Performance analysis of panoramic infrared systems
NASA Astrophysics Data System (ADS)
Furxhi, Orges; Driggers, Ronald G.; Holst, Gerald; Krapels, Keith
2014-05-01
Panoramic imagers are becoming more commonplace in the visible part of the spectrum. These imagers are often used in the real estate market, extreme sports, teleconferencing, and security applications. Infrared panoramic imagers, on the other hand, are not as common and only a few have been demonstrated. A panoramic image can be formed in several ways, using pan and stitch, distributed aperture, or omnidirectional optics. When omnidirectional optics are used, the detected image is a warped view of the world that is mapped on the focal plane array in a donut shape. The final image on the display is the mapping of the omnidirectional donut shape image back to the panoramic world view. In this paper we analyze the performance of uncooled thermal panoramic imagers that use omnidirectional optics, focusing on range performance.
Optics to rectify CORONA panoramic photographs for map making
NASA Astrophysics Data System (ADS)
Hilbert, Robert S.
2006-08-01
In the 1960's, accurate maps of the United States were available to all, from the U.S. Government, but maps of the Soviet Union were not, and in fact were classified. Maps of the Soviet Union were needed by the U.S. Government, including for U.S. targeting of Soviet ICBM sites, and for negotiating the SALT ICBM disarmament treaty. Although mapping cameras were historically frame cameras with low distortion, the CORONA panoramic film coverage was used to identify any ICBM sites. If distortion-free photographs could be produced from this inherently distorted panoramic material, accurate maps could be produced that would be valuable. Use of the stereo photographs from CORONA, for developing accurate topographical maps, was the mission of Itek's Gamma Rectifier. Bob Shannon's department at Itek was responsible for designing the optics for the Gamma Rectifier. He assigned the design to the author. The optical requirements of this system are described along with the optical design solution, which allowed the inherent panoramic distortion of the original photographs to be "rectified" to a very high level of accuracy, in enlarged photographs. These rectifiers were used three shifts a day, for over a decade, and produced the most accurate maps of the earth's surface, that existed at that time. The results facilitated the success of the Strategic Arms Limitation Talks (SALT) Treaty signed by the US and the Soviet Union in 1972, which were verified by "national means of verification" (i.e. space reconnaissance).
NASA Astrophysics Data System (ADS)
Lee, Peter; Calvo, Conrado J.; Alfonso-Almazán, José M.; Quintanilla, Jorge G.; Chorro, Francisco J.; Yan, Ping; Loew, Leslie M.; Filgueiras-Rama, David; Millet, José
2017-02-01
Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.
Lee, Peter; Calvo, Conrado J; Alfonso-Almazán, José M; Quintanilla, Jorge G; Chorro, Francisco J; Yan, Ping; Loew, Leslie M; Filgueiras-Rama, David; Millet, José
2017-02-27
Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.
NASA Technical Reports Server (NTRS)
Ward, J. F.
1981-01-01
Procedures were developed and tested for using KA-80A optical bar camera panoramic photography for timber typing forest land and classifying nonforest land. The study area was the south half of the Lake Tahoe Basin Management Unit. Final products from this study include four timber type map overlays on 1:24,000 orthophoto maps. The following conclusions can be drawn from this study: (1) established conventional timber typing procedures can be used on panoramic photography if the necessary equipment is available, (2) The classification and consistency results warrant further study in using panoramic photography for timber typing; and (3) timber type mapping can be done as fast or faster with panoramic photography than with resource photography while maintaining comparable accuracy.
Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping.
Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian
2016-12-31
For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.
Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping
Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian
2016-01-01
For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable. PMID:28042855
Lee, Peter; Yan, Ping; Ewart, Paul; Kohl, Peter
2012-01-01
Whole-heart multi-parametric optical mapping has provided valuable insight into the interplay of electro-physiological parameters, and this technology will continue to thrive as dyes are improved and technical solutions for imaging become simpler and cheaper. Here, we show the advantage of using improved 2nd-generation voltage dyes, provide a simple solution to panoramic multi-parametric mapping, and illustrate the application of flash photolysis of caged compounds for studies in the whole heart. For proof of principle, we used the isolated rat whole-heart model. After characterising the blue and green isosbestic points of di-4-ANBDQBS and di-4-ANBDQPQ, respectively, two voltage and calcium mapping systems are described. With two newly custom-made multi-band optical filters, (1) di-4-ANBDQBS and fluo-4 and (2) di-4-ANBDQPQ and rhod-2 mapping are demonstrated. Furthermore, we demonstrate three-parameter mapping using di-4-ANBDQPQ, rhod-2 and NADH. Using off-the-shelf optics and the di-4-ANBDQPQ and rhod-2 combination, we demonstrate panoramic multi-parametric mapping, affording a 360° spatiotemporal record of activity. Finally, local optical perturbation of calcium dynamics in the whole heart is demonstrated using the caged compound, o-nitrophenyl ethylene glycol tetraacetic acid (NP-EGTA), with an ultraviolet light-emitting diode (LED). Calcium maps (heart loaded with di-4-ANBDQPQ and rhod-2) demonstrate successful NP-EGTA loading and local flash photolysis. All imaging systems were built using only a single camera. In conclusion, using novel 2nd-generation voltage dyes, we developed scalable techniques for multi-parametric optical mapping of the whole heart from one point of view and panoramically. In addition to these parameter imaging approaches, we show that it is possible to use caged compounds and ultraviolet LEDs to locally perturb electrophysiological parameters in the whole heart. PMID:22886365
Panoramic optical-servoing for industrial inspection and repair
NASA Astrophysics Data System (ADS)
Sallinger, Christian; O'Leary, Paul; Retschnig, Alexander; Kammerhofer, Martin
2004-05-01
Recently specialized robots were introduced to perform the task of inspection and repair in large cylindrical structures such as ladles, melting furnaces and converters. This paper reports on the image processing system and optical servoing for one such a robot. A panoramic image of the vessels inner surface is produced by performing a coordinated robot motion and image acquisition. The level of projective distortion is minimized by acquiring a high density of images. Normalized phase correlation calculated via the 2D Fourier transform is used to calculate the shift between the single images. The narrow strips from the dense image map are then stitched together to build the panorama. The mapping between the panoramic image and the positioning of the robot is established during the stitching of the images. This enables optical feedback. The robots operator can locate a defect on the surface by selecting the area of the image. Calculation of the forward and inverse kinematics enable the robot to automatically move to the location on the surface requiring repair. Experimental results using a standard 6R industrial robot have shown the full functionality of the system concept. Finally, were test measurements carried out successfully, in a ladle at a temperature of 1100° C.
Photogrammetry of Apollo 15 photography, part C
NASA Technical Reports Server (NTRS)
Wu, S. S. C.; Schafer, F. J.; Jordan, R.; Nakata, G. M.; Derick, J. L.
1972-01-01
In the Apollo 15 mission, a mapping camera system and a 61 cm optical bar, high resolution panoramic camera, as well as a laser altimeter were used. The panoramic camera is described, having several distortion sources, such as cylindrical shape of the negative film surface, the scanning action of the lens, the image motion compensator, and the spacecraft motion. Film products were processed on a specifically designed analytical plotter.
Orbital-science investigation: Part C: photogrammetry of Apollo 15 photography
Wu, Sherman S.C.; Schafer, Francis J.; Jordan, Raymond; Nakata, Gary M.; Derick, James L.
1972-01-01
Mapping of large areas of the Moon by photogrammetric methods was not seriously considered until the Apollo 15 mission. In this mission, a mapping camera system and a 61-cm optical-bar high-resolution panoramic camera, as well as a laser altimeter, were used. The mapping camera system comprises a 7.6-cm metric terrain camera and a 7.6-cm stellar camera mounted in a fixed angular relationship (an angle of 96° between the two camera axes). The metric camera has a glass focal-plane plate with reseau grids. The ground-resolution capability from an altitude of 110 km is approximately 20 m. Because of the auxiliary stellar camera and the laser altimeter, the resulting metric photography can be used not only for medium- and small-scale cartographic or topographic maps, but it also can provide a basis for establishing a lunar geodetic network. The optical-bar panoramic camera has a 135- to 180-line resolution, which is approximately 1 to 2 m of ground resolution from an altitude of 110 km. Very large scale specialized topographic maps for supporting geologic studies of lunar-surface features can be produced from the stereoscopic coverage provided by this camera.
Linearization of an annular image by using a diffractive optic
NASA Technical Reports Server (NTRS)
Matthys, Donald R.
1996-01-01
The goal for this project is to develop the algorithms for fracturing the zones defined by the mapping transformation, and to actually produce the binary optic in an appropriate setup. In 1984 a side-viewing panoramic viewing system was patented, consisting of a single piece of glass with spherical surfaces which produces a 360 degree view of the region surrounding the lens which extends about 25 degrees in front of and 20 degrees behind the lens. The system not only produces images of good quality, it is also afocal, i.e., images stay in focus for objects located right next to the lens as well as those located far from the lens. The lens produced a panoramic view in an annular shaped image, and so the lens was called a PAL (panoramic annular lens). When applying traditional measurements to PAL images, it is found advantageous to linearize the annular image. This can easily be done with a computer and such a linearized image can be produced within about 40 seconds on current microcomputers. However, this process requires a frame-grabber and a computer, and is not real-time. Therefore, it was decided to try to perform this linearization optically by using a diffractive optic.
Enhancement of panoramic image resolution based on swift interpolation of Bezier surface
NASA Astrophysics Data System (ADS)
Xiao, Xiao; Yang, Guo-guang; Bai, Jian
2007-01-01
Panoramic annular lens project the view of the entire 360 degrees around the optical axis onto an annular plane based on the way of flat cylinder perspective. Due to the infinite depth of field and the linear mapping relationship between an object and an image, the panoramic imaging system plays important roles in the applications of robot vision, surveillance and virtual reality. An annular image needs to be unwrapped to conventional rectangular image without distortion, in which interpolation algorithm is necessary. Although cubic splines interpolation can enhance the resolution of unwrapped image, it occupies too much time to be applied in practices. This paper adopts interpolation method based on Bezier surface and proposes a swift interpolation algorithm for panoramic image, considering the characteristic of panoramic image. The result indicates that the resolution of the image is well enhanced compared with the image by cubic splines and bilinear interpolation. Meanwhile the time consumed is shortened up by 78% than the time consumed cubic interpolation.
Panoramic Images Mapping Tools Integrated Within the ESRI ArcGIS Software
NASA Astrophysics Data System (ADS)
Guo, Jiao; Zhong, Ruofei; Zeng, Fanyang
2014-03-01
There is a general study on panoramic images which are presented along with appearance of the Google street map. Despite 360 degree viewing of street, we can realize more applications over panoramic images. This paper developed a toolkits plugged in ArcGIS, which can view panoramic photographs at street level directly from ArcMap and measure and capture all visible elements as frontages, trees and bridges. We use a series of panoramic images adjoined with absolute coordinate through GPS and IMU. There are two methods in this paper to measure object from these panoramic images: one is to intersect object position through a stereogram; the other one is multichip matching involved more than three images which all cover the object. While someone wants to measure objects from these panoramic images, each two panoramic images which both contain the object can be chosen to display on ArcMap. Then we calculate correlation coefficient of the two chosen panoramic images so as to calculate the coordinate of object. Our study test different patterns of panoramic pairs and compare the results of measurement to the real value of objects so as to offer the best choosing suggestion. The article has mainly elaborated the principles of calculating correlation coefficient and multichip matching.
The Panoramic Camera (PanCam) Instrument for the ESA ExoMars Rover
NASA Astrophysics Data System (ADS)
Griffiths, A.; Coates, A.; Jaumann, R.; Michaelis, H.; Paar, G.; Barnes, D.; Josset, J.
The recently approved ExoMars rover is the first element of the ESA Aurora programme and is slated to deliver the Pasteur exobiology payload to Mars by 2013. The 0.7 kg Panoramic Camera will provide multispectral stereo images with 65° field-of- view (1.1 mrad/pixel) and high resolution (85 µrad/pixel) monoscopic "zoom" images with 5° field-of-view. The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission as well as providing multispectral geological imaging, colour and stereo panoramic images, solar images for water vapour abundance and dust optical depth measurements and to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. Additionally the High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls.
NASA Technical Reports Server (NTRS)
Nabors, Sammy
2015-01-01
NASA offers companies an optical system that provides a unique panoramic perspective with a single camera. NASA's Marshall Space Flight Center has developed a technology that combines a panoramic refracting optic (PRO) lens with a unique detection system to acquire a true 360-degree field of view. Although current imaging systems can acquire panoramic images, they must use up to five cameras to obtain the full field of view. MSFC's technology obtains its panoramic images from one vantage point.
2D and 3D visualization methods of endoscopic panoramic bladder images
NASA Astrophysics Data System (ADS)
Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til
2011-03-01
While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.
The Origin of Clusters and Large-Scale Structures: Panoramic View of the High-z Universe
NASA Astrophysics Data System (ADS)
Ouchi, Masami
We will report results of our on-going survey for proto-clusters and large-scale structures at z=3-6. We carried out very wide and deep optical imaging down to i=27 for a 1 deg^2 field of the Subaru/XMM Deep Field with 8.2m Subaru Telescope. We obtain maps of the Universe traced by ~1,000 Ly-a galaxies at z=3, 4, and 6 and by ~10,000 Lyman break galaxies at z=3-6. These cosmic maps have a transverse dimension of ~150 Mpc x 150 Mpc in comoving units at these redshifts, and provide us, for the first time, a panoramic view of the high-z Universe from the scales of galaxies, clusters to large-scale structures. Major results and implications will be presented in our talk. (Part of this work is subject to press embargo.)
Panoramic lens designed with transformation optics.
Wang, Huaping; Deng, Yangyang; Zheng, Bin; Li, Rujiang; Jiang, Yuyu; Dehdashti, Shahram; Xu, Zhiwei; Chen, Hongsheng
2017-01-06
The panoramic lens is a special kind of lens, which is applied to observe full view. In this letter, we theoretically present a panoramic lens (PL) using transformation optics method. The lens is designed with inhomogeneous and anisotropic constitutive parameters, which has the ability to gather light from all directions and confine light within the visual angle of observer. Simulation results validate our theoretical design.
Low-cost panoramic infrared surveillance system
NASA Astrophysics Data System (ADS)
Kecskes, Ian; Engel, Ezra; Wolfe, Christopher M.; Thomson, George
2017-05-01
A nighttime surveillance concept consisting of a single surface omnidirectional mirror assembly and an uncooled Vanadium Oxide (VOx) longwave infrared (LWIR) camera has been developed. This configuration provides a continuous field of view spanning 360° in azimuth and more than 110° in elevation. Both the camera and the mirror are readily available, off-the-shelf, inexpensive products. The mirror assembly is marketed for use in the visible spectrum and requires only minor modifications to function in the LWIR spectrum. The compactness and portability of this optical package offers significant advantages over many existing infrared surveillance systems. The developed system was evaluated on its ability to detect moving, human-sized heat sources at ranges between 10 m and 70 m. Raw camera images captured by the system are converted from rectangular coordinates in the camera focal plane to polar coordinates and then unwrapped into the users azimuth and elevation system. Digital background subtraction and color mapping are applied to the images to increase the users ability to extract moving items from background clutter. A second optical system consisting of a commercially available 50 mm f/1.2 ATHERM lens and a second LWIR camera is used to examine the details of objects of interest identified using the panoramic imager. A description of the components of the proof of concept is given, followed by a presentation of raw images taken by the panoramic LWIR imager. A description of the method by which these images are analyzed is given, along with a presentation of these results side-by-side with the output of the 50 mm LWIR imager and a panoramic visible light imager. Finally, a discussion of the concept and its future development are given.
Design, demonstration and testing of low F-number LWIR panoramic imaging relay optics
NASA Astrophysics Data System (ADS)
Furxhi, Orges; Frascati, Joe; Driggers, Ronald
2018-04-01
Panoramic imaging is inherently wide field of view. High sensitivity uncooled Long Wave Infrared (LWIR) imaging requires low F-number optics. These two requirements result in short back working distance designs that, in addition to being costly, are challenging to integrate with commercially available uncooled LWIR cameras and cores. Common challenges include the relocation of the shutter flag, custom calibration of the camera dynamic range and NUC tables, focusing, and athermalization. Solutions to these challenges add to the system cost and make panoramic uncooled LWIR cameras commercially unattractive. In this paper, we present the design of Panoramic Imaging Relay Optics (PIRO) and show imagery and test results with one of the first prototypes. PIRO designs use several reflective surfaces (generally two) to relay a panoramic scene onto a real, donut-shaped image. The PIRO donut is imaged on the focal plane of the camera using a commercially-off-the-shelf (COTS) low F-number lens. This approach results in low component cost and effortless integration with pre-calibrated commercially available cameras and lenses.
NASA Astrophysics Data System (ADS)
Swain, Pradyumna; Mark, David
2004-09-01
The emergence of curved CCD detectors as individual devices or as contoured mosaics assembled to match the curved focal planes of astronomical telescopes and terrestrial stereo panoramic cameras represents a major optical design advancement that greatly enhances the scientific potential of such instruments. In altering the primary detection surface within the telescope"s optical instrumentation system from flat to curved, and conforming the applied CCD"s shape precisely to the contour of the telescope"s curved focal plane, a major increase in the amount of transmittable light at various wavelengths through the system is achieved. This in turn enables multi-spectral ultra-sensitive imaging with much greater spatial resolution necessary for large and very large telescope applications, including those involving infrared image acquisition and spectroscopy, conducted over very wide fields of view. For earth-based and space-borne optical telescopes, the advent of curved CCD"s as the principle detectors provides a simplification of the telescope"s adjoining optics, reducing the number of optical elements and the occurrence of optical aberrations associated with large corrective optics used to conform to flat detectors. New astronomical experiments may be devised in the presence of curved CCD applications, in conjunction with large format cameras and curved mosaics, including three dimensional imaging spectroscopy conducted over multiple wavelengths simultaneously, wide field real-time stereoscopic tracking of remote objects within the solar system at high resolution, and deep field survey mapping of distant objects such as galaxies with much greater multi-band spatial precision over larger sky regions. Terrestrial stereo panoramic cameras equipped with arrays of curved CCD"s joined with associative wide field optics will require less optical glass and no mechanically moving parts to maintain continuous proper stereo convergence over wider perspective viewing fields than their flat CCD counterparts, lightening the cameras and enabling faster scanning and 3D integration of objects moving within a planetary terrain environment. Preliminary experiments conducted at the Sarnoff Corporation indicate the feasibility of curved CCD imagers with acceptable electro-optic integrity. Currently, we are in the process of evaluating the electro-optic performance of a curved wafer scale CCD imager. Detailed ray trace modeling and experimental electro-optical data performance obtained from the curved imager will be presented at the conference.
360 degree vision system: opportunities in transportation
NASA Astrophysics Data System (ADS)
Thibault, Simon
2007-09-01
Panoramic technologies are experiencing new and exciting opportunities in the transportation industries. The advantages of panoramic imagers are numerous: increased areas coverage with fewer cameras, imaging of multiple target simultaneously, instantaneous full horizon detection, easier integration of various applications on the same imager and others. This paper reports our work on panomorph optics and potential usage in transportation applications. The novel panomorph lens is a new type of high resolution panoramic imager perfectly suitable for the transportation industries. The panomorph lens uses optimization techniques to improve the performance of a customized optical system for specific applications. By adding a custom angle to pixel relation at the optical design stage, the optical system provides an ideal image coverage which is designed to reduce and optimize the processing. The optics can be customized for the visible, near infra-red (NIR) or infra-red (IR) wavebands. The panomorph lens is designed to optimize the cost per pixel which is particularly important in the IR. We discuss the use of the 360 vision system which can enhance on board collision avoidance systems, intelligent cruise controls and parking assistance. 360 panoramic vision systems might enable safer highways and significant reduction in casualties.
NASA Astrophysics Data System (ADS)
Liu, Zhi; Zhou, Baotong; Zhang, Changnian
2017-03-01
Vehicle-mounted panoramic system is important safety assistant equipment for driving. However, traditional systems only render fixed top-down perspective view of limited view field, which may have potential safety hazard. In this paper, a texture mapping algorithm for 3D vehicle-mounted panoramic system is introduced, and an implementation of the algorithm utilizing OpenGL ES library based on Android smart platform is presented. Initial experiment results show that the proposed algorithm can render a good 3D panorama, and has the ability to change view point freely.
Panoramic Epipolar Image Generation for Mobile Mapping System
NASA Astrophysics Data System (ADS)
Chen, T.; Yamamoto, K.; Chhatkuli, S.; Shimamura, H.
2012-07-01
The notable improvements on performance and low cost of digital cameras and GPS/IMU devices have caused MMSs (Mobile Mapping Systems) to be gradually becoming one of the most important devices for mapping highway and railway networks, generating and updating road navigation data and constructing urban 3D models over the last 20 years. Moreover, the demands for large scale visual street-level image database construction by the internet giants such as Google and Microsoft have made the further rapid development of this technology. As one of the most important sensors, the omni-directional cameras are being commonly utilized on many MMSs to collect panoramic images for 3D close range photogrammetry and fusion with 3D laser point clouds since these cameras could record much visual information of the real environment in one image at field view angle of 360° in longitude direction and 180° in latitude direction. This paper addresses the problem of panoramic epipolar image generation for 3D modelling and mapping by stereoscopic viewing. These panoramic images are captured with Point Grey's Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. Onboard GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided high accuracy position and attitude data for these panoramic images and laser data, this makes it possible to construct the epipolar geometric relationship between any two adjacent panoramic images and then the panoramic epipolar images could be generated. Three kinds of projection planes: sphere, cylinder and flat plane are selected as the epipolar images' planes. In final we select the flat plane and use its effective parts (middle parts of base line's two sides) for epipolar image generation. The corresponding geometric relations and results will be presented in this paper.
Panoramic stereo sphere vision
NASA Astrophysics Data System (ADS)
Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian
2013-01-01
Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.
Lee, Peter; Bollensdorff, Christian; Quinn, T. Alexander; Wuskell, Joseph P.; Loew, Leslie M.; Kohl, Peter
2011-01-01
Background Simultaneous optical mapping of multiple electrophysiologically relevant parameters in living myocardium is desirable for integrative exploration of mechanisms underlying heart rhythm generation under normal and pathophysiologic conditions. Current multiparametric methods are technically challenging, usually involving multiple sensors and moving parts, which contributes to high logistic and economic thresholds that prevent easy application of the technique. Objective The purpose of this study was to develop a simple, affordable, and effective method for spatially resolved, continuous, simultaneous, and multiparametric optical mapping of the heart, using a single camera. Methods We present a new method to simultaneously monitor multiple parameters using inexpensive off-the-shelf electronic components and no moving parts. The system comprises a single camera, commercially available optical filters, and light-emitting diodes (LEDs), integrated via microcontroller-based electronics for frame-accurate illumination of the tissue. For proof of principle, we illustrate measurement of four parameters, suitable for ratiometric mapping of membrane potential (di-4-ANBDQPQ) and intracellular free calcium (fura-2), in an isolated Langendorff-perfused rat heart during sinus rhythm and ectopy, induced by local electrical or mechanical stimulation. Results The pilot application demonstrates suitability of this imaging approach for heart rhythm research in the isolated heart. In addition, locally induced excitation, whether stimulated electrically or mechanically, gives rise to similar ventricular propagation patterns. Conclusion Combining an affordable camera with suitable optical filters and microprocessor-controlled LEDs, single-sensor multiparametric optical mapping can be practically implemented in a simple yet powerful configuration and applied to heart rhythm research. The moderate system complexity and component cost is destined to lower the threshold to broader application of functional imaging and to ease implementation of more complex optical mapping approaches, such as multiparametric panoramic imaging. A proof-of-principle application confirmed that although electrically and mechanically induced excitation occur by different mechanisms, their electrophysiologic consequences downstream from the point of activation are not dissimilar. PMID:21459161
Panoramic thermal imaging: challenges and tradeoffs
NASA Astrophysics Data System (ADS)
Aburmad, Shimon
2014-06-01
Over the past decade, we have witnessed a growing demand for electro-optical systems that can provide continuous 3600 coverage. Applications such as perimeter security, autonomous vehicles, and military warning systems are a few of the most common applications for panoramic imaging. There are several different technological approaches for achieving panoramic imaging. Solutions based on rotating elements do not provide continuous coverage as there is a time lag between updates. Continuous panoramic solutions either use "stitched" images from multiple adjacent sensors, or sophisticated optical designs which warp a panoramic view onto a single sensor. When dealing with panoramic imaging in the visible spectrum, high volume production and advancement of semiconductor technology has enabled the use of CMOS/CCD image sensors with a huge number of pixels, small pixel dimensions, and low cost devices. However, in the infrared spectrum, the growth of detector pixel counts, pixel size reduction, and cost reduction is taking place at a slower rate due to the complexity of the technology and limitations caused by the laws of physics. In this work, we will explore the challenges involved in achieving 3600 panoramic thermal imaging, and will analyze aspects such as spatial resolution, FOV, data complexity, FPA utilization, system complexity, coverage and cost of the different solutions. We will provide illustrations, calculations, and tradeoffs between three solutions evaluated by Opgal: A unique 3600 lens design using an LWIR XGA detector, stitching of three adjacent LWIR sensors equipped with a low distortion 1200 lens, and a fisheye lens with a HFOV of 180º and an XGA sensor.
Photogrammetry using Apollo 16 orbital photography, part B
NASA Technical Reports Server (NTRS)
Wu, S. S. C.; Schafer, F. J.; Jordan, R.; Nakata, G. M.
1972-01-01
Discussion is made of the Apollo 15 and 16 metric and panoramic cameras which provided photographs for accurate topographic portrayal of the lunar surface using photogrammetric methods. Nine stereoscopic models of Apollo 16 metric photographs and three models of panoramic photographs were evaluated photogrammetrically in support of the Apollo 16 geologic investigations. Four of the models were used to collect profile data for crater morphology studies; three models were used to collect evaluation data for the frequency distributions of lunar slopes; one model was used to prepare a map of the Apollo 16 traverse area; and one model was used to determine elevations of the Cayley Formation. The remaining three models were used to test photogrammetric techniques using oblique metric and panoramic camera photographs. Two preliminary contour maps were compiled and a high-oblique metric photograph was rectified.
Thermal infrared panoramic imaging sensor
NASA Astrophysics Data System (ADS)
Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey
2006-05-01
Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to serve in a wide range of applications of homeland security, as well as serve the Army in tasks of improved situational awareness (SA) in defense and offensive operations, and as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The novel ViperView TM high-resolution panoramic thermal imager is the heart of the APTIS system. It features an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS system include network communications, advanced power management, and wakeup capability. Recent developments include image processing, optical design being expanded into the visible spectral range, and wireless communications design. This paper describes the development status of the APTIS system.
NASA Technical Reports Server (NTRS)
2004-01-01
This false-color panoramic camera composite traverse map depicts the Mars Exploration Rover Spirit's journey since landing at Gusev Crater, Mars. It was generated from three of the camera's different wavelength filters (750 nanometers, 530 nanometers and 480 nanometers). This map was created on the 65th martian day, or sol, of Spirit's mission, after Spirit had traveled 328 meters (1076 feet) from its lander to the rim of the crater dubbed 'Bonneville.' From this high point, Spirit was able to capture with its panoramic camera the entire rover traverse. The map points out major stops that Spirit made along the way, including features nicknamed 'Adirondack;' 'Stone Council;' 'Laguna Hollow;' and 'Humphrey.' Also highlighted is the landscape feature informally named 'Grissom Hill' and Spirit's landing site, the Columbia Memorial Station.
Statis omnidirectional stereoscopic display system
NASA Astrophysics Data System (ADS)
Barton, George G.; Feldman, Sidney; Beckstead, Jeffrey A.
1999-11-01
A unique three camera stereoscopic omnidirectional viewing system based on the periscopic panoramic camera described in the 11/98 SPIE proceedings (AM13). The 3 panoramic cameras are equilaterally combined so each leg of the triangle approximates the human inter-ocular spacing allowing each panoramic camera to view 240 degree(s) of the panoramic scene, the most counter clockwise 120 degree(s) being the left eye field and the other 120 degree(s) segment being the right eye field. Field definition may be by green/red filtration or time discrimination of the video signal. In the first instance a 2 color spectacle is used in viewing the display or in the 2nd instance LCD goggles are used to differentiate the R/L fields. Radially scanned vidicons or re-mapped CCDs may be used. The display consists of three vertically stacked 120 degree(s) segments of the panoramic field of view with 2 fields/frame. Field A being the left eye display and Field B the right eye display.
Design of a novel panoramic lens without central blindness
NASA Astrophysics Data System (ADS)
Gong, Chen; Cheng, Dewen; Xu, Chen; Wang, Yongtian
2015-08-01
The panoramic lenses are getting more and more popular in recent years. However, these lenses have the drawback of obscuring the rays of the coaxial fields, thus cause blind area in the center field of vision. We present a novel panoramic system consisting of two optical channels to overcome this issue, the system has a field of view (FOV) reaching 200 in vertical and 360 in horizontal direction without blindness area. The two channels have different focal lengths, providing design flexibility to meet application requirements where the center FOV or the marginal FOV is of more interest. The system has no half-reflecting surfaces to ensure high transmission ratio, but this feature greatly increase the design difficulty. The distortion of the novel lens is much smaller than traditional panoramic lenses since the distortion has two node points. Due to the ability of information acquisition in real-time and wide-angle, the novel panoramic lens would be very useful for a variety of real-world applications such as surveillance, short-throw projector and pilotless automobile.
Narayan, Sanjiv M.; Shivkumar, Kalyanam; Krummen, David E.; Miller, John M.; Rappel, Wouter-Jan
2013-01-01
Background The foundation for successful arrhythmia ablation is the mapping of electric propagation to identify underlying mechanisms. In atrial fibrillation (AF), however, mapping is difficult so that ablation has often targeted electrogram features, with mixed results. We hypothesized that wide field-of-view (panoramic) mapping of both atria would identify causal mechanisms for AF and allow interpretation of local electrogram features, including complex fractionated atrial electrograms (CFAE). Methods and Results Contact mapping was performed using biatrial multipolar catheters in 36 AF subjects (29 persistent). Stable AF rotors (spiral waves) or focal sources were seen in 35 of 36 cases and targeted for ablation (focal impulse and rotor modulation) before pulmonary vein isolation. In 31 of 36 subjects (86.1%), AF acutely terminated (n=20; 16 to sinus rhythm) or organized (n=11; 19±8% slowing) with 2.5 minutes focal impulse and rotor modulation (interquartile range, 1.0–3.1) at one source, defined as the primary source. Subjects exhibited 2.1±1.0 concurrent AF sources of which the primary, by phase mapping, precessed in limited areas (persistent 2.5±1.7 versus paroxysmal 1.7±0.5 cm2; P=0.30). Notably, source regions showed mixed electrogram amplitudes and CFAE grades that did not differ from surrounding atrium (P=NS). AF sources were not consistently surrounded by CFAE (P=0.67). Conclusions Stable rotors and focal sources for human AF were revealed by contact panoramic mapping (focal impulse and rotor modulation mapping), but not by electrogram footprints. AF sources precessed within areas of ≈2 cm2, with diverse voltage characteristics poorly correlated with CFAE. Most CFAE sites lie remote from AF sources and are not suitable targets for catheter ablation of AF. PMID:23392583
Registration of Panoramic/Fish-Eye Image Sequence and LiDAR Points Using Skyline Features
Zhu, Ningning; Jia, Yonghong; Ji, Shunping
2018-01-01
We propose utilizing a rigorous registration model and a skyline-based method for automatic registration of LiDAR points and a sequence of panoramic/fish-eye images in a mobile mapping system (MMS). This method can automatically optimize original registration parameters and avoid the use of manual interventions in control point-based registration methods. First, the rigorous registration model between the LiDAR points and the panoramic/fish-eye image was built. Second, skyline pixels from panoramic/fish-eye images and skyline points from the MMS’s LiDAR points were extracted, relying on the difference in the pixel values and the registration model, respectively. Third, a brute force optimization method was used to search for optimal matching parameters between skyline pixels and skyline points. In the experiments, the original registration method and the control point registration method were used to compare the accuracy of our method with a sequence of panoramic/fish-eye images. The result showed: (1) the panoramic/fish-eye image registration model is effective and can achieve high-precision registration of the image and the MMS’s LiDAR points; (2) the skyline-based registration method can automatically optimize the initial attitude parameters, realizing a high-precision registration of a panoramic/fish-eye image and the MMS’s LiDAR points; and (3) the attitude correction values of the sequences of panoramic/fish-eye images are different, and the values must be solved one by one. PMID:29883431
Atrial fibrillation driver mechanisms: Insight from the isolated human heart.
Csepe, Thomas A; Hansen, Brian J; Fedorov, Vadim V
2017-01-01
Although there have been great technological advances in the treatment of atrial fibrillation (AF), current therapies remain limited due to a narrow understanding of AF mechanisms in the human heart. This review will highlight our recent studies on explanted human hearts where we developed and employed a novel functional-structural mapping approach by integrating high-resolution simultaneous endo-epicardial and panoramic optical mapping with 3D gadolinium-enhanced MRI to define the spatiotemporal characteristics of AF drivers and their structural substrates. The results allow us to postulate that the primary mechanism of AF maintenance in human hearts is a limited number of localized intramural microanatomic reentrant AF drivers anchored to heart-specific 3D fibrotically insulated myobundle tracks, which may remain hidden to clinical single-surface electrode mapping. We suggest that ex vivo human heart studies, by using an integrated 3D functional and structural mapping approach, will help to reveal defining features of AF drivers as well as validate and improve clinical approaches to detect and target these AF drivers in patients with cardiac diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Optics of wide-angle panoramic viewing system-assisted vitreous surgery.
Chalam, Kakarla V; Shah, Vinay A
2004-01-01
The purpose of the article is to describe the optics of the contact wide-angle lens system with stereo-reinverter for vitreous surgery. A panoramic viewing system is made up of two components; an indirect ophthalmoscopy lens system for fundus image viewing, which is placed on the patient's cornea as a contact lens, and a separate removable prism system for reinversion of the image mounted on the microscope above the zooming system. The system provides a 104 degrees field of view in a phakic emmetropic eye with minification, which can be magnified by the operating microscope. It permits a binocular stereoptic view even through a small pupil (3 mm) or larger. In an air-filled phakic eye, field of view increases to approximately 130 degrees. The obtained image of the patient's fundus is reinverted to form true, erect, stereoscopic image by the reinversion system. In conclusion, this system permits wide-angle panoramic view of the surgical field. The contact lens neutralizes the optical irregularities of the corneal surface and allows improved visualization in eyes with irregular astigmatism induced by corneal scars. Excellent visualization is achieved in complex clinical situations such as miotic pupils, lenticular opacities, and in air-filled phakic eyes.
The Topography of Names and Places.
ERIC Educational Resources Information Center
Morehead, Joe
1999-01-01
Discusses geographic naming with Geographic Information Systems (GIS) technology. Highlights include the Geographic Names Information System (GNIS) online database; United States Geological Survey (USGS) national mapping information; the USGS-Microsoft connection; and panoramic maps and the small LizardTech company. (AEF)
Endo, A; Katoh, T; Kobayashi, I; Joshi, R; Sur, J; Okano, T
2012-01-01
Objective The aim of this study was to assess the characteristics of an optically stimulated luminescence dosemeter (OSLD) for use in diagnostic radiology and to apply the OSLD in measuring the organ doses by panoramic radiography. Methods The dose linearity, energy dependency and angular dependency of aluminium oxide-based OSLDs were examined using an X-ray generator to simulate various exposure settings in diagnostic radiology. The organ doses were then measured by inserting the dosemeters into an anthropomorphic phantom while using three panoramic machines. Results The dosemeters demonstrated consistent dose linearity (coefficient of variation<1.5%) and no significant energy dependency (coefficient of variation<1.5%) under the applied exposure conditions. They also exhibited negligible angular dependency (≤10%). The organ doses of the X-ray as a result of panoramic imaging by three machines were calculated using the dosemeters. Conclusion OSLDs can be utilized to measure the organ doses in diagnostic radiology. The availability of these dosemeters in strip form proves to be reliably advantageous. PMID:22116136
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2015-07-01
In the field of orthodontic planning, the creation of a complete digital dental model to simulate and predict treatments is of utmost importance. Nowadays, orthodontists use panoramic radiographs (PAN) and dental crown representations obtained by optical scanning. However, these data do not contain any 3D information regarding tooth root geometries. A reliable orthodontic treatment should instead take into account entire geometrical models of dental shapes in order to better predict tooth movements. This paper presents a methodology to create complete 3D patient dental anatomies by combining digital mouth models and panoramic radiographs. The modeling process is based on using crown surfaces, reconstructed by optical scanning, and root geometries, obtained by adapting anatomical CAD templates over patient specific information extracted from radiographic data. The radiographic process is virtually replicated on crown digital geometries through the Discrete Radon Transform (DRT). The resulting virtual PAN image is used to integrate the actual radiographic data and the digital mouth model. This procedure provides the root references on the 3D digital crown models, which guide a shape adjustment of the dental CAD templates. The entire geometrical models are finally created by merging dental crowns, captured by optical scanning, and root geometries, obtained from the CAD templates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Achieving real-time capsule endoscopy (CE) video visualization through panoramic imaging
NASA Astrophysics Data System (ADS)
Yi, Steven; Xie, Jean; Mui, Peter; Leighton, Jonathan A.
2013-02-01
In this paper, we mainly present a novel and real-time capsule endoscopy (CE) video visualization concept based on panoramic imaging. Typical CE videos run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. To date, there is no commercially available tool capable of providing stabilized and processed CE video that is easy to analyze in real time. The burden on physicians' disease finding efforts is thus big. In fact, since the CE camera sensor has a limited forward looking view and low image frame rate (typical 2 frames per second), and captures very close range imaging on the GI tract surface, it is no surprise that traditional visualization method based on tracking and registration often fails to work. This paper presents a novel concept for real-time CE video stabilization and display. Instead of directly working on traditional forward looking FOV (field of view) images, we work on panoramic images to bypass many problems facing traditional imaging modalities. Methods on panoramic image generation based on optical lens principle leading to real-time data visualization will be presented. In addition, non-rigid panoramic image registration methods will be discussed.
Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings.
Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino
2016-05-28
Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building.
Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings
Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino
2016-01-01
Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building. PMID:27240379
Registration of Vehicle-Borne Point Clouds and Panoramic Images Based on Sensor Constellations.
Yao, Lianbi; Wu, Hangbin; Li, Yayun; Meng, Bin; Qian, Jinfei; Liu, Chun; Fan, Hongchao
2017-04-11
A mobile mapping system (MMS) is usually utilized to collect environmental data on and around urban roads. Laser scanners and panoramic cameras are the main sensors of an MMS. This paper presents a new method for the registration of the point clouds and panoramic images based on sensor constellation. After the sensor constellation was analyzed, a feature point, the intersection of the connecting line between the global positioning system (GPS) antenna and the panoramic camera with a horizontal plane, was utilized to separate the point clouds into blocks. The blocks for the central and sideward laser scanners were extracted with the segmentation feature points. Then, the point clouds located in the blocks were separated from the original point clouds. Each point in the blocks was used to find the accurate corresponding pixel in the relative panoramic images via a collinear function, and the position and orientation relationship amongst different sensors. A search strategy is proposed for the correspondence of laser scanners and lenses of panoramic cameras to reduce calculation complexity and improve efficiency. Four cases of different urban road types were selected to verify the efficiency and accuracy of the proposed method. Results indicate that most of the point clouds (with an average of 99.7%) were successfully registered with the panoramic images with great efficiency. Geometric evaluation results indicate that horizontal accuracy was approximately 0.10-0.20 m, and vertical accuracy was approximately 0.01-0.02 m for all cases. Finally, the main factors that affect registration accuracy, including time synchronization amongst different sensors, system positioning and vehicle speed, are discussed.
2002-01-08
new PAL with a total viewing angle of around 80° and suitable for foveal vision, it turned out that the optical design program ZEMAX EE we intended to...use was not capable for optimization. The reason was that ZEMAX -EE and all present optical design programs are based on see-through-window (STW
Registration of Vehicle-Borne Point Clouds and Panoramic Images Based on Sensor Constellations
Yao, Lianbi; Wu, Hangbin; Li, Yayun; Meng, Bin; Qian, Jinfei; Liu, Chun; Fan, Hongchao
2017-01-01
A mobile mapping system (MMS) is usually utilized to collect environmental data on and around urban roads. Laser scanners and panoramic cameras are the main sensors of an MMS. This paper presents a new method for the registration of the point clouds and panoramic images based on sensor constellation. After the sensor constellation was analyzed, a feature point, the intersection of the connecting line between the global positioning system (GPS) antenna and the panoramic camera with a horizontal plane, was utilized to separate the point clouds into blocks. The blocks for the central and sideward laser scanners were extracted with the segmentation feature points. Then, the point clouds located in the blocks were separated from the original point clouds. Each point in the blocks was used to find the accurate corresponding pixel in the relative panoramic images via a collinear function, and the position and orientation relationship amongst different sensors. A search strategy is proposed for the correspondence of laser scanners and lenses of panoramic cameras to reduce calculation complexity and improve efficiency. Four cases of different urban road types were selected to verify the efficiency and accuracy of the proposed method. Results indicate that most of the point clouds (with an average of 99.7%) were successfully registered with the panoramic images with great efficiency. Geometric evaluation results indicate that horizontal accuracy was approximately 0.10–0.20 m, and vertical accuracy was approximately 0.01–0.02 m for all cases. Finally, the main factors that affect registration accuracy, including time synchronization amongst different sensors, system positioning and vehicle speed, are discussed. PMID:28398256
Fisheye camera around view monitoring system
NASA Astrophysics Data System (ADS)
Feng, Cong; Ma, Xinjun; Li, Yuanyuan; Wu, Chenchen
2018-04-01
360 degree around view monitoring system is the key technology of the advanced driver assistance system, which is used to assist the driver to clear the blind area, and has high application value. In this paper, we study the transformation relationship between multi coordinate system to generate panoramic image in the unified car coordinate system. Firstly, the panoramic image is divided into four regions. By using the parameters obtained by calibration, four fisheye images pixel corresponding to the four sub regions are mapped to the constructed panoramic image. On the basis of 2D around view monitoring system, 3D version is realized by reconstructing the projection surface. Then, we compare 2D around view scheme and 3D around view scheme in unified coordinate system, 3D around view scheme solves the shortcomings of the traditional 2D scheme, such as small visual field, prominent ground object deformation and so on. Finally, the image collected by a fisheye camera installed around the car body can be spliced into a 360 degree panoramic image. So it has very high application value.
Automatic panoramic thermal integrated sensor
NASA Astrophysics Data System (ADS)
Gutin, Mikhail A.; Tsui, Eddy K.; Gutin, Olga N.
2005-05-01
Historically, the US Army has recognized the advantages of panoramic imagers with high image resolution: increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The novel ViperViewTM high-resolution panoramic thermal imager is the heart of the Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) in support of the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to improve situational awareness (SA) in many defense and offensive operations, as well as serve as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The ViperView is as an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS sensor suite include ancillary sensors, advanced power management, and wakeup capability. This paper describes the development status of the APTIS system.
An infrared modular panoramic imaging objective
NASA Astrophysics Data System (ADS)
Palmer, Troy A.; Alexay, Christopher C.
2004-08-01
We describe the optical and mechanical design of an athermal infrared objective lens with an afocal anamorphic adapter. The lens presented consists of two modules: an athermal 25mm F/2.3 mid-wave IR objective lens and an optional panoramic adapter. The adapter utilizes anamorphic lenses to create unique image control. The result of which enables an independent horizontal wide field of view, while preserving the original narrow vertical field. We have designed, fabricated and tested two such lenses. A summary of the assembly and testing process is also presented.
Hansen, Brian J; Zhao, Jichao; Csepe, Thomas A; Moore, Brandon T; Li, Ning; Jayne, Laura A; Kalyanasundaram, Anuradha; Lim, Praise; Bratasz, Anna; Powell, Kimerly A; Simonetti, Orlando P; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L; Weiss, Raul; Hummel, John D; Fedorov, Vadim V
2015-09-14
The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial-epicardial (Endo-Epi) mapping coupled with high-resolution 3D structural imaging. Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43-72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo-Epi views (330 µm2 resolution) and one panoramic view). 3D gadolinium-enhanced magnetic resonance imaging (GE-MRI, 80 µm3 resolution) revealed the atrial wall structure varied in thickness (1.0 ± 0.7-6.8 ± 2.4 mm), transmural fiber angle differences, and interstitial fibrosis causing transmural activation delay from 23 ± 11 to 43 ± 22 ms at increased pacing rates. Sustained AF (>90 min) was induced by burst pacing during pinacidil (30-100 µM) perfusion. Dual-sided sub-Endo-sub-Epi optical mapping revealed that AF was driven by spatially and temporally stable intramural re-entry with 107 ± 50 ms cycle length and transmural activation delay of 67 ± 31 ms. Intramural re-entrant drivers were captured primarily by sub-Endo mapping, while sub-Epi mapping visualized re-entry or 'breakthrough' patterns. Re-entrant drivers were anchored on 3D micro-anatomic tracks (15.4 ± 2.2 × 6.0 ± 2.3 mm2, 2.9 ± 0.9 mm depth) formed by atrial musculature characterized by increased transmural fiber angle differences and interstitial fibrosis. Targeted radiofrequency ablation of the tracks verified these re-entries as drivers of AF. Integrated 3D structural-functional mapping of diseased human right atria ex vivo revealed that the complex atrial microstructure caused significant differences between Endo vs. Epi activation during pacing and sustained AF driven by intramural re-entry anchored to fibrosis-insulated atrial bundles. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Hansen, Brian J.; Zhao, Jichao; Csepe, Thomas A.; Moore, Brandon T.; Li, Ning; Jayne, Laura A.; Kalyanasundaram, Anuradha; Lim, Praise; Bratasz, Anna; Powell, Kimerly A.; Simonetti, Orlando P.; Higgins, Robert S.D.; Kilic, Ahmet; Mohler, Peter J.; Janssen, Paul M.L.; Weiss, Raul; Hummel, John D.; Fedorov, Vadim V.
