sky at the time. Scientists theorize that the mystery line could be either a meteorite or one of seven out-of-commission spacecraft still orbiting Mars. Because the object appeared to move 4 degrees of an arc in 15 seconds it is probably not the Russian probes Mars 2, Mars 3, Mars 5, or Phobos 2; or the American probes Mariner 9 or Viking 1. That leaves Viking 2, which has a polar orbit that would fit with the north-south orientation of the streak. In addition, only Viking 1 and 2 were left in orbits that could produce motion as fast as that seen by Spirit. Said Mark Lemmon, a rover team member from Texas A&M University, Texas, 'Is this the first image of a meteor on Mars, or an image of a spacecraft sent from another world during the dawn of our robotic space exploration program? We may never know, but we are still looking for clues'.
The inset shows only the panoramic image of the streak.Image quality prediction - An aid to the Viking lander imaging investigation on Mars
NASA Technical Reports Server (NTRS)
Huck, F. O.; Wall, S. D.
1976-01-01
Image quality criteria and image quality predictions are formulated for the multispectral panoramic cameras carried by the Viking Mars landers. Image quality predictions are based on expected camera performance, Mars surface radiance, and lighting and viewing geometry (fields of view, Mars lander shadows, solar day-night alternation), and are needed in diagnosis of camera performance, in arriving at a preflight imaging strategy, and revision of that strategy should the need arise. Landing considerations, camera control instructions, camera control logic, aspects of the imaging process (spectral response, spatial response, sensitivity), and likely problems are discussed. Major concerns include: degradation of camera response by isotope radiation, uncertainties in lighting and viewing geometry and in landing site local topography, contamination of camera window by dust abrasion, and initial errors in assigning camera dynamic ranges (gains and offsets).
Rock with Odd Coating Beside a Young Martian Crater, False Color
2010-03-24
This false color image from the panoramic camera on NASA Mars Exploration Rover Opportunity shows a rock called Chocolate Hills, which the rover found and examined at the edge of a young crater called Concepción.
Martian Sunsets More Than Just Pretty
2004-01-10
This image shows the Sun as it appears on Mars throughout the day. Scientists monitor the dimming of the setting Sun to assess how much dust is in the martian atmosphere. The pictures were taken by the Mars Exploration Rover Spirit panoramic camera.
Stargazing at 'Husband Hill Observatory' on Mars
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Mars Exploration Rover Spirit continues to take advantage of extra solar energy by occasionally turning its cameras upward for night sky observations. Most recently, Spirit made a series of observations of bright star fields from the summit of 'Husband Hill' in Gusev Crater on Mars. Scientists use the images to assess the cameras' sensitivity and to search for evidence of nighttime clouds or haze. The image on the left is a computer simulation of the stars in the constellation Orion. The next three images are actual views of Orion captured with Spirit's panoramic camera during exposures of 10, 30, and 60 seconds. Because Spirit is in the southern hemisphere of Mars, Orion appears upside down compared to how it would appear to viewers in the Northern Hemisphere of Earth. 'Star trails' in the longer exposures are a result of the planet's rotation. The faintest stars visible in the 60-second exposure are about as bright as the faintest stars visible with the naked eye from Earth (about magnitude 6 in astronomical terms). The Orion Nebula, famous as a nursery of newly forming stars, is also visible in these images. Bright streaks in some parts of the images aren't stars or meteors or unidentified flying objects, but are caused by solar and galactic cosmic rays striking the camera's detector. Spirit acquired these images with the panoramic camera on Martian day, or sol, 632 (Oct. 13, 2005) at around 45 minutes past midnight local time, using the camera's broadband filter (wavelengths of 739 nanometers plus or minus 338 nanometers).Anderson, Adam L; Lin, Bingxiong; Sun, Yu
2013-12-01
This work first overviews a novel design, and prototype implementation, of a virtually transparent epidermal imagery (VTEI) system for laparo-endoscopic single-site (LESS) surgery. The system uses a network of multiple, micro-cameras and multiview mosaicking to obtain a panoramic view of the surgery area. The prototype VTEI system also projects the generated panoramic view on the abdomen area to create a transparent display effect that mimics equivalent, but higher risk, open-cavity surgeries. The specific research focus of this paper is on two important aspects of a VTEI system: 1) in vivo wireless high-definition (HD) video transmission and 2) multi-image processing-both of which play key roles in next-generation systems. For transmission and reception, this paper proposes a theoretical wireless communication scheme for high-definition video in situations that require extremely small-footprint image sensors and in zero-latency applications. In such situations the typical optimized metrics in communication schemes, such as power and data rate, are far less important than latency and hardware footprint that absolutely preclude their use if not satisfied. This work proposes the use of a novel Frequency-Modulated Voltage-Division Multiplexing (FM-VDM) scheme where sensor data is kept analog and transmitted via "voltage-multiplexed" signals that are also frequency-modulated. Once images are received, a novel Homographic Image Mosaicking and Morphing (HIMM) algorithm is proposed to stitch images from respective cameras, that also compensates for irregular surfaces in real-time, into a single cohesive view of the surgical area. In VTEI, this view is then visible to the surgeon directly on the patient to give an "open cavity" feel to laparoscopic procedures.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Click for larger view
This high-resolution image from the panoramic camera on the Mars Exploration Rover Spirit shows the region containing the patch of soil scientists examined at Gusev Crater just after Spirit rolled off the Columbia Memorial Station. Scientists examined this patch on the 13th and 15th martian days, or sols, of Spirit's journey. Using nearly all the science instruments located on the rover's instrument deployment device or 'arm,' scientists yielded some puzzling results including the detection of a mineral called olivine and the appearance that the soil is stronger and more cohesive than they expected. Like detectives searching for clues, the science team will continue to peruse the landscape for explanations of their findings.Data taken from the camera's red, green and blue filters were combined to create this approximate true color picture, acquired on the 12th martian day, or sol, of Spirit's journey.The yellow box (see inset above) in this high-resolution image from the panoramic camera on the Mars Exploration Rover Spirit outlines the patch of soil scientists examined at Gusev Crater just after Spirit rolled off the Columbia Memorial Station.Oh, Hyun Jun; Yang, Il-Hyung
2016-01-01
Objectives: To propose a novel method for determining the three-dimensional (3D) root apex position of maxillary teeth using a two-dimensional (2D) panoramic radiograph image and a 3D virtual maxillary cast model. Methods: The subjects were 10 adult orthodontic patients treated with non-extraction. The multiple camera matrices were used to define transformative relationships between tooth images of the 2D panoramic radiographs and the 3D virtual maxillary cast models. After construction of the root apex-specific projective (RASP) models, overdetermined equations were used to calculate the 3D root apex position with a direct linear transformation algorithm and the known 2D co-ordinates of the root apex in the panoramic radiograph. For verification of the estimated 3D root apex position, the RASP and 3D-CT models were superimposed using a best-fit method. Then, the values of estimation error (EE; mean, standard deviation, minimum error and maximum error) between the two models were calculated. Results: The intraclass correlation coefficient values exhibited good reliability for the landmark identification. The mean EE of all root apices of maxillary teeth was 1.88 mm. The EE values, in descending order, were as follows: canine, 2.30 mm; first premolar, 1.93 mm; second premolar, 1.91 mm; first molar, 1.83 mm; second molar, 1.82 mm; lateral incisor, 1.80 mm; and central incisor, 1.53 mm. Conclusions: Camera calibration technology allows reliable determination of the 3D root apex position of maxillary teeth without the need for 3D-CT scan or tooth templates. PMID:26317151
Kinch, Kjartan M; Bell, James F; Goetz, Walter; Johnson, Jeffrey R; Joseph, Jonathan; Madsen, Morten Bo; Sohl-Dickstein, Jascha
2015-05-01
The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two-layer scattering model, and we present a dust reflectance spectrum derived from long-term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance-calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history.
Bell, James F.; Goetz, Walter; Johnson, Jeffrey R.; Joseph, Jonathan; Madsen, Morten Bo; Sohl‐Dickstein, Jascha
2015-01-01
Abstract The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two‐layer scattering model, and we present a dust reflectance spectrum derived from long‐term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance‐calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history. PMID:27981072
Astronaut Ronald Evans photographed during transearth coast EVA
1972-12-17
AS17-152-23391 (17 Dec. 1972) --- Astronaut Ronald E. Evans is photographed performing extravehicular activity during the Apollo 17 spacecraft's trans-Earth coast. During his EVA, Evans, command module pilot, retrieved film cassettes from the lunar sounder, mapping camera and panoramic camera. The cylindrical object at Evans' left side is the mapping camera cassette. The total time for the trans-Earth EVA was one hour, seven minutes, 18 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) and ending at G.E.T. of 258:42 (3:35 p.m.) on Sunday, Dec. 17, 1972.
Astronaut Ronald Evans photographed during transearth coast EVA
1972-12-17
AS17-152-23393 (17 Dec. 1972) --- Astronaut Ronald E. Evans is photographed performing extravehicular activity during the Apollo 17 spacecraft's trans-Earth coast. During his EVA, command module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The cylindrical object at Evans' left side is the Mapping Camera cassette. The total time for the trans-Earth EVA was one hour seven minutes 18 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) and ending at ground elapsed timed of 258:42 (3:35 p.m.) on Sunday, Dec. 17, 1972.
Surveying the Newly Digitized Apollo Metric Images for Highland Fault Scarps on the Moon
NASA Astrophysics Data System (ADS)
Williams, N. R.; Pritchard, M. E.; Bell, J. F.; Watters, T. R.; Robinson, M. S.; Lawrence, S.
2009-12-01
The presence and distribution of thrust faults on the Moon have major implications for lunar formation and thermal evolution. For example, thermal history models for the Moon imply that most of the lunar interior was initially hot. As the Moon cooled over time, some models predict global-scale thrust faults should form as stress builds from global thermal contraction. Large-scale thrust fault scarps with lengths of hundreds of kilometers and maximum relief of up to a kilometer or more, like those on Mercury, are not found on the Moon; however, relatively small-scale linear and curvilinear lobate scarps with maximum lengths typically around 10 km have been observed in the highlands [Binder and Gunga, Icarus, v63, 1985]. These small-scale scarps are interpreted to be thrust faults formed by contractional stresses with relatively small maximum (tens of meters) displacements on the faults. These narrow, low relief landforms could only be identified in the highest resolution Lunar Orbiter and Apollo Panoramic Camera images and under the most favorable lighting conditions. To date, the global distribution and other properties of lunar lobate faults are not well understood. The recent micron-resolution scanning and digitization of the Apollo Mapping Camera (Metric) photographic negatives [Lawrence et al., NLSI Conf. #1415, 2008; http://wms.lroc.asu.edu/apollo] provides a new dataset to search for potential scarps. We examined more than 100 digitized Metric Camera image scans, and from these identified 81 images with favorable lighting (incidence angles between about 55 and 80 deg.) to manually search for features that could be potential tectonic scarps. Previous surveys based on Panoramic Camera and Lunar Orbiter images found fewer than 100 lobate scarps in the highlands; in our Apollo Metric Camera image survey, we have found additional regions with one or more previously unidentified linear and curvilinear features on the lunar surface that may represent lobate thrust fault scarps. In this presentation we review the geologic characteristics and context of these newly-identified, potentially tectonic landforms. The lengths and relief of some of these linear and curvilinear features are consistent with previously identified lobate scarps. Most of these features are in the highlands, though a few occur along the edges of mare and/or crater ejecta deposits. In many cases the resolution of the Metric Camera frames (~10 m/pix) is not adequate to unequivocally determine the origin of these features. Thus, to assess if the newly identified features have tectonic or other origins, we are examining them in higher-resolution Panoramic Camera (currently being scanned) and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera images [Watters et al., this meeting, 2009].
2006-06-01
conventional camera vs. thermal imager vs. night vision; camera field of view (narrow, wide, panoramic); keyboard + mouse vs. joystick control vs...motorised platform which could scan the immediate area, producing a 360o panorama of “stitched-together” digital pictures. The picture file, together with...VBS was used to automate the process of creating a QuickTime panorama (.mov or .qt), which includes the initial retrieval of the images, the
Detection of unmanned aerial vehicles using a visible camera system.
Hu, Shuowen; Goldman, Geoffrey H; Borel-Donohue, Christoph C
2017-01-20
Unmanned aerial vehicles (UAVs) flown by adversaries are an emerging asymmetric threat to homeland security and the military. To help address this threat, we developed and tested a computationally efficient UAV detection algorithm consisting of horizon finding, motion feature extraction, blob analysis, and coherence analysis. We compare the performance of this algorithm against two variants, one using the difference image intensity as the motion features and another using higher-order moments. The proposed algorithm and its variants are tested using field test data of a group 3 UAV acquired with a panoramic video camera in the visible spectrum. The performance of the algorithms was evaluated using receiver operating characteristic curves. The results show that the proposed approach had the best performance compared to the two algorithmic variants.
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbag seams left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbags left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.
Sulfur-Rich Rocks and Dirt (True Color)
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Mars Rover Spirit has been analyzing sulfur-rich rocks and surface materials in the 'Columbia Hills' in Gusev Crater on Mars. This image of a very soft, nodular, layered rock nicknamed 'Peace' in honor of Martin Luther King Jr. shows a 4.5-centimeter-wide (1.8-inch-wide) hole Spirit ground into the surface with the rover's rock abrasion tool. The high sulfur content of the rock measured by Spirit's alpha particle X-ray spectrometer and its softness measured by the abrasion tool are probably evidence of past alteration by water. Spirit's panoramic camera took this image on martian day, or sol, 381 (Jan. 27, 2005). The image represents the panoramic camera team's best current attempt at generating a true color view of what this scene would look like if viewed by a human on Mars. The image was generated from a combination of six calibrated, left-eye Pancam images acquired through filters ranging from 430-nanometer to 750-nanometer wavelengths.The Athena Pancam and Color Microscopic Imager (CMI)
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Herkenhoff, K. E.; Schwochert, M.; Morris, R. V.; Sullivan, R.
2000-01-01
The Athena Mars rover payload includes two primary science-grade imagers: Pancam, a multispectral, stereo, panoramic camera system, and the Color Microscopic Imager (CMI), a multispectral and variable depth-of-field microscope. Both of these instruments will help to achieve the primary Athena science goals by providing information on the geology, mineralogy, and climate history of the landing site. In addition, Pancam provides important support for rover navigation and target selection for Athena in situ investigations. Here we describe the science goals, instrument designs, and instrument performance of the Pancam and CMI investigations.
AUGUSTO'S Sundial: Image-Based Modeling for Reverse Engeneering Purposes
NASA Astrophysics Data System (ADS)
Baiocchi, V.; Barbarella, M.; Del Pizzo, S.; Giannone, F.; Troisi, S.; Piccaro, C.; Marcantonio, D.
2017-02-01
A photogrammetric survey of a unique archaeological site is reported in this paper. The survey was performed using both a panoramic image-based solution and by classical procedure. The panoramic image-based solution was carried out employing a commercial solution: the Trimble V10 Imaging Rover (IR). Such instrument is an integrated cameras system that captures 360 degrees digital panoramas, composed of 12 images, with a single push. The direct comparison of the point clouds obtained with traditional photogrammetric procedure and V10 stations, using the same GCP coordinates has been carried out in Cloud Compare, open source software that can provide the comparison between two point clouds supplied by all the main statistical data. The site is a portion of the dial plate of the "Horologium Augusti" inaugurated in 9 B.C.E. in the area of Campo Marzio and still present intact in the same position, in a cellar of a building in Rome, around 7 meter below the present ground level.
NASA Technical Reports Server (NTRS)
2004-01-01
This 'postcard' from the panoramic camera on the Mars Exploration Rover Opportunity shows the view of the martian landscape southwest of the rover. The image was taken in the late martian afternoon at Meridiani Planum on Mars, where Opportunity landed at approximately 9:05 p.m. PST on Saturday, Jan. 24.
Payload topography camera of Chang'e-3
NASA Astrophysics Data System (ADS)
Yu, Guo-Bin; Liu, En-Hai; Zhao, Ru-Jin; Zhong, Jie; Zhou, Xiang-Dong; Zhou, Wu-Lin; Wang, Jin; Chen, Yuan-Pei; Hao, Yong-Jie
2015-11-01
Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's “eye” was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360° panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application.
Astronaut Ronald Evans photographed during transearth coast EVA
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true-color image of the rock called 'Lion Stone' was acquired by the Mars Exploration Rover Opportunity's panoramic camera on sol 104 (May 9, 2004). The rock stands about 10 centimeters tall (about 4 inches) and is about 30 centimeters long (12 inches). Plans for the coming sols include investigating the rock with the spectrometers on the rover's instrument arm. This image was generated using the camera's L2 (750-nanometer), L5 (530-nanometer) and L6 (480-nanometer) filters.3D terrain reconstruction using Chang’E-3 PCAM images
NASA Astrophysics Data System (ADS)
Chen, Wangli; Zeng, Xingguo; Zhang, Hongbo
2017-10-01
In order to improve understanding of the topography of Chang’E-3 landing site, 3D terrain models are reconstructed using PCMA images. PCAM (panoramic cameras) is a stereo camera system with a 27cm baseline on-board Yutu rover. It obtained panoramic images at four detection sites, and can achieve a resolution of 1.48mm/pixel at 10m. So the PCAM images reveal fine details of the detection region. In the method, SIFT is employed for feature description and feature matching. In addition to collinearity equations, the measure of baseline of the stereo system is also used in bundle adjustment to solve orientation parameters of all images. And then, pair-wise depth map computation is applied for dense surface reconstruction. Finally, DTM of the detection region is generated. The DTM covers an area with radius of about 20m, and centering at the location of the camera. In consequence of the design, each individual wheel of Yutu rover can leave three tracks on the surface of moon, and the width between the first and third track is 15cm, and these tracks are clear and distinguishable in images. So we chose the second detection site which is of the best ability of recognition of wheel tracks to evaluate the accuracy of the DTM. We measured the width of wheel tracks every 1.5m from the center of the detection region, and obtained 13 measures. It is noticed that the area where wheel tracks are ambiguous is avoided. Result shows that the mean value of wheel track width is 0.155m with a standard deviation of 0.007m. Generally, the closer to the center the more accurate the measure of wheel width is. This is due to the fact that the deformation of images aggravates with increase distance from the location of the camera, and this induces the decline of DTM quality in far areas. In our work, images of the four detection sites are adjusted independently, and this means that there is no tie point between different sites. So deviations between the locations of the same object measured from DTMs of adjacent detection sites may exist.
PANIC: A General-purpose Panoramic Near-infrared Camera for the Calar Alto Observatory
NASA Astrophysics Data System (ADS)
Cárdenas Vázquez, M.-C.; Dorner, B.; Huber, A.; Sánchez-Blanco, E.; Alter, M.; Rodríguez Gómez, J. F.; Bizenberger, P.; Naranjo, V.; Ibáñez Mengual, J.-M.; Panduro, J.; García Segura, A. J.; Mall, U.; Fernández, M.; Laun, W.; Ferro Rodríguez, I. M.; Helmling, J.; Terrón, V.; Meisenheimer, K.; Fried, J. W.; Mathar, R. J.; Baumeister, H.; Rohloff, R.-R.; Storz, C.; Verdes-Montenegro, L.; Bouy, H.; Ubierna, M.; Fopp, P.; Funke, B.
2018-02-01
PANIC7 is the new PAnoramic Near-Infrared Camera for Calar Alto and is a project jointly developed by the MPIA in Heidelberg, Germany, and the IAA in Granada, Spain, for the German-Spanish Astronomical Center at Calar Alto Observatory (CAHA; Almería, Spain). This new instrument works with the 2.2 m and 3.5 m CAHA telescopes covering a field of view of 30 × 30 arcmin and 15 × 15 arcmin, respectively, with a sampling of 4096 × 4096 pixels. It is designed for the spectral bands from Z to K S , and can also be equipped with narrowband filters. The instrument was delivered to the observatory in 2014 October and was commissioned at both telescopes between 2014 November and 2015 June. Science verification at the 2.2 m telescope was carried out during the second semester of 2015 and the instrument is now at full operation. We describe the design, assembly, integration, and verification process, the final laboratory tests and the PANIC instrument performance. We also present first-light data obtained during the commissioning and preliminary results of the scientific verification. The final optical model and the theoretical performance of the camera were updated according to the as-built data. The laboratory tests were made with a star simulator. Finally, the commissioning phase was done at both telescopes to validate the camera real performance on sky. The final laboratory test confirmed the expected camera performances, complying with the scientific requirements. The commissioning phase on sky has been accomplished.
Consumer electronic optics: how small can a lens be: the case of panomorph lenses
NASA Astrophysics Data System (ADS)
Thibault, Simon; Parent, Jocelyn; Zhang, Hu; Du, Xiaojun; Roulet, Patrice
2014-09-01
In 2014, miniature camera modules are applied to a variety of applications such as webcam, mobile phone, automotive, endoscope, tablets, portable computers and many other products. Mobile phone cameras are probably one of the most challenging parts due to the need for smaller and smaller total track length (TTL) and optimized embedded image processing algorithms. As the technology is developing, higher resolution and higher image quality, new capabilities are required to fulfil the market needs. Consequently, the lens system becomes more complex and requires more optical elements and/or new optical elements. What is the limit? How small an injection molded lens can be? We will discuss those questions by comparing two wide angle lenses for consumer electronic market. The first lens is a 6.56 mm (TTL) panoramic (180° FOV) lens built in 2012. The second is a more recent (2014) panoramic lens (180° FOV) with a TTL of 3.80 mm for mobile phone camera. Both optics are panomorph lenses used with megapixel sensors. Between 2012 and 2014, the development in design and plastic injection molding allowed a reduction of the TTL by more than 40%. This TTL reduction has been achieved by pushing the lens design to the extreme (edge/central air and material thicknesses as well as lens shape). This was also possible due to a better control of the injection molding process and material (low birefringence, haze and thermal stability). These aspects will be presented and discussed. During the next few years, we don't know if new material will come or new process but we will still need innovative people and industries to push again the limits.
View of 'Cape St. Mary' from 'Cape Verde'
NASA Technical Reports Server (NTRS)
2006-01-01
As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape St. Mary' from the from the vantage point of 'Cape Verde,' the next promontory counterclockwise around the crater's deeply scalloped rim. This view of Cape St. Mary combines several exposures taken by the rover's panoramic camera into an approximately true-color mosaic. The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. Near the base of the Cape St. Mary cliff are layers with a pattern called 'crossbedding,' intersecting with each other at angles, rather than parallel to each other. Large-scale crossbedding can result from material being deposited as wind-blown dunes. The images combined into this mosaic were taken during the 970th Martian day, or sol, of Opportunity's Mars-surface mission (Oct. 16, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.View of 'Cape Verde' from 'Cape St. Mary' in Mid-Afternoon (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape Verde' from the vantage point of 'Cape St. Mary,' the next promontory clockwise around the crater's deeply scalloped rim. This view of Cape Verde combines several exposures taken by the rover's panoramic camera into an approximately false-color mosaic. The exposures were taken during mid-afternoon lighting conditions. The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. The images combined into this mosaic were taken during the 1,006th Martian day, or sol, of Opportunity's Mars-surface mission (Nov. 22, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters. The false color enhances subtle color differences among materials in the rocks and soils of the scene.View of 'Cape Verde' from 'Cape St. Mary' in Late Morning (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape Verde' from the vantage point of 'Cape St. Mary,' the next promontory clockwise around the crater's deeply scalloped rim. This view of Cape Verde combines several exposures taken by the rover's panoramic camera into a false-color mosaic. The exposures were taken during late-morning lighting conditions. The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. The images combined into this mosaic were taken during the 1,006th Martian day, or sol, of Opportunity's Mars-surface mission (Nov. 22, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters. The false color enhances subtle color differences among materials in the rocks and soils of the scene.Near-field observation platform
NASA Astrophysics Data System (ADS)
Schlemmer, Harry; Baeurle, Constantin; Vogel, Holger
2008-04-01
A miniaturized near-field observation platform is presented comprising a sensitive daylight camera and an uncooled micro-bolometer thermal imager each equipped with a wide angle lens. Both cameras are optimised for a range between a few meters and 200 m. The platform features a stabilised line of sight and can therefore be used also on a vehicle when it is in motion. The line of sight either can be directed manually or the platform can be used in a panoramic mode. The video output is connected to a control panel where algorithms for moving target indication or tracking can be applied in order to support the observer. The near-field platform also can be netted with the vehicle system and the signals can be utilised, e.g. to designate a new target to the main periscope or the weapon sight.
Hanna, Matthew G; Monaco, Sara E; Cuda, Jacqueline; Xing, Juan; Ahmed, Ishtiaque; Pantanowitz, Liron
2017-09-01
Whole-slide imaging in cytology is limited when glass slides are digitized without z-stacks for focusing. Different vendors have started to provide z-stacking solutions to overcome this limitation. The Panoptiq imaging system allows users to create digital files combining low-magnification panoramic images with regions of interest (ROIs) that are imaged with high-magnification z-stacks. The aim of this study was to compare such panoramic images with conventional whole-slide images and glass slides for the tasks of screening and interpretation in cytopathology. Thirty glass slides, including 10 ThinPrep Papanicolaou tests and 20 nongynecologic cytology cases, were digitized with an Olympus BX45 integrated microscope with an attached Prosilica GT camera. ViewsIQ software was used for image acquisition and viewing. These glass slides were also scanned on an Aperio ScanScope XT at ×40 (0.25 μm/pixel) with 1 z-plane and were viewed with ImageScope software. Digital and glass sides were screened and dotted/annotated by a cytotechnologist and were subsequently reviewed by 3 cytopathologists. For panoramic images, the cytotechnologist manually created digital maps and selected representative ROIs to generate z-stacks at a higher magnification. After 3-week washout periods, panoramic images were compared with Aperio digital slides and glass slides. The Panoptiq system permitted fine focusing of thick smears and cell clusters. In comparison with glass slides, the average screening times were 5.5 and 1.8 times longer with Panoptiq and Aperio images, respectively, but this improved with user experience. There was no statistical difference in diagnostic concordance between all 3 modalities. Users' diagnostic confidence was also similar for all modalities. The Aperio whole-slide scanner with 1 z-plane scanning and the Panoptiq imaging system with z-stacking are both suitable for cytopathology screening and interpretation. However, ROI z-stacks do offer a superior mechanism for overcoming focusing problems commonly encountered with digital cytology slides. Unlike whole-slide imaging, the acquisition of representative z-stack images with the Panoptiq system requires a trained cytologist to create digital files. Cancer Cytopathol 2017;125:701-9. © 2017 American Cancer Society. © 2017 American Cancer Society.
NASA Technical Reports Server (NTRS)
2004-01-01
This image from the Mars Exploration Rover Opportunity's panoramic camera shows one octant of a larger panoramic image which has not yet been fully processed. The full panorama, dubbed 'Lion King' was obtained on sols 58 and 60 of the mission as the rover was perched at the lip of Eagle Crater, majestically looking down into its former home. It is the largest panorama yet obtained by either rover. The octant, which faces directly into the crater, shows features as small as a few millimeters across in the field near the rover arm, to features a few meters across or larger on the horizon.
The full panoramic image was taken in eight segments using six filters per segment, for a total of 558 images and more than 75 megabytes of data. This enhanced color composite was assembled from the infrared (750 nanometer), green (530 nanometer), and violet (430 nanometer) filters. Additional lower elevation tiers were added relative to other panoramas to ensure that the entire crater was covered in the mosaic.Immersive Photography Renders 360 degree Views
NASA Technical Reports Server (NTRS)
2008-01-01
An SBIR contract through Langley Research Center helped Interactive Pictures Corporation, of Knoxville, Tennessee, create an innovative imaging technology. This technology is a video imaging process that allows real-time control of live video data and can provide users with interactive, panoramic 360 views. The camera system can see in multiple directions, provide up to four simultaneous views, each with its own tilt, rotation, and magnification, yet it has no moving parts, is noiseless, and can respond faster than the human eye. In addition, it eliminates the distortion caused by a fisheye lens, and provides a clear, flat view of each perspective.
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken by the Mars Exploration Rover Opportunity shows the dunes that line the floor of 'Endurance Crater.' Small-scale ripples on top of the larger dune waves suggest that these dunes may have been active in geologically recent times. The image was taken by the rover's panoramic camera on sol 198 (August 14, 2004).'Endurance': A Daunting Challenge
NASA Technical Reports Server (NTRS)
2004-01-01
This image shows the approximate size of the Mars Exploration Rover Opportunity in comparison to the impressive impact crater dubbed 'Endurance,' which is roughly 130 meters (430 feet) across. A model of Opportunity has been superimposed on top of an approximate true-color image taken by the rover's panoramic camera. Scientists are eager to explore Endurance for clues to the red planet's history. The crater's exposed walls provide a window to what lies beneath the surface of Mars and thus what geologic processes occurred there in the past. While recent studies of the smaller crater nicknamed 'Eagle' revealed an evaporating body of salty water, that crater was not deep enough to indicate what came before the water. Endurance may be able to help answer this question, but the challenge is getting to the scientific targets: most of the crater's rocks are embedded in vertical cliffs. Rover planners are developing strategies to overcome this obstacle. This image is a portion of a larger mosaic taken with the panoramic camera's 480-, 530- and 750-nanometer filters on sols 97 and 98.NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true-color image, acquired by the Mars Exploration Rover Opportunity's panoramic camera, features the hole ground by the rover's rock abrasion tool into 'Bounce' rock. The hole measures approximately 35 centimeters (14 inches) long and 10 centimeters (4 inches) high. The depression measures 6.44 millimeters (0.25 inch) deep and about 4.5 centimeters (1.7 inches) across. The grinding procedure took place on the rover's 66th sol on Mars and lasted 2 hours and 15 minutes. A combination of limited solar power, added safety measures and the rock's jagged texture led the rock abrasion tool team to set more aggressive grinding parameters to ensure that the end result was a full circle, suitable for a thorough read from the rover's spectrometers. Bounce's outer ring consists of the cuttings from the rock, pushed out by the brushes on the grinding instrument. The small impressions filled with red dust on the outer ring were caused by the instrument's contact mechanism, which serves to stabilize it while grinding. This image was created using the panoramic camera's blue, green and red filters.ARTIST CONCEPT - ASTRONAUT WORDEN'S EXTRAVEHICULAR ACTIVITY (EVA) (APOLLO XV)
1971-07-09
S71-39614 (July 1971) --- An artist's concept of the Apollo 15 Command and Service Modules (CSM), showing two crewmembers performing a new-to-Apollo extravehicular activity (EVA). The figure at left represents astronaut Alfred M. Worden, command module pilot, connected by an umbilical tether to the CM, at right, where a figure representing astronaut James B. Irwin, lunar module pilot, stands at the open CM hatch. Worden is working with the panoramic camera in the Scientific Instrument Module (SIM). Behind Irwin is the 16mm data acquisition camera. Artwork by North American Rockwell.
NASA Astrophysics Data System (ADS)
Chen, Chung-Hao; Yao, Yi; Chang, Hong; Koschan, Andreas; Abidi, Mongi
2013-06-01
Due to increasing security concerns, a complete security system should consist of two major components, a computer-based face-recognition system and a real-time automated video surveillance system. A computerbased face-recognition system can be used in gate access control for identity authentication. In recent studies, multispectral imaging and fusion of multispectral narrow-band images in the visible spectrum have been employed and proven to enhance the recognition performance over conventional broad-band images, especially when the illumination changes. Thus, we present an automated method that specifies the optimal spectral ranges under the given illumination. Experimental results verify the consistent performance of our algorithm via the observation that an identical set of spectral band images is selected under all tested conditions. Our discovery can be practically used for a new customized sensor design associated with given illuminations for an improved face recognition performance over conventional broad-band images. In addition, once a person is authorized to enter a restricted area, we still need to continuously monitor his/her activities for the sake of security. Because pantilt-zoom (PTZ) cameras are capable of covering a panoramic area and maintaining high resolution imagery for real-time behavior understanding, researches in automated surveillance systems with multiple PTZ cameras have become increasingly important. Most existing algorithms require the prior knowledge of intrinsic parameters of the PTZ camera to infer the relative positioning and orientation among multiple PTZ cameras. To overcome this limitation, we propose a novel mapping algorithm that derives the relative positioning and orientation between two PTZ cameras based on a unified polynomial model. This reduces the dependence on the knowledge of intrinsic parameters of PTZ camera and relative positions. Experimental results demonstrate that our proposed algorithm presents substantially reduced computational complexity and improved flexibility at the cost of slightly decreased pixel accuracy as compared to Chen and Wang's method [18].
NASA Astrophysics Data System (ADS)
Wu, Xiaojun; Wu, Yumei; Wen, Peizhi
2018-03-01
To obtain information on the outer surface of a cylinder object, we propose a catadioptric panoramic imaging system based on the principle of uniform spatial resolution for vertical scenes. First, the influence of the projection-equation coefficients on the spatial resolution and astigmatism of the panoramic system are discussed, respectively. Through parameter optimization, we obtain the appropriate coefficients for the projection equation, and so the imaging quality of the entire imaging system can reach an optimum value. Finally, the system projection equation is calibrated, and an undistorted rectangular panoramic image is obtained using the cylindrical-surface projection expansion method. The proposed 360-deg panoramic-imaging device overcomes the shortcomings of existing surface panoramic-imaging methods, and it has the advantages of low cost, simple structure, high imaging quality, and small distortion, etc. The experimental results show the effectiveness of the proposed method.
Autonomous Exploration for Gathering Increased Science
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.;
2010-01-01
The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.
View of 'Cape St. Mary' from 'Cape Verde' (Altered Contrast)
NASA Technical Reports Server (NTRS)
2006-01-01
As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape St. Mary' from the from the vantage point of 'Cape Verde,' the next promontory counterclockwise around the crater's deeply scalloped rim. This view of Cape St. Mary combines several exposures taken by the rover's panoramic camera into an approximately true-color mosaic with contrast adjusted to improve the visibility of details in shaded areas. The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. Near the base of the Cape St. Mary cliff are layers with a pattern called 'crossbedding,' intersecting with each other at angles, rather than parallel to each other. Large-scale crossbedding can result from material being deposited as wind-blown dunes. The images combined into this mosaic were taken during the 970th Martian day, or sol, of Opportunity's Mars-surface mission (Oct. 16, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.NASA Technical Reports Server (NTRS)
2004-01-01
In these line graphs of laboratory spectra, it is evident that different minerals have different spectra. The graph on the left shows the typical minerals found in igneous rocks, which are rocks related to magma or volcanic activity. The graph on the right shows iron-bearing candidates for further study and comparison to spectra from the Mars Exploration Rover panoramic cameras on Mars.Things Aren't Always What They Seem
NASA Technical Reports Server (NTRS)
2004-01-01
This mosaic was assembled from images taken by the panoramic camera on the Mars Exploration Rover Spirit at a region dubbed 'site 31.' Spirit is looking at 'Missoula Crater.' From orbit, the features within the crater appeared to be ejecta from the younger 'Bonneville Crater,' but Spirit's closer look revealed wind-blown drift deposits, not ejecta, within Missoula Crater.Samara Probe For Remote Imaging
NASA Technical Reports Server (NTRS)
Burke, James D.
1989-01-01
Imaging probe descends through atmosphere of planet, obtaining images of ground surface as it travels. Released from aircraft over Earth or from spacecraft over another planet. Body and single wing shaped like samara - winged seed like those of maple trees. Rotates as descends, providing panoramic view of terrain below. Radio image obtained by video camera to aircraft or spacecraft overhead.
Photometric Observations of Soils and Rocks at the Mars Exploration Rover Landing Sites
NASA Technical Reports Server (NTRS)
Johnson, J. R.; Arvidson, R. A.; Bell, J. F., III; Farrand, W.; Guinness, E.; Johnson, M.; Herkenhoff, K. E.; Lemmon, M.; Morris, R. V.; Seelos, F., IV
2005-01-01
The Panoramic Cameras (Pancam) on the Spirit and Opportunity Mars Exploration Rovers have acquired multispectral reflectance observations of rocks and soils at different incidence, emission, and phase angles that will be used for photometric modeling of surface materials. Phase angle coverage at both sites extends from approx. 0 deg. to approx. 155 deg.
NASA Technical Reports Server (NTRS)
2002-01-01
In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.
NASA Astrophysics Data System (ADS)
Wong, Erwin
2000-03-01
Traditional methods of linear based imaging limits the viewer to a single fixed-point perspective. By means of a single lens multiple perspective mirror system, a 360-degree representation of the area around the camera is reconstructed. This reconstruction is used overcome the limitations of a traditional camera by providing the viewer with many different perspectives. By constructing the mirror into a hemispherical surface with multiple focal lengths at various diameters on the mirror, and by placing a parabolic mirror overhead, a stereoscopic image can be extracted from the image captured by a high-resolution camera placed beneath the mirror. Image extraction and correction is made by computer processing of the image obtained by camera; the image present up to five distinguishable different viewpoints that a computer can extrapolate pseudo- perspective data from. Geometric and depth for field can be extrapolated via comparison and isolation of objects within a virtual scene post processed by the computer. Combining data with scene rendering software provides the viewer with the ability to choose a desired viewing position, multiple dynamic perspectives, and virtually constructed perspectives based on minimal existing data. An examination into the workings of the mirror relay system is provided, including possible image extrapolation and correctional methods. Generation of data and virtual interpolated and constructed data is also mentioned.
A 3D camera for improved facial recognition
NASA Astrophysics Data System (ADS)
Lewin, Andrew; Orchard, David A.; Scott, Andrew M.; Walton, Nicholas A.; Austin, Jim
2004-12-01
We describe a camera capable of recording 3D images of objects. It does this by projecting thousands of spots onto an object and then measuring the range to each spot by determining the parallax from a single frame. A second frame can be captured to record a conventional image, which can then be projected onto the surface mesh to form a rendered skin. The camera is able of locating the images of the spots to a precision of better than one tenth of a pixel, and from this it can determine range to an accuracy of less than 1 mm at 1 meter. The data can be recorded as a set of two images, and is reconstructed by forming a 'wire mesh' of range points and morphing the 2 D image over this structure. The camera can be used to record the images of faces and reconstruct the shape of the face, which allows viewing of the face from various angles. This allows images to be more critically inspected for the purpose of identifying individuals. Multiple images can be stitched together to create full panoramic images of head sized objects that can be viewed from any direction. The system is being tested with a graph matching system capable of fast and accurate shape comparisons for facial recognition. It can also be used with "models" of heads and faces to provide a means of obtaining biometric data.
NASA Technical Reports Server (NTRS)
Moore, H. J.; Wu, S. C.
1973-01-01
The effect of reading error on two hypothetical slope frequency distributions and two slope frequency distributions from actual lunar data in order to ensure that these errors do not cause excessive overestimates of algebraic standard deviations for the slope frequency distributions. The errors introduced are insignificant when the reading error is small and the slope length is large. A method for correcting the errors in slope frequency distributions is presented and applied to 11 distributions obtained from Apollo 15, 16, and 17 panoramic camera photographs and Apollo 16 metric camera photographs.
'Berries' Here, There, Everywhere
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true-color image suggests that the plains beyond the small crater where the Mars Exploration Rover Opportunity now sits are littered with the same dark grey material found inside the crater in the form of spherules or 'blueberries.' Because Mars orbiters have observed the iron-bearing mineral hematite across these plains, scientists hypothesize that the blueberries are also made up of this mineral. This image was taken by the rover's panoramic camera on the 17th martian day, or sol, of its mission. Data from the camera's red, green and blue filters were combined to create this image.
NASA Technical Reports Server (NTRS)
2004-01-01
The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.
Surface Stereo Imager on Mars, Side View
NASA Technical Reports Server (NTRS)
2008-01-01
This image is a view of NASA's Phoenix Mars Lander's Surface Stereo Imager (SSI) as seen by the lander's Robotic Arm Camera. This image was taken on the afternoon of the 116th Martian day, or sol, of the mission (September 22, 2008). The mast-mounted SSI, which provided the images used in the 360 degree panoramic view of Phoenix's landing site, is about 4 inches tall and 8 inches long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Technical Reports Server (NTRS)
Bell, J. F., III; Arneson, H. M.; Farrand, W. H.; Goetz, W.; Hayes, A. G.; Herkenhoff, K.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K.
2005-01-01
Introduction. The panoramic camera (Pancam) multispectral, stereoscopic imaging systems on the Mars Exploration Rovers Spirit and Opportunity [1] have acquired and downlinked more than 45,000 images (35 Gbits of data) over more than 700 combined sols of operation on Mars as of early January 2005. A large subset of these images were acquired as part of 26 large multispectral and/or broadband "albedo" panoramas (15 on Spirit, 11 on Opportunity) covering large ranges of azimuth (12 spanning 360 ) and designed to characterize major regional color and albedo characteristics of the landing sites and various points along both rover traverses.
Using Google Streetview Panoramic Imagery for Geoscience Education
NASA Astrophysics Data System (ADS)
De Paor, D. G.; Dordevic, M. M.
2014-12-01
Google Streetview is a feature of Google Maps and Google Earth that allows viewers to switch from map or satellite view to 360° panoramic imagery recorded close to the ground. Most panoramas are recorded by Google engineers using special cameras mounted on the roofs of cars. Bicycles, snowmobiles, and boats have also been used and sometimes the camera has been mounted on a backpack for off-road use by hikers and skiers or attached to scuba-diving gear for "Underwater Streetview (sic)." Streetview panoramas are linked together so that the viewer can change viewpoint by clicking forward and reverse buttons. They therefore create a 4-D touring effect. As part of the GEODE project ("Google Earth for Onsite and Distance Education"), we are experimenting with the use of Streetview imagery for geoscience education. Our web-based test application allows instructors to select locations for students to study. Students are presented with a set of questions or tasks that they must address by studying the panoramic imagery. Questions include identification of rock types, structures such as faults, and general geological setting. The student view is locked into Streetview mode until they submit their answers, whereupon the map and satellite views become available, allowing students to zoom out and verify their location on Earth. Student learning is scaffolded by automatic computerized feedback. There are lots of existing Streetview panoramas with rich geological content. Additionally, instructors and members of the general public can create panoramas, including 360° Photo Spheres, by stitching images taken with their mobiles devices and submitting them to Google for evaluation and hosting. A multi-thousand-dollar, multi-directional camera and mount can be purchased from DIY-streetview.com. This allows power users to generate their own high-resolution panoramas. A cheaper, 360° video camera is soon to be released according to geonaute.com. Thus there are opportunities for geoscience educators both to use existing Streetview imagery and to generate new imagery for specific locations of geological interest. The GEODE team includes the authors and: H. Almquist, C. Bentley, S. Burgin, C. Cervato, G. Cooper, P. Karabinos, T. Pavlis, J. Piatek, B. Richards, J. Ryan, R. Schott, K. St. John, B. Tewksbury, and S. Whitmeyer.
NASA Technical Reports Server (NTRS)
2004-01-01
This close-up image of the Mars Exploration Rover Spirit's instrument deployment device, or 'arm,' shows the donut-shaped plate on the Moessbauer spectrometer. This image makes it easy to recognize the imprint left by the instrument in the martian soil at a location called 'Peak' on sol 43 (February 16, 2004). This image was taken by the rover's panoramic camera on sol 39 (February 11, 2004).
NASA Technical Reports Server (NTRS)
2004-01-01
This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. The rock's nodules and layered appearance have inspired rover team members to investigate the rock's detailed chemistry in coming sols. This picture was taken on sol 158 (June 13, 2004).HUBBLE'S PANORAMIC PICTURE OF COMET SHOEMAKER-LEVY 9
NASA Technical Reports Server (NTRS)
2002-01-01
Infrared image shows bright spot, aftermath of the impact of the first fragment of Comet Shoemaker-Levy 9 on the planet Jupiter. The image was made using an infrared camera built by Ohio State University and the 4-meter telescope at the Cerro Tololo Interamerican Observatory (CTIO) at La Serena, Chile. Credit: John Spencer (Lowell Observatory), Darren Depoy (Ohio State University), CTIO.
Color View of a 'Rat' Hole Trail Inside 'Endurance'
NASA Technical Reports Server (NTRS)
2004-01-01
This view from the Mars Exploration Rover Opportunity's panoramic camera is an approximately true color rendering of the first seven holes that the rover's rock abrasion tool dug on the inner slope of 'Endurance Crater.' The rover was about 12 meters (about 39 feet) down into the crater when it acquired the images combined into this mosaic. The view is looking back toward the rim of the crater, with the rover's tracks visible. The tailings around the holes drilled by the rock abrasion tool, or 'Rat,' show evidence for fine-grained red hematite similar to what was observed months earlier in 'Eagle Crater' outcrop holes. Starting from the uppermost pictured (closest to the crater rim) to the lowest, the rock abrasion tool hole targets are called 'Tennessee,' 'Cobblehill,' 'Virginia,' 'London,' 'Grindstone,' 'Kettlestone,' and 'Drammensfjorden.' Opportunity drilled these holes on sols 138 (June 13, 2004), 143 (June 18), 145 (June 20), 148 (June 23), 151 (June 26), 153 (June 28) and 161 (July 7), respectively. Each hole is 4.5 centimeters (1.8 inches) in diameter. This image was generated using the panoramic camera's 750-, 530-, and 430-nanometer filters. It was taken on sol 173 (July 19).NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Figure 1 In the quest to determine if a pebble was jamming the rock abrasion tool on NASA's Mars Exploration Rover Opportunity, scientists and engineers examined this up-close, approximate true-color image of the tool. The picture was taken by the rover's panoramic camera, using filters centered at 601, 535, and 482 nanometers, at 12:47 local solar time on sol 200 (August 16, 2004).