2015-01-01
Aims The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial–epicardial (Endo–Epi) mapping coupled with high-resolution 3D structural imaging. Methods and results Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43–72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo–Epi views (330 µm2 resolution) and one panoramic view). 3D gadolinium-enhanced magnetic resonance imaging (GE-MRI, 80 µm3 resolution) revealed the atrial wall structure varied in thickness (1.0 ± 0.7–6.8 ± 2.4 mm), transmural fiber angle differences, and interstitial fibrosis causing transmural activation delay from 23 ± 11 to 43 ± 22 ms at increased pacing rates. Sustained AF (>90 min) was induced by burst pacing during pinacidil (30–100 µM) perfusion. Dual-sided sub-Endo–sub-Epi optical mapping revealed that AF was driven by spatially and temporally stable intramural re-entry with 107 ± 50 ms cycle length and transmural activation delay of 67 ± 31 ms. Intramural re-entrant drivers were captured primarily by sub-Endo mapping, while sub-Epi mapping visualized re-entry or ‘breakthrough’ patterns. Re-entrant drivers were anchored on 3D micro-anatomic tracks (15.4 ± 2.2 × 6.0 ± 2.3 mm2, 2.9 ± 0.9 mm depth) formed by atrial musculature characterized by increased transmural fiber angle differences and interstitial fibrosis. Targeted radiofrequency ablation of the tracks verified these re-entries as drivers of AF. Conclusions Integrated 3D structural–functional mapping of diseased human right atria ex vivo revealed that the complex atrial microstructure caused significant differences between Endo vs. Epi activation during pacing and sustained AF driven by intramural re-entry anchored to fibrosis-insulated atrial bundles. PMID:26059724
Panoramic 3D Reconstruction by Fusing Color Intensity and Laser Range Data
NASA Astrophysics Data System (ADS)
Jiang, Wei; Lu, Jian
Technology for capturing panoramic (360 degrees) three-dimensional information in a real environment have many applications in fields: virtual and complex reality, security, robot navigation, and so forth. In this study, we examine an acquisition device constructed of a regular CCD camera and a 2D laser range scanner, along with a technique for panoramic 3D reconstruction using a data fusion algorithm based on an energy minimization framework. The acquisition device can capture two types of data of a panoramic scene without occlusion between two sensors: a dense spatio-temporal volume from a camera and distance information from a laser scanner. We resample the dense spatio-temporal volume for generating a dense multi-perspective panorama that has equal spatial resolution to that of the original images acquired using a regular camera, and also estimate a dense panoramic depth-map corresponding to the generated reference panorama by extracting trajectories from the dense spatio-temporal volume with a selecting camera. Moreover, for determining distance information robustly, we propose a data fusion algorithm that is embedded into an energy minimization framework that incorporates active depth measurements using a 2D laser range scanner and passive geometry reconstruction from an image sequence obtained using the CCD camera. Thereby, measurement precision and robustness can be improved beyond those available by conventional methods using either passive geometry reconstruction (stereo vision) or a laser range scanner. Experimental results using both synthetic and actual images show that our approach can produce high-quality panoramas and perform accurate 3D reconstruction in a panoramic environment.
NASA Astrophysics Data System (ADS)
Kinch, K. M.; Bell, J. F.; Madsen, M. B.
2012-12-01
The Panoramic Cameras (Pancams) [1] on NASA's Mars Exploration Rovers have each returned in excess of 17000 images of their external calibration targets (caltargets), a set of optically well-characterized patches of materials with differing reflectance properties. During the mission dust deposition on the caltargets changed their optical reflectance properties [2]. The thickness of dust on the caltargets can be derived with high confidence from the contrast between brighter and darker colored patches. The dustier the caltarget the less contrast. We present a new history of dust deposition and removal at the two MER landing sites. Our data reveals two quite distinct dust environments. At the Spirit landing site half the Martian year is dominated by dust deposition, the other half by dust removal that usually happens during brief sharp wind events. At the Opportunity landing site the Martian year has a four-season cycle of deposition-removal-deposition-removal with dust removal happening gradually throughout the two removal seasons. Comparison to atmospheric optical depth measurements [3] shows that dust removals happen during dusty high-wind periods and that dust deposition rates are roughly proportional to the atmospheric dust load. We compare with dust deposition studies from other Mars landers and also present some early results from observation of dust on a similar camera calibration target on the Mars Science Laboratory mission. References: 1. Bell, J.F., III, et al., Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res., 2003. 108(E12): p. 8063. 2. Kinch, K.M., et al., Dust Deposition on the Mars Exploration Rover Panoramic Camera (Pancam) Calibration Targets. J. Geophys. Res., 2007. 112(E06S03): p. doi:10.1029/2006JE002807. 3. Lemmon, M., et al., Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 2004. 306: p. 1753-1756. Deposited dust optical depth on the Pancam caltargets as a function of time. The lower x-axes show sol number, the upper x-axes shows the areocentric longitude of the sun, Ls. Data shown are from caltarget observations with solar incidence angle i < 45°. Left column is Spirit. Right column is Opportunity. Top row shows our derived deposited optical depth in the L5 (535 nm) filter. Bottom row shows the atmospheric optical depth in the L8 (440 nm) filter as reported by the MER atmospheric team [3].
NASA Astrophysics Data System (ADS)
Haase, I.; Oberst, J.; Scholten, F.; Wählisch, M.; Gläser, P.; Karachevtseva, I.; Robinson, M. S.
2012-05-01
Newly acquired high resolution Lunar Reconnaissance Orbiter Camera (LROC) images allow accurate determination of the coordinates of Apollo hardware, sampling stations, and photographic viewpoints. In particular, the positions from where the Apollo 17 astronauts recorded panoramic image series, at the so-called “traverse stations”, were precisely determined for traverse path reconstruction. We analyzed observations made in Apollo surface photography as well as orthorectified orbital images (0.5 m/pixel) and Digital Terrain Models (DTMs) (1.5 m/pixel and 100 m/pixel) derived from LROC Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images. Key features captured in the Apollo panoramic sequences were identified in LROC NAC orthoimages. Angular directions of these features were measured in the panoramic images and fitted to the NAC orthoimage by applying least squares techniques. As a result, we obtained the surface panoramic camera positions to within 50 cm. At the same time, the camera orientations, North azimuth angles and distances to nearby features of interest were also determined. Here, initial results are shown for traverse station 1 (northwest of Steno Crater) as well as the Apollo Lunar Surface Experiment Package (ALSEP) area.
Murray, Trevor; Zeil, Jochen
2017-01-01
Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area') has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.
Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes
Zeil, Jochen
2017-01-01
Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its ‘catchment area’) has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the ‘catchment volumes’ within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots. PMID:29088300
Localization and Mapping Using Only a Rotating FMCW Radar Sensor
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-01-01
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed. PMID:23567523
Localization and mapping using only a rotating FMCW radar sensor.
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-04-08
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed.
Camera Control and Geo-Registration for Video Sensor Networks
NASA Astrophysics Data System (ADS)
Davis, James W.
With the use of large video networks, there is a need to coordinate and interpret the video imagery for decision support systems with the goal of reducing the cognitive and perceptual overload of human operators. We present computer vision strategies that enable efficient control and management of cameras to effectively monitor wide-coverage areas, and examine the framework within an actual multi-camera outdoor urban video surveillance network. First, we construct a robust and precise camera control model for commercial pan-tilt-zoom (PTZ) video cameras. In addition to providing a complete functional control mapping for PTZ repositioning, the model can be used to generate wide-view spherical panoramic viewspaces for the cameras. Using the individual camera control models, we next individually map the spherical panoramic viewspace of each camera to a large aerial orthophotograph of the scene. The result provides a unified geo-referenced map representation to permit automatic (and manual) video control and exploitation of cameras in a coordinated manner. The combined framework provides new capabilities for video sensor networks that are of significance and benefit to the broad surveillance/security community.
Lindemann, J P; Kern, R; Michaelis, C; Meyer, P; van Hateren, J H; Egelhaaf, M
2003-03-01
A high-speed panoramic visual stimulation device is introduced which is suitable to analyse visual interneurons during stimulation with rapid image displacements as experienced by fast moving animals. The responses of an identified motion sensitive neuron in the visual system of the blowfly to behaviourally generated image sequences are very complex and hard to predict from the established input circuitry of the neuron. This finding suggests that the computational significance of visual interneurons can only be assessed if they are characterised not only by conventional stimuli as are often used for systems analysis, but also by behaviourally relevant input.
Panorama imaging for image-to-physical registration of narrow drill holes inside spongy bones
NASA Astrophysics Data System (ADS)
Bergmeier, Jan; Fast, Jacob Friedemann; Ortmaier, Tobias; Kahrs, Lüder Alexander
2017-03-01
Image-to-physical registration based on volumetric data like computed tomography on the one side and intraoperative endoscopic images on the other side is an important method for various surgical applications. In this contribution, we present methods to generate panoramic views from endoscopic recordings for image-to-physical registration of narrow drill holes inside spongy bone. One core application is the registration of drill poses inside the mastoid during minimally invasive cochlear implantations. Besides the development of image processing software for registration, investigations are performed on a miniaturized optical system, achieving 360° radial imaging with one shot by extending a conventional, small, rigid, rod lens endoscope. A reflective cone geometry is used to deflect radially incoming light rays into the endoscope optics. Therefore, a cone mirror is mounted in front of a conventional 0° endoscope. Furthermore, panoramic images of inner drill hole surfaces in artificial bone material are created. Prior to drilling, cone beam computed tomography data is acquired from this artificial bone and simulated endoscopic views are generated from this data. A qualitative and quantitative image comparison of resulting views in terms of image-to-image registration is performed. First results show that downsizing of panoramic optics to a diameter of 3mm is possible. Conventional rigid rod lens endoscopes can be extended to produce suitable panoramic one-shot image data. Using unrolling and stitching methods, images of the inner drill hole surface similar to computed tomography image data of the same surface were created. Registration is performed on ten perturbations of the search space and results in target registration errors of (0:487 +/- 0:438)mm at the entry point and (0:957 +/- 0:948)mm at the exit as well as an angular error of (1:763 +/- 1:536)°. The results show suitability of this image data for image-to-image registration. Analysis of the error components in different directions reveals a strong influence of the pattern structure, meaning higher diversity results into smaller errors.
NASA Astrophysics Data System (ADS)
Blaser, S.; Nebiker, S.; Cavegn, S.
2017-05-01
Image-based mobile mapping systems enable the efficient acquisition of georeferenced image sequences, which can later be exploited in cloud-based 3D geoinformation services. In order to provide a 360° coverage with accurate 3D measuring capabilities, we present a novel 360° stereo panoramic camera configuration. By using two 360° panorama cameras tilted forward and backward in combination with conventional forward and backward looking stereo camera systems, we achieve a full 360° multi-stereo coverage. We furthermore developed a fully operational new mobile mapping system based on our proposed approach, which fulfils our high accuracy requirements. We successfully implemented a rigorous sensor and system calibration procedure, which allows calibrating all stereo systems with a superior accuracy compared to that of previous work. Our study delivered absolute 3D point accuracies in the range of 4 to 6 cm and relative accuracies of 3D distances in the range of 1 to 3 cm. These results were achieved in a challenging urban area. Furthermore, we automatically reconstructed a 3D city model of our study area by employing all captured and georeferenced mobile mapping imagery. The result is a very high detailed and almost complete 3D city model of the street environment.
Applications of Panoramic Images: from 720° Panorama to Interior 3d Models of Augmented Reality
NASA Astrophysics Data System (ADS)
Lee, I.-C.; Tsai, F.
2015-05-01
A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The results presented in this paper demonstrate the potential of using panoramic images to generate 3D point clouds and 3D models. However, it is currently a manual and labor-intensive process. A research is being carried out to Increase the degree of automation of these procedures.
Measurement methods and accuracy analysis of Chang'E-5 Panoramic Camera installation parameters
NASA Astrophysics Data System (ADS)
Yan, Wei; Ren, Xin; Liu, Jianjun; Tan, Xu; Wang, Wenrui; Chen, Wangli; Zhang, Xiaoxia; Li, Chunlai
2016-04-01
Chang'E-5 (CE-5) is a lunar probe for the third phase of China Lunar Exploration Project (CLEP), whose main scientific objectives are to implement lunar surface sampling and to return the samples back to the Earth. To achieve these goals, investigation of lunar surface topography and geological structure within sampling area seems to be extremely important. The Panoramic Camera (PCAM) is one of the payloads mounted on CE-5 lander. It consists of two optical systems which installed on a camera rotating platform. Optical images of sampling area can be obtained by PCAM in the form of a two-dimensional image and a stereo images pair can be formed by left and right PCAM images. Then lunar terrain can be reconstructed based on photogrammetry. Installation parameters of PCAM with respect to CE-5 lander are critical for the calculation of exterior orientation elements (EO) of PCAM images, which is used for lunar terrain reconstruction. In this paper, types of PCAM installation parameters and coordinate systems involved are defined. Measurement methods combining camera images and optical coordinate observations are studied for this work. Then research contents such as observation program and specific solution methods of installation parameters are introduced. Parametric solution accuracy is analyzed according to observations obtained by PCAM scientifically validated experiment, which is used to test the authenticity of PCAM detection process, ground data processing methods, product quality and so on. Analysis results show that the accuracy of the installation parameters affects the positional accuracy of corresponding image points of PCAM stereo images within 1 pixel. So the measurement methods and parameter accuracy studied in this paper meet the needs of engineering and scientific applications. Keywords: Chang'E-5 Mission; Panoramic Camera; Installation Parameters; Total Station; Coordinate Conversion
Kinch, Kjartan M; Bell, James F; Goetz, Walter; Johnson, Jeffrey R; Joseph, Jonathan; Madsen, Morten Bo; Sohl-Dickstein, Jascha
2015-05-01
The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two-layer scattering model, and we present a dust reflectance spectrum derived from long-term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance-calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history.
Bell, James F.; Goetz, Walter; Johnson, Jeffrey R.; Joseph, Jonathan; Madsen, Morten Bo; Sohl‐Dickstein, Jascha
2015-01-01
Abstract The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two‐layer scattering model, and we present a dust reflectance spectrum derived from long‐term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance‐calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history. PMID:27981072
Geology of the Sklodowska Region, Lunar Farside. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Kauffman, J. D.
1974-01-01
Investigation of an area on the lunar farside has resulted in a geologic map, development of a regional stratigraphic sequence, and interpretation of surface materials. Apollo 15 metric photographs were used in conjunction with photogrammetric techniques to produce a base map to which geologic units were later added. Geologic units were first delineated on the metric photographs and then transferred to the base map. Materials were defined and described from selected Lunar Orbiter and Apollo 15 metric, panoramic, and Hasselblad photographs on the basis of distinctive morphologic characteristics.
Ultra-Bright Optical Transients Are Linked With Type Ic Supernovae
2010-11-20
Station, Flagstaff, AZ 86001, USA Received 2010 August 16; accepted 2010 September 9; published 2010 October 25 ABSTRACT Recent searches by unbiased...wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search ...supernova searches (e.g., the Texas Supernova Search ) or all-sky surveys, such as the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS), the
The Effectiveness of Panoramic Maps Design: a Preliminary Study Based on Mobile Eye-Tracking
NASA Astrophysics Data System (ADS)
Balzarini, R.; Murat, M.
2016-06-01
This paper presents preliminary results from an ongoing research based on the study of visual attention through mobile eye-tracking techniques. The visual-cognitive approach investigates the reading-comprehension of a particular territorial representation: ski trails maps. The general issue of the study is to provide insights about the effectiveness of panoramic ski maps and more broadly, to suggest innovative efficient representation of the geographic information in mountain. According to some mountain operators, the information provided by paper ski maps no longer meets the needs of a large part of the customers; the question now arises of their adaptation to new digital practices (iPhone, tablets). In a computerized process perspective, this study particularly focuses on the representations, and the inferred information, which are really helpful to the users-skiers to apprehend the territory and make decisions, and which could be effectively replicated into a digital system. The most interesting output relies on the relevance of the panorama view: panorama still fascinates, but contrary to conventional wisdom, the information it provides does not seem to be useful to the skier. From a socio-historical perspective this study shows how empirical evidence-based approach can support the change: our results enhance the discussion on the effectiveness of the message that mountain operators want to convey to the tourist and therefore, on the renewal of (geographical) information in ski resorts.
RenderView: physics-based multi- and hyperspectral rendering using measured background panoramics
NASA Astrophysics Data System (ADS)
Talcott, Denise M.; Brown, Wade W.; Thomas, David J.
2003-09-01
As part of the survivability engineering process it is necessary to accurately model and visualize the vehicle signatures in multi- or hyperspectral bands of interest. The signature at a given wavelength is a function of the surface optical properties, reflection of the background and, in the thermal region, the emission of thermal radiation. Currently, it is difficult to obtain and utilize background models that are of sufficient fidelity when compared with the vehicle models. In addition, the background models create an additional layer of uncertainty in estimating the vehicles signature. Therefore, to meet exacting rendering requirements we have developed RenderView, which incorporates the full bidirectional reflectance distribution function (BRDF). Instead of using a modeled background we have incorporated a measured calibrated background panoramic image to provide the high fidelity background interaction. Uncertainty in the background signature is reduced to the error in the measurement which is considerably smaller than the uncertainty inherent in a modeled background. RenderView utilizes a number of different descriptions of the BRDF, including the Sandford-Robertson. In addition, it provides complete conservation of energy with off axis sampling. A description of RenderView will be presented along with a methodology developed for collecting background panoramics. Examples of the RenderView output and the background panoramics will be presented along with our approach to handling the solar irradiance problem.
2010-08-01
Jeffery P. Holland was the Director. ERDC/CERL CR-10-1 iv Unit Conversion Factors Multiply By To Obtain British thermal units (International Table...360 Panoramic Optic™ is a specially designed lens attachment, with an exclusive optical reflector, which captures an entire 360 degree panorama
2010-12-01
including thermal optics Much more precise target engagement and stabilization method Drawbacks Mechanical malfunctions more common Gunner has...complete panorama view that extends from 0–180 degrees off-center, from our camera system. Figure 20 360° view dome projection Figure 21 shows the...method can incorporate various types of synthetic vision aids, such as thermal or electro-optical sensors, to give the user the capability to see in
Spherical Panorama Visualization of Astronomical Data with Blender and Python
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2016-06-01
We describe methodology to generate 360 degree spherical panoramas of both 2D and 3D data. The techniques apply to a variety of astronomical data types - all sky maps, 2D and 3D catalogs as well as planetary surface maps. The results can be viewed in a desktop browser or interactively with a mobile phone or tablet. Static displays or panoramic video renderings of the data can be produced. We review the Python code and usage of the 3D Blender software for projecting maps onto 3D surfaces and the various tools for distributing visualizations.
Lunar orbital photogaphic planning charts for candidate Apollo J-missions
NASA Technical Reports Server (NTRS)
Hickson, P. J.; Piotrowski, W. L.
1971-01-01
A technique is presented for minimizing Mapping Camera film usage by reducing redundant coverage while meeting the desired sidelap of greater than or equal to 55%. The technique uses the normal groundtrack separation determined as a function of the number of revolutions between the respective tracks, of the initial and final nodal azimuths (or orbital inclination), and of the lunar latitude. The technique is also applicable for planning Panoramic Camera photography such that photographic contiguity is attained but redundant coverage is minimized. Graphs are included for planning mapping camera (MC) and panoramic camera (PC) photographic passes for a specific mission (i.e., specific groundtracks) to Descartes (Apollo 16), for specific missions to potential Apollo 17 sites such as Alphonsus, Proclus, Gassendi, Davy, and Tycho, and for a potential Apollo orbit-only mission with a nodal azimuth of 85 deg. Graphs are also included for determining the maximum number of revolutions which can elapse between successive MC and PC passes, for greater than or equal 55% sidelap and rectified contiguity respectively, for nodal azimuths between 5 deg and 85 deg.
Measurable realistic image-based 3D mapping
NASA Astrophysics Data System (ADS)
Liu, W.; Wang, J.; Wang, J. J.; Ding, W.; Almagbile, A.
2011-12-01
Maps with 3D visual models are becoming a remarkable feature of 3D map services. High-resolution image data is obtained for the construction of 3D visualized models.The3D map not only provides the capabilities of 3D measurements and knowledge mining, but also provides the virtual experienceof places of interest, such as demonstrated in the Google Earth. Applications of 3D maps are expanding into the areas of architecture, property management, and urban environment monitoring. However, the reconstruction of high quality 3D models is time consuming, and requires robust hardware and powerful software to handle the enormous amount of data. This is especially for automatic implementation of 3D models and the representation of complicated surfacesthat still need improvements with in the visualisation techniques. The shortcoming of 3D model-based maps is the limitation of detailed coverage since a user can only view and measure objects that are already modelled in the virtual environment. This paper proposes and demonstrates a 3D map concept that is realistic and image-based, that enables geometric measurements and geo-location services. Additionally, image-based 3D maps provide more detailed information of the real world than 3D model-based maps. The image-based 3D maps use geo-referenced stereo images or panoramic images. The geometric relationships between objects in the images can be resolved from the geometric model of stereo images. The panoramic function makes 3D maps more interactive with users but also creates an interesting immersive circumstance. Actually, unmeasurable image-based 3D maps already exist, such as Google street view, but only provide virtual experiences in terms of photos. The topographic and terrain attributes, such as shapes and heights though are omitted. This paper also discusses the potential for using a low cost land Mobile Mapping System (MMS) to implement realistic image 3D mapping, and evaluates the positioning accuracy that a measureable realistic image-based (MRI) system can produce. The major contribution here is the implementation of measurable images on 3D maps to obtain various measurements from real scenes.
NASA Astrophysics Data System (ADS)
Zhang, Min; Katsumata, Akitoshi; Muramatsu, Chisako; Hara, Takeshi; Suzuki, Hiroki; Fujita, Hiroshi
2014-03-01
Periodontal disease is a kind of typical dental diseases, which affects many adults. The presence of alveolar bone resorption, which can be observed from dental panoramic radiographs, is one of the most important signs of the progression of periodontal disease. Automatically evaluating alveolar-bone resorption is of important clinic meaning in dental radiology. The purpose of this study was to propose a novel system for automated alveolar-bone-resorption evaluation from digital dental panoramic radiographs for the first time. The proposed system enables visualization and quantitative evaluation of alveolar bone resorption degree surrounding the teeth. It has the following procedures: (1) pre-processing for a test image; (2) detection of tooth root apices with Gabor filter and curve fitting for the root apex line; (3) detection of features related with alveolar bone by using image phase congruency map and template matching and curving fitting for the alveolar line; (4) detection of occlusion line with selected Gabor filter; (5) finally, evaluation of the quantitative alveolar-bone-resorption degree in the area surrounding teeth by simply computing the average ratio of the height of the alveolar bone and the height of the teeth. The proposed scheme was applied to 30 patient cases of digital panoramic radiographs, with alveolar bone resorption of different stages. Our initial trial on these test cases indicates that the quantitative evaluation results are correlated with the alveolar-boneresorption degree, although the performance still needs further improvement. Therefore it has potential clinical practicability.
Ong, R G; Stevenson, M R
1999-01-01
To evaluate the bone density in the mandibles of young Australian adults of Mongoloid and Caucasoid descent. A panoramic radiograph (Orthophos C, Siemens AG, Bensheim, Germany) was obtained of 79 dental students from the School of Oral Health Sciences, The University of Western Australia. Exposure factors were varied for males and females. The films were automatically processed in a single batch and the optical density measured blindly at two locations by two examiners. The optical density was compared by race and sex to detect bone density differences. Individual lifestyle habits (exercise, alcohol consumption, smoking and diet) was recorded in a self-administered questionnaire. Multiple regression analysis was used to analyse the effects of physical, environmental and medical characteristics. The Mongoloid subjects were found to have approximately 20% higher bone density at the angle of mandible than Caucasoid subjects (P = 0.0094 for males, P = 0.0004 for females). Race is the most important variable associated with bone density. Mongoloid subjects should be given a higher exposure for panoramic radiography than that normally used for Caucasoid subjects.
Chen, Lidong; Basu, Anup; Zhang, Maojun; Wang, Wei; Liu, Yu
2014-03-20
A complementary catadioptric imaging technique was proposed to solve the problem of low and nonuniform resolution in omnidirectional imaging. To enhance this research, our paper focuses on how to generate a high-resolution panoramic image from the captured omnidirectional image. To avoid the interference between the inner and outer images while fusing the two complementary views, a cross-selection kernel regression method is proposed. First, in view of the complementarity of sampling resolution in the tangential and radial directions between the inner and the outer images, respectively, the horizontal gradients in the expected panoramic image are estimated based on the scattered neighboring pixels mapped from the outer, while the vertical gradients are estimated using the inner image. Then, the size and shape of the regression kernel are adaptively steered based on the local gradients. Furthermore, the neighboring pixels in the next interpolation step of kernel regression are also selected based on the comparison between the horizontal and vertical gradients. In simulation and real-image experiments, the proposed method outperforms existing kernel regression methods and our previous wavelet-based fusion method in terms of both visual quality and objective evaluation.
NASA Astrophysics Data System (ADS)
Ke, Jingtang; Pryputniewicz, Ryszard J.
Various papers on the state of the art in laser and optoelectronic technology in industry are presented. Individual topics addressed include: wavelength compensation for holographic optical element, optoelectronic techniques for measurement and inspection, new optical measurement methods in Western Europe, applications of coherent optics at ISL, imaging techniques for gas turbine development, the Rolls-Royce experience with industrial holography, panoramic holocamera for tube and borehole inspection, optical characterization of electronic materials, optical strain measurement of rotating components, quantitative interpretation of holograms and specklegrams, laser speckle technique for hydraulic structural model test, study of holospeckle interferometry, common path shearing fringe scanning interferometer, and laser interferometry applied to nondestructive testing of tires.
Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets
Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F.; Johnson, J. R.; Goetz, W.; Landis, G.A.
2007-01-01
The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.
Astronaut Ronald Evans photographed during transearth coast EVA
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The cylindrical object at Evans left side is the mapping camera cassette. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.
NASA Astrophysics Data System (ADS)
Syniavskyi, I. I.; Ivanov, Yu. S.; Vidmachenko, A. P.; Karpov, N. V.
2013-12-01
This article proposes optical layout of the imaging polarimeter based on the polarization films to measure the linear polarization of point and extended celestial objects. The spectral range of device is 420-850 nm, field of view 0.25°x0.25°. The device is designed to equip the telescope with a diameter of primary mirror about 400 mm and aperture f/12.
2008-03-01
are arranged in horizon- 14 tal and vertical rows that give it a panoramic view of nearly 360◦. An interesting thing to note is that the fly’s eye...6280–6292, 2005. 18. Joarder, Kunal and Daniel Raviv . “A New Method to Calculate looming for Autonomous Obstacle Avoidance”. IEEE Proceedings of the
Opto-mechanical design of small infrared cloud measuring device
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Yu, Xun; Tao, Yu; Jiang, Xu
2018-01-01
In order to make small infrared cloud measuring device can be well in a wide temperature range and day-night environment, a design idea using catadioptric infrared panoramic imaging optical system and simple mechanical structure for realizing observation clode under all-weather conditions was proposed. Firstly, the optical system of cloud measuring device was designed. An easy-to-use numerical method was proposed to acquire the profile of a catadioptric mirror, which brought the property of equidistance projection and played the most important role in a catadioptric panoramic lens. Secondly, the mechanical structure was studied in detail. Overcoming the limitations of traditional primary mirror support structure, integrative design was used for refractor and mirror support structure. Lastly, temperature adaptability and modes of the mirror support structure were analyzed. Results show that the observation range of the cloud measuring device is wide and the structure is simple, the fundamental frequency of the structure is greater than 100 Hz, the surface precision of the system reflector reaches PV of λ/10 and RMS of λ/40under the load of temperature range - 40 60°C, it can meet the needs of existing meteorological observation.
NASA Astrophysics Data System (ADS)
Griffiths, Andrew; Coates, Andrew; Muller, Jan-Peter; Jaumann, Ralf; Josset, Jean-Luc; Paar, Gerhard; Barnes, David
2010-05-01
The ExoMars mission has evolved into a joint European-US mission to deliver a trace gas orbiter and a pair of rovers to Mars in 2016 and 2018 respectively. The European rover will carry the Pasteur exobiology payload including the 1.56 kg Panoramic Camera. PanCam will provide multispectral stereo images with 34 deg horizontal field-of-view (580 microrad/pixel) Wide-Angle Cameras (WAC) and (83 microrad/pixel) colour monoscopic "zoom" images with 5 deg horizontal field-of-view High Resolution Camera (HRC). The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage [1]. Integrated with the WACs and HRC into the PanCam optical bench (which helps the instrument meet its planetary protection requirements) is the PanCam interface unit (PIU); which provides image storage, a Spacewire interface to the rover and DC-DC power conversion. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission [2] as well as providing multispectral geological imaging, colour and stereo panoramic images and solar images for water vapour abundance and dust optical depth measurements. The High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls. Additionally HRC will be used to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. In short, PanCam provides the overview and context for the ExoMars experiment locations, required to enable the exobiology aims of the mission. In addition to these baseline capabilities further enhancements are possible to PanCam to enhance it's effectiveness for astrobiology and planetary exploration: 1. Rover Inspection Mirror (RIM) 2. Organics Detection by Fluorescence Excitation (ODFE) LEDs [3-6] 3. UVIS broadband UV Flux and Opacity Determination (UVFOD) photodiode This paper will discuss the scientific objectives and resource impacts of these enhancements. References: 1. Griffiths, A.D., Coates, A.J., Josset, J.-L., Paar, G., Hofmann, B., Pullan, D., Ruffer, P., Sims, M.R., Pillinger, C.T., The Beagle 2 stereo camera system, Planet. Space Sci. 53, 1466-1488, 2005. 2. Paar, G., Oberst, J., Barnes, D.P., Griffiths, A.D., Jaumann, R., Coates, A.J., Muller, J.P., Gao, Y., Li, R., 2007, Requirements and Solutions for ExoMars Rover Panoramic Camera 3d Vision Processing, abstract submitted to EGU meeting, Vienna, 2007. 3. Storrie-Lombardi, M.C., Hug, W.F., McDonald, G.D., Tsapin, A.I., and Nealson, K.H. 2001. Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Rev. Sci. Ins., 72 (12), 4452-4459. 4. Nealson, K.H., Tsapin, A., and Storrie-Lombardi, M. 2002. Searching for life in the universe: unconventional methods for an unconventional problem. International Microbiology, 5, 223-230. 5. Mormile, M.R. and Storrie-Lombardi, M.C. 2005. The use of ultraviolet excitation of native fluorescence for identifying biomarkers in halite crystals. Astrobiology and Planetary Missions (R. B. Hoover, G. V. Levin and A. Y. Rozanov, Eds.), Proc. SPIE, 5906, 246-253. 6. Storrie-Lombardi, M.C. 2005. Post-Bayesian strategies to optimize astrobiology instrument suites: lessons from Antarctica and the Pilbara. Astrobiology and Planetary Missions (R. B. Hoover, G. V. Levin and A. Y. Rozanov, Eds.), Proc. SPIE, 5906, 288-301.
Panoramic 3d Vision on the ExoMars Rover
NASA Astrophysics Data System (ADS)
Paar, G.; Griffiths, A. D.; Barnes, D. P.; Coates, A. J.; Jaumann, R.; Oberst, J.; Gao, Y.; Ellery, A.; Li, R.
The Pasteur payload on the ESA ExoMars Rover 2011/2013 is designed to search for evidence of extant or extinct life either on or up to ˜2 m below the surface of Mars. The rover will be equipped by a panoramic imaging system to be developed by a UK, German, Austrian, Swiss, Italian and French team for visual characterization of the rover's surroundings and (in conjunction with an infrared imaging spectrometer) remote detection of potential sample sites. The Panoramic Camera system consists of a wide angle multispectral stereo pair with 65° field-of-view (WAC; 1.1 mrad/pixel) and a high resolution monoscopic camera (HRC; current design having 59.7 µrad/pixel with 3.5° field-of-view) . Its scientific goals and operational requirements can be summarized as follows: • Determination of objects to be investigated in situ by other instruments for operations planning • Backup and Support for the rover visual navigation system (path planning, determination of subsequent rover positions and orientation/tilt within the 3d environment), and localization of the landing site (by stellar navigation or by combination of orbiter and ground panoramic images) • Geological characterization (using narrow band geology filters) and cartography of the local environments (local Digital Terrain Model or DTM). • Study of atmospheric properties and variable phenomena near the Martian surface (e.g. aerosol opacity, water vapour column density, clouds, dust devils, meteors, surface frosts,) 1 • Geodetic studies (observations of Sun, bright stars, Phobos/Deimos). The performance of 3d data processing is a key element of mission planning and scientific data analysis. The 3d Vision Team within the Panoramic Camera development Consortium reports on the current status of development, consisting of the following items: • Hardware Layout & Engineering: The geometric setup of the system (location on the mast & viewing angles, mutual mounting between WAC and HRC) needs to be optimized w.r.t. fields of view, ranging capability (distance measurement capability), data rate, necessity of calibration targets, hardware & data interfaces to other subsystems (e.g. navigation) as well as accuracy impacts of sensor design and compression ratio. • Geometric Calibration: The geometric properties of the individual cameras including various spectral filters, their mutual relations and the dynamic geometrical relation between rover frame and cameras - with the mast in between - are precisely described by a calibration process. During surface operations these relations will be continuously checked and updated by photogrammetric means, environmental influences such as temperature, pressure and the Mars gravity will be taken into account. • Surface Mapping: Stereo imaging using the WAC stereo pair is used for the 3d reconstruction of the rover vicinity to identify, locate and characterize potentially interesting spots (3-10 for an experimental cycle to be performed within approx. 10-30 sols). The HRC is used for high resolution imagery of these regions of interest to be overlaid on the 3d reconstruction and potentially refined by shape-from-shading techniques. A quick processing result is crucial for time critical operations planning, therefore emphasis is laid on the automatic behaviour and intrinsic error detection mechanisms. The mapping results will be continuously fused, updated and synchronized with the map used by the navigation system. The surface representation needs to take into account the different resolutions of HRC and WAC as well as uncommon or even unexpected image acquisition modes such as long range, wide baseline stereo from different rover positions or escape strategies in the case of loss of one of the stereo camera heads. • Panorama Mosaicking: The production of a high resolution stereoscopic panorama nowadays is state-of-art in computer vision. However, certain 2 challenges such as the need for access to accurate spherical coordinates, maintenance of radiometric & spectral response in various spectral bands, fusion between HRC and WAC, super resolution, and again the requirement of quick yet robust processing will add some complexity to the ground processing system. • Visualization for Operations Planning: Efficient operations planning is directly related to an ergonomic and well performing visualization. It is intended to adapt existing tools to an integrated visualization solution for the purpose of scientific site characterization, view planning and reachability mapping/instrument placement of pointing sensors (including the panoramic imaging system itself), and selection of regions of interest. The main interfaces between the individual components as well as the first version of a user requirement document are currently under definition. Beside the support for sensor layout and calibration the 3d vision system will consist of 2-3 main modules to be used during ground processing & utilization of the ExoMars Rover panoramic imaging system. 3
Astronaut Ronald Evans photographed during transearth coast EVA
1972-12-17
AS17-152-23391 (17 Dec. 1972) --- Astronaut Ronald E. Evans is photographed performing extravehicular activity during the Apollo 17 spacecraft's trans-Earth coast. During his EVA, Evans, command module pilot, retrieved film cassettes from the lunar sounder, mapping camera and panoramic camera. The cylindrical object at Evans' left side is the mapping camera cassette. The total time for the trans-Earth EVA was one hour, seven minutes, 18 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) and ending at G.E.T. of 258:42 (3:35 p.m.) on Sunday, Dec. 17, 1972.
Astronaut Ronald Evans photographed during transearth coast EVA
1972-12-17
AS17-152-23393 (17 Dec. 1972) --- Astronaut Ronald E. Evans is photographed performing extravehicular activity during the Apollo 17 spacecraft's trans-Earth coast. During his EVA, command module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The cylindrical object at Evans' left side is the Mapping Camera cassette. The total time for the trans-Earth EVA was one hour seven minutes 18 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) and ending at ground elapsed timed of 258:42 (3:35 p.m.) on Sunday, Dec. 17, 1972.
Design of a panoramic long-wave infrared athermal system
NASA Astrophysics Data System (ADS)
Yao, Yuan; Geng, Anbing; Bai, Jian; Wang, Haitao; Guo, Jie; Xiong, Tao; Luo, Yujie; Huang, Zhi; Hou, Xiyun
2016-12-01
A panoramic long-wave infrared athermal system is introduced in this paper. The proposed system includes a panoramic annular lens (PAL) block providing a stereo field of view of (30 deg - 100 deg) × 360 deg without the need to move its components. Moreover, to ensure the imaging quality at different temperatures, a refractive/diffractive hybrid lens is introduced to achieve optical passive athermalization. The system operates in a spectral band between 8 and 12 μm, with a total length of 175 mm and a focal length of 3.4 mm. To get a bright and clear image, the aperture of the system was set to f/1.15. The introduction of aspherical surface and even-order diffractive surface not only eliminates the differential thermal but also makes the structure simple and lightweight and improves the image quality. The results show that the modulation transfer function below 20 lp/mm of the system is above 0.2 at each temperature ranging from -20°C to +60°C, which is close to the diffraction limit. The system is suitable to be applied in an uncooled infrared focal plane array detector and will serve as a static alert system. It has a number of pixels of 640×480, and the pixel size is 25 μm.
A panoramic coded aperture gamma camera for radioactive hotspots localization
NASA Astrophysics Data System (ADS)
Paradiso, V.; Amgarou, K.; Blanc De Lanaute, N.; Schoepff, V.; Amoyal, G.; Mahe, C.; Beltramello, O.; Liénard, E.
2017-11-01
A known disadvantage of the coded aperture imaging approach is its limited field-of-view (FOV), which often results insufficient when analysing complex dismantling scenes such as post-accidental scenarios, where multiple measurements are needed to fully characterize the scene. In order to overcome this limitation, a panoramic coded aperture γ-camera prototype has been developed. The system is based on a 1 mm thick CdTe detector directly bump-bonded to a Timepix readout chip, developed by the Medipix2 collaboration (256 × 256 pixels, 55 μm pitch, 14.08 × 14.08 mm2 sensitive area). A MURA pattern coded aperture is used, allowing for background subtraction without the use of heavy shielding. Such system is then combined with a USB color camera. The output of each measurement is a semi-spherical image covering a FOV of 360 degrees horizontally and 80 degrees vertically, rendered in spherical coordinates (θ,phi). The geometrical shapes of the radiation-emitting objects are preserved by first registering and stitching the optical images captured by the prototype, and applying, subsequently, the same transformations to their corresponding radiation images. Panoramic gamma images generated by using the technique proposed in this paper are described and discussed, along with the main experimental results obtained in laboratories campaigns.
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Ivanov, Yu. S.; Syniavskyi, I. I.; Sergeev, A. V.
2015-08-01
In the Main Astronomical Observatory of NAS of Ukraine is proposed and implemented the concept of the imaging Stokes polarimeter [1-5]. This device allows carrying out measurements of the four Stokes vector components at the same time, in a wide field, and without any restrictions on the relative aperture of the optical system. Its scheme is developed so that only by turning wheel with replaceable elements, photopolarimeter could be transformed into a low resolution spectropolarimeter. The device has four film's polarizers with positional angles 0°, 45°, 90°, 135°. The device uses a system of special deflecting prisms in each channel. These prisms were achromatizing in the spectral range of 420-850 nm [2], the distortion of the polarimeter optical system is less than 0.65%. In manufacturing version of spectropolarimeter provided for the possibility of using working on passing the diffraction grating with a frequency up to 100 lines/mm. Has begun the laboratory testing of instrument. References. 1. Sinyavskii I.I., Ivanov Yu. S., Vidmachenko Anatoliy P., Karpov N.V. Panoramic Stokes-polarimeter // Ecological bulettin of research centers of the Black Sea Economic Cooperation. - 2013. - V. 3, No 4. - P. 123-127. 2. Sinyavskii I. I., Ivanov Yu. S., Vil'machenko A. P. Concept of the construction, of the optical setup of a panoramic Stokes polarimeter for small telescopes // Journal of Optical Technology. - 2013. - V. 80, Issue 9. - P. 545-548. 3. Vidmachenko A. P., Ivanov Yu. S., Morozhenko A. V., Nevodovsky E. P., Syniavskyi I. I., Sosonkin M. G. Spectropolarimeter of ground-based accompanying for the space experiment "Planetary Monitoring" // Kosmichna Nauka i Tekhnologiya. - 2007. - V. 13, No. 1, p. 63 - 70. 4. Yatskiv Ya. S., Vidmachenko A. P., Morozhenko A. V., Sosonkin M. G., Ivanov Yu. S., Syniavskyi I. I. Spectropolarimetric device for overatmospheric investigations of Solar System bodies // Kosmichna Nauka i Tekhnologiya. - 2008. - V. 14, No. 2. - P. 56-67. 5. Yatskiv Ya. S., Vidmachenk o A. P., Morozhenko A. V., Sosonkin M. G., Ivanov Yu. S., Sinyavskiy I. I. Spectropolarimetric devices for extraterrestrial investigation of the Solar system bodies // 10 Ukrainian Conference on Space Research with International Participation. August 30-September 4, 2010. The program and abstracts. Yevpatoria, Ukraine. P. 81.
Stereo reconstruction from multiperspective panoramas.
Li, Yin; Shum, Heung-Yeung; Tang, Chi-Keung; Szeliski, Richard
2004-01-01
A new approach to computing a panoramic (360 degrees) depth map is presented in this paper. Our approach uses a large collection of images taken by a camera whose motion has been constrained to planar concentric circles. We resample regular perspective images to produce a set of multiperspective panoramas and then compute depth maps directly from these resampled panoramas. Our panoramas sample uniformly in three dimensions: rotation angle, inverse radial distance, and vertical elevation. The use of multiperspective panoramas eliminates the limited overlap present in the original input images and, thus, problems as in conventional multibaseline stereo can be avoided. Our approach differs from stereo matching of single-perspective panoramic images taken from different locations, where the epipolar constraints are sine curves. For our multiperspective panoramas, the epipolar geometry, to the first order approximation, consists of horizontal lines. Therefore, any traditional stereo algorithm can be applied to multiperspective panoramas with little modification. In this paper, we describe two reconstruction algorithms. The first is a cylinder sweep algorithm that uses a small number of resampled multiperspective panoramas to obtain dense 3D reconstruction. The second algorithm, in contrast, uses a large number of multiperspective panoramas and takes advantage of the approximate horizontal epipolar geometry inherent in multiperspective panoramas. It comprises a novel and efficient 1D multibaseline matching technique, followed by tensor voting to extract the depth surface. Experiments show that our algorithms are capable of producing comparable high quality depth maps which can be used for applications such as view interpolation.
Development of new family of wide-angle anamorphic lens with controlled distortion profile
NASA Astrophysics Data System (ADS)
Gauvin, Jonny; Doucet, Michel; Wang, Min; Thibault, Simon; Blanc, Benjamin
2005-08-01
It is well known that a fish-eye lens produces a circular image of the scene with a particular distortion profile. When using a fish-eye lens with a standard sensor (e.g. 1/3", 1/4",.), only a part of the rectangular detector area is used, leaving many pixels unused. We proposed a new approach to get enhanced resolution for panoramic imaging. In this paper, various arrangements of innovative 180-degree anamorphic wide-angle lens design are considered. Their performances as well as lens manufacturability are also discussed. The concept of the design is to use anamorphic optics to produce elliptical image that maximize pixel resolution in both axis. Furthermore, a non-linear distortion profile is also introduced to enhance spatial resolution for specific field angle. Typical applications such as panoramic photography, video conferencing, and homeland/transportation security are also presented.
An in vitro comparison of subjective image quality of panoramic views acquired via 2D or 3D imaging.
Pittayapat, P; Galiti, D; Huang, Y; Dreesen, K; Schreurs, M; Souza, P Couto; Rubira-Bullen, I R F; Westphalen, F H; Pauwels, R; Kalema, G; Willems, G; Jacobs, R
2013-01-01
The objective of this study is to compare subjective image quality and diagnostic validity of cone-beam CT (CBCT) panoramic reformatting with digital panoramic radiographs. Four dry human skulls and two formalin-fixed human heads were scanned using nine different CBCTs, one multi-slice CT (MSCT) and one standard digital panoramic device. Panoramic views were generated from CBCTs in four slice thicknesses. Seven observers scored image quality and visibility of 14 anatomical structures. Four observers repeated the observation after 4 weeks. Digital panoramic radiographs showed significantly better visualization of anatomical structures except for the condyle. Statistical analysis of image quality showed that the 3D imaging modalities (CBCTs and MSCT) were 7.3 times more likely to receive poor scores than the 2D modality. Yet, image quality from NewTom VGi® and 3D Accuitomo 170® was almost equivalent to that of digital panoramic radiographs with respective odds ratio estimates of 1.2 and 1.6 at 95% Wald confidence limits. A substantial overall agreement amongst observers was found. Intra-observer agreement was moderate to substantial. While 2D-panoramic images are significantly better for subjective diagnosis, 2/3 of the 3D-reformatted panoramic images are moderate or good for diagnostic purposes. Panoramic reformattings from particular CBCTs are comparable to digital panoramic images concerning the overall image quality and visualization of anatomical structures. This clinically implies that a 3D-derived panoramic view can be generated for diagnosis with a recommended 20-mm slice thickness, if CBCT data is a priori available for other purposes.
NASA Astrophysics Data System (ADS)
Zhang, Zhenhai; Li, Kejie; Wu, Xiaobing; Zhang, Shujiang
2008-03-01
The unwrapped and correcting algorithm based on Coordinate Rotation Digital Computer (CORDIC) and bilinear interpolation algorithm was presented in this paper, with the purpose of processing dynamic panoramic annular image. An original annular panoramic image captured by panoramic annular lens (PAL) can be unwrapped and corrected to conventional rectangular image without distortion, which is much more coincident with people's vision. The algorithm for panoramic image processing is modeled by VHDL and implemented in FPGA. The experimental results show that the proposed panoramic image algorithm for unwrapped and distortion correction has the lower computation complexity and the architecture for dynamic panoramic image processing has lower hardware cost and power consumption. And the proposed algorithm is valid.
Final Optical Design of PANIC, a Wide-Field Infrared Camera for CAHA
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Gómez, J. Rodríguez; Lenzen, R.; Sánchez-Blanco, E.
We present the Final Optical Design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Ritchey-Chrtien focus of the Calar Alto 2.2 m telescope. This will be the first instrument built under the German-Spanish consortium that manages the Calar Alto observatory. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. The optical design produces a well defined internal pupil available to reducing the thermal background by a cryogenic pupil stop. A mosaic of four detectors Hawaii 2RG of 2 k ×2 k, made by Teledyne, will give a field of view of 31.9 arcmin ×31.9 arcmin.
NASA Technical Reports Server (NTRS)
Greivenkamp, John E. (Editor); Young, Matt (Editor)
1989-01-01
Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.
A Legacy Imaging Survey of M33.
NASA Astrophysics Data System (ADS)
Dalcanton, Julianne
2016-10-01
We propose a panoramic imaging survey of M33 to extend the M31 PHAT survey to regions with 10x higher star formation intensity and markedly lower metallicity. Deep six-filter UV/optical/IR stellar photometry will provide (1) precision measurement of the high-mass IMF slope; (2) spatially-resolved maps of the recent star formation history (SFH) with 5-10 Myr resolution; (3) maps of the cool, dusty ISM with 25 pc resolution; (4) temperatures and luminosities for 15 million stars; (5) maps of extinction law variations; and (6) 1000 star clusters with well-measured ages and masses. We will combine these products with archival multi-wavelength data to elucidate the astrophysics of the interstellar medium (ISM). We will constrain the energetics of the ISM by linking the history of stellar energy input to the observed properties of the ISM; reconcile widely-used, but discrepant, dust emission models; disentangle the drivers that control dust composition; and measure lifetimes of molecular clouds. We will survey nearly all the molecular clouds and high extinction (A_V>1) regions in M33, as well as regimes of star formation rate intensity, spiral arm strength, metallicity, and ISM pressure that are distinct from those in comparable surveys of M31 and the Magellanic Clouds. This survey adds M33 to the Milky Way, M31, and Magellanic Clouds as the fundamental calibrators of ISM physics, star-formation processes, and stellar evolution. The resulting data set will be comprehensive, highly versatile, and have tremendous legacy value. This program can only be accomplished with HST.
NASA Astrophysics Data System (ADS)
Syniavskyi, I.; Ivanov, Yu.; Vidmachenko, A. P.; Sergeev, A.
2015-08-01
The construction of an imaging Stokes-polarimeter in the MAO NAS of Ukraine is proposed. It allows measuring the three components of the Stokes vector simultaneously in large FOV without restrictions on the relative aperture of the system. Moreover, the polarimeter can be converted to a low resolution spectropolarimeter by placement into optical axis of the transparence diffraction grating.
Consumer electronic optics: how small can a lens be: the case of panomorph lenses
NASA Astrophysics Data System (ADS)
Thibault, Simon; Parent, Jocelyn; Zhang, Hu; Du, Xiaojun; Roulet, Patrice
2014-09-01
In 2014, miniature camera modules are applied to a variety of applications such as webcam, mobile phone, automotive, endoscope, tablets, portable computers and many other products. Mobile phone cameras are probably one of the most challenging parts due to the need for smaller and smaller total track length (TTL) and optimized embedded image processing algorithms. As the technology is developing, higher resolution and higher image quality, new capabilities are required to fulfil the market needs. Consequently, the lens system becomes more complex and requires more optical elements and/or new optical elements. What is the limit? How small an injection molded lens can be? We will discuss those questions by comparing two wide angle lenses for consumer electronic market. The first lens is a 6.56 mm (TTL) panoramic (180° FOV) lens built in 2012. The second is a more recent (2014) panoramic lens (180° FOV) with a TTL of 3.80 mm for mobile phone camera. Both optics are panomorph lenses used with megapixel sensors. Between 2012 and 2014, the development in design and plastic injection molding allowed a reduction of the TTL by more than 40%. This TTL reduction has been achieved by pushing the lens design to the extreme (edge/central air and material thicknesses as well as lens shape). This was also possible due to a better control of the injection molding process and material (low birefringence, haze and thermal stability). These aspects will be presented and discussed. During the next few years, we don't know if new material will come or new process but we will still need innovative people and industries to push again the limits.
True 3-D View of 'Columbia Hills' from an Angle
NASA Technical Reports Server (NTRS)
2004-01-01
This mosaic of images from NASA's Mars Exploration Rover Spirit shows a panorama of the 'Columbia Hills' without any adjustment for rover tilt. When viewed through 3-D glasses, depth is much more dramatic and easier to see, compared with a tilt-adjusted version. This is because stereo views are created by producing two images, one corresponding to the view from the panoramic camera's left-eye camera, the other corresponding to the view from the panoramic camera's right-eye camera. The brain processes the visual input more accurately when the two images do not have any vertical offset. In this view, the vertical alignment is nearly perfect, but the horizon appears to curve because of the rover's tilt (because the rover was parked on a steep slope, it was tilted approximately 22 degrees to the west-northwest). Spirit took the images for this 360-degree panorama while en route to higher ground in the 'Columbia Hills.' The highest point visible in the hills is 'Husband Hill,' named for space shuttle Columbia Commander Rick Husband. To the right are the rover's tracks through the soil, where it stopped to perform maintenance on its right front wheel in July. In the distance, below the hills, is the floor of Gusev Crater, where Spirit landed Jan. 3, 2004, before traveling more than 3 kilometers (1.8 miles) to reach this point. This vista comprises 188 images taken by Spirit's panoramic camera from its 213th day, or sol, on Mars to its 223rd sol (Aug. 9 to 19, 2004). Team members at NASA's Jet Propulsion Laboratory and Cornell University spent several weeks processing images and producing geometric maps to stitch all the images together in this mosaic. The 360-degree view is presented in a cylindrical-perspective map projection with geometric seam correction.Vertical Optical Scanning with Panoramic Vision for Tree Trunk Reconstruction
Berveglieri, Adilson; Liang, Xinlian; Honkavaara, Eija
2017-01-01
This paper presents a practical application of a technique that uses a vertical optical flow with a fisheye camera to generate dense point clouds from a single planimetric station. Accurate data can be extracted to enable the measurement of tree trunks or branches. The images that are collected with this technique can be oriented in photogrammetric software (using fisheye models) and used to generate dense point clouds, provided that some constraints on the camera positions are adopted. A set of images was captured in a forest plot in the experiments. Weighted geometric constraints were imposed in the photogrammetric software to calculate the image orientation, perform dense image matching, and accurately generate a 3D point cloud. The tree trunks in the scenes were reconstructed and mapped in a local reference system. The accuracy assessment was based on differences between measured and estimated trunk diameters at different heights. Trunk sections from an image-based point cloud were also compared to the corresponding sections that were extracted from a dense terrestrial laser scanning (TLS) point cloud. Cylindrical fitting of the trunk sections allowed the assessment of the accuracies of the trunk geometric shapes in both clouds. The average difference between the cylinders that were fitted to the photogrammetric cloud and those to the TLS cloud was less than 1 cm, which indicates the potential of the proposed technique. The point densities that were obtained with vertical optical scanning were 1/3 less than those that were obtained with TLS. However, the point density can be improved by using higher resolution cameras. PMID:29207468
Vertical Optical Scanning with Panoramic Vision for Tree Trunk Reconstruction.
Berveglieri, Adilson; Tommaselli, Antonio M G; Liang, Xinlian; Honkavaara, Eija
2017-12-02
This paper presents a practical application of a technique that uses a vertical optical flow with a fisheye camera to generate dense point clouds from a single planimetric station. Accurate data can be extracted to enable the measurement of tree trunks or branches. The images that are collected with this technique can be oriented in photogrammetric software (using fisheye models) and used to generate dense point clouds, provided that some constraints on the camera positions are adopted. A set of images was captured in a forest plot in the experiments. Weighted geometric constraints were imposed in the photogrammetric software to calculate the image orientation, perform dense image matching, and accurately generate a 3D point cloud. The tree trunks in the scenes were reconstructed and mapped in a local reference system. The accuracy assessment was based on differences between measured and estimated trunk diameters at different heights. Trunk sections from an image-based point cloud were also compared to the corresponding sections that were extracted from a dense terrestrial laser scanning (TLS) point cloud. Cylindrical fitting of the trunk sections allowed the assessment of the accuracies of the trunk geometric shapes in both clouds. The average difference between the cylinders that were fitted to the photogrammetric cloud and those to the TLS cloud was less than 1 cm, which indicates the potential of the proposed technique. The point densities that were obtained with vertical optical scanning were 1/3 less than those that were obtained with TLS. However, the point density can be improved by using higher resolution cameras.
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Rodríguez Gómez, J.
2011-11-01
PANIC, the PAnoramic Near Infrared Camera, is a new instrument for Calar Alto Observatory (CAHA) is a wide-field infraredimager for the CAHA 2.2 m and 3.5 m telescopes. The optics is a folded single optical train, pure lens optics, with a pixel scale of 0.45 arcsec/pixel (18 microns) at the 2.2 m telescope and 0.23 arcsec/pixel at the 3.5 m. A mosaic of four Hawaii-2RG detectorsprovides a field of view (FOV) of 0.5x0.5 degrees and 0.25x0.25 degrees, respectively. It will cover the photometric bandsfrom Z to K_s (0.8 to 2.5 microns) with a low thermal background due to cold stops. Here we present the current status of the project.
NASA Astrophysics Data System (ADS)
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele; Pernechele, Claudio; Dionisio, Cesare
2017-11-01
This paper presents an innovative algorithm developed for attitude determination of a space platform. The algorithm exploits images taken from a multi-purpose panoramic camera equipped with hyper-hemispheric lens and used as star tracker. The sensor architecture is also original since state-of-the-art star trackers accurately image as many stars as possible within a narrow- or medium-size field-of-view, while the considered sensor observes an extremely large portion of the celestial sphere but its observation capabilities are limited by the features of the optical system. The proposed original approach combines algorithmic concepts, like template matching and point cloud registration, inherited from the computer vision and robotic research fields, to carry out star identification. The final aim is to provide a robust and reliable initial attitude solution (lost-in-space mode), with a satisfactory accuracy level in view of the multi-purpose functionality of the sensor and considering its limitations in terms of resolution and sensitivity. Performance evaluation is carried out within a simulation environment in which the panoramic camera operation is realistically reproduced, including perturbations in the imaged star pattern. Results show that the presented algorithm is able to estimate attitude with accuracy better than 1° with a success rate around 98% evaluated by densely covering the entire space of the parameters representing the camera pointing in the inertial space.
A new bite block for panoramic radiographs of anterior edentulous patients: A technical report.
Park, Jong-Woong; Symkhampha, Khanthaly; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul
2015-06-01
Panoramic radiographs taken using conventional chin-support devices have often presented problems with positioning accuracy and reproducibility. The aim of this report was to propose a new bite block for panoramic radiographs of anterior edentulous patients that better addresses these two issues. A new panoramic radiography bite block similar to the bite block for dentulous patients was developed to enable proper positioning stability for edentulous patients. The new bite block was designed and implemented in light of previous studies. The height of the new bite block was 18 mm and to compensate for the horizontal edentulous space, its horizontal width was 7 mm. The panoramic radiographs using the new bite block were compared with those using the conventional chin-support device. Panoramic radiographs taken with the new bite block showed better stability and bilateral symmetry than those taken with the conventional chin-support device. Patients also showed less movement and more stable positioning during panoramic radiography with the new bite block. Conventional errors in panoramic radiographs of edentulous patients could be caused by unreliability of the chin-support device. The newly proposed bite block for panoramic radiographs of edentulous patients showed better reliability. Further study is required to evaluate the image quality and reproducibility of images with the new bite block.
[Absorbed dose and the effective dose of panoramic temporo mandibular joint radiography].
Matsuo, Ayae; Okano, Tsuneichi; Gotoh, Kenichi; Yokoi, Midori; Hirukawa, Akiko; Okumura, Shinji; Koyama, Syuji
2011-01-01
This study measured the radiation doses absorbed by the patient during Panoramic temporo mandibular joint radiography (Panoramic TMJ), Schüllers method and Orbitoramus projection. The dose of the frontal view in Panoramic TMJ was compared to that with Orbitoramus projection and the lateral view in Panoramic TMJ was compared to that with Schüllers method. We measured the doses received by various organs and calculated the effective doses using the guidelines of the International Commission on Radiological Protection in Publication 103. Organ absorbed doses were measured using an anthropomorphic phantom, loaded with thermoluminescent dosimeters (TLD), located at 160 sensitive sites. The dose shows the sum value of irradiation on both the right and left sides. In addition, we set a few different exposure field sizes. The effective dose for a frontal view in Panoramic TMJ was 11 µSv, and that for the lateral view was 14 µSv. The lens of the Orbitoramus projection was 40 times higher than the frontal view in Panoramic TMJ. Although the effective dose of the lateral view in Panoramic TMJ was 3 times higher than that of the small exposure field (10×10 cm on film) in Schüller's method, it was the same as that of a mid-sized exposure field. When the exposure field in the inferior 1/3 was reduced during panoramic TMJ, the effective doses could be decreased. Therefore we recommend that the size of the exposure field in Panoramic TMJ be decreased.
Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation
Bell, J.F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.N.; Arneson, H.M.; Brown, D.; Collins, S.A.; Dingizian, A.; Elliot, S.T.; Hagerott, E.C.; Hayes, A.G.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.; Lemmon, M.T.; Morris, R.V.; Scherr, L.; Schwochert, M.; Shepard, M.K.; Smith, G.H.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Sullivan, W.T.; Wadsworth, M.
2003-01-01
The Panoramic Camera (Pancam) investigation is part of the Athena science payload launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The scientific goals of the Pancam investigation are to assess the high-resolution morphology, topography, and geologic context of each MER landing site, to obtain color images to constrain the mineralogic, photometric, and physical properties of surface materials, and to determine dust and aerosol opacity and physical properties from direct imaging of the Sun and sky. Pancam also provides mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high-resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach products. The Pancam optical, mechanical, and electronics design were optimized to achieve these science and mission support goals. Pancam is a multispectral, stereoscopic, panoramic imaging system consisting of two digital cameras mounted on a mast 1.5 m above the Martian surface. The mast allows Pancam to image the full 360?? in azimuth and ??90?? in elevation. Each Pancam camera utilizes a 1024 ?? 1024 active imaging area frame transfer CCD detector array. The Pancam optics have an effective focal length of 43 mm and a focal ratio f/20, yielding an instantaneous field of view of 0.27 mrad/pixel and a field of view of 16?? ?? 16??. Each rover's two Pancam "eyes" are separated by 30 cm and have a 1?? toe-in to provide adequate stereo parallax. Each eye also includes a small eight position filter wheel to allow surface mineralogic studies, multispectral sky imaging, and direct Sun imaging in the 400-1100 nm wavelength region. Pancam was designed and calibrated to operate within specifications on Mars at temperatures from -55?? to +5??C. An onboard calibration target and fiducial marks provide the capability to validate the radiometric and geometric calibration on Mars. Copyright 2003 by the American Geophysical Union.
A Comparison of the AVS-9 and the Panoramic Night Vision Goggles During Rotorcraft Hover and Landing
NASA Technical Reports Server (NTRS)
Szoboszlay, Zoltan; Haworth, Loran; Simpson, Carol
2000-01-01
A flight test was conducted to assess any differences in pilot-vehicle performance and pilot opinion between the use of a current generation night vision goggle (the AVS-9) and one variant of the prototype panoramic night vision goggle (the PNVGII). The panoramic goggle has more than double the horizontal field-of-view of the AVS-9, but reduced image quality. Overall the panoramic goggles compared well to the AVS-9 goggles. However, pilot comment and data are consistent with the assertion that some of the benefits of additional field-of-view with the panoramic goggles were negated by the reduced image quality of the particular variant of the panoramic goggles tested.
Using Google Streetview Panoramic Imagery for Geoscience Education
NASA Astrophysics Data System (ADS)
De Paor, D. G.; Dordevic, M. M.
2014-12-01
Google Streetview is a feature of Google Maps and Google Earth that allows viewers to switch from map or satellite view to 360° panoramic imagery recorded close to the ground. Most panoramas are recorded by Google engineers using special cameras mounted on the roofs of cars. Bicycles, snowmobiles, and boats have also been used and sometimes the camera has been mounted on a backpack for off-road use by hikers and skiers or attached to scuba-diving gear for "Underwater Streetview (sic)." Streetview panoramas are linked together so that the viewer can change viewpoint by clicking forward and reverse buttons. They therefore create a 4-D touring effect. As part of the GEODE project ("Google Earth for Onsite and Distance Education"), we are experimenting with the use of Streetview imagery for geoscience education. Our web-based test application allows instructors to select locations for students to study. Students are presented with a set of questions or tasks that they must address by studying the panoramic imagery. Questions include identification of rock types, structures such as faults, and general geological setting. The student view is locked into Streetview mode until they submit their answers, whereupon the map and satellite views become available, allowing students to zoom out and verify their location on Earth. Student learning is scaffolded by automatic computerized feedback. There are lots of existing Streetview panoramas with rich geological content. Additionally, instructors and members of the general public can create panoramas, including 360° Photo Spheres, by stitching images taken with their mobiles devices and submitting them to Google for evaluation and hosting. A multi-thousand-dollar, multi-directional camera and mount can be purchased from DIY-streetview.com. This allows power users to generate their own high-resolution panoramas. A cheaper, 360° video camera is soon to be released according to geonaute.com. Thus there are opportunities for geoscience educators both to use existing Streetview imagery and to generate new imagery for specific locations of geological interest. The GEODE team includes the authors and: H. Almquist, C. Bentley, S. Burgin, C. Cervato, G. Cooper, P. Karabinos, T. Pavlis, J. Piatek, B. Richards, J. Ryan, R. Schott, K. St. John, B. Tewksbury, and S. Whitmeyer.
'Non-standard' panoramic programmes and the unusual artefacts they produce.
Harvey, S; Ball, F; Brown, J; Thomas, B
2017-08-25
Dental panoramic radiographs (DPTs) are commonly taken in dental practice in the UK with the number estimated to be 2.7 million per annum. They are used to diagnose caries, periodontal disease, trauma, pathology in the jaws, supernumerary teeth and for orthodontic assessment. Panoramic radiographs are not simple projections but involve a moving X-ray source and detector plate. Ideally only the objects in the focal trough are displayed. This is achieved with a tomographic movement and one or more centre(s) of rotation. One advantage of digital radiography is hardware and software changes to optimise the image. This has led to increasingly complex manufacturer specific digital panoramic programmes. Panoramic radiographs suffer from ghost artefacts which can limit the effectiveness and make interpretation difficult. Conversely 'conventional dental imaging' such as intraoral bitewings do not suffer the same problems. There are also now several 'non-standard' panoramic programmes which aim to optimise the image for different clinical scenarios. These include 'improved interproximality', 'improved orthogonality' and 'panoramic bitewing mode'.This technical report shows that these 'non-standard' panoramic programmes can produce potentially confusing ghost artefacts, of which the practitioner may not be aware.
NASA Astrophysics Data System (ADS)
Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen
2018-02-01
Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.
The Mars NetLander panoramic camera
NASA Astrophysics Data System (ADS)
Jaumann, Ralf; Langevin, Yves; Hauber, Ernst; Oberst, Jürgen; Grothues, Hans-Georg; Hoffmann, Harald; Soufflot, Alain; Bertaux, Jean-Loup; Dimarellis, Emmanuel; Mottola, Stefano; Bibring, Jean-Pierre; Neukum, Gerhard; Albertz, Jörg; Masson, Philippe; Pinet, Patrick; Lamy, Philippe; Formisano, Vittorio
2000-10-01
The panoramic camera (PanCam) imaging experiment is designed to obtain high-resolution multispectral stereoscopic panoramic images from each of the four Mars NetLander 2005 sites. The main scientific objectives to be addressed by the PanCam experiment are (1) to locate the landing sites and support the NetLander network sciences, (2) to geologically investigate and map the landing sites, and (3) to study the properties of the atmosphere and of variable phenomena. To place in situ measurements at a landing site into a proper regional context, it is necessary to determine the lander orientation on ground and to exactly locate the position of the landing site with respect to the available cartographic database. This is not possible by tracking alone due to the lack of on-ground orientation and the so-called map-tie problem. Images as provided by the PanCam allow to determine accurate tilt and north directions for each lander and to identify the lander locations based on landmarks, which can also be recognized in appropriate orbiter imagery. With this information, it will be further possible to improve the Mars-wide geodetic control point network and the resulting geometric precision of global map products. The major geoscientific objectives of the PanCam lander images are the recognition of surface features like ripples, ridges and troughs, and the identification and characterization of different rock and surface units based on their morphology, distribution, spectral characteristics, and physical properties. The analysis of the PanCam imagery will finally result in the generation of precise map products for each of the landing sites. So far comparative geologic studies of the Martian surface are restricted to the timely separated Mars Pathfinder and the two Viking Lander Missions. Further lander missions are in preparation (Beagle-2, Mars Surveyor 03). NetLander provides the unique opportunity to nearly double the number of accessible landing site data by providing simultaneous and long-term observations at four different surface locations which becomes especially important for studies of variable surface features as well as properties and phenomena of the atmosphere. Major changes on the surface that can be detected by PanCam are caused by eolian activities and condensation processes, which directly reflect variations in the prevailing near-surface wind regime and the diurnal and seasonal volatile and dust cycles. Atmospheric studies will concentrate on the detection of clouds, measurements of the aerosol contents and the water vapor absorption at 936 nm. In order to meet these objectives, the proposed PanCam instrument is a highly miniaturized, dedicated stereo and multispectral imaging device. The camera consists of two identical camera cubes, which are arranged in a common housing at a fixed stereo base length of 11 cm. Each camera cube is equipped with a CCD frame transfer detector with 1024×1024 active pixels and optics with a focal length of 13 mm yielding a field-of-view of 53°×53° and an instantaneous filed of view of 1.1 mrad. A filter swivel with six positions provides different color band passes in the wavelength range of 400-950 nm. The camera head is mounted on top of a deployable scissors boom and can be rotated by 360° to obtain a full panorama, which is already covered by eight images. The boom raises the camera head to a final altitude of 90 cm above the surface. Most camera activities will take place within the first week and the first month of the mission. During the remainder of the mission, the camera will operate with a reduced data rate to monitor time-dependent variations on a daily basis. PanCam is a joint German/French project with contributions from DLR, Institute of Space Sensor Technology and Planetary Exploration, Berlin, Institut d'Astrophysique Spatiale, CNRS, Orsay, and Service d'Aéronomie, CNRS, Verrières-le-Buisson.
Small-scale anomaly detection in panoramic imaging using neural models of low-level vision
NASA Astrophysics Data System (ADS)
Casey, Matthew C.; Hickman, Duncan L.; Pavlou, Athanasios; Sadler, James R. E.
2011-06-01
Our understanding of sensory processing in animals has reached the stage where we can exploit neurobiological principles in commercial systems. In human vision, one brain structure that offers insight into how we might detect anomalies in real-time imaging is the superior colliculus (SC). The SC is a small structure that rapidly orients our eyes to a movement, sound or touch that it detects, even when the stimulus may be on a small-scale; think of a camouflaged movement or the rustle of leaves. This automatic orientation allows us to prioritize the use of our eyes to raise awareness of a potential threat, such as a predator approaching stealthily. In this paper we describe the application of a neural network model of the SC to the detection of anomalies in panoramic imaging. The neural approach consists of a mosaic of topographic maps that are each trained using competitive Hebbian learning to rapidly detect image features of a pre-defined shape and scale. What makes this approach interesting is the ability of the competition between neurons to automatically filter noise, yet with the capability of generalizing the desired shape and scale. We will present the results of this technique applied to the real-time detection of obscured targets in visible-band panoramic CCTV images. Using background subtraction to highlight potential movement, the technique is able to correctly identify targets which span as little as 3 pixels wide while filtering small-scale noise.
... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...
Panoramic autofluorescence: highlighting retinal pathology.
Slotnick, Samantha; Sherman, Jerome
2012-05-01
Recent technological advances in fundus autofluorescence (FAF) are providing new opportunities for insight into retinal physiology and pathophysiology. FAF provides distinctly different imaging information than standard photography or color separation. A review of the basis for this imaging technology is included to help the clinician understand how to interpret FAF images. Cases are presented to illustrate image interpretation. Optos, which manufactures equipment for simultaneous panoramic imaging, has recently outfitted several units with AF capabilities. Six cases are presented in which panoramic autofluorescent (PAF) images highlight retinal pathology, using Optos' Ultra-Widefield technology. Supportive imaging technologies, such as Optomap® images and spectral domain optical coherence tomography (SD-OCT), are used to assist in the clinical interpretation of retinal pathology detected on PAF. Hypofluorescent regions on FAF are identified to occur along with a disruption in the photoreceptors and/or retinal pigment epithelium, as borne out on SD-OCT. Hyperfluorescent regions on FAF occur at the advancing zones of retinal degeneration, indicating impending damage. PAF enables such inferences to be made in retinal areas which lie beyond the reach of SD-OCT imaging. PAF also enhances clinical pattern recognition over a large area and in comparison with the fellow eye. Symmetric retinal degenerations often occur with genetic conditions, such as retinitis pigmentosa, and may impel the clinician to recommend genetic testing. Autofluorescent ophthalmoscopy is a non-invasive procedure that can detect changes in metabolic activity at the retinal pigment epithelium before clinical ophthalmoscopy. Already, AF is being used as an adjunct technology to fluorescein angiography in cases of age-related macular degeneration. Both hyper- and hypoautofluorescent changes are indicative of pathology. Peripheral retinal abnormalities may precede central retinal impacts, potentially providing early signs for intervention before impacting visual acuity. The panoramic image enhances clinical pattern recognition over a large area and in comparison between eyes. Optos' Ultra-Widefield technology is capable of capturing high-resolution images of the peripheral retina without requiring dilation.
Expert, Fabien; Ruffier, Franck
2015-02-26
Two bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft, which was equipped with panoramic optic flow (OF) sensors but (as in flying insects) no accelerometer. To test these two guidance principles, we built a tethered tandem rotorcraft called BeeRotor (80 grams), which was tested flying along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via two OF regulators piloting the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively. The robot equipped with two wide-field OF sensors was tested in order to assess the performances of the following two systems of guidance involving no inertial reference frame: (i) a system with a fixed eye orientation based on the curved artificial compound eye (CurvACE) sensor, and (ii) an active system of reorientation based on a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with CurvACE under dim light to daylight conditions and the active eye-reorientation system over rugged, changing terrain, without any need for an inertial reference frame.
NASA Astrophysics Data System (ADS)
Wu, Xiaojun; Wu, Yumei; Wen, Peizhi
2018-03-01
To obtain information on the outer surface of a cylinder object, we propose a catadioptric panoramic imaging system based on the principle of uniform spatial resolution for vertical scenes. First, the influence of the projection-equation coefficients on the spatial resolution and astigmatism of the panoramic system are discussed, respectively. Through parameter optimization, we obtain the appropriate coefficients for the projection equation, and so the imaging quality of the entire imaging system can reach an optimum value. Finally, the system projection equation is calibrated, and an undistorted rectangular panoramic image is obtained using the cylindrical-surface projection expansion method. The proposed 360-deg panoramic-imaging device overcomes the shortcomings of existing surface panoramic-imaging methods, and it has the advantages of low cost, simple structure, high imaging quality, and small distortion, etc. The experimental results show the effectiveness of the proposed method.
Gaddis, L.R.; Kirk, R.L.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Barrett, J.; Becker, K.; Decker, T.; Blue, J.; Cook, D.; Eliason, E.; Hare, T.; Howington-Kraus, E.; Isbell, C.; Lee, E.M.; Redding, B.; Sucharski, R.; Sucharski, T.; Smith, P.H.; Britt, D.T.
1999-01-01
The Imager for Mars Pathfinder (IMP) acquired more than 16,000 images and provided panoramic views of the surface of Mars at the Mars Pathfinder landing site in Ares Vallis. This paper describes the stereoscopic, multispectral IMP imaging sequences and focuses on their use for digital mapping of the landing site and for deriving cartographic products to support science applications of these data. Two-dimensional cartographic processing of IMP data, as performed via techniques and specialized software developed for ISIS (the U.S.Geological Survey image processing software package), is emphasized. Cartographic processing of IMP data includes ingestion, radiometric correction, establishment of geometric control, coregistration of multiple bands, reprojection, and mosaicking. Photogrammetric processing, an integral part of this cartographic work which utilizes the three-dimensional character of the IMP data, supplements standard processing with geometric control and topographic information [Kirk et al., this issue]. Both cartographic and photogrammetric processing are required for producing seamless image mosaics and for coregistering the multispectral IMP data. Final, controlled IMP cartographic products include spectral cubes, panoramic (360?? azimuthal coverage) and planimetric (top view) maps, and topographic data, to be archived on four CD-ROM volumes. Uncontrolled and semicontrolled versions of these products were used to support geologic characterization of the landing site during the nominal and extended missions. Controlled products have allowed determination of the topography of the landing site and environs out to ???60 m, and these data have been used to unravel the history of large- and small-scale geologic processes which shaped the observed landing site. We conclude by summarizing several lessons learned from cartographic processing of IMP data. Copyright 1999 by the American Geophysical Union.
Astronaut Ronald Evans photographed during transearth coast EVA
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.
Optical designs for the Mars '03 rover cameras
NASA Astrophysics Data System (ADS)
Smith, Gregory H.; Hagerott, Edward C.; Scherr, Lawrence M.; Herkenhoff, Kenneth E.; Bell, James F.
2001-12-01
In 2003, NASA is planning to send two robotic rover vehicles to explore the surface of Mars. The spacecraft will land on airbags in different, carefully chosen locations. The search for evidence indicating conditions favorable for past or present life will be a high priority. Each rover will carry a total of ten cameras of five various types. There will be a stereo pair of color panoramic cameras, a stereo pair of wide- field navigation cameras, one close-up camera on a movable arm, two stereo pairs of fisheye cameras for hazard avoidance, and one Sun sensor camera. This paper discusses the lenses for these cameras. Included are the specifications, design approaches, expected optical performances, prescriptions, and tolerances.
Visual Tour Based on Panaromic Images for Indoor Places in Campus
NASA Astrophysics Data System (ADS)
Bakirman, T.
2012-07-01
In this paper, it is aimed to create a visual tour based on panoramic images for Civil Engineering Faculty in Yildiz Technical University. For this purpose, panoramic images should be obtained. Thus, photos taken with a tripod to have the same angle of view in every photo and panoramic images were created with stitching photos. Two different cameras with different focal length were used. With the panoramic images, visual tour with navigation tools created.
Three-dimensional images contribute to the diagnosis of mucous retention cyst in maxillary sinus
Donizeth-Rodrigues, Cleomar; Fonseca-Da Silveira, Márcia; Gonçalves-De Alencar, Ana H.; Garcia-Santos-Silva, Maria A.; Francisco-De-Mendonça, Elismauro
2013-01-01
Objective: To evaluate the detection of mucous retention cyst of maxillary sinus (MRCMS) using panoramic radiography and cone beam computed tomography (CBCT). Study Design: A digital database with 6,000 panoramic radiographs was reviewed for MRCMS. Suggestive images of MRCMS were detected on 185 radiographs, and patients were located and invited to return for follow-up. Thirty patients returned, and control panoramic radiographs were obtained 6 to 46 months after the initial radiograph. When MRCMS was found on control radiographs, CBCT scans were obtained. Cysts were measured and compared on radiographs and scans. The Wilcoxon, Spearman and Kolmorogov-Smirnov tests were used for statistical analysis. The level of significance was set at 5%. Results: There were statistically significant differences between the two methods (p<0.05): 23 MRCMS detected on panoramic radiographs were confirmed by CBCT, but 5 MRCMS detected on CBCT images had not been identified by panoramic radiography. Eight MRCMS detected on control radiographs were not confirmed by CBCT. MRCMS size differences from initial to control panoramic radiographs and CBCT scans were not statistically significant (p= 0.617 and p= 0.626). The correlation between time and MRCMS size differences was not significant (r = -0.16, p = 0.381). Conclusion: CBCT scanning detect MRCMS more accurately than panoramic radiography. Key words:Mucous cyst, maxillary sinus, panoramic radiograph, cone beam computed tomography. PMID:23229251
Dagassan-Berndt, Dorothea C; Zitzmann, Nicola U; Walter, Clemens; Schulze, Ralf K W
2016-08-01
To evaluate the impact of cone beam computed tomography (CBCT) imaging on treatment planning regarding augmentation procedures for implant placement. Panoramic radiographs and CBCT images of 40 patients requesting single-tooth implants in 59 sites were retrospectively analyzed by six specialists in implantology, and treatment planning was performed. Therapeutic recommendations were compared with the surgical protocol performed initially. Bone height estimation from panoramic radiographs yielded to higher measures and greater variability compared to CBCT. The suggested treatment plan for lateral and vertical augmentation procedures based on CBCT or panoramic radiographs coincided for 55-72% of the cases. A trend to a more invasive augmentation procedure was seen when planning was based on CBCT. Panoramic radiography revealed 57-63% (lateral) vs. 67% (vertical augmentation) congruent plans in agreement with surgery. Among the dissenting sites, there was a trend toward less invasive planning for lateral augmentation with panoramic radiographs, while vertical augmentation requirements were more frequently more invasive when based on CBCT. Vertical augmentation requirements can be adequately determined from panoramic radiographs. In difficult cases with a deficient lateral alveolar bone, the augmentation schedule may better be evaluated from CBCT to avoid underestimation, which occurs more frequently when based on panoramic radiographs only. However, overall, radiographic interpretation and diagnostic thinking accuracy seem to be mainly depending on the opinion of observers. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rushton, Michael N; Rushton, Vivian E
2012-08-01
To measure the added value of panoramic radiography in new dentate patients attending for routine treatment. Thirty-seven general dental practitioners using panoramic radiographs routinely were recruited. Twenty dentate patients were identified prospectively by each participating dentist if they were new to the practice, attending for an examination and requesting any treatment deemed necessary. A panoramic radiograph was taken with appropriate intraoral radiographs in line with national guidelines. Each dentist completed a radiological report for the panoramic radiograph only and these 20 reports were forwarded to the researchers along with the 20 panoramic radiographs, their accompanying bitewing and periapical radiographs and twenty completed clinical assessment sheets. 740 panoramic, 1418 bitewing and 325 periapical radiographs were assessed by the researchers. Only 32 panoramic films provided any additional diagnostic value when compared to intraoral films when guidelines had been observed resulting from the poor technical and processing quality of the accompanying intraoral films. Assessment of the number of caries and periapical lesions and the degree of periodontal bone loss from the intraoral films provided a greater diagnostic yield at the p<0.001 level of significance. The research found that dentists underestimated the number of caries lesions present and level of periodontal bone loss when compared to the researchers but overestimated the presence of periapical pathology, at the level of significance at p<0.001. The study found that there was no support for the use of panoramic radiographs in routine screening as there was no net diagnostic benefit to the patient. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian
2018-05-01
Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.
Data annotation, recording and mapping system for the US open skies aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, B.W.; Goede, W.F.; Farmer, R.G.
1996-11-01
This paper discusses the system developed by Northrop Grumman for the Defense Nuclear Agency (DNA), US Air Force, and the On-Site Inspection Agency (OSIA) to comply with the data annotation and reporting provisions of the Open Skies Treaty. This system, called the Data Annotation, Recording and Mapping System (DARMS), has been installed on the US OC-135 and meets or exceeds all annotation requirements for the Open Skies Treaty. The Open Skies Treaty, which will enter into force in the near future, allows any of the 26 signatory countries to fly fixed wing aircraft with imaging sensors over any of themore » other treaty participants, upon very short notice, and with no restricted flight areas. Sensor types presently allowed by the treaty are: optical framing and panoramic film cameras; video cameras ranging from analog PAL color television cameras to the more sophisticated digital monochrome and color line scanning or framing cameras; infrared line scanners; and synthetic aperture radars. Each sensor type has specific performance parameters which are limited by the treaty, as well as specific annotation requirements which must be achieved upon full entry into force. DARMS supports U.S. compliance with the Opens Skies Treaty by means of three subsystems: the Data Annotation Subsytem (DAS), which annotates sensor media with data obtained from sensors and the aircraft`s avionics system; the Data Recording System (DRS), which records all sensor and flight events on magnetic media for later use in generating Treaty mandated mission reports; and the Dynamic Sensor Mapping Subsystem (DSMS), which provides observers and sensor operators with a real-time moving map displays of the progress of the mission, complete with instantaneous and cumulative sensor coverages. This paper will describe DARMS and its subsystems in greater detail, along with the supporting avionics sub-systems. 7 figs.« less
Panoramic Scanning: Essential Element of Higher-Order Thought.
ERIC Educational Resources Information Center
Ambrose, Don
1996-01-01
Panoramic scanning is the capacity to perceive, interpret, and appreciate complex problems from a big-picture vantage point. Barriers to panoramic scanning (sensory bombardment, superficial polarized thought, and tunnel vision) and facilitators (broad interests and knowledge, pattern finding, and connection-making skills) are identified. Educators…
NASA Astrophysics Data System (ADS)
Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.
2017-09-01
Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.
Geological and Geographical Atlas of Colorado and portions of adjacent territory
Hayden, Ferdinand Vandeveer; Bien, Julius
1881-01-01
Sheets I-IV are triangulations, drainage, land classification, and geologic maps of Colorado west of longitude 102°, on the scale of 12 miles to the inch. Sheets V-XVI are topographic (contour) and geologic maps of Colorado and adjacent States, between meridians 104° 30' and 109° 30' and parallels 36° 45' and 40° 30', on the scale of 4 miles to the inch. Sheets XVII and XVIII contain three geologic sections across the State, west of the longitude 104° 30'. Sheets XIX and XX are panoramic views of the Pikes Peak group, Sawatch Range, central portion of West Elk Mountains, Twin Lakes, southwestern border of the Mesa Verde, San Juan Mountains, and La Plata Mountains.
Geological and Geographical Atlas of Colorado and portions of adjacent territory
Hayden, Ferdinand Vandeveer; Bien, Julius
1877-01-01
Sheets I-IV are triangulations, drainage, land classification, and geologic maps of Colorado west of longitude 102°, on the scale of 12 miles to the inch. Sheets V-XVI are topographic (contour) and geologic maps of Colorado and adjacent States, between meridians 104° 30' and 109° 30' and parallels 36° 45' and 40° 30', on the scale of 4 miles to the inch. Sheets XVII and XVIII contain three geologic sections across the State, west of the longitude 104° 30'. Sheets XIX and XX are panoramic views of the Pikes Peak group, Sawatch Range, central portion of West Elk Mountains, Twin Lakes, southwestern border of the Mesa Verde, San Juan Mountains, and La Plata Mountains.
NASA Technical Reports Server (NTRS)
2003-01-01
With NASA on its side, Positive Systems, Inc., of Whitefish, Montana, is veering away from the industry standards defined for producing and processing remotely sensed images. A top developer of imaging products for geographic information system (GIS) and computer-aided design (CAD) applications, Positive Systems is bucking traditional imaging concepts with a cost-effective and time-saving software tool called Digital Images Made Easy (DIME(trademark)). Like piecing a jigsaw puzzle together, DIME can integrate a series of raw aerial or satellite snapshots into a single, seamless panoramic image, known as a 'mosaic.' The 'mosaicked' images serve as useful backdrops to GIS maps - which typically consist of line drawings called 'vectors' - by allowing users to view a multidimensional map that provides substantially more geographic information.
NASA Astrophysics Data System (ADS)
de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.
2011-05-01
Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.
Reconstruction of Sky Illumination Domes from Ground-Based Panoramas
NASA Astrophysics Data System (ADS)
Coubard, F.; Lelégard, L.; Brédif, M.; Paparoditis, N.; Briottet, X.
2012-07-01
The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.
The role of rotors in atrial fibrillation
Swarup, Vijay; Narayan, Sanjiv M.
2015-01-01
Despite significant advances in our understanding of atrial fibrillation (AF) mechanisms in the last 15 years, ablation outcomes remain suboptimal. A potential reason is that many ablation techniques focus on anatomic, rather than patient-specific functional targets for ablation. Panoramic contact mapping, incorporating phase analysis, repolarization and conduction dynamics, and oscillations in AF rate, overcomes many prior difficulties with mapping AF. This approach provides evidence that the mechanisms sustaining human AF are deterministic, largely due to stable electrical rotors and focal sources in either atrium. Ablation of such sources (Focal Impulse and Rotor Modulation: FIRM ablation) has been shown to improve ablation outcome compared with conventional ablation alone; independent laboratories directly targeting stable rotors have shown similar results. Clinical trials examining the role of stand-alone FIRM ablation are in progress. Looking forward, translating insights from patient-specific mapping to evidence-based guidelines and clinical practice is the next challenge in improving patient outcomes in AF management. PMID:25713729
Three-dimensional images contribute to the diagnosis of mucous retention cyst in maxillary sinus.
Donizeth-Rodrigues, Cleomar; Fonseca-Da Silveira, Márcia; Gonçalves-De Alencar, Ana-Helena; Garcia-Santos-Silva, Maria-Alves; Francisco-De-Mendonça, Elismauro; Estrela, Carlos
2013-01-01
To evaluate the detection of mucous retention cyst of maxillary sinus (MRCMS) using panoramic radiography and cone beam computed tomography (CBCT). A digital database with 6,000 panoramic radiographs was reviewed for MRCMS. Suggestive images of MRCMS were detected on 185 radiographs, and patients were located and invited to return for follow-up. Thirty patients returned, and control panoramic radiographs were obtained 6 to 46 months after the initial radiograph. When MRCMS was found on control radiographs, CBCT scans were obtained. Cysts were measured and compared on radiographs and scans. The Wilcoxon, Spearman and Kolmorogov-Smirnov tests were used for statistical analysis. The level of significance was set at 5%. There were statistically significant differences between the two methods (p<0.05): 23 MRCMS detected on panoramic radiographs were confirmed by CBCT, but 5 MRCMS detected on CBCT images had not been identified by panoramic radiography. Eight MRCMS detected on control radiographs were not confirmed by CBCT. MRCMS size differences from initial to control panoramic radiographs and CBCT scans were not statistically significant (p= 0.617 and p= 0.626). The correlation between time and MRCMS size differences was not significant (r = -0.16, p = 0.381). CBCT scanning detect MRCMS more accurately than panoramic radiography.
An automatic panoramic image reconstruction scheme from dental computed tomography images
Papakosta, Thekla K; Savva, Antonis D; Economopoulos, Theodore L; Gröhndal, H G
2017-01-01
Objectives: Panoramic images of the jaws are extensively used for dental examinations and/or surgical planning because they provide a general overview of the patient's maxillary and mandibular regions. Panoramic images are two-dimensional projections of three-dimensional (3D) objects. Therefore, it should be possible to reconstruct them from 3D radiographic representations of the jaws, produced by CBCT scanning, obviating the need for additional exposure to X-rays, should there be a need of panoramic views. The aim of this article is to present an automated method for reconstructing panoramic dental images from CBCT data. Methods: The proposed methodology consists of a series of sequential processing stages for detecting a fitting dental arch which is used for projecting the 3D information of the CBCT data to the two-dimensional plane of the panoramic image. The detection is based on a template polynomial which is constructed from a training data set. Results: A total of 42 CBCT data sets of real clinical pre-operative and post-operative representations from 21 patients were used. Eight data sets were used for training the system and the rest for testing. Conclusions: The proposed methodology was successfully applied to CBCT data sets, producing corresponding panoramic images, suitable for examining pre-operatively and post-operatively the patients' maxillary and mandibular regions. PMID:28112548
Range and Panoramic Image Fusion Into a Textured Range Image for Culture Heritage Documentation
NASA Astrophysics Data System (ADS)
Bila, Z.; Reznicek, J.; Pavelka, K.
2013-07-01
This paper deals with a fusion of range and panoramic images, where the range image is acquired by a 3D laser scanner and the panoramic image is acquired with a digital still camera mounted on a panoramic head and tripod. The fused resulting dataset, called "textured range image", provides more reliable information about the investigated object for conservators and historians, than using both datasets separately. A simple example of fusion of a range and panoramic images, both obtained in St. Francis Xavier Church in town Opařany, is given here. Firstly, we describe the process of data acquisition, then the processing of both datasets into a proper format for following fusion and the process of fusion. The process of fusion can be divided into a two main parts: transformation and remapping. In the first, transformation, part, both images are related by matching similar features detected on both images with a proper detector, which results in transformation matrix enabling transformation of the range image onto a panoramic image. Then, the range data are remapped from the range image space into a panoramic image space and stored as an additional "range" channel. The process of image fusion is validated by comparing similar features extracted on both datasets.
Method and system for processing optical elements using magnetorheological finishing
Menapace, Joseph Arthur; Schaffers, Kathleen Irene; Bayramian, Andrew James; Molander, William A
2012-09-18
A method of finishing an optical element includes mounting the optical element in an optical mount having a plurality of fiducials overlapping with the optical element and obtaining a first metrology map for the optical element and the plurality of fiducials. The method also includes obtaining a second metrology map for the optical element without the plurality of fiducials, forming a difference map between the first metrology map and the second metrology map, and aligning the first metrology map and the second metrology map. The method further includes placing mathematical fiducials onto the second metrology map using the difference map to form a third metrology map and associating the third metrology map to the optical element. Moreover, the method includes mounting the optical element in the fixture in an MRF tool, positioning the optical element in the fixture; removing the plurality of fiducials, and finishing the optical element.
[High-contrast resolution of film-screen systems in oral and maxillofacial radiology].
Kaeppler, G; Reinert, S
2007-11-01
The aim was to determine differences in high-contrast resolution of film-screen systems used in dental panoramic and cephalometric radiography by calculating the modulation transfer function (MTF). The radiographs used to determine the MTF should be taken by the same x-ray units as those used for patient radiographs. The MTF was determined using a lead grid and according to DIN 6867-2 for 11 film-screen systems (speed 250, speed class 200 and 400) used in dental radiographic diagnostics. The optical density was measured using a microdensitometer developed by PTB. With 10% of the modulation transfer factor, newly developed film-screen systems (speed class 200 and 400) demonstrated a resolution of 4.9 to 6 line pairs per mm (panoramic radiography). In cephalometric radiography a film-screen system (speed class 400 and green-sensitive film) had a resolution of 4.2 line pairs per mm and surpassed two film-screen systems (speed class 400, resolution of 3 line pairs per mm, blue-sensitive films). The relevance of this study is underlined by the diagnostic reference doses defined in the German X-ray Ordinance (RöV) which are also intended for dentistry. Film-screen systems (speed 250, speed class 200) previously used in dental panoramic and cephalometric radiography can be replaced by newly developed film-screen systems (speed class 400). In dental radiography dose reductions are possible with film-screen systems (speed class 400) without impairing diagnostic accuracy. The introduction of newly developed film-screen systems (speed class 400) requires lower milliampere-seconds and therefore an adjustment of the x-ray units to lower milliampere settings.