Colored spots have been drawn on this image corresponding to regions where panoramic camera reflectance spectra were acquired (see chart in Figure 1). Those regions are: the grinding wheel heads (yellow); the rock abrasion tool magnets (green); the supposed pebble (red); a sunlit portion of the aluminum rock abrasion tool housing (purple); and a shadowed portion of the rock abrasion tool housing (brown). These spectra demonstrated that the composition of the supposed pebble was clearly different from that of the sunlit and shadowed portions of the rock abrasion tool, while similar to that of the dust-coated rock abrasion tool magnets and grinding heads. This led the team to conclude that the object disabling the rock abrasion tool was indeed a martian pebble.The Two Moons of Mars as Seen from Mars
NASA Technical Reports Server (NTRS)
2005-01-01
Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. 'It is incredibly cool to be running an observatory on another planet,' said planetary scientist Jim Bell of Cornell University, Ithaca, N.Y., lead scientist for the panoramic cameras on Spirit and Opportunity. This time-lapse composite, acquired the evening of Spirit's martian sol 585 (Aug. 26, 2005) from a perch atop 'Husband Hill' in Gusev Crater, shows Phobos, the brighter moon, on the right, and Deimos, the dimmer moon, on the left. Tiny streaks mark the trails of background stars moving across the sky or the impact of cosmic rays lighting up random groups of pixels in the image. Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the five images that make up this composite using the panoramic camera's broadband filter, which was designed specifically for acquiring images under low-light conditions.Ngamsom, Supak; Arayasantiparb, Raweewan; Pornprasertsuk-Damrongsri, Suchaya; Sureephong, Boonchoo
2015-11-01
The aim of the present study was to evaluate the correlation between calcified carotid atheromas (CCA) detected on digital panoramic radiographs and underlying systemic diseases. Panoramic radiographs and underlying systemic diseases of retained mandibular denture implants in 265 patients (56 males, 209 females) aged over 50 years were retrospectively evaluated at the Dental Unit of Prasat Neurological Institute, Bangkok, Thailand. The mean age of the patients was 71 ± 7.1 years. The prevalence of CCA was 38.49%. The major underlying systemic diseases were hypertension, hyperlipidemia, diabetes mellitus, and cardiovascular diseases (CVD), respectively. No relationship was found among these four systemic diseases in detecting CCA on panoramic radiographs. Similar findings were also observed in patients with only one systemic disease versus in combination with other diseases. The presence of CCA on dental panoramic radiographs was not found to be related to the presence of underlying systemic diseases, including hypertension, hyperlipidemia, diabetes mellitus, and CVD. © 2014 Wiley Publishing Asia Pty Ltd.
View of 'Cape St. Mary' from 'Cape Verde' (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape St. Mary' from the from the vantage point of 'Cape Verde,' the next promontory counterclockwise around the crater's deeply scalloped rim. This view of Cape St. Mary combines several exposures taken by the rover's panoramic camera into a false-color mosaic. Contrast has been adjusted to improve the visibility of details in shaded areas. The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. Near the base of the Cape St. Mary cliff are layers with a pattern called 'crossbedding,' intersecting with each other at angles, rather than parallel to each other. Large-scale crossbedding can result from material being deposited as wind-blown dunes. The images combined into this mosaic were taken during the 970th Martian day, or sol, of Opportunity's Mars-surface mission (Oct. 16, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters. The false color enhances subtle color differences among materials in the rocks and soils of the scene.Preface: The Chang'e-3 lander and rover mission to the Moon
NASA Astrophysics Data System (ADS)
Ip, Wing-Huen; Yan, Jun; Li, Chun-Lai; Ouyang, Zi-Yuan
2014-12-01
The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D image taken by the left and right eyes of the panoramic camera on the Mars Exploration Rover Spirit shows the odd rock formation dubbed 'Cobra Hoods' (center). Rover scientists say this resistant rock is unlike anything they've seen on Mars so far. Spirit will investigate the rock in coming sols. The stereo pictures making up this image were captured on sol 156 (June 11, 2004).Constructing spherical panoramas of a bladder phantom from endoscopic video using bundle adjustment
NASA Astrophysics Data System (ADS)
Soper, Timothy D.; Chandler, John E.; Porter, Michael P.; Seibel, Eric J.
2011-03-01
The high recurrence rate of bladder cancer requires patients to undergo frequent surveillance screenings over their lifetime following initial diagnosis and resection. Our laboratory is developing panoramic stitching software that would compile several minutes of cystoscopic video into a single panoramic image, covering the entire bladder, for review by an urolgist at a later time or remote location. Global alignment of video frames is achieved by using a bundle adjuster that simultaneously recovers both the 3D structure of the bladder as well as the scope motion using only the video frames as input. The result of the algorithm is a complete 360° spherical panorama of the outer surface. The details of the software algorithms are presented here along with results from both a virtual cystoscopy as well from real endoscopic imaging of a bladder phantom. The software successfully stitched several hundred video frames into a single panoramic with subpixel accuracy and with no knowledge of the intrinsic camera properties, such as focal length and radial distortion. In the discussion, we outline future work in development of the software as well as identifying factors pertinent to clinical translation of this technology.
NASA Technical Reports Server (NTRS)
2004-01-01
This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a close-up of the rock dubbed 'Pot of Gold' (left), which is located near the base of the 'Columbia Hills' in Gusev Crater. Scientists are intrigued by this unusual-looking, nodule-covered rock and plan to investigate its detailed chemistry in coming sols. This picture was taken on sol 159 (June 14, 2004).45. This 360degree panorama was taken from the balcony using ...
45. This 360-degree panorama was taken from the balcony using a Hulcherama panoramic camera with a 35mm Mamiya Sekor lens. Image size on 120 roll film (Tri-X) for 360-deg. view is 6 x 22.5 cm. Because of overlap in view, actual image size is 6 x 24 cm. (2.25' x 9.5'). - Fox Theater, Seventh Avenue & Olive Way, Seattle, King County, WA
NASA Technical Reports Server (NTRS)
2004-01-01
This panoramic camera image from the Mars Exploration Rover Opportunity features the 6.44 millimeter (0.25 inch) deep hole ground into the rock dubbed 'Bounce' by the rover's rock abrasion tool. The tool took 2 hours and 15 minutes to grind the hole on sol 66 of the rover's journey. A combination of limited solar power and the rock's jagged texture led the rock abrasion tool team to set very aggressive grinding parameters to ensure that the end result was a full circle, suitable for a thorough read from the rover's spectrometers.
Bounce's markedly different appearance (when compared to the rocks that were previously examined in the Eagle Crater outcrop) made it a natural target for rover research. In order to achieve an ideal position from which to grind into the rock, Opportunity moved in very close with its right wheel next to Bounce. In this image, the panoramic camera on the rover's mast is looking down, catching the tip of the solar panel which partially blocks the full circle ground by the rock abrasion tool. The outer ring consists of the cuttings from the rock, pushed out by the brushes on the grinding instrument. The dark impression at the top of the outer circle was caused by the instrument's contact mechanism which serves to stabilize it while grinding.View of Scientific Instrument Module to be flown on Apollo 15
1971-06-27
S71-2250X (June 1971) --- A close-up view of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 lunar landing mission. Mounted in a previously vacant sector of the Apollo Service Module (SM), the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data. SIM equipment includes a laser altimeter for accurate measurement of height above the lunar surface; a large-format panoramic camera for mapping, correlated with a metric camera and the laser altimeter for surface mapping; a gamma ray spectrometer on a 25-feet extendible boom; a mass spectrometer on a 21-feet extendible boom; X-ray and alpha particle spectrometers; and a subsatellite which will be injected into lunar orbit carrying a particle and magnetometer, and the S-Band transponder.
Final Optical Design of PANIC, a Wide-Field Infrared Camera for CAHA
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Gómez, J. Rodríguez; Lenzen, R.; Sánchez-Blanco, E.
We present the Final Optical Design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Ritchey-Chrtien focus of the Calar Alto 2.2 m telescope. This will be the first instrument built under the German-Spanish consortium that manages the Calar Alto observatory. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. The optical design produces a well defined internal pupil available to reducing the thermal background by a cryogenic pupil stop. A mosaic of four detectors Hawaii 2RG of 2 k ×2 k, made by Teledyne, will give a field of view of 31.9 arcmin ×31.9 arcmin.
False-Color View of a 'Rat' Hole Trail
NASA Technical Reports Server (NTRS)
2004-01-01
This view from the Mars Exploration Rover Opportunity's panoramic camera is a false-color composite rendering of the first seven holes that the rover's rock abrasion tool dug on the inner slope of 'Endurance Crater.' The rover was about 12 meters (about 39 feet) down into the crater when it acquired the images combined into this mosaic. The view is looking back toward the rim of the crater, with the rover's tracks visible. The tailings around the holes drilled by the rock abrasion tool, or 'Rat,' show evidence for fine-grained red hematite similar to what was observed months earlier in 'Eagle Crater' outcrop holes. Last week, viewers were asked to try seeing as many holes as they could from a black-and-white, navigation-camera image (PIA06716). Most viewers will find it far easier to see the seven holes in this exaggerated color image; the same is true for scientists who are studying the holes from millions of miles away. Starting from the uppermost pictured (closest to the crater rim) to the lowest, the rock abrasion tool hole targets are called 'Tennessee,' 'Cobblehill,' 'Virginia,' 'London,' 'Grindstone,' 'Kettlestone,' and 'Drammensfjorden.' Opportunity drilled these holes on sols 138 (June 13, 2004), 143 (June 18), 145 (June 20), 148 (June 23), 151 (June 26), 153 (June 28) and 161 (July 7), respectively. Each hole is 4.5 centimeters (1.8 inches) in diameter. This image was generated using the panoramic camera's 750-, 530-, and 430-nanometer filters. It was taken on sol 173 (July 19).Jolliff, B.; Knoll, A.; Morris, R.V.; Moersch, J.; McSween, H.; Gilmore, M.; Arvidson, R.; Greeley, R.; Herkenhoff, K.; Squyres, S.
2002-01-01
Blind field tests of the Field Integration Design and Operations (FIDO) prototype Mars rover were carried out 7-16 May 2000. A Core Operations Team (COT), sequestered at the Jet Propulsion Laboratory without knowledge of test site location, prepared command sequences and interpreted data acquired by the rover. Instrument sensors included a stereo panoramic camera, navigational and hazard-avoidance cameras, a color microscopic imager, an infrared point spectrometer, and a rock coring drill. The COT designed command sequences, which were relayed by satellite uplink to the rover, and evaluated instrument data. Using aerial photos and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, and information from the rover sensors, the COT inferred the geology of the landing site during the 18 sol mission, including lithologic diversity, stratigraphic relationships, environments of deposition, and weathering characteristics. Prominent lithologic units were interpreted to be dolomite-bearing rocks, kaolinite-bearing altered felsic volcanic materials, and basalt. The color panoramic camera revealed sedimentary layering and rock textures, and geologic relationships seen in rock exposures. The infrared point spectrometer permitted identification of prominent carbonate and kaolinite spectral features and permitted correlations to outcrops that could not be reached by the rover. The color microscopic imager revealed fine-scale rock textures, soil components, and results of coring experiments. Test results show that close-up interrogation of rocks is essential to investigations of geologic environments and that observations must include scales ranging from individual boulders and outcrops (microscopic, macroscopic) to orbital remote sensing, with sufficient intermediate steps (descent images) to connect in situ and remote observations.
'Everest' Panorama; 20-20 Vision
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] 'Everest' Panorama 20-20 Vision (QTVR) [figure removed for brevity, see original site] 'Everest' Panorama Animation If a human with perfect vision donned a spacesuit and stepped onto the martian surface, the view would be as clear as this sweeping panorama taken by NASA's Mars Exploration Rover Spirit. That's because the rover's panoramic camera has the equivalent of 20-20 vision. Earthlings can take a virtual tour of the scenery by zooming in on their computer screens many times to get a closer look at, say, a rock outcrop or a sand drift, without losing any detail. This level of clarity is unequaled in the history of Mars exploration. It took Spirit three days, sols 620 to 622 (Oct. 1 to Oct. 3, 2005), to acquire all the images combined into this mosaic, called the 'Everest Panorama,' looking outward in every direction from the true summit of 'Husband Hill.' During that period, the sky changed in color and brightness due to atmospheric dust variations, as shown in contrasting sections of this mosaic. Haze occasionally obscured the view of the hills on the distant rim of Gusev Crater 80 kilometers (50 miles) away. As dust devils swooped across the horizon in the upper right portion of the panorama, the robotic explorer changed the filters on the camera from red to green to blue, making the dust devils appear red, green, and blue. In reality, the dust devils are similar in color to the reddish-brown soils of Mars. No attempt was made to 'smooth' the sky in this mosaic, as has been done in other panoramic-camera mosaics to simulate the view one would get by taking in the landscape all at once. The result is a sweeping vista that allows viewers to observe weather changes on Mars. The summit of Husband Hill is a broad plateau of rock outcrops and windblown drifts about 100 meters (300 feet) higher than the surrounding plains of Gusev Crater. In the distance, near the center of the mosaic, is the 'South Basin,' the destination for the downhill travel Spirit began after exploring the summit region. This panorama spans 360 degrees and consists of images obtained during 81 individual pointings of the panoramic camera. Four filters were used at each pointing. Images through three of the filters, for wavelengths of 750 nanometers, 530 nanometers and 430 nanometers, were combined for this approximately true-color rendering.Automatic visibility retrieval from thermal camera images
NASA Astrophysics Data System (ADS)
Dizerens, Céline; Ott, Beat; Wellig, Peter; Wunderle, Stefan
2017-10-01
This study presents an automatic visibility retrieval of a FLIR A320 Stationary Thermal Imager installed on a measurement tower on the mountain Lagern located in the Swiss Jura Mountains. Our visibility retrieval makes use of edges that are automatically detected from thermal camera images. Predefined target regions, such as mountain silhouettes or buildings with high thermal differences to the surroundings, are used to derive the maximum visibility distance that is detectable in the image. To allow a stable, automatic processing, our procedure additionally removes noise in the image and includes automatic image alignment to correct small shifts of the camera. We present a detailed analysis of visibility derived from more than 24000 thermal images of the years 2015 and 2016 by comparing them to (1) visibility derived from a panoramic camera image (VISrange), (2) measurements of a forward-scatter visibility meter (Vaisala FD12 working in the NIR spectra), and (3) modeled visibility values using the Thermal Range Model TRM4. Atmospheric conditions, mainly water vapor from European Center for Medium Weather Forecast (ECMWF), were considered to calculate the extinction coefficients using MODTRAN. The automatic visibility retrieval based on FLIR A320 images is often in good agreement with the retrieval from the systems working in different spectral ranges. However, some significant differences were detected as well, depending on weather conditions, thermal differences of the monitored landscape, and defined target size.
Layers of 'Cabo Frio' in 'Victoria Crater'
NASA Technical Reports Server (NTRS)
2006-01-01
This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is an approximately true color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.Layers of 'Cabo Frio' in 'Victoria Crater' (Stereo)
NASA Technical Reports Server (NTRS)
2006-01-01
This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is a red-blue stereo anaglyph generated from images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 430-nanometer filters.NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Click on the image for 'Fram' in Color (QTVR) This view in approximately true color reveals details in an impact crater informally named 'Fram' in the Meridian Planum region of Mars. The picture is a mosaic of frames taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity during the rover's 88th martian day on Mars, on April 23, 2004. The crater spans about 8 meters (26 feet) in diameter. Opportunity paused beside it while traveling from the rover's landing site toward a larger crater farther east. This view combines images taken using three of the camera's filters for different wavelengths of light: 750 nanometers, 530 nanometers and 430 nanometers.Layers of 'Cape Verde' in 'Victoria Crater'
NASA Technical Reports Server (NTRS)
2006-01-01
This view of Victoria crater is looking north from 'Duck Bay' towards the dramatic promontory called 'Cape Verde.' The dramatic cliff of layered rocks is about 50 meters (about 165 feet) away from the rover and is about 6 meters (about 20 feet) tall. The taller promontory beyond that is about 100 meters (about 325 feet) away, and the vista beyond that extends away for more than 400 meters (about 1300 feet) into the distance. This is an approximately true color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.Layers of 'Cape Verde' in 'Victoria Crater' (Stereo)
NASA Technical Reports Server (NTRS)
2006-01-01
This view of Victoria crater is looking north from 'Duck Bay' towards the dramatic promontory called 'Cape Verde.' The dramatic cliff of layered rocks is about 50 meters (about 165 feet) away from the rover and is about 6 meters (about 20 feet) tall. The taller promontory beyond that is about 100 meters (about 325 feet) away, and the vista beyond that extends away for more than 400 meters (about 1300 feet) into the distance. This is a red-blue stereo anaglyph generated from images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 430-nanometer filters.NASA Technical Reports Server (NTRS)
2006-01-01
As NASA's Mars Exploration Rover Opportunity continues a southward trek from 'Erebus Crater' toward 'Victoria Crater,' the terrain consists of large sand ripples and patches of flat-lying rock outcrops, as shown in this image. Whenever possible, rover planners keep Opportunity on the 'pavement' for best mobility. This false-color image mosaic was assembled using images acquired by the panoramic camera on Opportunity's 784th sol (April 8, 2006) at about 11:45 a.m. local solar time. The camera used its 753-nanometer, 535-nanometer and 432-nanometer filters. This view shows a portion of the outcrop named 'Bosque,' including rover wheel tracks, fractured and finely-layered outcrop rocks and smaller, dark cobbles littered across the surface.Design of a novel panoramic lens without central blindness
NASA Astrophysics Data System (ADS)
Gong, Chen; Cheng, Dewen; Xu, Chen; Wang, Yongtian
2015-08-01
The panoramic lenses are getting more and more popular in recent years. However, these lenses have the drawback of obscuring the rays of the coaxial fields, thus cause blind area in the center field of vision. We present a novel panoramic system consisting of two optical channels to overcome this issue, the system has a field of view (FOV) reaching 200 in vertical and 360 in horizontal direction without blindness area. The two channels have different focal lengths, providing design flexibility to meet application requirements where the center FOV or the marginal FOV is of more interest. The system has no half-reflecting surfaces to ensure high transmission ratio, but this feature greatly increase the design difficulty. The distortion of the novel lens is much smaller than traditional panoramic lenses since the distortion has two node points. Due to the ability of information acquisition in real-time and wide-angle, the novel panoramic lens would be very useful for a variety of real-world applications such as surveillance, short-throw projector and pilotless automobile.
International testing of a Mars rover prototype
NASA Astrophysics Data System (ADS)
Kemurjian, Alexsandr Leonovich; Linkin, V.; Friedman, L.
1993-03-01
Tests on a prototype engineering model of the Russian Mars 96 Rover were conducted by an international team in and near Death Valley in the United States in late May, 1992. These tests were part of a comprehensive design and testing program initiated by the three Russian groups responsible for the rover development. The specific objectives of the May tests were: (1) evaluate rover performance over different Mars-like terrains; (2) evaluate state-of-the-art teleoperation and autonomy development for Mars rover command, control and navigation; and (3) organize an international team to contribute expertise and capability on the rover development for the flight project. The range and performance that can be planned for the Mars mission is dependent on the degree of autonomy that will be possible to implement on the mission. Current plans are for limited autonomy, with Earth-based teleoperation for the nominal navigation system. Several types of television systems are being investigated for inclusion in the navigation system including panoramic camera, stereo, and framing cameras. The tests used each of these in teleoperation experiments. Experiments were included to consider use of such TV data in autonomy algorithms. Image processing and some aspects of closed-loop control software were also tested. A micro-rover was tested to help consider the value of such a device as a payload supplement to the main rover. The concept is for the micro-rover to serve like a mobile hand, with its own sensors including a television camera.
Performance analysis of panoramic infrared systems
NASA Astrophysics Data System (ADS)
Furxhi, Orges; Driggers, Ronald G.; Holst, Gerald; Krapels, Keith
2014-05-01
Panoramic imagers are becoming more commonplace in the visible part of the spectrum. These imagers are often used in the real estate market, extreme sports, teleconferencing, and security applications. Infrared panoramic imagers, on the other hand, are not as common and only a few have been demonstrated. A panoramic image can be formed in several ways, using pan and stitch, distributed aperture, or omnidirectional optics. When omnidirectional optics are used, the detected image is a warped view of the world that is mapped on the focal plane array in a donut shape. The final image on the display is the mapping of the omnidirectional donut shape image back to the panoramic world view. In this paper we analyze the performance of uncooled thermal panoramic imagers that use omnidirectional optics, focusing on range performance.
Standoff reconnaissance imagery - Applications and interpreter training
NASA Astrophysics Data System (ADS)
Gustafson, G. C.
1980-01-01
The capabilities, advantages and applications of Long Range Oblique Photography (LOROP) standoff air reconnaissance cameras are reviewed, with emphasis on the problems likely to be encountered in photo interpreter training. Results of student exercises in descriptive image analysis and mensuration are presented and discussed, and current work on the computer programming of oblique and panoramic mensuration tasks is summarized. Numerous examples of this class of photographs and their interpretation at various magnifications are also presented.
Enhanced Virtual Presence for Immersive Visualization of Complex Situations for Mission Rehearsal
1997-06-01
taken. We propose to join both these technologies together in a registration device . The registration device would be small and portable and easily...registering the panning of the camera (or other sensing device ) and also stitch together the shots to automatically generate panoramic files necessary to...database and as the base information changes each of the linked drawings is automatically updated. Filename Format A specific naming convention should be
360° Film Brings Bombed Church to Life
NASA Astrophysics Data System (ADS)
Kwiatek, K.
2011-09-01
This paper explores how a computer-generated reconstruction of a church can be adapted to create a panoramic film that is presented in a panoramic viewer and also on a wrap-around projection system. It focuses on the fundamental principles of creating 360º films, not only in 3D modelling software, but also presents how to record 360º video using panoramic cameras inside the heritage site. These issues are explored in a case study of Charles Church in Plymouth, UK that was bombed in 1941 and has never been rebuilt. The generation of a 3D model of the bombed church started from the creation of five spherical panoramas and through the use of Autodesk ImageModeler software. The processed files were imported and merged together in Autodesk 3ds Max where a visualisation of the ruin was produced. A number of historical images were found and this collection enabled the process of a virtual reconstruction of the site. The aspect of merging two still or two video panoramas (one from 3D modelling software, the other one recorded on the site) from the same locations or with the same trajectories is also discussed. The prototype of 360º non-linear film tells a narrative of a wartime wedding that occurred in this church. The film was presented on two 360º screens where members of the audience could make decisions on whether to continue the ceremony or whether to run away when the bombing of the church starts. 3D modelling software made this possible to render a number of different alternati ves (360º images and 360º video). Immersive environments empower the visitor to imagine the building before it was destroyed.
Robust and Accurate Image-Based Georeferencing Exploiting Relative Orientation Constraints
NASA Astrophysics Data System (ADS)
Cavegn, S.; Blaser, S.; Nebiker, S.; Haala, N.
2018-05-01
Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2-3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.
Data annotation, recording and mapping system for the US open skies aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, B.W.; Goede, W.F.; Farmer, R.G.
1996-11-01
This paper discusses the system developed by Northrop Grumman for the Defense Nuclear Agency (DNA), US Air Force, and the On-Site Inspection Agency (OSIA) to comply with the data annotation and reporting provisions of the Open Skies Treaty. This system, called the Data Annotation, Recording and Mapping System (DARMS), has been installed on the US OC-135 and meets or exceeds all annotation requirements for the Open Skies Treaty. The Open Skies Treaty, which will enter into force in the near future, allows any of the 26 signatory countries to fly fixed wing aircraft with imaging sensors over any of themore » other treaty participants, upon very short notice, and with no restricted flight areas. Sensor types presently allowed by the treaty are: optical framing and panoramic film cameras; video cameras ranging from analog PAL color television cameras to the more sophisticated digital monochrome and color line scanning or framing cameras; infrared line scanners; and synthetic aperture radars. Each sensor type has specific performance parameters which are limited by the treaty, as well as specific annotation requirements which must be achieved upon full entry into force. DARMS supports U.S. compliance with the Opens Skies Treaty by means of three subsystems: the Data Annotation Subsytem (DAS), which annotates sensor media with data obtained from sensors and the aircraft`s avionics system; the Data Recording System (DRS), which records all sensor and flight events on magnetic media for later use in generating Treaty mandated mission reports; and the Dynamic Sensor Mapping Subsystem (DSMS), which provides observers and sensor operators with a real-time moving map displays of the progress of the mission, complete with instantaneous and cumulative sensor coverages. This paper will describe DARMS and its subsystems in greater detail, along with the supporting avionics sub-systems. 7 figs.« less
Lee, Peter; Yan, Ping; Ewart, Paul; Kohl, Peter
2012-01-01
Whole-heart multi-parametric optical mapping has provided valuable insight into the interplay of electro-physiological parameters, and this technology will continue to thrive as dyes are improved and technical solutions for imaging become simpler and cheaper. Here, we show the advantage of using improved 2nd-generation voltage dyes, provide a simple solution to panoramic multi-parametric mapping, and illustrate the application of flash photolysis of caged compounds for studies in the whole heart. For proof of principle, we used the isolated rat whole-heart model. After characterising the blue and green isosbestic points of di-4-ANBDQBS and di-4-ANBDQPQ, respectively, two voltage and calcium mapping systems are described. With two newly custom-made multi-band optical filters, (1) di-4-ANBDQBS and fluo-4 and (2) di-4-ANBDQPQ and rhod-2 mapping are demonstrated. Furthermore, we demonstrate three-parameter mapping using di-4-ANBDQPQ, rhod-2 and NADH. Using off-the-shelf optics and the di-4-ANBDQPQ and rhod-2 combination, we demonstrate panoramic multi-parametric mapping, affording a 360° spatiotemporal record of activity. Finally, local optical perturbation of calcium dynamics in the whole heart is demonstrated using the caged compound, o-nitrophenyl ethylene glycol tetraacetic acid (NP-EGTA), with an ultraviolet light-emitting diode (LED). Calcium maps (heart loaded with di-4-ANBDQPQ and rhod-2) demonstrate successful NP-EGTA loading and local flash photolysis. All imaging systems were built using only a single camera. In conclusion, using novel 2nd-generation voltage dyes, we developed scalable techniques for multi-parametric optical mapping of the whole heart from one point of view and panoramically. In addition to these parameter imaging approaches, we show that it is possible to use caged compounds and ultraviolet LEDs to locally perturb electrophysiological parameters in the whole heart. PMID:22886365
NASA Astrophysics Data System (ADS)
Liu, Zhi; Zhou, Baotong; Zhang, Changnian
2017-03-01
Vehicle-mounted panoramic system is important safety assistant equipment for driving. However, traditional systems only render fixed top-down perspective view of limited view field, which may have potential safety hazard. In this paper, a texture mapping algorithm for 3D vehicle-mounted panoramic system is introduced, and an implementation of the algorithm utilizing OpenGL ES library based on Android smart platform is presented. Initial experiment results show that the proposed algorithm can render a good 3D panorama, and has the ability to change view point freely.
Panoramic Views of the Landing site from Sagan Memorial Station
NASA Technical Reports Server (NTRS)
1997-01-01
Each of these panoramic views is a controlled mosaic of approximately 300 IMP images covering 360 degrees of azimuth and elevations from approximately 4 degrees above the horizon to 45 degrees below it. Simultaneous adjustment of orientations of all images has been performed to minimize discontinuities between images. Mosaics have been highpass-filtered and contrast-enhanced to improve discrimination of details without distorting relative colors overall.
TOP IMAGE: Enhanced true-color image created from the 'Gallery Pan' sequence, acquired on sols 8-10 so that local solar time increases nearly continuously from about 10:00 at the right edge to about 12:00 at the left. Mosaics of images obtained by the right camera through 670 nm, 530 nm, and 440 nm filters were used as red, green and blue channels. Grid ticks indicate azimuth clockwise from north in 30 degree increments and elevation in 15 degree increments.BOTTOM IMAGE: Anaglyphic stereoimage created from the 'monster pan' sequence, acquired in four sections between about 8:30 and 15:00 local solar time on sol 3. Mosaics of images obtained through the 670 nm filter (left camera) and 530 and 440 nm filters (right camera) were used where available. At the top and bottom, left- and right-camera 670 nm images were used. Part of the northern horizon was not imaged because of the tilt of the lander. This image may be viewed stereoscopically through glasses with a red filter for the left eye and a cyan filter for the right eye.NOTE: original caption as published in Science MagazineMars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).2004-11-11
NASA's Mars Exploration Rover Opportunity captured this view from the base of "Burns Cliff" during the rover's 280th martian day (Nov. 6, 2004). This cliff in the inner wall of "Endurance Crater" displays multiple layers of bedrock for the rover to examine with its panoramic camera and miniature thermal emission spectrometer. The rover team has decided that the farthest Opportunity can safely advance along the base of the cliff is close to the squarish white rock near the center of this image. After examining the site for a few days from that position, the the rover will turn around and head out of the crater. The view is a mosaic of frames taken by Opportunity's navigation camera. The rover was on ground with a slope of about 30 degrees when the pictures were taken, and the view is presented here in a way that corrects for that tilt of the camera. http://photojournal.jpl.nasa.gov/catalog/PIA07039
Details of Layers in Victoria Crater's Cape St. Vincent
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Mars Exploration Rover Opportunity rover spent about 300 sols (Martian days) during 2006 and 2007 traversing the rim of Victoria Crater. Besides looking for a good place to enter the crater, the rover obtained images of rock outcrops exposed at several cliffs along the way. The cliff in this image from Opportunity's panoramic camera (Pancam) is informally named Cape St. Vincent. It is a promontory approximately 12 meters (39 feet) tall on the northern rim of Victoria crater, near the farthest point along the rover's traverse around the rim. Layers seen in Cape St. Vincent have proven to be among the best examples of meter scale cross-bedding observed on Mars to date. Cross-bedding is a geologic term for rock layers which are inclined relative to the horizontal and which are indicative of ancient sand dune deposits. In order to get a better look at these outcrops, Pancam 'super-resolution' imaging techniques were utilized. Super-resolution is a type of imaging mode which acquires many pictures of the same target to reconstruct a digital image at a higher resolution than is native to the camera. These super-resolution images have allowed scientists to discern that the rocks at Victoria Crater once represented a large dune field, not unlike the Sahara desert on Earth, and that this dune field migrated with an ancient wind flowing from the north to the south across the region. Other rover chemical and mineral measurements have shown that many of the ancient sand dunes studied in Meridiani Planum were modified by surface and subsurface liquid water long ago. This is a Mars Exploration Rover Opportunity Panoramic Camera image acquired on sol 1167 (May 7, 2007), and was constructed from a mathematical combination of 16 different blue filter (480 nm) images.NASA Technical Reports Server (NTRS)
2004-01-01
This high-resolution image captured by the Mars Exploration Rover Opportunity's panoramic camera shows in superb detail a portion of the puzzling rock outcropping that scientists are eagerly planning to investigate. Presently, Opportunity is on its lander facing northeast; the outcropping lies to the northwest. These layered rocks measure only 10 centimeters (4 inches) tall and are thought to be either volcanic ash deposits or sediments carried by water or wind. The small rock in the center is about the size of a golf ball.
Partial 'Seminole' Panorama (False Color)
NASA Technical Reports Server (NTRS)
2005-01-01
This view from Spirit's panoramic camera is assembled from frames acquired on Martian days, or sols, 672 and 673 (Nov. 23 and 24, 2005) from the rover's position near an outcrop called 'Seminole.' The view is a southward-looking portion of a larger panorama still being completed. This is a false-color version to emphasize geological differences. It is a composite of images shot through three different filters, admitting light of wavelengths 750 nanometers, 530 nanometers and 430 nanometers.Earth Obsersation taken by the Expedition 11 crew
2005-07-07
ISS011-E-10221 (7 July 2005) --- At the time of this Expedition 11 digital still camera's image, Hurricane Dennis was churning northwestward through the Caribbean Sea between Jamaica and eastern Cuba packing winds of up to 115 miles per hour. Even though the hurricane had just attained Category 3 intensity, the eye had not yet cleared. This high-oblique, panoramic view, taken through a 28mm lens at 21:14:00 gmt, is looking southwest.
Airbag Trail Dubbed 'Magic Carpet'
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Click on the image for Airbag Trail Dubbed 'Magic Carpet' (QTVR) [figure removed for brevity, see original site] [figure removed for brevity, see original site] Magic Carpet Close-upMagic Carpet Close-up HDThis section of the first color image from the Mars Exploration Rover Spirit has been further processed to produce a sharper look at a trail left by the one of rover's airbags. The drag mark was made after the rover landed and its airbags were deflated and retracted. Scientists have dubbed the region the 'Magic Carpet' after a crumpled portion of the soil that appears to have been peeled away (lower left side of the drag mark). Rocks were also dragged by the airbags, leaving impressions and 'bow waves' in the soil. The mission team plans to drive the rover over to this site to look for additional clues about the composition of the martian soil. This image was taken by Spirit's panoramic camera.This extreme close-up image (see insets above) highlights the martian feature that scientists have named 'Magic Carpet' because of its resemblance to a crumpled carpet fold. Scientists think the soil here may have detached from its underlying layer, possibly due to interaction with the Mars Exploration Rover Spirit's airbag after landing. This image was taken on Mars by the rover's panoramic camera.View Northward from Spirit's Winter Roost
NASA Technical Reports Server (NTRS)
2006-01-01
One part of the research program that NASA's Mars Exploration Rover Spirit is conducting while sitting at a favorable location for wintertime solar energy is the most detailed panorama yet taken on the surface of Mars. This view is a partial preliminary product from the continuing work on the full image, which will be called the 'McMurdo Panorama.' Spirit's panoramic camera (Pancam) began taking exposures for the McMurdo Panorama on the rover's 814th Martian day (April 18, 2006). The rover has accumulated more than 900 exposures for this panorama so far, through all of the Pancam mineralogy filters and using little or no image compression. Even with a tilt toward the winter sun, the amount of energy available daily is small, so the job will still take one to two more months to complete. This portion of the work in progress looks toward the north. 'Husband Hill,' which Spirit was climbing a year ago, is on the horizon near the center. 'Home Plate' is a between that hill and the rover's current position. Wheel tracks imprinted when Spirit drove south from Home Plate can be seen crossing the middle distance of the image from the center to the right. This is an approximate true-color rendering combining exposures taken through three of the panoramic camera's filters. The filters used are centered on wavelengths of 750 nanometers, 530 nanometers and 430 nanometers.Layers of 'Cabo Frio' in 'Victoria Crater' (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is an enhanced false color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.Layers of 'Cape Verde' in 'Victoria Crater' (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
This view of Victoria crater is looking north from 'Duck Bay' towards the dramatic promontory called 'Cape Verde.' The dramatic cliff of layered rocks is about 50 meters (about 165 feet) away from the rover and is about 6 meters (about 20 feet) tall. The taller promontory beyond that is about 100 meters (about 325 feet) away, and the vista beyond that extends away for more than 400 meters (about 1300 feet) into the distance. This is an enhanced false color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.Panoramic thermal imaging: challenges and tradeoffs
NASA Astrophysics Data System (ADS)
Aburmad, Shimon
2014-06-01
Over the past decade, we have witnessed a growing demand for electro-optical systems that can provide continuous 3600 coverage. Applications such as perimeter security, autonomous vehicles, and military warning systems are a few of the most common applications for panoramic imaging. There are several different technological approaches for achieving panoramic imaging. Solutions based on rotating elements do not provide continuous coverage as there is a time lag between updates. Continuous panoramic solutions either use "stitched" images from multiple adjacent sensors, or sophisticated optical designs which warp a panoramic view onto a single sensor. When dealing with panoramic imaging in the visible spectrum, high volume production and advancement of semiconductor technology has enabled the use of CMOS/CCD image sensors with a huge number of pixels, small pixel dimensions, and low cost devices. However, in the infrared spectrum, the growth of detector pixel counts, pixel size reduction, and cost reduction is taking place at a slower rate due to the complexity of the technology and limitations caused by the laws of physics. In this work, we will explore the challenges involved in achieving 3600 panoramic thermal imaging, and will analyze aspects such as spatial resolution, FOV, data complexity, FPA utilization, system complexity, coverage and cost of the different solutions. We will provide illustrations, calculations, and tradeoffs between three solutions evaluated by Opgal: A unique 3600 lens design using an LWIR XGA detector, stitching of three adjacent LWIR sensors equipped with a low distortion 1200 lens, and a fisheye lens with a HFOV of 180º and an XGA sensor.
The Mars NetLander panoramic camera
NASA Astrophysics Data System (ADS)
Jaumann, Ralf; Langevin, Yves; Hauber, Ernst; Oberst, Jürgen; Grothues, Hans-Georg; Hoffmann, Harald; Soufflot, Alain; Bertaux, Jean-Loup; Dimarellis, Emmanuel; Mottola, Stefano; Bibring, Jean-Pierre; Neukum, Gerhard; Albertz, Jörg; Masson, Philippe; Pinet, Patrick; Lamy, Philippe; Formisano, Vittorio
2000-10-01
The panoramic camera (PanCam) imaging experiment is designed to obtain high-resolution multispectral stereoscopic panoramic images from each of the four Mars NetLander 2005 sites. The main scientific objectives to be addressed by the PanCam experiment are (1) to locate the landing sites and support the NetLander network sciences, (2) to geologically investigate and map the landing sites, and (3) to study the properties of the atmosphere and of variable phenomena. To place in situ measurements at a landing site into a proper regional context, it is necessary to determine the lander orientation on ground and to exactly locate the position of the landing site with respect to the available cartographic database. This is not possible by tracking alone due to the lack of on-ground orientation and the so-called map-tie problem. Images as provided by the PanCam allow to determine accurate tilt and north directions for each lander and to identify the lander locations based on landmarks, which can also be recognized in appropriate orbiter imagery. With this information, it will be further possible to improve the Mars-wide geodetic control point network and the resulting geometric precision of global map products. The major geoscientific objectives of the PanCam lander images are the recognition of surface features like ripples, ridges and troughs, and the identification and characterization of different rock and surface units based on their morphology, distribution, spectral characteristics, and physical properties. The analysis of the PanCam imagery will finally result in the generation of precise map products for each of the landing sites. So far comparative geologic studies of the Martian surface are restricted to the timely separated Mars Pathfinder and the two Viking Lander Missions. Further lander missions are in preparation (Beagle-2, Mars Surveyor 03). NetLander provides the unique opportunity to nearly double the number of accessible landing site data by providing simultaneous and long-term observations at four different surface locations which becomes especially important for studies of variable surface features as well as properties and phenomena of the atmosphere. Major changes on the surface that can be detected by PanCam are caused by eolian activities and condensation processes, which directly reflect variations in the prevailing near-surface wind regime and the diurnal and seasonal volatile and dust cycles. Atmospheric studies will concentrate on the detection of clouds, measurements of the aerosol contents and the water vapor absorption at 936 nm. In order to meet these objectives, the proposed PanCam instrument is a highly miniaturized, dedicated stereo and multispectral imaging device. The camera consists of two identical camera cubes, which are arranged in a common housing at a fixed stereo base length of 11 cm. Each camera cube is equipped with a CCD frame transfer detector with 1024×1024 active pixels and optics with a focal length of 13 mm yielding a field-of-view of 53°×53° and an instantaneous filed of view of 1.1 mrad. A filter swivel with six positions provides different color band passes in the wavelength range of 400-950 nm. The camera head is mounted on top of a deployable scissors boom and can be rotated by 360° to obtain a full panorama, which is already covered by eight images. The boom raises the camera head to a final altitude of 90 cm above the surface. Most camera activities will take place within the first week and the first month of the mission. During the remainder of the mission, the camera will operate with a reduced data rate to monitor time-dependent variations on a daily basis. PanCam is a joint German/French project with contributions from DLR, Institute of Space Sensor Technology and Planetary Exploration, Berlin, Institut d'Astrophysique Spatiale, CNRS, Orsay, and Service d'Aéronomie, CNRS, Verrières-le-Buisson.
NASA Astrophysics Data System (ADS)
Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian
2018-05-01
Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.
Murray, Trevor; Zeil, Jochen
2017-01-01
Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area') has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.
Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes
Zeil, Jochen
2017-01-01
Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its ‘catchment area’) has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the ‘catchment volumes’ within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots. PMID:29088300
Surface Stereo Imager on Mars, Face-On
NASA Technical Reports Server (NTRS)
2008-01-01
This image is a view of NASA's Phoenix Mars Lander's Surface Stereo Imager (SSI) as seen by the lander's Robotic Arm Camera. This image was taken on the afternoon of the 116th Martian day, or sol, of the mission (September 22, 2008). The mast-mounted SSI, which provided the images used in the 360 degree panoramic view of Phoenix's landing site, is about 4 inches tall and 8 inches long. The two 'eyes' of the SSI seen in this image can take photos to create three-dimensional views of the landing site. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Technical Reports Server (NTRS)
2004-01-01
This false-color image from NASA's Mars Exploration Rover Opportunity panoramic camera shows a downward view from the rover as it sits at the edge of 'Endurance' crater. The gradual, 'blueberry'-strewn slope before the rover contains an exposed dark layer of rock that wraps around the upper section of the crater. Scientists suspect that this rock layer will provide clues about Mars' distant past. This mosaic image comprises images taken from 10 rover positions using 750, 530 and 430 nanometer filters, acquired on sol 131 (June 6, 2004).NASA Technical Reports Server (NTRS)
2004-01-01
This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.NASA Technical Reports Server (NTRS)
2004-01-01
A three-dimensional color model created using data from the Mars Exploration Rover's panoramic camera shows images of airbag drag marks on the martian surface. The triangular rock in the upper left corner is approximately 20 centimeters (8 inches) tall. The meatball-shaped rock in the upper right corner is approximately 10 centimeters (4 inches) tall. The dark portion of the surface, or 'trough' is approximately 1 centimeter (0.4 inches) deep at its deepest point. This model is displayed using software developed by NASA's Ames Research Center.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Figure 1 (close-up) This panoramic camera image of the soil target whimsically called 'Neopolitan' from the Mars Exploration Rover Opportunity's 'Eagle Crater' soil survey highlights the border between two different soil types - a lighter, finer-grained unit to the left and a darker, coarser-grained to the right. Scientists are pondering the unusually distinct border between these different soil types. To the lower left and partially hidden by the shadow of the mast is an airbag bounce mark.Video Completion in Digital Stabilization Task Using Pseudo-Panoramic Technique
NASA Astrophysics Data System (ADS)
Favorskaya, M. N.; Buryachenko, V. V.; Zotin, A. G.; Pakhirka, A. I.
2017-05-01
Video completion is a necessary stage after stabilization of a non-stationary video sequence, if it is desirable to make the resolution of the stabilized frames equalled the resolution of the original frames. Usually the cropped stabilized frames lose 10-20% of area that means the worse visibility of the reconstructed scenes. The extension of a view of field may appear due to the pan-tilt-zoom unwanted camera movement. Our approach deals with a preparing of pseudo-panoramic key frame during a stabilization stage as a pre-processing step for the following inpainting. It is based on a multi-layered representation of each frame including the background and objects, moving differently. The proposed algorithm involves four steps, such as the background completion, local motion inpainting, local warping, and seamless blending. Our experiments show that a necessity of a seamless stitching occurs often than a local warping step. Therefore, a seamless blending was investigated in details including four main categories, such as feathering-based, pyramid-based, gradient-based, and optimal seam-based blending.
Using Vertical Panoramic Images to Record a Historic Cemetery
NASA Astrophysics Data System (ADS)
Tommaselli, A. M. G.; Polidori, L.; Hasegawa, J. K.; Camargo, P. O.; Hirao, H.; Moraes, M. V. A.; Rissate, E. A., Jr.; Henrique, G. R.; Abreu, P. A. G.; Berveglieri, A.; Marcato, J., Jr.
2013-07-01
In 1919, during colonization of the West Region of São Paulo State, Brazil, the Ogassawara family built a cemetery and a school with donations received from the newspaper Osaka Mainichi Shimbum, in Osaka, Japan. The cemetery was closed by President Getúlio Vargas in 1942, during the Second World War. The architecture of the Japanese cemetery is a unique feature in Latin America. Even considering its historical and cultural relevance, there is a lack of geometric documentation about the location and features of the tombs and other buildings within the cemetery. As an alternative to provide detailed and fast georeferenced information about the area, it is proposed to use near vertical panoramic images taken with a digital camera with fisheye lens as the primary data followed by bundle adjustment and photogrammetric restitution. The aim of this paper is to present a feasibility study on the proposed technique with the assessment of the results with a strip of five panoramic images, taken over some graves in the Japanese cemetery. The results showed that a plant in a scale of 1 : 200 can be produced with photogrammetric restitution at a very low cost, when compared to topographic surveying or laser scanning. The paper will address the main advantages of this technique as well as its drawbacks, with quantitative analysis of the results achieved in this experiment.