Insect-Inspired Optical-Flow Navigation Sensors
NASA Technical Reports Server (NTRS)
Thakoor, Sarita; Morookian, John M.; Chahl, Javan; Soccol, Dean; Hines, Butler; Zornetzer, Steven
2005-01-01
Integrated circuits that exploit optical flow to sense motions of computer mice on or near surfaces ( optical mouse chips ) are used as navigation sensors in a class of small flying robots now undergoing development for potential use in such applications as exploration, search, and surveillance. The basic principles of these robots were described briefly in Insect-Inspired Flight Control for Small Flying Robots (NPO-30545), NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 61. To recapitulate from the cited prior article: The concept of optical flow can be defined, loosely, as the use of texture in images as a source of motion cues. The flight-control and navigation systems of these robots are inspired largely by the designs and functions of the vision systems and brains of insects, which have been demonstrated to utilize optical flow (as detected by their eyes and brains) resulting from their own motions in the environment. Optical flow has been shown to be very effective as a means of avoiding obstacles and controlling speeds and altitudes in robotic navigation. Prior systems used in experiments on navigating by means of optical flow have involved the use of panoramic optics, high-resolution image sensors, and programmable imagedata- processing computers.
Ezoddini Ardakani, Fatemeh; Zangoie Booshehri, Maryam; Banadaki, Seyed Hossein Saeed; Nafisi-Moghadam, Reza
2012-01-01
Background Scaphoid fractures are the most common type of carpal fractures. Objectives The aim of the study was to compare the diagnostic value of panoramic and conventional radiographs of the wrist in scaphoid fractures. Patients and Methods The panoramic and conventional radiographs of 122 patients with acute and chronic wrist trauma were studied. The radiographs were analyzed and examined by two independent radiologist observers; one physician radiologist and one maxillofacial radiologist. The final diagnosis was made by an orthopedic specialist. Kappa test was used for statistical calculations, inter- and intra-observer agreement and correlation between the two techniques. Results Wrist panoramic radiography was more accurate than conventional radiography for ruling out scaphoid fractures. There was an agreement in 85% or more of the cases. Agreement values were higher with better inter and intra observer agreement for panoramic examinations than conventional radiographic examinations. Conclusion The panoramic examination of the wrist is a useful technique for the diagnosis and follow-up of scaphoid fractures. Its use is recommended as a complement to conventional radiography in cases with inconclusive findings. PMID:23599708
Hanna, Matthew G; Monaco, Sara E; Cuda, Jacqueline; Xing, Juan; Ahmed, Ishtiaque; Pantanowitz, Liron
2017-09-01
Whole-slide imaging in cytology is limited when glass slides are digitized without z-stacks for focusing. Different vendors have started to provide z-stacking solutions to overcome this limitation. The Panoptiq imaging system allows users to create digital files combining low-magnification panoramic images with regions of interest (ROIs) that are imaged with high-magnification z-stacks. The aim of this study was to compare such panoramic images with conventional whole-slide images and glass slides for the tasks of screening and interpretation in cytopathology. Thirty glass slides, including 10 ThinPrep Papanicolaou tests and 20 nongynecologic cytology cases, were digitized with an Olympus BX45 integrated microscope with an attached Prosilica GT camera. ViewsIQ software was used for image acquisition and viewing. These glass slides were also scanned on an Aperio ScanScope XT at ×40 (0.25 μm/pixel) with 1 z-plane and were viewed with ImageScope software. Digital and glass sides were screened and dotted/annotated by a cytotechnologist and were subsequently reviewed by 3 cytopathologists. For panoramic images, the cytotechnologist manually created digital maps and selected representative ROIs to generate z-stacks at a higher magnification. After 3-week washout periods, panoramic images were compared with Aperio digital slides and glass slides. The Panoptiq system permitted fine focusing of thick smears and cell clusters. In comparison with glass slides, the average screening times were 5.5 and 1.8 times longer with Panoptiq and Aperio images, respectively, but this improved with user experience. There was no statistical difference in diagnostic concordance between all 3 modalities. Users' diagnostic confidence was also similar for all modalities. The Aperio whole-slide scanner with 1 z-plane scanning and the Panoptiq imaging system with z-stacking are both suitable for cytopathology screening and interpretation. However, ROI z-stacks do offer a superior mechanism for overcoming focusing problems commonly encountered with digital cytology slides. Unlike whole-slide imaging, the acquisition of representative z-stack images with the Panoptiq system requires a trained cytologist to create digital files. Cancer Cytopathol 2017;125:701-9. © 2017 American Cancer Society. © 2017 American Cancer Society.
Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika
2016-01-01
Objective: During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Methods: Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. Results: The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19–75 μSv, depending on the panoramic equipment used. Conclusion: The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk–benefit profile of this technique must be assessed for the individual patient. Advances in knowledge: The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used. PMID:27452261
Can dental pulp calcification predict the risk of ischemic cardiovascular disease?
Khojastepour, Leila; Bronoosh, Pegah; Khosropanah, Shahdad; Rahimi, Elham
2013-09-01
To report the association of pulp calcification with that of cardiovascular disease (CVD) using digital panoramic dental radiographs. Digital panoramic radiographs of patients referred from the angiography department were included if the patient was under 55 years old and had non-restored or minimally restored molars and canines. An oral and maxillofacial radiologist evaluated the images for pulpal calcifications in the selected teeth. The sensitivity, specificity, positive predictive value and negative predictive value of panoramic radiography in predicting CVD were calculated. Out of 122 patients who met the criteria, 68.2% of the patients with CVD had pulp chamber calcifications. Pulp calcification in panoramic radiography had a sensitivity of 68.9% to predict CVD. This study demonstrates that patients with CVD show an increased incidence of pulp calcification compared with healthy patients. The findings suggest that pulp calcification on panoramic radiography may have possibilities for use in CVD screening.
NASA Astrophysics Data System (ADS)
Kim, D. S.; Cho, H. S.; Park, Y. O.; Je, U. K.; Hong, D. K.; Choi, S. I.; Koo, Y. S.
2012-02-01
Panoramic radiography with which only structures within a certain image layer are in focus and others out of focus on the panoramic image has become a popular imaging technique especially in dentistry. However, the major drawback to the technique is a mismatch between the structures to be focused and the predefined image layer mainly due to the various shapes and sizes of dental arches and/or to malpositioning of the patient. These result in image quality typically inferior to that obtained using intraoral radiographic techniques. In this paper, to overcome these difficulties, we suggest a new panoramic reconstruction algorithm, the so-called adaptive panoramic tomography ( APT), capable of reconstructing multifocal image layers with no additional exposure. In order to verify the effectiveness of the proposed algorithm, we performed systematic simulation studies with a circular rotational movement and investigated the image performance.
Digital image transformation and rectification of spacecraft and radar images
Wu, S.S.C.
1985-01-01
Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.
Griniatsos, John; Damaskos, Spyros; Tsekouras, Nikolaos; Klonaris, Chris; Georgopoulos, Sotirios
2009-10-01
The aim was to evaluate whether patients with calcifications in the carotid region detectable by panoramic radiograph differ in the prevalence of risk factors for stroke development compared with those without calcifications. Forty consecutive individuals suffering from proven carotid artery atherosclerotic occlusive disease were submitted to carotid endarterectomy. Seventeen patients were symptomatic at the time of referral, having suffered at least 1 episode of ischemic cerebral event during the preceding 6 months, mainly transient ischemic attacks or amaurosis fugax, and the remaining 23 patients were asymptomatic and the diagnosis was reached during a thorough investigation of coexisting coronary or peripheral vascular disease. Preoperatively, all patients had undergone panoramic radiograph examination, as the presurgical protocol commanded. Based on the panoramic radiograph results, patients in whom calcifications were detected either unilaterally (n = 10) or bilaterally (n = 18) constituted group A (n = 28) and patients in whom no calcifications were detected constituted group B (n = 12) of this study. Univariate analysis among several risk factors for stroke development between the 2 groups of patients disclosed a stastistically significant lower incidence of diabetes mellitus (P = .005) but a higher incidence of symptomatic plaques (P < .030) in the group of patients with detectable calcifications in the panoramic radiograph. Patients with calcified carotid plaques detectable by panoramic radiography are more likely to have suffered cerebrovascular events. Therefore, patients with detectable carotid plaque in panoramic radiographs require referral to their physician for further investigation.
The Two Moons of Mars as Seen from Mars
NASA Technical Reports Server (NTRS)
2005-01-01
Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. 'It is incredibly cool to be running an observatory on another planet,' said planetary scientist Jim Bell of Cornell University, Ithaca, N.Y., lead scientist for the panoramic cameras on Spirit and Opportunity. This time-lapse composite, acquired the evening of Spirit's martian sol 585 (Aug. 26, 2005) from a perch atop 'Husband Hill' in Gusev Crater, shows Phobos, the brighter moon, on the right, and Deimos, the dimmer moon, on the left. Tiny streaks mark the trails of background stars moving across the sky or the impact of cosmic rays lighting up random groups of pixels in the image. Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the five images that make up this composite using the panoramic camera's broadband filter, which was designed specifically for acquiring images under low-light conditions.NASA Astrophysics Data System (ADS)
Balzarini, R.; Dalmasso, A.; Murat, M.
2015-08-01
This article presents preliminary results from a research project in progress that brings together geographers, cognitive scientists, historians and computer scientists. The project investigates the evolution of a particular territorial model: ski trails maps. Ski resorts, tourist and sporting innovations for mountain economies since the 1930s, have needed cartographic representations corresponding to new practices of the space.Painter artists have been involved in producing ski maps with painting techniques and panoramic views, which are by far the most common type of map, because they allow the resorts to look impressive to potential visitors. These techniques have evolved throughout the mutations of the ski resorts. Paper ski maps no longer meet the needs of a large part of the customers; the question now arises of their adaptation to digital media. In a computerized process perspective, the early stage of the project aims to identify the artist-representations, based on conceptual and technical rules, which are handled by users-skiers to perform a task (location, wayfinding, decision-making) and can be transferred to a computer system. This article presents the experimental phase that analyzes artist and user mental representations that are at stake during the making and the reading of a paper ski map. It particularly focuses on how the invention of the artist influences map reading.
Ngamsom, Supak; Arayasantiparb, Raweewan; Pornprasertsuk-Damrongsri, Suchaya; Sureephong, Boonchoo
2015-11-01
The aim of the present study was to evaluate the correlation between calcified carotid atheromas (CCA) detected on digital panoramic radiographs and underlying systemic diseases. Panoramic radiographs and underlying systemic diseases of retained mandibular denture implants in 265 patients (56 males, 209 females) aged over 50 years were retrospectively evaluated at the Dental Unit of Prasat Neurological Institute, Bangkok, Thailand. The mean age of the patients was 71 ± 7.1 years. The prevalence of CCA was 38.49%. The major underlying systemic diseases were hypertension, hyperlipidemia, diabetes mellitus, and cardiovascular diseases (CVD), respectively. No relationship was found among these four systemic diseases in detecting CCA on panoramic radiographs. Similar findings were also observed in patients with only one systemic disease versus in combination with other diseases. The presence of CCA on dental panoramic radiographs was not found to be related to the presence of underlying systemic diseases, including hypertension, hyperlipidemia, diabetes mellitus, and CVD. © 2014 Wiley Publishing Asia Pty Ltd.
Automatic Synthesis of Panoramic Radiographs from Dental Cone Beam Computed Tomography Data.
Luo, Ting; Shi, Changrong; Zhao, Xing; Zhao, Yunsong; Xu, Jinqiu
2016-01-01
In this paper, we propose an automatic method of synthesizing panoramic radiographs from dental cone beam computed tomography (CBCT) data for directly observing the whole dentition without the superimposition of other structures. This method consists of three major steps. First, the dental arch curve is generated from the maximum intensity projection (MIP) of 3D CBCT data. Then, based on this curve, the long axial curves of the upper and lower teeth are extracted to create a 3D panoramic curved surface describing the whole dentition. Finally, the panoramic radiograph is synthesized by developing this 3D surface. Both open-bite shaped and closed-bite shaped dental CBCT datasets were applied in this study, and the resulting images were analyzed to evaluate the effectiveness of this method. With the proposed method, a single-slice panoramic radiograph can clearly and completely show the whole dentition without the blur and superimposition of other dental structures. Moreover, thickened panoramic radiographs can also be synthesized with increased slice thickness to show more features, such as the mandibular nerve canal. One feature of the proposed method is that it is automatically performed without human intervention. Another feature of the proposed method is that it requires thinner panoramic radiographs to show the whole dentition than those produced by other existing methods, which contributes to the clarity of the anatomical structures, including the enamel, dentine and pulp. In addition, this method can rapidly process common dental CBCT data. The speed and image quality of this method make it an attractive option for observing the whole dentition in a clinical setting.
View of Scientific Instrument Module to be flown on Apollo 15
1971-06-27
S71-2250X (June 1971) --- A close-up view of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 lunar landing mission. Mounted in a previously vacant sector of the Apollo Service Module (SM), the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data. SIM equipment includes a laser altimeter for accurate measurement of height above the lunar surface; a large-format panoramic camera for mapping, correlated with a metric camera and the laser altimeter for surface mapping; a gamma ray spectrometer on a 25-feet extendible boom; a mass spectrometer on a 21-feet extendible boom; X-ray and alpha particle spectrometers; and a subsatellite which will be injected into lunar orbit carrying a particle and magnetometer, and the S-Band transponder.
Shahidi, Shoaleh; Zamiri, Barbad; Abolvardi, Masoud; Akhlaghian, Marzieh; Paknahad, Maryam
2018-06-01
Accurate measurement of the available bone height is an essential step in the pre-surgical phase of dental implantation. Panoramic radiography is a unique technique in the pre-surgical phase of dental implantations because of its low cost, relatively low-dose, and availability. This article aimed to assess the reliability of dental panoramic radiographs in the accurate measurement of the vertical bone height with respect to the horizontal location of the alveolar crest. 132 cone-beam computed tomography (CBCT) of the edentulous mandibular molar area and dental panoramic radiograph of 508 patients were selected. Exclusion criteria were bone abnormalities and detectable ideal information on each modality. The alveolar ridge morphology was categorized into 7 types according to the relative horizontal location of the alveolar crest to the mandibular canal based on CBCT findings. The available bone height (ABH) was defined as the distance between the upper border of the mandibular canal and alveolar crest. One oral radiologist and one oral surgeon measured the available bone height twice on each modality with a 7-dayinterval. We found a significant correlation between dental panoramic radiographs and cone-beam computed tomography values (ICC=0.992, p < 0.001). A positive correlation between the horizontal distance of the alveolar crest to the mandibular canal and measured differences between two radiographic modalities had been found (r=0.755, p < 0.001). For each single unit of increase in the horizontal distance of the alveolar crest to the mandibular canal, dental panoramic radiographs showed 0.87 unit of overestimation ( p < 0.001). Dental panoramic radiographs can be employed safely in the pre-surgical phase of dental implantation in posterior alveolus of mandible, especially in routine and simple cases.
Saberi, Bardia Vadiati; Nemati, Somayeh; Malekzadeh, Meisam; Javanmard, Afrooz
2017-01-01
Assessment of alveolar bone level in periodontitis is very important in determining prognosis and treatment plan. Panoramic radiography is a diagnostic tool used to screen patients. The aim of the present study was to assess the diagnostic value of digital panoramic radiography in angular bony defects with 5 mm or deeper pocket depth in mandibular molars. In this cross-sectional study, ninety angular bony defects in mandibular molars teeth with 5 mm or deeper pocket depth were selected in sixty patients with the diagnosis of chronic periodontitis. Before surgery, bone probing was performed. During the surgery, the vertical distance from cementoenamel junction to the most apical part of bony defect was measured using a Williams probe and this measurements were employed as gold standard. This distance was measured on the panoramic radiographs by a Digital Calliper and Digital Ruler. All data were compare dusing independent samples t -test and Pearson's correlation coefficient. No significant difference was found between the results of bone probing and intra-surgical measurements ( P = 0.377). The mean defect depth determined by Digital Caliper and Digital Ruler on panoramic radiographs was significantly less than surgical measurements ( P < 0.001). The correlation between bone probing and surgical measurements in determining the defect depth was strong ( r = 0.98, P < 0.001). Radiographic measurements made by Digital Ruler ( r = 0.86), comparing to Digital Caliper ( r = 0.79), showed a higher degree of correlation with surgical measurements. Based on this study, bone probing is a reliable method in vertical alveolar bone defect measurements. While the information obtained from digital panoramic radiographs should be used with caution and the ability of digital panoramic radiography in the determination of defect depth is limited.
Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes
Laughner, Jacob I.; Ng, Fu Siong; Sulkin, Matthew S.; Arthur, R. Martin
2012-01-01
Optical mapping has become an increasingly important tool to study cardiac electrophysiology in the past 20 years. Multiple methods are used to process and analyze cardiac optical mapping data, and no consensus currently exists regarding the optimum methods. The specific methods chosen to process optical mapping data are important because inappropriate data processing can affect the content of the data and thus alter the conclusions of the studies. Details of the different steps in processing optical imaging data, including image segmentation, spatial filtering, temporal filtering, and baseline drift removal, are provided in this review. We also provide descriptions of the common analyses performed on data obtained from cardiac optical imaging, including activation mapping, action potential duration mapping, repolarization mapping, conduction velocity measurements, and optical action potential upstroke analysis. Optical mapping is often used to study complex arrhythmias, and we also discuss dominant frequency analysis and phase mapping techniques used for the analysis of cardiac fibrillation. PMID:22821993
Mapping low- and high-density clouds in astrophysical nebulae by imaging forbidden line emission
NASA Astrophysics Data System (ADS)
Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S.
2009-06-01
Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method'. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States); the Science and Technology Facilities Council (United Kingdom); the National Research Council (Canada), CONICYT (Chile); the Australian Research Council (Australia); Ministério da Ciência e Tecnologia (Brazil) and Secretaria de Ciencia y Tecnologia (Argentina). E-mail: steiner@astro.iag.usp.br
Intraoperative panoramic image using alignment grid, is it accurate?
Apivatthakakul, T; Duanghakrung, M; Luevitoonvechkit, S; Patumasutra, S
2013-07-01
Minimally invasive orthopedic trauma surgery relies heavily on intraoperative fluoroscopic images to evaluate the quality of fracture reduction and fixation. However, fluoroscopic images have a narrow field of view and often cannot visualize the entire long bone axis. To compare the coronal femoral alignment between conventional X-rays to that achieved with a new method of acquiring a panoramic intraoperative image. Twenty-four cadaveric femurs with simple diaphyseal fractures were fixed with an angulated broad DCP to create coronal plane malalignment. An intraoperative alignment grid was used to help stitch different fluoroscopic images together to produce a panoramic image. A conventional X-ray of the entire femur was then performed. The coronal plane angulation in the panoramic images was then compared to the conventional X-rays using a Wilcoxon signed rank test. The mean angle measured from the panoramic view was 173.9° (range 169.3°-178.0°) with median of 173.2°. The mean angle measured from the conventional X-ray was 173.4° (range 167.7°-178.7°) with a median angle of 173.5°. There was no significant difference between both methods of measurement (P = 0.48). Panoramic images produced by stitching fluoroscopic images together with help of an alignment grid demonstrated the same accuracy at evaluating the coronal plane alignment of femur fractures as conventional X-rays.
Baciut, Mihaela; Hedesiu, Mihaela; Bran, Simion; Jacobs, Reinhilde; Nackaerts, Olivia; Baciut, Grigore
2013-05-01
The present study evaluated the clinical validity of cone-beam computed tomography (CBCT) scans in comparison to panoramic radiographs regarding preoperative implant planning in combination with sinus grafting procedures. Preoperative assessment of the maxillary sinuses and implant planning using panoramic radiographs and CBCT scans was performed on 16 sinuses (13 patients) and comprised choice of treatment, timing of implant placement, sinus morphology, level of confidence, complication prediction and graft volume assessment. Six examiners were involved in the study. In the majority of cases there was a concordance between the treatment type based on either panoramic radiographs or CBCT. If any difference was found, this was due to an overestimation of bone quantity and quality on panoramic radiographs. The assessment of sinus morphology showed a significantly higher detection rate of sinus mucosal hypertrophy on CBCT. The most appealing result is a significant increase in surgical confidence and a significantly better prediction of complications when using CBCT. A preoperative planning based on CBCT seems to improve sinus diagnostics and surgical confidence. © 2012 John Wiley & Sons A/S.
Designing 3 Dimensional Virtual Reality Using Panoramic Image
NASA Astrophysics Data System (ADS)
Wan Abd Arif, Wan Norazlinawati; Wan Ahmad, Wan Fatimah; Nordin, Shahrina Md.; Abdullah, Azrai; Sivapalan, Subarna
The high demand to improve the quality of the presentation in the knowledge sharing field is to compete with rapidly growing technology. The needs for development of technology based learning and training lead to an idea to develop an Oil and Gas Plant Virtual Environment (OGPVE) for the benefit of our future. Panoramic Virtual Reality learning based environment is essential in order to help educators overcome the limitations in traditional technical writing lesson. Virtual reality will help users to understand better by providing the simulations of real-world and hard to reach environment with high degree of realistic experience and interactivity. Thus, in order to create a courseware which will achieve the objective, accurate images of intended scenarios must be acquired. The panorama shows the OGPVE and helps to generate ideas to users on what they have learnt. This paper discusses part of the development in panoramic virtual reality. The important phases for developing successful panoramic image are image acquisition and image stitching or mosaicing. In this paper, the combination of wide field-of-view (FOV) and close up image used in this panoramic development are also discussed.
Hafezi, Ladan; Arianezhad, S Marjan; Hosseini Pooya, Seyed Mahdi
2018-04-25
The value for the use of thyroid shield is one of the issues in radiation protection of patients in dental panoramic imaging. The objective of this research is to investigate the attenuation characteristics of some models of thyroid shielding in dental panoramic examinations. The effects of five different types of lead and lead-free (Pb-equivalent) shields on dose reduction of thyroid gland were investigated using implanted Thermoluminescence Dosemeters (TLDs) in head-neck parts of a Rando phantom. The results show that frontal lead and Pb-equivalent shields can reduce the thyroid dose around 50% and 19%, respectively. It can be concluded that the effective shielding area is an important parameter in thyroid gland dose reduction. Lead frontal collars with large effective shielding areas (>~300 cm 2 but not necessarily very large) are appropriate for an optimized thyroid gland dose reduction particularly for the critical patients in dental panoramic imaging. Regardless of the shape and thickness, using the Pb-equivalent shields is not justifiable in dental panoramic imaging.
NASA Astrophysics Data System (ADS)
Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.
2016-03-01
Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.
You are here: Earth as seen from Mars
2004-03-11
This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see. The inset shows a combination of four panoramic camera images zoomed in on Earth. The arrow points to Earth. Earth was too faint to be detected in images taken with the panoramic camera's color filters. http://photojournal.jpl.nasa.gov/catalog/PIA05547
A leaded apron for use in panoramic dental radiography.
Whitcher, B L; Gratt, B M; Sickles, E A
1980-05-01
The leaded aprons currently available for use during dental radiography do not protect the thyroid gland from radiation. Conventional aprons may produce artifacts when used with panoramic dental x-ray units. This study measures the dose reduction obtained with an experimental leaded apron designed for use with panoramic dental x-ray units. Skin exposures measured at the thyroid and at the sternum were reduced with the use of the apron. Films produced during the study were free from apron artifacts.
Endoscopic measurements using a panoramic annular lens
NASA Technical Reports Server (NTRS)
Gilbert, John A.; Matthys, Donald R.
1992-01-01
The objective of this project was to design, build, demonstrate, and deliver a prototype system for making measurements within cavities. The system was to utilize structured lighting as the means for making measurements and was to rely on a stationary probe, equipped with a unique panoramic annular lens, to capture a cylindrical view of the illuminated cavity. Panoramic images, acquired with a digitizing camera and stored in a desk top computer, were to be linearized and analyzed by mouse-driven interactive software.
Panoramic cone beam computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Jenghwa; Zhou Lili; Wang Song
2012-05-15
Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{submore » cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and imaging dose for both standard and panoramic CBCT. Results: Truncated images with artifacts were observed for the CBCT reconstruction using projection images of the central view only. When the image stitching was perfect, complete reconstruction was obtained for the panoramic CBCT using the modified SART with the image quality similar to the gold standard (full-scan, full-fan CBCT using one large imaging panel). Imperfect image stitching, on the other hand, lead to (streak, line, or ring) reconstruction artifacts, reduced CNR, and/or distorted geometry. Results from Monte Carlo simulations showed that, for identical imaging quality, the imaging dose was lower for the panoramic CBCT than that acquired with one large imaging panel. For the same imaging dose, the CNR of the three-view panoramic CBCT was 50% higher than that of the regular CBCT using one big panel. Conclusions: The authors have developed a panoramic CBCT technique and demonstrated with simulation data that it can image tumors of any location for patients of any size at the treatment position with comparable or less imaging dose and time. However, the image quality of this CBCT technique is sensitive to the reconstruction artifacts caused by imperfect image stitching. Better algorithms are therefore needed to improve the accuracy of image stitching for panoramic CBCT.« less
Temperature Map, "Bonneville Crater" (1:35 p.m.)
2004-05-17
Rates of change in surface temperatures during a martian day indicate differences in particle size in and near "Bonneville Crater." This image is the third in a series of five with color-coded temperature information from different times of day. This one is from 1:35 p.m. local solar time at the site where NASA's Mars Exploration Rover Spirit is exploring Mars. Temperature information from Spirit's miniature thermal emission spectrometer is overlaid onto a view of the site from Spirit's panoramic camera. In this color-coded map, quicker reddening during the day suggests sand or dust. (Red is about 270 Kelvin or 27 degrees Fahrenheit.) An example of this is in the shallow depression in the right foreground. Areas that stay blue longer into the day have larger rocks. (Blue indicates about 230 Kelvin or minus 45 Degrees F.) An example is the rock in the left foreground. http://photojournal.jpl.nasa.gov/catalog/PIA05930
Analysis of interstellar fragmentation structure based on IRAS images
NASA Technical Reports Server (NTRS)
Scalo, John M.
1989-01-01
The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct a densely sampled column density map of a cloud complex which is both self-gravitating and not (yet?) stirred up much by star formation, a column density image of the Taurus region has been constructed from IRAS data. The primary drawback to using the IRAS data for this purpose is that it contains no velocity information, and the possible importance of projection effects must be kept in mind.
Rover imaging system for the Mars rover/sample return mission
NASA Technical Reports Server (NTRS)
1993-01-01
In the past year, the conceptual design of a panoramic imager for the Mars Environmental Survey (MESUR) Pathfinder was finished. A prototype camera was built and its performace in the laboratory was tested. The performance of this camera was excellent. Based on this work, we have recently proposed a small, lightweight, rugged, and highly capable Mars Surface Imager (MSI) instrument for the MESUR Pathfinder mission. A key aspect of our approach to optimization of the MSI design is that we treat image gathering, coding, and restoration as a whole, rather than as separate and independent tasks. Our approach leads to higher image quality, especially in the representation of fine detail with good contrast and clarity, without increasing either the complexity of the camera or the amount of data transmission. We have made significant progress over the past year in both the overall MSI system design and in the detailed design of the MSI optics. We have taken a simple panoramic camera and have upgraded it substantially to become a prototype of the MSI flight instrument. The most recent version of the camera utilizes miniature wide-angle optics that image directly onto a 3-color, 2096-element CCD line array. There are several data-taking modes, providing resolution as high as 0.3 mrad/pixel. Analysis tasks that were performed or that are underway with the test data from the prototype camera include the following: construction of 3-D models of imaged scenes from stereo data, first for controlled scenes and later for field scenes; and checks on geometric fidelity, including alignment errors, mast vibration, and oscillation in the drive system. We have outlined a number of tasks planned for Fiscal Year '93 in order to prepare us for submission of a flight instrument proposal for MESUR Pathfinder.
63. PANORAMIC VIEW OF HEADWORKS FROM WEST SIDE OF RIVER, ...
63. PANORAMIC VIEW OF HEADWORKS FROM WEST SIDE OF RIVER, LOOKING UPSTREAM, Prints No. 173, 174 and 175, November 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA
Clinical image quality evaluation for panoramic radiography in Korean dental clinics
Choi, Bo-Ram; Choi, Da-Hye; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Bae, Kwang-Hak
2012-01-01
Purpose The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Materials and Methods Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. Results A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Conclusion Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively. PMID:23071969
NASA Astrophysics Data System (ADS)
Schonlau, William J.
2006-05-01
An immersive viewing engine providing basic telepresence functionality for a variety of application types is presented. Augmented reality, teleoperation and virtual reality applications all benefit from the use of head mounted display devices that present imagery appropriate to the user's head orientation at full frame rates. Our primary application is the viewing of remote environments, as with a camera equipped teleoperated vehicle. The conventional approach where imagery from a narrow field camera onboard the vehicle is presented to the user on a small rectangular screen is contrasted with an immersive viewing system where a cylindrical or spherical format image is received from a panoramic camera on the vehicle, resampled in response to sensed user head orientation and presented via wide field eyewear display, approaching 180 degrees of horizontal field. Of primary interest is the user's enhanced ability to perceive and understand image content, even when image resolution parameters are poor, due to the innate visual integration and 3-D model generation capabilities of the human visual system. A mathematical model for tracking user head position and resampling the panoramic image to attain distortion free viewing of the region appropriate to the user's current head pose is presented and consideration is given to providing the user with stereo viewing generated from depth map information derived using stereo from motion algorithms.
Mapping the Apollo 17 Astronauts' Positions Based on LROC Data and Apollo Surface Photography
NASA Astrophysics Data System (ADS)
Haase, I.; Oberst, J.; Scholten, F.; Gläser, P.; Wählisch, M.; Robinson, M. S.
2011-10-01
The positions from where the Apollo 17 astronauts recorded panoramic image series, e.g. at the so-called "traverse stations", were precisely determined using ortho-images (0.5 m/pxl) as well as Digital Terrain Models (DTM) (1.5 m/pxl and 100 m/pxl) derived from Lunar Reconnaissance Orbiter Camera (LROC) data. Features imaged in the Apollo panoramas were identified in LROC ortho-images. Least-squares techniques were applied to angles measured in the panoramas to determine the astronaut's position to within the ortho-image pixel. The result of our investigation of Traverse Station 1 in the north-west of Steno Crater is presented.
Dutra, Kamile; Porporatti, André Luís; Mezzomo, Luis A; De Luca Canto, Graziela; Flores-Mir, Carlos; Corrêa, Márcio
2016-01-01
Objectives: To investigate the anatomical variations of the mandibular canal through assessment in situ, panoramic radiography, CT or CBCT and assess their frequency. Methods: Articles were selected from databases (Cochrane Library, LILACS, ProQuest, PubMed, Scopus, Web of Science and Google Scholar), articles without limitations of language, in which the main objective was to evaluate the frequency of bifurcation of the mandibular canal through assessment in situ, panoramic radiography, CT or CBCT were selected. A meta-analysis of prevalence using random effects was performed. Results: Using a selection process in two phases, 15 articles were identified, and a meta-analysis was conducted. The results from these meta-analyses showed that the overall prevalence of anatomical variations for in situ studies was 6.46%, and through assessment of panoramic radiography and CT or CBCT the overall prevalence shown was 4.20% and 16.25%, respectively. Conclusions: There are two types of variations of the mandibular canal: the retromolar canal and bifid mandibular canal. The frequency variations through assessing in situ, panoramic radiography and CT or CBCT were 6.46%, 4.20% and 16.25%, respectively. PMID:26576624
31. Panoramic shot, Huber Breaker (left), Retail Coal Storage Bins ...
31. Panoramic shot, Huber Breaker (left), Retail Coal Storage Bins (center), Boney Elevator (right) Photographs taken by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA
Binocular Interactions Underlying the Classic Optomotor Responses of Flying Flies
Duistermars, Brian J.; Care, Rachel A.; Frye, Mark A.
2012-01-01
In response to imposed course deviations, the optomotor reactions of animals reduce motion blur and facilitate the maintenance of stable body posture. In flies, many anatomical and electrophysiological studies suggest that disparate motion cues stimulating the left and right eyes are not processed in isolation but rather are integrated in the brain to produce a cohesive panoramic percept. To investigate the strength of such inter-ocular interactions and their role in compensatory sensory–motor transformations, we utilize a virtual reality flight simulator to record wing and head optomotor reactions by tethered flying flies in response to imposed binocular rotation and monocular front-to-back and back-to-front motion. Within a narrow range of stimulus parameters that generates large contrast insensitive optomotor responses to binocular rotation, we find that responses to monocular front-to-back motion are larger than those to panoramic rotation, but are contrast sensitive. Conversely, responses to monocular back-to-front motion are slower than those to rotation and peak at the lowest tested contrast. Together our results suggest that optomotor responses to binocular rotation result from the influence of non-additive contralateral inhibitory as well as excitatory circuit interactions that serve to confer contrast insensitivity to flight behaviors influenced by rotatory optic flow. PMID:22375108
A Unified Framework for Street-View Panorama Stitching
Li, Li; Yao, Jian; Xie, Renping; Xia, Menghan; Zhang, Wei
2016-01-01
In this paper, we propose a unified framework to generate a pleasant and high-quality street-view panorama by stitching multiple panoramic images captured from the cameras mounted on the mobile platform. Our proposed framework is comprised of four major steps: image warping, color correction, optimal seam line detection and image blending. Since the input images are captured without a precisely common projection center from the scenes with the depth differences with respect to the cameras to different extents, such images cannot be precisely aligned in geometry. Therefore, an efficient image warping method based on the dense optical flow field is proposed to greatly suppress the influence of large geometric misalignment at first. Then, to lessen the influence of photometric inconsistencies caused by the illumination variations and different exposure settings, we propose an efficient color correction algorithm via matching extreme points of histograms to greatly decrease color differences between warped images. After that, the optimal seam lines between adjacent input images are detected via the graph cut energy minimization framework. At last, the Laplacian pyramid blending algorithm is applied to further eliminate the stitching artifacts along the optimal seam lines. Experimental results on a large set of challenging street-view panoramic images captured form the real world illustrate that the proposed system is capable of creating high-quality panoramas. PMID:28025481
Shahidi, Shoaleh; Zamiri, Barbad; Abolvardi, Masoud; Akhlaghian, Marzieh; Paknahad, Maryam
2018-01-01
Statement of the Problem: Accurate measurement of the available bone height is an essential step in the pre-surgical phase of dental implantation. Panoramic radiography is a unique technique in the pre-surgical phase of dental implantations because of its low cost, relatively low-dose, and availability. Purpose: This article aimed to assess the reliability of dental panoramic radiographs in the accurate measurement of the vertical bone height with respect to the horizontal location of the alveolar crest. Materials and Method: 132 cone-beam computed tomography (CBCT) of the edentulous mandibular molar area and dental panoramic radiograph of 508 patients were selected. Exclusion criteria were bone abnormalities and detectable ideal information on each modality. The alveolar ridge morphology was categorized into 7 types according to the relative horizontal location of the alveolar crest to the mandibular canal based on CBCT findings. The available bone height (ABH) was defined as the distance between the upper border of the mandibular canal and alveolar crest. One oral radiologist and one oral surgeon measured the available bone height twice on each modality with a 7-dayinterval. Results: We found a significant correlation between dental panoramic radiographs and cone-beam computed tomography values (ICC=0.992, p< 0.001). A positive correlation between the horizontal distance of the alveolar crest to the mandibular canal and measured differences between two radiographic modalities had been found (r=0.755, p< 0.001). For each single unit of increase in the horizontal distance of the alveolar crest to the mandibular canal, dental panoramic radiographs showed 0.87 unit of overestimation (p< 0.001). Conclusion: Dental panoramic radiographs can be employed safely in the pre-surgical phase of dental implantation in posterior alveolus of mandible, especially in routine and simple cases. PMID:29854881
Moeintaghavi, Amir; Hosseinizarch, Hossein; Tabassi, Sara Mohammadzadeh
2014-07-01
Osteoporosis and periodontitis are two separate diseases with different origins and manifestations. It is believed that these diseases linked together, because they both lead to bone damage, some risk factors are similar, they both have the highest prevalence in middle-aged and older women. Some studies showed that the use of panoramic radiography and special indices could be reliable tools for osteoporosis screening. This study was performed to evaluate the relationship between periodontal disease and jaw osteoporotic indices. Eighty-two patients with chronic periodontitis and 80 healthy individuals were selected, they had been referred to a private oral and maxillofacial radiology clinic to take a panoramic radiograph. Then panoramic indicators; including the mandibular cortical index (MCI), mental index (MI), and panoramic mandible index (PMI) in both groups were measured, recorded and analyzed. The mean age of investigated individuals was 39/8 ± 9/33. 58.6% of participants were females and 41.4% were males. MI and PMI levels in the periodontal group were more than the periodontally healthy group, but the differences between the two groups was not statistically significant (p = 0.808 and p = 0.102 respectively). The MCI level was significantly different between two groups (p = 0.028). The results of this study showed that there is significant relationship between MCI in panoramic radiography and chronic periodontitis. It is suggested to perform more studies to confrm if this index could be used for screening and indicating of bone status in high risk individuals. This study did not show a strong evidence of a relationship between osteoporosis and periodontitis. Since panoramic radiographs are routinely used for screening in dental practice, any association between radiomorphometric indices of mandible in periodontitis patients might be useful in prediction of osteoporosis in patients referring to dental clinics.
Optical domain analog to digital conversion methods and apparatus
Vawter, Gregory A
2014-05-13
Methods and apparatus for optical analog to digital conversion are disclosed. An optical signal is converted by mapping the optical analog signal onto a wavelength modulated optical beam, passing the mapped beam through interferometers to generate analog bit representation signals, and converting the analog bit representation signals into an optical digital signal. A photodiode receives an optical analog signal, a wavelength modulated laser coupled to the photodiode maps the optical analog signal to a wavelength modulated optical beam, interferometers produce an analog bit representation signal from the mapped wavelength modulated optical beam, and sample and threshold circuits corresponding to the interferometers produce a digital bit signal from the analog bit representation signal.
Nackaerts, Olivia; Gijbels, Frieda; Sanna, Anna-Maria; Jacobs, Reinhilde
2008-03-01
The aim was to explore the relation between radiographic bone quality on panoramic radiographs and relative alveolar bone level. Digital panoramic radiographs of 94 female patients were analysed (mean age, 44.5; range, 35-74). Radiographic density of the alveolar bone in the premolar region was determined using Agfa Musica software. Alveolar bone level and bone quality index (BQI) were also assessed. Relationships between bone density and BQI on one hand and the relative loss of alveolar bone level on the other were assessed. Mandibular bone density and loss of alveolar bone level were weakly but significantly negatively correlated for the lower premolar area (r = -.27). The BQI did not show a statistically significant relation to alveolar bone level. Radiographic mandibular bone density on panoramic radiographs shows a weak but significant relation to alveolar bone level, with more periodontal breakdown for less dense alveolar bone.
Automatic segmentation of mandible in panoramic x-ray.
Abdi, Amir Hossein; Kasaei, Shohreh; Mehdizadeh, Mojdeh
2015-10-01
As the panoramic x-ray is the most common extraoral radiography in dentistry, segmentation of its anatomical structures facilitates diagnosis and registration of dental records. This study presents a fast and accurate method for automatic segmentation of mandible in panoramic x-rays. In the proposed four-step algorithm, a superior border is extracted through horizontal integral projections. A modified Canny edge detector accompanied by morphological operators extracts the inferior border of the mandible body. The exterior borders of ramuses are extracted through a contour tracing method based on the average model of mandible. The best-matched template is fetched from the atlas of mandibles to complete the contour of left and right processes. The algorithm was tested on a set of 95 panoramic x-rays. Evaluating the results against manual segmentations of three expert dentists showed that the method is robust. It achieved an average performance of [Formula: see text] in Dice similarity, specificity, and sensitivity.
Statistical estimation of the potential possibilities for panoramic hydro-optic laser sensing
NASA Astrophysics Data System (ADS)
Shamanaev, Vitalii S.; Lisenko, Andrey A.
2017-11-01
For statistical estimation of the potential possibilities of the lidar with matrix photodetector placed on board an aircraft, the nonstationary equation of laser sensing of a complex multicomponent sea water medium is solved by the Monte Carlo method. The lidar return power is estimated for various optical sea water characteristics in the presence of solar background radiation. For clear waters and brightness of external background illumination of 50, 1, and 10-3 W/(m2ṡμmṡsr), the signal/noise ratio (SNR) exceeds 10 to water depths h = 45-50 m. For coastal waters, SNR >= 10 for h = 17-24 m, whereas for turbid sea waters, SNR >= 10 only to depths h = 8-12 m. Results of statistical simulation have shown that the lidar system with optimal parameters can be used for water sensing to depths of 50 m.
NASA Astrophysics Data System (ADS)
Bliskavitskiĭ, A. A.; Vladimirov, Yu K.; Tambiev, Yu A.; Shelkov, N. V.
1989-08-01
Theoretical and experimental investigations were made of wide-band low-loss matching of an InGaAsP heterolaser to a microwave modulator in the gigahertz range. The results of panoramic measurements of the standing-wave ratio of the laser were used to estimate the components of the equivalent electrical circuit of the laser and to synthesize a passive microstrip matching circuit which increased by more than 10 dB the efficiency of modulation of the laser radiation intensity in a 2-3.4 GHz band of modulating frequencies.
Vazquez, L; Nizamaldin, Y; Combescure, C; Nedir, R; Bischof, M; Dohan Ehrenfest, D M; Carrel, J-P; Belser, U C
2013-01-01
Conventional panoramic radiography, a widely used radiographic examination tool in implant treatment planning, allows evaluation of the available bone height before inserting posterior mandibular implants. Image distortion and vertical magnification due to projection geometry is well described for rotational panoramic radiographs. To assess the accuracy of vertical height measurements on direct digital panoramic radiographs, implants and metal balls positioned in the posterior mandible were used as radio-opaque reference objects. The reproducibility of the measuring method was assessed by the inter- and intraobserver agreements. Direct digital panoramic radiographs, performed using a Kodak 8000C (Eastman Kodak Company, Rochester, NY), of 17 partially edentulous patients (10 females, 7 males, mean age 65 years) were selected from an X-ray database gathered during routine clinical evaluation of implant sites. Proprietary software and a mouse-driven calliper were used to measure the radiological length of 25 implants and 18 metal reference balls, positioned in mandibular posterior segments. The distortion ratio (DR) was calculated by dividing the radiological implant length by the implant's real length and the radiological ball height by the ball's real height. Mean vertical DR was 0.99 for implants and 0.97 for balls, and was unrelated to mandibular sites, side, age, gender or observer. Inter- and intraobserver agreements were acceptable for both reference objects. Vertical measurements had acceptable accuracy and reproducibility when a software-based calibrated measurement tool was used, confirming that digital panoramic radiography can be reliably utilized to determine the pre-operative implant length in premolar and molar mandibular segments.
NASA Technical Reports Server (NTRS)
2004-01-01
This hematite abundance index map helps geologists choose hematite-rich locations to visit around Opportunity's landing site. Blue dots equal areas low in hematite and red dots equal areas high in hematite.
Why Hematite Geologists are eager to reach the hematite-rich area in the upper left to closely examine the soil, which may reveal secrets about how the hematite got to this location. Knowing how the hematite on Mars was formed may help scientists characterize the past environment and determine whether that environment provided favorable conditions for life.The Plan Over the next few sols, engineers and scientists plan to drive Opportunity to the hematite-rich area then attempt a 'pre-trench' sequence, taking measurements with the Moessbauer spectrometer, alpha particle X-ray spectrometer and microscopic imager. Next, the plan is to trench the hematite rich area by spinning one wheel in place to 'dig' a shallow hole. Finally, scientists will aim the instrument arm back at the same area where it pre-trenched to get post-trench data with the same instruments to compare and contrast the levels of hematite and revel how deep the hematite lays in the dirt.Index Map Details The hematite abundance index map was created using data from the miniature thermal emission instrument. The first layer is a mosaic of panoramic camera images taken prior to egress, when Opportunity was still on the lander. The colored dots represent data collected by the miniature thermal emission spectrometer on sol 11, after Opportunity had rolled off of the lander and the rover was located at the center of the blue semi-circle.The spectrometer is located on the panoramic camera mast. On sol 11, it took a low-angle 180-degree panorama of the area in front of the rover, indicated by the blue shaded dots. The instrument then raised the angle of its field of view a few degrees higher to sweep around behind the rover, indicated by the red and yellow dots offset at the far sides of the image.JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA's Office of Space Science, Washington, D.C.Tanaka, Hiroshi; Okumura, Naoki; Koizumi, Noriko; Sotozono, Chie; Sumii, Yasuhiro; Kinoshita, Shigeru
2017-05-01
To observe the most peripheral region of the corneal endothelial cell (CEC) layer as long as optically recordable by use of a prototype slit-scanning wide-field contact specular microscope and produce a panoramic image to evaluate the variation of CEC density with ageing. Observational case series study. This study involved 15 eyes of 15 normal healthy subjects divided into three groups according to age: A (20-40 years), B (41-60 years) and C (>60 years). The corneal endothelial layer of each eye was recorded in a horizontal direction, from nasal to temporal, with a slit-scanning wide-field contact specular microscope (Konan) and endothelial cell density (ECD) in three specific regions (central, mid-peripheral, and peripheral) was automatically calculated via built-in analysis software. Corneal endothelial images from near the surgical limbus to limbus in all eyes were clearly recorded and panoramic images were made by combining still images. ECD in groups A, B and C were 2809±186, 2717±91 and 2580±129 cells/mm 2 at the centre, 2902±242, 2772±97 and 2604±187 cells/mm 2 at the mid-periphery and 2893±308, 2691±99 and 2533±112 cells/mm 2 at the periphery. Significance differences in ECD was found between groups A and C in all regions and groups between B and C at mid-peripheral region. A prototype slit-scanning wide-field contact specular microscope enabled us to record the endothelial layer from the surgical limbus to limbus of the cornea and compare specific areas among subjects, and showed that ECD in each region of the cornea decreases with ageing. UMIN000021264, Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Optical Synchrotron Precursors of Radio Hypernovae
NASA Astrophysics Data System (ADS)
Nakauchi, Daisuke; Kashiyama, Kazumi; Nagakura, Hiroki; Suwa, Yudai; Nakamura, Takashi
2015-06-01
We examine the bright radio synchrotron counterparts of low-luminosity gamma-ray bursts and relativistic supernovae (SNe) and find that they can be powered by spherical hypernova (HN) explosions. Our results imply that radio-bright HNe are driven by relativistic jets that are choked deep inside the progenitor stars or quasi-spherical magnetized winds from fast-rotating magnetars. We also consider the optical synchrotron counterparts of radio-bright HNe and show that they can be observed as precursors several days before the SN peak with an r-band absolute magnitude of {{M}r}∼ -14 mag. While previous studies suggested that additional trans-relativistic components are required to power the bright radio emission, we find that they overestimated the energy budget of the trans-relativistic component by overlooking some factors related to the minimum energy of non-thermal electrons. If an additional trans-relativistic component exists, then a much brighter optical precursor with {{M}r}∼ -20 mag can be expected. Thus, the scenarios of radio-bright HNe can be distinguished by using optical precursors, which can be detectable from ≲ 100 Mpc by current SN surveys like the Kiso SN Survey, Palomar Transient Factory, and Panoramic Survey Telescope & Rapid Response System.