NASA Technical Reports Server (NTRS)
2006-01-01
As NASA's Mars Exploration Rover Spirit began collecting images for a 360-degree panorama of new terrain, the rover captured this view of a dark boulder with an interesting surface texture. The boulder sits about 40 centimeters (16 inches) tall on Martian sand about 5 meters (16 feet) away from Spirit. It is one of many dark, volcanic rock fragments -- many pocked with rounded holes called vesicles -- littering the slope of 'Low Ridge.' The rock surface facing the rover is similar in appearance to the surface texture on the outside of lava flows on Earth. Spirit took this approximately true-color image with the panoramic camera on the rover's 810th sol, or Martian day, of exploring Mars (April 13, 2006), using the camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.Bird's-Eye View of Opportunity at 'Erebus' (Polar)
NASA Technical Reports Server (NTRS)
2006-01-01
This view combines frames taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity on the rover's 652nd through 663rd Martian days, or sols (Nov. 23 to Dec. 5, 2005), at the edge of 'Erebus Crater.' The mosaic is presented as a polar projection. This type of projection provides a kind of overhead view of all of the surrounding terrain. Opportunity examined targets on the outcrop called 'Rimrock' in front of the rover, testing the mobility and operation of Opportunity's robotic arm. The view shows examples of the dunes and ripples that Opportunity has been crossing as the rover drives on the Meridiani plains. This view is an approximate true color rendering composed of images taken through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.Layers of 'Cape Verde' in 'Victoria Crater' (Enhanced)
NASA Technical Reports Server (NTRS)
2006-01-01
This view of Victoria crater is looking north from 'Duck Bay' towards the dramatic promontory called 'Cape Verde.' The dramatic cliff of layered rocks is about 50 meters (about 165 feet) away from the rover and is about 6 meters (about 20 feet) tall. The taller promontory beyond that is about 100 meters (about 325 feet) away, and the vista beyond that extends away for more than 400 meters (about 1300 feet) into the distance. This is a false color rendering (enhanced to bring out details from within the shadowed regions of the scene) of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.A new screening pathway for identifying asymptomatic patients using dental panoramic radiographs
NASA Astrophysics Data System (ADS)
Hayashi, Tatsuro; Matsumoto, Takuya; Sawagashira, Tsuyoshi; Tagami, Motoki; Katsumata, Akitoshi; Hayashi, Yoshinori; Muramatsu, Chisako; Zhou, Xiangrong; Iida, Yukihiro; Matsuoka, Masato; Katagi, Kiyoji; Fujita, Hiroshi
2012-03-01
To identify asymptomatic patients is the challenging task and the essential first step in diagnosis. Findings of dental panoramic radiographs include not only dental conditions but also radiographic signs that are suggestive of possible systemic diseases such as osteoporosis, arteriosclerosis, and maxillary sinusitis. Detection of such signs on panoramic radiographs has a potential to provide supplemental benefits for patients. However, it is not easy for general dental practitioners to pay careful attention to such signs. We addressed the development of a computer-aided detection (CAD) system that detects radiographic signs of pathology on panoramic images, and the design of the framework of new screening pathway by cooperation of dentists and our CAD system. The performance evaluation of our CAD system showed the sensitivity and specificity in the identification of osteoporotic patients were 92.6 % and 100 %, respectively, and those of the maxillary sinus abnormality were 89.6 % and 73.6 %, respectively. The detection rate of carotid artery calcifications that suggests the need for further medical evaluation was approximately 93.6 % with 4.4 false-positives per image. To validate the utility of the new screening pathway, preliminary clinical trials by using our CAD system were conducted. To date, 223 panoramic images were processed and 4 asymptomatic patients with suspected osteoporosis, 7 asymptomatic patients with suspected calcifications, and 40 asymptomatic patients with suspected maxillary sinusitis were detected in our initial trial. It was suggested that our new screening pathway could be useful to identify asymptomatic patients with systemic diseases.
Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs).
Jaramillo, Carlos; Valenti, Roberto G; Guo, Ling; Xiao, Jizhong
2016-02-06
We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor's projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.
View Northward from Spirit's Winter Roost (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
One part of the research program that NASA's Mars Exploration Rover Spirit is conducting while sitting at a favorable location for wintertime solar energy is the most detailed panorama yet taken on the surface of Mars. This view is a partial preliminary product from the continuing work on the full image, which will be called the 'McMurdo Panorama.' Spirit's panoramic camera (Pancam) began taking exposures for the McMurdo Panorama on the rover's 814th Martian day (April 18, 2006). The rover has accumulated more than 900 exposures for this panorama so far, through all of the Pancam mineralogy filters and using little or no image compression. Even with a tilt toward the winter sun, the amount of energy available daily is small, so the job will still take one to two more months to complete. This portion of the work in progress looks toward the north. 'Husband Hill,' which Spirit was climbing a year ago, is on the horizon near the center. 'Home Plate' is a between that hill and the rover's current position. Wheel tracks imprinted when Spirit drove south from Home Plate can be seen crossing the middle distance of the image from the center to the right. This view is presented in false color to emphasize differences among rock and soil materials. It combines exposures taken through three of the panoramic camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers and 430 nanometers.Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets
Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F.; Johnson, J. R.; Goetz, W.; Landis, G.A.
2007-01-01
The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.
PRoViScout: a planetary scouting rover demonstrator
NASA Astrophysics Data System (ADS)
Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos
2012-01-01
Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.
Panoramic stereo sphere vision
NASA Astrophysics Data System (ADS)
Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian
2013-01-01
Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.
Preliminary optical design of PANIC, a wide-field infrared camera for CAHA
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Rodríguez Gómez, J.; Lenzen, R.; Sánchez-Blanco, E.
2008-07-01
In this paper, we present the preliminary optical design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Calar Alto 2.2 m telescope. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. A mosaic of four Hawaii 2RG of 2k x 2k made by Teledyne is used as detector and will give a field of view of 31.9 arcmin x 31.9 arcmin. This cryogenic instrument has been optimized for the Y, J, H and K bands. Special care has been taken in the selection of the standard IR materials used for the optics in order to maximize the instrument throughput and to include the z band. The main challenges of this design are: to produce a well defined internal pupil which allows reducing the thermal background by a cryogenic pupil stop; the correction of off-axis aberrations due to the large field available; the correction of chromatic aberration because of the wide spectral coverage; and the capability of introduction of narrow band filters (~1%) in the system minimizing the degradation in the filter passband without a collimated stage in the camera. We show the optomechanical error budget and compensation strategy that allows our as built design to met the performances from an optical point of view. Finally, we demonstrate the flexibility of the design showing the performances of PANIC at the CAHA 3.5m telescope.
Applications of Panoramic Images: from 720° Panorama to Interior 3d Models of Augmented Reality
NASA Astrophysics Data System (ADS)
Lee, I.-C.; Tsai, F.
2015-05-01
A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The results presented in this paper demonstrate the potential of using panoramic images to generate 3D point clouds and 3D models. However, it is currently a manual and labor-intensive process. A research is being carried out to Increase the degree of automation of these procedures.
A panoramic imaging system based on fish-eye lens
NASA Astrophysics Data System (ADS)
Wang, Ye; Hao, Chenyang
2017-10-01
Panoramic imaging has been closely watched as one of the major technologies of AR and VR. Mainstream panoramic imaging techniques lenses include fish-eye lenses, image splicing, and catadioptric imaging system. Meanwhile, fish-eyes are widely used in the big picture video surveillance. The advantage of fish-eye lenses is that they are easy to operate and cost less, but how to solve the image distortion of fish-eye lenses has always been a very important topic. In this paper, the image calibration algorithm of fish-eye lens is studied by comparing the method of interpolation, bilinear interpolation and double three interpolation, which are used to optimize the images.
An automatic panoramic image reconstruction scheme from dental computed tomography images
Papakosta, Thekla K; Savva, Antonis D; Economopoulos, Theodore L; Gröhndal, H G
2017-01-01
Objectives: Panoramic images of the jaws are extensively used for dental examinations and/or surgical planning because they provide a general overview of the patient's maxillary and mandibular regions. Panoramic images are two-dimensional projections of three-dimensional (3D) objects. Therefore, it should be possible to reconstruct them from 3D radiographic representations of the jaws, produced by CBCT scanning, obviating the need for additional exposure to X-rays, should there be a need of panoramic views. The aim of this article is to present an automated method for reconstructing panoramic dental images from CBCT data. Methods: The proposed methodology consists of a series of sequential processing stages for detecting a fitting dental arch which is used for projecting the 3D information of the CBCT data to the two-dimensional plane of the panoramic image. The detection is based on a template polynomial which is constructed from a training data set. Results: A total of 42 CBCT data sets of real clinical pre-operative and post-operative representations from 21 patients were used. Eight data sets were used for training the system and the rest for testing. Conclusions: The proposed methodology was successfully applied to CBCT data sets, producing corresponding panoramic images, suitable for examining pre-operatively and post-operatively the patients' maxillary and mandibular regions. PMID:28112548
NASA Technical Reports Server (NTRS)
2004-01-01
This animation shows the transit of Mars' moon Phobos across the Sun. It is made up of images taken by the Mars Exploration Rover Opportunity on the morning of the 45th martian day, or sol, of its mission. This observation will help refine our knowledge of the orbit and position of Phobos. Other spacecraft may be able to take better images of Phobos using this new information. This event is similar to solar eclipses seen on Earth in which our Moon passes in front of the Sun. The images were taken by the rover's panoramic camera.
NASA Technical Reports Server (NTRS)
2004-01-01
The circular shapes seen on the martian surface in these images are 'footprints' left by the Mars Exploration Rover Opportunity's airbags during landing as the spacecraft gently rolled to a stop. Opportunity landed at approximately 9:05 p.m. PST on Saturday, Jan. 24, 2004, Earth-received time. The circular region of the flower-like feature on the right is about the size of a basketball. Scientists are studying the prints for more clues about the makeup of martian soil. The images were taken at Meridiani Planum, Mars, by the panoramic camera on the Mars Exploration Rover Opportunity.
Spacecraft technology. [development of satellites and remote sensors
NASA Technical Reports Server (NTRS)
1975-01-01
Developments in spacecraft technology are discussed with emphasis on the Explorer satellite program. The subjects considered include the following: (1) nutational behavior of the Explorer-45 satellite, (2) panoramic sensor development, (3) onboard camera signal processor for Explorer satellites, and (4) microcircuit development. Information on the zero gravity testing of heat pipes is included. Procedures for cleaning heat treated aluminum heat pipes are explained. The development of a five-year magnetic tape, an accurate incremental angular encoder, and a blood freezing apparatus for leukemia research are also discussed.
Coarse Layering at 'Home Plate'
NASA Technical Reports Server (NTRS)
2006-01-01
This image shows coarse-grained layers from around the edge of a low plateau called 'Home Plate' inside Mars' Gusev Crater. One possible origin is material falling to the ground after being thrown aloft by an explosion such as a volcanic eruption or meteorite impact. The panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit acquired the exposures for this image on Spirit's 749th Martian day (Feb. 10, 2006). This view is an approximately true-color rendering mathematically generated from separate images taken through all of the left Pancam's 432-nanometer to 753-nanometer filters.Earth Obsersation taken by the Expedition 11 crew
2005-07-16
ISS011-E-10509 (16 July 2005) --- This high-oblique panoramic view, recorded by a digital still camera using a 400mm lens, shows the eye of Hurricane Emily. The image was captured by the crew of the international space station while the complex was over the southern Gulf of Mexico looking eastwardly toward the rising moon. At the time, Emily was a strengthening Category 4 hurricane with winds of nearly 155 miles per hour and moving west-northwestwardly over the northwest Caribbean Sea about 135 miles southwest of Kingston, Jamaica.
Registration of Panoramic/Fish-Eye Image Sequence and LiDAR Points Using Skyline Features
Zhu, Ningning; Jia, Yonghong; Ji, Shunping
2018-01-01
We propose utilizing a rigorous registration model and a skyline-based method for automatic registration of LiDAR points and a sequence of panoramic/fish-eye images in a mobile mapping system (MMS). This method can automatically optimize original registration parameters and avoid the use of manual interventions in control point-based registration methods. First, the rigorous registration model between the LiDAR points and the panoramic/fish-eye image was built. Second, skyline pixels from panoramic/fish-eye images and skyline points from the MMS’s LiDAR points were extracted, relying on the difference in the pixel values and the registration model, respectively. Third, a brute force optimization method was used to search for optimal matching parameters between skyline pixels and skyline points. In the experiments, the original registration method and the control point registration method were used to compare the accuracy of our method with a sequence of panoramic/fish-eye images. The result showed: (1) the panoramic/fish-eye image registration model is effective and can achieve high-precision registration of the image and the MMS’s LiDAR points; (2) the skyline-based registration method can automatically optimize the initial attitude parameters, realizing a high-precision registration of a panoramic/fish-eye image and the MMS’s LiDAR points; and (3) the attitude correction values of the sequences of panoramic/fish-eye images are different, and the values must be solved one by one. PMID:29883431
Spirit Beholds Bumpy Boulder (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
As NASA's Mars Exploration Rover Spirit began collecting images for a 360-degree panorama of new terrain, the rover captured this view of a dark boulder with an interesting surface texture. The boulder sits about 40 centimeters (16 inches) tall on Martian sand about 5 meters (16 feet) away from Spirit. It is one of many dark, volcanic rock fragments -- many pocked with rounded holes called vesicles -- littering the slope of 'Low Ridge.' The rock surface facing the rover is similar in appearance to the surface texture on the outside of lava flows on Earth. Spirit took this false-color image with the panoramic camera on the rover's 810th sol, or Martian day, of exploring Mars (April 13, 2006). This image is a false-color rendering using camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.NASA Astrophysics Data System (ADS)
Keller, H. U.; Hartwig, H.; Kramm, R.; Koschny, D.; Markiewicz, W. J.; Thomas, N.; Fernades, M.; Smith, P. H.; Reynolds, R.; Lemmon, M. T.; Weinberg, J.; Marcialis, R.; Tanner, R.; Boss, B. J.; Oquest, C.; Paige, D. A.
2001-08-01
The Robotic Arm Camera (RAC) is one of the key instruments newly developed for the Mars Volatiles and Climate Surveyor payload of the Mars Polar Lander. This lightweight instrument employs a front lens with variable focus range and takes images at distances from 11 mm (image scale 1:1) to infinity. Color images with a resolution of better than 50 μm can be obtained to characterize the Martian soil. Spectral information of nearby objects is retrieved through illumination with blue, green, and red lamp sets. The design and performance of the camera are described in relation to the science objectives and operation. The RAC uses the same CCD detector array as the Surface Stereo Imager and shares the readout electronics with this camera. The RAC is mounted at the wrist of the Robotic Arm and can characterize the contents of the scoop, the samples of soil fed to the Thermal Evolved Gas Analyzer, the Martian surface in the vicinity of the lander, and the interior of trenches dug out by the Robotic Arm. It can also be used to take panoramic images and to retrieve stereo information with an effective baseline surpassing that of the Surface Stereo Imager by about a factor of 3.
Enhancement of panoramic image resolution based on swift interpolation of Bezier surface
NASA Astrophysics Data System (ADS)
Xiao, Xiao; Yang, Guo-guang; Bai, Jian
2007-01-01
Panoramic annular lens project the view of the entire 360 degrees around the optical axis onto an annular plane based on the way of flat cylinder perspective. Due to the infinite depth of field and the linear mapping relationship between an object and an image, the panoramic imaging system plays important roles in the applications of robot vision, surveillance and virtual reality. An annular image needs to be unwrapped to conventional rectangular image without distortion, in which interpolation algorithm is necessary. Although cubic splines interpolation can enhance the resolution of unwrapped image, it occupies too much time to be applied in practices. This paper adopts interpolation method based on Bezier surface and proposes a swift interpolation algorithm for panoramic image, considering the characteristic of panoramic image. The result indicates that the resolution of the image is well enhanced compared with the image by cubic splines and bilinear interpolation. Meanwhile the time consumed is shortened up by 78% than the time consumed cubic interpolation.
Surface albedo observations at Gusev Crater and Meridiani Planum, Mars
Bell, J.F.; Rice, M.S.; Johnson, J. R.; Hare, T.M.
2008-01-01
During the Mars Exploration Rover mission, the Pancam instrument has periodically acquired large-scale panoramic images with its broadband (739??338 nm) filter in order to estimate the Lambert bolometric albedo of the surface along each rover's traverse. In this work we present the full suite of such estimated albedo values measured to date by the Spirit and Opportunity rovers along their traverses in Gusev Crater and Meridiani Planum, respectively. We include estimated bolometric albedo values of individual surface features (e.g., outcrops, dusty plains, aeolian bed forms, wheel tracks, light-toned soils, and crater walls) as well as overall surface averages of the 43 total panoramic albedo data sets acquired to date. We also present comparisons to estimated Lambert albedo values taken from the Mars Global Surveyor Mars Orbiter Camera (MOC) along the rovers' traverses, and to the large-scale bolometric albedos of the sites from the Viking Orbiter Infrared Thermal Mapper (IRTM) and Mars Global Surveyor/Thermal Emission Spectrometer (TES). The ranges of Pancam-derived albedos at Gusev Crater (0.14 to 0.25) and in Meridiani Planum. (0.10 to 0.18) are in good agreement with IRTM, TES, and MOC orbital measurements. These data sets will be a useful tool and benchmark for future investigations of albodo variations with time, including measurements from orbital instruments like the Context Camera and High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. Long-term, accurate albedo measurements could also be important for future efforts in climate modeling as well as for studies of active surface processes. Copyright 2008 by the American Geophysical Union.
Spirit Mini-TES Observations: From Bonneville Crater to the Columbia Hills.
NASA Astrophysics Data System (ADS)
Blaney, D. L.; Athena Science
2004-11-01
During the Mars Exploration Rover Extended Mission the Spirit rover traveled from the rim of the crater informally known as "Bonneville, Crater" into the hills informally known as the "Columbia Hills" in Gusev Crater. During this >3 km drive Mini-TES (Miniature Thermal Emission Spectrometer) collected systematic observations to characterize spectral diversity and targeted observations of rocks, soils, rover tracks, and trenches. Surface temperatures have steadily decreased during the drive and arrival into the Columbia hills with the approach of winter. Mini-TES covers the 5-29 micron spectral region with a 20 mrad aperture that is co-registered with panoramic and navigation cameras. As at the landing site (Christensen et al., Science, 2004), many dark rocks in the plains between "Bonneville Crater" show long wavelength (15-25 μm) absorptions due to olivine consistent with the detection of olivine-bearing basalt at this site from orbital TES infrared spectroscopy. Rocks with the spectral signature of olivine are rarer in the Columbia Hills. Measurements of outcrops of presumably intact bedrock lack any olivine signature and are consistent with other results indicating that these rocks are highly altered. Rock coatings and fine dust on rocks are common. Soils have thin dust coatings and disturbed soil (e.g rover tracks and trenches) are consistent with basalt. Mini-TES observations were coordinated with Panoramic Camera (Pancam) observations to allow us to search for correlations of visible spectra properties with infrared. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.
Surface albedo observations at Gusev Crater and Meridiani Planum, Mars
NASA Astrophysics Data System (ADS)
Bell, J. F.; Rice, M. S.; Johnson, J. R.; Hare, T. M.
2008-05-01
During the Mars Exploration Rover mission, the Pancam instrument has periodically acquired large-scale panoramic images with its broadband (739 +/- 338 nm) filter in order to estimate the Lambert bolometric albedo of the surface along each rover's traverse. In this work we present the full suite of such estimated albedo values measured to date by the Spirit and Opportunity rovers along their traverses in Gusev Crater and Meridiani Planum, respectively. We include estimated bolometric albedo values of individual surface features (e.g., outcrops, dusty plains, aeolian bed forms, wheel tracks, light-toned soils, and crater walls) as well as overall surface averages of the 43 total panoramic albedo data sets acquired to date. We also present comparisons to estimated Lambert albedo values taken from the Mars Global Surveyor Mars Orbiter Camera (MOC) along the rovers' traverses, and to the large-scale bolometric albedos of the sites from the Viking Orbiter Infrared Thermal Mapper (IRTM) and Mars Global Surveyor/Thermal Emission Spectrometer (TES). The ranges of Pancam-derived albedos at Gusev Crater (0.14 to 0.25) and in Meridiani Planum (0.10 to 0.18) are in good agreement with IRTM, TES, and MOC orbital measurements. These data sets will be a useful tool and benchmark for future investigations of albedo variations with time, including measurements from orbital instruments like the Context Camera and High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. Long-term, accurate albedo measurements could also be important for future efforts in climate modeling as well as for studies of active surface processes.
An automatic chip structure optical inspection system for electronic components
NASA Astrophysics Data System (ADS)
Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe
2018-01-01
An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.
Jaramillo, Carlos; Valenti, Roberto G.; Guo, Ling; Xiao, Jizhong
2016-01-01
We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor’s projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances. PMID:26861351
Water Ice Clouds as Seen from the Mars Exploration Rovers
NASA Astrophysics Data System (ADS)
Wolff, M. J.; Clancy, R. T.; Banfield, D.; Cuozzo, K.
2005-12-01
Water ice clouds that bear a striking resemblance to terrestrial cirrus (e.g., "Mare's tails") have been observed by the Panoramic Camera (Pancam), the Navigation Camera (Navcam), the Hazard Camera (Hazcam), and the Minature Thermal Emission Spectrometer (Mini-TES) on board the Mars Exploration Rovers (MER). Such phenomena represent an opportunity to characterize local and regional scale meteorology as well as our understanding of the processes involved. However, a necessary first-step is to adequately describe some basic properties of the detected clouds: 1) when are the clouds present (i.e., local time, season, etc.)? 2) where are the clouds present? That is to say, what is the relative frequency between the two rover sites as well as the connection to detections from orbiting spacecraft. 3) what are the observed morphologies? 4) what are the projected velocities (i.e., wind speeds and directions) associated with the clouds? 5) what is the abundance of water ice nuclei (i.e., optical depth)? Our talk will summarize our progress in answering the above questions, as well as provide initial results in connecting the observations to more global behavior in the Martian climate.
NASA Technical Reports Server (NTRS)
2005-01-01
Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. This time-lapse composite, acquired the evening of Spirit's martian sol 590 (Aug. 30, 2005) from a perch atop 'Husband Hill' in Gusev Crater, shows Phobos, the brighter moon, on the left, and Deimos, the dimmer moon, on the right. In this sequence of images obtained every 170 seconds, both moons move from top to bottom. The bright star Aldebaran forms a trail on the right, along with some other stars in the constellation Taurus. Most of the other streaks in the image mark the collision of cosmic rays with pixels in the camera. Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the six images that make up this composite using Spirit's panoramic camera with the camera's broadband filter, which was designed specifically for acquiring images under low-light conditions.'Berries' and Rock Share Common Origins
NASA Technical Reports Server (NTRS)
2004-01-01
This false-color composite image, taken at a region of the rock outcrop dubbed 'Shoemaker's Patio' near the Mars Exploration Rover Opportunity's landing site, shows finely layered sediments, which have been accentuated by erosion. The sphere-like grains or 'blueberries' distributed throughout the outcrop can be seen lining up with individual layers. This observation indicates that the spherules are geologic features called concretions, which form in pre-existing wet sediments. Other sphere-like grains, such as impact spherules or volcanic lapilli (fragments of material etween 2 and 64 millimeters or .08 and 2.5 inches in maximum dimension that are ejected from a volcano) are thought to be deposited with sediments and thus would form layers distinct from those of the rocks. This image was captured by the rover's panoramic camera on the 50th martian day, or sol, of the mission. Data from the camera's infrared, green and violet filters were used to create this false-color picture.
Apollo 17 Command/Service modules photographed from lunar module in orbit
1972-12-14
AS17-145-22254 (14 Dec. 1972) --- An excellent view of the Apollo 17 Command and Service Modules (CSM) photographed from the Lunar Module (LM) "Challenger" during rendezvous and docking maneuvers in lunar orbit. The LM ascent stage, with astronauts Eugene A. Cernan and Harrison H. Schmitt aboard, had just returned from the Taurus-Littrow landing site on the lunar surface. Astronaut Ronald E. Evans remained with the CSM in lunar orbit. Note the exposed Scientific Instrument Module (SIM) Bay in Sector 1 of the Service Module (SM). Three experiments are carried in the SIM bay: S-209 lunar sounder, S-171 infrared scanning spectrometer, and the S-169 far-ultraviolet spectrometer. Also mounted in the SIM bay are the panoramic camera, mapping camera and laser altimeter used in service module photographic tasks. A portion of the LM is on the right.
Design of a Day/Night Lunar Rover
NASA Astrophysics Data System (ADS)
Berkelman, Peter; Easudes, Jesse; Martin, Martin C.; Rollins, Eric; Silberman, Jack; Chen, Mei; Hancock, John; Mor, Andrew B.; Sharf, Alex; Warren, Tom; Bapna, Deepak
1995-06-01
The pair of lunar rovers discussed in this report will return video and state data to various ventures, including theme park and marketing concerns, science agencies, and educational institutions. The greatest challenge accepted by the design team was to enable operations throughout the extremely cold and dark lunar night, an unprecedented goal in planetary exploration. This is achieved through the use of the emerging technology of Alkali Metal Thermal to Electric Converters (AMTEC), provided with heat from a innovative beta-decay heat source, Krypton-85 gas. Although previous space missions have returned still images, our design will convey panoramic video from a ring of cameras around the rover. A six-wheel rocker bogie mechanism is implemented to propel the rover. The rovers will also provide the ability to safeguard their operation to allow untrained members of the general public to drive the vehicle. Additionally, scientific exploration and educational outreach will be supported with a user operable, steerable and zoomable camera.
NASA Technical Reports Server (NTRS)
2004-01-01
The Mars Exploration Rover Opportunity finished observations of the prominent rock outcrop it has been studying during its 51 martian days, or sols, on Mars, and is currently on the hunt for new discoveries. This image from the rover's navigation camera atop its mast features Opportunity's lander--its temporary home for the six-month cruise to Mars. The rover's soil survey traverse plan involves arcing around its landing site, called the Challenger Memorial Station, and over the trench it made on sol 23. In this image, Opportunity is situated about 6.2 meters (about 20.3 feet) from the lander. Rover tracks zig-zag along the surface. Bounce marks and airbag retraction marks are visible around the lander. The calibration target or sundial, which both rover panoramic cameras use to verify the true colors and brightness of the red planet, is visible on the back end of the rover.
Still Giving Thanks for Good Health
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Click on the image for Still Giving Thanks for Good Health (QTVR) NASA's Mars Exploration Rover Spirit took this full-circle panorama of the region near 'Husband Hill' (the peak just to the left of center) over the Thanksgiving holiday, before ascending farther. Both the Spirit and Opportunity rovers are still going strong, more than a year after landing on Mars. This 360-degree view combines 243 images taken by Spirit's panoramic camera over several martian days, or sols, from sol 318 (Nov. 24, 2004) to sol 325 (Dec. 2, 2004). It is an approximately true-color rendering generated from images taken through the camera's 750-, 530-, and 480-nanometer filters. The view is presented here in a cylindrical projection with geometric seam correction. Spirit is now driving up the slope of Husband Hill along a path about one-quarter of the way from the left side of this mosaic.Mastoris, Mihalis; Li, Gang; Welander, Ulf; McDavid, W D
2004-03-01
To determine Line Spread Functions (LSFs) and Modulation Transfer Functions (MTFs) for a digital system for panoramic radiography: the Dimax I (Planmeca Oy, Helsinki, Finland) based on Charge-Coupled Device (CCD) technology. A test object was specially designed having a gold foil positioned vertically. Images of the gold foil created edge functions that were used to determine LSFs and MTFs. The design of the test object made it possible to move the gold foil forward and backward relative to the central plane of the image layer by means of a micrometer screw. The experiment was carried out for different object depths in 5 different regions: the anterior, the canine, the premolar, the molar, and the TMJ regions. LSFs and MTFs were calculated using specially designed software. The results are presented graphically. LSFs and MTFs for the central plane were essentially the same for all regions. The MTFs for different object depths in the 5 investigated regions exhibited typical characteristics of MTFs for panoramic radiography with the exception for the functions for the molar region. The present findings indicate that the resolution of the Dimax I CCD system is comparable to that of film-based panoramic radiography.
Observations of the Perseids 2012 using SPOSH cameras
NASA Astrophysics Data System (ADS)
Margonis, A.; Flohrer, J.; Christou, A.; Elgner, S.; Oberst, J.
2012-09-01
The Perseids are one of the most prominent annual meteor showers occurring every summer when the stream of dust particles, originating from Halley-type comet 109P/Swift-Tuttle, intersects the orbital path of the Earth. The dense core of this stream passes Earth's orbit on the 12th of August producing the maximum number of meteors. The Technical University of Berlin (TUB) and the German Aerospace Center (DLR) organize observing campaigns every summer monitoring the Perseids activity. The observations are carried out using the Smart Panoramic Optical Sensor Head (SPOSH) camera system [0]. The SPOSH camera has been developed by DLR and Jena-Optronik GmbH under an ESA/ESTEC contract and it is designed to image faint, short-lived phenomena on dark planetary hemispheres. The camera features a highly sensitive backilluminated 1024x1024 CCD chip and a high dynamic range of 14 bits. The custom-made fish-eye lens offers a 120°x120° field-of-view (168° over the diagonal). Figure 1: A meteor captured by the SPOSH cameras simultaneously during the last 2011 observing campaign in Greece. The horizon including surrounding mountains can be seen in the image corners as a result of the large FOV of the camera. The observations will be made on the Greek Peloponnese peninsula monitoring the post-peak activity of the Perseids during a one-week period around the August New Moon (14th to 21st). Two SPOSH cameras will be deployed in two remote sites in high altitudes for the triangulation of meteor trajectories captured at both stations simultaneously. The observations during this time interval will give us the possibility to study the poorly-observed postmaximum branch of the Perseid stream and compare the results with datasets from previous campaigns which covered different periods of this long-lived meteor shower. The acquired data will be processed using dedicated software for meteor data reduction developed at TUB and DLR. Assuming a successful campaign, statistics, trajectories and photometric properties of the processed double-station meteors will be presented at the conference. Furthermore, a first order statistical analysis of the meteors processed during the 2011 and the new 2012 campaigns will be presented [0].
Earth Observations taken by Expedition 34 crewmember
2013-01-04
ISS034-E-016601 (4 Jan. 2013) --- On Jan. 4 a large presence of stratocumulus clouds was the central focus of camera lenses which remained aimed at the clouds as the Expedition 34 crew members aboard the International Space Station flew above the northwestern Pacific Ocean about 460 miles east of northern Honshu, Japan. This is a descending pass with a panoramic view looking southeast in late afternoon light with the terminator (upper left). The cloud pattern is typical for this part of the world. The low clouds carry cold air over a warmer sea with no discernable storm pattern.
NASA Technical Reports Server (NTRS)
2004-01-01
This image of the martian sundial onboard the Mars Exploration Rover Spirit was processed by students in the Red Rover Goes to Mars program to impose hour markings on the face of the dial. The position of the shadow of the sundial's post within the markings indicates the time of day and the season, which in this image is 12:17 p.m. local solar time, late summer. A team of 16 students from 12 countries were selected by the Planetary Society to participate in this program. This image was taken on Mars by the rover's panoramic camera.2004-02-13
This color image taken by the Mars Exploration Rover Spirit's panoramic camera on Sol 40 is centered on an unusually flaky rock called Mimi. Mimi is only one of many features in the area known as "Stone Council," but looks very different from any rock that scientists have seen at the Gusev crater site so far. Mimi's flaky appearance leads scientists to a number of hypotheses. Mimi could have been subjected to pressure either through burial or impact, or may have once been a dune that was cemented into flaky layers, a process that sometimes involves the action of water. http://photojournal.jpl.nasa.gov/catalog/PIA05283
As Far as Opportunity's Eye Can See
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Click on the image for As Far as Opportunity's Eye Can See (QTVR) This expansive view of the martian real estate surrounding the Mars Exploration Rover Opportunity is the first 360 degree, high-resolution color image taken by the rover's panoramic camera. The airbag marks, or footprints, seen in the soil trace the route by which Opportunity rolled to its final resting spot inside a small crater at Meridiani Planum, Mars. The exposed rock outcropping is a future target for further examination. This image mosaic consists of 225 individual frames.Pancam Imaging of the Mars Exploration Rover Landing Sites in Gusev Crater and Meridiani Planum
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.
2004-01-01
The Mars Exploration Rovers carry four Panoramic Camera (Pancam) instruments (two per rover) that have obtained high resolution multispectral and stereoscopic images for studies of the geology, mineralogy, and surface and atmospheric physical properties at both rover landing sites. The Pancams are also providing significant mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach imaging products.
Earth Observations taken by the Expedition 39 Crew
2014-04-22
ISS039-E-014807 (22 April 2014) --- As the International Space Station passed over the Bering Sea on Earth Day, one of the Expedition 39 crew members aboard the orbital outpost shot this panoramic scene looking toward Russia. The Kamchatka Peninsula can be seen in the foreground. Sunglint is visible on the left side of the frame. Only two points of view from Earth orbit were better for taking in this scene than that of the crew member with the camera inside, and those belonged to the two spacewalking astronauts -- Flight Engineers Rick Mastracchio and Steve Swanson of NASA.
NASA Technical Reports Server (NTRS)
1972-01-01
This document is Volume 2 of three volumes of the Final Report for the four band Multispectral Scanner System (MSS). The results are contained of an analysis of pictures of actual outdoor scenes imaged by the engineering model MSS for spectral response, resolution, noise, and video correction. Also included are the results of engineering tests on the MSS for reflectance and saturation from clouds. Finally, two panoramic pictures of Yosemite National Park are provided.
The development of a learning management system for dental radiology education: A technical report.
Chang, Hee-Jin; Symkhampha, Khanthaly; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul
2017-03-01
This study was conducted to suggest the development of a learning management system for dental radiology education using the Modular Object-Oriented Dynamic Learning Environment (Moodle). Moodle is a well-known and verified open-source software-learning management system (OSS-LMS). The Moodle software was installed on a server computer and customized for dental radiology education. The system was implemented for teaching undergraduate students to diagnose dental caries in panoramic images. Questions were chosen that could assess students' diagnosis ability. Students were given several questions corre-sponding to each of 100 panoramic images. The installation and customization of Moodle was feasible, cost-effective, and time-saving. By having students answer questions repeatedly, it was possible to train them to examine panoramic images sequentially and thoroughly. Based on its educational efficiency and efficacy, the adaptation of an OSS-LMS in dental school may be highly recommended. The system could be extended to continuing education for dentists. Further studies on the objective evaluation of knowledge acquisition and retention are needed.
Geometric Calibration of Full Spherical Panoramic Ricoh-Theta Camera
NASA Astrophysics Data System (ADS)
Aghayari, S.; Saadatseresht, M.; Omidalizarandi, M.; Neumann, I.
2017-05-01
A novel calibration process of RICOH-THETA, full-view fisheye camera, is proposed which has numerous applications as a low cost sensor in different disciplines such as photogrammetry, robotic and machine vision and so on. Ricoh Company developed this camera in 2014 that consists of two lenses and is able to capture the whole surrounding environment in one shot. In this research, each lens is calibrated separately and interior/relative orientation parameters (IOPs and ROPs) of the camera are determined on the basis of designed calibration network on the central and side images captured by the aforementioned lenses. Accordingly, designed calibration network is considered as a free distortion grid and applied to the measured control points in the image space as correction terms by means of bilinear interpolation. By performing corresponding corrections, image coordinates are transformed to the unit sphere as an intermediate space between object space and image space in the form of spherical coordinates. Afterwards, IOPs and EOPs of each lens are determined separately through statistical bundle adjustment procedure based on collinearity condition equations. Subsequently, ROPs of two lenses is computed from both EOPs. Our experiments show that by applying 3*3 free distortion grid, image measurements residuals diminish from 1.5 to 0.25 degrees on aforementioned unit sphere.
NASA Astrophysics Data System (ADS)
Lee, Peter; Calvo, Conrado J.; Alfonso-Almazán, José M.; Quintanilla, Jorge G.; Chorro, Francisco J.; Yan, Ping; Loew, Leslie M.; Filgueiras-Rama, David; Millet, José
2017-02-01
Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.
Lee, Peter; Calvo, Conrado J; Alfonso-Almazán, José M; Quintanilla, Jorge G; Chorro, Francisco J; Yan, Ping; Loew, Leslie M; Filgueiras-Rama, David; Millet, José
2017-02-27
Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.
Rind-Like Features at a Meridiani Outcrop
NASA Technical Reports Server (NTRS)
2005-01-01
After months spent roving across a sea of rippled sands, Opportunity reached an outcrop in August 2005 and began investigating exposures of sedimentary rocks, intriguing rind-like features that appear to cap the rocks, and cobbles that dot the martian surface locally. Opportunity spent several sols analyzing a feature called 'Lemon Rind,' a thin surface layer covering portions of outcrop rocks poking through the sand north of 'Erebus Crater.' In images from the panoramic camera, Lemon Rind appears slightly different in color than surrounding rocks. It also appears to be slightly more resistant to wind erosion than the outcrop's interior. To obtain information on how this surface layer (or weathering rind) may have formed and how it compares to previously analyzed outcrops, Opportunity is using the microscopic imager, alpha particle X-ray spectrometer and Moessbauer spectrometer to analyze surfaces that have been brushed and ground with the rock abrasion tool. Scientists will compare these measurements with similar measurements made on the underlying rock material. This is a false-color composite generated by draping enhanced red-green-blue color from the panoramic camera's 753-nanometer, 535-nanometer and 482-nanometer filters over a high-fidelity violet, 432-nanometer-filter image. The image was acquired on martian day, or sol 552 (Aug. 13, 2005) around 11:55 a.m. local true solar time. In this representation, bright sulfur-bearing sedimentary rocks appear light tan to brown, depending on their degree of dust contamination, and small dark 'blueberries' and other much less dusty rock fragments appear as different shades of blue. Draping the color derived from the blue to near-infrared filters over the violet filter image results in a false color view with the sharpest color and morphology contrasts.2003-07-07
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the second Mars Exploration Rover, Opportunity, is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
2003-07-07
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
NASA Technical Reports Server (NTRS)
2006-01-01
While driving eastward toward the northwestern flank of 'McCool Hill,' the wheels of NASA's Mars Exploration Rover Spirit churned up the largest amount of bright soil discovered so far in the mission. This image from Spirit's panoramic camera (Pancam), taken on the rover's 788th Martian day, or sol, of exploration (March 22, 2006), shows the strikingly bright tone and large extent of the materials uncovered. Several days earlier, Spirit's wheels unearthed a small patch of light-toned material informally named 'Tyrone.' In images from Spirit's panoramic camera, 'Tyrone' strongly resembled both 'Arad' and 'Paso Robles,' two patches of light-toned soils discovered earlier in the mission. Spirit found 'Paso Robles' in 2005 while climbing 'Cumberland Ridge' on the western slope of 'Husband Hill.' In early January 2006, the rover discovered 'Arad' on the basin floor just south of 'Husband Hill.' Spirit's instruments confirmed that those soils had a salty chemistry dominated by iron-bearing sulfates. Spirit's Pancam and miniature thermal emission spectrometer examined this most recent discovery, and researchers will compare its properties with the properties of those other deposits. These discoveries indicate that salty, light-toned soil deposits might be widely distributed on the flanks and valley floors of the 'Columbia Hills' region in Gusev Crater on Mars. The salts, which are easily mobilized and concentrated in liquid solution, may record the past presence of water. So far, these enigmatic materials have generated more questions than answers, however, and as Spirit continues to drive across this region in search of a safe winter haven, the team continues to formulate and test hypotheses to explain the rover's most fascinating recent discovery. This view is an approximately true-color rendering that combines separate images taken through the Pancam's 753-nanometer, 535-nanometer, and 432-nanometer filters.Bright Soil Near 'McCool' (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
While driving eastward toward the northwestern flank of 'McCool Hill,' the wheels of NASA's Mars Exploration Rover Spirit churned up the largest amount of bright soil discovered so far in the mission. This image from Spirit's panoramic camera (Pancam), taken on the rover's 788th Martian day, or sol, of exploration (March 22, 2006), shows the strikingly bright tone and large extent of the materials uncovered. Several days earlier, Spirit's wheels unearthed a small patch of light-toned material informally named 'Tyrone.' In images from Spirit's panoramic camera, 'Tyrone' strongly resembled both 'Arad' and 'Paso Robles,' two patches of light-toned soils discovered earlier in the mission. Spirit found 'Paso Robles' in 2005 while climbing 'Cumberland Ridge' on the western slope of 'Husband Hill.' In early January 2006, the rover discovered 'Arad' on the basin floor just south of 'Husband Hill.' Spirit's instruments confirmed that those soils had a salty chemistry dominated by iron-bearing sulfates. Spirit's Pancam and miniature thermal emission spectrometer examined this most recent discovery, and researchers will compare its properties with the properties of those other deposits. These discoveries indicate that salty, light-toned soil deposits might be widely distributed on the flanks and valley floors of the 'Columbia Hills' region in Gusev Crater on Mars. The salts, which are easily mobilized and concentrated in liquid solution, may record the past presence of water. So far, these enigmatic materials have generated more questions than answers, however, and as Spirit continues to drive across this region in search of a safe winter haven, the team continues to formulate and test hypotheses to explain the rover's most fascinating recent discovery. This image is a false-color rendering using using Pancam's 753-nanometer, 535-nanometer, and 432-nanometer filters.Opportunity Landing Spot Panorama (3-D Model)
NASA Technical Reports Server (NTRS)
2004-01-01
The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.
[figure removed for brevity, see original site] Click on image for larger view The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this zoomed-in portion of a three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.Automatic Molar Extraction from Dental Panoramic Radiographs for Forensic Personal Identification
NASA Astrophysics Data System (ADS)
Samopa, Febriliyan; Asano, Akira; Taguchi, Akira
Measurement of an individual molar provides rich information for forensic personal identification. We propose a computer-based system for extracting an individual molar from dental panoramic radiographs. A molar is obtained by extracting the region-of-interest, separating the maxilla and mandible, and extracting the boundaries between teeth. The proposed system is almost fully automatic; all that the user has to do is clicking three points on the boundary between the maxilla and the mandible.
Real-time interactive virtual tour on the World Wide Web (WWW)
NASA Astrophysics Data System (ADS)
Yoon, Sanghyuk; Chen, Hai-jung; Hsu, Tom; Yoon, Ilmi
2003-12-01
Web-based Virtual Tour has become a desirable and demanded application, yet challenging due to the nature of web application's running environment such as limited bandwidth and no guarantee of high computation power on the client side. Image-based rendering approach has attractive advantages over traditional 3D rendering approach in such Web Applications. Traditional approach, such as VRML, requires labor-intensive 3D modeling process, high bandwidth and computation power especially for photo-realistic virtual scenes. QuickTime VR and IPIX as examples of image-based approach, use panoramic photos and the virtual scenes that can be generated from photos directly skipping the modeling process. But, these image-based approaches may require special cameras or effort to take panoramic views and provide only one fixed-point look-around and zooming in-out rather than 'walk around', that is a very important feature to provide immersive experience to virtual tourists. The Web-based Virtual Tour using Tour into the Picture employs pseudo 3D geometry with image-based rendering approach to provide viewers with immersive experience of walking around the virtual space with several snap shots of conventional photos.
Panoramic, large-screen, 3-D flight display system design
NASA Technical Reports Server (NTRS)
Franklin, Henry; Larson, Brent; Johnson, Michael; Droessler, Justin; Reinhart, William F.
1995-01-01
The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified.
Vertical Optical Scanning with Panoramic Vision for Tree Trunk Reconstruction
Berveglieri, Adilson; Liang, Xinlian; Honkavaara, Eija
2017-01-01
This paper presents a practical application of a technique that uses a vertical optical flow with a fisheye camera to generate dense point clouds from a single planimetric station. Accurate data can be extracted to enable the measurement of tree trunks or branches. The images that are collected with this technique can be oriented in photogrammetric software (using fisheye models) and used to generate dense point clouds, provided that some constraints on the camera positions are adopted. A set of images was captured in a forest plot in the experiments. Weighted geometric constraints were imposed in the photogrammetric software to calculate the image orientation, perform dense image matching, and accurately generate a 3D point cloud. The tree trunks in the scenes were reconstructed and mapped in a local reference system. The accuracy assessment was based on differences between measured and estimated trunk diameters at different heights. Trunk sections from an image-based point cloud were also compared to the corresponding sections that were extracted from a dense terrestrial laser scanning (TLS) point cloud. Cylindrical fitting of the trunk sections allowed the assessment of the accuracies of the trunk geometric shapes in both clouds. The average difference between the cylinders that were fitted to the photogrammetric cloud and those to the TLS cloud was less than 1 cm, which indicates the potential of the proposed technique. The point densities that were obtained with vertical optical scanning were 1/3 less than those that were obtained with TLS. However, the point density can be improved by using higher resolution cameras. PMID:29207468
Vertical Optical Scanning with Panoramic Vision for Tree Trunk Reconstruction.
Berveglieri, Adilson; Tommaselli, Antonio M G; Liang, Xinlian; Honkavaara, Eija
2017-12-02
This paper presents a practical application of a technique that uses a vertical optical flow with a fisheye camera to generate dense point clouds from a single planimetric station. Accurate data can be extracted to enable the measurement of tree trunks or branches. The images that are collected with this technique can be oriented in photogrammetric software (using fisheye models) and used to generate dense point clouds, provided that some constraints on the camera positions are adopted. A set of images was captured in a forest plot in the experiments. Weighted geometric constraints were imposed in the photogrammetric software to calculate the image orientation, perform dense image matching, and accurately generate a 3D point cloud. The tree trunks in the scenes were reconstructed and mapped in a local reference system. The accuracy assessment was based on differences between measured and estimated trunk diameters at different heights. Trunk sections from an image-based point cloud were also compared to the corresponding sections that were extracted from a dense terrestrial laser scanning (TLS) point cloud. Cylindrical fitting of the trunk sections allowed the assessment of the accuracies of the trunk geometric shapes in both clouds. The average difference between the cylinders that were fitted to the photogrammetric cloud and those to the TLS cloud was less than 1 cm, which indicates the potential of the proposed technique. The point densities that were obtained with vertical optical scanning were 1/3 less than those that were obtained with TLS. However, the point density can be improved by using higher resolution cameras.