Harada, Nana; Beloor Vasudeva, Subash; Matsuda, Yukiko; Seki, Kenji; Kapila, Rishabh; Ishikawa, Noboru; Okano, Tomohiro; Sano, Tsukasa
2015-01-01
The purpose of this study was to compare findings on the relationship between impacted molar roots and the mandibular canal in panoramic and three-dimensional cone-beam CT (CBCT) images to identify those that indicated risk of postoperative paresthesia. The relationship between impacted molars and the mandibular canal was first classified using panoramic images. Only patients in whom the molar roots were either in contact with or superimposed on the canal were evaluated using CBCT. Of 466 patients examined using both panoramic and CBCT images, 280 underwent surgical extraction of an impacted molar, and 15 of these (5%) reported postoperative paresthesia. The spatial relationship between the impacted third molar root and the mandibular canal was determined by examining para-sagittal sections (lingual, buccal, inter-radicular, inferior, and combinations) obtained from the canal to the molar root and establishing the proximity of the canal to the molar root (in contact with or without loss of the cortical border and separate). The results revealed that darkening of the roots with interruption of the mandibular canal on panoramic radiographs and the inter-radicular position of the canal in CBCT images were characteristic findings indicative of risk of postoperative paresthesia. These results suggest that careful surgical intervention is required in patients with the above characteristics.
Genotoxic effects of X-rays in buccal mucosal cells in children subjected to dental radiographs
Preethi, Naveena; Chikkanarasaiah, Nagarathna; Bethur, Shakuntala S
2016-01-01
Objectives/Aims: Bitewing and digital dental panoramic radiographs have become important adjuvants for successful dental practice in pediatric dentistry. Both methods lead to genetic changes in the oral buccal epithelium that have not yet been satisfactorily explored. The aim of the present study was to evaluate the genotoxic effects induced by X-ray radiation from bitewing and panoramic dental radiography in exfoliated buccal epithelial cells of children, using the Buccal Micronucleus Cytome assay. Materials and Methods: Children (n=40) who met the inclusion criteria and provided signed informed consent were included in the study. Children were selected for undergoing bitewing radiographs (group 1; n=20) or digital dental panoramic radiographs (group 2; n=20). Exfoliated buccal mucosal cells were obtained by scraping the right/left buccal mucosa with a wooden spatula immediately before the X-ray exposure and 10±2 days after exposure. Results: The frequency of micronuclei increases significantly post exposure to both bitewing and digital dental panoramic radiography in children, but the frequency was higher in bitewing radiographs. Conclusion: It was concluded that the frequency of micronuclei increases post exposure to both bitewing and digital panoramic radiographs. Increased radiation exposure results in an increase in micronuclei frequency. PMID:29607062
Gong, Yuanzheng; Seibel, Eric J.
2017-01-01
Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection. PMID:28286351
NASA Astrophysics Data System (ADS)
Gong, Yuanzheng; Seibel, Eric J.
2017-01-01
Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.
60. PANORAMIC VIEW OF DOWNSTREAM FACE. No date, but believed ...
60. PANORAMIC VIEW OF DOWNSTREAM FACE. No date, but believed to be just subsequent to construction. Photograph by C.G. Duffey, Long Beach, California. (38' x 11' framed print). - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA
Image processing for optical mapping.
Ravindran, Prabu; Gupta, Aditya
2015-01-01
Optical Mapping is an established single-molecule, whole-genome analysis system, which has been used to gain a comprehensive understanding of genomic structure and to study structural variation of complex genomes. A critical component of Optical Mapping system is the image processing module, which extracts single molecule restriction maps from image datasets of immobilized, restriction digested and fluorescently stained large DNA molecules. In this review, we describe robust and efficient image processing techniques to process these massive datasets and extract accurate restriction maps in the presence of noise, ambiguity and confounding artifacts. We also highlight a few applications of the Optical Mapping system.
Oenning, Anne Caroline Costa; Neves, Frederico Sampaio; Alencar, Phillipe Nogueira Barbosa; Prado, Rodrigo Freire; Groppo, Francisco Carlos; Haiter-Neto, Francisco
2014-08-01
The aim of the present study was to compare panoramic radiography and cone beam computed tomography (CBCT) for the assessment of external root resorption (ERR) of second molars associated with impacted third molars. In addition, the prevalence of ERR in second molars and the inclinations of the third molars more associated with ERR were investigated in both imaging methods. The sample consisted of 66 individuals with maxillary and mandibular impacted third molars (n = 188) seen on panoramic radiographs and CBCT images. The presence of ERR on the adjacent second molar was investigated, and the position of the third molar was determined using Winter's classification (vertical, horizontal, mesioangular, distoangular, and transverse). Statistical analysis was performed using the χ(2) test, Fisher exact test, and 2-proportion Z test (the significance level was set at 5%). A significantly greater number of cases of ERR (P < .0001) was diagnosed from CBCT images (n = 43, 22.88%) than panoramic radiographs (n = 10, 5.31%). The agreement between the panoramic radiographs and CBCT scans for diagnosing ERR was 4.3%. Mandibular third molars in mesioangular and horizontal inclinations were more likely to cause resorption of the adjacent teeth. CBCT should be indicated for the diagnosis of ERR in second molars when direct contact between the mandibular second and third molars has been observed on panoramic radiographs, especially in mesioangular or horizontal impactions. Furthermore, considering the propensity of these teeth to cause ERR in second molars, third molar prophylactic extraction could be suggested. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Experiments in interactive panoramic cinema
NASA Astrophysics Data System (ADS)
Fisher, Scott S.; Anderson, Steve; Ruiz, Susana; Naimark, Michael; Hoberman, Perry; Bolas, Mark; Weinberg, Richard
2005-03-01
For most of the past 100 years, cinema has been the premier medium for defining and expressing relations to the visible world. However, cinematic spectacles delivered in darkened theaters are predicated on a denial of both the body and the physical surroundings of the spectators who are watching it. To overcome these deficiencies, filmmakers have historically turned to narrative, seducing audiences with compelling stories and providing realistic characters with whom to identify. This paper describes several research projects in interactive panoramic cinema that attempt to sidestep the narrative preoccupations of conventional cinema and instead are based on notions of space, movement and embodied spectatorship rather than traditional storytelling. Example projects include interactive works developed with the use of a unique 360 degree camera and editing system, and also development of panoramic imagery for a large projection environment with 14 screens on 3 adjacent walls in a 5-4-5 configuration with observations and findings from an experiment projecting panoramic video on 12 of the 14, in a 4-4-4 270 degree configuration.
Panoramic projection avionics displays
NASA Astrophysics Data System (ADS)
Kalmanash, Michael H.
2003-09-01
Avionics projection displays are entering production in advanced tactical aircraft. Early adopters of this technology in the avionics community used projection displays to replace or upgrade earlier units incorporating direct-view CRT or AMLCD devices. Typical motivation for these upgrades were the alleviation of performance, cost and display device availability concerns. In these systems, the upgraded (projection) displays were one-for-one form / fit replacements for the earlier units. As projection technology has matured, this situation has begun to evolve. The Lockheed-Martin F-35 is the first program in which the cockpit has been specifically designed to take advantage of one of the more unique capabilities of rear projection display technology, namely the ability to replace multiple small screens with a single large conformal viewing surface in the form of a panoramic display. Other programs are expected to follow, since the panoramic formats enable increased mission effectiveness, reduced cost and greater information transfer to the pilot. Some of the advantages and technical challenges associated with panoramic projection displays for avionics applications are described below.
Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing
NASA Astrophysics Data System (ADS)
Li-Chee-Ming, J.; Armenakis, C.
2017-05-01
This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.
NASA Technical Reports Server (NTRS)
2004-01-01
This image mosaic illustrates how scientists use the color calibration targets (upper left) located on both Mars Exploration Rovers to fine-tune the rovers' sense of color. In the center, spectra, or light signatures, acquired in the laboratory of the colored chips on the targets are shown as lines. Actual data from Mars Exploration Rover Spirit's panoramic camera is mapped on top of these lines as dots. The plot demonstrates that the observed colors of Mars match the colors of the chips, and thus approximate the red planet's true colors. This finding is further corroborated by the picture taken on Mars of the calibration target, which shows the colored chips as they would appear on Earth.
A panoramic imaging system based on fish-eye lens
NASA Astrophysics Data System (ADS)
Wang, Ye; Hao, Chenyang
2017-10-01
Panoramic imaging has been closely watched as one of the major technologies of AR and VR. Mainstream panoramic imaging techniques lenses include fish-eye lenses, image splicing, and catadioptric imaging system. Meanwhile, fish-eyes are widely used in the big picture video surveillance. The advantage of fish-eye lenses is that they are easy to operate and cost less, but how to solve the image distortion of fish-eye lenses has always been a very important topic. In this paper, the image calibration algorithm of fish-eye lens is studied by comparing the method of interpolation, bilinear interpolation and double three interpolation, which are used to optimize the images.
Neves, F S; Souza, T C; Almeida, S M; Haiter-Neto, F; Freitas, D Q; Bóscolo, F N
2012-01-01
Objectives The aim of this study was to assess the reliability of four panoramic radiographic findings, both individually and in association, in predicting the absence of corticalization between the mandibular canal and the third molar on cone beam CT (CBCT) images. Methods The sample consisted of 72 individuals (142 mandibular third molars) who underwent pre-operative radiographic evaluation before extraction of impacted mandibular third molars. On panoramic radiographs, the most common signs of corticalization (darkening of roots, diversion of mandibular canal, narrowing of mandibular canal and interruption of white line) and the presence or absence of corticalization between the mandibular third molar and the mandibular canal on CBCT images were evaluated. Results Darkening of roots and interruption of white line associated with the absence of corticalization between the mandibular third molar and the mandibular canal on CBCT images were statistically significant, both as isolated findings (p = 0.0001 and p = 0.0006, respectively) and in association (p = 0.002). No statistically significant association was observed for the other panoramic radiographic findings, either individually or in association (p > 0.05). Conclusion Darkening of roots and interruption of white line observed on panoramic radiographs, both as isolated findings and in association, were effective in determining the risk relationship between the tooth roots and the mandibular canal, requiring three-dimensional evaluation of the case. PMID:22282507
An improved ASIFT algorithm for indoor panorama image matching
NASA Astrophysics Data System (ADS)
Fu, Han; Xie, Donghai; Zhong, Ruofei; Wu, Yu; Wu, Qiong
2017-07-01
The generation of 3D models for indoor objects and scenes is an attractive tool for digital city, virtual reality and SLAM purposes. Panoramic images are becoming increasingly more common in such applications due to their advantages to capture the complete environment in one single image with large field of view. The extraction and matching of image feature points are important and difficult steps in three-dimensional reconstruction, and ASIFT is a state-of-the-art algorithm to implement these functions. Compared with the SIFT algorithm, more feature points can be generated and the matching accuracy of ASIFT algorithm is higher, even for the panoramic images with obvious distortions. However, the algorithm is really time-consuming because of complex operations and performs not very well for some indoor scenes under poor light or without rich textures. To solve this problem, this paper proposes an improved ASIFT algorithm for indoor panoramic images: firstly, the panoramic images are projected into multiple normal perspective images. Secondly, the original ASIFT algorithm is simplified from the affine transformation of tilt and rotation with the images to the only tilt affine transformation. Finally, the results are re-projected to the panoramic image space. Experiments in different environments show that this method can not only ensure the precision of feature points extraction and matching, but also greatly reduce the computing time.
Optical mapping and its potential for large-scale sequencing projects.
Aston, C; Mishra, B; Schwartz, D C
1999-07-01
Physical mapping has been rediscovered as an important component of large-scale sequencing projects. Restriction maps provide landmark sequences at defined intervals, and high-resolution restriction maps can be assembled from ensembles of single molecules by optical means. Such optical maps can be constructed from both large-insert clones and genomic DNA, and are used as a scaffold for accurately aligning sequence contigs generated by shotgun sequencing.
10 CFR 36.23 - Access control.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Access control. 36.23 Section 36.23 Energy NUCLEAR... Requirements for Irradiators § 36.23 Access control. (a) Each entrance to a radiation room at a panoramic... radiation room at a panoramic irradiator must have an independent backup access control to detect personnel...
10 CFR 36.23 - Access control.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Access control. 36.23 Section 36.23 Energy NUCLEAR... Requirements for Irradiators § 36.23 Access control. (a) Each entrance to a radiation room at a panoramic... radiation room at a panoramic irradiator must have an independent backup access control to detect personnel...
10 CFR 36.23 - Access control.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Access control. 36.23 Section 36.23 Energy NUCLEAR... Requirements for Irradiators § 36.23 Access control. (a) Each entrance to a radiation room at a panoramic... radiation room at a panoramic irradiator must have an independent backup access control to detect personnel...
3. Panoramic view of Broad Street bridge in foreground and ...
3. Panoramic view of Broad Street bridge in foreground and a major portion of the historic bridge. As seem from the top of the American Electric Power building looking south. - Broad Street Bridge, Spanning Scioto River at U.S. Route 40 (Broad Street), Columbus, Franklin County, OH
Pancam multispectral imaging results from the Spirit Rover at Gusev crater
Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; Goetz, W.; Golombek, M.; Grant, J. A.; Greeley, R.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Morris, R.V.; Dobrea, E.Z.N.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Wolff, M.J.; Wang, A.
2004-01-01
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
Pancam multispectral imaging results from the Spirit Rover at Gusev Crater.
Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Blaney, D; Cabrol, N; Calvin, W; Farmer, J; Farrand, W H; Goetz, W; Golombek, M; Grant, J A; Greeley, R; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Moersch, J E; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Wolff, M J; Wang, A
2004-08-06
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
Pancam multispectral imaging results from the Spirit Rover at Gusev Crater
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.;
2004-01-01
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
Miniature curved artificial compound eyes
Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L’Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A.; Franceschini, Nicolas
2013-01-01
In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574
NASA Astrophysics Data System (ADS)
Greenhagen, B.; Paige, D. A.
2007-12-01
It is well known that surface roughness affects spectral slope in the infrared. For the first time, we applied a three-dimensional thermal model to a high resolution lunar topography map to study the effects of surface roughness on lunar thermal emission spectra. We applied a numerical instrument model of the upcoming Diviner Lunar Radiometer Experiment (DLRE) to simulate the expected instrument response to surface roughness variations. The Diviner Lunar Radiometer Experiment (DLRE) will launch in late 2008 onboard the Lunar Reconnaissance Orbiter (LRO). DLRE is a nine-channel radiometer designed to study the thermal and petrologic properties of the lunar surface. DLRE has two solar channels (0.3-3.0 μm high/low sensitivity), three mid-infrared petrology channels (7.55-8.05, 8.10-8.40 8.40-8.70 μm), and four thermal infrared channels (12.5-25, 25-50, 50-100, and 100-200 μm). The topographic data we used was selected from a USGS Hadley Rille DEM (from Apollo 15 Panoramic Camera data) with 10 m resolution (M. Rosiek; personal communication). To remove large scale topographic features, we applied a 200 x 200 pixel boxcar high-pass filter to a relatively flat portion of the DEM. This "flattened" surface roughness map served as the basis for much of this study. We also examined the unaltered topography. Surface temperatures were calculated using a three-dimensional ray tracing thermal model. We created temperature maps at numerous solar incidence angles with nadir viewing geometry. A DLRE instrument model, which includes filter spectral responses and detector fields of view, was applied to the high resolution temperature maps. We studied both the thermal and petrologic effects of surface roughness. For the thermal study, the output of the optics model is a filter specific temperature, scaled to a DLRE footprint of < 500 m. For the petrologic study, we examined the effect of the surface roughness induced spectral slope on the DLRE's ability to locate the Christiansen Feature, which is a good compositional indicator. With multiple thermal infrared channels over a wide spectral range, DLRE will be well suited to measure temperature variations due to surface roughness. Any necessary compensation (e.g. correction for spectral slope) to the mid-infrared petrology data will be performed.
PRoViScout: a planetary scouting rover demonstrator
NASA Astrophysics Data System (ADS)
Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos
2012-01-01
Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.
An optimization method of VON mapping for energy efficiency and routing in elastic optical networks
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun
2018-03-01
To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.
A Single Molecule Scaffold for the Maize Genome
Zhou, Shiguo; Wei, Fusheng; Nguyen, John; Bechner, Mike; Potamousis, Konstantinos; Goldstein, Steve; Pape, Louise; Mehan, Michael R.; Churas, Chris; Pasternak, Shiran; Forrest, Dan K.; Wise, Roger; Ware, Doreen; Wing, Rod A.; Waterman, Michael S.; Livny, Miron; Schwartz, David C.
2009-01-01
About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/∼23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/∼2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars. PMID:19936062
The Panoramic Camera (Pancam) Investigation on the NASA 2003 Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.
2003-01-01
The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover.
PANORAMIC VIEW OF SHIPYARD NO. 3, LOOKING SOUTH. FROM LEFT ...
PANORAMIC VIEW OF SHIPYARD NO. 3, LOOKING SOUTH. FROM LEFT TO CENTER ARE THE FORGE SHOP, MACHINE SHOP, GENERAL WAREHOUSE, AND RIGGERS LOFT/PAINT SHOP/SHEET METAL SHOP. FROM CENTER TO RIGHT ARE THE FIVE BASINS - Rosie the Riveter National Historical Park, Richmond Shipyard No. 3, Point Potrero, Richmond, Contra Costa County, CA
9. PANORAMIC VIEW WEST, FERNOW EXPERIMENTAL FOREST RESIDENCE, CHEAT DISTRICT ...
9. PANORAMIC VIEW WEST, FERNOW EXPERIMENTAL FOREST RESIDENCE, CHEAT DISTRICT RANGER RESIDENCE AND GARAGE, IMPLEMENT BUILDING, SEED EXTRACTOR BUILDING, CONE DRYING SHED, PUMP HOUSE, OIL HOUSE, CHEAT DISTRICT RANGER OFFICE, WASH HOUSE, AND NURSERY MANAGER'S RESIDENCE. PLANTING BEDS IN BACKGROUND. - Parsons Nursery, South side of U.S. Route 219, Parsons, Tucker County, WV
10 CFR 36.27 - Fire protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Fire protection. 36.27 Section 36.27 Energy NUCLEAR... Requirements for Irradiators § 36.27 Fire protection. (a) The radiation room at a panoramic irradiator must... become fully shielded if a fire is detected. (b) The radiation room at a panoramic irradiator must be...
Mobile Panoramic Video Applications for Learning
ERIC Educational Resources Information Center
Multisilta, Jari
2014-01-01
The use of videos on the internet has grown significantly in the last few years. For example, Khan Academy has a large collection of educational videos, especially on STEM subjects, available for free on the internet. Professional panoramic video cameras are expensive and usually not easy to carry because of the large size of the equipment.…
Cone beam computed tomography in veterinary dentistry.
Van Thielen, Bert; Siguenza, Francis; Hassan, Bassam
2012-01-01
The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstructions were created using specialized software. Image quality and visibility of anatomical landmarks were subjectively assessed by two observers. Good image quality was obtained for the MPR para-sagittal reconstructions through multiple teeth. The image quality of the panoramic reconstructions of dogs was moderate while the panoramic reconstructions of cats were poor since the images were associated with an increased noise level. Segmental panoramic reconstructions of the mouth seem to be useful for studying the dental anatomy especially in dogs. The results of this study using human dental CBCT technology demonstrate the potential of this scanning technology in veterinary medicine. Unfortunately, the moderate image quality obtained with the CBCT technique reported here seems to be inferior to the diagnostic image quality obtained from 2-dimensional dental radiographs. Further research is required to optimize scanning and reconstruction protocols for veterinary applications.
Beaulieu, C F; Jeffrey, R B; Karadi, C; Paik, D S; Napel, S
1999-07-01
To determine the sensitivity of radiologist observers for detecting colonic polyps by using three different data review (display) modes for computed tomographic (CT) colonography, or "virtual colonoscopy." CT colonographic data in a patient with a normal colon were used as base data for insertion of digitally synthesized polyps. Forty such polyps (3.5, 5, 7, and 10 mm in diameter) were randomly inserted in four copies of the base data. Axial CT studies, volume-rendered virtual endoscopic movies, and studies from a three-dimensional mode termed "panoramic endoscopy" were reviewed blindly and independently by two radiologists. Detection improved with increasing polyp size. Trends in sensitivity were dependent on whether all inserted lesions or only visible lesions were considered, because modes differed in how completely the colonic surface was depicted. For both reviewers and all polyps 7 mm or larger, panoramic endoscopy resulted in significantly greater sensitivity (90%) than did virtual endoscopy (68%, P = .014). For visible lesions only, the sensitivities were 85%, 81%, and 60% for one reader and 65%, 62%, and 28% for the other for virtual endoscopy, panoramic endoscopy, and axial CT, respectively. Three-dimensional displays were more sensitive than two-dimensional displays (P < .05). The sensitivity of panoramic endoscopy is higher than that of virtual endoscopy, because the former displays more of the colonic surface. Higher sensitivities for three-dimensional displays may justify the additional computation and review time.
Liu, W; Yin, W; Zhang, R; Li, J; Zheng, Y
2015-06-01
The aim of this study was to evaluate the predictive value of panoramic radiography on inferior alveolar nerve (IAN) injury after extraction of the mandibular third molar. Relevant studies up to 1 June 2014 that discussed the association of panoramic radiography signs and post-mandibular third molar extraction IAN injury were systematically retrieved from the databases of PubMed, Embase, Springerlink, Web of Science and Cochrane library. The effect size of pooled sensitivity, specificity, positive likelihood ratios (PLR), negative likelihood ratios (NLR) and diagnostic odds ratio (DOR) with their 95% confidence intervals (CI) were statistically analysed with Meta-disc 1.4 software. Nine articles were included in this meta-analysis. The pooled estimates of sensitivity and specificity were 0.56 (95% CI: 0.50-0.61) and 0.86 (95% CI: 0.84-0.87), respectively. The overall PLR was 3.46 (95% CI: 2.02-5.92) and overall NLR was 0.58 (95% CI: 0.45-0.73). The pooled estimate of DOR was 6.49 (95% CI: 2.92-14.44). The area under the summary receiver operating characteristic curve was 0.7143 ± 0.0604. The meta-analysis indicated that interpretation of panoramic radiography based on darkening of the root had a high specificity in predicting IAN injury after mandibular third molar extraction. However, the ability of this panoramic radiography marker to detect true positive IAN injury was not satisfactory. © 2015 Australian Dental Association.
Matos, Luiz Felipe; Giordano, Marcos; Cardoso, Gustavo Novaes; Farias, Rafael Baptista; E Albuquerque, Rodrigo Pires
2015-01-01
To make a comparative inter and intraobserver analysis on measurements of the anatomical axis between panoramic radiographs of the lower limbs in anteroposterior (AP) view with bipedal weight-bearing, on short film. An accuracy study comparing radiographic measurements on 47 knees of patients attending the knee surgery outpatient clinic due to osteoarthritis. The radiographic evaluation used was as standardized for the total knee arthroplasty program, including panoramic AP views of the lower limbs and short radiographs of the knees in AP and lateral views, all with bipedal weight-bearing. Following this, the anatomical axis of the lower limbs or the femorotibial angle was measured by five independent examiners on the panoramic and short AP radiographs; three of the examiners were considered to be more experienced and two, less experienced. All the measurements were made again by the same examiners after an interval of not less than 15 days. The statistical analysis was performed using the intraclass correlation coefficient, in order to evaluate the inter and intraobserver concordance of the anatomical axis measurements. From the statistical analysis, it was observed that there was strongly significant concordance between the anatomical axis measurements on the panoramic and short radiographs, for all the five examiners and for both measurements. Under the conditions studied, short radiographs were equivalent to panoramic radiographs for evaluating the anatomical axis of the lower limbs in patients with advanced osteoarthritis. The measurements used also showed high rates of inter and intraobserver concordance and reproducibility.
A new screening pathway for identifying asymptomatic patients using dental panoramic radiographs
NASA Astrophysics Data System (ADS)
Hayashi, Tatsuro; Matsumoto, Takuya; Sawagashira, Tsuyoshi; Tagami, Motoki; Katsumata, Akitoshi; Hayashi, Yoshinori; Muramatsu, Chisako; Zhou, Xiangrong; Iida, Yukihiro; Matsuoka, Masato; Katagi, Kiyoji; Fujita, Hiroshi
2012-03-01
To identify asymptomatic patients is the challenging task and the essential first step in diagnosis. Findings of dental panoramic radiographs include not only dental conditions but also radiographic signs that are suggestive of possible systemic diseases such as osteoporosis, arteriosclerosis, and maxillary sinusitis. Detection of such signs on panoramic radiographs has a potential to provide supplemental benefits for patients. However, it is not easy for general dental practitioners to pay careful attention to such signs. We addressed the development of a computer-aided detection (CAD) system that detects radiographic signs of pathology on panoramic images, and the design of the framework of new screening pathway by cooperation of dentists and our CAD system. The performance evaluation of our CAD system showed the sensitivity and specificity in the identification of osteoporotic patients were 92.6 % and 100 %, respectively, and those of the maxillary sinus abnormality were 89.6 % and 73.6 %, respectively. The detection rate of carotid artery calcifications that suggests the need for further medical evaluation was approximately 93.6 % with 4.4 false-positives per image. To validate the utility of the new screening pathway, preliminary clinical trials by using our CAD system were conducted. To date, 223 panoramic images were processed and 4 asymptomatic patients with suspected osteoporosis, 7 asymptomatic patients with suspected calcifications, and 40 asymptomatic patients with suspected maxillary sinusitis were detected in our initial trial. It was suggested that our new screening pathway could be useful to identify asymptomatic patients with systemic diseases.
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-11-01
Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.
Panoramic ECG display versus conventional ECG: ischaemia detection by critical care nurses.
Wilson, Nick; Hassani, Aimen; Gibson, Vanessa; Lightfoot, Timothy; Zizzo, Claudio
2012-01-01
To compare accuracy and certainty of diagnosis of cardiac ischaemia using the Panoramic ECG display tool plus conventional 12-lead electrocardiogram (ECG) versus 12-lead ECG alone by UK critical care nurses who were members of the British Association of Critical Care Nurses (BACCN). Critically ill patients are prone to myocardial ischaemia. Symptoms may be masked by sedation or analgesia, and ECG changes may be the only sign. Critical care nurses have an essential role in detecting ECG changes promptly. Despite this, critical care nurses may lack expertise in interpreting ECGs and myocardial ischaemia often goes undetected by critical care staff. British Association of Critical Care Nurses (BACCN) members were invited to complete an online survey to evaluate the analysis of two sets of eight ECGs displayed alone and with the new display device. Data from 82 participants showed diagnostic accuracy improved from 67·1% reading ECG traces alone, to 96·0% reading ECG plus Panoramic ECG display tool (P < 0·01, significance level α = 0·05). Participants' diagnostic certainty score rose from 41·7% reading ECG alone to 66·8% reading ECG plus Panoramic ECG display tool (P < 0·01, α = 0·05). The Panoramic ECG display tool improves both accuracy and certainty of detecting ST segment changes among critical care nurses, when compared to conventional 12-lead ECG alone. This benefit was greatest with early ischaemic changes. Critical care nurses who are least confident in reading conventional ECGs benefit the most from the new display. Critical care nurses have an essential role in the monitoring of critically ill patients. However, nurses do not always have the expertise to detect subtle ischaemic ECG changes promptly. Introduction of the Panoramic ECG display tool into clinical practice could lead to patients receiving treatment for myocardial ischaemia sooner with the potential for reduction in morbidity and mortality. © 2012 The Authors. Nursing in Critical Care © 2012 British Association of Critical Care Nurses.
Wakoh, M; Nishikawa, K; Kobayashi, N; Farman, A G; Kuroyanagi, K
2001-02-01
The purpose of this study was to compare the sensitometric properties of and visualization of anatomical structures with Agfa OrthoLux green-sensitive panoramic radiographic film, Agfa ST8G green sensitive panoramic radiographic film, and Kodak Ektavision green-sensitive panoramic radiographic film used in combination with an Agfa Ortho Regular 400 imaging screen, Kodak Ektavision imaging screen, and Kodak Lanex Regular imaging screen. The density response and resolution of panoramic radiographic film/intensifying screen combinations was evaluated by means of Hunter and Driffield curves, modulation transfer functions, and noise-equivalent number of quanta. Image clarity of selected anatomical structures was rated independently by 6 oral and maxillofacial radiologists. The ISO speed for the Agfa OrthoLux panoramic radiographic film combinations was the fastest, and the ISO speed for the Kodak Ektavision green-sensitive panoramic radiographic film combinations was the slowest. The average gradient for the Agfa ST8G systems was relatively steep in comparison with those for the other film/screen combinations. The modulation transfer functions for the Kodak Ektavision film were higher than those for the other films, irrespective of the screen combination used, and those for Agfa OrthoLux film were slightly higher than those for Agfa ST8G film. The noise-equivalent number of quanta for the Agfa ST8G film/screen combinations was lower than those for the other film/screen combinations. The noise-equivalent number of quanta for the Kodak Ektavision film/screen combinations was well within the high-frequency range, whereas Agfa OrthoLux combined with either the Kodak Ektavision imaging screen or the Kodak Lanex Regular imaging screen produced a noise-equivalent number of quanta similar to those of the Kodak Ektavision film/screen combinations in the low-frequency range. Agfa OrthoLux was perceived to provide clearer images of the selected anatomical details than Agfa ST8G, and the Agfa OrthoLux/Agfa Ortho Regular 400 combination was not significantly different from the Kodak Ektavision/Kodak Lanex Regular combination in terms of perceived image quality. Agfa OrthoLux is an improvement over Agfa ST8G in film speed, spatial resolution, granularity, and perceived diagnostic image quality. The Agfa OrthoLux/Agfa Ortho Regular 400 combination did not exceed the Kodak Ektavision film/Kodak Ektavision imaging screen combination in resolution, granularity, or perceived image quality.
Fast luminous blue transients from newborn black holes
NASA Astrophysics Data System (ADS)
Kashiyama, Kazumi; Quataert, Eliot
2015-08-01
Newborn black holes in collapsing massive stars can be accompanied by a fallback disc. The accretion rate is typically super-Eddington and strong disc outflows are expected. Such outflows could be directly observed in some failed explosions of compact (blue supergiants or Wolf-Rayet stars) progenitors, and may be more common than long-duration gamma-ray bursts. Using an analytical model, we show that the fallback disc outflows produce blue UV-optical transients with a peak bolometric luminosity of ˜ 1042-43 erg s- 1 (peak R-band absolute AB magnitudes of -16 to -18) and an emission duration of ˜ a few to ˜10 d. The spectra are likely dominated intermediate mass elements, but will lack much radioactive nuclei and iron-group elements. The above properties are broadly consistent with some of the rapid blue transients detected by Panoramic Survey Telescope & Rapid Response System and Palomar Transient Factory. This scenario can be distinguished from alternative models using radio observations within a few years after the optical peak.
Improved Seam-Line Searching Algorithm for UAV Image Mosaic with Optical Flow.
Zhang, Weilong; Guo, Bingxuan; Li, Ming; Liao, Xuan; Li, Wenzhuo
2018-04-16
Ghosting and seams are two major challenges in creating unmanned aerial vehicle (UAV) image mosaic. In response to these problems, this paper proposes an improved method for UAV image seam-line searching. First, an image matching algorithm is used to extract and match the features of adjacent images, so that they can be transformed into the same coordinate system. Then, the gray scale difference, the gradient minimum, and the optical flow value of pixels in adjacent image overlapped area in a neighborhood are calculated, which can be applied to creating an energy function for seam-line searching. Based on that, an improved dynamic programming algorithm is proposed to search the optimal seam-lines to complete the UAV image mosaic. This algorithm adopts a more adaptive energy aggregation and traversal strategy, which can find a more ideal splicing path for adjacent UAV images and avoid the ground objects better. The experimental results show that the proposed method can effectively solve the problems of ghosting and seams in the panoramic UAV images.
2004-03-06
The red marks in this image, taken by the Mars Exploration Rover Opportunity's panoramic camera, indicate holes made by the rover's rock abrasion tool, located on its instrument deployment device, or "arm." The lower hole, located on a target called "McKittrick," was made on the 30th martian day, or sol, of Opportunity's journey. The upper hole, located on a target called "Guadalupe" was made on sol 34 of the rover's mission. The mosaic image was taken using a blue filter at the "El Capitan" region of the Meridiani Planum, Mars, rock outcrop. The image, shown in a vertical-perspective map projection, consists of images acquired on sols 27, 29 and 30 of the rover's mission. http://photojournal.jpl.nasa.gov/catalog/PIA05513
Illustrative visualization of 3D city models
NASA Astrophysics Data System (ADS)
Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian
2005-03-01
This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.
The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data
NASA Astrophysics Data System (ADS)
Markiewicz, Jakub Stefan
2016-06-01
The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.
ERIC Educational Resources Information Center
Ludlow, John B.; Platin, Enrique
2000-01-01
Compared self-guided slide/tape (ST) and Web page (WP) instruction in normal radiographic anatomy of periapical and panoramic images using objective test performance and subjective preferences of 74 freshman dental students. Test performance was not different between image types or presentation technologies, but students preferred WP for…
Creating 3D models of historical buildings using geospatial data
NASA Astrophysics Data System (ADS)
Alionescu, Adrian; Bǎlǎ, Alina Corina; Brebu, Floarea Maria; Moscovici, Anca-Maria
2017-07-01
Recently, a lot of interest has been shown to understand a real world object by acquiring its 3D images of using laser scanning technology and panoramic images. A realistic impression of geometric 3D data can be generated by draping real colour textures simultaneously captured by a colour camera images. In this context, a new concept of geospatial data acquisition has rapidly revolutionized the method of determining the spatial position of objects, which is based on panoramic images. This article describes an approach that comprises inusing terrestrial laser scanning and panoramic images captured with Trimble V10 Imaging Rover technology to enlarge the details and realism of the geospatial data set, in order to obtain 3D urban plans and virtual reality applications.
Wystrach, Antoine; Dewar, Alex; Philippides, Andrew; Graham, Paul
2016-02-01
The visual systems of animals have to provide information to guide behaviour and the informational requirements of an animal's behavioural repertoire are often reflected in its sensory system. For insects, this is often evident in the optical array of the compound eye. One behaviour that insects share with many animals is the use of learnt visual information for navigation. As ants are expert visual navigators it may be that their vision is optimised for navigation. Here we take a computational approach in asking how the details of the optical array influence the informational content of scenes used in simple view matching strategies for orientation. We find that robust orientation is best achieved with low-resolution visual information and a large field of view, similar to the optical properties seen for many ant species. A lower resolution allows for a trade-off between specificity and generalisation for stored views. Additionally, our simulations show that orientation performance increases if different portions of the visual field are considered as discrete visual sensors, each giving an independent directional estimate. This suggests that ants might benefit by processing information from their two eyes independently.
Josephson frequency meter for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Anischenko, S. E.; Larkin, S. Y.; Chaikovsky, V. I.; Kabayev, P. V.; Kamyshin, V. V.
1995-01-01
Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoffs for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decrease with the increase of wavelength due to diffraction losses. That requires a priori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is one based on frequency conversion, resonance and interferometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain a panoramic display of the results as well as full automation of the measuring process.
Computer aided manufacturing for complex freeform optics
NASA Astrophysics Data System (ADS)
Wolfs, Franciscus; Fess, Ed; Johns, Dustin; LePage, Gabriel; Matthews, Greg
2017-10-01
Recently, the desire to use freeform optics has been increasing. Freeform optics can be used to expand the capabilities of optical systems and reduce the number of optics needed in an assembly. The traits that increase optical performance also present challenges in manufacturing. As tolerances on freeform optics become more stringent, it is necessary to continue to improve methods for how the grinding and polishing processes interact with metrology. To create these complex shapes, OptiPro has developed a computer aided manufacturing package called PROSurf. PROSurf generates tool paths required for grinding and polishing freeform optics with multiple axes of motion. It also uses metrology feedback for deterministic corrections. ProSurf handles 2 key aspects of the manufacturing process that most other CAM systems struggle with. The first is having the ability to support several input types (equations, CAD models, point clouds) and still be able to create a uniform high-density surface map useable for generating a smooth tool path. The second is to improve the accuracy of mapping a metrology file to the part surface. To perform this OptiPro is using 3D error maps instead of traditional 2D maps. The metrology error map drives the tool path adjustment applied during processing. For grinding, the error map adjusts the tool position to compensate for repeatable system error. For polishing, the error map drives the relative dwell times of the tool across the part surface. This paper will present the challenges associated with these issues and solutions that we have created.
Chen, Bowen; Zhao, Yongli; Zhang, Jie
2015-09-21
In this paper, we develop a virtual link priority mapping (LPM) approach and a virtual node priority mapping (NPM) approach to improve the energy efficiency and to reduce the spectrum usage over the converged flexible bandwidth optical networks and data centers. For comparison, the lower bound of the virtual optical network mapping is used for the benchmark solutions. Simulation results show that the LPM approach achieves the better performance in terms of power consumption, energy efficiency, spectrum usage, and the number of regenerators compared to the NPM approach.
Mandibular incisive canal: cone beam computed tomography.
Pires, Carlos A; Bissada, Nabil F; Becker, Jeffery J; Kanawati, Ali; Landers, Michael A
2012-03-01
Panoramic radiography is often used to analyze the anatomical structure of the teeth, jaws, and temporomandibular joints. Cone beam computed tomography (CBCT) imaging allows multiple axial slices of the image to be obtained through these anatomical structures. The aim of this study was to assess CBCT compared with panoramic radiography to verify the presence, location, and dimensions of the mandibular incisive canal. CBCT scan images and panoramic radiographs of 89 subjects were compared for the presence of the mandibular incisive canal, its location, size, and anterior-posterior length. The distance between the incisive canal and the buccal and lingual plate of the alveolar bone, and the distance from the canal to the inferior border of the mandible and the tooth apex were also measured. A paired t-test was used to calculate any significant difference between the two imaging techniques. Eighty-three percent of the CBCT scans showed the presence of the incisive canal, as did 11% of the panoramic radiographs. The range of the incisive canal diameter, as seen in the CBCT scans, was from 0.4 × 0.4 mm to 4.6 × 3.2 mm. The mean length of the canal was 7 ± 3.8 mm. The distance from the inferior border of the mandible to the canal was 10.2 ± 2.4 mm, and the mean distance to the buccal plate was 2.4 mm. The apex-canal distance (in dentate subjects) was 5.3 mm. The presence, location, and dimensions of the mandibular incisive canal are better determined by CBCT imaging than by panoramic radiography. © 2009 Wiley Periodicals, Inc.
From Panoramic Photos to a Low-Cost Photogrammetric Workflow for Cultural Heritage 3d Documentation
NASA Astrophysics Data System (ADS)
D'Annibale, E.; Tassetti, A. N.; Malinverni, E. S.
2013-07-01
The research aims to optimize a workflow of architecture documentation: starting from panoramic photos, tackling available instruments and technologies to propose an integrated, quick and low-cost solution of Virtual Architecture. The broader research background shows how to use spherical panoramic images for the architectural metric survey. The input data (oriented panoramic photos), the level of reliability and Image-based Modeling methods constitute an integrated and flexible 3D reconstruction approach: from the professional survey of cultural heritage to its communication in virtual museum. The proposed work results from the integration and implementation of different techniques (Multi-Image Spherical Photogrammetry, Structure from Motion, Imagebased Modeling) with the aim to achieve high metric accuracy and photorealistic performance. Different documentation chances are possible within the proposed workflow: from the virtual navigation of spherical panoramas to complex solutions of simulation and virtual reconstruction. VR tools make for the integration of different technologies and the development of new solutions for virtual navigation. Image-based Modeling techniques allow 3D model reconstruction with photo realistic and high-resolution texture. High resolution of panoramic photo and algorithms of panorama orientation and photogrammetric restitution vouch high accuracy and high-resolution texture. Automated techniques and their following integration are subject of this research. Data, advisably processed and integrated, provide different levels of analysis and virtual reconstruction joining the photogrammetric accuracy to the photorealistic performance of the shaped surfaces. Lastly, a new solution of virtual navigation is tested. Inside the same environment, it proposes the chance to interact with high resolution oriented spherical panorama and 3D reconstructed model at once.
Invesigation of prevalence of dental anomalies by using digital panoramic radiographs.
Bilge, Nebiha Hilal; Yeşiltepe, Selin; Törenek Ağırman, Kübra; Çağlayan, Fatma; Bilge, Osman Murat
2017-09-21
This study was performed to evaluate the prevalence of all types and subtypes of dental anomalies among 6 to 40 year-old patients by using panoramic radiographs. This cross-sectional study was conducted by analyzing digital panoramic radiographs of 1200 patients admitted to our clinic in 2014. Dental anomalies were examined under 5 types and 16 subtypes. Dental anomalies were divided into five types: (a) number (including hypodontia, oligodontia and hyperdontia); (b) size (including microdontia and macrodontia); (c) structure (including amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia); (d) position (including transposition, ectopia, displacement, impaction and inversion); (e) shape (including fusion-gemination, dilaceration and taurodontism); RESULTS: The prevalence of dental anomalies diagnosed by panoramic radiographs was 39.2% (men (46%), women (54%)). Anomalies of position (60.8%) and shape (27.8%) were the most common types of abnormalities and anomalies of size (8.2%), structure (0.2%) and number (17%) were the least in both genders. Anomalies of impaction (45.5%), dilacerations (16.3%), hypodontia (13.8%) and taurodontism (11.2%) were the most common subtypes of dental anomalies. Taurodontism was more common in the age groups of 13-19 years. The age range of the most frequent of all other anomalies was 20-29. Anomalies of tooth position were the most common type of dental anomalies and structure anomalies were the least in this Turkish dental population. The frequency and type of dental anomalies vary within and between populations, confirming the role of racial factors in the prevalence of dental anomalies. Digital panoramic radiography is a very useful method for the detection of dental anomalies.
Felix, Rafael Perdomo; Shinkai, Rosemary Sadami Arai; Rockenbach, Maria Ivete Bolzan
2018-01-01
The aim of this study was to analyze the influence of dental implants on the radiographic density of the peri-implant region in tomographic and radiographic examinations. A sample of 21 dental implants from 10 patients with Brånemark-protocol prostheses was evaluated based on postoperative control images, including periapical radiography (paralleling technique), panoramic radiography, and cone beam computed tomography (CBCT). The density means of 6 defined areas near dental implants were calculated and compared considering their locations and the different imaging examinations. The CBCT examinations showed significantly different densities among the measured areas (P < 0.001), while there were no significant differences among the density means of the various areas in periapical radiographs (P = 0.430) and panoramic radiographs (P = 0.149). The highest mean densities were observed in areas closer to the implants in all the examinations: CBCT (127.88 and 120.71), panoramic (106.51 and 106.09), and periapical (120.32). The sagittal CBCT images were measured in 2 different sections, and in both sections those areas closer to implants showed mean densities that were significantly higher than means from more distant areas (P < 0.001). Means from distant areas on CBCT slice imaging were significantly lower than the densities of the same areas on periapical and panoramic examinations. The changes in mean radiographic density values in the peri-implant region confirmed the interference of dental implants in radiographic and tomographic images. CBCT images suffered the greatest interference from dental implants.
Starting of generic inlet with blunted wedges
NASA Astrophysics Data System (ADS)
Borovoy, V.; Mosharov, V.; Radchenko, V.; Skuratov, A.; Struminskaya, I.
2017-06-01
Bluntness e¨ect of gas-compressing wedges on starting and §ow structure in an air inlet was investigated experimentally. The inlet was of internal compression type with §at walls and rectangular cross section. The experiments were carried out in the wind tunnel UT-1M at Mach numbers M = 5 and 8 and Reynolds numbers Re∞L from 2.8 · 106 to 23 · 106. The §ow characteristics were measured by panoramic optical methods. Data demonstrating in§uence of wedge bluntness radius on the inlet starting were obtained at di¨erent Mach and Reynolds numbers as well as at di¨erent contraction ratios. Ambiguity of the §ow regime in the inlet under certain conditions was found.
Radiation dose in temporomandibular joint zonography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coucke, M.E.; Bourgoignie, R.R.; Dermaut, L.R.
1991-06-01
Temporomandibular joint morphology and function can be evaluated by panoramic zonography. Thermoluminescent dosimetry was applied to evaluate the radiation dose to predetermined sites on a phantom eye, thyroid, pituitary, and parotid, and the dose distribution on the skin of the head and neck when the TMJ program of the Zonarc panoramic x-ray unit was used. Findings are discussed with reference to similar radiographic techniques.