Lee, Peter; Bollensdorff, Christian; Quinn, T. Alexander; Wuskell, Joseph P.; Loew, Leslie M.; Kohl, Peter
2011-01-01
Background Simultaneous optical mapping of multiple electrophysiologically relevant parameters in living myocardium is desirable for integrative exploration of mechanisms underlying heart rhythm generation under normal and pathophysiologic conditions. Current multiparametric methods are technically challenging, usually involving multiple sensors and moving parts, which contributes to high logistic and economic thresholds that prevent easy application of the technique. Objective The purpose of this study was to develop a simple, affordable, and effective method for spatially resolved, continuous, simultaneous, and multiparametric optical mapping of the heart, using a single camera. Methods We present a new method to simultaneously monitor multiple parameters using inexpensive off-the-shelf electronic components and no moving parts. The system comprises a single camera, commercially available optical filters, and light-emitting diodes (LEDs), integrated via microcontroller-based electronics for frame-accurate illumination of the tissue. For proof of principle, we illustrate measurement of four parameters, suitable for ratiometric mapping of membrane potential (di-4-ANBDQPQ) and intracellular free calcium (fura-2), in an isolated Langendorff-perfused rat heart during sinus rhythm and ectopy, induced by local electrical or mechanical stimulation. Results The pilot application demonstrates suitability of this imaging approach for heart rhythm research in the isolated heart. In addition, locally induced excitation, whether stimulated electrically or mechanically, gives rise to similar ventricular propagation patterns. Conclusion Combining an affordable camera with suitable optical filters and microprocessor-controlled LEDs, single-sensor multiparametric optical mapping can be practically implemented in a simple yet powerful configuration and applied to heart rhythm research. The moderate system complexity and component cost is destined to lower the threshold to broader application of functional imaging and to ease implementation of more complex optical mapping approaches, such as multiparametric panoramic imaging. A proof-of-principle application confirmed that although electrically and mechanically induced excitation occur by different mechanisms, their electrophysiologic consequences downstream from the point of activation are not dissimilar. PMID:21459161
Optics of wide-angle panoramic viewing system-assisted vitreous surgery.
Chalam, Kakarla V; Shah, Vinay A
2004-01-01
The purpose of the article is to describe the optics of the contact wide-angle lens system with stereo-reinverter for vitreous surgery. A panoramic viewing system is made up of two components; an indirect ophthalmoscopy lens system for fundus image viewing, which is placed on the patient's cornea as a contact lens, and a separate removable prism system for reinversion of the image mounted on the microscope above the zooming system. The system provides a 104 degrees field of view in a phakic emmetropic eye with minification, which can be magnified by the operating microscope. It permits a binocular stereoptic view even through a small pupil (3 mm) or larger. In an air-filled phakic eye, field of view increases to approximately 130 degrees. The obtained image of the patient's fundus is reinverted to form true, erect, stereoscopic image by the reinversion system. In conclusion, this system permits wide-angle panoramic view of the surgical field. The contact lens neutralizes the optical irregularities of the corneal surface and allows improved visualization in eyes with irregular astigmatism induced by corneal scars. Excellent visualization is achieved in complex clinical situations such as miotic pupils, lenticular opacities, and in air-filled phakic eyes.
The Two Moons of Mars As Seen from 'Husband Hill'
NASA Technical Reports Server (NTRS)
2005-01-01
Taking advantage of extra solar energy collected during the day, NASA's Mars Exloration Rover Spirit settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. Spirit took this succession of images at 150-second intervals from a perch atop 'Husband Hill' in Gusev Crater on martian day, or sol, 594 (Sept. 4, 2005), as the faster-moving martian moon Phobos was passing Deimos in the night sky. Phobos is the brighter object on the left and Deimos is the dimmer object on the right. The bright star Aldebaran and some other stars in the constellation Taurus are visible as star trails. Most of the other streaks in the image are the result of cosmic rays lighting up random groups of pixels in the camera. Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the five images that make up this c omposite with its panoramic camera using the camera's broadband filter, which was designed specifically for acquiring images under low-light conditions.NASA Technical Reports Server (NTRS)
2007-01-01
Another of the best examples of spectacular cross-bedding in Victoria crater are the outcrops at Cape St. Mary, which is an approximately 15 m (45 foot) high promontory located along the western rim of Victoria crater and near the beginning of the rover's traverse around the rim. Like the Cape St. Vincent images, these Pancam super-resolution images have allowed scientists to discern that the rocks at Victoria Crater once represented a large dune field that migrated across this region. This is a Mars Exploration Rover Opportunity Panoramic Camera image mosaic acquired on sol 1213 (June 23, 2007), and was constructed from a mathematical combination of 32 different blue filter (480 nm) images.NASA Technical Reports Server (NTRS)
2004-01-01
This latest color 'postcard from Mars,' taken on Sol 5 by the panoramic camera on the Mars Exploration Rover Spirit, looks to the north. The apparent slope of the horizon is due to the several-degree tilt of the lander deck. On the left, the circular topographic feature dubbed Sleepy Hollow can be seen along with dark markings that may be surface disturbances caused by the airbag-encased lander as it bounced and rolled to rest. A dust-coated airbag is prominent in the foreground, and a dune-like object that has piqued the interest of the science team with its dark, possibly armored top coating, can be seen on the right.Stack of Layers at 'Payson' in Meridiani Planum
NASA Technical Reports Server (NTRS)
2006-01-01
The stack of fine layers exposed at a ledge called 'Payson' on the western edge of 'Erebus Crater' in Mars' Meridiani Planum shows a diverse range of primary and secondary sedimentary textures formed billions of years ago. These structures likely result from an interplay between windblown and water-involved processes. The panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity acquired the exposures for this image on the rover's 749th Martian day (March 3, 2006) This view is an approximately true-color rendering mathematically generated from separate images taken through all of the left Pancam's 432-nanometer to 753-nanometer filters.NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.'
Marquette Island: A Distinct Mafic Lithology Discovered by Opportunity
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Gellert, R.; Herkenhoff, K. E.; Clark, B. C.; Cohen, B. A.; Fleischer, I.; Jolliff, B. L.; Klingelhoefer, G.; Ming, D. W.; Yingst, R. A.
2010-01-01
While rolling over the Meridiani Planum sedimentary terrane, the rover Opportunity has occasionally discovered large, > 10 cm erratics. Most of these have proven to be meteorites [1], but one - Bounce Rock - is a martian basaltic rock similar in composition to the meteorite EETA79001 lithology B [2]. Presently, Opportunity is intensively investigating an --30 cm tall rock named Marquette Island that may be a distinct type of martian mafic lithology. We report the results of its continuing investigation using the Microscopic Imager (MI); Mossbauer Spectrometer (MB) and Alpha Particle X-ray Spectrometer (APXS). A companion abstract discusses the results of Panoramic Camera (Pancam) imaging of the rock [3].
Stars in Orion as Seen from Mars
2004-03-11
Stars in the upper portion of the constellation Orion the Hunter, including the bright shoulder star Betelgeuse and Orion three-star belt, appear in this image taken from the surface of Mars by the panoramic camera on NASA rover Spirit. Spirit imaged stars on March 11, 2004, after it awoke during the martian night for a communication session with NASA's Mars Global Surveyor orbiter. This image is an eight-second exposure. Longer exposures were also taken. The images tested the capabilities of the rover for night-sky observations. Scientists will use the results to aid planning for possible future astronomical observations from Mars. http://photojournal.jpl.nasa.gov/catalog/PIA05546
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, a technician begins checking the Cupola after its delivery and uncrating. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, technicians begin checking the Cupola after its delivery and uncrating. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys, and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
Mapping the Apollo 17 Astronauts' Positions Based on LROC Data and Apollo Surface Photography
NASA Astrophysics Data System (ADS)
Haase, I.; Oberst, J.; Scholten, F.; Gläser, P.; Wählisch, M.; Robinson, M. S.
2011-10-01
The positions from where the Apollo 17 astronauts recorded panoramic image series, e.g. at the so-called "traverse stations", were precisely determined using ortho-images (0.5 m/pxl) as well as Digital Terrain Models (DTM) (1.5 m/pxl and 100 m/pxl) derived from Lunar Reconnaissance Orbiter Camera (LROC) data. Features imaged in the Apollo panoramas were identified in LROC ortho-images. Least-squares techniques were applied to angles measured in the panoramas to determine the astronaut's position to within the ortho-image pixel. The result of our investigation of Traverse Station 1 in the north-west of Steno Crater is presented.
NASA Technical Reports Server (NTRS)
Ridd, M. K.
1984-01-01
Twenty-three missions were flown using the EPA's panoramic camera to obtain color and color infrared photographs of landslide and flood damage in Utah. From the state's point of view, there were many successes. The biggest single obstacle to smooth and continued performance was unavailable aircraft. The Memorandum of Understanding between the State of Utah, the Environmental Protection Agency, and the Center for Remote Sensing and Cartography is included along with forms for planning enviropod missions, for requesting flights, and for obtaining feedback from participating agencies.
NASA Technical Reports Server (NTRS)
2004-01-01
This image shows the patch of soil at the bottom of the shallow depression dubbed 'Laguna Hollow' where the Mars Exploration Rover Spirit will soon begin trenching. Scientists are intrigued by the clustering of small pebbles and the crack-like fine lines, which indicate a coherent surface that expands and contracts. A number of processes can cause materials to expand and contract, including cycles of heating and cooling; freezing and thawing; and rising and falling of salty liquids within a substance. This false-color image was created using the blue, green and infrared filters of the rover's panoramic camera. Scientists chose this particular combination of filters to enhance the heterogeneity of the martian soil.
Robust Feature Matching in Terrestrial Image Sequences
NASA Astrophysics Data System (ADS)
Abbas, A.; Ghuffar, S.
2018-04-01
From the last decade, the feature detection, description and matching techniques are most commonly exploited in various photogrammetric and computer vision applications, which includes: 3D reconstruction of scenes, image stitching for panoramic creation, image classification, or object recognition etc. However, in terrestrial imagery of urban scenes contains various issues, which include duplicate and identical structures (i.e. repeated windows and doors) that cause the problem in feature matching phase and ultimately lead to failure of results specially in case of camera pose and scene structure estimation. In this paper, we will address the issue related to ambiguous feature matching in urban environment due to repeating patterns.
Optical monitoring of film pollution on sea surface
NASA Astrophysics Data System (ADS)
Pavlov, Andrey; Konstantinov, Oleg; Shmirko, Konstantin
2017-11-01
The organic films form a brightness contrast on the sea surface. It makes possible to use cheap simple and miniature systems for video monitoring of pollution of coastal marine areas by oil products in the bunkering of ships, emergency situations at oil terminals, gas and oil pipelines, hydrocarbon production platforms on the shelf, etc.1-16 A panoramic video system with a polarization filter on the lens, located at an altitude of 90 m above sea level, can provide effective control of the water area within a radius of 7 kilometers,17-19 and modern photogrammetry technologies allow not only to register the fact of pollution and get a portrait of the offender, but also with a high Spatial and temporal resolution to estimate the dimensions and trace the dynamics of movement and transformation of the film in a geographic coordinate system. Of particular relevance is the optical method of controlling the pollution of the sea surface at the present time with the development of unmanned aerial vehicles that are already equipped with video cameras and require only a minor upgrade of their video system to enhance the contrast of images of organic films.
Panoramic projection avionics displays
NASA Astrophysics Data System (ADS)
Kalmanash, Michael H.
2003-09-01
Avionics projection displays are entering production in advanced tactical aircraft. Early adopters of this technology in the avionics community used projection displays to replace or upgrade earlier units incorporating direct-view CRT or AMLCD devices. Typical motivation for these upgrades were the alleviation of performance, cost and display device availability concerns. In these systems, the upgraded (projection) displays were one-for-one form / fit replacements for the earlier units. As projection technology has matured, this situation has begun to evolve. The Lockheed-Martin F-35 is the first program in which the cockpit has been specifically designed to take advantage of one of the more unique capabilities of rear projection display technology, namely the ability to replace multiple small screens with a single large conformal viewing surface in the form of a panoramic display. Other programs are expected to follow, since the panoramic formats enable increased mission effectiveness, reduced cost and greater information transfer to the pilot. Some of the advantages and technical challenges associated with panoramic projection displays for avionics applications are described below.
Observations of the Perseids 2007 with SPOSH cameras
NASA Astrophysics Data System (ADS)
Oberst, J.; Flohrer, J.; Tost, W.; Elgner, S.; Koschny, D.; McAuliffe, J.
2008-09-01
A large number of Perseid meteors were captured during a 2007 campaign carried out in Germany and Austria using SPOSH (Smart Panoramic Optical Sensor Head) cameras. The SPOSH camera (developed at DLR and Jena Optronik under contract to ESA/ESTEC) has a custom-made optical system with a field of view of 120 x 120° (170° x 170° over the image diagonal) and features a back-illuminated 1024 x 1024 CCD, which warrants high sensitivity as well as high geometric and photometric accuracy. Images are taken at a rate of one every two seconds. While currently 4 SPOSH cameras are available, two of the cameras are equipped with rotating shutters for meteor speed information. The 4 SPOSH cameras were deployed at locations at Neustrelitz and Liebenhof (near Berlin, Germany), as well as Gahberg and Kanzelhöhe (Austria). Two more commercial cameras (Canon EOS) at separate locations were included in our campaign to warrant multiple observations of the meteors in the case of bad weather. Images were taken during the nights from August 10- 14, with excellent viewing conditions during the night of the Perseid maximum, Aug 12/13 at all stations. Following the campaign, geometric calibrations of the images and comprehensive searches for meteors in the data were carried out. We recorded more than 3300 meteors, among which there were 400 double station observations. During the peak of the shower, 180 meteors were recorded within 30 minutes from Kanzelhöhe (the Observatory at an altitude of 1500 m had extremely clear sky) alone. Hence, we have an unusually large data set, which includes meteors as faint as m=+6, as we estimate. Besides Perseids, a number of sporadic meteors and members of other showers were identified. A full trajectory analysis has been performed for a good number of meteors so far, with most data still awaiting further analysis. This poster presentation will give a full account on the scientific results of the campaign. Furthermore we will report lessons learned from the handling of the 2007 campaign, which includes modified instrumentation and an optimized set-up procedure for the stations as well as streamlined processing and computer-aided meteor detection in images. The campaign was carried out involving students and trainees from the Technical University Berlin and enjoyed funding support from EuroPlanet.
Implementation of the Pan-STARRS Image Processing Pipeline
NASA Astrophysics Data System (ADS)
Fang, Julia; Aspin, C.
2007-12-01
Pan-STARRS, or Panoramic Survey Telescope and Rapid Response System, is a wide-field imaging facility that combines small mirrors with gigapixel cameras. It surveys the entire available sky several times a month, which ultimately requires large amounts of data to be processed and stored right away. Accordingly, the Image Processing Pipeline--the IPP--is a collection of software tools that is responsible for the primary image analysis for Pan-STARRS. It includes data registration, basic image analysis such as obtaining master images and detrending the exposures, mosaic calibration when applicable, and lastly, image sum and difference. In this paper I present my work of the installation of IPP 2.1 and 2.2 on a Linux machine, running the Simtest, which is simulated data to test your installation, and finally applying the IPP to two different sets of UH 2.2m Tek data. This work was conducted by a Research Experience for Undergraduates (REU) position at the University of Hawaii's Institute for Astronomy and funded by the NSF.
An in vitro comparison of subjective image quality of panoramic views acquired via 2D or 3D imaging.
Pittayapat, P; Galiti, D; Huang, Y; Dreesen, K; Schreurs, M; Souza, P Couto; Rubira-Bullen, I R F; Westphalen, F H; Pauwels, R; Kalema, G; Willems, G; Jacobs, R
2013-01-01
The objective of this study is to compare subjective image quality and diagnostic validity of cone-beam CT (CBCT) panoramic reformatting with digital panoramic radiographs. Four dry human skulls and two formalin-fixed human heads were scanned using nine different CBCTs, one multi-slice CT (MSCT) and one standard digital panoramic device. Panoramic views were generated from CBCTs in four slice thicknesses. Seven observers scored image quality and visibility of 14 anatomical structures. Four observers repeated the observation after 4 weeks. Digital panoramic radiographs showed significantly better visualization of anatomical structures except for the condyle. Statistical analysis of image quality showed that the 3D imaging modalities (CBCTs and MSCT) were 7.3 times more likely to receive poor scores than the 2D modality. Yet, image quality from NewTom VGi® and 3D Accuitomo 170® was almost equivalent to that of digital panoramic radiographs with respective odds ratio estimates of 1.2 and 1.6 at 95% Wald confidence limits. A substantial overall agreement amongst observers was found. Intra-observer agreement was moderate to substantial. While 2D-panoramic images are significantly better for subjective diagnosis, 2/3 of the 3D-reformatted panoramic images are moderate or good for diagnostic purposes. Panoramic reformattings from particular CBCTs are comparable to digital panoramic images concerning the overall image quality and visualization of anatomical structures. This clinically implies that a 3D-derived panoramic view can be generated for diagnosis with a recommended 20-mm slice thickness, if CBCT data is a priori available for other purposes.
NASA Astrophysics Data System (ADS)
Zhang, Zhenhai; Li, Kejie; Wu, Xiaobing; Zhang, Shujiang
2008-03-01
The unwrapped and correcting algorithm based on Coordinate Rotation Digital Computer (CORDIC) and bilinear interpolation algorithm was presented in this paper, with the purpose of processing dynamic panoramic annular image. An original annular panoramic image captured by panoramic annular lens (PAL) can be unwrapped and corrected to conventional rectangular image without distortion, which is much more coincident with people's vision. The algorithm for panoramic image processing is modeled by VHDL and implemented in FPGA. The experimental results show that the proposed panoramic image algorithm for unwrapped and distortion correction has the lower computation complexity and the architecture for dynamic panoramic image processing has lower hardware cost and power consumption. And the proposed algorithm is valid.
Panoramic Images Mapping Tools Integrated Within the ESRI ArcGIS Software
NASA Astrophysics Data System (ADS)
Guo, Jiao; Zhong, Ruofei; Zeng, Fanyang
2014-03-01
There is a general study on panoramic images which are presented along with appearance of the Google street map. Despite 360 degree viewing of street, we can realize more applications over panoramic images. This paper developed a toolkits plugged in ArcGIS, which can view panoramic photographs at street level directly from ArcMap and measure and capture all visible elements as frontages, trees and bridges. We use a series of panoramic images adjoined with absolute coordinate through GPS and IMU. There are two methods in this paper to measure object from these panoramic images: one is to intersect object position through a stereogram; the other one is multichip matching involved more than three images which all cover the object. While someone wants to measure objects from these panoramic images, each two panoramic images which both contain the object can be chosen to display on ArcMap. Then we calculate correlation coefficient of the two chosen panoramic images so as to calculate the coordinate of object. Our study test different patterns of panoramic pairs and compare the results of measurement to the real value of objects so as to offer the best choosing suggestion. The article has mainly elaborated the principles of calculating correlation coefficient and multichip matching.
NASA Technical Reports Server (NTRS)
2004-01-01
This Long Term Planning graphic was created from a mosaic of navigation camera images overlain by a polar coordinate grid with the center point as Opportunity's original landing site. The blue dots represent the rover position at various locations.
The red dots represent the center points of the target areas for the instruments on the rover mast (the panoramic camera and miniature thermal emission spectrometer). Opportunity visited Stone Mountain on Feb. 5. Stone Mountain was named after the southernmost point of the Appalachian Mountains outside of Atlanta, Ga. On Earth, Stone Mountain is the last big mountain before the Piedmont flatlands, and on Mars, Stone Mountain is at one end of Opportunity Ledge. El Capitan is a target of interest on Mars named after the second highest peak in Texas in Guadaloupe National Park, which is one of the most visited outcrops in the United States by geologists. It has been a training ground for students and professional geologists to understand what the layering means in relation to the formation of Earth, and scientists will study this prominent point of Opportunity Ledge to understand what the layering means on Mars.The yellow lines show the midpoint where the panoramic camera has swept and will sweep a 120-degree area from the three waypoints on the tour of the outcrop. Imagine a fan-shaped wedge from left to right of the yellow line.The white contour lines are one meter apart, and each drive has been roughly about 2-3 meters in length over the last few sols. The large white blocks are dropouts in the navigation camera data.Opportunity is driving along and taking a photographic panorama of the entire outcrop. Scientists will stitch together these images and use the new mosaic as a 'base map' to decide on geology targets of interest for a more detailed study of the outcrop using the instruments on the robotic arm. Once scientists choose their targets of interest, they plan to study the outcrop for roughly five to fifteen sols. This will include El Capitan and probably one to two other areas.Blue Dot Dates Sol 7 / Jan 31 = Egress & first soil data collected by instruments on the arm Sol 9 / Feb 2 = Second Soil Target Sol 12 / Feb 5 = First Rock Target Sol 16 / Feb 9 = Alpha Waypoint Sol 17 / Feb 10 = Bravo Waypoint Sol 19 or 20 / Feb 12 or 13 = Charlie WaypointNASA Astrophysics Data System (ADS)
Pérez Ramos, A.; Robleda Prieto, G.
2016-06-01
Indoor Gothic apse provides a complex environment for virtualization using imaging techniques due to its light conditions and architecture. Light entering throw large windows in combination with the apse shape makes difficult to find proper conditions to photo capture for reconstruction purposes. Thus, documentation techniques based on images are usually replaced by scanning techniques inside churches. Nevertheless, the need to use Terrestrial Laser Scanning (TLS) for indoor virtualization means a significant increase in the final surveying cost. So, in most cases, scanning techniques are used to generate dense point clouds. However, many Terrestrial Laser Scanner (TLS) internal cameras are not able to provide colour images or cannot reach the image quality that can be obtained using an external camera. Therefore, external quality images are often used to build high resolution textures of these models. This paper aims to solve the problem posted by virtualizing indoor Gothic churches, making that task more affordable using exclusively techniques base on images. It reviews a previous proposed methodology using a DSRL camera with 18-135 lens commonly used for close range photogrammetry and add another one using a HDR 360° camera with four lenses that makes the task easier and faster in comparison with the previous one. Fieldwork and office-work are simplified. The proposed methodology provides photographs in such a good conditions for building point clouds and textured meshes. Furthermore, the same imaging resources can be used to generate more deliverables without extra time consuming in the field, for instance, immersive virtual tours. In order to verify the usefulness of the method, it has been decided to apply it to the apse since it is considered one of the most complex elements of Gothic churches and it could be extended to the whole building.
Design of a panoramic long-wave infrared athermal system
NASA Astrophysics Data System (ADS)
Yao, Yuan; Geng, Anbing; Bai, Jian; Wang, Haitao; Guo, Jie; Xiong, Tao; Luo, Yujie; Huang, Zhi; Hou, Xiyun
2016-12-01
A panoramic long-wave infrared athermal system is introduced in this paper. The proposed system includes a panoramic annular lens (PAL) block providing a stereo field of view of (30 deg - 100 deg) × 360 deg without the need to move its components. Moreover, to ensure the imaging quality at different temperatures, a refractive/diffractive hybrid lens is introduced to achieve optical passive athermalization. The system operates in a spectral band between 8 and 12 μm, with a total length of 175 mm and a focal length of 3.4 mm. To get a bright and clear image, the aperture of the system was set to f/1.15. The introduction of aspherical surface and even-order diffractive surface not only eliminates the differential thermal but also makes the structure simple and lightweight and improves the image quality. The results show that the modulation transfer function below 20 lp/mm of the system is above 0.2 at each temperature ranging from -20°C to +60°C, which is close to the diffraction limit. The system is suitable to be applied in an uncooled infrared focal plane array detector and will serve as a static alert system. It has a number of pixels of 640×480, and the pixel size is 25 μm.
Spherical Images for Cultural Heritage: Survey and Documentation with the Nikon KM360
NASA Astrophysics Data System (ADS)
Gottardi, C.; Guerra, F.
2018-05-01
The work presented here focuses on the analysis of the potential of spherical images acquired with specific cameras for documentation and three-dimensional reconstruction of Cultural Heritage. Nowadays, thanks to the introduction of cameras able to generate panoramic images automatically, without the requirement of a stitching software to join together different photos, spherical images allow the documentation of spaces in an extremely fast and efficient way. In this particular case, the Nikon Key Mission 360 spherical camera was tested on the Tolentini's cloister, which used to be part of the convent of the close church and now location of the Iuav University of Venice. The aim of the research is based on testing the acquisition of spherical images with the KM360 and comparing the obtained photogrammetric models with data acquired from a laser scanning survey in order to test the metric accuracy and the level of detail achievable with this particular camera. This work is part of a wider research project that the Photogrammetry Laboratory of the Iuav University of Venice has been dealing with in the last few months; the final aim of this research project will be not only the comparison between 3D models obtained from spherical images and laser scanning survey's techniques, but also the examination of their reliability and accuracy with respect to the previous methods of generating spherical panoramas. At the end of the research work, we would like to obtain an operational procedure for spherical cameras applied to metric survey and documentation of Cultural Heritage.
NASA Astrophysics Data System (ADS)
Hayakawa, Yuichi S.; Obanawa, Hiroyuki; Yoshida, Hidetsugu; Naruhashi, Ryutaro; Okumura, Koji; Zaiki, Masumi
2016-04-01
Debris avalanche caused by sector collapse of a volcanic mountain often forms depositional landforms with characteristic surface morphology comprising hummocks. Geomorphological and sedimentological analyses of debris avalanche deposits (DAD) at the northeastern face of Mt. Erciyes in central Turkey have been performed to investigate the mechanisms and processes of the debris avalanche. The morphometry of hummocks provides an opportunity to examine the volumetric and kinematic characteristics of the DAD. Although the exact age has been unknown, the sector collapse of this DAD was supposed to have occurred in the late Pleistocene (sometime during 90-20 ka), and subsequent sediment supply from the DAD could have affected ancient human activities in the downstream basin areas. In order to measure detailed surface morphology and depositional structures of the DAD, we apply structure-from-motion multi-view stereo (SfM-MVS) photogrammetry using unmanned aerial system (UAS) and a handheld camera. The UAS, including small unmanned aerial vehicle (sUAV) and a digital camera, provides low-altitude aerial photographs to capture surface morphology for an area of several square kilometers. A high-resolution topographic data, as well as an orthorectified image, of the hummocks were then obtained from the digital elevation model (DEM), and the geometric features of the hummocks were examined. A handheld camera is also used to obtain photographs of outcrop face of the DAD along a road to support the seimentological investigation. The three-dimensional topographic models of the outcrop, with a panoramic orthorectified image projected on a vertical plane, were obtained. This data enables to effectively describe sedimentological structure of the hummock in DAD. The detailed map of the DAD is also further examined with a regional geomorphological map to be compared with other geomorphological features including fluvial valleys, terraces, lakes and active faults.
Opportunity Examines Cracks and Coatings on Mars Rocks
NASA Technical Reports Server (NTRS)
2005-01-01
This false-color panoramic image, taken on martian day, or sol, 561 (Aug. 22, 2005) by NASA's Opportunity rover, shows the nature of the outcrop rocks that the rover is encountering on its southward journey across the martian plains to 'Erebus Crater.' The rocks, similar in make-up to those encountered earlier in the mission, display a clear pattern of cracks as well as rind-like features (identifiable as a light shade of blue to olive in the image) coating the outcrop surface. Prominent in the image are two holes (one on the rock, one on the rind) drilled with the rover's rock abrasion tool to facilitate chemical analysis of the underlying material. The reddish color around the holes is from iron-rich dust produced during the grinding operation. The rind, nicknamed 'Lemon Rind,' and the underlying rock, nicknamed 'Strawberry,' have turned out to be similar in overall chemistry and texture. Science team members are working to understand the nature of the relationship between these kinds of rocks and rinds on the Meridiani plains. This false-color composite was generated from a combination of 750-, 530-, and 430-nanometer filter images taken by the Opportunity panoramic camera, an instrument that has acquired more than 36,000 color filter images to date of martian terrain at Meridiani Planum.Three Fresh Exposures, Enhanced Color
NASA Technical Reports Server (NTRS)
2004-01-01
This enhanced-color panoramic camera image from the Mars Exploration Rover Opportunity features three holes created by the rock abrasion tool between sols 143 and 148 (June 18 and June 23, 2004) inside 'Endurance Crater.' The enhanced image makes the red colors a little redder and blue colors a little bluer, allowing viewers to see differences too subtle to be seen without the exaggeration. When compared with an approximately true color image, the tailings from the rock abrasion tool and the interior of the abraded holes are more prominent in this view. Being able to discriminate color variations helps scientists determine rocks' compositional differences and texture variations. This image was created using the 753-, 535- and 432-nanometer filters.Opportunity on 'Cabo Frio' (Simulated)
NASA Technical Reports Server (NTRS)
2006-01-01
This image superimposes an artist's concept of the Mars Exploration Rover Opportunity atop the 'Cabo Frio' promontory on the rim of 'Victoria Crater' in the Meridiani Planum region of Mars. It is done to give a sense of scale. The underlying image was taken by Opportunity's panoramic camera during the rover's 952nd Martian day, or sol (Sept. 28, 2006). This synthetic image of NASA's Opportunity Mars Exploration Rover at Victoria Crater was produced using 'Virtual Presence in Space' technology. Developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif., this technology combines visualization and image processing tools with Hollywood-style special effects. The image was created using a photorealistic model of the rover and an approximately full-color mosaic.NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At the Space Station Processing Facility, a trailer delivers the Cupola, an element scheduled to be installed on the International Space Station in early 2009. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
Spirit's First Grinding of a Rock on Mars
NASA Technical Reports Server (NTRS)
2004-01-01
The round, shallow depression in this image resulted from history's first grinding of a rock on Mars. The rock abrasion tool on NASA's Spirit rover ground off the surface of a patch 45.5 millimeters (1.8 inches) in diameter on a rock called Adirondack. The hole is 2.65 millimeters (0.1 inch) deep, exposing fresh interior material of the rock for close inspection with the rover's microscopic imager and two spectrometers on the robotic arm. This image was taken by Spirit's panoramic camera, providing a quick visual check of the success of the grinding. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.
NASA Technical Reports Server (NTRS)
2004-01-01
This image mosaic illustrates how scientists use the color calibration targets (upper left) located on both Mars Exploration Rovers to fine-tune the rovers' sense of color. In the center, spectra, or light signatures, acquired in the laboratory of the colored chips on the targets are shown as lines. Actual data from Mars Exploration Rover Spirit's panoramic camera is mapped on top of these lines as dots. The plot demonstrates that the observed colors of Mars match the colors of the chips, and thus approximate the red planet's true colors. This finding is further corroborated by the picture taken on Mars of the calibration target, which shows the colored chips as they would appear on Earth.
Pancam multispectral imaging results from the Spirit Rover at Gusev crater
Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; Goetz, W.; Golombek, M.; Grant, J. A.; Greeley, R.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Morris, R.V.; Dobrea, E.Z.N.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Wolff, M.J.; Wang, A.
2004-01-01
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
View from Spirit's Overwintering Position (False Color)
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Mars Exploration Rover Spirit has this view northward from the position at the north edge of the 'Home Plate' plateau where the rover will spend its third Martian winter. Husband Hill is on the horizon. The dark area in the middle distance is 'El Dorado' sand dune field. Spirit used its panoramic camera (Pancam) to capture this image during the rover's 1,448th Martian day, of sol (Jan. 29, 2008). This view combines separate images taken through the Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers. It is presented in a false-color stretch to bring out subtle color differences in the scene.NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and is interpreted by some to mean 'They of the great rocks.'
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, the Cupola is uncrated. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. The Cupola is an element scheduled to be installed on the International Space Station in early 2009. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The Cupola, an element scheduled to be installed on the International Space Station in early 2009, arrives at KSC on the flatbed of a trailer. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
Pancam multispectral imaging results from the Spirit Rover at Gusev Crater.
Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Blaney, D; Cabrol, N; Calvin, W; Farmer, J; Farrand, W H; Goetz, W; Golombek, M; Grant, J A; Greeley, R; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Moersch, J E; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Wolff, M J; Wang, A
2004-08-06
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
Pancam multispectral imaging results from the Spirit Rover at Gusev Crater
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.;
2004-01-01
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
NASA Technical Reports Server (NTRS)
2004-01-01
This false-color image shows the area within 'Endurance Crater,' currently being investigated by the Mars Exploration Rover Opportunity. The rover is inspecting a hole it drilled into a flat rock (center) dubbed 'Tennessee,' which scientists believe may be made up of the same evaporite-rich materials as those found in 'Eagle Crater.' The overall geography inside Endurance is more complex than scientists anticipated, with at least three distinct bands of rock visible in front of the rover. Scientists hope to investigate the second and third layers of rock for more clues to Mars' history. This image was taken on sol 133 (June 8, 2004) with the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters.Observations of the Perseids 2013 using SPOSH cameras
NASA Astrophysics Data System (ADS)
Margonis, A.; Elgner, S.; Christou, A.; Oberst, J.; Flohrer, J.
2013-09-01
Earth is constantly bombard by debris, most of which disintegrates in the upper atmosphere. The collision of a dust particle, having a mass of approximately 1g or larger, with the Earth's atmosphere results into a visible streak of light in the night sky, called meteor. Comets produce new meteoroids each time they come close to the Sun due to sublimation processes. These fresh particles are moving around the Sun in orbits similar to their parent comet forming meteoroid streams. For this reason, the intersection of Earth's orbital path with different comets, gives rise to anumber of meteor showers throughout the year. The Perseids are one of the most prominent annual meteor showers occurring every summer, having its origin in Halley-type comet 109P/Swift-Tuttle. The dense core of this stream passes Earth's orbit on the 12th of August when more than 100 meteors per hour can been seen by a single observer under ideal conditions. The Technical University of Berlin (TUB) and the German Aerospace Center (DLR) together with the Armagh observatory organize meteor campaigns every summer observing the activity of the Perseids meteor shower. The observations are carried out using the Smart Panoramic Optical Sensor Head (SPOSH) camera system [2] which has been developed by DLR and Jena-Optronik GmbH under an ESA/ESTEC contract. The camera was designed to image faint, short-lived phenomena on dark planetary hemispheres. The camera is equipped with a highly sensitive back-illuminated CCD chip having a pixel resolution of 1024x1024. The custom-made fish-eye lens offers a 120°x120° field-of-view (168° over the diagonal) making the monitoring of nearly the whole night sky possible (Fig. 1). This year the observations will take place between 3rd and 10th of August to cover the meteor activity of the Perseids just before their maximum. The SPOSH cameras will be deployed at two remote sites located in high altitudes in the Greek Peloponnese peninsula. The baseline of ∼50km between the two observing stations ensures a large overlapping area of the cameras' field of views allowing the triangulation of approximately every meteor captured by the two observing systems. The acquired data will be reduced using dedicated software developed at TUB and DLR. Assuming a successful campaign, statistics, trajectories and photometric properties of the processed double-station meteors will be presented at the conference. Furthermore, a first order statistical analysis of the meteors processed during the 2012 and the new 2013 campaigns will be presented [1].
Shah, Rachit D; Cao, Alex; Golenberg, Lavie; Ellis, R Darin; Auner, Gregory W; Pandya, Abhilash K; Klein, Michael D
2009-04-01
Technical advances in the application of laparoscopic and robotic surgical systems have improved platform usability. The authors hypothesized that using two monitors instead of one would lead to faster performance with fewer errors. All tasks were performed using a surgical robot in a training box. One of the monitors was a standard camera with two preset zoom levels (zoomed in and zoomed out, single-monitor condition). The second monitor provided a static panoramic view of the whole surgical field. The standard camera was static at the zoomed-in level for the dual-monitor condition of the study. The study had two groups of participants: 4 surgeons proficient in both robotic and advanced laparoscopic skills and 10 lay persons (nonsurgeons) who were given adequate time to train and familiarize themselves with the equipment. Running a 50-cm rope was the basic task. Advanced tasks included running a suture through predetermined points and intracorporeal knot tying with 3-0 silk. Trial completion times and errors, categorized into three groups (orientation, precision, and task), were recorded. The trial completion times for all the tasks, basic and advanced, in the two groups were not significantly different. Fewer orientation errors occurred in the nonsurgeon group during knot tying (p=0.03) and in both groups during suturing (p=0.0002) in the dual-monitor arm of the study. Differences in precision and task error were not significant. Using two camera views helps both surgeons and lay persons perform complex tasks with fewer errors. These results may be due to better awareness of the surgical field with regard to the location of the instruments, leading to better field orientation. This display setup has potential for use in complex minimally invasive surgeries such as esophagectomy and gastric bypass. This technique also would be applicable to open microsurgery.
A comparison of the diagnostic utility of two image receptors for panoramic radiography.
Carmichael, F A; Hirschmann, P N; Scaife, B; Sheard, L; Mackenzie, A
2000-01-01
To compare the diagnostic utility of two screen-film systems for panoramic radiography, one based on green and the other on ultraviolet light. Two hundred consecutive adult patients with teeth in all four quadrants requiring panoramic radiographs were randomly allocated to one of two groups. One group was imaged with OGA L (CEA AB, Strängnäs, Sweden) film using Lanex Regular (Eastman Kodak, Rochester, NY, USA) screens (the Lanex group). The other group was imaged using Ultra-Vision (Dupont UK Limited, Hertfordshire, UK) film and screens (the Ultra-vision group). Two different panoramic machines were used, a Planmeca (Planmeca OY, Helsinki, Finland) and Cranex (Soredex Orion Corporation, Helsinki, Finland). The radiographs were evaluated by two radiographers for overall quality and any faults recorded. Two dental radiologists evaluated the crestal and apical areas of every standing tooth on a 4-point scale. The likelihood of getting a high-quality image with the different films was modelled using logistic regression, adjusting for the radiologist and the area of the tooth being examined. Inter- and intra-examiner agreement was calculated using Kappa and weighted Kappa where appropriate. The radiographers recorded no significant differences in positioning errors between the two groups of film. However, the films produced on the Cranex were less likely to be recorded as excellent. The radiologists' interexaminer agreement for the lower molars and upper incisors was only moderate at best (kappa = 0.56). No significant differences were found between the likelihood of the two types of film providing a high-quality image. Crestal areas were more likely to be scored well than apical areas. There were no differences in ease of discerning apical and crestal areas between the two screen-film systems. There was only poor to moderate agreement between the two radiologists. Ultra-Vision can be recommended as an alternative to existing rare earth systems for panoramic radiography.
NASA Astrophysics Data System (ADS)
Gupta, S.; Barnes, R.; Ortner, T.; Huber, B.; Paar, G.; Muller, J. P.; Giordano, M.; Willner, K.; Traxler, C.; Juhart, K.; Fritz, L.; Hesina, G.; Tasdelen, E.
2015-12-01
NASA's Mars Exploration Rovers (MER) and Mars Science Laboratory Curiosity Rover (MSL) are proxies for field geologists on Mars, taking high resolution imagery of rock formations and landscapes which is analysed in detail on Earth. Panoramic digital cameras (PanCam on MER and MastCam on MSL) are used for characterising the geology of rock outcrops along rover traverses. A key focus is on sedimentary rocks that have the potential to contain evidence for ancient life on Mars. Clues to determine ancient sedimentary environments are preserved in layer geometries, sedimentary structures and grain size distribution. The panoramic camera systems take stereo images which are co-registered to create 3D point clouds of rock outcrops to be quantitatively analysed much like geologists would do on Earth. The EU FP7 PRoViDE project is compiling all Mars rover vision data into a database accessible through a web-GIS (PRoGIS) and 3D viewer (PRo3D). Stereo-imagery selected in PRoGIS can be rendered in PRo3D, enabling the user to zoom, rotate and translate the 3D outcrop model. Interpretations can be digitised directly onto the 3D surface, and simple measurements can be taken of the dimensions of the outcrop and sedimentary features. Dip and strike is calculated within PRo3D from mapped bedding contacts and fracture traces. Results from multiple outcrops can be integrated in PRoGIS to gain a detailed understanding of the geological features within an area. These tools have been tested on three case studies; Victoria Crater, Yellowknife Bay and Shaler. Victoria Crater, in the Meridiani Planum region of Mars, was visited by the MER-B Opportunity Rover. Erosional widening of the crater produced <15 m high outcrops which expose ancient Martian eolian bedforms. Yellowknife Bay and Shaler were visited in the early stages of the MSL mission, and provide excellent opportunities to characterise Martian fluvio-lacustrine sedimentary features. Development of these tools is crucial to exploitation of vision data from future missions, such as the 2018 ExoMars Rover and the NASA 2020 mission. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 PRoViDE.
Parallel-Processing Software for Creating Mosaic Images
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Deen, Robert; McCauley, Michael; DeJong, Eric
2008-01-01
A computer program implements parallel processing for nearly real-time creation of panoramic mosaics of images of terrain acquired by video cameras on an exploratory robotic vehicle (e.g., a Mars rover). Because the original images are typically acquired at various camera positions and orientations, it is necessary to warp the images into the reference frame of the mosaic before stitching them together to create the mosaic. [Also see "Parallel-Processing Software for Correlating Stereo Images," Software Supplement to NASA Tech Briefs, Vol. 31, No. 9 (September 2007) page 26.] The warping algorithm in this computer program reflects the considerations that (1) for every pixel in the desired final mosaic, a good corresponding point must be found in one or more of the original images and (2) for this purpose, one needs a good mathematical model of the cameras and a good correlation of individual pixels with respect to their positions in three dimensions. The desired mosaic is divided into slices, each of which is assigned to one of a number of central processing units (CPUs) operating simultaneously. The results from the CPUs are gathered and placed into the final mosaic. The time taken to create the mosaic depends upon the number of CPUs, the speed of each CPU, and whether a local or a remote data-staging mechanism is used.
A new bite block for panoramic radiographs of anterior edentulous patients: A technical report.
Park, Jong-Woong; Symkhampha, Khanthaly; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul
2015-06-01
Panoramic radiographs taken using conventional chin-support devices have often presented problems with positioning accuracy and reproducibility. The aim of this report was to propose a new bite block for panoramic radiographs of anterior edentulous patients that better addresses these two issues. A new panoramic radiography bite block similar to the bite block for dentulous patients was developed to enable proper positioning stability for edentulous patients. The new bite block was designed and implemented in light of previous studies. The height of the new bite block was 18 mm and to compensate for the horizontal edentulous space, its horizontal width was 7 mm. The panoramic radiographs using the new bite block were compared with those using the conventional chin-support device. Panoramic radiographs taken with the new bite block showed better stability and bilateral symmetry than those taken with the conventional chin-support device. Patients also showed less movement and more stable positioning during panoramic radiography with the new bite block. Conventional errors in panoramic radiographs of edentulous patients could be caused by unreliability of the chin-support device. The newly proposed bite block for panoramic radiographs of edentulous patients showed better reliability. Further study is required to evaluate the image quality and reproducibility of images with the new bite block.
[Absorbed dose and the effective dose of panoramic temporo mandibular joint radiography].
Matsuo, Ayae; Okano, Tsuneichi; Gotoh, Kenichi; Yokoi, Midori; Hirukawa, Akiko; Okumura, Shinji; Koyama, Syuji
2011-01-01
This study measured the radiation doses absorbed by the patient during Panoramic temporo mandibular joint radiography (Panoramic TMJ), Schüllers method and Orbitoramus projection. The dose of the frontal view in Panoramic TMJ was compared to that with Orbitoramus projection and the lateral view in Panoramic TMJ was compared to that with Schüllers method. We measured the doses received by various organs and calculated the effective doses using the guidelines of the International Commission on Radiological Protection in Publication 103. Organ absorbed doses were measured using an anthropomorphic phantom, loaded with thermoluminescent dosimeters (TLD), located at 160 sensitive sites. The dose shows the sum value of irradiation on both the right and left sides. In addition, we set a few different exposure field sizes. The effective dose for a frontal view in Panoramic TMJ was 11 µSv, and that for the lateral view was 14 µSv. The lens of the Orbitoramus projection was 40 times higher than the frontal view in Panoramic TMJ. Although the effective dose of the lateral view in Panoramic TMJ was 3 times higher than that of the small exposure field (10×10 cm on film) in Schüller's method, it was the same as that of a mid-sized exposure field. When the exposure field in the inferior 1/3 was reduced during panoramic TMJ, the effective doses could be decreased. Therefore we recommend that the size of the exposure field in Panoramic TMJ be decreased.
A Comparison of the AVS-9 and the Panoramic Night Vision Goggles During Rotorcraft Hover and Landing
NASA Technical Reports Server (NTRS)
Szoboszlay, Zoltan; Haworth, Loran; Simpson, Carol
2000-01-01
A flight test was conducted to assess any differences in pilot-vehicle performance and pilot opinion between the use of a current generation night vision goggle (the AVS-9) and one variant of the prototype panoramic night vision goggle (the PNVGII). The panoramic goggle has more than double the horizontal field-of-view of the AVS-9, but reduced image quality. Overall the panoramic goggles compared well to the AVS-9 goggles. However, pilot comment and data are consistent with the assertion that some of the benefits of additional field-of-view with the panoramic goggles were negated by the reduced image quality of the particular variant of the panoramic goggles tested.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Click on the image for A Whale of a Panorama (QTVR) More than 1.5 years into their exploration of Mars, both of NASA's Mars Exploration Rovers continue to send a cornucopia of images to Earth. The results are so spectacular that Deputy Project Manager John Callas recently described them as 'an embarrassment of riches.' Spirit produced this image mosaic, nicknamed the 'Whale Panorama,' two-thirds of the way to the summit of 'Husband Hill,' where the rover investigated martian rocks. On the right side of the panorama is a tilted layer of rocks dubbed 'Larry's Outcrop,' one of several tilted outcrops that scientists examined in April, 2005. They used spatial information to create geologic maps showing the compass orientation and degree of tilting of rock formations in the vicinity. Such information is key to geologic fieldwork because it helps establish if rock layers have been warped since they formed. In this case, scientists have also been studying the mineral and chemical differences, which show that some rocks have been more highly altered than others. In the foreground, in the middle of the image mosaic, Spirit is shown with the scientific instruments at the end of its robotic arm positioned on a rock target known as 'Ahab.' The rover was busy collecting elemental chemistry and mineralogy data on the rock at the same time that it was taking 50 individual snapshots with its five panoramic camera filters to create this stunning view of the martian scenery. The twin tracks of the rover's all-terrain wheels are clearly visible on the left. This mosaic of images spans about 220 degrees from left to right and is an approximate true-color rendering of the Mars terrain acquired through the panoramic camera's 750-, 530-, and 430-nanometer filters. Spirit collected these images from its 497th martian day, or sol, through its 500th sol (May 27 through May 30, 2005).Bright Soil Near 'McCool' (3-D)
NASA Technical Reports Server (NTRS)
2006-01-01
While driving eastward toward the northwestern flank of 'McCool Hill,' the wheels of NASA's Mars Exploration Rover Spirit churned up the largest amount of bright soil discovered so far in the mission. This image from Spirit's panoramic camera (Pancam), taken on the rover's 788th Martian day, or sol, of exploration (March 22, 2006), shows the strikingly bright tone and large extent of the materials uncovered. Several days earlier, Spirit's wheels unearthed a small patch of light-toned material informally named 'Tyrone.' In images from Spirit's panoramic camera, 'Tyrone' strongly resembled both 'Arad' and 'Paso Robles,' two patches of light-toned soils discovered earlier in the mission. Spirit found 'Paso Robles' in 2005 while climbing 'Cumberland Ridge' on the western slope of 'Husband Hill.' In early January 2006, the rover discovered 'Arad' on the basin floor just south of 'Husband Hill.' Spirit's instruments confirmed that those soils had a salty chemistry dominated by iron-bearing sulfates. Spirit's Pancam and miniature thermal emission spectrometer examined this most recent discovery, and researchers will compare its properties with the properties of those other deposits. These discoveries indicate that salty, light-toned soil deposits might be widely distributed on the flanks and valley floors of the 'Columbia Hills' region in Gusev Crater on Mars. The salts, which are easily mobilized and concentrated in liquid solution, may record the past presence of water. So far, these enigmatic materials have generated more questions than answers, however, and as Spirit continues to drive across this region in search of a safe winter haven, the team continues to formulate and test hypotheses to explain the rover's most fascinating recent discovery. This stereo view combines images from the two blue (430-nanometer) filters in the Pancam's left and right 'eyes.' The image should be viewed using red-and-blue stereo glasses, with the red over your left eye.Innovative uses of GigaPan Technology for Onsite and Distance Education
NASA Astrophysics Data System (ADS)
Bentley, C.; Schott, R. C.; Piatek, J. L.; Richards, B.
2013-12-01
GigaPans are gigapixel panoramic images that can be viewed at a wide range of magnifications, allowing users to explore them in various degrees of detail from the smallest scale to the full image extent. In addition to panoramic images captured with the GigaPan camera mount ('Dry Falls' - http://www.gigapan.com/gigapans/89093), users can also upload annotated images (For example, 'Massanutten sandstone slab with trace fossils (annotated)', http://www.gigapan.com/gigapans/124295) and satellite images (For example, 'Geology vs. Topography - State of Connecticut', http://www.gigapan.com/gigapans/111265). Panoramas with similar topics have been gathered together on the site in galleries, both user-generated and site-curated (For example, http://www.gigapan.com/galleries?categories=geology&page=1). Further innovations in display technology have also led to the development of improved viewers (for example, the annotations in the image linked above can be explored via paired viewers at http://coursecontent.nic.edu/bdrichards/gigapixelimages/callanview) GigaPan panoramas can be created through use of the GigaPan robotic camera mount and a digital camera (different models of the camera mount are available and work with a wide range of cameras). The camera mount can be used to create high-resolution pans ranging in scale from hand sample to outcrop up to landscape via the stitching software included with the robotic mount. The software can also be used to generate GigaPan images from other sources, such as thin section or satellite images, so these images can also be viewed with the online viewer. GigaPan images are typically viewed via a web-based interface that allows the user to interact with the image from the limits of the image detail up to the full panorama. After uploading, information can be added to panoramas with both text captions and geo-referencing (geo-located panoramas can then be viewed in Google Earth). Users can record specific locations and zoom levels in these images via "snapshots": these snapshots can direct others to the same location in the image as well as generate conversations with attached text comments. Users can also group related GigaPans by creating "galleries" of thematically related images (similar to photo albums). Gigapixel images can also be formatted for processing and viewing in an increasing number of platforms/modes as software vendors and internet browsers begin to provide 'add-in' support. This opens up opportunities for innovative adaptations for geoscience education. (For example, http://coursecontent.nic.edu/bdrichards/gigapixelimages/dryfalls) Specific applications of these images for geoscience educations include classroom activities and independent exercises that encourage students to take an active inquiry-based approach to understanding geoscience concepts at multiple skill levels. GigaPans in field research serve as both records of field locations and additional datasets for detailed analyses, such as observing color changes or variations in grain size. Related GigaPans can be also be presented together when embedded in webpages, useful for generating exercises for education purposes or for analyses of outcrops from the macro (landscape, outcrop) down to the micro scale (hand sample, thin section).
NASA Astrophysics Data System (ADS)
Linkin, V.; Harri, A.-M.; Lipatov, A.; Belostotskaja, K.; Derbunovich, B.; Ekonomov, A.; Khloustova, L.; Kremnev, R.; Makarov, V.; Martinov, B.; Nenarokov, D.; Prostov, M.; Pustovalov, A.; Shustko, G.; Järvinen, I.; Kivilinna, H.; Korpela, S.; Kumpulainen, K.; Lehto, A.; Pellinen, R.; Pirjola, R.; Riihelä, P.; Salminen, A.; Schmidt, W.; Siili, T.; Blamont, J.; Carpentier, T.; Debus, A.; Hua, C. T.; Karczewski, J.-F.; Laplace, H.; Levacher, P.; Lognonné, Ph.; Malique, C.; Menvielle, M.; Mouli, G.; Pommereau, J.-P.; Quotb, K.; Runavot, J.; Vienne, D.; Grunthaner, F.; Kuhnke, F.; Musmann, G.; Rieder, R.; Wänke, H.; Economou, T.; Herring, M.; Lane, A.; McKay, C. P.
1998-02-01
A mission to Mars including two Small Stations, two Penetrators and an Orbiter was launched at Baikonur, Kazakhstan, on 16 November 1996. This was called the Mars-96 mission. The Small Stations were expected to land in September 1997 (L s approximately 178°), nominally to Amazonis-Arcadia region on locations (33 N, 169.4 W) and (37.6 N, 161.9W). The fourth stage of the Mars-96 launcher malfunctioned and hence the mission was lost. However, the state of the art concept of the Small Station can be applied to future Martian lander missions. Also, from the manufacturing and performance point of view, the Mars-96 Small Station could be built as such at low cost, and be fairly easily accommodated on almost any forthcoming Martian mission. This is primarily due to the very simple interface between the Small Station and the spacecraft. The Small Station is a sophisticated piece of equipment. With the total available power of approximately 400 mW the Station successfully supports an ambitious scientific program. The Station accommodates a panoramic camera, an alpha-proton-x-ray spectrometer, a seismometer, a magnetometer, an oxidant instrument, equipment for meteorological observations, and sensors for atmospheric measurement during the descent phase, including images taken by a descent phase camera. The total mass of the Small Station with payload on the Martian surface, including the airbags, is only 32 kg. Lander observations on the surface of Mars combined with data from Orbiter instruments will shed light on the contemporary Mars and its evolution. As in the Mars-96 mission, specific science goals could be exploration of the interior and surface of Mars, investigation of the structure and dynamics of the atmosphere, the role of water and other materials containing volatiles and in situ studies of the atmospheric boundary layer processes. To achieve the scientific goals of the mission the lander should carry a versatile set of instruments. The Small Station accommodates devices for atmospheric measurements, geophysical and geochemical studies of the Martian surface and interior, and cameras for descent phase and panoramic views. These instruments would be able to contribute remarkably to the process of solving some of the scientific puzzles of Mars.
Linkin, V; Harri, A M; Lipatov, A; Belostotskaja, K; Derbunovich, B; Ekonomov, A; Khloustova, L; Kremnev, R; Makarov, V; Martinov, B; Nenarokov, D; Prostov, M; Pustovalov, A; Shustko, G; Jarvinen, I; Kivilinna, H; Korpela, S; Kumpulainen, K; Lehto, A; Pellinen, R; Pirjola, R; Riihela, P; Salminen, A; Schmidt, W; McKay, C P
1998-01-01
A mission to Mars including two Small Stations, two Penetrators and an Orbiter was launched at Baikonur, Kazakhstan, on 16 November 1996. This was called the Mars-96 mission. The Small Stations were expected to land in September 1997 (Ls approximately 178 degrees), nominally to Amazonis-Arcadia region on locations (33 N, 169.4 W) and (37.6 N, 161.9 W). The fourth stage of the Mars-96 launcher malfunctioned and hence the mission was lost. However, the state of the art concept of the Small Station can be applied to future Martian lander missions. Also, from the manufacturing and performance point of view, the Mars-96 Small Station could be built as such at low cost, and be fairly easily accommodated on almost any forthcoming Martian mission. This is primarily due to the very simple interface between the Small Station and the spacecraft. The Small Station is a sophisticated piece of equipment. With the total available power of approximately 400 mW the Station successfully supports an ambitious scientific program. The Station accommodates a panoramic camera, an alpha-proton-x-ray spectrometer, a seismometer, a magnetometer, an oxidant instrument, equipment for meteorological observations, and sensors for atmospheric measurement during the descent phase, including images taken by a descent phase camera. The total mass of the Small Station with payload on the Martian surface, including the airbags, is only 32 kg. Lander observations on the surface of Mars combined with data from Orbiter instruments will shed light on the contemporary Mars and its evolution. As in the Mars-96 mission, specific science goals could be exploration of the interior and surface of Mars, investigation of the structure and dynamics of the atmosphere, the role of water and other materials containing volatiles and in situ studies of the atmospheric boundary layer processes. To achieve the scientific goals of the mission the lander should carry a versatile set of instruments. The Small Station accommodates devices for atmospheric measurements, geophysical and geochemical studies of the Martian surface and interior, and cameras for descent phase and panoramic views. These instruments would be able to contribute remarkably to the process of solving some of the scientific puzzles of Mars.
'Non-standard' panoramic programmes and the unusual artefacts they produce.
Harvey, S; Ball, F; Brown, J; Thomas, B
2017-08-25
Dental panoramic radiographs (DPTs) are commonly taken in dental practice in the UK with the number estimated to be 2.7 million per annum. They are used to diagnose caries, periodontal disease, trauma, pathology in the jaws, supernumerary teeth and for orthodontic assessment. Panoramic radiographs are not simple projections but involve a moving X-ray source and detector plate. Ideally only the objects in the focal trough are displayed. This is achieved with a tomographic movement and one or more centre(s) of rotation. One advantage of digital radiography is hardware and software changes to optimise the image. This has led to increasingly complex manufacturer specific digital panoramic programmes. Panoramic radiographs suffer from ghost artefacts which can limit the effectiveness and make interpretation difficult. Conversely 'conventional dental imaging' such as intraoral bitewings do not suffer the same problems. There are also now several 'non-standard' panoramic programmes which aim to optimise the image for different clinical scenarios. These include 'improved interproximality', 'improved orthogonality' and 'panoramic bitewing mode'.This technical report shows that these 'non-standard' panoramic programmes can produce potentially confusing ghost artefacts, of which the practitioner may not be aware.
Ripples in Rocks Point to Water
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows the rock nicknamed 'Last Chance,' which lies within the outcrop near the rover's landing site at Meridiani Planum, Mars. The image provides evidence for a geologic feature known as ripple cross-stratification. At the base of the rock, layers can be seen dipping downward to the right. The bedding that contains these dipping layers is only one to two centimeters (0.4 to 0.8 inches) thick. In the upper right corner of the rock, layers also dip to the right, but exhibit a weak 'concave-up' geometry. These two features -- the thin, cross-stratified bedding combined with the possible concave geometry -- suggest small ripples with sinuous crest lines. Although wind can produce ripples, they rarely have sinuous crest lines and never form steep, dipping layers at this small scale. The most probable explanation for these ripples is that they were formed in the presence of moving water.
Crossbedding Evidence for Underwater Origin Interpretations of cross-lamination patterns presented as clues to this martian rock's origin under flowing water are marked on images taken by the panoramic camera and microscopic imager on NASA's Opportunity. [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2 The red arrows (Figure 1) point to features suggesting cross-lamination within the rock called 'Last Chance' taken at a distance of 4.5 meters (15 feet) during Opportunity's 17th sol (February 10, 2004). The inferred sets of fine layers at angles to each other (cross-laminae) are up to 1.4 centimeters (half an inch) thick. For scale, the distance between two vertical cracks in the rock is about 7 centimeters (2.8 inches). The feature indicated by the middle red arrow suggests a pattern called trough cross-lamination, likely produced when flowing water shaped sinuous ripples in underwater sediment and pushed the ripples to migrate in one direction. The direction of the ancient flow would have been either toward or away from the line of sight from this perspective. The lower and upper red arrows point to cross-lamina sets that are consistent with underwater ripples in the sediment having moved in water that was flowing left to right from this perspective. The yellow arrows (Figure 2) indicate places in the panoramic camera view that correlate with places in the microscope's view of the same rock. [figure removed for brevity, see original site] Figure 3 The microscopic view (Figure 3) is a mosaic of some of the 152 microscopic imager frames of 'Last Chance' that Opportunity took on sols 39 and 40 (March 3 and 4, 2004). [figure removed for brevity, see original site] Figure 4 Figure 4 shows cross-lamination expressed by lines that trend downward from left to right, traced with black lines in the interpretive overlay. These cross-lamination lines are consistent with dipping planes that would have formed surfaces on the down-current side of migrating ripples. Interpretive blue lines indicate boundaries between possible sets of cross-laminae.NASA Technical Reports Server (NTRS)
Sarrazin, P.; Ming, D. W.; Morris, R. V.; Fernandez-Remolar, D.; Amils, R.; Arvidson, R. E.; Blake, D.; Bish, D. L.
2007-01-01
A field campaign was organized in September 2006 by Centro de Astobiologica (Spain) and Washington University (St Louis, USA) for the geological study of the Rio Tinto river bed sediments using a suite of in-situ instruments comprising an ASD reflectance spectrometer, an emission spectrometer, panoramic and close-up color imaging cameras, a life detection system and NASA's CheMin 4 XRD/XRF prototype. The primary objectives of the field campaign were to study the geology of the site and test the potential of the instrument suite in an astrobiological investigation context for future Mars surface robotic missions. The results of the overall campaign will be presented elsewhere. This paper focuses on the results of the XRD/XRF instrument deployment. The specific objectives of the CheMin 4 prototype in Rio Tinto were to 1) characterize the mineralogy of efflorescent salts in their native environments; 2) analyze the mineralogy of salts and oxides from the modern environment to terraces formed earlier as part of the Rio Tinto evaporative system; and 3) map the transition from hematite-dominated terraces to the mixed goethite/salt-bearing terraces where biosignatures are best preserved.
Bird's-Eye View of Opportunity at 'Erebus' (Vertical)
NASA Technical Reports Server (NTRS)
2006-01-01
This view combines frames taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity on the rover's 652nd through 663rd Martian days, or sols (Nov. 23 to Dec. 5, 2005), at the edge of 'Erebus Crater.' The mosaic is presented as a vertical projection. This type of projection provides a true-to-scale overhead view of the rover deck and nearby surrounding terrain. The view here shows outcrop rocks, sand dunes, and other features out to a distance of about 25 meters (82 feet) from the rover. Opportunity examined targets on the outcrop called 'Rimrock' in front of the rover, testing the mobility and operation of Opportunity's robotic arm. The view shows examples of the dunes and ripples that Opportunity has been crossing as the rover drives on the Meridiani plains. This view is a false-color composite of images taken through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters. This kind of false-color scheme emphasizes differences in composition among the different kinds of materials that the rover is exploring.Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars
NASA Technical Reports Server (NTRS)
2006-01-01
During recent soil-brushing experiments, the rock abrasion tool on NASA's Mars Exploration Rover Spirit became covered with dust, as shown here. An abundance of iron oxide minerals in the dust gave the device a reddish-brown veneer. Investigators were using the rock abrasion tool to uncover successive layers of soil in an attempt to reveal near-surface stratigraphy. Afterward, remnant dirt clods were visible on both the bit and the brush of the tool. Designers of the rock abrasion tool at Honeybee Robotics and engineers at the Jet Propulsion Laboratory developed a plan to run the brush on the rock abrasion tool in reverse to dislodge the dirt and return the tool to normal operation. Subsequent communications with the rover revealed that the procedure is working and the rock abrasion tool remains healthy. Spirit acquired this approximately true-color image with the panoramic camera on the rover's 893rd sol, or Martian day (July 8, 2006). The image combines exposures taken through three of the camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers, and 430 nanometers.Lindemann, J P; Kern, R; Michaelis, C; Meyer, P; van Hateren, J H; Egelhaaf, M
2003-03-01
A high-speed panoramic visual stimulation device is introduced which is suitable to analyse visual interneurons during stimulation with rapid image displacements as experienced by fast moving animals. The responses of an identified motion sensitive neuron in the visual system of the blowfly to behaviourally generated image sequences are very complex and hard to predict from the established input circuitry of the neuron. This finding suggests that the computational significance of visual interneurons can only be assessed if they are characterised not only by conventional stimuli as are often used for systems analysis, but also by behaviourally relevant input.
2004-03-06
The red marks in this image, taken by the Mars Exploration Rover Opportunity's panoramic camera, indicate holes made by the rover's rock abrasion tool, located on its instrument deployment device, or "arm." The lower hole, located on a target called "McKittrick," was made on the 30th martian day, or sol, of Opportunity's journey. The upper hole, located on a target called "Guadalupe" was made on sol 34 of the rover's mission. The mosaic image was taken using a blue filter at the "El Capitan" region of the Meridiani Planum, Mars, rock outcrop. The image, shown in a vertical-perspective map projection, consists of images acquired on sols 27, 29 and 30 of the rover's mission. http://photojournal.jpl.nasa.gov/catalog/PIA05513
First Grinding of a Rock on Mars
NASA Technical Reports Server (NTRS)
2004-01-01
The round, shallow depression in this image resulted from history's first grinding of a rock on Mars. The rock abrasion tool on NASA's Spirit rover ground off the surface of a patch 45.5 millimeters (1.8 inches) in diameter on a rock called Adirondack during Spirit's 34th sol on Mars, Feb. 6, 2004. The hole is 2.65 millimeters (0.1 inch) deep, exposing fresh interior material of the rock for close inspection with the rover's microscopic imager and two spectrometers on the robotic arm. This image was taken by Spirit's panoramic camera, providing a quick visual check of the success of the grinding. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Rodríguez Gómez, J.
2011-11-01
PANIC, the PAnoramic Near Infrared Camera, is a new instrument for Calar Alto Observatory (CAHA) is a wide-field infraredimager for the CAHA 2.2 m and 3.5 m telescopes. The optics is a folded single optical train, pure lens optics, with a pixel scale of 0.45 arcsec/pixel (18 microns) at the 2.2 m telescope and 0.23 arcsec/pixel at the 3.5 m. A mosaic of four Hawaii-2RG detectorsprovides a field of view (FOV) of 0.5x0.5 degrees and 0.25x0.25 degrees, respectively. It will cover the photometric bandsfrom Z to K_s (0.8 to 2.5 microns) with a low thermal background due to cold stops. Here we present the current status of the project.
NASA Technical Reports Server (NTRS)
2004-01-01
The pointy features in this image may only be a few centimeters high and less than 1 centimeter (0.4 inches) wide, but they generate major scientific interest. Dubbed 'Razorback,' this chunk of rock sticks up at the edge of flat rocks in 'Endurance Crater.' Based on their understanding of processes on Earth, scientists believe these features may have formed when fluids migrated through fractures, depositing minerals. Fracture-filling minerals would have formed veins composed of a harder material that eroded more slowly than the rock slabs. Possible examination of these features using the instruments on NASA's Mars Exploration Rover Opportunity may further explain what these features have to do with the history of water on Mars. This false-color image was taken by the rover's panoramic camera.Je, U K; Cho, H M; Hong, D K; Cho, H S; Park, Y O; Park, C K; Kim, K S; Lim, H W; Kim, G A; Park, S Y; Woo, T H; Cho, S I
2016-01-01
In this work, we propose a practical method that can combine the two functionalities of dental panoramic and cone-beam CT (CBCT) features in one by using a single panoramic detector. We implemented a CS-based reconstruction algorithm for the proposed method and performed a systematic simulation to demonstrate its viability for 3D dental X-ray imaging. We successfully reconstructed volumetric images of considerably high accuracy by using a panoramic detector having an active area of 198.4 mm × 6.4 mm and evaluated the reconstruction quality as a function of the pitch (p) and the angle step (Δθ). Our simulation results indicate that the CS-based reconstruction almost completely recovered the phantom structures, as in CBCT, for p≤2.0 and θ≤6°, indicating that it seems very promising for accurate image reconstruction even for large-pitch and few-view data. We expect the proposed method to be applicable to developing a cost-effective, volumetric dental X-ray imaging system. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
First Panoramic View From The Surface Of Mars
1996-12-30
First panoramic view by NASA's Viking 1 from the surface of Mars. The out of focus spacecraft component toward left center is the housing for the Viking sample arm, which is not yet deployed. Parallel lines in the sky are an artifact and are not real features. However, the change of brightness from horizon towards zenith and towards the right (west) is accurately reflected in this picture, taken in late Martian afternoon. At the horizon to the left is a plateau-like prominence much brighter than the foreground material between the rocks. The horizon features are approximately three kilometers (1.8 miles) away. At left is a collection of fine-grained material reminiscent of sand dunes. The dark sinuous markings in left foreground are of unknown origin. Some unidentified shapes can be perceived on the hilly eminence at the horizon towards the right. A horizontal cloud stratum can be made out halfway from the horizon to the top of the picture. At left is seen the low gain antenna for receipt of commands from the Earth. The projections on or near the horizon may represent the rims distant impact craters. In right foreground are color charts for Lander camera calibration, a mirror for the Viking magnetic properties experiment and part of a grid on the top of the Lander body. At upper right is the high gain dish antenna for direct communication between landed spacecraft and Earth. Toward the right edge is an array of smooth fine-grained material which shows some hint of ripple structure and may be the beginning of a large dune field off to the right of the picture, which joins with dunes seen at the top left in this 300 degree panoramic view. Some of the rocks appear to be undercut on one side and partially buried by drifting sand on the other. http://photojournal.jpl.nasa.gov/catalog/PIA00383
... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...
Artificial lunar impact craters: Four new identifications, part I
NASA Technical Reports Server (NTRS)
Whitaker, E. A.
1972-01-01
The Apollo 16 panoramic camera photographed the impact locations of the Ranger 7 and 9 spacecraft and the S-4B stage of the Apollo 14 Saturn launch vehicle. Identification of the Ranger craters was very simple because each photographed its target point before impact. Identification of the S-4B impact crater proved to be a simple matter because the impact location, as derived from earth-based tracking, displayed a prominent and unique system of mixed light and dark rays. By using the criterion of a dark ray pattern, a reexamination of the Apollo 14 500 mm Hasselblad sequence taken of the Apollo 13 S-4B impact area was made. This examination quickly led to the discovery of the ray system and the impact crater. The study of artificial lunar impact craters, ejecta blankets, and ray systems provides the long-needed link between the various experimental terrestrial impact and explosion craters, and the naturally occurring impact craters on the moon. This elementary study shows that lunar impact crater diameters are closely predictable from a knowledge of the energies involved, at least in the size range considered, and suggests that parameters, such as velocity, may have a profound effect on crater morphology and ejecta blanket albedo.
NASA Astrophysics Data System (ADS)
Zhang, Min; Katsumata, Akitoshi; Muramatsu, Chisako; Hara, Takeshi; Suzuki, Hiroki; Fujita, Hiroshi
2014-03-01
Periodontal disease is a kind of typical dental diseases, which affects many adults. The presence of alveolar bone resorption, which can be observed from dental panoramic radiographs, is one of the most important signs of the progression of periodontal disease. Automatically evaluating alveolar-bone resorption is of important clinic meaning in dental radiology. The purpose of this study was to propose a novel system for automated alveolar-bone-resorption evaluation from digital dental panoramic radiographs for the first time. The proposed system enables visualization and quantitative evaluation of alveolar bone resorption degree surrounding the teeth. It has the following procedures: (1) pre-processing for a test image; (2) detection of tooth root apices with Gabor filter and curve fitting for the root apex line; (3) detection of features related with alveolar bone by using image phase congruency map and template matching and curving fitting for the alveolar line; (4) detection of occlusion line with selected Gabor filter; (5) finally, evaluation of the quantitative alveolar-bone-resorption degree in the area surrounding teeth by simply computing the average ratio of the height of the alveolar bone and the height of the teeth. The proposed scheme was applied to 30 patient cases of digital panoramic radiographs, with alveolar bone resorption of different stages. Our initial trial on these test cases indicates that the quantitative evaluation results are correlated with the alveolar-boneresorption degree, although the performance still needs further improvement. Therefore it has potential clinical practicability.
Location Distribution Optimization of Photographing Sites for Indoor Panorama Modeling
NASA Astrophysics Data System (ADS)
Zhang, S.; Wu, J.; Zhang, Y.; Zhang, X.; Xin, Z.; Liu, J.
2017-09-01
Generally, panoramas image modeling is costly and time-consuming because of photographing continuously to capture enough photos along the routes, especially in complicated indoor environment. Thus, difficulty follows for a wider applications of panoramic image modeling for business. It is indispensable to make a feasible arrangement of panorama sites locations because the locations influence the clarity, coverage and the amount of panoramic images under the condition of certain device. This paper is aim to propose a standard procedure to generate the specific location and total amount of panorama sites in indoor panoramas modeling. Firstly, establish the functional relationship between one panorama site and its objectives. Then, apply the relationship to panorama sites network. We propose the Distance Clarity function (FC and Fe) manifesting the mathematical relationship between panoramas and objectives distance or obstacle distance. The Distance Buffer function (FB) is modified from traditional buffer method to generate the coverage of panorama site. Secondly, transverse every point in possible area to locate possible panorama site, calculate the clarity and coverage synthetically. Finally select as little points as possible to satiate clarity requirement preferentially and then the coverage requirement. In the experiments, detailed parameters of camera lens are given. Still, more experiments parameters need trying out given that relationship between clarity and distance is device dependent. In short, through the function FC, Fe and FB, locations of panorama sites can be generated automatically and accurately.
NASA Astrophysics Data System (ADS)
Monteleone, M.; Lanorte, A.; Lasaponara, R.
2009-04-01
Cyberpark 2000 is a project funded by the UE Regional Operating Program of the Apulia Region (2000-2006). The main objective of the Cyberpark 2000 project is to develop a new assessment model for the management and monitoring of protected areas in Foggia Province (Apulia Region) based on Information and Communication Technologies. The results herein described are placed inside the research activities finalized to develop an environmental monitoring system knowledge based on the use of satellite time series. This study include: - A- satellite time series of high spatial resolution data for supporting the analysis of fire static risk factors through land use mapping and spectral/quantitative characterization of vegetation fuels; - B- satellite time series of MODIS for supporting fire dynamic risk evaluation of study area - Integrated fire detection by using thermal imaging cameras placed on panoramic view-points; - C - integrated high spatial and high temporal satellite time series for supporting studies in change detection factors or anomalies in vegetation covers; - D - satellite time-series for monitoring: (i) post fire vegetation recovery and (ii) spatio/temporal vegetation dynamics in unburned and burned vegetation covers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Errico, A; Behrman, R; Li, B
Purpose: To develop a simple mathematical model for estimating the patient free-in-air skin entrance exposure (SEE) during a panoramic dental x-ray that does not require the use of a head phantom. This eliminates issues associated with phantom centering and the mounting of a detector on the phantom for routine QC testing. Methods: We used a Sirona Orthophos XG panoramic radiographic unit and a Radcal Accu-Gold system for this study. A solid state detector was attached over the slit of the Orthophos’ sensor with the help of a custom-built jig. A single measurement of the free-in-air exposure at this position wasmore » taken over a full panoramic scan. A mathematical model for estimating the SEE was developed based upon this measurement, the system geometry, x-ray field beam width, and x-ray sweep angle. To validate the model, patient geometry was simulated by a 16 cm diameter PMMA CTDI phantom centered at the machine’s isocenter. Measurements taken on the phantom’s surface were made using a solid state detector with lead backing, an ion chamber, and the ion chamber with the phantom wrapped in lead to mitigate backscatter. Measurements were taken near the start position of the tube and at 90 degrees from the start position. Results: Using the solid state detector, the average SEE was 23.5+/−0.02 mR and 55.5+/−0.08 mR at 64 kVp and 73 kVp, respectively. With the lead-wrapping, the measurements from the ion chamber matched those of the solid state detector to within 0.1%. Preliminary results gave the difference between the mathematical model and the phantom measurements to be approximately 5% at both kVps. Conclusion: Reasonable estimates of patient SEE for panoramic dental radiography can be made using a simple mathematical model without the need for a head phantom.« less
The effect of dose reduction on the detection of anatomical structures on panoramic radiographs.
Kaeppler, G; Dietz, K; Reinert, S
2006-07-01
The aim was to evaluate the effect of dose reduction on diagnostic accuracy using different screen-film combinations and digital techniques for panoramic radiography. Five observers assessed 201 pairs of panoramic radiographs (a total of 402 panoramic radiographs) taken with the Orthophos Plus (Sirona, Bensheim, Germany), for visualization of 11 anatomical structures on each side, using a 3-point scale -1, 0 and 1. Two radiographs of each patient were taken at two different times (conventional setting and setting with decreased dose, done by increasing tube potential settings or halving tube current). To compare the dose at different tube potential settings dose-length product was measured at the secondary collimator. Films with medium and regular intensifying screens (high and low tube potential settings) and storage phosphor plates (low tube potential setting, tube current setting equivalent to regular intensifying screen and halved) were compared. The five observers made 27 610 assessments. Intrarater agreement was expressed by Cohen's kappa coefficient. The results demonstrated an equivalence of regular screens (low tube potential setting) and medium screens (high and low tube potential settings). A significant difference existed between medium screens (low tube potential setting, mean score 0.92) and the group of regular film-screen combinations at high tube potential settings (mean score 0.89) and between all film-screen combinations and the digital system irrespective of exposure (mean score below 0.82). There were no significant differences between medium and regular screens (mean score 0.88 to 0.92) for assessment of the periodontal ligament space, but there was a significant difference compared with the digital system (mean score below 0.76). The kappa coefficient for intrarater agreement was moderate (0.55). New regular intensifying screens can replace medium screens at low tube potential settings. Digital panoramic radiographs should be taken at low tube potential levels with an exposure equivalent at least to a regular intensifying screen.
NASA Astrophysics Data System (ADS)
Koehl, M.; Brigand, N.
2012-08-01
The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image to a panoramic virtual image. It also allows visualizing, in inlay, digital data, like ancient or recent plans, cross sections, descriptions, explanatory videos, sound comments, etc. This project has lead to very convincing results, that were validated by the historians and the archaeologists who have now an interactive tool, disseminated through internet, allowing at the same time to visit virtually the castle, but also to query the system which sends back localized information. The various levels of understanding and set up details, allow an approach of first level for broad Internet users, but also a deeper approach for a group of scientists who are associated to the development of the ruins of the castle and its environment.
Three-dimensional images contribute to the diagnosis of mucous retention cyst in maxillary sinus
Donizeth-Rodrigues, Cleomar; Fonseca-Da Silveira, Márcia; Gonçalves-De Alencar, Ana H.; Garcia-Santos-Silva, Maria A.; Francisco-De-Mendonça, Elismauro
2013-01-01
Objective: To evaluate the detection of mucous retention cyst of maxillary sinus (MRCMS) using panoramic radiography and cone beam computed tomography (CBCT). Study Design: A digital database with 6,000 panoramic radiographs was reviewed for MRCMS. Suggestive images of MRCMS were detected on 185 radiographs, and patients were located and invited to return for follow-up. Thirty patients returned, and control panoramic radiographs were obtained 6 to 46 months after the initial radiograph. When MRCMS was found on control radiographs, CBCT scans were obtained. Cysts were measured and compared on radiographs and scans. The Wilcoxon, Spearman and Kolmorogov-Smirnov tests were used for statistical analysis. The level of significance was set at 5%. Results: There were statistically significant differences between the two methods (p<0.05): 23 MRCMS detected on panoramic radiographs were confirmed by CBCT, but 5 MRCMS detected on CBCT images had not been identified by panoramic radiography. Eight MRCMS detected on control radiographs were not confirmed by CBCT. MRCMS size differences from initial to control panoramic radiographs and CBCT scans were not statistically significant (p= 0.617 and p= 0.626). The correlation between time and MRCMS size differences was not significant (r = -0.16, p = 0.381). Conclusion: CBCT scanning detect MRCMS more accurately than panoramic radiography. Key words:Mucous cyst, maxillary sinus, panoramic radiograph, cone beam computed tomography. PMID:23229251
Dagassan-Berndt, Dorothea C; Zitzmann, Nicola U; Walter, Clemens; Schulze, Ralf K W
2016-08-01
To evaluate the impact of cone beam computed tomography (CBCT) imaging on treatment planning regarding augmentation procedures for implant placement. Panoramic radiographs and CBCT images of 40 patients requesting single-tooth implants in 59 sites were retrospectively analyzed by six specialists in implantology, and treatment planning was performed. Therapeutic recommendations were compared with the surgical protocol performed initially. Bone height estimation from panoramic radiographs yielded to higher measures and greater variability compared to CBCT. The suggested treatment plan for lateral and vertical augmentation procedures based on CBCT or panoramic radiographs coincided for 55-72% of the cases. A trend to a more invasive augmentation procedure was seen when planning was based on CBCT. Panoramic radiography revealed 57-63% (lateral) vs. 67% (vertical augmentation) congruent plans in agreement with surgery. Among the dissenting sites, there was a trend toward less invasive planning for lateral augmentation with panoramic radiographs, while vertical augmentation requirements were more frequently more invasive when based on CBCT. Vertical augmentation requirements can be adequately determined from panoramic radiographs. In difficult cases with a deficient lateral alveolar bone, the augmentation schedule may better be evaluated from CBCT to avoid underestimation, which occurs more frequently when based on panoramic radiographs only. However, overall, radiographic interpretation and diagnostic thinking accuracy seem to be mainly depending on the opinion of observers. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Development of a Mars Surface Imager
NASA Technical Reports Server (NTRS)
Squyres, Steve W.
1994-01-01
The Mars Surface Imager (MSI) is a multispectral, stereoscopic, panoramic imager that allows imaging of the full scene around a Mars lander from the lander body to the zenith. It has two functional components: panoramic imaging and sky imaging. In the most recent version of the MSI, called PIDDP-cam, a very long multi-line color CCD, an innovative high-performance drive system, and a state-of-the-art wavelet image compression code have been integrated into a single package. The requirements for the flight version of the MSI and the current design are presented.
[High-contrast resolution of film-screen systems in oral and maxillofacial radiology].
Kaeppler, G; Reinert, S
2007-11-01
The aim was to determine differences in high-contrast resolution of film-screen systems used in dental panoramic and cephalometric radiography by calculating the modulation transfer function (MTF). The radiographs used to determine the MTF should be taken by the same x-ray units as those used for patient radiographs. The MTF was determined using a lead grid and according to DIN 6867-2 for 11 film-screen systems (speed 250, speed class 200 and 400) used in dental radiographic diagnostics. The optical density was measured using a microdensitometer developed by PTB. With 10% of the modulation transfer factor, newly developed film-screen systems (speed class 200 and 400) demonstrated a resolution of 4.9 to 6 line pairs per mm (panoramic radiography). In cephalometric radiography a film-screen system (speed class 400 and green-sensitive film) had a resolution of 4.2 line pairs per mm and surpassed two film-screen systems (speed class 400, resolution of 3 line pairs per mm, blue-sensitive films). The relevance of this study is underlined by the diagnostic reference doses defined in the German X-ray Ordinance (RöV) which are also intended for dentistry. Film-screen systems (speed 250, speed class 200) previously used in dental panoramic and cephalometric radiography can be replaced by newly developed film-screen systems (speed class 400). In dental radiography dose reductions are possible with film-screen systems (speed class 400) without impairing diagnostic accuracy. The introduction of newly developed film-screen systems (speed class 400) requires lower milliampere-seconds and therefore an adjustment of the x-ray units to lower milliampere settings.
Rushton, Michael N; Rushton, Vivian E
2012-08-01
To measure the added value of panoramic radiography in new dentate patients attending for routine treatment. Thirty-seven general dental practitioners using panoramic radiographs routinely were recruited. Twenty dentate patients were identified prospectively by each participating dentist if they were new to the practice, attending for an examination and requesting any treatment deemed necessary. A panoramic radiograph was taken with appropriate intraoral radiographs in line with national guidelines. Each dentist completed a radiological report for the panoramic radiograph only and these 20 reports were forwarded to the researchers along with the 20 panoramic radiographs, their accompanying bitewing and periapical radiographs and twenty completed clinical assessment sheets. 740 panoramic, 1418 bitewing and 325 periapical radiographs were assessed by the researchers. Only 32 panoramic films provided any additional diagnostic value when compared to intraoral films when guidelines had been observed resulting from the poor technical and processing quality of the accompanying intraoral films. Assessment of the number of caries and periapical lesions and the degree of periodontal bone loss from the intraoral films provided a greater diagnostic yield at the p<0.001 level of significance. The research found that dentists underestimated the number of caries lesions present and level of periodontal bone loss when compared to the researchers but overestimated the presence of periapical pathology, at the level of significance at p<0.001. The study found that there was no support for the use of panoramic radiographs in routine screening as there was no net diagnostic benefit to the patient. Copyright © 2012 Elsevier Ltd. All rights reserved.
Panoramic Scanning: Essential Element of Higher-Order Thought.
ERIC Educational Resources Information Center
Ambrose, Don
1996-01-01
Panoramic scanning is the capacity to perceive, interpret, and appreciate complex problems from a big-picture vantage point. Barriers to panoramic scanning (sensory bombardment, superficial polarized thought, and tunnel vision) and facilitators (broad interests and knowledge, pattern finding, and connection-making skills) are identified. Educators…
A semi-automatic traffic sign detection, classification, and positioning system
NASA Astrophysics Data System (ADS)
Creusen, I. M.; Hazelhoff, L.; de With, P. H. N.
2012-01-01
The availability of large-scale databases containing street-level panoramic images offers the possibility to perform semi-automatic surveying of real-world objects such as traffic signs. These inventories can be performed significantly more efficiently than using conventional methods. Governmental agencies are interested in these inventories for maintenance and safety reasons. This paper introduces a complete semi-automatic traffic sign inventory system. The system consists of several components. First, a detection algorithm locates the 2D position of the traffic signs in the panoramic images. Second, a classification algorithm is used to identify the traffic sign. Third, the 3D position of the traffic sign is calculated using the GPS position of the photographs. Finally, the results are listed in a table for quick inspection and are also visualized in a web browser.
NASA Technical Reports Server (NTRS)
2005-01-01
On its 449th martian day, or sol (April 29, 2005), NASA's Mars rover Opportunity woke up approximately an hour after sunset and took this picture of the fading twilight as the stars began to come out. Set against the fading red glow of the sky, the pale dot near the center of the picture is not a star, but a planet -- Earth. Earth appears elongated because it moved slightly during the 15-second exposures. The faintly blue light from the Earth combines with the reddish sky glow to give the pale white appearance. The images were taken with Opportunity's panoramic camera, using 440-nanometer, 530-nanometer, and 750-nanometer color filters. In processing on the ground, the images were shifted slightly to compensate for Earth's motion between one image and the next.Pancam multispectral imaging results from the opportunity Rover at Meridiani Planum
Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.; Grotzinger, J.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Noe Dobrea, E.Z.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.M.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Weitz, C.M.; Wolff, M.J.
2004-01-01
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Opto-mechanical design of PANIC
NASA Astrophysics Data System (ADS)
Fried, Josef W.; Baumeister, Harald; Huber, Armin; Laun, Werner; Rohloff, Ralf-Rainer; Concepción Cárdenas, M.
2010-07-01
PANIC, the Panoramic Near-Infrared Camera, is a new instrument for the Calar Alto Observatory. A 4x4 k detector yields a field of view of 0.5x0.5 degrees at a pixel scale of 0.45 arc sec/pixel at the 2.2m telescope. PANIC can be used also at the 3.5m telescope with half the pixel scale. The optics consists of 9 lenses and 3 folding mirrors. Mechanical tolerances are as small as 50 microns for some elements. PANIC will have a low thermal background due to cold stops. Read-out is done with MPIA's own new electronics which allows read-out of 132 channels in parallel. Weight and size limits lead to interesting design features. Here we describe the opto-mechanical design.
'Pot of Gold' and 'Rotten Rocks'
NASA Technical Reports Server (NTRS)
2004-01-01
This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. Scientists are intrigued by this unusual-looking, nodule-covered rock and plan to investigate its detailed chemistry in coming sols. This picture was taken on sol 159 (June 14, 2004). To the right is a set of rocks referred to as 'Rotten Rocks' for their resemblance to rotting loaves of bread. The insides of these rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum.
Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Calvin, W; Farrand, W H; Goetz, W; Golombek, M; Greeley, R; Grotzinger, J; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J M; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Weitz, C M; Wolff, M J
2004-12-03
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.;
2004-01-01
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Stars and Cosmic Rays Observed from Mars
2004-03-12
In this five-minute exposure taken from the surface of Mars by NASA Spirit rover, stars appear as streaks due to the rotation of the planet, and instantaneous cosmic-ray hits appear as points of light. Spirit took the image with its panoramic camera on March 11, 2004, after waking up during the martian night for a communication session with NASA's Mars Global Surveyor orbiter. Other exposures were also taken. The images tested the capabilities of the rover for night-sky observations. Scientists will use the results to aid planning for possible future astronomical observations from Mars. The difference in Mars' rotation, compared to Earth's, gives the star trails in this image a different orientation than they would have in a comparable exposure taken from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA05551
Wakoh, M; Nishikawa, K; Kobayashi, N; Farman, A G; Kuroyanagi, K
2001-02-01
The purpose of this study was to compare the sensitometric properties of and visualization of anatomical structures with Agfa OrthoLux green-sensitive panoramic radiographic film, Agfa ST8G green sensitive panoramic radiographic film, and Kodak Ektavision green-sensitive panoramic radiographic film used in combination with an Agfa Ortho Regular 400 imaging screen, Kodak Ektavision imaging screen, and Kodak Lanex Regular imaging screen. The density response and resolution of panoramic radiographic film/intensifying screen combinations was evaluated by means of Hunter and Driffield curves, modulation transfer functions, and noise-equivalent number of quanta. Image clarity of selected anatomical structures was rated independently by 6 oral and maxillofacial radiologists. The ISO speed for the Agfa OrthoLux panoramic radiographic film combinations was the fastest, and the ISO speed for the Kodak Ektavision green-sensitive panoramic radiographic film combinations was the slowest. The average gradient for the Agfa ST8G systems was relatively steep in comparison with those for the other film/screen combinations. The modulation transfer functions for the Kodak Ektavision film were higher than those for the other films, irrespective of the screen combination used, and those for Agfa OrthoLux film were slightly higher than those for Agfa ST8G film. The noise-equivalent number of quanta for the Agfa ST8G film/screen combinations was lower than those for the other film/screen combinations. The noise-equivalent number of quanta for the Kodak Ektavision film/screen combinations was well within the high-frequency range, whereas Agfa OrthoLux combined with either the Kodak Ektavision imaging screen or the Kodak Lanex Regular imaging screen produced a noise-equivalent number of quanta similar to those of the Kodak Ektavision film/screen combinations in the low-frequency range. Agfa OrthoLux was perceived to provide clearer images of the selected anatomical details than Agfa ST8G, and the Agfa OrthoLux/Agfa Ortho Regular 400 combination was not significantly different from the Kodak Ektavision/Kodak Lanex Regular combination in terms of perceived image quality. Agfa OrthoLux is an improvement over Agfa ST8G in film speed, spatial resolution, granularity, and perceived diagnostic image quality. The Agfa OrthoLux/Agfa Ortho Regular 400 combination did not exceed the Kodak Ektavision film/Kodak Ektavision imaging screen combination in resolution, granularity, or perceived image quality.
Three-dimensional images contribute to the diagnosis of mucous retention cyst in maxillary sinus.
Donizeth-Rodrigues, Cleomar; Fonseca-Da Silveira, Márcia; Gonçalves-De Alencar, Ana-Helena; Garcia-Santos-Silva, Maria-Alves; Francisco-De-Mendonça, Elismauro; Estrela, Carlos
2013-01-01
To evaluate the detection of mucous retention cyst of maxillary sinus (MRCMS) using panoramic radiography and cone beam computed tomography (CBCT). A digital database with 6,000 panoramic radiographs was reviewed for MRCMS. Suggestive images of MRCMS were detected on 185 radiographs, and patients were located and invited to return for follow-up. Thirty patients returned, and control panoramic radiographs were obtained 6 to 46 months after the initial radiograph. When MRCMS was found on control radiographs, CBCT scans were obtained. Cysts were measured and compared on radiographs and scans. The Wilcoxon, Spearman and Kolmorogov-Smirnov tests were used for statistical analysis. The level of significance was set at 5%. There were statistically significant differences between the two methods (p<0.05): 23 MRCMS detected on panoramic radiographs were confirmed by CBCT, but 5 MRCMS detected on CBCT images had not been identified by panoramic radiography. Eight MRCMS detected on control radiographs were not confirmed by CBCT. MRCMS size differences from initial to control panoramic radiographs and CBCT scans were not statistically significant (p= 0.617 and p= 0.626). The correlation between time and MRCMS size differences was not significant (r = -0.16, p = 0.381). CBCT scanning detect MRCMS more accurately than panoramic radiography.