8. SECOND IMAGE OF THE PANORAMIC SERIES LOOKING WEST FROM ...
8. SECOND IMAGE OF THE PANORAMIC SERIES LOOKING WEST FROM THE UPHILL SIDE OF THE MILL. THE ORE RECEIVING HOUSE AND THE ORE DELIVERY TRESTLE IS IMAGE RIGHT, THE MILL BUILDING AND ANCILLARY STRUCTURE ARE IMAGE CENTER AND THE TOWN OF BODIE IS IMAGE BACKGROUND RIGHT. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Je, U K; Cho, H M; Hong, D K; Cho, H S; Park, Y O; Park, C K; Kim, K S; Lim, H W; Kim, G A; Park, S Y; Woo, T H; Cho, S I
2016-01-01
In this work, we propose a practical method that can combine the two functionalities of dental panoramic and cone-beam CT (CBCT) features in one by using a single panoramic detector. We implemented a CS-based reconstruction algorithm for the proposed method and performed a systematic simulation to demonstrate its viability for 3D dental X-ray imaging. We successfully reconstructed volumetric images of considerably high accuracy by using a panoramic detector having an active area of 198.4 mm × 6.4 mm and evaluated the reconstruction quality as a function of the pitch (p) and the angle step (Δθ). Our simulation results indicate that the CS-based reconstruction almost completely recovered the phantom structures, as in CBCT, for p≤2.0 and θ≤6°, indicating that it seems very promising for accurate image reconstruction even for large-pitch and few-view data. We expect the proposed method to be applicable to developing a cost-effective, volumetric dental X-ray imaging system. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Friedlander, A H; Chang, T I; Aghazadehsanai, N; Berenji, G R; Harada, N D; Garrett, N R
2013-01-01
Femoral neck fractures in older females resulting from decreased bone mineral density (BMD; osteopenia) are associated with increased morbidity and mortality. Bone mineralization inhibition is probably controlled by proteins which also foster vascular calcification. Therefore, we evaluated the relationship between calcified carotid artery plaque (CCAP) on panoramic images and BMD on dual energy X-ray absorptiometry (DXA) bone scans. Images and hospital records identified by dentists defined two study groups (20 white females and 24 black females) having CCAP and an incidentally obtained bone scan. Ethnically matched (age±7 years, body mass index ±3 units) control groups with panoramic images devoid of CCAP and accompanying DXA scan were likewise constituted. A physician determined the BMD on the DXA. Females with CCAP had significantly (p = 0.03) poorer BMD at the femoral neck than those without CCAP. Although mean femoral neck BMD was significantly lower (p = 0.009) for white than for black females, there was no significant interaction between race and CCAP (p = 0.80). We observed a significant inverse association between the CCAP on panoramic images and femoral neck BMD in post-menopausal white females.
Mastoris, Mihalis; Li, Gang; Welander, Ulf; McDavid, W D
2004-03-01
To determine Line Spread Functions (LSFs) and Modulation Transfer Functions (MTFs) for a digital system for panoramic radiography: the Dimax I (Planmeca Oy, Helsinki, Finland) based on Charge-Coupled Device (CCD) technology. A test object was specially designed having a gold foil positioned vertically. Images of the gold foil created edge functions that were used to determine LSFs and MTFs. The design of the test object made it possible to move the gold foil forward and backward relative to the central plane of the image layer by means of a micrometer screw. The experiment was carried out for different object depths in 5 different regions: the anterior, the canine, the premolar, the molar, and the TMJ regions. LSFs and MTFs were calculated using specially designed software. The results are presented graphically. LSFs and MTFs for the central plane were essentially the same for all regions. The MTFs for different object depths in the 5 investigated regions exhibited typical characteristics of MTFs for panoramic radiography with the exception for the functions for the molar region. The present findings indicate that the resolution of the Dimax I CCD system is comparable to that of film-based panoramic radiography.
Lo, Shun Qiang; Koh, Dawn X. P.; Sng, Judy C. G.; Augustine, George J.
2015-01-01
Abstract. We describe an experimental approach that uses light to both control and detect neuronal activity in mouse barrel cortex slices: blue light patterned by a digital micromirror array system allowed us to photostimulate specific layers and columns, while a red-shifted voltage-sensitive dye was used to map out large-scale circuit activity. We demonstrate that such all-optical mapping can interrogate various circuits in somatosensory cortex by sequentially activating different layers and columns. Further, mapping in slices from whisker-deprived mice demonstrated that chronic sensory deprivation did not significantly alter feedforward inhibition driven by layer 5 pyramidal neurons. Further development of voltage-sensitive optical probes should allow this all-optical mapping approach to become an important and high-throughput tool for mapping circuit interactions in the brain. PMID:26158003
Quality metric for spherical panoramic video
NASA Astrophysics Data System (ADS)
Zakharchenko, Vladyslav; Choi, Kwang Pyo; Park, Jeong Hoon
2016-09-01
Virtual reality (VR)/ augmented reality (AR) applications allow users to view artificial content of a surrounding space simulating presence effect with a help of special applications or devices. Synthetic contents production is well known process form computer graphics domain and pipeline has been already fixed in the industry. However emerging multimedia formats for immersive entertainment applications such as free-viewpoint television (FTV) or spherical panoramic video require different approaches in content management and quality assessment. The international standardization on FTV has been promoted by MPEG. This paper is dedicated to discussion of immersive media distribution format and quality estimation process. Accuracy and reliability of the proposed objective quality estimation method had been verified with spherical panoramic images demonstrating good correlation results with subjective quality estimation held by a group of experts.
NASA Astrophysics Data System (ADS)
Idris, N.; Lahna, K.; Usmawanda, T. N.; Herman; Ramli, M.; Hedwig, R.; Marpaung, A. M.; Kurniawan, K. H.
2018-04-01
A wide coverage spectral investigation on the muscle of river calm sample has been carried out using laser-induced breakdown spectroscopy for examining the overall profile of the emission spectra from the produced plasma. The basic apparatus of LIBS system used is a Nd-YAG laser and wide coverage optical multichannel analyzer (OMA) system. The river clam samples used is collected from Panga River in Aceh Jaya Regency, Aceh, Indonesia up streaming in a mountain of Gunong Ujeun, which is used as a location of the intensive traditional mining activity. Assuming that heavy metal accumulated in the clam muscle, LIBS experiments were carried out on the muscle of the calm. The sample used was fresh muscle sliced and attached to a copper plate. Plasma was generated by focusing the laser beam on the sample surface under air surrounding gas at 1 atmosphere. It is found that there are only major elements of host organic, namely C, H, O, N and the minor element of salts can be detected from fresh the clam sample when using a high pulse laser energy under air surrounding at high pressure of 1 atmosphere. There is no emission lines from any metal can be detected. Several experimental parameters were explored to study the panoramic dynamic of the emission spectra. It is found that the lower energy and the lower pressure is better for obtaining better emission spectra showing the possibility for determination of the analyte.
[Study on the change of optical zone after femtosecond laser assisted laser in situ keratomileusis].
Li, H; Chen, M; Tian, L; Li, D W; Peng, Y S; Zhang, F F
2018-01-11
Objective: To explore the change of optical zone after femtosecond laser assisted laser in sitn keratomileusis(FS-LASIK) so as to provide the reference for measurement and design of clinical optical zone. Methods: This retrospective case series study covers 41 eyes of 24 patients (7 males and 17 females, aged from 18 to 42 years old) with myopia and myopic astigmatism who have received FS-LASIK surgery at Corneal Refractive Department of Qingdao Eye Hospital and completed over 6 months of clinical follow-up. Pentacam system (with the application of 6 corneal topographic map modes including: the pure axial curvature topographic map, the pure tangential curvature topographic map, the axial curvature difference topographic map, the tangential curvature difference topographic map, the postoperative front elevation map and the corneal thickness difference topographic map), combined with transparent concentric software (a system independently developed by Qingdao Eye Hospital) was used to measure the optical zone at 1, 3 and 6 months postoperatively, the optical zone diameters measurement results among different follow-up times in group were analyzed with the repeated measures analysis of variance, and the actual measured values and the theoretical design values of the optical zone were analyzed with independent-samples t-testing. Spearman correlation coefficient ( r(s) ) have been applied to evaluate the relationship between postoperative optical zone measurement values and the potential influencing factors. Results: The optical zone diameters measured by pure axial curvature topographic map at 1, 3 and 6 months after FS-LASIK showed (6.55±0.50)mm, (6.50±0.53)mm and (6.48±0.53)mm respectively. The differences between values are of no statistical significance ( F= 1.60, P= 0.21), the optical zone diameter measured by pure tangential curvature topographic map at 1, 3 and 6 months after FS-LASIK showed (5.44±0.46)mm, (5.46±0.52)mm and (5.44±0.50)mm respectively, the differences between values are of no statistical significance ( F= 0.17, P= 0.85). The optical zone diameters measured by postoperative front elevation map at 1, 3 and 6 months after FS-LASIK showed (5.06±0.28)mm, (5.12±0.32)mm and (5.17±0.28)mm respectively. The differences between the values of 3 and 6 months postoperatively are of no statistical significance ( F= 6.14, P= 0.15), the optical zone diameters measured by axial curvature difference topographic map at 1, 3 and 6 months after FS-LASIK showed (6.51±0.37)mm, (6.45±0.41)mm and (6.41±0.40)mm respectively, and the differences between the values of 3 and 6 months postoperatively are of no statistical significance ( F= 7.25, P= 0.05). The optical zone diameters measured by tangential curvature difference topographic map at 1, 3 and 6 months after FS-LASIK showed (5.21±0.23)mm, (5.16±0.19)mm and (5.17±0.20) mm respectively, and the differences between the values of 1 and 3 months postoperatively are of statistical significance ( F= 1.75, P= 0.04). The optical zone diameters measured by corneal thickness difference topographic map at 1, 3 and 6 months after FS-LASIK showed (6.53±0.40)mm, (6.39±0.43)mm and (6.41±0.47)mm respectively, and the differences between the values of 1 and 3 months postoperatively are of statistical significance ( F= 1.67, P= 0.032). The actual measured optical zone values from the 6 different modes of Pentacam system are less than the theoretical design values (7.75 mm), and the differences were statistical significance ( t= -15.42, -29.39, -59.27, -21.47, -81.69, -18.22, P< 0.01). Conclusions: The optical zone measurement values tend to be stable at 3 months after FS-LASIK. The actual measured values from all the 6 different modes of Pentacam system were less than the theoretical design values. The results from pure tangential curvature topographic map, the tangential curvature difference topographic map and the postoperative front elevation map showed greater variation with clear border, which was beneficial for eccentric research. The results from pure axial curvature topographic map, the axial curvature difference topographic map and the corneal thickness difference topographic map were close to the theoretically designed values. Furthermore, the axial curvature difference topographic map showed clearer border and less variation thus maybe more favorable for measuring optical zone in clinical application. (Chin J Ophthalmol, 2018, 54: 39-47) .
Schulze, Ralf Kurt Willy; Cremers, Catrin; Karle, Heiko; de Las Heras Gala, Hugo
2017-05-01
The aim of this study was to compare the dose at skin level at five significant anatomical regions for panoramic radiography devices with and without lead apron by means of a highly sensitive dosimeter. A female RANDO-phantom was exposed in five different digital panoramic radiography systems, and the dose at skin level was assessed tenfold for each measurement region by means of a highly sensitive solid-state-dosimeter. The five measurement regions selected were the thyroid, both female breasts, the gonads, and a central region in the back of the phantom. For each panoramic machine, the measurements were performed in two modes: with and without a commercial lead apron specifically designed for panoramic radiography. Reproducibility of the measurements was expressed by absolute differences and the coefficient of variation. Values between shielded and unshielded doses were pooled for each region and compared by means of the paired Wilcoxon tests (p ≤ 0.05). Reproducibility as represented by the mean CV was 22 ± 52 % (median 2.3 %) with larger variations for small dose values. Doses at skin level ranged between 0.00 μGy at the gonads and 85.39 μGy at the unshielded thyroid (mean ± SD 15 ± 24 μGy). Except for the gonads, the dose in all the other regions was significantly lower (p < 0.001) when a lead apron was applied. Unshielded doses were between 1.02-fold (thyroid) and 112-fold (at the right breast) higher than those with lead apron shielding (mean: 14-fold ± 18-fold). Although the doses were entirely very low, we observed a significant increase in dose in the radiation-sensitive female breast region when no lead apron was used. Future discussions on shielding requirements for panoramic radiography should focus on these differences in the light of the linear non-threshold (LNT) theory which is generally adopted in medical imaging.
Tannamala, Pavan Kumar; Pulagam, Mahesh; Pottem, Srinivas R; Swapna, B
2012-04-01
The purpose of this study was to compare the sagittal condylar angles set in the Hanau articulator by use of a method of obtaining an intraoral protrusive record to those angles found using a panoramic radiographic image. Ten patients, free of signs and symptoms of temporomandibular disorder and with intact dentition were selected. The dental stone casts of the subjects were mounted on a Hanau articulator with a springbow and poly(vinyl siloxane) interocclusal records. For all patients, the protrusive records were obtained when the mandible moved forward by approximately 6 mm. All procedures for recording, mounting, and setting were done in the same session. The condylar guidance angles obtained were tabulated. A panoramic radiographic image of each patient was made with the Frankfurt horizontal plane parallel to the floor of the mouth. Tracings of the radiographic images were made. The horizontal reference line was marked by joining the orbitale and porion. The most superior and most inferior points of the curvatures were identified. These two lines were connected by a straight line representing the mean curvature line. Angles made by the intersection of the mean curvature line and the horizontal reference line were measured. The results were subjected to statistical analysis with a significance level of p < 0.05. The radiographic values were on average 4° greater than the values obtained by protrusive interocclusal record method. The mean condylar guidance angle between the right and left side by both the methods was not statistically significant. The comparison of mean condylar guidance angles between the right side of the protrusive record method and the right side of the panoramic radiographic method and the left side of the protrusive record method and the left side of the panoramic radiographic method (p= 0.071 and p= 0.057, respectively) were not statistically significant. Within the limitations of this study, it was concluded that the protrusive condylar guidance angles obtained by panoramic radiograph may be used in programming semi-adjustable articulators. © 2012 by the American College of Prosthodontists.
Using optical mapping data for the improvement of vertebrate genome assemblies.
Howe, Kerstin; Wood, Jonathan M D
2015-01-01
Optical mapping is a technology that gathers long-range information on genome sequences similar to ordered restriction digest maps. Because it is not subject to cloning, amplification, hybridisation or sequencing bias, it is ideally suited to the improvement of fragmented genome assemblies that can no longer be improved by classical methods. In addition, its low cost and rapid turnaround make it equally useful during the scaffolding process of de novo assembly from high throughput sequencing reads. We describe how optical mapping has been used in practice to produce high quality vertebrate genome assemblies. In particular, we detail the efforts undertaken by the Genome Reference Consortium (GRC), which maintains the reference genomes for human, mouse, zebrafish and chicken, and uses different optical mapping platforms for genome curation.
NASA Tech Briefs, October 2007
NASA Technical Reports Server (NTRS)
2007-01-01
Topics covered include; Wirelessly Interrogated Position or Displacement Sensors; Ka-Band Radar Terminal Descent Sensor; Metal/Metal Oxide Differential Electrode pH Sensors; Improved Sensing Coils for SQUIDs; Inductive Linear-Position Sensor/Limit-Sensor Units; Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity; Single-Camera Panoramic-Imaging Systems; Interface Electronic Circuitry for an Electronic Tongue; Inexpensive Clock for Displaying Planetary or Sidereal Time; Efficient Switching Arrangement for (N + 1)/N Redundancy; Lightweight Reflectarray Antenna for 7.115 and 32 GHz; Opto-Electronic Oscillator Using Suppressed Phase Modulation; Alternative Controller for a Fiber-Optic Switch; Strong, Lightweight, Porous Materials; Nanowicks; Lightweight Thermal Protection System for Atmospheric Entry; Rapid and Quiet Drill; Hydrogen Peroxide Concentrator; MMIC Amplifiers for 90 to 130 GHz; Robot Would Climb Steep Terrain; Measuring Dynamic Transfer Functions of Cavitating Pumps; Advanced Resistive Exercise Device; Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds; Resonant Tunneling Spin Pump; Enhancing Spin Filters by Use of Bulk Inversion Asymmetry; Optical Magnetometer Incorporating Photonic Crystals; WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics; Raman-Suppressing Coupling for Optical Parametric Oscillator; CO2-Reduction Primary Cell for Use on Venus; Cold Atom Source Containing Multiple Magneto- Optical Traps; POD Model Reconstruction for Gray-Box Fault Detection; System for Estimating Horizontal Velocity During Descent; Software Framework for Peer Data-Management Services; Autogen Version 2.0; Tracking-Data-Conversion Tool; NASA Enterprise Visual Analysis; Advanced Reference Counting Pointers for Better Performance; C Namelist Facility; and Efficient Mosaicking of Spitzer Space Telescope Images.
Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.
Teo, Audrey S M; Verzotto, Davide; Yao, Fei; Nagarajan, Niranjan; Hillmer, Axel M
2015-01-01
Next-generation sequencing (NGS) technologies have changed our understanding of the variability of the human genome. However, the identification of genome structural variations based on NGS approaches with read lengths of 35-300 bases remains a challenge. Single-molecule optical mapping technologies allow the analysis of DNA molecules of up to 2 Mb and as such are suitable for the identification of large-scale genome structural variations, and for de novo genome assemblies when combined with short-read NGS data. Here we present optical mapping data for two human genomes: the HapMap cell line GM12878 and the colorectal cancer cell line HCT116. High molecular weight DNA was obtained by embedding GM12878 and HCT116 cells, respectively, in agarose plugs, followed by DNA extraction under mild conditions. Genomic DNA was digested with KpnI and 310,000 and 296,000 DNA molecules (≥ 150 kb and 10 restriction fragments), respectively, were analyzed per cell line using the Argus optical mapping system. Maps were aligned to the human reference by OPTIMA, a new glocal alignment method. Genome coverage of 6.8× and 5.7× was obtained, respectively; 2.9× and 1.7× more than the coverage obtained with previously available software. Optical mapping allows the resolution of large-scale structural variations of the genome, and the scaffold extension of NGS-based de novo assemblies. OPTIMA is an efficient new alignment method; our optical mapping data provide a resource for genome structure analyses of the human HapMap reference cell line GM12878, and the colorectal cancer cell line HCT116.
Agarwal, Poonam; Vinuth, Dhundanalli puttalingaiah; Haranal, Shashidevi; Thippanna, Chandrashekar K.; Naresh, Nitesh; Moger, Ganapathi
2015-01-01
Background: Ionizing radiation is a potent mutagenic agent capable of inducing both mutation and chromosomal aberrations. Non-lethal doses of ionizing radiation may induce genomic instability favoring carcinogenesis. In spite of their mutagenic potential, this kind of radiation is an important tool for diagnosis of the disease and is used in medical and dental practice. It has been believed that the number of micronucleus and increased frequency of other nuclear alterations, including karyorrhexis, condensed chromatin and pyknosis, are related to the increasing effects of carcinogens. Many approaches and techniques have been developed for the monitoring of human populations exposed to various mutagens, but the analysis of micronuclei (MN) has become a standard approach for the assessment of chromosomal damage in human populations. Aim: To assess the effects of radiation exposure from panoramic radiography on the buccal epithelial cells (BECs) of pediatric patients. Materials and Methods: The study included 20 pediatric patients who had to undergo panoramic radiography for further dental treatment. Exfoliated BECs were obtained and examined immediately before and 10 days after radiation exposure. The cells were stained using rapid Papanicolaou (PAP) kit. Evaluation for MN and nuclear alterations was carried out by an oral pathologist and data were statistically analyzed using the “t” test. Results: The mean number of MN in the BECs before exposure of pediatric patients to panoramic radiography was 4.25 and after exposure was 4.40. This difference was not found to be statistically significant (P < 0.0001). However, the mean nuclear alterations of 8.70 and 15.75 before and after exposure were statistically significant (P < 0.0001). Conclusion: Panoramic radiographs can induce cytotoxicity but not genotoxic effects in buccal mucosal cells. Hence, dental radiographs should be prescribed only when deemed indispensable. PMID:26229246
Analysis of interstellar cloud structure based on IRAS images
NASA Technical Reports Server (NTRS)
Scalo, John M.
1992-01-01
The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct densely sampled column density maps of star-forming clouds, column density images of four nearby cloud complexes were constructed from IRAS data. The regions have various degrees of star formation activity, and most of them have probably not been affected much by the disruptive effects of young massive stars. The largest region, the Scorpius-Ophiuchus cloud complex, covers about 1000 square degrees (it was subdivided into a few smaller regions for analysis). Much of the work during the early part of the project focused on an 80 square degree region in the core of the Taurus complex, a well-studied region of low-mass star formation.
NASA Astrophysics Data System (ADS)
Cenarro, Javier; Marin-Franch, Antonio; Moles, Mariano; Cristobal-Hornillos, David; Dupke, Renato a.; Benitez, Txitxo; Taylor, Keith
2015-08-01
The Javalambre Survey Telescope (JST/T250) is a 2.55m Richey-Chretien, alt-azimuthal telescope with a field of view of diameter 3 deg and an effective etendue of 26.5 m2deg2 operated by the Centro de Estudios de Física del Cosmos de Aragón (CEFCA) at the Observatorio Astrofísico de Javalambre (OAJ). JST/T250 is particularly conceived and defined for carrying out large sky multi-filter surveys, like J-PAS (http://j-pas.org), which will be the main survey to be conducted during the first years of operation. To guarantee a seeing limited image quality all over the ~0.5m diameter focal plane, JST/T250 hosts state-of-the-arte optics, including complex hyperbolic M1 and M2 mirrors and a challenging field corrector of three lenses with 4 aspherical surfaces and high slopes. The optical configuration ends up with the powered entrance window of JPCam, the panoramic camera for J-PAS, with ~1200Mpix in a mosaic of 14 large format CCDs of 9.2k x 9.2k, and a set of 56 narrow-band, contiguous, optical filters. In this poster we present a detailed view of the telescope configuration, its optical performance and the expected operation for the J-PAS survey execution.
Visuomotor Transformation in the Fly Gaze Stabilization System
Huston, Stephen J; Krapp, Holger G
2008-01-01
For sensory signals to control an animal's behavior, they must first be transformed into a format appropriate for use by its motor systems. This fundamental problem is faced by all animals, including humans. Beyond simple reflexes, little is known about how such sensorimotor transformations take place. Here we describe how the outputs of a well-characterized population of fly visual interneurons, lobula plate tangential cells (LPTCs), are used by the animal's gaze-stabilizing neck motor system. The LPTCs respond to visual input arising from both self-rotations and translations of the fly. The neck motor system however is involved in gaze stabilization and thus mainly controls compensatory head rotations. We investigated how the neck motor system is able to selectively extract rotation information from the mixed responses of the LPTCs. We recorded extracellularly from fly neck motor neurons (NMNs) and mapped the directional preferences across their extended visual receptive fields. Our results suggest that—like the tangential cells—NMNs are tuned to panoramic retinal image shifts, or optic flow fields, which occur when the fly rotates about particular body axes. In many cases, tangential cells and motor neurons appear to be tuned to similar axes of rotation, resulting in a correlation between the coordinate systems the two neural populations employ. However, in contrast to the primarily monocular receptive fields of the tangential cells, most NMNs are sensitive to visual motion presented to either eye. This results in the NMNs being more selective for rotation than the LPTCs. Thus, the neck motor system increases its rotation selectivity by a comparatively simple mechanism: the integration of binocular visual motion information. PMID:18651791
Panoramic-image-based rendering solutions for visualizing remote locations via the web
NASA Astrophysics Data System (ADS)
Obeysekare, Upul R.; Egts, David; Bethmann, John
2000-05-01
With advances in panoramic image-based rendering techniques and the rapid expansion of web advertising, new techniques are emerging for visualizing remote locations on the WWW. Success of these techniques depends on how easy and inexpensive it is to develop a new type of web content that provides pseudo 3D visualization at home, 24-hours a day. Furthermore, the acceptance of this new visualization medium depends on the effectiveness of the familiarization tools by a segment of the population that was never exposed to this type of visualization. This paper addresses various hardware and software solutions available to collect, produce, and view panoramic content. While cost and effectiveness of building the content is being addressed using a few commercial hardware solutions, effectiveness of familiarization tools is evaluated using a few sample data sets.
Preliminary optical design of PANIC, a wide-field infrared camera for CAHA
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Rodríguez Gómez, J.; Lenzen, R.; Sánchez-Blanco, E.
2008-07-01
In this paper, we present the preliminary optical design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Calar Alto 2.2 m telescope. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. A mosaic of four Hawaii 2RG of 2k x 2k made by Teledyne is used as detector and will give a field of view of 31.9 arcmin x 31.9 arcmin. This cryogenic instrument has been optimized for the Y, J, H and K bands. Special care has been taken in the selection of the standard IR materials used for the optics in order to maximize the instrument throughput and to include the z band. The main challenges of this design are: to produce a well defined internal pupil which allows reducing the thermal background by a cryogenic pupil stop; the correction of off-axis aberrations due to the large field available; the correction of chromatic aberration because of the wide spectral coverage; and the capability of introduction of narrow band filters (~1%) in the system minimizing the degradation in the filter passband without a collimated stage in the camera. We show the optomechanical error budget and compensation strategy that allows our as built design to met the performances from an optical point of view. Finally, we demonstrate the flexibility of the design showing the performances of PANIC at the CAHA 3.5m telescope.
Panoramic radiographic predictors of mandibular third molar eruption.
Niedzielska, Iwona Anna; Drugacz, Jan; Kus, Nina; Kreska, Joanna
2006-08-01
Third molar (M3) eruption can be problematic. According to some orthodontic surgeons, the teeth are capable of aggravating the average crowding level in the dental arch. The question is whether it might be possible to give a prognosis for ultimate M3 position in the arch and make an early decision to extract or retain them. The purpose of the study was to determine which measurements made on panoramic tomograms might facilitate prognosis for M3 position in the dental arch over the years. The investigation involved 64 patients who had been enrolled to the study group 10 years earlier, ie, in 1993, when an analysis had been carried out regarding M3 effect on dental arch crowding. At that time panoramic tomograms had been taken, and dental casts made. The procedures were repeated in 2003. The following measurements were taken at baseline (1993) and at the end of the study (2003): (1)/the retromolar space to lower third molar crown width, (2) third molar angulation to the base of the mandible, and (3) third molar to second molar inclination. At some defined values of the Ganss ratio, and M3 inclination to mandibular base and second molar, it is possible to predict potential lower third molar alignment in the dental arch using a panoramic radiograph.
Friedlander, AH; Chang, TI; Aghazadehsanai, N; Berenji, GR; Harada, ND; Garrett, NR
2013-01-01
Objectives: Femoral neck fractures in older females resulting from decreased bone mineral density (BMD; osteopenia) are associated with increased morbidity and mortality. Bone mineralization inhibition is probably controlled by proteins which also foster vascular calcification. Therefore, we evaluated the relationship between calcified carotid artery plaque (CCAP) on panoramic images and BMD on dual energy X-ray absorptiometry (DXA) bone scans. Methods: Images and hospital records identified by dentists defined two study groups (20 white females and 24 black females) having CCAP and an incidentally obtained bone scan. Ethnically matched (age±7 years, body mass index ±3 units) control groups with panoramic images devoid of CCAP and accompanying DXA scan were likewise constituted. A physician determined the BMD on the DXA. Results: Females with CCAP had significantly (p = 0.03) poorer BMD at the femoral neck than those without CCAP. Although mean femoral neck BMD was significantly lower (p = 0.009) for white than for black females, there was no significant interaction between race and CCAP (p = 0.80). Conclusion: We observed a significant inverse association between the CCAP on panoramic images and femoral neck BMD in post-menopausal white females. PMID:23571481
Efficient characterization of phase space mapping in axially symmetric optical systems
NASA Astrophysics Data System (ADS)
Barbero, Sergio; Portilla, Javier
2018-01-01
Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.
Opto-mechanical design of PANIC
NASA Astrophysics Data System (ADS)
Fried, Josef W.; Baumeister, Harald; Huber, Armin; Laun, Werner; Rohloff, Ralf-Rainer; Concepción Cárdenas, M.
2010-07-01
PANIC, the Panoramic Near-Infrared Camera, is a new instrument for the Calar Alto Observatory. A 4x4 k detector yields a field of view of 0.5x0.5 degrees at a pixel scale of 0.45 arc sec/pixel at the 2.2m telescope. PANIC can be used also at the 3.5m telescope with half the pixel scale. The optics consists of 9 lenses and 3 folding mirrors. Mechanical tolerances are as small as 50 microns for some elements. PANIC will have a low thermal background due to cold stops. Read-out is done with MPIA's own new electronics which allows read-out of 132 channels in parallel. Weight and size limits lead to interesting design features. Here we describe the opto-mechanical design.
The NASA 2003 Mars Exploration Rover Panoramic Camera (Pancam) Investigation
NASA Astrophysics Data System (ADS)
Bell, J. F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Morris, R. V.; Athena Team
2002-12-01
The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360o of azimuth and from zenith to nadir, providing a complete view of the scene around the rover. Pancam utilizes two 1024x2048 Mitel frame transfer CCD detector arrays, each having a 1024x1024 active imaging area and 32 optional additional reference pixels per row for offset monitoring. Each array is combined with optics and a small filter wheel to become one "eye" of a multispectral, stereoscopic imaging system. The optics for both cameras consist of identical 3-element symmetrical lenses with an effective focal length of 42 mm and a focal ratio of f/20, yielding an IFOV of 0.28 mrad/pixel or a rectangular FOV of 16o\\x9D 16o per eye. The two eyes are separated by 30 cm horizontally and have a 1o toe-in to provide adequate parallax for stereo imaging. The cameras are boresighted with adjacent wide-field stereo Navigation Cameras, as well as with the Mini-TES instrument. The Pancam optical design is optimized for best focus at 3 meters range, and allows Pancam to maintain acceptable focus from infinity to within 1.5 meters of the rover, with a graceful degradation (defocus) at closer ranges. Each eye also contains a small 8-position filter wheel to allow multispectral sky imaging, direct Sun imaging, and surface mineralogic studies in the 400-1100 nm wavelength region. Pancam has been designed and calibrated to operate within specifications from -55oC to +5oC. An onboard calibration target and fiducial marks provide the ability to validate the radiometric and geometric calibration on Mars. Pancam relies heavily on use of the JPL ICER wavelet compression algorithm to maximize data return within stringent mission downlink limits. The scientific goals of the Pancam investigation are to: (a) obtain monoscopic and stereoscopic image mosaics to assess the morphology, topography, and geologic context of each MER landing site; (b) obtain multispectral visible to short-wave near-IR images of selected regions to determine surface color and mineralogic properties; (c) obtain multispectral images over a range of viewing geometries to constrain surface photometric and physical properties; and (d) obtain images of the Martian sky, including direct images of the Sun, to determine dust and aerosol opacity and physical properties. In addition, Pancam also serves a variety of operational functions on the MER mission, including (e) serving as the primary Sun-finding camera for rover navigation; (f) resolving objects on the scale of the rover wheels to distances of ~100 m to help guide navigation decisions; (g) providing stereo coverage adequate for the generation of digital terrain models to help guide and refine rover traverse decisions; (h) providing high resolution images and other context information to guide the selection of the most interesting in situ sampling targets; and (i) supporting acquisition and release of exciting E/PO products.
Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.
Zhang, Hanyu; Iijima, Kenichi; Huang, Jian; Walcott, Gregory P; Rogers, Jack M
2016-07-26
Cardiac optical mapping uses potentiometric fluorescent dyes to image membrane potential (Vm). An important limitation of conventional optical mapping is that contraction is usually arrested pharmacologically to prevent motion artifacts from obscuring Vm signals. However, these agents may alter electrophysiology, and by abolishing contraction, also prevent optical mapping from being used to study coupling between electrical and mechanical function. Here, we present a method to simultaneously map Vm and epicardial contraction in the beating heart. Isolated perfused swine hearts were stained with di-4-ANEPPS and fiducial markers were glued to the epicardium for motion tracking. The heart was imaged at 750 Hz with a video camera. Fluorescence was excited with cyan or blue LEDs on alternating camera frames, thus providing a 375-Hz effective sampling rate. Marker tracking enabled the pixel(s) imaging any epicardial site within the marked region to be identified in each camera frame. Cyan- and blue-elicited fluorescence have different sensitivities to Vm, but other signal features, primarily motion artifacts, are common. Thus, taking the ratio of fluorescence emitted by a motion-tracked epicardial site in adjacent frames removes artifacts, leaving Vm (excitation ratiometry). Reconstructed Vm signals were validated by comparison to monophasic action potentials and to conventional optical mapping signals. Binocular imaging with additional video cameras enabled marker motion to be tracked in three dimensions. From these data, epicardial deformation during the cardiac cycle was quantified by computing finite strain fields. We show that the method can simultaneously map Vm and strain in a left-sided working heart preparation and can image changes in both electrical and mechanical function 5 min after the induction of regional ischemia. By allowing high-resolution optical mapping in the absence of electromechanical uncoupling agents, the method relieves a long-standing limitation of optical mapping and has potential to enhance new studies in coupled cardiac electromechanics. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Panoramic attitude sensor for Radio Astronomy Explorer B
NASA Technical Reports Server (NTRS)
Thomsen, R.
1973-01-01
An instrument system to acquire attitude determination data for the RAE-B spacecraft was designed and built. The system consists of an electronics module and two optical scanner heads. Each scanner head has an optical scanner with a field of view of 0.7 degrees diameter which scans the sky and measures the position of the moon, earth and sun relative to the spacecraft. This scanning is accomplished in either of two modes. When the spacecraft is spinning, the scanner operates in spherical mode, with the spacecraft spin providing the slow sweep of lattitude to scan the entire sky. After the spacecraft is placed in lunar orbit and despun, the scanner will operate in planar mode, advancing at a rate of 5.12 seconds per revolution in a fixed plane parallel to the spacecraft Z axis. This scan will cross and measure the moon horizons with every revolution. Each scanner head also has a sun slit which is aligned parallel to the spin axis of the spacecraft and which provides a sun pulse each revolution of the spacecraft. The electronics module provides the command and control, data processing and housekeeping functions.
Improved Seam-Line Searching Algorithm for UAV Image Mosaic with Optical Flow
Zhang, Weilong; Guo, Bingxuan; Liao, Xuan; Li, Wenzhuo
2018-01-01
Ghosting and seams are two major challenges in creating unmanned aerial vehicle (UAV) image mosaic. In response to these problems, this paper proposes an improved method for UAV image seam-line searching. First, an image matching algorithm is used to extract and match the features of adjacent images, so that they can be transformed into the same coordinate system. Then, the gray scale difference, the gradient minimum, and the optical flow value of pixels in adjacent image overlapped area in a neighborhood are calculated, which can be applied to creating an energy function for seam-line searching. Based on that, an improved dynamic programming algorithm is proposed to search the optimal seam-lines to complete the UAV image mosaic. This algorithm adopts a more adaptive energy aggregation and traversal strategy, which can find a more ideal splicing path for adjacent UAV images and avoid the ground objects better. The experimental results show that the proposed method can effectively solve the problems of ghosting and seams in the panoramic UAV images. PMID:29659526
Panoramic Okavango Swamp, Botswana and Fires in Angola, Africa
1991-08-11
In this panoramic view of the Okavango Swamp, Botswana, (19.0S, 22.0E), the Okavango River, seen in sunglint, flows into a topographic trough to form an inland delta. Water, trapped in the meandering delta distributaries is evaporated or transpired by vegetation. In Angola to the north, the many fires of the seasonal burning of savannah vegetation for land clearing, in preparation for agriculture, has filled the atmosphere with haze and smoke.
2. A panoramic view of the historical district as seen ...
2. A panoramic view of the historical district as seen from the top of the Waterford Towers. This picture shows the Town Street bridge in the foreground, the Broad Street bridge in the background, Central High School on the left and the Columbus skyline on the right (facing north), and Bicentennial Park just below. - Broad Street Bridge, Spanning Scioto River at U.S. Route 40 (Broad Street), Columbus, Franklin County, OH
Torres, Sandra R.; Chen, Curtis S. K.; Leroux, Brian G.; Lee, Peggy P.; Hollender, Lars G.; Lloid, Michelle; Drew, Shane Patrick; Schubert, Mark M.
2015-01-01
Objective To detect dimensional changes in the mandibular cortical bone associated with bisphosphonate (BP) use and to correlate the measurements of the cortical bone with the cumulative dose of BP therapy. Methods Mandibular inferior cortical bone thickness (MICBT) was measured under the mental foramen from panoramic radiographs of subjects using BP with and without bisphosphonate related osteonecrosis of the jaws (BRONJ) and controls. Results The highest mean MICBT was observed in BRONJ subjects 6.81 (± 1.35 mm), when compared to subjects using BP 5.44 (± 1.09 mm) and controls 4.79 (± 0.85 mm; p<0.01). The mean MICBT of BRONJ subjects was significantly higher than that of subjects using BP without BRONJ. There was a correlation between MICBT and cumulative dose of zolendronate. Conclusion The MICBT on panoramic radiograph is a potentially useful tool for the detection of dimensional changes associated with BP therapy. PMID:25864820
Prevalence of Dental Anomalies in Odisha Population: A Panoramic Radiographic Study.
Goutham, Balasubramanya; Bhuyan, Lipsa; Chinnannavar, Sangamesh N; Kundu, Madhurima; Jha, Kunal; Behura, Shyam S
2017-07-01
The aim of this study was to evaluate the prevalence of dental anomalies (DAs) in Odisha population using panoramic radiographs. In this study, 1,080 panoramic radiographs were evaluated for DAs. Dental records were reviewed for diagnostic confirmation. Anomalies related to the shape, size, position of teeth, and number of roots (supernumerary roots) were evaluated. The study results showed the prevalence of DAs to be 35.27%. The most prevalent was dilaceration, which was seen in 46.71% cases followed by peg laterals in 20.99%. Dental anomalies were present in more than one-third of the study group, which was mostly related to shape of the teeth. Early diagnosis of these DAs helps in avoiding complications. Identification of DAs requires proper examination and thereby subsequent correct diagnosis. These anomalies can pose complications in normal functioning of orofacial complex. The knowledge of the prevalence of such anomalies aids dental practitioners for a proper treatment plan.
Josephson frequency meter for millimeter and submillimeter wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I.
1994-12-31
Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelengthmore » due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.« less
Interferometry on grazing incidence optics
NASA Astrophysics Data System (ADS)
Geary, Joseph M.; Maeda, Riki
1987-12-01
An interfeormetric procedure is described that shows potential for obtaining surface figure error maps of grazing incidence optics at normal incidence. Such optics are found in some laser resonator configurations and in Wolter-type X-ray optics. The procedure makes use of cylindrical wavefronts and error subtraction techniques over subapertures. The surface error maps obtained will provide critical information to opticians for the fabrication process.
Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei
2006-02-06
We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.
Microbial genome sequencing using optical mapping and Illumina sequencing
USDA-ARS?s Scientific Manuscript database
Introduction Optical mapping is a technique in which strands of genomic DNA are digested with one or more restriction enzymes, and a physical map of the genome constructed from the resulting image. In outline, genomic DNA is extracted from a pure culture, linearly arrayed on a specialized glass sli...
Shotgun Optical Maps of the Whole Escherichia coli O157:H7 Genome
Lim, Alex; Dimalanta, Eileen T.; Potamousis, Konstantinos D.; Yen, Galex; Apodoca, Jennifer; Tao, Chunhong; Lin, Jieyi; Qi, Rong; Skiadas, John; Ramanathan, Arvind; Perna, Nicole T.; Plunkett, Guy; Burland, Valerie; Mau, Bob; Hackett, Jeremiah; Blattner, Frederick R.; Anantharaman, Thomas S.; Mishra, Bhubaneswar; Schwartz, David C.
2001-01-01
We have constructed NheI and XhoI optical maps of Escherichia coli O157:H7 solely from genomic DNA molecules to provide a uniquely valuable scaffold for contig closure and sequence validation. E. coli O157:H7 is a common pathogen found in contaminated food and water. Our approach obviated the need for the analysis of clones, PCR products, and hybridizations, because maps were constructed from ensembles of single DNA molecules. Shotgun sequencing of bacterial genomes remains labor-intensive, despite advances in sequencing technology. This is partly due to manual intervention required during the last stages of finishing. The applicability of optical mapping to this problem was enhanced by advances in machine vision techniques that improved mapping throughput and created a path to full automation of mapping. Comparisons were made between maps and sequence data that characterized sequence gaps and guided nascent assemblies. PMID:11544203
PANIC: A General-purpose Panoramic Near-infrared Camera for the Calar Alto Observatory
NASA Astrophysics Data System (ADS)
Cárdenas Vázquez, M.-C.; Dorner, B.; Huber, A.; Sánchez-Blanco, E.; Alter, M.; Rodríguez Gómez, J. F.; Bizenberger, P.; Naranjo, V.; Ibáñez Mengual, J.-M.; Panduro, J.; García Segura, A. J.; Mall, U.; Fernández, M.; Laun, W.; Ferro Rodríguez, I. M.; Helmling, J.; Terrón, V.; Meisenheimer, K.; Fried, J. W.; Mathar, R. J.; Baumeister, H.; Rohloff, R.-R.; Storz, C.; Verdes-Montenegro, L.; Bouy, H.; Ubierna, M.; Fopp, P.; Funke, B.
2018-02-01
PANIC7 is the new PAnoramic Near-Infrared Camera for Calar Alto and is a project jointly developed by the MPIA in Heidelberg, Germany, and the IAA in Granada, Spain, for the German-Spanish Astronomical Center at Calar Alto Observatory (CAHA; Almería, Spain). This new instrument works with the 2.2 m and 3.5 m CAHA telescopes covering a field of view of 30 × 30 arcmin and 15 × 15 arcmin, respectively, with a sampling of 4096 × 4096 pixels. It is designed for the spectral bands from Z to K S , and can also be equipped with narrowband filters. The instrument was delivered to the observatory in 2014 October and was commissioned at both telescopes between 2014 November and 2015 June. Science verification at the 2.2 m telescope was carried out during the second semester of 2015 and the instrument is now at full operation. We describe the design, assembly, integration, and verification process, the final laboratory tests and the PANIC instrument performance. We also present first-light data obtained during the commissioning and preliminary results of the scientific verification. The final optical model and the theoretical performance of the camera were updated according to the as-built data. The laboratory tests were made with a star simulator. Finally, the commissioning phase was done at both telescopes to validate the camera real performance on sky. The final laboratory test confirmed the expected camera performances, complying with the scientific requirements. The commissioning phase on sky has been accomplished.
The Beagle 2 Stereo Camera System: Scientific Objectives and Design Characteristics
NASA Astrophysics Data System (ADS)
Griffiths, A.; Coates, A.; Josset, J.; Paar, G.; Sims, M.
2003-04-01
The Stereo Camera System (SCS) will provide wide-angle (48 degree) multi-spectral stereo imaging of the Beagle 2 landing site in Isidis Planitia with an angular resolution of 0.75 milliradians. Based on the SpaceX Modular Micro-Imager, the SCS is composed of twin cameras (with 1024 by 1024 pixel frame transfer CCD) and twin filter wheel units (with a combined total of 24 filters). The primary mission objective is to construct a digital elevation model of the area in reach of the lander’s robot arm. The SCS specifications and following baseline studies are described: Panoramic RGB colour imaging of the landing site and panoramic multi-spectral imaging at 12 distinct wavelengths to study the mineralogy of landing site. Solar observations to measure water vapour absorption and the atmospheric dust optical density. Also envisaged are multi-spectral observations of Phobos &Deimos (observations of the moons relative to background stars will be used to determine the lander’s location and orientation relative to the Martian surface), monitoring of the landing site to detect temporal changes, observation of the actions and effects of the other PAW experiments (including rock texture studies with a close-up-lens) and collaborative observations with the Mars Express orbiter instrument teams. Due to be launched in May of this year, the total system mass is 360 g, the required volume envelope is 747 cm^3 and the average power consumption is 1.8 W. A 10Mbit/s RS422 bus connects each camera to the lander common electronics.
NASA Technical Reports Server (NTRS)
2004-01-01
This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.
2017-11-01
ARL-TR-8205 ● NOV 2017 US Army Research Laboratory Strategies for Characterizing the Sensory Environment: Objective and...Subjective Evaluation Methods using the VisiSonic Real Space 64/5 Audio-Visual Panoramic Camera By Joseph McArdle, Ashley Foots, Chris Stachowiak, and...return it to the originator. ARL-TR-8205 ● NOV 2017 US Army Research Laboratory Strategies for Characterizing the Sensory
Photocopy of panoramic photograph entitled "Ground Breaking, April 27, 1918, ...
Photocopy of panoramic photograph entitled "Ground Breaking, April 27, 1918, U.S.A. General Hospital no. 21 ". Photograph by Rocky Mountain photo and is in the Fitzsimons Army Medical Center Public Affairs Office, building 120. Photograph in public domain as it is not copyrighted. - Fitzsimons General Hospital, Bounded by East Colfax to south, Peoria Street to west, Denver City/County & Adams County Line to north, & U.S. Route 255 to east, Aurora, Adams County, CO
Automatic Molar Extraction from Dental Panoramic Radiographs for Forensic Personal Identification
NASA Astrophysics Data System (ADS)
Samopa, Febriliyan; Asano, Akira; Taguchi, Akira
Measurement of an individual molar provides rich information for forensic personal identification. We propose a computer-based system for extracting an individual molar from dental panoramic radiographs. A molar is obtained by extracting the region-of-interest, separating the maxilla and mandible, and extracting the boundaries between teeth. The proposed system is almost fully automatic; all that the user has to do is clicking three points on the boundary between the maxilla and the mandible.
A Bayesian Account of Visual-Vestibular Interactions in the Rod-and-Frame Task.
Alberts, Bart B G T; de Brouwer, Anouk J; Selen, Luc P J; Medendorp, W Pieter
2016-01-01
Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject's head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities.
Godavarthi, A Sowjanya; Sajjan, M C Suresh; Raju, A V Rama; Rajeshkumar, P; Premalatha, Averneni; Chava, Narayana
2015-08-01
To evaluate the feasibility of using panoramic radiographs as an alternative to an interocclusal recording method for determining the condylar guidance in dentate and edentulous conditions. 20 dentulous individuals with an age range of 20-30 years and 20 edentulous patients of 40-65 years were selected. An interocclusal bite registration was done in protrusive position for all the subjects. Orthopantomographs were made for all patients in open mouth position. Hanau articulator was modified to record the angulations to the accuracy of 1°. Tracing of glenoid fossa on radiograph was done to measure the condylar guidance angles. Readings were recorded and analyzed by Freidman's test and t-test. Condylar guidance values obtained by the interocclusal method and radiographic method in dentate individuals on the right side and left side 40.55°, and 37.1°, and 40.15°, and 34.75°, respectively. In the edentulous individuals, the values on the right side and left side was 36.7° and 36.1° and 35.95° and 33.6,° respectively. The difference was statistically significant (P = < 0.001) in dentate group and was not statistically significant (P = 0.6493) in edentulous group. Panoramic radiograph can be used as an alternative to interocclusal technique only in edentulous patients. Further studies comparing panoramic radiograph to jaw tracking devices would substantiate the results of this study.
A Bayesian Account of Visual–Vestibular Interactions in the Rod-and-Frame Task
de Brouwer, Anouk J.; Medendorp, W. Pieter
2016-01-01
Abstract Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject’s head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities. PMID:27844055
Abbassy, Mona A.; Sabban, Hanady M.; Hassan, Ali H.; Zawawi, Khalid H.
2015-01-01
Objectives: To evaluate the accuracy of using routine 2-dimensional (2D) radiographs (panoramic and periapical) when evaluating the position of orthodontic temporary anchorage devices (mini-implants) in the maxilla, and to compare the results to 3-dimensional cone-beam computed tomography (CBCT). Methods: This cross-sectional study was conducted at King Abdulaziz University, Faculty of Dentistry, Jeddah, Kingdom of Saudi Arabia from February 2014 to January 2015. Panoramic and periapical radiographs were used to examine the position of mini-implants in relation to the adjacent roots. Rating of mini-implants position was performed by 82 dentists from different specialties, using 2 D images according to the following criteria: 1) away from the root; 2) mini-implant tip appears touching the lamina dura; and 3) mini-implant overlays the lamina dura. The results were compared with CBCT findings. Results: There was no difference between dentists from different specialties when rating the position of the mini-implants (Cronbach’s alpha=0.956). The accuracy of the periapical images was 45.1%, while the panoramic images 33.6%. However, both panoramic and periapical radiographs were significantly inaccurate when assessing the mini-implant position when compared with the CBCT findings (p=0.0001). Conclusion: Three-dimensional CBCT technology allows better visualization of mini-implant placement. The use of CBCT when assessing the position of mini-implants is recommended. PMID:26593168
NASA Astrophysics Data System (ADS)
Zhou, Yuan; Tang, Eric; Luo, Jianwen; Yao, Junjie
2018-01-01
Temperature mapping during thermotherapy can help precisely control the heating process, both temporally and spatially, to efficiently kill the tumor cells and prevent the healthy tissues from heating damage. Photoacoustic tomography (PAT) has been used for noninvasive temperature mapping with high sensitivity, based on the linear correlation between the tissue's Grüneisen parameter and temperature. However, limited by the tissue's unknown optical properties and thus the optical fluence at depths beyond the optical diffusion limit, the reported PAT thermometry usually takes a ratiometric measurement at different temperatures and thus cannot provide absolute measurements. Moreover, ratiometric measurement over time at different temperatures has to assume that the tissue's optical properties do not change with temperatures, which is usually not valid due to the temperature-induced hemodynamic changes. We propose an optical-diffusion-model-enhanced PAT temperature mapping that can obtain the absolute temperature distribution in deep tissue, without the need of multiple measurements at different temperatures. Based on the initial acoustic pressure reconstructed from multi-illumination photoacoustic signals, both the local optical fluence and the optical parameters including absorption and scattering coefficients are first estimated by the optical-diffusion model, then the temperature distribution is obtained from the reconstructed Grüneisen parameters. We have developed a mathematic model for the multi-illumination PAT of absolute temperatures, and our two-dimensional numerical simulations have shown the feasibility of this new method. The proposed absolute temperature mapping method may set the technical foundation for better temperature control in deep tissue in thermotherapy.
NASA Technical Reports Server (NTRS)
1998-01-01
This NASA JPL (Jet Propulsion Laboratory) video production is a compilation of the best short movies and computer simulation/animations of the Galileo spacecraft's journey to Jupiter. A limited number of actual shots are presented of Jupiter and its natural satellites. Most of the video is comprised of computer animations of the spacecraft's trajectory, encounters with the Galilean satellites Io, Europa and Ganymede, as well as their atmospheric and surface structures. Computer animations of plasma wave observations of Ganymede's magnetosphere, a surface gravity map of Io, the Galileo/Io flyby, the Galileo space probe orbit insertion around Jupiter, and actual shots of Jupiter's Great Red Spot are presented. Panoramic views of our Earth (from orbit) and moon (from orbit) as seen from Galileo as well as actual footage of the Space Shuttle/Galileo liftoff and Galileo's space probe separation are also included.
Hisatake, S; Kobayashi, T
2006-12-25
We demonstrate a time-to-space mapping of an optical signal with a picosecond time resolution based on an electrooptic beam deflection. A time axis of the optical signal is mapped into a spatial replica by the deflection. We theoretically derive a minimum time resolution of the time-to-space mapping and confirm it experimentally on the basis of the pulse width of the optical pulses picked out from the deflected beam through a narrow slit which acts as a temporal window. We have achieved the minimum time resolution of 1.6+/-0.2 ps.
A comparison of the diagnostic utility of two image receptors for panoramic radiography.
Carmichael, F A; Hirschmann, P N; Scaife, B; Sheard, L; Mackenzie, A
2000-01-01
To compare the diagnostic utility of two screen-film systems for panoramic radiography, one based on green and the other on ultraviolet light. Two hundred consecutive adult patients with teeth in all four quadrants requiring panoramic radiographs were randomly allocated to one of two groups. One group was imaged with OGA L (CEA AB, Strängnäs, Sweden) film using Lanex Regular (Eastman Kodak, Rochester, NY, USA) screens (the Lanex group). The other group was imaged using Ultra-Vision (Dupont UK Limited, Hertfordshire, UK) film and screens (the Ultra-vision group). Two different panoramic machines were used, a Planmeca (Planmeca OY, Helsinki, Finland) and Cranex (Soredex Orion Corporation, Helsinki, Finland). The radiographs were evaluated by two radiographers for overall quality and any faults recorded. Two dental radiologists evaluated the crestal and apical areas of every standing tooth on a 4-point scale. The likelihood of getting a high-quality image with the different films was modelled using logistic regression, adjusting for the radiologist and the area of the tooth being examined. Inter- and intra-examiner agreement was calculated using Kappa and weighted Kappa where appropriate. The radiographers recorded no significant differences in positioning errors between the two groups of film. However, the films produced on the Cranex were less likely to be recorded as excellent. The radiologists' interexaminer agreement for the lower molars and upper incisors was only moderate at best (kappa = 0.56). No significant differences were found between the likelihood of the two types of film providing a high-quality image. Crestal areas were more likely to be scored well than apical areas. There were no differences in ease of discerning apical and crestal areas between the two screen-film systems. There was only poor to moderate agreement between the two radiologists. Ultra-Vision can be recommended as an alternative to existing rare earth systems for panoramic radiography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Errico, A; Behrman, R; Li, B
Purpose: To develop a simple mathematical model for estimating the patient free-in-air skin entrance exposure (SEE) during a panoramic dental x-ray that does not require the use of a head phantom. This eliminates issues associated with phantom centering and the mounting of a detector on the phantom for routine QC testing. Methods: We used a Sirona Orthophos XG panoramic radiographic unit and a Radcal Accu-Gold system for this study. A solid state detector was attached over the slit of the Orthophos’ sensor with the help of a custom-built jig. A single measurement of the free-in-air exposure at this position wasmore » taken over a full panoramic scan. A mathematical model for estimating the SEE was developed based upon this measurement, the system geometry, x-ray field beam width, and x-ray sweep angle. To validate the model, patient geometry was simulated by a 16 cm diameter PMMA CTDI phantom centered at the machine’s isocenter. Measurements taken on the phantom’s surface were made using a solid state detector with lead backing, an ion chamber, and the ion chamber with the phantom wrapped in lead to mitigate backscatter. Measurements were taken near the start position of the tube and at 90 degrees from the start position. Results: Using the solid state detector, the average SEE was 23.5+/−0.02 mR and 55.5+/−0.08 mR at 64 kVp and 73 kVp, respectively. With the lead-wrapping, the measurements from the ion chamber matched those of the solid state detector to within 0.1%. Preliminary results gave the difference between the mathematical model and the phantom measurements to be approximately 5% at both kVps. Conclusion: Reasonable estimates of patient SEE for panoramic dental radiography can be made using a simple mathematical model without the need for a head phantom.« less
The effect of dose reduction on the detection of anatomical structures on panoramic radiographs.
Kaeppler, G; Dietz, K; Reinert, S
2006-07-01
The aim was to evaluate the effect of dose reduction on diagnostic accuracy using different screen-film combinations and digital techniques for panoramic radiography. Five observers assessed 201 pairs of panoramic radiographs (a total of 402 panoramic radiographs) taken with the Orthophos Plus (Sirona, Bensheim, Germany), for visualization of 11 anatomical structures on each side, using a 3-point scale -1, 0 and 1. Two radiographs of each patient were taken at two different times (conventional setting and setting with decreased dose, done by increasing tube potential settings or halving tube current). To compare the dose at different tube potential settings dose-length product was measured at the secondary collimator. Films with medium and regular intensifying screens (high and low tube potential settings) and storage phosphor plates (low tube potential setting, tube current setting equivalent to regular intensifying screen and halved) were compared. The five observers made 27 610 assessments. Intrarater agreement was expressed by Cohen's kappa coefficient. The results demonstrated an equivalence of regular screens (low tube potential setting) and medium screens (high and low tube potential settings). A significant difference existed between medium screens (low tube potential setting, mean score 0.92) and the group of regular film-screen combinations at high tube potential settings (mean score 0.89) and between all film-screen combinations and the digital system irrespective of exposure (mean score below 0.82). There were no significant differences between medium and regular screens (mean score 0.88 to 0.92) for assessment of the periodontal ligament space, but there was a significant difference compared with the digital system (mean score below 0.76). The kappa coefficient for intrarater agreement was moderate (0.55). New regular intensifying screens can replace medium screens at low tube potential settings. Digital panoramic radiographs should be taken at low tube potential levels with an exposure equivalent at least to a regular intensifying screen.
Panoramic view of the electrical Department & Boiler House Complex, ...
Panoramic view of the electrical Department & Boiler House Complex, looking southwest from the roof of the lower shops. Originally constructed in 1888, only sections of original walls remain. In the right foreground is the no. 2 steel foundry, originally constructed in 1888 and converted many times as different furnaces were added. Behind the buildings (to the south and west) is the Stony Creek River. - Johnson Steel Street Rail Company, Electrical Department & Boiler House, 525 Central Avenue, Johnstown, Cambria County, PA
NASA Technical Reports Server (NTRS)
1972-01-01
This document is Volume 2 of three volumes of the Final Report for the four band Multispectral Scanner System (MSS). The results are contained of an analysis of pictures of actual outdoor scenes imaged by the engineering model MSS for spectral response, resolution, noise, and video correction. Also included are the results of engineering tests on the MSS for reflectance and saturation from clouds. Finally, two panoramic pictures of Yosemite National Park are provided.
Panoramic Sinai Peninsula, Red Sea
1984-10-13
An excellent panoramic view of the entire Sinai Peninsula (29.0N, 34.0E) and the nearby Nile River Delta and eastern Mediterranean coastal region. The Suez Canal, at the top of the scene just to the right of the Delta, connects the Mediterranean Sea with the Gulf of Suez on the west side of the Sinai Peninsula and the Gulf of Aqaba is on the west where they both flow into the Red Sea. At upper right, is the Dead Sea, Jordan River and Lake Tiberius.
Panoramic View of the Andes Mountains, Chile and Argentina
NASA Technical Reports Server (NTRS)
1992-01-01
This panoramic view of the Andes Mountains of Chile and Argentina (24.5S, 69.5W) is dominated by the yellows and browns of the coastal Atacama Desert and the full width of the Andes altiplano, about 300 miles. Winter snow can be seen capping the 22,000 to 23,000 ft. peaks of the Andes. Wisps of cirrus clouds lie over the altiplano and offshore fog obscures the coast. In the distance, the low Chaco Plain appears green with pastures and agriculture.
9. THIRD IMAGE OF THE PANORAMIC SERIES WITH CONSIDERABLE OVERLAP. ...
9. THIRD IMAGE OF THE PANORAMIC SERIES WITH CONSIDERABLE OVERLAP. A SETTLING TANK, SMOKESTACK FROM THE MILL'S BOILER ROOM, MILL ANNEX AND OTHER MILL OUT BUILDINGS ARE IN THE MIDDLE RIGHT OF THE IMAGE THE SUPERINTENDENTS HOUSE IS IN THE MIDDLE LEFT OF THE IMAGE SPANNING FROM LEFT TO RIGHT IN THE BACKGROUND IS THE TOWN OF BODIE. IN THE FAR BACKGROUND LEFT IS THE ROAD THAT IS THE ACCESS PARK. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
On the importance of image formation optics in the design of infrared spectroscopic imaging systems
Mayerich, David; van Dijk, Thomas; Walsh, Michael; Schulmerich, Matthew; Carney, P. Scott
2014-01-01
Infrared spectroscopic imaging provides micron-scale spatial resolution with molecular contrast. While recent work demonstrates that sample morphology affects the recorded spectrum, considerably less attention has been focused on the effects of the optics, including the condenser and objective. This analysis is extremely important, since it will be possible to understand effects on recorded data and provides insight for reducing optical effects through rigorous microscope design. Here, we present a theoretical description and experimental results that demonstrate the effects of commonly-employed cassegranian optics on recorded spectra. We first combine an explicit model of image formation and a method for quantifying and visualizing the deviations in recorded spectra as a function of microscope optics. We then verify these simulations with measurements obtained from spatially heterogeneous samples. The deviation of the computed spectrum from the ideal case is quantified via a map which we call a deviation map. The deviation map is obtained as a function of optical elements by systematic simulations. Examination of deviation maps demonstrates that the optimal optical configuration for minimal deviation is contrary to prevailing practice in which throughput is maximized for an instrument without a sample. This report should be helpful for understanding recorded spectra as a function of the optics, the analytical limits of recorded data determined by the optical design, and potential routes for optimization of imaging systems. PMID:24936526
On the importance of image formation optics in the design of infrared spectroscopic imaging systems.
Mayerich, David; van Dijk, Thomas; Walsh, Michael J; Schulmerich, Matthew V; Carney, P Scott; Bhargava, Rohit
2014-08-21
Infrared spectroscopic imaging provides micron-scale spatial resolution with molecular contrast. While recent work demonstrates that sample morphology affects the recorded spectrum, considerably less attention has been focused on the effects of the optics, including the condenser and objective. This analysis is extremely important, since it will be possible to understand effects on recorded data and provides insight for reducing optical effects through rigorous microscope design. Here, we present a theoretical description and experimental results that demonstrate the effects of commonly-employed cassegranian optics on recorded spectra. We first combine an explicit model of image formation and a method for quantifying and visualizing the deviations in recorded spectra as a function of microscope optics. We then verify these simulations with measurements obtained from spatially heterogeneous samples. The deviation of the computed spectrum from the ideal case is quantified via a map which we call a deviation map. The deviation map is obtained as a function of optical elements by systematic simulations. Examination of deviation maps demonstrates that the optimal optical configuration for minimal deviation is contrary to prevailing practice in which throughput is maximized for an instrument without a sample. This report should be helpful for understanding recorded spectra as a function of the optics, the analytical limits of recorded data determined by the optical design, and potential routes for optimization of imaging systems.
A clone-free, single molecule map of the domestic cow (Bos taurus) genome.
Zhou, Shiguo; Goldstein, Steve; Place, Michael; Bechner, Michael; Patino, Diego; Potamousis, Konstantinos; Ravindran, Prabu; Pape, Louise; Rincon, Gonzalo; Hernandez-Ortiz, Juan; Medrano, Juan F; Schwartz, David C
2015-08-28
The cattle (Bos taurus) genome was originally selected for sequencing due to its economic importance and unique biology as a model organism for understanding other ruminants, or mammals. Currently, there are two cattle genome sequence assemblies (UMD3.1 and Btau4.6) from groups using dissimilar assembly algorithms, which were complemented by genetic and physical map resources. However, past comparisons between these assemblies revealed substantial differences. Consequently, such discordances have engendered ambiguities when using reference sequence data, impacting genomic studies in cattle and motivating construction of a new optical map resource--BtOM1.0--to guide comparisons and improvements to the current sequence builds. Accordingly, our comprehensive comparisons of BtOM1.0 against the UMD3.1 and Btau4.6 sequence builds tabulate large-to-immediate scale discordances requiring mediation. The optical map, BtOM1.0, spanning the B. taurus genome (Hereford breed, L1 Dominette 01449) was assembled from an optical map dataset consisting of 2,973,315 (439 X; raw dataset size before assembly) single molecule optical maps (Rmaps; 1 Rmap = 1 restriction mapped DNA molecule) generated by the Optical Mapping System. The BamHI map spans 2,575.30 Mb and comprises 78 optical contigs assembled by a combination of iterative (using the reference sequence: UMD3.1) and de novo assembly techniques. BtOM1.0 is a high-resolution physical map featuring an average restriction fragment size of 8.91 Kb. Comparisons of BtOM1.0 vs. UMD3.1, or Btau4.6, revealed that Btau4.6 presented far more discordances (7,463) vs. UMD3.1 (4,754). Overall, we found that Btau4.6 presented almost double the number of discordances than UMD3.1 across most of the 6 categories of sequence vs. map discrepancies, which are: COMPLEX (misassembly), DELs (extraneous sequences), INSs (missing sequences), ITs (Inverted/Translocated sequences), ECs (extra restriction cuts) and MCs (missing restriction cuts). Alignments of UMD3.1 and Btau4.6 to BtOM1.0 reveal discordances commensurate with previous reports, and affirm the NCBI's current designation of UMD3.1 sequence assembly as the "reference assembly" and the Btau4.6 as the "alternate assembly." The cattle genome optical map, BtOM1.0, when used as a comprehensive and largely independent guide, will greatly assist improvements to existing sequence builds, and later serve as an accurate physical scaffold for studies concerning the comparative genomics of cattle breeds.
Symplectic maps and chromatic optics in particle accelerators
Cai, Yunhai
2015-07-06
Here, we have applied the nonlinear map method to comprehensively characterize the chromatic optics in particle accelerators. Our approach is built on the foundation of symplectic transfer maps of magnetic elements. The chromatic lattice parameters can be transported from one element to another by the maps. We also introduce a Jacobian operator that provides an intrinsic linkage between the maps and the matrix with parameter dependence. The link allows us to directly apply the formulation of the linear optics to compute the chromatic lattice parameters. As an illustration, we analyze an alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles andmore » derive analytically their settings for the local chromatic compensation. Finally, the cell becomes nearly perfect up to the third-order of the momentum deviation.« less
NASA Astrophysics Data System (ADS)
Keane, Tommy P.; Cahill, Nathan D.; Tarduno, John A.; Jacobs, Robert A.; Pelz, Jeff B.
2014-02-01
Mobile eye-tracking provides the fairly unique opportunity to record and elucidate cognition in action. In our research, we are searching for patterns in, and distinctions between, the visual-search performance of experts and novices in the geo-sciences. Traveling to regions resultant from various geological processes as part of an introductory field studies course in geology, we record the prima facie gaze patterns of experts and novices when they are asked to determine the modes of geological activity that have formed the scene-view presented to them. Recording eye video and scene video in natural settings generates complex imagery that requires advanced applications of computer vision research to generate registrations and mappings between the views of separate observers. By developing such mappings, we could then place many observers into a single mathematical space where we can spatio-temporally analyze inter- and intra-subject fixations, saccades, and head motions. While working towards perfecting these mappings, we developed an updated experiment setup that allowed us to statistically analyze intra-subject eye-movement events without the need for a common domain. Through such analyses we are finding statistical differences between novices and experts in these visual-search tasks. In the course of this research we have developed a unified, open-source, software framework for processing, visualization, and interaction of mobile eye-tracking and high-resolution panoramic imagery.
Avti, Pramod K; Hu, Song; Favazza, Christopher; Mikos, Antonios G; Jansen, John A; Shroyer, Kenneth R; Wang, Lihong V; Sitharaman, Balaji
2012-01-01
In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Optical-resolution (OR) and acoustic-resolution (AR)--Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.
Use of Optical Mapping in Bacterial Genome Finishing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Dibyendu
2010-06-03
Dibyendu Kumar from the University of Florida discusses whole-genome optical mapping to help validate bacterial genome assemblies on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Signal digitizing system and method based on amplitude-to-time optical mapping
Chou, Jason; Bennett, Corey V; Hernandez, Vince
2015-01-13
A signal digitizing system and method based on analog-to-time optical mapping, optically maps amplitude information of an analog signal of interest first into wavelength information using an amplitude tunable filter (ATF) to impress spectral changes induced by the amplitude of the analog signal onto a carrier signal, i.e. a train of optical pulses, and next from wavelength information to temporal information using a dispersive element so that temporal information representing the amplitude information is encoded in the time domain in the carrier signal. Optical-to-electrical conversion of the optical pulses into voltage waveforms and subsequently digitizing the voltage waveforms into a digital image enables the temporal information to be resolved and quantized in the time domain. The digital image may them be digital signal processed to digitally reconstruct the analog signal based on the temporal information with high fidelity.
NASA Technical Reports Server (NTRS)
2004-01-01
This image from the Mars Exploration Rover Opportunity's panoramic camera shows one octant of a larger panoramic image which has not yet been fully processed. The full panorama, dubbed 'Lion King' was obtained on sols 58 and 60 of the mission as the rover was perched at the lip of Eagle Crater, majestically looking down into its former home. It is the largest panorama yet obtained by either rover. The octant, which faces directly into the crater, shows features as small as a few millimeters across in the field near the rover arm, to features a few meters across or larger on the horizon.
The full panoramic image was taken in eight segments using six filters per segment, for a total of 558 images and more than 75 megabytes of data. This enhanced color composite was assembled from the infrared (750 nanometer), green (530 nanometer), and violet (430 nanometer) filters. Additional lower elevation tiers were added relative to other panoramas to ensure that the entire crater was covered in the mosaic.The development of a learning management system for dental radiology education: A technical report.
Chang, Hee-Jin; Symkhampha, Khanthaly; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul
2017-03-01
This study was conducted to suggest the development of a learning management system for dental radiology education using the Modular Object-Oriented Dynamic Learning Environment (Moodle). Moodle is a well-known and verified open-source software-learning management system (OSS-LMS). The Moodle software was installed on a server computer and customized for dental radiology education. The system was implemented for teaching undergraduate students to diagnose dental caries in panoramic images. Questions were chosen that could assess students' diagnosis ability. Students were given several questions corre-sponding to each of 100 panoramic images. The installation and customization of Moodle was feasible, cost-effective, and time-saving. By having students answer questions repeatedly, it was possible to train them to examine panoramic images sequentially and thoroughly. Based on its educational efficiency and efficacy, the adaptation of an OSS-LMS in dental school may be highly recommended. The system could be extended to continuing education for dentists. Further studies on the objective evaluation of knowledge acquisition and retention are needed.
Storrie-Lombardi, Michael C; Muller, Jan-Peter; Fisk, Martin R; Cousins, Claire; Sattler, Birgit; Griffiths, Andrew D; Coates, Andrew J
2009-12-01
The European Space Agency will launch the ExoMars mission in 2016 with a primary goal of surveying the martian subsurface for evidence of organic material. We have recently investigated the utility of including either a 365 nm light-emitting diode or a 375 nm laser light source in the ExoMars rover panoramic camera (PanCam). Such a modification would make it feasible to monitor rover drill cuttings optically for the fluorescence signatures of aromatic organic molecules and map the distribution of polycyclic aromatic hydrocarbons (PAHs) as a function of depth to the 2 m limit of the ExoMars drill. The technique described requires no sample preparation, does not consume irreplaceable resources, and would allow mission control to prioritize deployment of organic detection experiments that require sample destruction, expenditure of non-replaceable consumables, or both. We report here for the first time laser-induced fluorescence emission (L.I.F.E.) imaging detection limits for anthracene, pyrene, and perylene targets doped onto a Mars analog granular peridotite with a 375 nm Nichia laser diode in optically uncorrected wide-angle mode. Data were collected via the Beagle 2 PanCam backup filter wheel fitted with original blue (440 nm), green (530 nm), and red (670 nm) filters. All three PAH species can be detected with the PanCam green (530 nm) filter. Detection limits in the green band for signal-to-noise ratios (S/N) > 10 are 49 parts per million (ppm) for anthracene, 145 ppm for pyrene, and 20 ppm for perylene. The anthracene detection limit improves to 7 ppm with use of the PanCam blue filter. We discuss soil-dependent detection limit constraints; use of UV excitation with other rover cameras, which provides higher spatial resolution; and the advantages of focused and wide-angle laser modes. Finally, we discuss application of L.I.F.E. techniques at multiple wavelengths for exploration of Mars analog extreme environments on Earth, including Icelandic hydrothermally altered basalts and the ice-covered lakes and glaciers of Dronning Maud Land, Antarctica.
Spherical rotation orientation indication for HEVC and JEM coding of 360 degree video
NASA Astrophysics Data System (ADS)
Boyce, Jill; Xu, Qian
2017-09-01
Omnidirectional (or "360 degree") video, representing a panoramic view of a spherical 360° ×180° scene, can be encoded using conventional video compression standards, once it has been projection mapped to a 2D rectangular format. Equirectangular projection format is currently used for mapping 360 degree video to a rectangular representation for coding using HEVC/JEM. However, video in the top and bottom regions of the image, corresponding to the "north pole" and "south pole" of the spherical representation, is significantly warped. We propose to perform spherical rotation of the input video prior to HEVC/JEM encoding in order to improve the coding efficiency, and to signal parameters in a supplemental enhancement information (SEI) message that describe the inverse rotation process recommended to be applied following HEVC/JEM decoding, prior to display. Experiment results show that up to 17.8% bitrate gain (using the WS-PSNR end-to-end metric) can be achieved for the Chairlift sequence using HM16.15 and 11.9% gain using JEM6.0, and an average gain of 2.9% for HM16.15 and 2.2% for JEM6.0.
Godavarthi, A Sowjanya; Sajjan, M C Suresh; Raju, A V Rama; Rajeshkumar, P; Premalatha, Averneni; Chava, Narayana
2015-01-01
Background: To evaluate the feasibility of using panoramic radiographs as an alternative to an interocclusal recording method for determining the condylar guidance in dentate and edentulous conditions. Materials and Methods: 20 dentulous individuals with an age range of 20-30 years and 20 edentulous patients of 40-65 years were selected. An interocclusal bite registration was done in protrusive position for all the subjects. Orthopantomographs were made for all patients in open mouth position. Hanau articulator was modified to record the angulations to the accuracy of 1°. Tracing of glenoid fossa on radiograph was done to measure the condylar guidance angles. Readings were recorded and analyzed by Freidman’s test and t-test. Results: Condylar guidance values obtained by the interocclusal method and radiographic method in dentate individuals on the right side and left side 40.55°, and 37.1°, and 40.15°, and 34.75°, respectively. In the edentulous individuals, the values on the right side and left side was 36.7° and 36.1° and 35.95° and 33.6,° respectively. The difference was statistically significant (P = < 0.001) in dentate group and was not statistically significant (P = 0.6493) in edentulous group. Conclusion: Panoramic radiograph can be used as an alternative to interocclusal technique only in edentulous patients. Further studies comparing panoramic radiograph to jaw tracking devices would substantiate the results of this study. PMID:26464554
Influence of lead apron shielding on absorbed doses from panoramic radiography
Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D
2013-01-01
Objectives: This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. Methods: A RANDO® full body phantom (Alderson Research Laboratories Inc., Stamford, CT) was equipped with 110 thermoluminescent dosemeters at 55 different sites and set up in two different panoramic radiography devices [SCANORA® three-dimensional (3D) (SOREDEX, Tuusula, Finland) and ProMax® 3D (Planmeca, Helsinki, Finland)] and exposed. Two different protocols were performed in the two devices. The first protocol was performed without any lead shielding, whereas the phantom was equipped with a standard adult lead apron for the second protocol. Results: A two-tailed paired samples t-test for the SCANORA 3D revealed that there is no difference between the protocol using lead apron shielding (m = 87.99, s = 102.98) and the protocol without shielding (m = 87.34, s = 107.49), t(54) = −0.313, p > 0.05. The same test for the ProMax 3D showed that there is also no difference between the protocol using shielding (m = 106.48, s = 117.38) and the protocol without shielding (m = 107.75, s = 114,36), t(54) = 0.938, p > 0.05. Conclusions: In conclusion, the results of this study showed no statistically significant differences between a panoramic radiography with or without the use of lead apron shielding. PMID:24174012
Influence of lead apron shielding on absorbed doses from panoramic radiography.
Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D
2013-01-01
This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. A RANDO(®) full body phantom (Alderson Research Laboratories Inc., Stamford, CT) was equipped with 110 thermoluminescent dosemeters at 55 different sites and set up in two different panoramic radiography devices [SCANORA(®) three-dimensional (3D) (SOREDEX, Tuusula, Finland) and ProMax(®) 3D (Planmeca, Helsinki, Finland)] and exposed. Two different protocols were performed in the two devices. The first protocol was performed without any lead shielding, whereas the phantom was equipped with a standard adult lead apron for the second protocol. A two-tailed paired samples t-test for the SCANORA 3D revealed that there is no difference between the protocol using lead apron shielding (m = 87.99, s = 102.98) and the protocol without shielding (m = 87.34, s = 107.49), t(54) = -0.313, p > 0.05. The same test for the ProMax 3D showed that there is also no difference between the protocol using shielding (m = 106.48, s = 117.38) and the protocol without shielding (m = 107.75, s = 114,36), t(54) = 0.938, p > 0.05. In conclusion, the results of this study showed no statistically significant differences between a panoramic radiography with or without the use of lead apron shielding.
Influence of lead apron shielding on absorbed doses from panoramic radiography.
Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D
2013-01-01
This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. A RANDO® full body phantom (Alderson Research Laboratories Inc., Stamford, CT) was equipped with 110 thermoluminescent dosemeters at 55 different sites and set up in two different panoramic radiography devices [SCANORA® three-dimensional (3D) (SOREDEX, Tuusula, Finland) and ProMax® 3D (Planmeca, Helsinki, Finland)] and exposed. Two different protocols were performed in the two devices. The first protocol was performed without any lead shielding, whereas the phantom was equipped with a standard adult lead apron for the second protocol. A two-tailed paired samples t-test for the SCANORA 3D revealed that there is no difference between the protocol using lead apron shielding (m = 87.99, s = 102.98) and the protocol without shielding (m = 87.34, s = 107.49), t(54) = −0.313, p > 0.05. The same test for the ProMax 3D showed that there is also no difference between the protocol using shielding (m = 106.48, s = 117.38) and the protocol without shielding (m = 107.75, s = 114,36), t(54) = 0.938, p > 0.05. In conclusion, the results of this study showed no statistically significant differences between a panoramic radiography with or without the use of lead apron shielding.
Sex Determination of Adult Human Maxillary Sinuses on Panoramic Radiographs
Leao de Queiroz, Cristhiane; Terada, Andrea Sayuri Silveira Dias; Dezem, Thais Uenoyama; Gomes de Araújo, Lais; Galo, Rodrigo; Oliveira-Santos, Christiano
2016-01-01
Absract The purpose of this study was to evaluate dimensions of adult human maxillary sinuses on panoramic radiographs and their possible application on the sex determination for forensic purposes. The sample comprised 64 database panoramic radiographs from individuals aged 20 years or older (32 male and 32 female subjects), with complete permanent dentition (or absence of third molars). One examiner measured the width and height of the right and left maxillary sinuses using the software Image J 1.47v (National Institutes of Health, Bethesda, USA). Measurements were repeated to calculate intra-observer agreement. Chi-Square test, Kappa, ANOVA and T-Student were used for results analysis for p≤ 0.05. Intra-observer agreement with correlation Kappa ranged between 0.38 and 0.96. For female subjects, the mean height and width of the left maxillary sinus were 28.7856mm and 44.6178mm, respectively. And right maxillary sinus was 27.7163mm for height and 45.1850mm for width. Male subjects were found to have the mean height and width of the left maxillary sinus 30.9981mm and 48.7753mm, respectively. And right maxillary sinus was 30.7403mm for height and 48.5753mm for width. There was a statistically significant difference in the height and width of maxillary sinuses between males and females. It can be concluded that maxillary sinuses height and width on panoramic radiographs can be used to determine the gender of adult human subjects. PMID:27847394
Suer, Berkay Tolga; Yaman, Zekai; Buyuksarac, Bora
2016-01-01
Fractal analysis is a mathematical method used to describe the internal architecture of complex structures such as trabecular bone. Fractal analysis of panoramic radiographs of implant recipient sites could help to predict the quality of the bone prior to implant placement. This study investigated the correlations between the fractal dimension values obtained from panoramic radiographs and the insertion torque and resonance frequency values of mandibular implants. Thirty patients who received a total of 55 implants of the same brand, diameter, and length in the mandibular premolar and molar regions were included in the study. The same surgical procedures were applied to each patient, and the insertion torque and resonance frequency values were recorded for each implant at the time of placement. The radiographic fractal dimensions of the alveolar bone in the implant recipient area were calculated from preoperative panoramic radiographs using a box-counting algorithm. The insertion torque and resonance frequency values were compared with the fractal dimension values using the Spearman test. All implants were successful, and none were lost during the follow-up period. Linear correlations were observed between the fractal dimension and resonance frequency, between the fractal dimension and insertion torque, and between resonance frequency and insertion torque. These results suggest that the noninvasive measurement of the fractal dimension from panoramic radiographs might help to predict the bone quality, and thus the primary stability of dental implants, before implant surgery.
Robust Mapping of Incoherent Fiber-Optic Bundles
NASA Technical Reports Server (NTRS)
Roberts, Harry E.; Deason, Brent E.; DePlachett, Charles P.; Pilgrim, Robert A.; Sanford, Harold S.
2007-01-01
A method and apparatus for mapping between the positions of fibers at opposite ends of incoherent fiber-optic bundles have been invented to enable the use of such bundles to transmit images in visible or infrared light. The method is robust in the sense that it provides useful mapping even for a bundle that contains thousands of narrow, irregularly packed fibers, some of which may be defective. In a coherent fiber-optic bundle, the input and output ends of each fiber lie at identical positions in the input and output planes; therefore, the bundle can be used to transmit images without further modification. Unfortunately, the fabrication of coherent fiber-optic bundles is too labor-intensive and expensive for many applications. An incoherent fiber-optic bundle can be fabricated more easily and at lower cost, but it produces a scrambled image because the position of the end of each fiber in the input plane is generally different from the end of the same fiber in the output plane. However, the image transmitted by an incoherent fiber-optic bundle can be unscrambled (or, from a different perspective, decoded) by digital processing of the output image if the mapping between the input and output fiber-end positions is known. Thus, the present invention enables the use of relatively inexpensive fiber-optic bundles to transmit images.
NASA Astrophysics Data System (ADS)
Perry, Thomas M.; Marr, J. M.; Read, J. W.; Taylor, G. B.
2011-01-01
We obtained VLBI observations at six frequencies of two Compact Symmetric Objects, 1321+410 and 0026+346. By comparing the lower frequency maps with spectral extrapolations of the higher frequency maps, we produced maps of the optical depth as a function of frequency. The optical-depth maps of 1321+410 are strikingly uniform, consistent with a foreground screen of absorbing gas; the optical depths as a function of frequency are consistent with free-free absorption; and no net polarization was detected. We conclude that the case for free-free absorption in 1321+410 is strong. The optical-depth maps of 0026+346 exhibit structure but the morphology does not correlate with that in the intensity maps, in conflict with that expected in the case of synchrotron self-absorption. No net polarization was detected. The frequency dependence of the optical depths does not fit well to a simple free-free absorption model, but this does not take into account possible structure in the absorbing gas on smaller scales. We conclude that free-free absorption by a thin amount of gas with structure on the scale of our maps and smaller is possible in 0026+346, although no definitive conclusion can be made. A compact feature between the lobes in 0026+346 has an inverted spectrum even at the highest frequencies, suggesting that this component is synchrotron self-absorbed. We infer this to be the location of the core. We estimate an upper limit to the magnetic field in the core of 50 Gauss at a radius of 1 pc. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Interferometry On Grazing Incidence Optics
NASA Astrophysics Data System (ADS)
Geary, Joseph; Maeda, Riki
1988-08-01
A preliminary interferometric procedure is described showing potential for obtaining surface figure error maps of grazing incidence optics at normal incidence. The latter are found in some laser resonator configurations, and in Wolter type X-ray optics. The procedure makes use of cylindrical wavefronts and error subtraction techniques over subapertures. The surface error maps obtained will provide critical information to opticians in the fabrication process.
Shared protection based virtual network mapping in space division multiplexing optical networks
NASA Astrophysics Data System (ADS)
Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie
2018-05-01
Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.
Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy.
Levy-Sakin, Michal; Ebenstein, Yuval
2013-08-01
Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material. Optical mapping of DNA grants access to genetic and epigenetic information on individual DNA molecules up to ∼1 Mbp in length. Fluorescent labeling of specific sequence motifs, epigenetic marks and other genomic information on individual DNA molecules generates a high content optical barcode along the DNA. By stretching the DNA to a linear configuration this barcode may be directly visualized by fluorescence microscopy. We discuss the advances of these methods in light of recent developments in nano-fabrication and super-resolution optical imaging (nanoscopy) and review the latest achievements of optical mapping in the context of genomic analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of a Mars Surface Imager
NASA Technical Reports Server (NTRS)
Squyres, Steve W.
1994-01-01
The Mars Surface Imager (MSI) is a multispectral, stereoscopic, panoramic imager that allows imaging of the full scene around a Mars lander from the lander body to the zenith. It has two functional components: panoramic imaging and sky imaging. In the most recent version of the MSI, called PIDDP-cam, a very long multi-line color CCD, an innovative high-performance drive system, and a state-of-the-art wavelet image compression code have been integrated into a single package. The requirements for the flight version of the MSI and the current design are presented.
NASA Astrophysics Data System (ADS)
Denisov, Alexander; Gudkov, Alexander; Qiu, Jing Hui
2014-10-01
Josephson junction (JJ) can be used as the criterion in single-block super wide band frequency-meter and as the sensitive element in the super wide band panoramic receiver. There presented the theoretical and experimental investigations and described the innovation decision about to combine both devices in one new microwave device. JJ in this case works in self-pump mode regime. New device can be especially convenient for the experimental purposes with new generation structures when radiated power is small and frequency are unknown correctly.
NASA Technical Reports Server (NTRS)
2004-01-01
The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.
7. THE BEGINNING OF A PANORAMIC SERIES VIEW LOOKING WEST ...
7. THE BEGINNING OF A PANORAMIC SERIES VIEW LOOKING WEST NORTHWEST FROM THE UPHILL SIDE OF THE MILL. THE ORE RECEIVING HOUSE IS IN THE IMAGE CENTER, THE ORE DELIVERY TRESTLE EXTENDS FROM THE RECEIVING HOUSE TO THE MILL BUILDING IN THE BACKGROUND LEFT. IN THE MID-GROUND LEFT IS A CYLINDRICAL STRUCTURE BELIEVE TO BE A SETTLING TANK FROM A LATER CHEMICAL RETREATMENT OF THE TAILINGS IN THE FOREGROUND RIGHT IS AN EXTANT ORE BUCKET. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Estimating 3D topographic map of optic nerve head from a single fundus image
NASA Astrophysics Data System (ADS)
Wang, Peipei; Sun, Jiuai
2018-04-01
Optic nerve head also called optic disc is the distal portion of optic nerve locating and clinically visible on the retinal surface. It is a 3 dimensional elliptical shaped structure with a central depression called the optic cup. This shape of the ONH and the size of the depression can be varied due to different retinopathy or angiopathy, therefore the estimation of topography of optic nerve head is significant for assisting diagnosis of those retinal related complications. This work describes a computer vision based method, i.e. shape from shading (SFS) to recover and visualize 3D topographic map of optic nerve head from a normal fundus image. The work is expected helpful for assessing those complications associated the deformation of optic nerve head such as glaucoma and diabetes. The illumination is modelled as uniform over the area around optic nerve head and its direction estimated from the available image. The Tsai discrete method has been employed to recover the 3D topographic map of the optic nerve head. The initial experimental result demonstrates our approach works on most of fundus images and provides a cheap, but good alternation for rendering and visualizing the topographic information of the optic nerve head for potential clinical use.
NASA Astrophysics Data System (ADS)
Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.
2009-04-01
θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.
Apollo 17 Command/Service modules photographed from lunar module in orbit
1972-12-14
AS17-145-22254 (14 Dec. 1972) --- An excellent view of the Apollo 17 Command and Service Modules (CSM) photographed from the Lunar Module (LM) "Challenger" during rendezvous and docking maneuvers in lunar orbit. The LM ascent stage, with astronauts Eugene A. Cernan and Harrison H. Schmitt aboard, had just returned from the Taurus-Littrow landing site on the lunar surface. Astronaut Ronald E. Evans remained with the CSM in lunar orbit. Note the exposed Scientific Instrument Module (SIM) Bay in Sector 1 of the Service Module (SM). Three experiments are carried in the SIM bay: S-209 lunar sounder, S-171 infrared scanning spectrometer, and the S-169 far-ultraviolet spectrometer. Also mounted in the SIM bay are the panoramic camera, mapping camera and laser altimeter used in service module photographic tasks. A portion of the LM is on the right.
High resolution optical DNA mapping
NASA Astrophysics Data System (ADS)
Baday, Murat
Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.
ATTICA family of thermal cameras in submarine applications
NASA Astrophysics Data System (ADS)
Kuerbitz, Gunther; Fritze, Joerg; Hoefft, Jens-Rainer; Ruf, Berthold
2001-10-01
Optronics Mast Systems (US: Photonics Mast Systems) are electro-optical devices which enable a submarine crew to observe the scenery above water during dive. Unlike classical submarine periscopes they are non-hull-penetrating and therefore have no direct viewing capability. Typically they have electro-optical cameras both for the visual and for an IR spectral band with panoramic view and a stabilized line of sight. They can optionally be equipped with laser range- finders, antennas, etc. The brand name ATTICA (Advanced Two- dimensional Thermal Imager with CMOS-Array) characterizes a family of thermal cameras using focal-plane-array (FPA) detectors which can be tailored to a variety of requirements. The modular design of the ATTICA components allows the use of various detectors (InSb, CMT 3...5 μm , CMT 7...11 μm ) for specific applications. By means of a microscanner ATTICA cameras achieve full standard TV resolution using detectors with only 288 X 384 (US:240 X 320) detector elements. A typical requirement for Optronics-Mast Systems is a Quick- Look-Around capability. For FPA cameras this implies the need for a 'descan' module which can be incorporated in the ATTICA cameras without complications.
Optical monitoring of film pollution on sea surface
NASA Astrophysics Data System (ADS)
Pavlov, Andrey; Konstantinov, Oleg; Shmirko, Konstantin
2017-11-01
The organic films form a brightness contrast on the sea surface. It makes possible to use cheap simple and miniature systems for video monitoring of pollution of coastal marine areas by oil products in the bunkering of ships, emergency situations at oil terminals, gas and oil pipelines, hydrocarbon production platforms on the shelf, etc.1-16 A panoramic video system with a polarization filter on the lens, located at an altitude of 90 m above sea level, can provide effective control of the water area within a radius of 7 kilometers,17-19 and modern photogrammetry technologies allow not only to register the fact of pollution and get a portrait of the offender, but also with a high Spatial and temporal resolution to estimate the dimensions and trace the dynamics of movement and transformation of the film in a geographic coordinate system. Of particular relevance is the optical method of controlling the pollution of the sea surface at the present time with the development of unmanned aerial vehicles that are already equipped with video cameras and require only a minor upgrade of their video system to enhance the contrast of images of organic films.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey, S.; Aronstein, David L.; Dean, Bruce H.; Lyon, Richard G.
2012-01-01
The performance of an optical system (for example, a telescope) is limited by the misalignments and manufacturing imperfections of the optical elements in the system. The impact of these misalignments and imperfections can be quantified by the phase variations imparted on light traveling through the system. Phase retrieval is a methodology for determining these variations. Phase retrieval uses images taken with the optical system and using a light source of known shape and characteristics. Unlike interferometric methods, which require an optical reference for comparison, and unlike Shack-Hartmann wavefront sensors that require special optical hardware at the optical system's exit pupil, phase retrieval is an in situ, image-based method for determining the phase variations of light at the system s exit pupil. Phase retrieval can be used both as an optical metrology tool (during fabrication of optical surfaces and assembly of optical systems) and as a sensor used in active, closed-loop control of an optical system, to optimize performance. One class of phase-retrieval algorithms is the iterative transform algorithm (ITA). ITAs estimate the phase variations by iteratively enforcing known constraints in the exit pupil and at the detector, determined from modeled or measured data. The Variable Sampling Mapping (VSM) technique is a new method for enforcing these constraints in ITAs. VSM is an open framework for addressing a wide range of issues that have previously been considered detrimental to high-accuracy phase retrieval, including undersampled images, broadband illumination, images taken at or near best focus, chromatic aberrations, jitter or vibration of the optical system or detector, and dead or noisy detector pixels. The VSM is a model-to-data mapping procedure. In VSM, fully sampled electric fields at multiple wavelengths are modeled inside the phase-retrieval algorithm, and then these fields are mapped to intensities on the light detector, using the properties of the detector and optical system, for comparison with measured data. Ultimately, this model-to-data mapping procedure enables a more robust and accurate way of incorporating the exit-pupil and image detector constraints, which are fundamental to the general class of ITA phase retrieval algorithms.