Panoramic optical-servoing for industrial inspection and repair
NASA Astrophysics Data System (ADS)
Sallinger, Christian; O'Leary, Paul; Retschnig, Alexander; Kammerhofer, Martin
2004-05-01
Recently specialized robots were introduced to perform the task of inspection and repair in large cylindrical structures such as ladles, melting furnaces and converters. This paper reports on the image processing system and optical servoing for one such a robot. A panoramic image of the vessels inner surface is produced by performing a coordinated robot motion and image acquisition. The level of projective distortion is minimized by acquiring a high density of images. Normalized phase correlation calculated via the 2D Fourier transform is used to calculate the shift between the single images. The narrow strips from the dense image map are then stitched together to build the panorama. The mapping between the panoramic image and the positioning of the robot is established during the stitching of the images. This enables optical feedback. The robots operator can locate a defect on the surface by selecting the area of the image. Calculation of the forward and inverse kinematics enable the robot to automatically move to the location on the surface requiring repair. Experimental results using a standard 6R industrial robot have shown the full functionality of the system concept. Finally, were test measurements carried out successfully, in a ladle at a temperature of 1100° C.
Linearization of an annular image by using a diffractive optic
NASA Technical Reports Server (NTRS)
Matthys, Donald R.
1996-01-01
The goal for this project is to develop the algorithms for fracturing the zones defined by the mapping transformation, and to actually produce the binary optic in an appropriate setup. In 1984 a side-viewing panoramic viewing system was patented, consisting of a single piece of glass with spherical surfaces which produces a 360 degree view of the region surrounding the lens which extends about 25 degrees in front of and 20 degrees behind the lens. The system not only produces images of good quality, it is also afocal, i.e., images stay in focus for objects located right next to the lens as well as those located far from the lens. The lens produced a panoramic view in an annular shaped image, and so the lens was called a PAL (panoramic annular lens). When applying traditional measurements to PAL images, it is found advantageous to linearize the annular image. This can easily be done with a computer and such a linearized image can be produced within about 40 seconds on current microcomputers. However, this process requires a frame-grabber and a computer, and is not real-time. Therefore, it was decided to try to perform this linearization optically by using a diffractive optic.
Opportunity's 'Rub al Khali' Panorama
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Click on the image for Opportunity's 'Rub al Khali' Panorama (QTVR) This panoramic image, dubbed 'Rub al Khali,' was acquired by NASA's Mars Exploration Rover Opportunity on the plains of Meridiani during the period from the rover's 456th to 464th sols on Mars (May 6 to May 14, 2005). Opportunity was about 2 kilometers (1.2 miles) south of 'Endurance Crater' at a place known informally as 'Purgatory Dune.' The rover was stuck in the dune's deep fine sand for more than a month. 'Rub al Khali' (Arabic translation: 'the empty quarter') was chosen as the name for this panorama because it is the name of a similarly barren, desolate part of the Saudi Arabian desert on Earth. The view spans 360 degrees. It consists of images obtained in 97 individual pointings of the panoramic camera. The camera took images with five camera filters at each pointing. This 22,780-by-6,000-pixel mosaic is an approximately true-color rendering generated using the images acquired through filters admitting light wavelengths of 750, 530, and 480 nanometers. Lighting varied during the nine sols it took to acquire this panorama, resulting in some small image seams within the mosaic. These seams have been smoothed in sky parts of the mosaic to better simulate the vista that a person would see if able to view it all at the same time on Mars. Opportunity's tracks leading back to the north (center of the panorama) are a reminder of the rover's long trek from Endurance Crater. The deep ruts dug by Opportunity's wheels as it became stuck in the sand appear in the foreground. The crest and trough of the last ripple the rover crossed before getting stuck is visible in the center. These wind-formed sand features are only about 10 to 15 centimeters (4 to 6 inches) tall. The crest of the actual ripple where the rover got stuck can be seen just to the right of center. The tracks and a few other places on and near ripple crests can be seen in this color image to be dustier than the undisturbed or 'normal' plains soils in Meridiani. Since the time these ruts were made, some of the dust there has been blown away by the wind, reaffirming the dynamic nature of the martian environment, even in this barren, ocean-like desert of sand.Novel compact panomorph lens based vision system for monitoring around a vehicle
NASA Astrophysics Data System (ADS)
Thibault, Simon
2008-04-01
Automotive applications are one of the largest vision-sensor market segments and one of the fastest growing ones. The trend to use increasingly more sensors in cars is driven both by legislation and consumer demands for higher safety and better driving experiences. Awareness of what directly surrounds a vehicle affects safe driving and manoeuvring of a vehicle. Consequently, panoramic 360° Field of View imaging can contributes most to the perception of the world around the driver than any other sensors. However, to obtain a complete vision around the car, several sensor systems are necessary. To solve this issue, a customized imaging system based on a panomorph lens will provide the maximum information for the drivers with a reduced number of sensors. A panomorph lens is a hemispheric wide angle anamorphic lens with enhanced resolution in predefined zone of interest. Because panomorph lenses are optimized to a custom angle-to-pixel relationship, vision systems provide ideal image coverage that reduces and optimizes the processing. We present various scenarios which may benefit from the use of a custom panoramic sensor. We also discuss the technical requirements of such vision system. Finally we demonstrate how the panomorph based visual sensor is probably one of the most promising ways to fuse many sensors in one. For example, a single panoramic sensor on the front of a vehicle could provide all necessary information for assistance in crash avoidance, lane tracking, early warning, park aids, road sign detection, and various video monitoring views.
Robust detection and tracking of annotations for outdoor augmented reality browsing.
Langlotz, Tobias; Degendorfer, Claus; Mulloni, Alessandro; Schall, Gerhard; Reitmayr, Gerhard; Schmalstieg, Dieter
2011-08-01
A common goal of outdoor augmented reality (AR) is the presentation of annotations that are registered to anchor points in the real world. We present an enhanced approach for registering and tracking such anchor points, which is suitable for current generation mobile phones and can also successfully deal with the wide variety of viewing conditions encountered in real life outdoor use. The approach is based on on-the-fly generation of panoramic images by sweeping the camera over the scene. The panoramas are then used for stable orientation tracking, while the user is performing only rotational movements. This basic approach is improved by several new techniques for the re-detection and tracking of anchor points. For the re-detection, specifically after temporal variations, we first compute a panoramic image with extended dynamic range, which can better represent varying illumination conditions. The panorama is then searched for known anchor points, while orientation tracking continues uninterrupted. We then use information from an internal orientation sensor to prime an active search scheme for the anchor points, which improves matching results. Finally, global consistency is enhanced by statistical estimation of a global rotation that minimizes the overall position error of anchor points when transforming them from the source panorama in which they were created, to the current view represented by a new panorama. Once the anchor points are redetected, we track the user's movement using a novel 3-degree-of-freedom orientation tracking approach that combines vision tracking with the absolute orientation from inertial and magnetic sensors. We tested our system using an AR campus guide as an example application and provide detailed results for our approach using an off-the-shelf smartphone. Results show that the re-detection rate is improved by a factor of 2 compared to previous work and reaches almost 90% for a wide variety of test cases while still keeping the ability to run at interactive frame rates.
Robust detection and tracking of annotations for outdoor augmented reality browsing
Langlotz, Tobias; Degendorfer, Claus; Mulloni, Alessandro; Schall, Gerhard; Reitmayr, Gerhard; Schmalstieg, Dieter
2011-01-01
A common goal of outdoor augmented reality (AR) is the presentation of annotations that are registered to anchor points in the real world. We present an enhanced approach for registering and tracking such anchor points, which is suitable for current generation mobile phones and can also successfully deal with the wide variety of viewing conditions encountered in real life outdoor use. The approach is based on on-the-fly generation of panoramic images by sweeping the camera over the scene. The panoramas are then used for stable orientation tracking, while the user is performing only rotational movements. This basic approach is improved by several new techniques for the re-detection and tracking of anchor points. For the re-detection, specifically after temporal variations, we first compute a panoramic image with extended dynamic range, which can better represent varying illumination conditions. The panorama is then searched for known anchor points, while orientation tracking continues uninterrupted. We then use information from an internal orientation sensor to prime an active search scheme for the anchor points, which improves matching results. Finally, global consistency is enhanced by statistical estimation of a global rotation that minimizes the overall position error of anchor points when transforming them from the source panorama in which they were created, to the current view represented by a new panorama. Once the anchor points are redetected, we track the user's movement using a novel 3-degree-of-freedom orientation tracking approach that combines vision tracking with the absolute orientation from inertial and magnetic sensors. We tested our system using an AR campus guide as an example application and provide detailed results for our approach using an off-the-shelf smartphone. Results show that the re-detection rate is improved by a factor of 2 compared to previous work and reaches almost 90% for a wide variety of test cases while still keeping the ability to run at interactive frame rates. PMID:21976781
a Low-Cost Panoramic Camera for the 3d Documentation of Contaminated Crime Scenes
NASA Astrophysics Data System (ADS)
Abate, D.; Toschi, I.; Sturdy-Colls, C.; Remondino, F.
2017-11-01
Crime scene documentation is a fundamental task which has to be undertaken in a fast, accurate and reliable way, highlighting evidence which can be further used for ensuring justice for victims and for guaranteeing the successful prosecution of perpetrators. The main focus of this paper is on the documentation of a typical crime scene and on the rapid recording of any possible contamination that could have influenced its original appearance. A 3D reconstruction of the environment is first generated by processing panoramas acquired with the low-cost Ricoh Theta 360 camera, and further analysed to highlight potentials and limits of this emerging and consumer-grade technology. Then, a methodology is proposed for the rapid recording of changes occurring between the original and the contaminated crime scene. The approach is based on an automatic 3D feature-based data registration, followed by a cloud-to-cloud distance computation, given as input the 3D point clouds generated before and after e.g. the misplacement of evidence. All the algorithms adopted for panoramas pre-processing, photogrammetric 3D reconstruction, 3D geometry registration and analysis, are presented and currently available in open-source or low-cost software solutions.
Legacy Panorama on Spirit's Way to 'Bonneville'
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Click on the image for Legacy Panorama on Spirit's Way to 'Bonneville' (QTVR) This view captured by the panoramic camera on NASA's Mars Exploration Rover Spirit nearly a year ago is called Spirit's 'Legacy' panorama. It combines many frames acquired during Spirit's 59th through 61st martian days, or sols (March 3 to 5, 2004) from a position about halfway between the landing site and the rim of 'Bonneville Crater.' The location is within the transition from the relatively smooth plains to the more rocky and rugged blanket of material ejected from Bonneville by the force of the impact that dug the crater. The panorama spans 360 degrees and consists of images obtained in 78 individual pointings. The camera took images though 5 different filter at each pointing. This mosaic is an approximately true-color rendering generated using the images acquired through filters centered at wavelengths of 750, 530, and 480 nanometers. The Columbia Memorial Station lander can be seen about 200 meters (about 650 feet) in the distance by following the rover tracks back toward right of center in the mosaic and zooming in.2D and 3D visualization methods of endoscopic panoramic bladder images
NASA Astrophysics Data System (ADS)
Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til
2011-03-01
While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.
Ezoddini Ardakani, Fatemeh; Zangoie Booshehri, Maryam; Banadaki, Seyed Hossein Saeed; Nafisi-Moghadam, Reza
2012-01-01
Background Scaphoid fractures are the most common type of carpal fractures. Objectives The aim of the study was to compare the diagnostic value of panoramic and conventional radiographs of the wrist in scaphoid fractures. Patients and Methods The panoramic and conventional radiographs of 122 patients with acute and chronic wrist trauma were studied. The radiographs were analyzed and examined by two independent radiologist observers; one physician radiologist and one maxillofacial radiologist. The final diagnosis was made by an orthopedic specialist. Kappa test was used for statistical calculations, inter- and intra-observer agreement and correlation between the two techniques. Results Wrist panoramic radiography was more accurate than conventional radiography for ruling out scaphoid fractures. There was an agreement in 85% or more of the cases. Agreement values were higher with better inter and intra observer agreement for panoramic examinations than conventional radiographic examinations. Conclusion The panoramic examination of the wrist is a useful technique for the diagnosis and follow-up of scaphoid fractures. Its use is recommended as a complement to conventional radiography in cases with inconclusive findings. PMID:23599708
Spirit Greets New Terrain, New Season on Mars
NASA Technical Reports Server (NTRS)
2006-01-01
In time to survive the Martian winter, NASA's Mars Exploration Rover Spirit has driven to and parked on a north-facing slope in the 'Columbia Hills.' This vantage point will optimize solar power during the upcoming winter season and maximize the vehicle's ability to communicate with the NASA Odyssey orbiter. Top science priorities for the coming months are a detailed, 360-degree panorama using all 13 filters of the panoramic camera, a study of surface and subsurface soil properties, and monitoring of the atmosphere and its changes. The planned subsurface soil experiments will be a first for the Mars Exploration Rover mission. To conduct the study, Spirit will use the brush on the rock abrasion tool to carefully sweep away soil, much the way an archaeologist uses a brush to uncover artifacts. At each level, Spirit will measure the mineral and chemical properties and assess the physical nature (such as grain size, texture, hardness) of the material, using the Athena science instruments on the robotic arm. Of particular interest are vertical variations in soil characteristics that may indicate water-related deposition of sulfates and other minerals. Panoramic images will provide important information about the nature and origin of surrounding rocks and soils. Spirit will also study the mineralogy of the surrounding terrain using the thermal emission spectrometer and search for surface changes caused by high winds. After the winter solstice in August, depending on energy levels, scientists may direct the rover to pivot around the disabled, right front wheel to get different targets within reach of the arm. When the winter season is over and solar energy levels rise again, scientists will direct Spirit to leave its winter campaign site and continue examining the 'Columbia Hills.' Spirit acquired the images in this mosaic with the navigation camera on the rover's 807th Martian day, or sol, of exploring Gusev Crater on Mars (April 11, 2006). Approaching from the east are the rover's tracks, including a shallow trench created by the dragging front wheel. On the horizon, in the center of the panorama, is 'McCool Hill.' This view is presented in a cylindrical projection with geometric seam correction.NASA Technical Reports Server (NTRS)
2004-01-01
This hematite abundance index map helps geologists choose hematite-rich locations to visit around Opportunity's landing site. Blue dots equal areas low in hematite and red dots equal areas high in hematite.
Why Hematite Geologists are eager to reach the hematite-rich area in the upper left to closely examine the soil, which may reveal secrets about how the hematite got to this location. Knowing how the hematite on Mars was formed may help scientists characterize the past environment and determine whether that environment provided favorable conditions for life.The Plan Over the next few sols, engineers and scientists plan to drive Opportunity to the hematite-rich area then attempt a 'pre-trench' sequence, taking measurements with the Moessbauer spectrometer, alpha particle X-ray spectrometer and microscopic imager. Next, the plan is to trench the hematite rich area by spinning one wheel in place to 'dig' a shallow hole. Finally, scientists will aim the instrument arm back at the same area where it pre-trenched to get post-trench data with the same instruments to compare and contrast the levels of hematite and revel how deep the hematite lays in the dirt.Index Map Details The hematite abundance index map was created using data from the miniature thermal emission instrument. The first layer is a mosaic of panoramic camera images taken prior to egress, when Opportunity was still on the lander. The colored dots represent data collected by the miniature thermal emission spectrometer on sol 11, after Opportunity had rolled off of the lander and the rover was located at the center of the blue semi-circle.The spectrometer is located on the panoramic camera mast. On sol 11, it took a low-angle 180-degree panorama of the area in front of the rover, indicated by the blue shaded dots. The instrument then raised the angle of its field of view a few degrees higher to sweep around behind the rover, indicated by the red and yellow dots offset at the far sides of the image.JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA's Office of Space Science, Washington, D.C.Stereo reconstruction from multiperspective panoramas.
Li, Yin; Shum, Heung-Yeung; Tang, Chi-Keung; Szeliski, Richard
2004-01-01
A new approach to computing a panoramic (360 degrees) depth map is presented in this paper. Our approach uses a large collection of images taken by a camera whose motion has been constrained to planar concentric circles. We resample regular perspective images to produce a set of multiperspective panoramas and then compute depth maps directly from these resampled panoramas. Our panoramas sample uniformly in three dimensions: rotation angle, inverse radial distance, and vertical elevation. The use of multiperspective panoramas eliminates the limited overlap present in the original input images and, thus, problems as in conventional multibaseline stereo can be avoided. Our approach differs from stereo matching of single-perspective panoramic images taken from different locations, where the epipolar constraints are sine curves. For our multiperspective panoramas, the epipolar geometry, to the first order approximation, consists of horizontal lines. Therefore, any traditional stereo algorithm can be applied to multiperspective panoramas with little modification. In this paper, we describe two reconstruction algorithms. The first is a cylinder sweep algorithm that uses a small number of resampled multiperspective panoramas to obtain dense 3D reconstruction. The second algorithm, in contrast, uses a large number of multiperspective panoramas and takes advantage of the approximate horizontal epipolar geometry inherent in multiperspective panoramas. It comprises a novel and efficient 1D multibaseline matching technique, followed by tensor voting to extract the depth surface. Experiments show that our algorithms are capable of producing comparable high quality depth maps which can be used for applications such as view interpolation.
The Chang'e 3 Mission Overview
NASA Astrophysics Data System (ADS)
Li, Chunlai; Liu, Jianjun; Ren, Xin; Zuo, Wei; Tan, Xu; Wen, Weibin; Li, Han; Mu, Lingli; Su, Yan; Zhang, Hongbo; Yan, Jun; Ouyang, Ziyuan
2015-07-01
The Chang'e 3 (CE-3) mission was implemented as the first lander/rover mission of the Chinese Lunar Exploration Program (CLEP). After its successful launch at 01:30 local time on December 2, 2013, CE-3 was inserted into an eccentric polar lunar orbit on December 6, and landed to the east of a 430 m crater in northwestern Mare Imbrium (19.51°W, 44.12°N) at 21:11 on December 14, 2013. The Yutu rover separated from the lander at 04:35, December 15, and traversed for a total of 0.114 km. Acquisition of science data began during the descent of the lander and will continue for 12 months during the nominal mission. The CE-3 lander and rover each carry four science instruments. Instruments on the lander are: Landing Camera (LCAM), Terrain Camera (TCAM), Extreme Ultraviolet Camera (EUVC), and Moon-based Ultraviolet Telescope (MUVT). The four instruments on the rover are: Panoramic Camera (PCAM), VIS-NIR Imaging Spectrometer (VNIS), Active Particle induced X-ray Spectrometer (APXS), and Lunar Penetrating Radar (LPR). The science objectives of the CE-3 mission include: (1) investigation of the morphological features and geological structures of and near the landing area; (2) integrated in-situ analysis of mineral and chemical composition of and near the landing area; and (3) exploration of the terrestrial-lunar space environment and lunar-based astronomical observations. This paper describes the CE-3 objectives and measurements that address the science objectives outlined by the Comprehensive Demonstration Report of Phase II of CLEP. The CE-3 team has archived the initial science data, and we describe data accessibility by the science community.
The PanCam instrument on the 2018 Exomars rover: Scientific objectives
NASA Astrophysics Data System (ADS)
Jaumann, Ralf; Coates, Andrew; Hauber, Ernst; Hoffmann, Harald; Schmitz, Nicole; Le Deit, Laetitia; Tirsch, Daniela; Paar, Gerhard; Griffiths, Andrew
2010-05-01
The Exomars Panoramic Camera System is an imaging suite of three camera heads to be mounted on the ExoMars rover`s mast, with the boresight 1.8 m above ground. As late as the ExoMars Pasteur Payload Design Review (PDR) in 2009, the PanCam consists of two identical wide angle cameras (WAC) with fixed focal length lenses, and a high resolution camera (HRC) with an automatic focus mechanism, placed adjacent to the right WAC. The WAC stereo pair provides binocular vision for stereoscopic studies as well as 12 filter positions (per camera) for stereoscopic colour imaging and scientific multispectral studies. The stereo baseline of the pair is 500 mm. The two WAC have 22 mm focal length, f/10 lenses that illuminate detectors with 1024 × 1024 pixels. WAC lenses are fixed, with an optimal focus set to 4 m, and a focus ranging from 1.2 m (corresponding to the nearest view of the calibration target on the rover deck) to infinity. The HRC is able to focus between 0.9 m (distance to a drill core on the rover`s sample tray) and infinity. The instantaneous field of views of WAC and HRC are 580 μrad/pixel and 83 μrad/pixel, respectively. The corresponding resolution (in mm/pixel) at a distance of 2 m are 1.2 (WAC) and 0.17 (HRC), at 100 m distance it is 58 (WAC) and 8.3 (HRC). WAC and HRC will be geometrically co-aligned. The main scientific goal of PanCam is the geologic characterisation of the environment in which the rover is operating, providing the context for investigations carried out by the other instruments of the Pasteur payload. PanCam data will serve as a bridge between orbital data (high-resolution images from HRSC, CTX, and HiRISE, and spectrometer data from OMEGA and CRISM) and the data acquired in situ on the Martian surface. The position of HRC on top of the rover`s mast enables the detailed panoramic inspection of surface features over the full horizontal range of 360° even at large distances, an important prerequisite to identify the scientifically most promising targets and to plan the rover`s traverse. Key to success of PanCam is the provision of data that allow the determination of rock lithology, either of boulders on the surface or of outcrops. This task requires high spatial resolution as well as colour capabilities. The stereo images provide complementary information on the three-dimensional properties (i.e. the shape) of rocks. As an example, the degree of rounding of rocks as a result of fluvial transport can reveal the erosional history of the investigated particles, with possible implications on the chronology and intensity of rock-water interaction. The identification of lithology and geological history of rocks will strongly benefit from the co-aligned views of WAC (colour, stereo) and HRC (high spatial resolution), which will ensure that 3D and multispectral information is available together with fine-scale textural information for each scene. Stereo information is also of utmost importance for the determination of outcrop geometry (e.g., strike and dip of layered sequences), which helps to understand the emplacement history of sedimentary and volcanic rocks (e.g., cross-bedding, unconformities, etc.). PanCam will further reveal physical soil properties such as cohesion by imaging sites where the soil is disturbed by the rover`s wheels and the drill. Another essential task of PanCam is the imaging of samples (from the drill) before ingestion into the rover for further analysis by other instruments. PanCam can be tilted vertically and will also study the atmosphere (e.g., dust loading, opacity, clouds) and aeolian processes related to surface-atmosphere interactions, such as dust devils.
A new look at formation and timing of thrust fault scarps on the Moon
NASA Astrophysics Data System (ADS)
Watters, T. R.; Robinson, M. S.; Beyer, R. A.; Bell, J. F.; Pritchard, M. E.; Banks, M. E.; Garry, W. B.; Williams, N. R.
2009-12-01
The current view of lunar tectonics is that most crustal deformation is directly associated with mare basins. Lunar lobate scarps, in contrast to nearside mare wrinkle ridges, and graben, are found most often in the highlands and are the dominant tectonic landform on the farside. Lunar scarps are relatively small-scale tectonic landforms, only easily resolved in the highest resolution Apollo Panoramic Camera and Lunar Orbiter images. These scarps are interpreted to be the surface expression of thrust faults, yet they have not been well characterized and their global spatial distribution remains unknown. Images from the Lunar Reconnaissance Orbiter Camera (LROC) reveal previously undetected scarps as well as remarkable new features related to some previously known lobate scarps. LROC Narrow Angle Camera (NAC) 1 to 2 m/pixel images show meter-scale tectonic landforms associated with the Lee-Lincoln scarp. The Lee-Lincoln thrust fault scarp cuts across the mare basalt-filled Taurus-Littrow valley near the Apollo 17 landing site, trending roughly north-south between two highland massifs. The fault scarp extends into the highlands of North Massif where it cuts up slope for a short distance and abruptly changes trend to the northwest cutting along slope for kilometers. NAC stereo-derived topography shows a narrow rise associated with the scarp segment in the valley floor. Spatially correlated with the rise is an array of fractures and shallow extensional troughs or graben. The small-scale graben have maximum widths of ~25 m and are typically 100-200 meters in length. The rise is interpreted to be the result of flexural bending of the valley floor basalts with bending stresses causing extension of the upper regolith. Lobate scarps appear to be among the youngest tectonic landforms on the Moon based on their generally crisp appearance and a lack of superposed, relatively large-diameter (>500 m), impact craters. NAC images of known and newly detected scarps reveal evidence of crosscut impact craters as small as ~5-10 m-in-diameter. Crosscut meter-scale craters indicate a young age for the lobate scarps. Until now, the identification of lobate scarps has been limited by the lack of high resolution images with optimal lighting geometry for most of the Moon. The vast majority of the known lunar scarps are confined to the equatorial zone in areas imaged by the Apollo Panoramic Cameras. LROC NAC imaging now makes global detection of the small-scale scarps possible. A previously undetected lobate scarp has been found in the north polar region at ~88 degrees N. This discovery suggests that thrust fault scarps may be globally distributed. The young age of the lobate scarps indicated by crosscutting relations with impact craters and the discovery of a high-latitude scarp suggests global-scale, late-stage contraction. If thrust fault scarps are proven to be globally distributed, this discovery has important implications for the thermal history of the Moon.
A Bayesian Account of Visual-Vestibular Interactions in the Rod-and-Frame Task.
Alberts, Bart B G T; de Brouwer, Anouk J; Selen, Luc P J; Medendorp, W Pieter
2016-01-01
Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject's head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities.
A Bayesian Account of Visual–Vestibular Interactions in the Rod-and-Frame Task
de Brouwer, Anouk J.; Medendorp, W. Pieter
2016-01-01
Abstract Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject’s head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities. PMID:27844055
Schulze, Ralf Kurt Willy; Cremers, Catrin; Karle, Heiko; de Las Heras Gala, Hugo
2017-05-01
The aim of this study was to compare the dose at skin level at five significant anatomical regions for panoramic radiography devices with and without lead apron by means of a highly sensitive dosimeter. A female RANDO-phantom was exposed in five different digital panoramic radiography systems, and the dose at skin level was assessed tenfold for each measurement region by means of a highly sensitive solid-state-dosimeter. The five measurement regions selected were the thyroid, both female breasts, the gonads, and a central region in the back of the phantom. For each panoramic machine, the measurements were performed in two modes: with and without a commercial lead apron specifically designed for panoramic radiography. Reproducibility of the measurements was expressed by absolute differences and the coefficient of variation. Values between shielded and unshielded doses were pooled for each region and compared by means of the paired Wilcoxon tests (p ≤ 0.05). Reproducibility as represented by the mean CV was 22 ± 52 % (median 2.3 %) with larger variations for small dose values. Doses at skin level ranged between 0.00 μGy at the gonads and 85.39 μGy at the unshielded thyroid (mean ± SD 15 ± 24 μGy). Except for the gonads, the dose in all the other regions was significantly lower (p < 0.001) when a lead apron was applied. Unshielded doses were between 1.02-fold (thyroid) and 112-fold (at the right breast) higher than those with lead apron shielding (mean: 14-fold ± 18-fold). Although the doses were entirely very low, we observed a significant increase in dose in the radiation-sensitive female breast region when no lead apron was used. Future discussions on shielding requirements for panoramic radiography should focus on these differences in the light of the linear non-threshold (LNT) theory which is generally adopted in medical imaging.
Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR
NASA Astrophysics Data System (ADS)
Gao, Yang; Zhong, Ruofei; Tang, Tao; Wang, Liuzhao; Liu, Xianlin
2017-08-01
Pavement markings provide an important foundation as they help to keep roads users safe. Accurate and comprehensive information about pavement markings assists the road regulators and is useful in developing driverless technology. Mobile light detection and ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional (3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in a fast and efficient way. The RGB attribute information of data points can be obtained based on the panoramic camera in the system. In this paper, we present a novel method process to automatically extract pavement markings using multiple attribute information of the laser scanning point cloud from the mobile LiDAR data. This method process utilizes a differential grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to identify and extract pavement markings. We utilized point cloud density to remove the noise and used morphological operations to eliminate the errors. In the application, we tested our method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The results indicated that both correctness (p) and completeness (r) were higher than 90%. The method process of this research can be applied to extract pavement markings from huge point cloud data produced by mobile LiDAR.
Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika
2016-01-01
Objective: During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Methods: Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. Results: The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19–75 μSv, depending on the panoramic equipment used. Conclusion: The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk–benefit profile of this technique must be assessed for the individual patient. Advances in knowledge: The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used. PMID:27452261
Can dental pulp calcification predict the risk of ischemic cardiovascular disease?
Khojastepour, Leila; Bronoosh, Pegah; Khosropanah, Shahdad; Rahimi, Elham
2013-09-01
To report the association of pulp calcification with that of cardiovascular disease (CVD) using digital panoramic dental radiographs. Digital panoramic radiographs of patients referred from the angiography department were included if the patient was under 55 years old and had non-restored or minimally restored molars and canines. An oral and maxillofacial radiologist evaluated the images for pulpal calcifications in the selected teeth. The sensitivity, specificity, positive predictive value and negative predictive value of panoramic radiography in predicting CVD were calculated. Out of 122 patients who met the criteria, 68.2% of the patients with CVD had pulp chamber calcifications. Pulp calcification in panoramic radiography had a sensitivity of 68.9% to predict CVD. This study demonstrates that patients with CVD show an increased incidence of pulp calcification compared with healthy patients. The findings suggest that pulp calcification on panoramic radiography may have possibilities for use in CVD screening.
NASA Astrophysics Data System (ADS)
Kim, D. S.; Cho, H. S.; Park, Y. O.; Je, U. K.; Hong, D. K.; Choi, S. I.; Koo, Y. S.
2012-02-01
Panoramic radiography with which only structures within a certain image layer are in focus and others out of focus on the panoramic image has become a popular imaging technique especially in dentistry. However, the major drawback to the technique is a mismatch between the structures to be focused and the predefined image layer mainly due to the various shapes and sizes of dental arches and/or to malpositioning of the patient. These result in image quality typically inferior to that obtained using intraoral radiographic techniques. In this paper, to overcome these difficulties, we suggest a new panoramic reconstruction algorithm, the so-called adaptive panoramic tomography ( APT), capable of reconstructing multifocal image layers with no additional exposure. In order to verify the effectiveness of the proposed algorithm, we performed systematic simulation studies with a circular rotational movement and investigated the image performance.
The Topography of Names and Places.
ERIC Educational Resources Information Center
Morehead, Joe
1999-01-01
Discusses geographic naming with Geographic Information Systems (GIS) technology. Highlights include the Geographic Names Information System (GNIS) online database; United States Geological Survey (USGS) national mapping information; the USGS-Microsoft connection; and panoramic maps and the small LizardTech company. (AEF)
Panoramic lens designed with transformation optics.
Wang, Huaping; Deng, Yangyang; Zheng, Bin; Li, Rujiang; Jiang, Yuyu; Dehdashti, Shahram; Xu, Zhiwei; Chen, Hongsheng
2017-01-06
The panoramic lens is a special kind of lens, which is applied to observe full view. In this letter, we theoretically present a panoramic lens (PL) using transformation optics method. The lens is designed with inhomogeneous and anisotropic constitutive parameters, which has the ability to gather light from all directions and confine light within the visual angle of observer. Simulation results validate our theoretical design.
First Panoramic View From The Surface Of Mars
NASA Technical Reports Server (NTRS)
1976-01-01
First panoramic view by Viking 1 from the surface of Mars. (Top): The out-of-focus spacecraft component toward left center is the housing for the Viking sample arm, which is not yet deployed. Parallel lines in the sky are an artifact and are not real features. However, the change of brightness from horizon towards zenith and towards the right (west) is accurately reflected in this picture, taken in late Martian afternoon. At the horizon to the left is a plateau-like prominence much brighter than the foreground material between the rocks. The horizon features are approximately three kilometers (1.8 miles) away. At left is a collection of fine-grained material reminiscent of sand dunes. The dark sinuous markings in left foreground are of unknown origin. Some unidentified shapes can be perceived on the hilly eminence at the horizon towards the right. Patches of bright sand can be discerned among the rocks and boulders in middle distance. In right fore-ground are two peculiarly shaped rocks which may possibly be ventifacts produced by wind abrasion on Mars. A horizontal cloud stratum can be made out halfway from the horizon to the top of the picture. (Bottom): At left is seen the low gain antenna for receipt of commands from the Earth. The projections on or near the horizon may represent the rims distant impact craters. In right foreground are color charts for Lander camera calibration, a mirror for the Viking magnetic properties experiment and part of a grid on the top of the Lander body. At upper right is the high-gain dish antenna for direct communication between landed space-craft and Earth. Toward the right edge is an array of smooth fine-grained material which shows some hint of ripple structure and may be the beginning of a large dune field off to the right of the picture, which joins with dunes seen at the top left in this 300 panoramic view. Some of the rocks appear to be undercut on one side and partially buried by drifting sand on the other.
First Panoramic View From The Surface Of Mars
1996-12-30
First panoramic view by Viking 1 from the surface of Mars. (Top): The out-of-focus spacecraft component toward left center is the housing for the Viking sample arm, which is not yet deployed. Parallel lines in the sky are an artifact and are not real features. However, the change of brightness from horizon towards zenith and towards the right (west) is accurately reflected in this picture, taken in late Martian afternoon. At the horizon to the left is a plateau-like prominence much brighter than the foreground material between the rocks. The horizon features are approximately three kilometers (1.8 miles) away. At left is a collection of fine-grained material reminiscent of sand dunes. The dark sinuous markings in left foreground are of unknown origin. Some unidentified shapes can be perceived on the hilly eminence at the horizon towards the right. Patches of bright sand can be discerned among the rocks and boulders in middle distance. In right fore-ground are two peculiarly shaped rocks which may possibly be ventifacts produced by wind abrasion on Mars. A horizontal cloud stratum can be made out halfway from the horizon to the top of the picture. (Bottom): At left is seen the low gain antenna for receipt of commands from the Earth. The projections on or near the horizon may represent the rims distant impact craters. In right foreground are color charts for Lander camera calibration, a mirror for the Viking magnetic properties experiment and part of a grid on the top of the Lander body. At upper right is the high-gain dish antenna for direct communication between landed space-craft and Earth. Toward the right edge is an array of smooth fine-grained material which shows some hint of ripple structure and may be the beginning of a large dune field off to the right of the picture, which joins with dunes seen at the top left in this 300 panoramic view. Some of the rocks appear to be undercut on one side and partially buried by drifting sand on the other. http://photojournal.jpl.nasa.gov/catalog/PIA00382
Rover's Wheel Churns Up Bright Martian Soil
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Spirit acquired this mosaic with the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. The view presented here is an approximately true-color rendering.Opportunity View of Private Joseph Field on Mars
2016-12-07
This image of a target called "Private Joseph Field" combines four images from the microscopic imager on the robotic arm of NASA's Mars Exploration Rover Opportunity, with enhanced color information added from the rover's panoramic camera. This target is within the "Marathon Valley" area of the western rim of Endeavour Crater. The component images were taken on May 29, 2016, during the 4,389th Martian day, or sol, of Opportunity's work on Mars. The mosaic shows an area spanning about 2 inches (5 centimeters). Geochemical data indicate the presence of magnesium and iron sulfates at this location, most likely corresponding to the white pebble visible near the center of the image. These sulfates may have formed by the interaction of acidic fluids with the rocks along the rim of Endeavour crater. http://photojournal.jpl.nasa.gov/catalog/PIA21142
Churned-Up Rocky Debris and Dust (False Color)
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Mars Exploration Rover Spirit has been analyzing sulfur-rich rocks and surface materials in the 'Columbia Hills' in Gusev Crater on Mars. This image shows rocky debris and dust, which planetary scientists call 'regolith' or 'soil,' that has been churned up by the rover wheels. This 40-centimeter-wide (16-inch-wide) patch of churned-up dirt, nicknamed 'Paso Robles,' contains brighter patches measured to be high in sulfur by Spirit's alpha particle X-ray Spectrometer. Spirit's panoramic camera took this false-color image on martian day, or sol, 400 (Feb. 16, 2005), using filters at wavelengths of 750, 530, and 430 nanometers. Darker red hues in the image correspond to greater concentrations of oxidized soil and dust. Whiter and bluer hues correspond to sulfur-rich deposits that are not as heavily coated with soils or are not as highly oxidized.Griniatsos, John; Damaskos, Spyros; Tsekouras, Nikolaos; Klonaris, Chris; Georgopoulos, Sotirios
2009-10-01
The aim was to evaluate whether patients with calcifications in the carotid region detectable by panoramic radiograph differ in the prevalence of risk factors for stroke development compared with those without calcifications. Forty consecutive individuals suffering from proven carotid artery atherosclerotic occlusive disease were submitted to carotid endarterectomy. Seventeen patients were symptomatic at the time of referral, having suffered at least 1 episode of ischemic cerebral event during the preceding 6 months, mainly transient ischemic attacks or amaurosis fugax, and the remaining 23 patients were asymptomatic and the diagnosis was reached during a thorough investigation of coexisting coronary or peripheral vascular disease. Preoperatively, all patients had undergone panoramic radiograph examination, as the presurgical protocol commanded. Based on the panoramic radiograph results, patients in whom calcifications were detected either unilaterally (n = 10) or bilaterally (n = 18) constituted group A (n = 28) and patients in whom no calcifications were detected constituted group B (n = 12) of this study. Univariate analysis among several risk factors for stroke development between the 2 groups of patients disclosed a stastistically significant lower incidence of diabetes mellitus (P = .005) but a higher incidence of symptomatic plaques (P < .030) in the group of patients with detectable calcifications in the panoramic radiograph. Patients with calcified carotid plaques detectable by panoramic radiography are more likely to have suffered cerebrovascular events. Therefore, patients with detectable carotid plaque in panoramic radiographs require referral to their physician for further investigation.
Lee, Jae M; Ku, Jeong H; Jang, Dong P; Kim, Dong H; Choi, Young H; Kim, In Y; Kim, Sun I
2002-06-01
The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology enabled us to use virtual reality (VR) for the treatment of the fear of public speaking. There have been two techniques used to construct a virtual environment for the treatment of the fear of public speaking: model-based and movie-based. Virtual audiences and virtual environments made by model-based technique are unrealistic and unnatural. The movie-based technique has a disadvantage in that each virtual audience cannot be controlled respectively, because all virtual audiences are included in one moving picture file. To address this disadvantage, this paper presents a virtual environment made by using image-based rendering (IBR) and chroma keying simultaneously. IBR enables us to make the virtual environment realistic because the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma keying allows a virtual audience to be controlled individually. In addition, a real-time capture technique was applied in constructing the virtual environment to give the subjects more interaction, in that they can talk with a therapist or another subject.
Kodak T-Mat G film in rotational panoramic radiography.
Ponce, A Z; McDavid, W D; Lundeen, R C; Morris, C R
1986-06-01
Panoramic radiographs were taken of a tissue-equivalent phantom to evaluate T-Mat G and Ortho G films in combination with rare earth screens. The radiographs were compared to radiographs made with high-speed calcium tungstate screens and Kodak XRP film. The reduction in the amount of radiation necessary for the use of rare earth screens (50% to 70%) was accomplished by lowering the mA and adding filtration. All evaluated films were diagnostically acceptable. There was a marked preference of the T-Mat radiographs over the Ortho G radiographs and a slight preference over radiographs made with the standard calcium-tungstate screen-film system.
Three-dimensional measurement of yarn hairiness via multiperspective images
NASA Astrophysics Data System (ADS)
Wang, Lei; Xu, Bugao; Gao, Weidong
2018-02-01
Yarn hairiness is one of the essential parameters for assessing yarn quality. Most of the currently used yarn measurement systems are based on two-dimensional (2-D) photoelectric measurements, which are likely to underestimate levels of yarn hairiness because hairy fibers on a yarn surface are often projected or occluded in these 2-D systems. A three-dimensional (3-D) test method for hairiness measurement using a multiperspective imaging system is presented. The system was developed to reconstruct a 3-D yarn model for tracing the actual length of hairy fibers on a yarn surface. Five views of a yarn from different perspectives were created by two angled mirrors and simultaneously captured in one panoramic picture by a camera. A 3-D model was built by extracting the yarn silhouettes in the five views and transferring the silhouettes into a common coordinate system. From the 3-D model, curved hair fibers were traced spatially so that projection and occlusion occurring in the current systems could be avoided. In the experiment, the proposed method was compared with two commercial instruments, i.e., the Uster Tester and Zweigle Tester. It is demonstrated that the length distribution of hairy fibers measured from the 3-D model showed an exponential growth when the fiber length is sorted from shortest to longest. The hairiness measurements, such as H-value, measured by the multiperspective method were highly consistent with those of Uster Tester (r=0.992) but had larger values than those obtained from Uster Tester and Zweigle Tester, proving that the proposed method corrected underestimated hairiness measurements in the commercial systems.
NASA Astrophysics Data System (ADS)
Schmitz, Nicole; Jaumann, Ralf; Coates, Andrew; Griffiths, Andrew; Hauber, Ernst; Trauthan, Frank; Paar, Gerhard; Barnes, Dave; Bauer, Arnold; Cousins, Claire
2010-05-01
Geologic context as a combination of orbital imaging and surface vision, including range, resolution, stereo, and multispectral imaging, is commonly regarded as basic requirement for remote robotic geology and forms the first tier of any multi-instrument strategy for investigating and eventually understanding the geology of a region from a robotic platform. Missions with objectives beyond a pure geologic survey, e.g. exobiology objectives, require goal-oriented operational procedures, where the iterative process of scientific observation, hypothesis, testing, and synthesis, performed via a sol-by-sol data exchange with a remote robot, is supported by a powerful vision system. Beyond allowing a thorough geological mapping of the surface (soil, rocks and outcrops) in 3D, using wide angle stereo imagery, such a system needs to be able to provide detailed visual information on targets of interest in high resolution, thereby enabling the selection of science targets and samples for further analysis with a specialized in-situ instrument suite. Surface vision for ESA's upcoming ExoMars rover will come from a dedicated Panoramic Camera System (PanCam). As integral part of the Pasteur payload package, the PanCam is designed to support the search for evidence of biological processes by obtaining wide angle multispectral stereoscopic panoramic images and high resolution RGB images from the mast of the rover [1]. The camera system will consist of two identical wide-angle cameras (WACs), which are arranged on a common pan-tilt mechanism, with a fixed stereo base length of 50 cm. The WACs are being complemented by a High Resolution Camera (HRC), mounted between the WACs, which allows a magnification of selected targets by a factor of ~8 with respect to the wide-angle optics. The high-resolution images together with the multispectral and stereo capabilities of the camera will be of unprecedented quality for the identification of water-related surface features (such as sedimentary rocks) and form one key to a successful implementation of ESA's multi-level strategy for the ExoMars Reference Surface Mission. A dedicated PanCam Science Implementation Strategy is under development, which connects the PanCam science objectives and needs of the ExoMars Surface Mission with the required investigations, planned measurement approach and sequence, and connected mission requirements. First step of this strategy is obtaining geological context to enable the decision where to send the rover. PanCam (in combination with Wisdom) will be used to obtain ground truth by a thorough geomorphologic mapping of the ExoMars rover's surroundings in near and far range in the form of (1) RGB or monochromatic full (i.e. 360°) or partial stereo panoramas for morphologic and textural information and stereo ranging, (2) mosaics or single images with partly or full multispectral coverage to assess the mineralogy of surface materials as well as their weathering state and possible past or present alteration processes and (3) small-scale high-resolution information on targets/features of interest, and distant or inaccessible sites. This general survey phase will lead to the identification of surface features like outcrops, ridges and troughs and the characterization of different rock and surface units based on their morphology, distribution, and spectral and physical properties. Evidence of water-bearing minerals, water-altered rocks or even water-lain sediments seen in the large-scale wide angle images will then allow for preselecting those targets/features considered relevant for detailed analysis and definition of their geologic context. Detailed characterization and, subsequently, selection of those preselected targets/features for further analysis will then be enabled by color high-resolution imagery, followed by the next tier of contact instruments to enable a decision on whether or not to acquire samples for further analysis. During the following drill/analysis phase, PanCam's High Resolution Camera will characterize the sample in the sample tray and observe the sample discharge into the Core Sample Transfer Mechanism. Key parts of this science strategy have been tested under laboratory conditions in two geology blind tests [2] and during two field test campaigns in Svalbard, using simulated mission conditions, an ExoMars representative Payload (ExoMars and MSL instrument breadboards), and Mars analog settings [3, 4]. The experiences gained are being translated into operational sequences, and, together with the science implementation strategy, form a first version of a PanCam Surface Operations plan. References: [1] Griffiths, A.D. et al. (2006) International Journal of Astrobiology 5 (3): 269-275, doi:10.1017/ S1473550406003387. [2] Pullan, D. et al. (2009) EPSC Abstracts, Vol. 4, EPSC2009-514. [3] Schmitz, N. et al. (2009) Geophysical Research Abstracts, Vol. 11, EGU2009-10621-2. [4] Cousins, C. et al. (2009) EPSC Abstracts, Vol. 4, EPSC2009-813.
Automatic Synthesis of Panoramic Radiographs from Dental Cone Beam Computed Tomography Data.
Luo, Ting; Shi, Changrong; Zhao, Xing; Zhao, Yunsong; Xu, Jinqiu
2016-01-01
In this paper, we propose an automatic method of synthesizing panoramic radiographs from dental cone beam computed tomography (CBCT) data for directly observing the whole dentition without the superimposition of other structures. This method consists of three major steps. First, the dental arch curve is generated from the maximum intensity projection (MIP) of 3D CBCT data. Then, based on this curve, the long axial curves of the upper and lower teeth are extracted to create a 3D panoramic curved surface describing the whole dentition. Finally, the panoramic radiograph is synthesized by developing this 3D surface. Both open-bite shaped and closed-bite shaped dental CBCT datasets were applied in this study, and the resulting images were analyzed to evaluate the effectiveness of this method. With the proposed method, a single-slice panoramic radiograph can clearly and completely show the whole dentition without the blur and superimposition of other dental structures. Moreover, thickened panoramic radiographs can also be synthesized with increased slice thickness to show more features, such as the mandibular nerve canal. One feature of the proposed method is that it is automatically performed without human intervention. Another feature of the proposed method is that it requires thinner panoramic radiographs to show the whole dentition than those produced by other existing methods, which contributes to the clarity of the anatomical structures, including the enamel, dentine and pulp. In addition, this method can rapidly process common dental CBCT data. The speed and image quality of this method make it an attractive option for observing the whole dentition in a clinical setting.
Twin Dimples Intrigue Scientists
NASA Technical Reports Server (NTRS)
2004-01-01
This image from the Mars Exploration Rover Opportunity is part of the first set of pictures that was returned to Earth after the rover exited 'Eagle Crater.' Scientists are busy analyzing Opportunity's new view of the plains of Meridiani Planum. The plentiful ripples are a clear indication that wind is the primary geologic process currently in effect on the plains. On the left of the image are two depressions--each about a meter (about 3.3 feet) across--that feature bright spots in their centers. One possibility is that the bright material is similar in composition to the rocks in Eagle Crater's outcrop and the surrounding darker material is what's referred to as 'lag deposit,' or erosional remnants that are much harder and more difficult to wear away. These twin dimples might be revealing pieces of a larger outcrop that lies beneath. The depression closest to Opportunity is whimsically referred to as 'Homeplate' and the one behind it as 'First Base.' The rover's panoramic camera is set to take detailed images of the depressions today, on Opportunity's 58th sol. The backshell and parachute that helped protect the rover and deliver it safely to the surface of Mars are also visible near the horizon, in the center of the image. This image was taken by the rover's navigation camera.
New Day for Longest-Working Mars Rover
2018-02-16
NASA's Mars Exploration Rover Opportunity recorded the dawn of the rover's 4,999th Martian day, or sol, with its Panoramic Camera (Pancam) on Feb. 15, 2018, yielding this processed, approximately true-color scene. The view looks across Endeavour Crater, which is about 14 miles (22 kilometers) in diameter, from the inner slope of the crater's western rim. Opportunity has driven a little over 28.02 miles (45.1 kilometers) since it landed in the Meridiani Planum region of Mars in January, 2004, for what was planned as a 90-sol mission. A sol lasts about 40 minutes longer than an Earth day. This view combines three separate Pancam exposures taken through filters centered on wavelengths of 601 microns (red), 535 microns (green) and 482 microns (blue). It was processed at Texas A&M University to correct for some of the oversaturation and glare, though it still includes some artifacts from pointing a camera with a dusty lens at the Sun. The processing includes radiometric correction, interpolation to fill in gaps in the data caused by saturation due to Sun's brightness, and warping the red and blue images to undo the effects of time passing between each of the exposures through different filters. https://photojournal.jpl.nasa.gov/catalog/PIA22221
Shahidi, Shoaleh; Zamiri, Barbad; Abolvardi, Masoud; Akhlaghian, Marzieh; Paknahad, Maryam
2018-06-01
Accurate measurement of the available bone height is an essential step in the pre-surgical phase of dental implantation. Panoramic radiography is a unique technique in the pre-surgical phase of dental implantations because of its low cost, relatively low-dose, and availability. This article aimed to assess the reliability of dental panoramic radiographs in the accurate measurement of the vertical bone height with respect to the horizontal location of the alveolar crest. 132 cone-beam computed tomography (CBCT) of the edentulous mandibular molar area and dental panoramic radiograph of 508 patients were selected. Exclusion criteria were bone abnormalities and detectable ideal information on each modality. The alveolar ridge morphology was categorized into 7 types according to the relative horizontal location of the alveolar crest to the mandibular canal based on CBCT findings. The available bone height (ABH) was defined as the distance between the upper border of the mandibular canal and alveolar crest. One oral radiologist and one oral surgeon measured the available bone height twice on each modality with a 7-dayinterval. We found a significant correlation between dental panoramic radiographs and cone-beam computed tomography values (ICC=0.992, p < 0.001). A positive correlation between the horizontal distance of the alveolar crest to the mandibular canal and measured differences between two radiographic modalities had been found (r=0.755, p < 0.001). For each single unit of increase in the horizontal distance of the alveolar crest to the mandibular canal, dental panoramic radiographs showed 0.87 unit of overestimation ( p < 0.001). Dental panoramic radiographs can be employed safely in the pre-surgical phase of dental implantation in posterior alveolus of mandible, especially in routine and simple cases.
Saberi, Bardia Vadiati; Nemati, Somayeh; Malekzadeh, Meisam; Javanmard, Afrooz
2017-01-01
Assessment of alveolar bone level in periodontitis is very important in determining prognosis and treatment plan. Panoramic radiography is a diagnostic tool used to screen patients. The aim of the present study was to assess the diagnostic value of digital panoramic radiography in angular bony defects with 5 mm or deeper pocket depth in mandibular molars. In this cross-sectional study, ninety angular bony defects in mandibular molars teeth with 5 mm or deeper pocket depth were selected in sixty patients with the diagnosis of chronic periodontitis. Before surgery, bone probing was performed. During the surgery, the vertical distance from cementoenamel junction to the most apical part of bony defect was measured using a Williams probe and this measurements were employed as gold standard. This distance was measured on the panoramic radiographs by a Digital Calliper and Digital Ruler. All data were compare dusing independent samples t -test and Pearson's correlation coefficient. No significant difference was found between the results of bone probing and intra-surgical measurements ( P = 0.377). The mean defect depth determined by Digital Caliper and Digital Ruler on panoramic radiographs was significantly less than surgical measurements ( P < 0.001). The correlation between bone probing and surgical measurements in determining the defect depth was strong ( r = 0.98, P < 0.001). Radiographic measurements made by Digital Ruler ( r = 0.86), comparing to Digital Caliper ( r = 0.79), showed a higher degree of correlation with surgical measurements. Based on this study, bone probing is a reliable method in vertical alveolar bone defect measurements. While the information obtained from digital panoramic radiographs should be used with caution and the ability of digital panoramic radiography in the determination of defect depth is limited.
Rover's Wheel Churns Up Bright Martian Soil (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Multiple images taken with Spirit's panoramic camera are combined here into a stereo view that appears three-dimensional when seen through red-blue glasses, with the red lens on the left.Making Tracks on Mars (left-eye)
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Mars Exploration Rover Spirit has been making tracks on Mars for seven months now, well beyond its original 90-day mission. The rover traveled more than 3 kilometers (2 miles) to reach the 'Columbia Hills' pictured here. In this 360-degree view of the rolling martian terrain, its wheel tracks can be seen approaching from the northwest (right side of image). Spirit's navigation camera took the images that make up this mosaic on sols 210 and 213 (Aug. 5 and Aug. 8, 2004). The rover is now conducting scientific studies of the local geology on the 'Clovis' outcrop of the 'West Spur' region of the 'Columbia Hills.' The view is presented in a cylindrical-perspective projection with geometrical seam correction. This is the left-eye view of a stereo pair. Scientists plan for Spirit to take a color panoramic image from this location.Development of a virtual speaking simulator using Image Based Rendering.
Lee, J M; Kim, H; Oh, M J; Ku, J H; Jang, D P; Kim, I Y; Kim, S I
2002-01-01
The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology has enabled the use of virtual reality (VR) for the treatment of the fear of public speaking. There are two techniques for building virtual environments for the treatment of this fear: a model-based and a movie-based method. Both methods have the weakness that they are unrealistic and not controllable individually. To understand these disadvantages, this paper presents a virtual environment produced with Image Based Rendering (IBR) and a chroma-key simultaneously. IBR enables the creation of realistic virtual environments where the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma-keys puts virtual audience members under individual control in the environment. In addition, real time capture technique is used in constructing the virtual environments enabling spoken interaction between the subject and a therapist or another subject.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.
Delta II Heavy MER-B Prelaunch
2003-07-07
On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.
Delta II Heavy launch of "Opportunity" MER-B Rover
2003-07-07
On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.
Delta II Heavy MER-B - MST Rollback
2003-07-07
The Mobile Service Tower is ready to be rolled back at Launch Complex 17-B, Cape Canaveral Air Force Station, to launch the Delta II Heavy launch vehicle carrying the rover "Opportunity" on the second Mars Exploration Rover mission. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
2003-07-07
KENNEDY SPACE CENTER, FLA. - The Mobile Service Tower begins to roll back at Launch Complex 17-B, Cape Canaveral Air Force Station, revealing the Delta II Heavy launch vehicle carrying the rover "Opportunity" on the second Mars Exploration Rover mission. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
Rind-Like Features at a Meridiani Outcrop
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Annotated image of PIA04189 Rind-Like Features at a Meridiani Outcrop After months spent crossing a sea of rippled sands, Opportunity reached an outcrop in August 2005 and began investigating exposures of sedimentary rocks, intriguing rind-like features that appear to cap the rocks, and cobbles that dot the martian surface locally. Opportunity spent several martian days, or sols, analyzing a feature called 'Lemon Rind,' a thin surface layer covering portions of outcrop rocks poking through the sand north of 'Erebus Crater.' In images from the panoramic camera, Lemon Rind appears slightly different in color than surrounding rocks. It also appears to be slightly more resistant to wind erosion than the outcrop's interior. This is an approximately true-color composite produced from frames taken during Opportunity's 552nd martian day, or sol (Aug. 13, 2005).NASA Technical Reports Server (NTRS)
1997-01-01
Developed largely through a Small Business Innovation Research contract through Langley Research Center, Interactive Picture Corporation's IPIX technology provides spherical photography, a panoramic 360-degrees. NASA found the technology appropriate for use in guiding space robots, in the space shuttle and space station programs, as well as research in cryogenic wind tunnels and for remote docking of spacecraft. Images of any location are captured in their entirety in a 360-degree immersive digital representation. The viewer can navigate to any desired direction within the image. Several car manufacturers already use IPIX to give viewers a look at their latest line-up of automobiles. Another application is for non-invasive surgeries. By using OmniScope, surgeons can look more closely at various parts of an organ with medical viewing instruments now in use. Potential applications of IPIX technology include viewing of homes for sale, hotel accommodations, museum sites, news events, and sports stadiums.
Temperature Map, "Bonneville Crater" (1:35 p.m.)
2004-05-17
Rates of change in surface temperatures during a martian day indicate differences in particle size in and near "Bonneville Crater." This image is the third in a series of five with color-coded temperature information from different times of day. This one is from 1:35 p.m. local solar time at the site where NASA's Mars Exploration Rover Spirit is exploring Mars. Temperature information from Spirit's miniature thermal emission spectrometer is overlaid onto a view of the site from Spirit's panoramic camera. In this color-coded map, quicker reddening during the day suggests sand or dust. (Red is about 270 Kelvin or 27 degrees Fahrenheit.) An example of this is in the shallow depression in the right foreground. Areas that stay blue longer into the day have larger rocks. (Blue indicates about 230 Kelvin or minus 45 Degrees F.) An example is the rock in the left foreground. http://photojournal.jpl.nasa.gov/catalog/PIA05930
STS-41 Ulysses Breakfast, Suit-up, C-7 Exit, Launch and ISOS Cam Views
NASA Technical Reports Server (NTRS)
1990-01-01
Live footage shows the crewmembers of STS-41, Commander Richard N. Richards, Pilot Robert D. Cabana, Mission Specialists William M. Shepherd, Bruce E. Melnick, and Thomas D. Akers, participating in the traditional activities the day of their flight. The crew are seen eating breakfast, suiting-up, walking out to the Astronaut-Van, putting on life vests in the 'White Room' area, and entering the crew module of the Discovery Orbiter. Footage also includes preparation of the Ulysses Payload. Engineers are seen loading Ulysses to the upper stage, transferring Discovery to an upright position, bolting Discovery to the external tank, rolling Discovery out to the launch pad, and finally installing the Ulysses Payload inside Discovery. Also shown are both night and morning panoramic shots of the shuttle on the pad, main engine start, ignition, liftoff, booster separation, and various camera views of the launch.
NASA Technical Reports Server (NTRS)
2004-01-01
This image composite shows two of the Mars Exploration Rover Opportunity's magnets, the 'capture' magnet (upper portion of left panel) and the 'filter' magnet (lower portion of left panel). Scientists use these tools to study the origins of martian dust in the atmosphere. The left panel was taken by the rover's panoramic camera. The four panels to the right, taken by the microscopic imager, show close-up views of the two magnets. The bull's-eye appearance of the capture magnet is a result of alternating magnetic fields, which are used to increase overall magnetic force. The filter magnet lacks these alternating fields and consequently produces a weaker magnetic force. This weaker force selectively attracts only strong magnetic particles.
Scientists were surprised by the large dark particles on the magnets because airborne particles are smaller in size. They theorize that these spots might be aggregates of small particles that clump together in a magnetic field.NASA Technical Reports Server (NTRS)
Muehlberger, W. R.
1992-01-01
The Apollo 17 landing site was unique in several aspects: (1) it was the only site that was not selected from telescopic-based geologic interpretation--interest in the site was generated by the visual observations of Al Worden, Apollo 15 Command Module pilot, who interpreted dark-haloed craters as possible cinder cones; (2) instead of 20-m-resolution photographs, as was the norm for all earlier missions, this site had Apollo 15 panoramic camera photography coverage that had 2-m resolution; and (3) it had a geologist-astronaut aboard who was intimately involved in all stages of planning and mission operation, and was also instrumental in the design of a long-handled sample bag holder that eliminated the need for crew to dismount before collecting a sample, which then permitted sampling between major stations. Details of site geology, sample description, and geologic synthesis of the site as viewed from studies through 1976 are summarized.
Intraoperative panoramic image using alignment grid, is it accurate?
Apivatthakakul, T; Duanghakrung, M; Luevitoonvechkit, S; Patumasutra, S
2013-07-01
Minimally invasive orthopedic trauma surgery relies heavily on intraoperative fluoroscopic images to evaluate the quality of fracture reduction and fixation. However, fluoroscopic images have a narrow field of view and often cannot visualize the entire long bone axis. To compare the coronal femoral alignment between conventional X-rays to that achieved with a new method of acquiring a panoramic intraoperative image. Twenty-four cadaveric femurs with simple diaphyseal fractures were fixed with an angulated broad DCP to create coronal plane malalignment. An intraoperative alignment grid was used to help stitch different fluoroscopic images together to produce a panoramic image. A conventional X-ray of the entire femur was then performed. The coronal plane angulation in the panoramic images was then compared to the conventional X-rays using a Wilcoxon signed rank test. The mean angle measured from the panoramic view was 173.9° (range 169.3°-178.0°) with median of 173.2°. The mean angle measured from the conventional X-ray was 173.4° (range 167.7°-178.7°) with a median angle of 173.5°. There was no significant difference between both methods of measurement (P = 0.48). Panoramic images produced by stitching fluoroscopic images together with help of an alignment grid demonstrated the same accuracy at evaluating the coronal plane alignment of femur fractures as conventional X-rays.
Baciut, Mihaela; Hedesiu, Mihaela; Bran, Simion; Jacobs, Reinhilde; Nackaerts, Olivia; Baciut, Grigore
2013-05-01
The present study evaluated the clinical validity of cone-beam computed tomography (CBCT) scans in comparison to panoramic radiographs regarding preoperative implant planning in combination with sinus grafting procedures. Preoperative assessment of the maxillary sinuses and implant planning using panoramic radiographs and CBCT scans was performed on 16 sinuses (13 patients) and comprised choice of treatment, timing of implant placement, sinus morphology, level of confidence, complication prediction and graft volume assessment. Six examiners were involved in the study. In the majority of cases there was a concordance between the treatment type based on either panoramic radiographs or CBCT. If any difference was found, this was due to an overestimation of bone quantity and quality on panoramic radiographs. The assessment of sinus morphology showed a significantly higher detection rate of sinus mucosal hypertrophy on CBCT. The most appealing result is a significant increase in surgical confidence and a significantly better prediction of complications when using CBCT. A preoperative planning based on CBCT seems to improve sinus diagnostics and surgical confidence. © 2012 John Wiley & Sons A/S.
Designing 3 Dimensional Virtual Reality Using Panoramic Image
NASA Astrophysics Data System (ADS)
Wan Abd Arif, Wan Norazlinawati; Wan Ahmad, Wan Fatimah; Nordin, Shahrina Md.; Abdullah, Azrai; Sivapalan, Subarna
The high demand to improve the quality of the presentation in the knowledge sharing field is to compete with rapidly growing technology. The needs for development of technology based learning and training lead to an idea to develop an Oil and Gas Plant Virtual Environment (OGPVE) for the benefit of our future. Panoramic Virtual Reality learning based environment is essential in order to help educators overcome the limitations in traditional technical writing lesson. Virtual reality will help users to understand better by providing the simulations of real-world and hard to reach environment with high degree of realistic experience and interactivity. Thus, in order to create a courseware which will achieve the objective, accurate images of intended scenarios must be acquired. The panorama shows the OGPVE and helps to generate ideas to users on what they have learnt. This paper discusses part of the development in panoramic virtual reality. The important phases for developing successful panoramic image are image acquisition and image stitching or mosaicing. In this paper, the combination of wide field-of-view (FOV) and close up image used in this panoramic development are also discussed.
Hafezi, Ladan; Arianezhad, S Marjan; Hosseini Pooya, Seyed Mahdi
2018-04-25
The value for the use of thyroid shield is one of the issues in radiation protection of patients in dental panoramic imaging. The objective of this research is to investigate the attenuation characteristics of some models of thyroid shielding in dental panoramic examinations. The effects of five different types of lead and lead-free (Pb-equivalent) shields on dose reduction of thyroid gland were investigated using implanted Thermoluminescence Dosemeters (TLDs) in head-neck parts of a Rando phantom. The results show that frontal lead and Pb-equivalent shields can reduce the thyroid dose around 50% and 19%, respectively. It can be concluded that the effective shielding area is an important parameter in thyroid gland dose reduction. Lead frontal collars with large effective shielding areas (>~300 cm 2 but not necessarily very large) are appropriate for an optimized thyroid gland dose reduction particularly for the critical patients in dental panoramic imaging. Regardless of the shape and thickness, using the Pb-equivalent shields is not justifiable in dental panoramic imaging.
NASA Tech Briefs, October 2007
NASA Technical Reports Server (NTRS)
2007-01-01
Topics covered include; Wirelessly Interrogated Position or Displacement Sensors; Ka-Band Radar Terminal Descent Sensor; Metal/Metal Oxide Differential Electrode pH Sensors; Improved Sensing Coils for SQUIDs; Inductive Linear-Position Sensor/Limit-Sensor Units; Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity; Single-Camera Panoramic-Imaging Systems; Interface Electronic Circuitry for an Electronic Tongue; Inexpensive Clock for Displaying Planetary or Sidereal Time; Efficient Switching Arrangement for (N + 1)/N Redundancy; Lightweight Reflectarray Antenna for 7.115 and 32 GHz; Opto-Electronic Oscillator Using Suppressed Phase Modulation; Alternative Controller for a Fiber-Optic Switch; Strong, Lightweight, Porous Materials; Nanowicks; Lightweight Thermal Protection System for Atmospheric Entry; Rapid and Quiet Drill; Hydrogen Peroxide Concentrator; MMIC Amplifiers for 90 to 130 GHz; Robot Would Climb Steep Terrain; Measuring Dynamic Transfer Functions of Cavitating Pumps; Advanced Resistive Exercise Device; Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds; Resonant Tunneling Spin Pump; Enhancing Spin Filters by Use of Bulk Inversion Asymmetry; Optical Magnetometer Incorporating Photonic Crystals; WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics; Raman-Suppressing Coupling for Optical Parametric Oscillator; CO2-Reduction Primary Cell for Use on Venus; Cold Atom Source Containing Multiple Magneto- Optical Traps; POD Model Reconstruction for Gray-Box Fault Detection; System for Estimating Horizontal Velocity During Descent; Software Framework for Peer Data-Management Services; Autogen Version 2.0; Tracking-Data-Conversion Tool; NASA Enterprise Visual Analysis; Advanced Reference Counting Pointers for Better Performance; C Namelist Facility; and Efficient Mosaicking of Spitzer Space Telescope Images.
Heinrich, Andreas; Güttler, Felix; Wendt, Sebastian; Schenkl, Sebastian; Hubig, Michael; Wagner, Rebecca; Mall, Gita; Teichgräber, Ulf
2018-06-18
In forensic odontology the comparison between antemortem and postmortem panoramic radiographs (PRs) is a reliable method for person identification. The purpose of this study was to improve and automate identification of unknown people by comparison between antemortem and postmortem PR using computer vision. The study includes 43 467 PRs from 24 545 patients (46 % females/54 % males). All PRs were filtered and evaluated with Matlab R2014b including the toolboxes image processing and computer vision system. The matching process used the SURF feature to find the corresponding points between two PRs (unknown person and database entry) out of the whole database. From 40 randomly selected persons, 34 persons (85 %) could be reliably identified by corresponding PR matching points between an already existing scan in the database and the most recent PR. The systematic matching yielded a maximum of 259 points for a successful identification between two different PRs of the same person and a maximum of 12 corresponding matching points for other non-identical persons in the database. Hence 12 matching points are the threshold for reliable assignment. Operating with an automatic PR system and computer vision could be a successful and reliable tool for identification purposes. The applied method distinguishes itself by virtue of its fast and reliable identification of persons by PR. This Identification method is suitable even if dental characteristics were removed or added in the past. The system seems to be robust for large amounts of data. · Computer vision allows an automated antemortem and postmortem comparison of panoramic radiographs (PRs) for person identification.. · The present method is able to find identical matching partners among huge datasets (big data) in a short computing time.. · The identification method is suitable even if dental characteristics were removed or added.. · Heinrich A, Güttler F, Wendt S et al. Forensic Odontology: Automatic Identification of Persons Comparing Antemortem and Postmortem Panoramic Radiographs Using Computer Vision. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0632-4744. © Georg Thieme Verlag KG Stuttgart · New York.
A leaded apron for use in panoramic dental radiography.
Whitcher, B L; Gratt, B M; Sickles, E A
1980-05-01
The leaded aprons currently available for use during dental radiography do not protect the thyroid gland from radiation. Conventional aprons may produce artifacts when used with panoramic dental x-ray units. This study measures the dose reduction obtained with an experimental leaded apron designed for use with panoramic dental x-ray units. Skin exposures measured at the thyroid and at the sternum were reduced with the use of the apron. Films produced during the study were free from apron artifacts.
Panoramic cone beam computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Jenghwa; Zhou Lili; Wang Song
2012-05-15
Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{submore » cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and imaging dose for both standard and panoramic CBCT. Results: Truncated images with artifacts were observed for the CBCT reconstruction using projection images of the central view only. When the image stitching was perfect, complete reconstruction was obtained for the panoramic CBCT using the modified SART with the image quality similar to the gold standard (full-scan, full-fan CBCT using one large imaging panel). Imperfect image stitching, on the other hand, lead to (streak, line, or ring) reconstruction artifacts, reduced CNR, and/or distorted geometry. Results from Monte Carlo simulations showed that, for identical imaging quality, the imaging dose was lower for the panoramic CBCT than that acquired with one large imaging panel. For the same imaging dose, the CNR of the three-view panoramic CBCT was 50% higher than that of the regular CBCT using one big panel. Conclusions: The authors have developed a panoramic CBCT technique and demonstrated with simulation data that it can image tumors of any location for patients of any size at the treatment position with comparable or less imaging dose and time. However, the image quality of this CBCT technique is sensitive to the reconstruction artifacts caused by imperfect image stitching. Better algorithms are therefore needed to improve the accuracy of image stitching for panoramic CBCT.« less
2005-04-29
This is the Spirit panoramic camera's "Lookout" panorama, acquired on the rover's 410th to 413th martian days, or sols (Feb. 27 to Mar. 2, 2005). The view is from a position known informally as "Larry's Lookout" along the drive up "Husband Hill." The summit of Husband Hill is the far peak near the center of this panorama and is about 200 meters (656 feet) away from the rover and about 45 meters (148 feet) higher in elevation. The bright rocky outcrop near the center of the panorama is part of the "Cumberland Ridge," and beyond that and to the left is the "Tennessee Valley." The panorama spans 360 degrees and consists of images obtained in 108 individual pointings and five filters at each pointing. This mosaic is an approximately true-color rendering generated using the images acquired through panoramic camera's 750-nanometer, 530-nanometer, and 480-nanometer filters. The lighting varied considerably during the four sols that it took to acquire this image (partly because of imaging at different times of sol, but also partly because of small sol-to-sol variations in the dustiness of the atmosphere), resulting in some obvious image seams or rock shadow variations within the mosaic. These seams have been smoothed out from the sky parts of the mosaic in order to simulate better the vista that a person would have if they were viewing it all at the same time on Mars. However, it is often not possible or practical to smooth out such seams for regions of rock, soil, rover tracks, or solar panels. Such is the nature of acquiring and assembling large Pancam panoramas from the rovers. Spirit's tracks leading back from the "West Spur" region can be seen on the right side of the panorama. The region just beyond the area where the tracks made their last zig-zag is the area known as "Paso Robles," where Spirit discovered rock and soil deposits with very high sulfur abundances. After acquiring this mosaic (which took several weeks to fully downlink and then several more weeks to process), Spirit drove around the Cumberland Ridge rocks seen here and is now driving up the flank of Husband Hill, heading toward the summit. http://photojournal.jpl.nasa.gov/catalog/PIA07882
Towards System Calibration of Panoramic Laser Scanners from a Single Station
Medić, Tomislav; Holst, Christoph; Kuhlmann, Heiner
2017-01-01
Terrestrial laser scanner measurements suffer from systematic errors due to internal misalignments. The magnitude of the resulting errors in the point cloud in many cases exceeds the magnitude of random errors. Hence, the task of calibrating a laser scanner is important for applications with high accuracy demands. This paper primarily addresses the case of panoramic terrestrial laser scanners. Herein, it is proven that most of the calibration parameters can be estimated from a single scanner station without a need for any reference information. This hypothesis is confirmed through an empirical experiment, which was conducted in a large machine hall using a Leica Scan Station P20 panoramic laser scanner. The calibration approach is based on the widely used target-based self-calibration approach, with small modifications. A new angular parameterization is used in order to implicitly introduce measurements in two faces of the instrument and for the implementation of calibration parameters describing genuine mechanical misalignments. Additionally, a computationally preferable calibration algorithm based on the two-face measurements is introduced. In the end, the calibration results are discussed, highlighting all necessary prerequisites for the scanner calibration from a single scanner station. PMID:28513548
NASA Astrophysics Data System (ADS)
Suprijanto; Azhari; Juliastuti, E.; Septyvergy, A.; Setyagar, N. P. P.
2016-03-01
Osteoporosis is a degenerative disease characterized by low Bone Mineral Density (BMD). Currently, a BMD level is determined by Dual Energy X-ray Absorptiometry (DXA) at the lumbar vertebrae and femur. Previous studies reported that dental panoramic radiography image has potential information for early osteoporosis detection. This work reported alternative scheme, that consists of the determination of the Region of Interest (ROI) the condyle mandibular in the image as biomarker and feature extraction from ROI and classification of bone conditions. The minimum value of intensity in the cavity area is used to compensate an offset on the ROI. For feature extraction, the fraction of intensity values in the ROI that represent high bone density and the ROI total area is perfomed. The classification will be evaluated from the ability of each feature and its combinations for the BMD detection in 2 classes (normal and abnormal), with the artificial neural network method. The evaluation system used 105 panoramic image data from menopause women which consist of 36 training data and 69 test data that were divided into 2 classes. The 2 classes of classification obtained 88.0% accuracy rate and 88.0% sensitivity rate.
63. PANORAMIC VIEW OF HEADWORKS FROM WEST SIDE OF RIVER, ...
63. PANORAMIC VIEW OF HEADWORKS FROM WEST SIDE OF RIVER, LOOKING UPSTREAM, Prints No. 173, 174 and 175, November 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA
Clinical image quality evaluation for panoramic radiography in Korean dental clinics
Choi, Bo-Ram; Choi, Da-Hye; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Bae, Kwang-Hak
2012-01-01
Purpose The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Materials and Methods Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. Results A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Conclusion Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively. PMID:23071969
Measurement of the meteoroid flux at Mars
NASA Astrophysics Data System (ADS)
Domokos, A.; Bell, J. F.; Brown, P.; Lemmon, M. T.; Suggs, R.; Vaubaillon, J.; Cooke, W.
2007-11-01
In the fall of 2005, a dedicated meteor observing campaign was carried out by the Panoramic Camera (Pancam) onboard the Mars Exploration Rover (MER) Spirit to determine the viability of using MER cameras as meteor detectors and to obtain the first experimental estimate of the meteoroid flux at Mars. Our observing targets included both the sporadic meteoroid background and two predicted martian meteor showers: one associated with 1P/Halley and a potential stream associated with 2001/R1 LONEOS. A total of 353 images covering 2.7 h of net exposure time were analyzed with no conclusive meteor detections. From these data, an upper limit to the background meteoroid flux at Mars is estimated to be <4.4×10 meteoroidskmh for meteoroids with mass larger than 4 g. For comparison, the estimated flux to this mass limit at the Earth is 10 meteoroidskmh [Grün, E., Zook, H.A., Fechtig, H., Giese, R.H., 1985. Icarus 62, 244-272]. This result is qualitatively consistent, within error bounds, with theoretical models predicting martian fluxes of ˜50% that at Earth for meteoroids of mass 10-10 g [Adolfsson, L.G., Gustafson, B.A.S., Murray, C.D., 1996. Icarus 119, 144-152]. The MER cameras, even using the most sensitive mode of operation, should expect to see on average only one coincident meteor on of order 40-150 h of total exposure time based on these same theoretical martian flux estimates. To more meaningfully constrain these flux models, a longer total integrated exposure time or more sensitive camera is needed. Our analysis also suggests that the event reported as the first martian meteor [Selsis, F., Lemmon, M.T., Vaubaillon, J., Bell, J.F., 2005. Nature 435, 581] is more likely a grazing cosmic ray impact, which we show to be a major source of confusion with potential meteors in all Pancam images.
Dutra, Kamile; Porporatti, André Luís; Mezzomo, Luis A; De Luca Canto, Graziela; Flores-Mir, Carlos; Corrêa, Márcio
2016-01-01
Objectives: To investigate the anatomical variations of the mandibular canal through assessment in situ, panoramic radiography, CT or CBCT and assess their frequency. Methods: Articles were selected from databases (Cochrane Library, LILACS, ProQuest, PubMed, Scopus, Web of Science and Google Scholar), articles without limitations of language, in which the main objective was to evaluate the frequency of bifurcation of the mandibular canal through assessment in situ, panoramic radiography, CT or CBCT were selected. A meta-analysis of prevalence using random effects was performed. Results: Using a selection process in two phases, 15 articles were identified, and a meta-analysis was conducted. The results from these meta-analyses showed that the overall prevalence of anatomical variations for in situ studies was 6.46%, and through assessment of panoramic radiography and CT or CBCT the overall prevalence shown was 4.20% and 16.25%, respectively. Conclusions: There are two types of variations of the mandibular canal: the retromolar canal and bifid mandibular canal. The frequency variations through assessing in situ, panoramic radiography and CT or CBCT were 6.46%, 4.20% and 16.25%, respectively. PMID:26576624
31. Panoramic shot, Huber Breaker (left), Retail Coal Storage Bins ...
31. Panoramic shot, Huber Breaker (left), Retail Coal Storage Bins (center), Boney Elevator (right) Photographs taken by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA
VizieR Online Data Catalog: Photometry and proper motions in Praesepe (Wang+, 2014)
NASA Astrophysics Data System (ADS)
Wang, P. F.; Chen, W. P.; Lin, C. C.; Pandey, A. K.; Huang, C. K.; Panwar, N.; Lee, C. H.; Tsai, M. F.; Tang, C.-H.; Goldman, B.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Grav, T.; Heasley, J. N.; Hodapp, K. W.; Huber, M. E.; Jedicke, R.; Kaiser, N.; Kudritzki, R.-P.; Luppino, G. A.; Lupton, R. H.; Magnier, E. A.; Metcalfe, N.; Monet, D. G.; Morgan, J. S.; Onaka, P. M.; Price, P. A.; Stubbs, C. W.; Sweeney, W.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.
2016-08-01
Data used in this study include photometry and proper motion measurements within a 5° radius around the Praesepe center (R.A.=08h40m, decl.=+19°42', J2000). Archival data were taken from the 2MASS Point Sources Catalog (2MASS; cat. II/246), PPMXL (Roeser et al. 2010, cat. I/317), and Panoramic Survey Telescope And Rapid Response (Pan-STARRS). Pan-STARRS is a wide-field (7deg2) imaging system, with a 1.8m, f/4.4 telescope, equipped with a 1.4 giga-pixel camera. The prototype (PS1), located atop Haleakala, Maui, USA, has been patrolling the entire sky north of -30° declination since mid-2010 with a combination of gP1, rP1, iP1, zP1, and yP1 bands. The PS1 filters differ slightly from those of the SDSS. The gP1 filter extends 20nm redward of gSDSS for greater sensitivity and lower systematics for photometric redshift estimates. SDSS has no corresponding y filter (Tonry et al. 2012, cat. J/ApJ/750/99). Upon the completion of its 3.5yr mission by early 2014, PS1 will provide reliable photometry and astrometry. Table1 lists the properties of the 1040 candidates. (1 data file).
10 CFR 36.41 - Construction monitoring and acceptance testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... system will operate properly if offsite power is lost and shall verify that the computer has security... system to assure that the requirements in § 36.35 are met for protection of the source rack and the... protection. For panoramic irradiators, the licensee shall test the ability of the heat and smoke detectors to...
10 CFR 36.41 - Construction monitoring and acceptance testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system will operate properly if offsite power is lost and shall verify that the computer has security... system to assure that the requirements in § 36.35 are met for protection of the source rack and the... protection. For panoramic irradiators, the licensee shall test the ability of the heat and smoke detectors to...
10 CFR 36.41 - Construction monitoring and acceptance testing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system will operate properly if offsite power is lost and shall verify that the computer has security... system to assure that the requirements in § 36.35 are met for protection of the source rack and the... protection. For panoramic irradiators, the licensee shall test the ability of the heat and smoke detectors to...
10 CFR 36.41 - Construction monitoring and acceptance testing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... system will operate properly if offsite power is lost and shall verify that the computer has security... system to assure that the requirements in § 36.35 are met for protection of the source rack and the... protection. For panoramic irradiators, the licensee shall test the ability of the heat and smoke detectors to...
10 CFR 36.41 - Construction monitoring and acceptance testing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system will operate properly if offsite power is lost and shall verify that the computer has security... system to assure that the requirements in § 36.35 are met for protection of the source rack and the... protection. For panoramic irradiators, the licensee shall test the ability of the heat and smoke detectors to...
Video-based teleradiology for intraosseous lesions. A receiver operating characteristic analysis.
Tyndall, D A; Boyd, K S; Matteson, S R; Dove, S B
1995-11-01
Immediate access to off-site expert diagnostic consultants regarding unusual radiographic findings or radiographic quality assurance issues could be a current problem for private dental practitioners. Teleradiology, a system for transmitting radiographic images, offers a potential solution to this problem. Although much research has been done to evaluate feasibility and utilization of teleradiology systems in medical imaging, little research on dental applications has been performed. In this investigation 47 panoramic films with an equal distribution of images with intraosseous jaw lesions and no disease were viewed by a panel of observers with teleradiology and conventional viewing methods. The teleradiology system consisted of an analog video-based system simulating remote radiographic consultation between a general dentist and a dental imaging specialist. Conventional viewing consisted of traditional viewbox methods. Observers were asked to identify the presence or absence of 24 intraosseous lesions and to determine their locations. No statistically significant differences in modalities or observers were identified between methods at the 0.05 level. The results indicate that viewing intraosseous lesions of video-based panoramic images is equal to conventional light box viewing.
Two Moons and the Pleiades from Mars
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Inverted animation of PIA06340 Two Moons and the Pleiades from Mars Annotated animation of PIA06340 Two Moons and the Pleiades from Mars Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit recently settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. In this view, the Pleiades, a star cluster also known as the 'Seven Sisters,' is visible in the lower left corner. The bright star Aldebaran and some of the stars in the constellation Taurus are visible on the right. Spirit acquired this image the evening of martian day, or sol, 590 (Aug. 30, 2005). The image on the right provides an enhanced-contrast view with annotation. Within the enhanced halo of light is an insert of an unsaturated view of Phobos taken a few images later in the same sequence. 'It is incredibly cool to be running an observatory on another planet,' said planetary scientist Jim Bell of Cornell University, Ithaca, N.Y., lead scientist for the panoramic cameras on Spirit and Opportunity. In the annotated animation (figure 2), both martian moons, Deimos on the left and Phobos on the right, travel across the night sky in front of the constellation Sagittarius. Part of Sagittarius resembles an upside-down teapot. In this view, Phobos moves toward the handle and Deimos moves toward the lid. Phobos is the brighter object on the right; Deimos is on the left. Each of the stars in Sagittarius is labeled with its formal name. The inset shows an enlarged, enhanced view of Phobos, shaped rather like a potato with a hole near one end. The hole is the large impact creater Stickney, visible on the moon's upper right limb. On Mars, Phobos would be easily visible to the naked eye at night, but would be only about one-third as large as the full Moon appears from Earth. Astronauts staring at Phobos from the surface of Mars would notice its oblong, potato-like shape and that it moves quickly against the background stars. Phobos takes only 7 hours, 39 minutes to complete one orbit of Mars. That is so fast, relative to the 24-hour-and-39-minute sol on Mars (the length of time it takes for Mars to complete one rotation), that Phobos rises in the west and sets in the east. Earth's moon, by comparison, rises in the east and sets in the west. The smaller martian moon, Deimos, takes 30 hours, 12 minutes to complete one orbit of Mars. That orbital period is longer than a martian sol, and so Deimos rises, like most solar system moons, in the east and sets in the west. Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the five images that make up this composite with the panoramic camera, using the camera's broadband filter, which was designed specifically for acquiring images under low-light conditions.Shahidi, Shoaleh; Zamiri, Barbad; Abolvardi, Masoud; Akhlaghian, Marzieh; Paknahad, Maryam
2018-01-01
Statement of the Problem: Accurate measurement of the available bone height is an essential step in the pre-surgical phase of dental implantation. Panoramic radiography is a unique technique in the pre-surgical phase of dental implantations because of its low cost, relatively low-dose, and availability. Purpose: This article aimed to assess the reliability of dental panoramic radiographs in the accurate measurement of the vertical bone height with respect to the horizontal location of the alveolar crest. Materials and Method: 132 cone-beam computed tomography (CBCT) of the edentulous mandibular molar area and dental panoramic radiograph of 508 patients were selected. Exclusion criteria were bone abnormalities and detectable ideal information on each modality. The alveolar ridge morphology was categorized into 7 types according to the relative horizontal location of the alveolar crest to the mandibular canal based on CBCT findings. The available bone height (ABH) was defined as the distance between the upper border of the mandibular canal and alveolar crest. One oral radiologist and one oral surgeon measured the available bone height twice on each modality with a 7-dayinterval. Results: We found a significant correlation between dental panoramic radiographs and cone-beam computed tomography values (ICC=0.992, p< 0.001). A positive correlation between the horizontal distance of the alveolar crest to the mandibular canal and measured differences between two radiographic modalities had been found (r=0.755, p< 0.001). For each single unit of increase in the horizontal distance of the alveolar crest to the mandibular canal, dental panoramic radiographs showed 0.87 unit of overestimation (p< 0.001). Conclusion: Dental panoramic radiographs can be employed safely in the pre-surgical phase of dental implantation in posterior alveolus of mandible, especially in routine and simple cases. PMID:29854881
Moeintaghavi, Amir; Hosseinizarch, Hossein; Tabassi, Sara Mohammadzadeh
2014-07-01
Osteoporosis and periodontitis are two separate diseases with different origins and manifestations. It is believed that these diseases linked together, because they both lead to bone damage, some risk factors are similar, they both have the highest prevalence in middle-aged and older women. Some studies showed that the use of panoramic radiography and special indices could be reliable tools for osteoporosis screening. This study was performed to evaluate the relationship between periodontal disease and jaw osteoporotic indices. Eighty-two patients with chronic periodontitis and 80 healthy individuals were selected, they had been referred to a private oral and maxillofacial radiology clinic to take a panoramic radiograph. Then panoramic indicators; including the mandibular cortical index (MCI), mental index (MI), and panoramic mandible index (PMI) in both groups were measured, recorded and analyzed. The mean age of investigated individuals was 39/8 ± 9/33. 58.6% of participants were females and 41.4% were males. MI and PMI levels in the periodontal group were more than the periodontally healthy group, but the differences between the two groups was not statistically significant (p = 0.808 and p = 0.102 respectively). The MCI level was significantly different between two groups (p = 0.028). The results of this study showed that there is significant relationship between MCI in panoramic radiography and chronic periodontitis. It is suggested to perform more studies to confrm if this index could be used for screening and indicating of bone status in high risk individuals. This study did not show a strong evidence of a relationship between osteoporosis and periodontitis. Since panoramic radiographs are routinely used for screening in dental practice, any association between radiomorphometric indices of mandible in periodontitis patients might be useful in prediction of osteoporosis in patients referring to dental clinics.
Nackaerts, Olivia; Gijbels, Frieda; Sanna, Anna-Maria; Jacobs, Reinhilde
2008-03-01
The aim was to explore the relation between radiographic bone quality on panoramic radiographs and relative alveolar bone level. Digital panoramic radiographs of 94 female patients were analysed (mean age, 44.5; range, 35-74). Radiographic density of the alveolar bone in the premolar region was determined using Agfa Musica software. Alveolar bone level and bone quality index (BQI) were also assessed. Relationships between bone density and BQI on one hand and the relative loss of alveolar bone level on the other were assessed. Mandibular bone density and loss of alveolar bone level were weakly but significantly negatively correlated for the lower premolar area (r = -.27). The BQI did not show a statistically significant relation to alveolar bone level. Radiographic mandibular bone density on panoramic radiographs shows a weak but significant relation to alveolar bone level, with more periodontal breakdown for less dense alveolar bone.
Automatic segmentation of mandible in panoramic x-ray.
Abdi, Amir Hossein; Kasaei, Shohreh; Mehdizadeh, Mojdeh
2015-10-01
As the panoramic x-ray is the most common extraoral radiography in dentistry, segmentation of its anatomical structures facilitates diagnosis and registration of dental records. This study presents a fast and accurate method for automatic segmentation of mandible in panoramic x-rays. In the proposed four-step algorithm, a superior border is extracted through horizontal integral projections. A modified Canny edge detector accompanied by morphological operators extracts the inferior border of the mandible body. The exterior borders of ramuses are extracted through a contour tracing method based on the average model of mandible. The best-matched template is fetched from the atlas of mandibles to complete the contour of left and right processes. The algorithm was tested on a set of 95 panoramic x-rays. Evaluating the results against manual segmentations of three expert dentists showed that the method is robust. It achieved an average performance of [Formula: see text] in Dice similarity, specificity, and sensitivity.
Spirit's 'Paige' Panorama of the Interior of 'Home Plate' (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
On Feb. 19, 2006, the 758th Martian day of exploration of the red planet by NASA's Mars Exploration Rover Spirit, the rover acquired this panoramic view of the interior of 'Home Plate,' a circular topographic feature amid the 'Columbia Hills.' This view, called the 'Paige' panorama, is from the top of Home Plate. It shows layered rocks exposed at the edge as well as dark rocks exhibiting both smooth and sponge-like 'scoriaceous' textures. To the east from this vantage point, 'McCool Hill' looms on the horizon. At the base of McCool Hill is a reddish outcrop called 'Oberth,' which Spirit may explore during the rapidly approaching Martian winter. 'Von Braun' and 'Goddard' hills are partially visible beyond the opposite rim of Home Plate. The limited spatial coverage of this panorama is the result of steadily decreasing power available to the rover for science activities as the Martian winter arrives and the sun traces a lower path across the sky. The rover team anticipates that the north-facing slopes of McCool Hill should sufficiently tilt the rover's solar panels toward the sun to allow Spirit to survive the winter. The view covers about 230 degrees of terrain around the rover. Spirit's panoramic camera (Pancam) took 72 separate images of this scene with four different Pancam filters. This is a false-color rendering using the Pancam's 75-nanometer, 535-nanometer, and 432-nanometer filters, enhanced to show many subtle color differences in rocks, soils, and hills in the scene. Image-to-image seams have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.Spirit's 'Paige' Panorama of the Interior of 'Home Plate'
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Click on the image for Spirit's 'Paige' Panorama of the Interior of 'Home Plate' (QTVR) On Feb. 19, 2006, the 758th Martian day of exploration of the red planet by NASA's Mars Exploration Rover Spirit, the rover acquired this panoramic view of the interior of 'Home Plate,' a circular topographic feature amid the 'Columbia Hills.' This view, called the 'Paige' panorama, is from the top of Home Plate. It shows layered rocks exposed at the edge as well as dark rocks exhibiting both smooth and sponge-like 'scoriaceous' textures. To the east from this vantage point, 'McCool Hill' looms on the horizon. At the base of McCool Hill is a reddish outcrop called 'Oberth,' which Spirit may explore during the rapidly approaching Martian winter. 'Von Braun' and 'Goddard' hills are partially visible beyond the opposite rim of Home Plate. The limited spatial coverage of this panorama is the result of steadily decreasing power available to the rover for science activities as the Martian winter arrives and the sun traces a lower path across the sky. The rover team anticipates that the north-facing slopes of McCool Hill should sufficiently tilt the rover's solar panels toward the sun to allow Spirit to survive the winter. The view covers about 230 degrees of terrain around the rover. Spirit's panoramic camera (Pancam) took 72 separate images of this scene with four different Pancam filters. This is an approximately true-color rendering using the Pancam's 75-nanometer, 535-nanometer, and 432-nanometer filters. Image-to-image seams have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.Vazquez, L; Nizamaldin, Y; Combescure, C; Nedir, R; Bischof, M; Dohan Ehrenfest, D M; Carrel, J-P; Belser, U C
2013-01-01
Conventional panoramic radiography, a widely used radiographic examination tool in implant treatment planning, allows evaluation of the available bone height before inserting posterior mandibular implants. Image distortion and vertical magnification due to projection geometry is well described for rotational panoramic radiographs. To assess the accuracy of vertical height measurements on direct digital panoramic radiographs, implants and metal balls positioned in the posterior mandible were used as radio-opaque reference objects. The reproducibility of the measuring method was assessed by the inter- and intraobserver agreements. Direct digital panoramic radiographs, performed using a Kodak 8000C (Eastman Kodak Company, Rochester, NY), of 17 partially edentulous patients (10 females, 7 males, mean age 65 years) were selected from an X-ray database gathered during routine clinical evaluation of implant sites. Proprietary software and a mouse-driven calliper were used to measure the radiological length of 25 implants and 18 metal reference balls, positioned in mandibular posterior segments. The distortion ratio (DR) was calculated by dividing the radiological implant length by the implant's real length and the radiological ball height by the ball's real height. Mean vertical DR was 0.99 for implants and 0.97 for balls, and was unrelated to mandibular sites, side, age, gender or observer. Inter- and intraobserver agreements were acceptable for both reference objects. Vertical measurements had acceptable accuracy and reproducibility when a software-based calibrated measurement tool was used, confirming that digital panoramic radiography can be reliably utilized to determine the pre-operative implant length in premolar and molar mandibular segments.
Immersive video for virtual tourism
NASA Astrophysics Data System (ADS)
Hernandez, Luis A.; Taibo, Javier; Seoane, Antonio J.
2001-11-01
This paper describes a new panoramic, 360 degree(s) video system and its use in a real application for virtual tourism. The development of this system has required to design new hardware for multi-camera recording, and software for video processing in order to elaborate the panorama frames and to playback the resulting high resolution video footage on a regular PC. The system makes use of new VR display hardware, such as WindowVR, in order to make the view dependent on the viewer's spatial orientation and so enhance immersiveness. There are very few examples of similar technologies and the existing ones are extremely expensive and/or impossible to be implemented on personal computers with acceptable quality. The idea of the system starts from the concept of Panorama picture, developed in technologies such as QuickTimeVR. This idea is extended to the concept of panorama frame that leads to panorama video. However, many problems are to be solved to implement this simple scheme. Data acquisition involves simultaneously footage recording in every direction, and latter processing to convert every set of frames in a single high resolution panorama frame. Since there is no common hardware capable of 4096x512 video playback at 25 fps rate, it must be stripped in smaller pieces which the system must manage to get the right frames of the right parts as the user movement demands it. As the system must be immersive, the physical interface to watch the 360 degree(s) video is a WindowVR, that is, a flat screen with an orientation tracker that the user holds in his hands, moving it like if it were a virtual window through which the city and its activity is being shown.
Looking Back at 'Eagle Crater'(Left-eye)
NASA Technical Reports Server (NTRS)
2004-01-01
This is the left-eye version of the first 360-degree view from the Mars Exploration Rover Opportunity's new position outside 'Eagle Crater,' the small crater where the rover landed about two months ago. Scientists are busy analyzing Opportunity's new view of the plains of Meridiani Planum. The plentiful ripples are a clear indication that wind is the primary geologic process currently in effect on the plains. The rover's tracks can be seen leading away from Eagle Crater. At the far left are two depressions--each about a meter (about 3.3 feet) across---that feature bright spots in their centers. One possibility is that the bright material is similar in composition to the rocks in Eagle Crater's outcrop and the surrounding darker material is what's referred to as 'lag deposit,' or erosional remnants, which are much harder and more difficult to wear away. These twin dimples might be revealing pieces of a larger outcrop that lies beneath. The depression closest to Opportunity is whimsically referred to as 'Homeplate' and the one behind it as 'First Base.' The rover's panoramic camera is set to take detailed images of the depressions today, on Opportunity's 58th sol. The backshell and parachute that helped protect the rover and deliver it safely to the surface of Mars are also visible near the horizon, at the left of the image. This image was taken by the rover's navigation camera.
Bright Soil Near 'McCool': Salty Deja Vu?
NASA Technical Reports Server (NTRS)
2006-01-01
While driving eastward toward the northwestern flank of 'McCool Hill,' the wheels of NASA's Mars Exploration Rover Spirit churned up the largest amount of bright soil discovered so far in the mission. This image from Spirit's navigation camera, taken on the rover's 787th Martian day, or sol, of exploration (March 21, 2006), shows the strikingly light tone and large extent of the deposit. A few days earlier, Spirit's wheels unearthed a small patch of light-toned material informally named 'Tyrone.' In images from Spirit's panoramic camera, 'Tyrone' strongly resembled both 'Arad' and 'Paso Robles,' two patches of light-toned soils discovered earlier in the mission. Spirit found 'Paso Robles' in 2005 while climbing 'Cumberland Ridge' on the western slope of 'Husband Hill.' In early January 2006, the rover discovered 'Arad' on the basin floor just south of 'Husband Hill.' Spirit's instruments confirmed that those soils had a salty chemistry dominated by iron-bearing sulfates. Spirit's miniature thermal emission spectrometer is analyzing this most recent discovery, and researchers will compare it with those other deposits. These discoveries indicate that light-toned soil deposits might be widely distributed on the flanks and valley floors of the 'Columbia Hills' region in Gusev Crater on Mars. The salts may record the past presence of water, as they are easily mobilized and concentrated in liquid solution.Harada, Nana; Beloor Vasudeva, Subash; Matsuda, Yukiko; Seki, Kenji; Kapila, Rishabh; Ishikawa, Noboru; Okano, Tomohiro; Sano, Tsukasa
2015-01-01
The purpose of this study was to compare findings on the relationship between impacted molar roots and the mandibular canal in panoramic and three-dimensional cone-beam CT (CBCT) images to identify those that indicated risk of postoperative paresthesia. The relationship between impacted molars and the mandibular canal was first classified using panoramic images. Only patients in whom the molar roots were either in contact with or superimposed on the canal were evaluated using CBCT. Of 466 patients examined using both panoramic and CBCT images, 280 underwent surgical extraction of an impacted molar, and 15 of these (5%) reported postoperative paresthesia. The spatial relationship between the impacted third molar root and the mandibular canal was determined by examining para-sagittal sections (lingual, buccal, inter-radicular, inferior, and combinations) obtained from the canal to the molar root and establishing the proximity of the canal to the molar root (in contact with or without loss of the cortical border and separate). The results revealed that darkening of the roots with interruption of the mandibular canal on panoramic radiographs and the inter-radicular position of the canal in CBCT images were characteristic findings indicative of risk of postoperative paresthesia. These results suggest that careful surgical intervention is required in patients with the above characteristics.
Genotoxic effects of X-rays in buccal mucosal cells in children subjected to dental radiographs
Preethi, Naveena; Chikkanarasaiah, Nagarathna; Bethur, Shakuntala S
2016-01-01
Objectives/Aims: Bitewing and digital dental panoramic radiographs have become important adjuvants for successful dental practice in pediatric dentistry. Both methods lead to genetic changes in the oral buccal epithelium that have not yet been satisfactorily explored. The aim of the present study was to evaluate the genotoxic effects induced by X-ray radiation from bitewing and panoramic dental radiography in exfoliated buccal epithelial cells of children, using the Buccal Micronucleus Cytome assay. Materials and Methods: Children (n=40) who met the inclusion criteria and provided signed informed consent were included in the study. Children were selected for undergoing bitewing radiographs (group 1; n=20) or digital dental panoramic radiographs (group 2; n=20). Exfoliated buccal mucosal cells were obtained by scraping the right/left buccal mucosa with a wooden spatula immediately before the X-ray exposure and 10±2 days after exposure. Results: The frequency of micronuclei increases significantly post exposure to both bitewing and digital dental panoramic radiography in children, but the frequency was higher in bitewing radiographs. Conclusion: It was concluded that the frequency of micronuclei increases post exposure to both bitewing and digital panoramic radiographs. Increased radiation exposure results in an increase in micronuclei frequency. PMID:29607062
Visually Coupled Systems (VCS): The Virtual Panoramic Display (VPD) System
NASA Technical Reports Server (NTRS)
Kocian, Dean F.
1992-01-01
The development and impact is described of new visually coupled system (VCS) equipment designed to support engineering and human factors research in the military aircraft cockpit environment. VCS represents an advanced man-machine interface (MMI). Its potential to improve aircrew situational awareness seems enormous, but its superiority over the conventional cockpit MMI has not been established in a conclusive and rigorous fashion. What has been missing is a 'systems' approach to technology advancement that is comprehensive enough to produce conclusive results concerning the operational viability of the VCS concept and verify any risk factors that might be involved with its general use in the cockpit. The advanced VCS configuration described here, was ruggedized for use in military aircraft environments and was dubbed the Virtual Panoramic Display (VPD). It was designed to answer the VCS portion of the systems problem, and is implemented as a modular system whose performance can be tailored to specific application requirements. The overall system concept and the design of the two most important electronic subsystems that support the helmet mounted parts, a new militarized version of the magnetic helmet mounted sight and correspondingly similar helmet display electronics, are discussed in detail. Significant emphasis is given to illustrating how particular design features in the hardware improve overall system performance and support research activities.
60. PANORAMIC VIEW OF DOWNSTREAM FACE. No date, but believed ...
60. PANORAMIC VIEW OF DOWNSTREAM FACE. No date, but believed to be just subsequent to construction. Photograph by C.G. Duffey, Long Beach, California. (38' x 11' framed print). - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA
Oenning, Anne Caroline Costa; Neves, Frederico Sampaio; Alencar, Phillipe Nogueira Barbosa; Prado, Rodrigo Freire; Groppo, Francisco Carlos; Haiter-Neto, Francisco
2014-08-01
The aim of the present study was to compare panoramic radiography and cone beam computed tomography (CBCT) for the assessment of external root resorption (ERR) of second molars associated with impacted third molars. In addition, the prevalence of ERR in second molars and the inclinations of the third molars more associated with ERR were investigated in both imaging methods. The sample consisted of 66 individuals with maxillary and mandibular impacted third molars (n = 188) seen on panoramic radiographs and CBCT images. The presence of ERR on the adjacent second molar was investigated, and the position of the third molar was determined using Winter's classification (vertical, horizontal, mesioangular, distoangular, and transverse). Statistical analysis was performed using the χ(2) test, Fisher exact test, and 2-proportion Z test (the significance level was set at 5%). A significantly greater number of cases of ERR (P < .0001) was diagnosed from CBCT images (n = 43, 22.88%) than panoramic radiographs (n = 10, 5.31%). The agreement between the panoramic radiographs and CBCT scans for diagnosing ERR was 4.3%. Mandibular third molars in mesioangular and horizontal inclinations were more likely to cause resorption of the adjacent teeth. CBCT should be indicated for the diagnosis of ERR in second molars when direct contact between the mandibular second and third molars has been observed on panoramic radiographs, especially in mesioangular or horizontal impactions. Furthermore, considering the propensity of these teeth to cause ERR in second molars, third molar prophylactic extraction could be suggested. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Meteor Search by Spirit, Sol 668
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668 The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets. The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on the rover team planned some observations to try to detect predicted meteor storms in October and November, 2005. The views shown here are a composite of nine 60-second exposures taken with the panoramic camera on Spirit during night hours of sol 668 (Nov. 18, 2005), during a week when Mars was predicted to pass through a meteor stream associated with Halley's comet. The south celestial pole is at the center of the frame. Many stars can be seen in the images, appearing as short, curved streaks forming arcs around the center point. The star trails are curved because Mars is rotating while the camera takes the images. The brightest stars in this view would be easily visible to the naked eye, but the faintest ones are slightly dimmer than the human eye can detect. In addition to the star trails, there are several smaller linear streaks, dots and splotches that are the trails left by cosmic rays hitting the camera detectors. Cosmic rays are high-energy particles that are created in the Sun and in other stars throughout our galaxy and travel through space in all directions. Some of them strike Earth or other planets, and ones that strike a digital camera detector can leave little tracks or splotches like those seen in these images. Because they come from all directions, some strike the detector face-on, and others strike at glancing angles. Some even skip across the detector like flat rocks skipped across a pond. These are very common phenomena to astronomers used to working with sensitive digital cameras like those in the Mars rovers, the Hubble Space Telescope, or other space probes, and while they can be a nuisance when taking pictures, they generally do not cause any lasting damage to the cameras. Three of the streaks in the image, including one spanning most of the distance from the left edge of the frame to the center, might be meteor trails or could be the marks of other cosmic rays. While hunting for meteors on Mars is fun, ultimately the team wants to use the images and results for scientific purposes. These include helping to validate the models and predictions for interplanetary meteor storms, providing information on the rate of impacts of small meteoroids with Mars for comparison with rates for the Earth and Moon, assessing the rate and intensity of cosmic ray impact events in the Martian environment, and looking at whether some bright stars are being dimmed occasionally by water ice or dust clouds occurring at night during different Martian seasons.Active Lifting During Martian Dust Storm
2017-03-09
This false-color scene from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity documents movement of dust as a regional dust storm approached the rover's location on Feb. 24, 2017, during the 4,653rd Martian day, or sol, of the rover's work on Mars. Key to detecting the movement is that Pancam color images are combinations of different images taken a short time apart through different color filters. Note that along the horizon, the left portion of the image has a bluish band (with label and arrow in Figure 1). The component image admitting blue light was taken about 150 seconds after the component image admitting red light. A layer of dust-carrying wind hadn't reached this location by the earlier exposure, but had by the later one. This Sol 4653 Opportunity view is toward the north from the rover's location on the western rim of Endeavour Crater in the Meridiani Planum region of Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21485
'Home Plate' Evidence for an Explosive Past
NASA Technical Reports Server (NTRS)
2006-01-01
This view of layers around the edge of a low plateau called 'Home Plate' inside Mars' Gusev Crater includes a feature that may be what geologists call a 'bomb sag' and interpret as evidence of an explosive event, such as a volcanic eruption. The layers seen here are generally straight and parallel except in the lower right, where they dip around a greyish rock that is about 4 centimeters (about 1.5 inches) in diameter. When layered deposits are struck by a falling rock while the layers are still soft, this type of pattern can be created. The rock might have been lofted by a volcanic burst or as part of the material ejected by the crater-forming impact of a meteorite. The panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit acquired the exposures for this image on Spirit's 754th Martian day (Feb. 15, 2006). This view is an approximately true-color rendering mathematically generated from separate images taken through all of the left Pancam's 432-nanometer to 753-nanometer filters.Opportunity Captures 'Lion King' Panorama
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Click on the image for Opportunity Captures 'Lion King' Panorama (QTVR) This approximate true-color panorama, dubbed 'Lion King,' shows 'Eagle Crater' and the surrounding plains of Meridiani Planum. It was obtained by the Mars Exploration Rover Opportunity's panoramic camera on sols 58 and 60 using infrared (750-nanometer), green (530-nanometer) and blue (430-nanometer) filters. This is the largest panorama obtained yet by either rover. It was taken in eight segments using six filters per segment, for a total of 558 images and more than 75 megabytes of data. Additional lower elevation tiers were added to ensure that the entire crater was covered in the mosaic. This panorama depicts a story of exploration including the rover's lander, a thorough examination of the outcrop, a study of the soils at the near-side of the lander, a successful exit from Eagle Crater and finally the rover's next desination, the large crater dubbed 'Endurance'.Sulfur-Rich Rocks and Dirt (False Color)
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Mars Rover Spirit has been analyzing sulfur-rich rocks and surface materials in the 'Columbia Hills' in Gusev Crater on Mars. This image of a very soft, nodular, layered rock nicknamed 'Peace' in honor of Martin Luther King Jr. shows a 4.5-centimeter-wide (1.8-inch-wide) hole Spirit ground into the surface with the rover's rock abrasion tool. The high sulfur content of the rock measured by Spirit's alpha particle X-ray spectrometer and its softness measured by the abrasion tool are probably evidence of past alteration by water. Spirit's panoramic camera took this false-color image on martian day, or sol, 381 (Jan. 27, 2005), using Pancam filters at wavelengths of 750, 530, and 430 nanometers. Darker red hues in the image correspond to greater concentrations of oxidized soil and dust. Bluer hues correspond to sulfur-rich rock excavated or exposed by the abrasion tool and not as heavily coated with soils or not as highly oxidized.Experience of modeling relief of impact lunar crater Aitken based on high-resolution orbital images
NASA Astrophysics Data System (ADS)
Mukhametshin, Ch R.; Semenov, A. A.; Shpekin, M. I.
2018-05-01
The paper presents the author’s results of modeling the relief of lunar Aitken crater on the basis of high-resolution orbital images. The images were taken in the frame of the “Apollo” program in 1971-1972 and delivered to the Earth by crews of “Apollo-15” and “Apollo-17”. The authors used the images obtained by metric and panoramic cameras. The main result is the careful study of the unusual features of Aitken crater on models created by the authors with the computer program, developed by “Agisoft Photoscan”. The paper shows what possibilities are opened with 3D models in the study of the structure of impact craters on the Moon. In particular, for the first time, the authors managed to show the structure of the glacier-like tongue in Aitken crater, which is regarded as one of the promising areas of the Moon for the forthcoming expeditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... irradiation room at a panoramic irradiator be equipped with a fire extinguishing system capable of extinguishing a fire without the entry of personnel into the room. The system for the irradiation room must have... 10 CFR 36.27(b) is to deny the exemption request and require NIST to provide the irradiation room...
Neves, F S; Souza, T C; Almeida, S M; Haiter-Neto, F; Freitas, D Q; Bóscolo, F N
2012-01-01
Objectives The aim of this study was to assess the reliability of four panoramic radiographic findings, both individually and in association, in predicting the absence of corticalization between the mandibular canal and the third molar on cone beam CT (CBCT) images. Methods The sample consisted of 72 individuals (142 mandibular third molars) who underwent pre-operative radiographic evaluation before extraction of impacted mandibular third molars. On panoramic radiographs, the most common signs of corticalization (darkening of roots, diversion of mandibular canal, narrowing of mandibular canal and interruption of white line) and the presence or absence of corticalization between the mandibular third molar and the mandibular canal on CBCT images were evaluated. Results Darkening of roots and interruption of white line associated with the absence of corticalization between the mandibular third molar and the mandibular canal on CBCT images were statistically significant, both as isolated findings (p = 0.0001 and p = 0.0006, respectively) and in association (p = 0.002). No statistically significant association was observed for the other panoramic radiographic findings, either individually or in association (p > 0.05). Conclusion Darkening of roots and interruption of white line observed on panoramic radiographs, both as isolated findings and in association, were effective in determining the risk relationship between the tooth roots and the mandibular canal, requiring three-dimensional evaluation of the case. PMID:22282507
An improved ASIFT algorithm for indoor panorama image matching
NASA Astrophysics Data System (ADS)
Fu, Han; Xie, Donghai; Zhong, Ruofei; Wu, Yu; Wu, Qiong
2017-07-01
The generation of 3D models for indoor objects and scenes is an attractive tool for digital city, virtual reality and SLAM purposes. Panoramic images are becoming increasingly more common in such applications due to their advantages to capture the complete environment in one single image with large field of view. The extraction and matching of image feature points are important and difficult steps in three-dimensional reconstruction, and ASIFT is a state-of-the-art algorithm to implement these functions. Compared with the SIFT algorithm, more feature points can be generated and the matching accuracy of ASIFT algorithm is higher, even for the panoramic images with obvious distortions. However, the algorithm is really time-consuming because of complex operations and performs not very well for some indoor scenes under poor light or without rich textures. To solve this problem, this paper proposes an improved ASIFT algorithm for indoor panoramic images: firstly, the panoramic images are projected into multiple normal perspective images. Secondly, the original ASIFT algorithm is simplified from the affine transformation of tilt and rotation with the images to the only tilt affine transformation. Finally, the results are re-projected to the panoramic image space. Experiments in different environments show that this method can not only ensure the precision of feature points extraction and matching, but also greatly reduce the computing time.
10 CFR 36.23 - Access control.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Access control. 36.23 Section 36.23 Energy NUCLEAR... Requirements for Irradiators § 36.23 Access control. (a) Each entrance to a radiation room at a panoramic... radiation room at a panoramic irradiator must have an independent backup access control to detect personnel...
10 CFR 36.23 - Access control.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Access control. 36.23 Section 36.23 Energy NUCLEAR... Requirements for Irradiators § 36.23 Access control. (a) Each entrance to a radiation room at a panoramic... radiation room at a panoramic irradiator must have an independent backup access control to detect personnel...
10 CFR 36.23 - Access control.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Access control. 36.23 Section 36.23 Energy NUCLEAR... Requirements for Irradiators § 36.23 Access control. (a) Each entrance to a radiation room at a panoramic... radiation room at a panoramic irradiator must have an independent backup access control to detect personnel...
3. Panoramic view of Broad Street bridge in foreground and ...
3. Panoramic view of Broad Street bridge in foreground and a major portion of the historic bridge. As seem from the top of the American Electric Power building looking south. - Broad Street Bridge, Spanning Scioto River at U.S. Route 40 (Broad Street), Columbus, Franklin County, OH
3D Scene Reconstruction Using Omnidirectional Vision and LiDAR: A Hybrid Approach
Vlaminck, Michiel; Luong, Hiep; Goeman, Werner; Philips, Wilfried
2016-01-01
In this paper, we propose a novel approach to obtain accurate 3D reconstructions of large-scale environments by means of a mobile acquisition platform. The system incorporates a Velodyne LiDAR scanner, as well as a Point Grey Ladybug panoramic camera system. It was designed with genericity in mind, and hence, it does not make any assumption about the scene or about the sensor set-up. The main novelty of this work is that the proposed LiDAR mapping approach deals explicitly with the inhomogeneous density of point clouds produced by LiDAR scanners. To this end, we keep track of a global 3D map of the environment, which is continuously improved and refined by means of a surface reconstruction technique. Moreover, we perform surface analysis on consecutive generated point clouds in order to assure a perfect alignment with the global 3D map. In order to cope with drift, the system incorporates loop closure by determining the pose error and propagating it back in the pose graph. Our algorithm was exhaustively tested on data captured at a conference building, a university campus and an industrial site of a chemical company. Experiments demonstrate that it is capable of generating highly accurate 3D maps in very challenging environments. We can state that the average distance of corresponding point pairs between the ground truth and estimated point cloud approximates one centimeter for an area covering approximately 4000 m2. To prove the genericity of the system, it was tested on the well-known Kitti vision benchmark. The results show that our approach competes with state of the art methods without making any additional assumptions. PMID:27854315
NASA Technical Reports Server (NTRS)
2006-01-01
This week, NASA's Mars Exploration Rover Spirit arrived at 'Home Plate,' a feature that, when seen from orbit, looks like the home plate of a baseball diamond. Home Plate is a roughly circular feature about 80 meters (260 feet) in diameter that might be an old impact crater or volcanic feature. The Spirit team has been eager to get to Home Plate and has been enjoying distant views of the feature and a curious 'bathtub ring' of light-colored materials along its edges. The team has pushed the rover hard to get here before the deep Martian winter sets in. After scientists had identified Home Plate from orbit, they had many theories about what it could be and what they might see. But when Spirit's panoramic camera (Pancam) took this and other images, the science team was stunned. This Pancam image is of an outcrop nicknamed 'Barnhill' and surrounding rocks on the north side of Home Plate, showing the most spectacular layering that Spirit has seen. Pancam and microscopic imager views of the layers in the rocks reveal a range of grain sizes and textures that change from the lower to the upper part of the outcrop. This may help scientists figure out how the material was emplaced. Spirit is also conducting work with its arm instruments to figure out the chemistry and mineralogy of the rocks. Scientists have several hypotheses about what Home Plate could be, including features made by volcanoes and impact craters, and ways that water could have played a role. They are busy trying to figure out what the data from Spirit is really telling us. As Spirit works at Home Plate during February, the science team is choosing informal names for rocks from the great players and managers of the Negro Leagues of baseball. This outcrop, 'Barnhill,' is informally named for David Barnhill, the ace of the New York Cubans' pitching staff during the early 1940s. He compiled an 18-3 record in 1941 and defeated Satchel Paige in the 1942 East-West all-star game. Other rocks in the area are informally named for Josh Gibson, 'Bullet Joe' Rogan, and Cumberland Posey. Stay tuned this month, as the Baseball Hall of Fame elects more players from the Negro Leagues and Spirit continues to examine these spectacular rocks. Spirit took this mosaic of images using the panoramic camera on the rover's 746th day, or sol (Feb. 7, 2006), of exploring Mars. Scientists are acquiring and processing image data for more views of the same terrain in approximate true color.View From Within 'Perseverance Valley' on Mars
2017-12-06
This view from within "Perseverance Valley," on the inner slope of the western rim of Endurance Crater on Mars, includes wheel tracks from the Opportunity rover's descent of the valley. The Panoramic Camera (Pancam) on Opportunity's mast took the component images of the scene during the period Sept. 4 through Oct. 6, 2017, corresponding to sols (Martian days) 4840 through 4871 of the rover's work on Mars. Perseverance Valley is a system of shallow troughs descending eastward about the length of two football fields from the crest of the crater rim to the floor of the crater. This panorama spans from northeast on the left to northwest on the right, including portions of the crater floor (eastward) in the left half and of the rim (westward) in the right half. Opportunity began descending Perseverance Valley in mid-2017 (see map) as part of an investigation into how the valley formed. Rover wheel tracks are darker brown, between two patches of bright bedrock, receding toward the horizon in the right half of the scene. This view combines multiple images taken through three different Pancam filters. The selected filters admit light centered on wavelengths of 753 nanometers (near-infrared), 535 nanometers (green) and 432 nanometers (violet). The three color bands are combined here to show approximately true color. A map and high-resolution TIFF file is available at https://photojournal.jpl.nasa.gov/catalog/PIA22074
PANORAMIC VIEW OF SHIPYARD NO. 3, LOOKING SOUTH. FROM LEFT ...
PANORAMIC VIEW OF SHIPYARD NO. 3, LOOKING SOUTH. FROM LEFT TO CENTER ARE THE FORGE SHOP, MACHINE SHOP, GENERAL WAREHOUSE, AND RIGGERS LOFT/PAINT SHOP/SHEET METAL SHOP. FROM CENTER TO RIGHT ARE THE FIVE BASINS - Rosie the Riveter National Historical Park, Richmond Shipyard No. 3, Point Potrero, Richmond, Contra Costa County, CA
9. PANORAMIC VIEW WEST, FERNOW EXPERIMENTAL FOREST RESIDENCE, CHEAT DISTRICT ...
9. PANORAMIC VIEW WEST, FERNOW EXPERIMENTAL FOREST RESIDENCE, CHEAT DISTRICT RANGER RESIDENCE AND GARAGE, IMPLEMENT BUILDING, SEED EXTRACTOR BUILDING, CONE DRYING SHED, PUMP HOUSE, OIL HOUSE, CHEAT DISTRICT RANGER OFFICE, WASH HOUSE, AND NURSERY MANAGER'S RESIDENCE. PLANTING BEDS IN BACKGROUND. - Parsons Nursery, South side of U.S. Route 219, Parsons, Tucker County, WV
10 CFR 36.27 - Fire protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Fire protection. 36.27 Section 36.27 Energy NUCLEAR... Requirements for Irradiators § 36.27 Fire protection. (a) The radiation room at a panoramic irradiator must... become fully shielded if a fire is detected. (b) The radiation room at a panoramic irradiator must be...
Cone beam computed tomography in veterinary dentistry.
Van Thielen, Bert; Siguenza, Francis; Hassan, Bassam
2012-01-01
The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstructions were created using specialized software. Image quality and visibility of anatomical landmarks were subjectively assessed by two observers. Good image quality was obtained for the MPR para-sagittal reconstructions through multiple teeth. The image quality of the panoramic reconstructions of dogs was moderate while the panoramic reconstructions of cats were poor since the images were associated with an increased noise level. Segmental panoramic reconstructions of the mouth seem to be useful for studying the dental anatomy especially in dogs. The results of this study using human dental CBCT technology demonstrate the potential of this scanning technology in veterinary medicine. Unfortunately, the moderate image quality obtained with the CBCT technique reported here seems to be inferior to the diagnostic image quality obtained from 2-dimensional dental radiographs. Further research is required to optimize scanning and reconstruction protocols for veterinary applications.
Beaulieu, C F; Jeffrey, R B; Karadi, C; Paik, D S; Napel, S
1999-07-01
To determine the sensitivity of radiologist observers for detecting colonic polyps by using three different data review (display) modes for computed tomographic (CT) colonography, or "virtual colonoscopy." CT colonographic data in a patient with a normal colon were used as base data for insertion of digitally synthesized polyps. Forty such polyps (3.5, 5, 7, and 10 mm in diameter) were randomly inserted in four copies of the base data. Axial CT studies, volume-rendered virtual endoscopic movies, and studies from a three-dimensional mode termed "panoramic endoscopy" were reviewed blindly and independently by two radiologists. Detection improved with increasing polyp size. Trends in sensitivity were dependent on whether all inserted lesions or only visible lesions were considered, because modes differed in how completely the colonic surface was depicted. For both reviewers and all polyps 7 mm or larger, panoramic endoscopy resulted in significantly greater sensitivity (90%) than did virtual endoscopy (68%, P = .014). For visible lesions only, the sensitivities were 85%, 81%, and 60% for one reader and 65%, 62%, and 28% for the other for virtual endoscopy, panoramic endoscopy, and axial CT, respectively. Three-dimensional displays were more sensitive than two-dimensional displays (P < .05). The sensitivity of panoramic endoscopy is higher than that of virtual endoscopy, because the former displays more of the colonic surface. Higher sensitivities for three-dimensional displays may justify the additional computation and review time.
Liu, W; Yin, W; Zhang, R; Li, J; Zheng, Y
2015-06-01
The aim of this study was to evaluate the predictive value of panoramic radiography on inferior alveolar nerve (IAN) injury after extraction of the mandibular third molar. Relevant studies up to 1 June 2014 that discussed the association of panoramic radiography signs and post-mandibular third molar extraction IAN injury were systematically retrieved from the databases of PubMed, Embase, Springerlink, Web of Science and Cochrane library. The effect size of pooled sensitivity, specificity, positive likelihood ratios (PLR), negative likelihood ratios (NLR) and diagnostic odds ratio (DOR) with their 95% confidence intervals (CI) were statistically analysed with Meta-disc 1.4 software. Nine articles were included in this meta-analysis. The pooled estimates of sensitivity and specificity were 0.56 (95% CI: 0.50-0.61) and 0.86 (95% CI: 0.84-0.87), respectively. The overall PLR was 3.46 (95% CI: 2.02-5.92) and overall NLR was 0.58 (95% CI: 0.45-0.73). The pooled estimate of DOR was 6.49 (95% CI: 2.92-14.44). The area under the summary receiver operating characteristic curve was 0.7143 ± 0.0604. The meta-analysis indicated that interpretation of panoramic radiography based on darkening of the root had a high specificity in predicting IAN injury after mandibular third molar extraction. However, the ability of this panoramic radiography marker to detect true positive IAN injury was not satisfactory. © 2015 Australian Dental Association.
Matos, Luiz Felipe; Giordano, Marcos; Cardoso, Gustavo Novaes; Farias, Rafael Baptista; E Albuquerque, Rodrigo Pires
2015-01-01
To make a comparative inter and intraobserver analysis on measurements of the anatomical axis between panoramic radiographs of the lower limbs in anteroposterior (AP) view with bipedal weight-bearing, on short film. An accuracy study comparing radiographic measurements on 47 knees of patients attending the knee surgery outpatient clinic due to osteoarthritis. The radiographic evaluation used was as standardized for the total knee arthroplasty program, including panoramic AP views of the lower limbs and short radiographs of the knees in AP and lateral views, all with bipedal weight-bearing. Following this, the anatomical axis of the lower limbs or the femorotibial angle was measured by five independent examiners on the panoramic and short AP radiographs; three of the examiners were considered to be more experienced and two, less experienced. All the measurements were made again by the same examiners after an interval of not less than 15 days. The statistical analysis was performed using the intraclass correlation coefficient, in order to evaluate the inter and intraobserver concordance of the anatomical axis measurements. From the statistical analysis, it was observed that there was strongly significant concordance between the anatomical axis measurements on the panoramic and short radiographs, for all the five examiners and for both measurements. Under the conditions studied, short radiographs were equivalent to panoramic radiographs for evaluating the anatomical axis of the lower limbs in patients with advanced osteoarthritis. The measurements used also showed high rates of inter and intraobserver concordance and reproducibility.
Panoramic ECG display versus conventional ECG: ischaemia detection by critical care nurses.
Wilson, Nick; Hassani, Aimen; Gibson, Vanessa; Lightfoot, Timothy; Zizzo, Claudio
2012-01-01
To compare accuracy and certainty of diagnosis of cardiac ischaemia using the Panoramic ECG display tool plus conventional 12-lead electrocardiogram (ECG) versus 12-lead ECG alone by UK critical care nurses who were members of the British Association of Critical Care Nurses (BACCN). Critically ill patients are prone to myocardial ischaemia. Symptoms may be masked by sedation or analgesia, and ECG changes may be the only sign. Critical care nurses have an essential role in detecting ECG changes promptly. Despite this, critical care nurses may lack expertise in interpreting ECGs and myocardial ischaemia often goes undetected by critical care staff. British Association of Critical Care Nurses (BACCN) members were invited to complete an online survey to evaluate the analysis of two sets of eight ECGs displayed alone and with the new display device. Data from 82 participants showed diagnostic accuracy improved from 67·1% reading ECG traces alone, to 96·0% reading ECG plus Panoramic ECG display tool (P < 0·01, significance level α = 0·05). Participants' diagnostic certainty score rose from 41·7% reading ECG alone to 66·8% reading ECG plus Panoramic ECG display tool (P < 0·01, α = 0·05). The Panoramic ECG display tool improves both accuracy and certainty of detecting ST segment changes among critical care nurses, when compared to conventional 12-lead ECG alone. This benefit was greatest with early ischaemic changes. Critical care nurses who are least confident in reading conventional ECGs benefit the most from the new display. Critical care nurses have an essential role in the monitoring of critically ill patients. However, nurses do not always have the expertise to detect subtle ischaemic ECG changes promptly. Introduction of the Panoramic ECG display tool into clinical practice could lead to patients receiving treatment for myocardial ischaemia sooner with the potential for reduction in morbidity and mortality. © 2012 The Authors. Nursing in Critical Care © 2012 British Association of Critical Care Nurses.
Infrared Spectrometer for ExoMars: A Mast-Mounted Instrument for the Rover
NASA Astrophysics Data System (ADS)
Korablev, Oleg I.; Dobrolensky, Yurii; Evdokimova, Nadezhda; Fedorova, Anna A.; Kuzmin, Ruslan O.; Mantsevich, Sergei N.; Cloutis, Edward A.; Carter, John; Poulet, Francois; Flahaut, Jessica; Griffiths, Andrew; Gunn, Matthew; Schmitz, Nicole; Martín-Torres, Javier; Zorzano, Maria-Paz; Rodionov, Daniil S.; Vago, Jorge L.; Stepanov, Alexander V.; Titov, Andrei Yu.; Vyazovetsky, Nikita A.; Trokhimovskiy, Alexander Yu.; Sapgir, Alexander G.; Kalinnikov, Yurii K.; Ivanov, Yurii S.; Shapkin, Alexei A.; Ivanov, Andrei Yu.
2017-07-01
ISEM (Infrared Spectrometer for ExoMars) is a pencil-beam infrared spectrometer that will measure reflected solar radiation in the near infrared range for context assessment of the surface mineralogy in the vicinity of the ExoMars rover. The instrument will be accommodated on the mast of the rover and will be operated together with the panoramic camera (PanCam), high-resolution camera (HRC). ISEM will study the mineralogical and petrographic composition of the martian surface in the vicinity of the rover, and in combination with the other remote sensing instruments, it will aid in the selection of potential targets for close-up investigations and drilling sites. Of particular scientific interest are water-bearing minerals, such as phyllosilicates, sulfates, carbonates, and minerals indicative of astrobiological potential, such as borates, nitrates, and ammonium-bearing minerals. The instrument has an ˜1° field of view and covers the spectral range between 1.15 and 3.30 μm with a spectral resolution varying from 3.3 nm at 1.15 μm to 28 nm at 3.30 μm. The ISEM optical head is mounted on the mast, and its electronics box is located inside the rover's body. The spectrometer uses an acousto-optic tunable filter and a Peltier-cooled InAs detector. The mass of ISEM is 1.74 kg, including the electronics and harness. The science objectives of the experiment, the instrument design, and operational scenarios are described.
NASA Astrophysics Data System (ADS)
Clark, Jaclyn D.; Hurtado, José M.; Hiesinger, Harald; van der Bogert, Carolyn H.; Bernhardt, Hannes
2017-12-01
Using observations of lunar scarps in Apollo Panoramic Camera photos, Binder and Gunga (1985) tested competing models for the initial thermal state of the Moon, i.e., whether it was initially completely molten or if the molten portion was limited to a global magma ocean. Binder and Gunga (1985) favored the concept of an initially molten Moon that had entered into a late-stage epoch of global tectonism. Since the start of the Lunar Reconnaissance Orbiter mission, thousands of new small lobate scarps have been identified across the lunar surface with high-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC). As such, we selected spatially random scarps and reevaluated the fault dynamical calculations presented by Binder and Gunga (1985). Additionally, we examined the geometry and properties of these fault scarps and place better constraints on the amount of scarp-related crustal shortening. We found that these low angle thrust faults (∼23˚) have an average relief of ∼40 m and average depths of 951 m. Using crater size-frequency distribution (CSFD) measurements, we derived absolute model ages for the scarp surfaces proximal to the trace of the fault and found that the last slip event occurred in the last ∼132 Ma. Along with young model ages, lunar lobate scarps exhibit a youthful appearance with their crisp morphologies which is indicative of late-stage horizontal shortening. In conclusion, interior secular cooling and tidal stresses cause global contraction of the Moon.
Automatic thermographic scanning with the creation of 3D panoramic views of buildings
NASA Astrophysics Data System (ADS)
Ferrarini, G.; Cadelano, G.; Bortolin, A.
2016-05-01
Infrared thermography is widely applied to the inspection of building, enabling the identification of thermal anomalies due to the presence of hidden structures, air leakages, and moisture. One of the main advantages of this technique is the possibility to acquire rapidly a temperature map of a surface. However, due to the actual low-resolution of thermal camera and the necessity of scanning surfaces with different orientation, during a building survey it is necessary to take multiple images. In this work a device based on quantitative infrared thermography, called aIRview, has been applied during building surveys to automatically acquire thermograms with a camera mounted on a robotized pan tilt unit. The goal is to perform a first rapid survey of the building that could give useful information for the successive quantitative thermal investigations. For each data acquisition, the instrument covers a rotational field of view of 360° around the vertical axis and up to 180° around the horizontal one. The obtained images have been processed in order to create a full equirectangular projection of the ambient. For this reason the images have been integrated into a web visualization tool, working with web panorama viewers such as Google Street View, creating a webpage where it is possible to have a three dimensional virtual visit of the building. The thermographic data are embedded with the visual imaging and with other sensor data, facilitating the understanding of the physical phenomena underlying the temperature distribution.
Spirit Studies Rock Outcrop at 'Home Plate'
NASA Technical Reports Server (NTRS)
2006-01-01
NASA's Mars Exploration Rover Spirit acquired this false-color image at 11:48 local true solar time on Mars on the rover's 746th Martian day, or sol (Feb. 26, 2006), after using the rock abrasion tool to brush the surfaces of rock targets informally named 'Stars' (left) and 'Crawfords' (right). Small streaks of dust extend for several centimeters behind the small rock chips and pebbles in the dusty, red soils. Because the rover was looking southwest when this image was taken, the wind streaks indicate that the dominant wind direction was from the southeast. The targets Stars and Crawfords are on a rock outcrop located on top of 'Home Plate.' The outcrop is informally named 'James 'Cool Papa' Bell,' after a Negro Leagues Hall of Famer who played for both the Pittsburgh Crawfords and the Kansas City Stars. To some science team members, the two brushed spots resemble the eyes of a face, with rocks below and between the eyes as a nose and layered rocks at the bottom of the image as a mouth. The image combines frames taken by Spirit's panoramic camera through the camera's 753-nanometer, 535-namometer, and 432-nanometer filters. It is enhanced to emphasize color differences among the rocks, soils and brushed areas. The blue circular area on the left, Stars, was brushed on 761 (Feb. 22, 2006). The one on the right, Crawfords, was brushed on sol 763 (Feb. 25, 2006).HUBBLE'S IMPROVED OPTICS REVEAL INCREDIBLE DETAIL IN GIANT CLOUD OF GAS AND DUS
NASA Technical Reports Server (NTRS)
2002-01-01
An image of a star-forming region in the 30 Doradus nebula, surrounding the dense star cluster R136. The image was obtained using the second generation Wide Field and Planetary Camera (WFPC-2), installed in the Hubble Space Telescope during the STS-61 Servicing Mission. The WFPC-2 contains modified optics to correct for the aberration of the Hubble's primary mirror. The new optics will allow the telescope to tackle many of the most important scientific programs for which the K was built, but had to be temporarily shelved with the discovery of the spherical aberration in 1990. The large picture shows a mosaic of the images taken with WFPC-2s four separate cameras. Three of the cameras, called the Wide Field Cameras, give HST Hs 'panoramic' view of astronomical objects. A fourth camera, called the Planetary Camera, has a smaller field of view but provides better spatial resolution. The image shows the fields of view of the four cameras combined into a 'chevron' shape, the hallmark of WFPC-2 data. The image shows a portion of a giant cloud of gas and dust in 30 Doradus, which is located in a small neighboring galaxy called the Large Magellanic Cloud about 160,000 light years away from us. The cloud is called an H II region because it is made up primarily of ionized hydrogen excited by ultraviolet light from hot stars. This is an especially interesting H II region because unlike nearby objects which are lit up by only a few stars, such as the Orion Nebula, 30 Doradus is the result of the combined efforts of hundreds of the brightest and most massive stars known. The inset shows a blowup of the star cluster, called R136. Even at the distance to 30 Doradus, WFPC-2's resolution allows objects as small as 25 light days across to be distinguished from their surroundings, revealing the effect of the hot stars on the surrounding gas in unprecedented detail. (For comparison, our solar system is about half a light day across, while the distance to the nearest star beyond the Sun is 4.3 light years.) Once thought to consist of a fairly small number of supermassive stars, R136 was resolved from the ground using 'speckle' techniques into a handful of central objects. Prior to the servicing mission, HST resolved R136 into several hundred stars. Now, preliminary analysis of the images obtained with the WFPC-2 shows that R136 consists of more than 3000 stars with brightness and colors that can be accurately measured. It is these measurements that will provide astronomers with new insights into how clouds of gas suddenly turn into large aggregations of stars. These insights will help astronomers understand how stars in our own Galaxy formed, as well as providing clues about how to interpret observations of distant galaxies which are still in the process of forming. For example, the new data show that at least in the case of R136, stars with masses less than that of our Sun were able to form as rapidly as very massive stars, qualifying this as a true starburst. PHOTO RELEASE NO.: STScI-PR94-04
Opto-mechanical design of small infrared cloud measuring device
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Yu, Xun; Tao, Yu; Jiang, Xu
2018-01-01
In order to make small infrared cloud measuring device can be well in a wide temperature range and day-night environment, a design idea using catadioptric infrared panoramic imaging optical system and simple mechanical structure for realizing observation clode under all-weather conditions was proposed. Firstly, the optical system of cloud measuring device was designed. An easy-to-use numerical method was proposed to acquire the profile of a catadioptric mirror, which brought the property of equidistance projection and played the most important role in a catadioptric panoramic lens. Secondly, the mechanical structure was studied in detail. Overcoming the limitations of traditional primary mirror support structure, integrative design was used for refractor and mirror support structure. Lastly, temperature adaptability and modes of the mirror support structure were analyzed. Results show that the observation range of the cloud measuring device is wide and the structure is simple, the fundamental frequency of the structure is greater than 100 Hz, the surface precision of the system reflector reaches PV of λ/10 and RMS of λ/40under the load of temperature range - 40 60°C, it can meet the needs of existing meteorological observation.
NASA Astrophysics Data System (ADS)
Kavitha, M. S.; Asano, Akira; Taguchi, Akira
2011-03-01
The aim of this study is to develop a computer-aided osteoporosis diagnosis system that automatically determines the inferior cortical width of the mandible continuously on dental panoramic radiographs to realize statistically more robust measurements than the conventional one-point measurements. The cortical width was continuously measured on dental panoramic radiographs by enhancing the original image, determining cortical boundaries, and finally evaluating the distance between boundaries continuously throughout the region of interest. The diagnostic performance using the average width calculated from the continuous measurement was compared with BMD at lumbar spine and femoral neck in 100 postmenopausal women of whom 50 to the development of the tool and 50 to its validation with no history of osteoporosis was evaluated. We experimentally showed the superiority of our method with improved sensitivity and specificity of identifying the development subjects were 90.0% and 75.0% in women with low spinal BMD and 81.8% and 69.2% in those with low femoral BMD, respectively. The corresponding values in the validation subjects were 93.3% and 82.9% at the lumbar spine and 92.3% and 75.7% at the femoral neck, respectively in terms of efficacy for diagnosing osteoporosis. We also assessed the diagnosis and classification of women with osteoporosis using support vector machine employing the average and variance of the continuous measurements gave excellent discrimination ability. It yields sensitivity and specificity of 90.9% and 83.8%, respectively with lumbar spine and 90.0% and 69.1%, respectively with femoral neck BMD. Performance comparison and simplicity of this method indicate that our computeraided system is readily applicable to clinical practice.
ERIC Educational Resources Information Center
Ludlow, John B.; Platin, Enrique
2000-01-01
Compared self-guided slide/tape (ST) and Web page (WP) instruction in normal radiographic anatomy of periapical and panoramic images using objective test performance and subjective preferences of 74 freshman dental students. Test performance was not different between image types or presentation technologies, but students preferred WP for…