Mazerand, Edouard; Le Renard, Marc; Hue, Sophie; Lemée, Jean-Michel; Klinger, Evelyne; Menei, Philippe
2017-01-01
Brain mapping during awake craniotomy is a well-known technique to preserve neurological functions, especially the language. It is still challenging to map the optic radiations due to the difficulty to test the visual field intraoperatively. To assess the visual field during awake craniotomy, we developed the Functions' Explorer based on a virtual reality headset (FEX-VRH). The impaired visual field of 10 patients was tested with automated perimetry (the gold standard examination) and the FEX-VRH. The proof-of-concept test was done during the surgery performed on a patient who was blind in his right eye and presenting with a left parietotemporal glioblastoma. The FEX-VRH was used intraoperatively, simultaneously with direct subcortical electrostimulation, allowing identification and preservation of the optic radiations. The FEX-VRH detected 9 of the 10 visual field defects found by automated perimetry. The patient who underwent an awake craniotomy with intraoperative mapping of the optic tract using the FEX-VRH had no permanent postoperative visual field defect. Intraoperative visual field assessment with the FEX-VRH during direct subcortical electrostimulation is a promising approach to mapping the optical radiations and preventing a permanent visual field defect during awake surgery for epilepsy or tumor. Copyright © 2016 Elsevier Inc. All rights reserved.
Prakash, Neal; Uhleman, Falk; Sheth, Sameer A.; Bookheimer, Susan; Martin, Neil; Toga, Arthur W.
2009-01-01
Resection of a cerebral arteriovenous malformation (AVM), epileptic focus, or glioma, ideally has a prerequisite of microscopic delineation of the lesion borders in relation to the normal gray and white matter that mediate critical functions. Currently, Wada testing and functional magnetic resonance imaging (fMRI) are used for preoperative mapping of critical function, whereas electrical stimulation mapping (ESM) is used for intraoperative mapping. For lesion delineation, MRI and positron emission tomography (PET) are used preoperatively, whereas microscopy and histological sectioning are used intraoperatively. However, for lesions near eloquent cortex, these imaging techniques may lack sufficient resolution to define the relationship between the lesion and language function, and thus not accurately determine which patients will benefit from neurosurgical resection of the lesion without iatrogenic aphasia. Optical techniques such as intraoperative optical imaging of intrinsic signals (iOIS) show great promise for the precise functional mapping of cortices, as well as delineation of the borders of AVMs, epileptic foci, and gliomas. Here we first review the physiology of neuroimaging, and then progress towards the validation and justification of using intraoperative optical techniques, especially in relation to neurosurgical planning of resection AVMs, epileptic foci, and gliomas near or in eloquent cortex. We conclude with a short description of potential novel intraoperative optical techniques. PMID:18786643
Mikos, Antonios G.; Jansen, John A.; Shroyer, Kenneth R.; Wang, Lihong V.; Sitharaman, Balaji
2012-01-01
Aims In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Materials and Methods Optical-resolution (OR) and acoustic-resolution (AR) - Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Results Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. Conclusions The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs. PMID:22496892
Hisatake, Shintaro; Tada, Keiji; Nagatsuma, Tadao
2010-03-01
We demonstrate the generation of an optical frequency comb (OFC) with a Gaussian spectrum using a continuous-wave (CW) laser, based on spatial convolution of a slit and a periodically moving optical beam spot in a linear time-to-space mapping system. A CW optical beam is linearly mapped to a spatial signal using two sinusoidal electro-optic (EO) deflections and an OFC is extracted by inserting a narrow spatial slit in the Fourier-transform plane of a second EO deflector (EOD). The spectral shape of the OFC corresponds to the spatial beam profile in the near-field region of the second EOD, which can be manipulated by a spatial filter without spectral dispersers. In a proof-of-concept experiment, a 16.25-GHz-spaced, 240-GHz-wide Gaussian-envelope OFC (corresponding to 1.8 ps Gaussian pulse generation) was demonstrated.
Su, Naichuan; van Wijk, Arjen; Berkhout, Erwin; Sanderink, Gerard; De Lange, Jan; Wang, Hang; van der Heijden, Geert J M G
2017-04-01
The purpose of the present systematic review was to assess the added value of panoramic radiography in predicting postoperative injury of the inferior alveolar nerve (IAN) in the decision-making before mandibular third molar (MM3) surgery. MEDLINE and EMBASE were searched electronically to identify the diagnostic accuracy of studies that had assessed the predictive value of 7 panoramic radiographic signs, including root-related signs (darkening of the root, deflection of the root, narrowing of the root, and dark and bifid apex of the root) and canal-related signs (interruption of the white line of the canal, diversion of the canal, and narrowing of the canal) for IAN injury after MM3 surgery. A total of 8 studies qualified for the meta-analysis. The pooled sensitivity and specificity of the 7 signs ranged from 0.06 to 0.49 and 0.81 to 0.97, respectively. The area under the summary area under the receiver operating characteristic curve ranged from 0.42 to 0.89. The pooled positive predictive value (PPV) and negative predictive value (NPV) ranged from 7.5 to 26.6% and 95.9 to 97.7%, respectively. The added value of a positive sign for ruling in an IAN injury (PPV minus the prior probability) ranged from 3.4 to 22.2%. The added value of a negative sign for ruling out an IAN injury (NPV minus [1 minus the prior probability]) ranged from 0.1 to 2.2%. For all 7 signs, the added value of panoramic radiography is too low to consider it appropriate for ruling out postoperative IAN in the decision-making before MM3 surgery. The added value of panoramic radiography for determining the presence of diversion of the canal, interruption of the white line of the canal, and darkening of the root can be considered sufficient for ruling in the risk of postoperative IAN injury in the decision-making before MM3 surgery. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2009-01-01
A method of recovering unknown aberrations in an optical system includes collecting intensity data produced by the optical system, generating an initial estimate of a phase of the optical system, iteratively performing a phase retrieval on the intensity data to generate a phase estimate using an initial diversity function corresponding to the intensity data, generating a phase map from the phase retrieval phase estimate, decomposing the phase map to generate a decomposition vector, generating an updated diversity function by combining the initial diversity function with the decomposition vector, generating an updated estimate of the phase of the optical system by removing the initial diversity function from the phase map. The method may further include repeating the process beginning with iteratively performing a phase retrieval on the intensity data using the updated estimate of the phase of the optical system in place of the initial estimate of the phase of the optical system, and using the updated diversity function in place of the initial diversity function, until a predetermined convergence is achieved.
Ahmad, Mansur; Hollender, Lars; Anderson, Quentin; Kartha, Krishnan; Ohrbach, Richard; Truelove, Edmond L; John, Mike T; Schiffman, Eric L
2009-06-01
As part of the Multisite Research Diagnostic Criteria For Temporomandibular Disorders (RDC/TMD) Validation Project, comprehensive temporomandibular joint diagnostic criteria were developed for image analysis using panoramic radiography, magnetic resonance imaging (MRI), and computerized tomography (CT). Interexaminer reliability was estimated using the kappa (kappa) statistic, and agreement between rater pairs was characterized by overall, positive, and negative percent agreement. Computerized tomography was the reference standard for assessing validity of other imaging modalities for detecting osteoarthritis (OA). For the radiologic diagnosis of OA, reliability of the 3 examiners was poor for panoramic radiography (kappa = 0.16), fair for MRI (kappa = 0.46), and close to the threshold for excellent for CT (kappa = 0.71). Using MRI, reliability was excellent for diagnosing disc displacements (DD) with reduction (kappa = 0.78) and for DD without reduction (kappa = 0.94) and good for effusion (kappa = 0.64). Overall percent agreement for pairwise ratings was >or=82% for all conditions. Positive percent agreement for diagnosing OA was 19% for panoramic radiography, 59% for MRI, and 84% for CT. Using MRI, positive percent agreement for diagnoses of any DD was 95% and of effusion was 81%. Negative percent agreement was >or=88% for all conditions. Compared with CT, panoramic radiography and MRI had poor and marginal sensitivity, respectively, but excellent specificity in detecting OA. Comprehensive image analysis criteria for the RDC/TMD Validation Project were developed, which can reliably be used for assessing OA using CT and for disc position and effusion using MRI.
Changes in jawbones of male patients with chronic renal failure on digital panoramic radiographs.
Dagistan, Saadettin; Miloglu, Ozkan; Caglayan, Fatma
2016-01-01
To compare the existence of gonial cortical bone thickness, antegonial index, mandibular canal bone resorption and gonial angle values and pathologies like ground-glass appearance in jawbones and brown tumor in male patients undergoing dialysis due to chronic renal failure and men from the healthy control group on panoramic radiographs. Panoramic radiographs were taken from 80 male individuals in total (40 normal and 40 dialysis patients). Values obtained from the right and left sides of the mandible were summed and their means were calculated. Gonial cortical thickness, antegonial index and gonial angle values were assessed with the Student's t-test, mandibular canal wall resorption with the Chi-square test, and pathologies such as ground-glass appearance and Brown tumor as "available" or "not available." Statistically significant differences were observed among the antegonial index (P < 0.001), gonial cortical bone thickness (P < 0.001), and gonial angle (P < 0.001) values of study and control groups. Besides, mandibular canal wall resorption (P < 0.001) was also statistically significant. In the study group, pathologies with ground-glass appearance were encountered in mandible, but no radiographic findings were observed similar to brown tumor. Compared to the control group, decreases were found in gonial cortical bone thicknesses, antegonial index values, mandibular canal wall resorption, and gonial angle values of the patients receiving dialysis treatment due to chronic renal failure. Although it is not statistically significant, pathology with ground-glass appearance was detected in a patient, but no pathologies like brown tumor were observed. These findings from patients with chronic renal failure must be evaluated in panoramic radiography.
Parnami, Priyanka; Gupta, Deepak; Arora, Vishal; Bhalla, Saurabh; Kumar, Adarsh; Malik, Rashi
2015-01-01
To familiarize new criteria to access vertical position of mental foramen in panoramic radiographs. Furthermore, to determine and compare the position and symmetry of mental foramen in horizontal as well as in vertical plane in Indian population and to compare the results with those reported for other populations in the literature. Further gender differences in mental foramen position were also accessed to comment on the reliability of panoramic radiographs for sex determination. Methods and Material : Six hundred digital panoramic radiographs were selected and studied regarding the location and symmetry of mental foramen. They were also compared with the other studies in the literature. The method employed is similar to that described by Al Jasser and Nwoku for horizontal position and Fishal et al. for vertical position of mental foramen. Certain modifications were carried out in Fishal's criteria for vertical position assessment. Results : The commonest position of the mental foramen in horizontal plane was in line with the longitudinal axis of the second premolar (61.0%) while in vertical plane it was found to be located inferior to the apex of second premolar (72.2%). Conclusion : Mental foramen exists in different locations and possesses many variations. Hence, Individual, gender, age, race and assessing technique largely influence these variations. It suggests that the clinicians should carefully identify these anatomical landmarks, by analyzing all influencing factors, prior to their diagnostic or the other dental, surgical and implant operation.
Chen, Li M; Turner, Gregory H; Friedman, Robert M; Zhang, Na; Gore, John C; Roe, Anna W; Avison, Malcolm J
2007-08-22
Although blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to explore human brain function, questions remain regarding the ultimate spatial resolution of positive BOLD fMRI, and indeed the extent to which functional maps revealed by positive BOLD correlate spatially with maps obtained with other high-spatial-resolution mapping techniques commonly used in animals, such as optical imaging of intrinsic signal (OIS) and single-unit electrophysiology. Here, we demonstrate that the positive BOLD signal at 9.4T can reveal the fine topography of individual fingerpads in single-condition activation maps in nonhuman primates. These digit maps are similar to maps obtained from the same animal using intrinsic optical imaging. Furthermore, BOLD fMRI reliably resolved submillimeter spatial shifts in activation in area 3b previously identified with OIS (Chen et al., 2003) as neural correlates of the "funneling illusion." These data demonstrate that at high field, high-spatial-resolution topographic maps can be achieved using the positive BOLD signal, weakening previous notions regarding the spatial specificity of the positive BOLD signal.
Statistical Significance of Optical Map Alignments
Sarkar, Deepayan; Goldstein, Steve; Schwartz, David C.
2012-01-01
Abstract The Optical Mapping System constructs ordered restriction maps spanning entire genomes through the assembly and analysis of large datasets comprising individually analyzed genomic DNA molecules. Such restriction maps uniquely reveal mammalian genome structure and variation, but also raise computational and statistical questions beyond those that have been solved in the analysis of smaller, microbial genomes. We address the problem of how to filter maps that align poorly to a reference genome. We obtain map-specific thresholds that control errors and improve iterative assembly. We also show how an optimal self-alignment score provides an accurate approximation to the probability of alignment, which is useful in applications seeking to identify structural genomic abnormalities. PMID:22506568
High-performance passive microwave survey on Josephson junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, A.G.; Radzikhovsky, V.N.; Kudeliya, A.M.
1994-12-31
The quasi-optical generations of image of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of the prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted. So that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system mustmore » contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET or SQUIDS for signal amplifications after JJ is of particular interest in this case.« less
High-performance passive microwave survey on Josephson Junctions
NASA Technical Reports Server (NTRS)
Denisov, A. G.; Radzikhovsky, V. N.; Kudeliya, A. M.
1995-01-01
The quasi-optical generations of images of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However, at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted so that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system must contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET (field effect transistors) or SQUIDS for signal amplifications after JJ is of particular interest in this case.
Method for Pre-Conditioning a Measured Surface Height Map for Model Validation
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2012-01-01
This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to eliminate the surface measurement noise or measurement errors can also suffer from aliasing effects. During re-sampling of a surface map, this software preserves the low spatial-frequency characteristic of a given surface map through the use of Zernike-polynomial fit coefficients, and maintains mid- and high-spatial-frequency characteristics of the given surface map by the use of a PSD model derived from the two-dimensional PSD data of the mid- and high-spatial-frequency components of the original surface map. Because this new method creates the new surface map in the desired sampling format from analytical expressions only, it does not encounter any aliasing effects and does not cause any discontinuity in the resultant surface map.
On the merging of optical and SAR satellite imagery for surface water mapping applications
NASA Astrophysics Data System (ADS)
Markert, Kel N.; Chishtie, Farrukh; Anderson, Eric R.; Saah, David; Griffin, Robert E.
2018-06-01
Optical and Synthetic Aperture Radar (SAR) imagery from satellite platforms provide a means to discretely map surface water; however, the application of the two data sources in tandem has been inhibited by inconsistent data availability, the distinct physical properties that optical and SAR instruments sense, and dissimilar data delivery platforms. In this paper, we describe a preliminary methodology for merging optical and SAR data into a common data space. We apply our approach over a portion of the Mekong Basin, a region with highly variable surface water cover and persistent cloud cover, for surface water applications requiring dense time series analysis. The methods include the derivation of a representative index from both sensors that transforms data from disparate physical units (reflectance and backscatter) to a comparable dimensionless space applying a consistent water extraction approach to both datasets. The merging of optical and SAR data allows for increased observations in cloud prone regions that can be used to gain additional insight into surface water dynamics or flood mapping applications. This preliminary methodology shows promise for a common optical-SAR water extraction; however, data ranges and thresholding values can vary depending on data source, yielding classification errors in the resulting surface water maps. We discuss some potential future approaches to address these inconsistencies.
Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M
2014-03-24
The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.
NASA Technical Reports Server (NTRS)
2004-01-01
Two views of a sundial called the MarsDial can be seen in this image taken on Mars by the Mars Exploration Rover Spirit's panoramic camera. These calibration instruments, positioned on the solar panels of both Spirit and the Mars Exploration Rover Opportunity, are tools for both scientists and educators. Scientists use the sundial to adjust the rovers' panoramic cameras, while students participating in NASA's Red Rover Goes to Mars program will monitor the dial to track time on Mars. Students worldwide will also have the opportunity to build their own Earth sundial and compare it to that on Mars.The left image was captured near martian noon when the Sun was very high in the sky. The right image was acquired later in the afternoon when the Sun was lower in sky, casting longer shadows. The colored blocks in the corners of the sundial are used to fine-tune the panoramic camera's sense of color. Shadows cast on the sundial help scientists adjust the brightness of images.The sundial is embellished with artwork from children, and displays the word Mars in 17 different languages.Prevalence of calcified carotid artery on panoramic radiographs in postmenopausal women.
Taheri, Jamileh Beigom; Moshfeghi, Mahkameh
2009-01-01
This study was designed to evaluate the prevalence of calcified carotid artery in 50 year-old and older postmenopausal dental outpatients for early diagnosis of individuals at risk of stroke. This is a descriptive study of 200 panoramic radiographs. These radiographs included post-menopausal women referring to the Department of Oral Medicine at Shahid Beheshti Faculty of Dentistry during 2006-2007. The x-ray machine, developer and film type were the same for all the radiographs. Statistical analysis included chi-square test and Fisher's exact test. We found 22 calcified carotid arteries. The left and right carotid arteries were involved in 7 and 9 cases, respec-tively. In 6 cases both carotid arteries were calcified. Four individuals had no vascular risk factor excluding age and others had at least one risk factor. We found significant statistical correlation between hypertension, past history of myocardial infarction, and hypercholesterolemia with calcified carotid artery on panoramic radiographs. Under the limitations of the present study, prevalence of calcified carotid arteries is 11.0 % in 50 year-old and older postmenopausal dental outpatients.
Angelakopoulos, Nikolaos; Franco, Ademir; Willems, Guy; Fieuws, Steffen; Thevissen, Patrick
2017-07-01
Screening the prevalence and pattern of dental identifiers contributes toward the process of human identification. This research investigated the uniqueness of clinical dental identifiers in photographs and radiographs. Panoramic and lateral cephalometric radiographs and five intra-oral photographs of 1727 subjects were used. In a target set, two observers examined different subjects. In a subset, both observers examined the same subjects (source set). The distance between source and target subjects was quantified for each identifier. The percentage of subjects in the target set being at least as close as the correct subject was assessed. The number of molars (34.6%), missing teeth (42%), and displaced teeth (59.9%) were the most unique identifiers in photographs and panoramic and lateral cephalometric radiographs, respectively. The pattern of rotated teeth (14.9%) was the most unique in photographs, while displaced teeth was in panoramic (37.6%) and lateral cephalometric (54.8%) radiographs. Morphological identifiers were the most unique, highlighting their importance for human identifications. © 2016 American Academy of Forensic Sciences.
Sabbagh-Haddad, Aida; Haddad, Denise Sabbagh; Michel-Crosato, Edgard; Arita, Emiko Saito
2016-01-01
The purpose of this study was to evaluate the dental radiographic characteristics as described in 40 records of patients with panoramic radiography. The patients were in the range of 6-17 years old, and were divided into two groups (20 subjects who were compatible with the normality standard and 20 individuals diagnosed with the FXS), which were matched for gender and age. Analysis of the panoramic radiographic examination involved the evaluation of dental mineralization stage, mandibular angle size, and presence of dental anomalies in both deciduous and permanent dentitions. The results of radiographic evaluation demonstrated that the chronology of tooth eruption of all third and second lower molars is anticipated in individuals with FXS (p<0.05). In this group, supernumerary deciduous teeth (2.83%), giroversion of permanent teeth (2.31%), and partial anodontia (1.82%) were the most frequent dental anomalies. In addition, an increase was observed in the mandibular angle size in the FXS group (p<0.05). We conclude that knowledge of dental radiographic changes is of great importance for dental surgeons to plan the treatment of these individuals.
High-resolution panoramic images with megapixel MWIR FPA
NASA Astrophysics Data System (ADS)
Leboucher, Vincent; Aubry, Gilles
2014-06-01
In the continuity of its current strategy, HGH maintains a deep effort in developing its most recent product family: the infrared (IR) panoramic 360-degree surveillance sensors. During the last two years, HGH optimized its prototype Middle Wave IR (MWIR) panoramic sensor IR Revolution 360 HD that gave birth to Spynel-S product. Various test campaigns proved its excellent image quality. Cyclope, the software associated with Spynel, benefitted from recent image processing improvements and new functionalities such as target geolocalization, long range sensor slue to cue and facilitated forensics analysis. In the frame of the PANORAMIR project sustained by the DGA (Délégation Générale de l'Armement), HGH designed a new extra large resolution sensor including a MWIR megapixel Focal Plane Array (FPA) detector (1280×1024 pixels). This new sensor is called Spynel-X. It provides outstanding resolution 360-degree images (with more than 100 Mpixels). The mechanical frame of Spynel (-S and -X) was designed with the collaboration of an industrial design agency. Spynel got the "Observeur du Design 2013" label.
Three-dimensional digital mapping of the optic nerve head cupping in glaucoma
NASA Astrophysics Data System (ADS)
Mitra, Sunanda; Ramirez, Manuel; Morales, Jose
1992-08-01
Visualization of the optic nerve head cupping is clinically achieved by stereoscopic viewing of a fundus image pair of the suspected eye. A novel algorithm for three-dimensional digital surface representation of the optic nerve head, using fusion of stereo depth map with a linearly stretched intensity image of a stereo fundus image pair, is presented. Prior to depth map acquisition, a number of preprocessing tasks including feature extraction, registration by cepstral analysis, and correction for intensity variations are performed. The depth map is obtained by using a coarse to fine strategy for obtaining disparities between corresponding areas. The required matching techniques to obtain the translational differences in every step, uses cepstral analysis and correlation-like scanning technique in the spatial domain for the finest details. The quantitative and precise representation of the optic nerve head surface topography following this algorithm is not computationally intensive and should provide more useful information than just qualitative stereoscopic viewing of the fundus as one of the diagnostic criteria for diagnosis of glaucoma.
Megahertz-resolution programmable microwave shaper.
Li, Jilong; Dai, Yitang; Yin, Feifei; Li, Wei; Li, Ming; Chen, Hongwei; Xu, Kun
2018-04-15
A novel microwave shaper is proposed and demonstrated, of which the microwave spectral transfer function could be fully programmable with high resolution. We achieve this by bandwidth-compressed mapping a programmable optical wave-shaper, which has a lower frequency resolution of tens of gigahertz, to a microwave one with resolution of tens of megahertz. This is based on a novel technology of "bandwidth scaling," which employs bandwidth-stretched electronic-to-optical conversion and bandwidth-compressed optical-to-electronic conversion. We demonstrate the high resolution and full reconfigurability experimentally. Furthermore, we show the group delay variation could be greatly enlarged after mapping; this is then verified by the experiment with an enlargement of 194 times. The resolution improvement and group delay magnification significantly distinguish our proposal from previous optics-to-microwave spectrum mapping.
VizieR Online Data Catalog: Herschel nearby isolated low-mass clouds maps (Sadavoy+, 2018)
NASA Astrophysics Data System (ADS)
Sadavoy, S. I.; Keto, E.; Bourke, T. L.; Dunham, M. M.; Myers, P. C.; Stephens, I. W.; di, Francesco J.; Webb, K.; Stutz, A. M.; Launhardt, R.; Tobin, J. J.
2018-05-01
For all the sources listed in table1, maps of dust temperature and optical depth at 353GHz for all globules as fits files. For all the sources listed in table1, maps of dust temperature, optical depth at 353GHz, and corrected Herschel intensities are available as fits files. The intensity maps contain labels to indicate the reliability of their intensity corrections with Group A as the most reliable, Group B as somewhat reliable, and Group C as least reliable. See paper for details. (3 data files).
NASA Astrophysics Data System (ADS)
Singh-Moon, Rajinder P.; Zaryab, Mohammad; Hendon, Christine P.
2017-02-01
Electroanatomical mapping (EAM) is an invaluable tool for guiding cardiac radiofrequency ablation (RFA) therapy. The principle roles of EAM is the identification of candidate ablation sites by detecting regions of abnormal electrogram activity and lesion validation subsequent to RF energy delivery. However, incomplete lesions may present interim electrical inactivity similar to effective treatment in the acute setting, despite efforts to reveal them with pacing or drugs, such as adenosine. Studies report that the misidentification and recovery of such lesions is a leading cause of arrhythmia recurrence and repeat procedures. In previous work, we demonstrated spectroscopic characterization of cardiac tissues using a fiber optic-integrated RF ablation catheter. In this work, we introduce OSAM (optical spectroscopic anatomical mapping), the application of this spectroscopic technique to obtain 2-dimensional biodistribution maps. We demonstrate its diagnostic potential as an auxiliary method for lesion validation in treated swine preparations. Endocardial lesion sets were created on fresh swine cardiac samples using a commercial RFA system. An optically-integrated catheter console fabricated in-house was used for measurement of tissue optical spectra between 600-1000nm. Three dimensional, Spatio-spectral datasets were generated by raster scanning of the optical catheter across the treated sample surface in the presence of whole blood. Tissue optical parameters were recovered at each spatial position using an inverse Monte Carlo method. OSAM biodistribution maps showed stark correspondence with gross examination of tetrazolium chloride stained tissue specimens. Specifically, we demonstrate the ability of OSAM to readily distinguish between shallow and deeper lesions, a limitation faced by current EAM techniques. These results showcase the OSAMs potential for lesion validation strategies for the treatment of cardiac arrhythmias.
Two-component Thermal Dust Emission Model: Application to the Planck HFI Maps
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, Douglas P.
2014-06-01
We present full-sky, 6.1 arcminute resolution maps of dust optical depth and temperature derived by fitting the Finkbeiner et al. (1999) two-component dust emission model to the Planck HFI and IRAS 100 micron maps. This parametrization of the far infrared thermal dust SED as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody dust emission model. We expect our Planck-based maps of dust temperature and optical depth to form the basis for a next-generation, high-resolution extinction map which will additionally incorporate small-scale detail from WISE imaging.
Landsat Time-Series Analysis Opens New Approaches for Regional Glacier Mapping
NASA Astrophysics Data System (ADS)
Winsvold, S. H.; Kääb, A.; Nuth, C.; Altena, B.
2016-12-01
The archive of Landsat satellite scenes is important for mapping of glaciers, especially as it represents the longest running and continuous satellite record of sufficient resolution to track glacier changes over time. Contributing optical sensors newly launched (Landsat 8 and Sentinel-2A) or upcoming in the near future (Sentinel-2B), will promote very high temporal resolution of optical satellite images especially in high-latitude regions. Because of the potential that lies within such near-future dense time series, methods for mapping glaciers from space should be revisited. We present application scenarios that utilize and explore dense time series of optical data for automatic mapping of glacier outlines and glacier facies. Throughout the season, glaciers display a temporal sequence of properties in optical reflection as the seasonal snow melts away, and glacier ice appears in the ablation area and firn in the accumulation area. In one application scenario presented we simulated potential future seasonal resolution using several years of Landsat 5TM/7ETM+ data, and found a sinusoidal evolution of the spectral reflectance for on-glacier pixels throughout a year. We believe this is because of the short wave infrared band and its sensitivity to snow grain size. The parameters retrieved from the fitting sinus curve can be used for glacier mapping purposes, thus we also found similar results using e.g. the mean of summer band ratio images. In individual optical mapping scenes, conditions will vary (e.g., snow, ice, and clouds) and will not be equally optimal over the entire scene. Using robust statistics on stacked pixels reveals a potential for synthesizing optimal mapping scenes from a temporal stack, as we present in a further application scenario. The dense time series available from satellite imagery will also promote multi-temporal and multi-sensor based analyses. The seasonal pattern of snow and ice on a glacier seen in the optical time series can in the summer season also be observed using radar backscatter series. Optical sensors reveal the reflective properties at the surface, while radar sensors may penetrate the surface revealing properties from a certain volume.In an outlook to this contribution we have explored how we can combine information from SAR and optical sensor systems for different purposes.
RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING
The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...
Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar
1998-01-01
Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar Burton H. Jones Wrigley Institute of Environmental Science and Department of... Environmental Science and,Department of Biological Sciences,Los Angeles,CA,90089-0371 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING
Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots.
Groß, Heiko; Heil, Hannah S; Ehrig, Jens; Schwarz, Friedrich W; Hecht, Bert; Diez, Stefan
2018-04-30
In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude 1,2 . Control of such near-field light-matter interaction is essential for applications in biosensing 3 , light harvesting 4 and quantum communication 5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates 7-11 . However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.
Trench Reveals Two Faces of Soils
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true-color image mosaic from the panoramic camera on the Mars Exploration Rover Opportunity shows a trench dug by the rover in the vicinity of the 'Anatolia' region. Two imprints from the rover's Mossbauer spectrometer instrument were left in the exposed soils. Detailed comparisons between soils exposed at the surface and those found at depth reveal that surface soils have higher levels of hematite while subsurface soils show fine particles derived from basalt. The trench is approximately 11 centimeters deep. This image was taken on sol 81 with the panoramic camera's 430-, 530- and 750-nanometer filters.Similar on the Inside (pre-grinding)
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity show the rock called 'Pilbara' located in the small crater dubbed 'Fram.' The rock appears to be dotted with the same 'blueberries,' or spherules, found at 'Eagle Crater.' Spirit drilled into this rock with its rock abrasion tool. After analyzing the hole with the rover's scientific instruments, scientists concluded that Pilbara has a similar chemical make-up, and thus watery past, to rocks studied at Eagle Crater. This image was taken with the panoramic camera's 480-, 530- and 600-nanometer filters.Similar on the Inside (post-grinding)
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity show the hole drilled into the rock called 'Pilbara,' which is located in the small crater dubbed 'Fram.' Spirit drilled into this rock with its rock abrasion tool. The rock appears to be dotted with the same 'blueberries,' or spherules, found at 'Eagle Crater.' After analyzing the hole with the rover's scientific instruments, scientists concluded that Pilbara has a similar chemical make-up, and thus watery past, to rocks studied at Eagle Crater. This image was taken with the panoramic camera's 480-, 530- and 600-nanometer filters.'El Capitan's' Scientific Gems
NASA Technical Reports Server (NTRS)
2004-01-01
This mosaic of images taken by the panoramic camera onboard the Mars Exploration Rover Opportunity shows the rock region dubbed 'El Capitan,' which lies within the larger outcrop near the rover's landing site. 'El Capitan' is being studied in great detail using the scientific instruments on the rover's arm; images from the panoramic camera help scientists choose the locations for this compositional work. The millimeter-scale detail of the lamination covering these rocks can be seen. The face of the rock to the right of the mosaic may be a future target for grinding with the rover's rock abrasion tool.
Photographic copy of October 20, 1933, black and white studio ...
Photographic copy of October 20, 1933, black and white studio panoramic view. Located in folder 3 of 3 in box 15 of 94 at the National Museum of American History, Smithsonian Institution, Archives Center, Work and Industry Division, Washington, D.C., Charles L. Frank, Photographer, The Billings Studio. STUDIO PANORAMIC VIEW PART TWO OF TWO OF ENTIRE BRIDGE PIERS UNDER CONSTRUCTION LOOKING DOWN STREAM FROM EAST BANK ON LEFT TOWARD WEST BANK ON RIGHT. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA
Photographic copy of October 20, 1933, black and white studio ...
Photographic copy of October 20, 1933, black and white studio panoramic view. Located in folder 3 of 3 in box 15 of 94 at the National Museum of American History, Smithsonian Institution, Archives Center, Work and Industry Division, Washington, D.C., Charles L. Frank, Photographer, The Billings Studio. OCTOBER 20, STUDIO PANORAMIC VIEW PART ONE OF TWO OF ENTIRE BRIDGE PIERS UNDER CONSTRUCTION LOOKING DOWN STREAM FROM EAST BANK ON LEFT TOWARD WEST BANK ON RIGHT. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA
Panoramic radiographic survey of hypodontia in Australian Defence Force recruits.
Lynham, A
1990-02-01
Comprehensive dental examinations and panoramic radiographs were used to determine the prevalence of hypodontia in 662 Australian Defence Force recruits. Of the sampled population, 6.3 per cent exhibited some degree of hypodontia (third molar agenesis excluded). Previous studies produced similar results. Third molar agenesis occurred in 22.7 per cent of the sample which again is in agreement with other studies. There was no statistical difference between the sexes in third molar agenesis; however, there was a significant difference with upper second premolars. Females exhibited an extremely low incidence of absence of maxillary lateral incisors.
2004-03-13
This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. Earth is the tiny white dot in the center. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see. http://photojournal.jpl.nasa.gov/catalog/PIA05560
Mapping the yeast genome by melting in nanofluidic devices
NASA Astrophysics Data System (ADS)
Welch, Robert L.; Czolkos, Ilja; Sladek, Rob; Reisner, Walter
2012-02-01
Optical mapping of DNA provides large-scale genomic information that can be used to assemble contigs from next-generation sequencing, and to detect re-arrangements between single cells. A recent optical mapping technique called denaturation mapping has the unique advantage of using physical principles rather than the action of enzymes to probe genomic structure. The absence of reagents or reaction steps makes denaturation mapping simpler than other protocols. Denaturation mapping uses fluorescence microscopy to image the pattern of partial melting along a DNA molecule extended in a channel of cross-section ˜100nm at the heart of a nanofluidic device. We successfully aligned melting maps from single DNA molecules to a theoretical map of the yeast genome (11.6Mbp) to identify their location. By aligning hundreds of molecules we assembled a consensus melting map of the yeast genome with 95% coverage.
NASA Astrophysics Data System (ADS)
Koehl, M.; Brigand, N.
2012-08-01
The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image to a panoramic virtual image. It also allows visualizing, in inlay, digital data, like ancient or recent plans, cross sections, descriptions, explanatory videos, sound comments, etc. This project has lead to very convincing results, that were validated by the historians and the archaeologists who have now an interactive tool, disseminated through internet, allowing at the same time to visit virtually the castle, but also to query the system which sends back localized information. The various levels of understanding and set up details, allow an approach of first level for broad Internet users, but also a deeper approach for a group of scientists who are associated to the development of the ruins of the castle and its environment.
Winship, I R; Wylie, D R
2001-11-01
The responses of neurons in the medial column of the inferior olive to translational and rotational optic flow were recorded from anaesthetized pigeons. Panoramic translational or rotational flowfields were produced by mechanical devices that projected optic flow patterns onto the walls, ceiling and floor of the room. The axis of rotation/translation could be positioned to any orientation in three-dimensional space such that axis tuning could be determined. Each neuron was assigned a vector representing the axis about/along which the animal would rotate/translate to produce the flowfield that elicited maximal modulation. Both translation-sensitive and rotation-sensitive neurons were found. For neurons responsive to translational optic flow, the preferred axis is described with reference to a standard right-handed coordinate system, where +x, +y and +z represent rightward, upward and forward translation of the animal, respectively (assuming that all recordings were from the right side of the brain). t(+y) neurons were maximally excited in response to a translational optic flowfield that results from self-translation upward along the vertical (y) axis. t(-y) neurons also responded best to translational optic flow along the vertical axis but showed the opposite direction preference. The two remaining groups, t(-x+z) and t(-x-z) neurons, responded best to translational optic flow along horizontal axes that were oriented 45 degrees to the midline. There were two types of neurons responsive to rotational optic flow: rVA neurons preferred rotation about the vertical axis, and rH135c neurons preferred rotation about a horizontal axis at 135 degrees contralateral azimuth. The locations of marking lesions indicated a clear topographical organization of the six response types. In summary, our results reinforce that the olivo-cerebellar system dedicated to the analysis of optic flow is organized according to a reference frame consisting of three approximately orthogonal axes: the vertical axis, and two horizontal axes oriented 45 degrees to either side the midline. Previous research has shown that the eye muscles, vestibular semicircular canals and postural control system all share a similar spatial frame of reference.
Linear time-to-space mapping system using double electrooptic beam deflectors.
Hisatake, Shintaro; Tada, Keiji; Nagatsuma, Tadao
2008-12-22
We propose and demonstrate a linear time-to-space mapping system, which is based on two times electrooptic sinusoidal beam deflection. The direction of each deflection is set to be mutually orthogonal with the relative deflection phase of pi/2 rad so that the circular optical beam trajectory can be achieved. The beam spot at the observation plane moves with an uniform velocity and as a result linear time-to-space mapping (an uniform temporal resolution through the mapping) can be realized. The proof-of-concept experiment are carried out and the temporal resolution of 5 ps has been demonstrated using traveling-wave type quasi-velosity-matched electrooptic beam deflectors. The developed system is expected to be applied to characterization of ultrafast optical signal or optical arbitrary waveform shaping for modulated microwave/millimeter-wave generation.
NASA Astrophysics Data System (ADS)
Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio
2010-07-01
In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.
Robust and Accurate Image-Based Georeferencing Exploiting Relative Orientation Constraints
NASA Astrophysics Data System (ADS)
Cavegn, S.; Blaser, S.; Nebiker, S.; Haala, N.
2018-05-01
Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2-3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.
Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations
NASA Astrophysics Data System (ADS)
Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.
2011-10-01
In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.
3D Scene Reconstruction Using Omnidirectional Vision and LiDAR: A Hybrid Approach
Vlaminck, Michiel; Luong, Hiep; Goeman, Werner; Philips, Wilfried
2016-01-01
In this paper, we propose a novel approach to obtain accurate 3D reconstructions of large-scale environments by means of a mobile acquisition platform. The system incorporates a Velodyne LiDAR scanner, as well as a Point Grey Ladybug panoramic camera system. It was designed with genericity in mind, and hence, it does not make any assumption about the scene or about the sensor set-up. The main novelty of this work is that the proposed LiDAR mapping approach deals explicitly with the inhomogeneous density of point clouds produced by LiDAR scanners. To this end, we keep track of a global 3D map of the environment, which is continuously improved and refined by means of a surface reconstruction technique. Moreover, we perform surface analysis on consecutive generated point clouds in order to assure a perfect alignment with the global 3D map. In order to cope with drift, the system incorporates loop closure by determining the pose error and propagating it back in the pose graph. Our algorithm was exhaustively tested on data captured at a conference building, a university campus and an industrial site of a chemical company. Experiments demonstrate that it is capable of generating highly accurate 3D maps in very challenging environments. We can state that the average distance of corresponding point pairs between the ground truth and estimated point cloud approximates one centimeter for an area covering approximately 4000 m2. To prove the genericity of the system, it was tested on the well-known Kitti vision benchmark. The results show that our approach competes with state of the art methods without making any additional assumptions. PMID:27854315
Haapea, M; Liukkonen, E; Huumonen, S; Tervonen, O; Nieminen, M T
2015-01-01
Objectives: To compare observer performance in the detection of anatomical structures and pathology in panoramic radiographs using consumer grade with and without digital imaging and communication in medicine (DICOM)-calibration and 6-megapixel (6-MP) displays under different lighting conditions. Methods: 30 panoramic radiographs were randomly evaluated on three displays under bright (510 lx) and dim (16 lx) ambient lighting by two observers with different years of experience. Dentinoenamel junction, dentinal caries and periapical inflammatory lesions, visibility of cortical border of the floor and pathological lesions in maxillary sinus were evaluated. Consensus between the observers was considered as reference. Intraobserver agreement was determined. Proportion of equivalent ratings and weighted kappa were used to assess reliability. The level of significance was set to p < 0.05. Results: The proportion of equivalent ratings with consensus differed between uncalibrated and DICOM-calibrated consumer grade displays in dentinal caries in the lower molar in dim lighting (p = 0.021) and between DICOM-calibrated consumer grade and 6-MP display in bright lighting (p = 0.038) for an experienced observer. Significant differences were found between uncalibrated and DICOM-calibrated consumer grade displays in dentinal caries in bright lighting (p = 0.044) and periapical lesions in the upper molar in dim lighting (p = 0.008) for a less experienced observer. Intraobserver reliability was better at detecting dentinal caries than at detecting periapical and maxillary sinus pathology. Conclusions: DICOM calibration may improve observer performance in panoramic radiography in different lighting conditions. Therefore, a DICOM-calibrated consumer grade display can be used instead of a medical display in dental practice without compromising the diagnostic quality. PMID:25564888
Prasad, Krishna D.; Shah, Namrata; Hegde, Chethan
2012-01-01
Purpose: To evaluate the correlation between sagittal condylar guidance obtained by protrusive interocclusal records and panoramic radiograph tracing methods in human dentulous subjects. Materials and Methods: The sagittal condylar guidance was determined in 75 dentulous subjects by protrusive interocclusal records using Aluwax through a face bow transfer (HANAU™ Spring Bow, Whip Mix Corporation, USA) to a semi-adjustable articulator (HANAU™ Wide-Vue Articulator, Whip Mix Corporation, USA). In the same subjects, the sagittal outline of the articular eminence and glenoid fossa was traced in panoramic radiographs. The sagittal condylar path inclination was constructed by joining the heights of curvature in the glenoid fossa and the corresponding articular eminence. This was then related to the constructed Frankfurt's horizontal plane to determine the radiographic angle of sagittal condylar guidance. Results: A strong positive correlation existed between right and left condylar guidance by the protrusive interocclusal method (P 0.000) and similarly by the radiographic method (P 0.013). The mean difference between the condylar guidance obtained using both methods were 1.97° for the right side and 3.18° for the left side. This difference between the values by the two methods was found to be highly significant for the right (P 0.003) and left side (P 0.000), respectively. The sagittal condylar guidance obtained from both methods showed a significant positive correlation on right (P 0.000) and left side (P 0.015), respectively. Conclusion: Panoramic radiographic tracings of the sagittal condylar path guidance may be made relative to the Frankfurt's horizontal reference plane and the resulting condylar guidance angles used to set the condylar guide settings of semi-adjustable articulators. PMID:23633793
Shokri, Abbas; Poorolajal, Jalal; Khajeh, Samira; Faramarzi, Farhad; Kahnamoui, Hanieh Mogaver
2014-03-01
This study was performed to evaluate the prevalence of all types and subtypes of dental anomalies among 7- to 35-year-old patients by using panoramic radiographs. This cross-sectional study was conducted on 1649 people in Hamadan City, in 2012-2013. The prevalence of four types and 12 subtypes of dental anomalies was evaluated by two observers separately by using panoramic radiography. Dental anomalies were divided into four types: (a) shape (including fusion, taurodontism, and dens invagination); (b) number (including hypodontia, oligodontia, and hyperdontia); (c) structure (including amelogenesis imperfecta, dentinogenesis imperfecta, and dentin dysplasia); and (d) position (including displacement, impaction, and dilacerations). The reliability between the two observers was 79.56% according to the Kappa statistics. The prevalence of dental anomalies diagnosed by panoramic radiographs was 29%. Anomalies of position and number were the most common types of abnormalities, and anomalies of shape and structure were the least in both genders. Anomalies of impaction (44.76%), dilacerations (21.11%), hypodontia (15.88%), taurodontism (9.29%), and hyperdontia (6.76%) were the most common subtypes of dental anomalies. The anomalies of shape and number were more common in the age groups of 7-12 years and 13-15 years, respectively, while the anomalies of structure and position were more common among the other age groups. Anomalies of tooth position were the most common type of dental anomalies, and structure anomalies were the least in this Iranian population. The frequency and type of dental anomalies vary within and between populations, confirming the role of racial factors in the prevalence of dental anomalies.
Vaeth, Michael; Wenzel, Ann
2016-01-01
Objective: Pre-surgical CBCT has been suggested before removal of the mandibular third molar. Currently, the standard-of-care is two-dimensional (2D) panoramic imaging. The aim of this randomized controlled trial was to analyse possible differences in neurosensoric disturbances of the inferior alveolar nerve between patients undergoing either panoramic imaging or CBCT before surgical removal of the mandibular third molar. Furthermore, the aim was to perform a sensitivity analysis to assess the statistical significance of different assumptions related to sample size calculations. Methods: 230 patients were randomized to a scan group and a non-scan group. All patients were referred from practicing dentists in the Copenhagen area. Inclusion criteria were overlap of the root complex and the mandibular canal on a 2D radiographic image. Central allocation of the randomization code and double blind settings were established. The surgical removal was performed in a specialized surgical practice geographically and personally separated from the study practice. Registration of neurosensoric anomalies was performed with a Semmes–Weinstein test and a visual analogue scale questionnaire pre- and post-surgically. Results: In the scan group (n = 114), 21 episodes of neurosensoric disturbances were registered and in the non-scan group (n = 116), 13 episodes of neurosensoric disturbances were registered. There was no statistically significant difference between the two groups (p = 0.14). Performing a sensitivity analysis confirmed that CBCT was not superior to panoramic imaging in avoiding neurosensoric disturbances. Conclusions: The use of CBCT before removal of the mandibular third molar does not seem to reduce the number of neurosensoric disturbances. PMID:26648386
Waltimo-Sirén, Janna; Laatikainen, Tuula; Haukka, Jari; Ekholm, Marja
2016-01-01
Objectives: Dental panoramic tomography is the most frequent examination among 7–12-year olds, according to the Radiation Safety and Nuclear Authority of Finland. At those ages, dental panoramic tomographs (DPTs) are mostly obtained for orthodontic reasons. Children's dose reduction by trimming the field size to the area of interest is important because of their high radiosensitivity. Yet, the majority of DPTs in this age group are still taken by using an adult programme and never by using a segmented programme. The purpose of the present study was to raise the awareness of dental staff with respect to children's radiation safety, to increase the application of segmented and child DPT programmes by further educating the whole dental team and to evaluate the outcome of the educational intervention. Methods: A five-step intervention programme, focusing on DPT field limitation possibilities, was carried out in community-based dental care as a part of mandatory continuing education in radiation protection. Application of segmented and child DPT programmes was thereafter prospectively followed up during a 1-year period and compared with our similar data from 2010 using a logistic regression analysis. Results: Application of the child programme increased by 9% and the segmented programme by 2%, reaching statistical significance (odds ratios 1.68; 95% confidence interval 1.23–2.30; p-value < 0.001). The number of repeated exposures remained at an acceptable level. The segmented DPTs were most frequently taken from the maxillary lateral incisor–canine area. Conclusions: The educational intervention resulted in improvement of radiological practice in respect to radiation safety of children during dental panoramic tomography. Segmented and child DPT programmes can be applied successfully in dental practice for children. PMID:27142159
Pakbaznejad Esmaeili, Elmira; Waltimo-Sirén, Janna; Laatikainen, Tuula; Haukka, Jari; Ekholm, Marja
2016-05-23
Dental panoramic tomography is the most frequent examination among 7-12-year olds, according to the Radiation Safety and Nuclear Authority of Finland. At those ages, dental panoramic tomographs (DPTs) are mostly obtained for orthodontic reasons. Children's dose reduction by trimming the field size to the area of interest is important because of their high radiosensitivity. Yet, the majority of DPTs in this age group are still taken by using an adult programme and never by using a segmented programme. The purpose of the present study was to raise the awareness of dental staff with respect to children's radiation safety, to increase the application of segmented and child DPT programmes by further educating the whole dental team and to evaluate the outcome of the educational intervention. A five-step intervention programme, focusing on DPT field limitation possibilities, was carried out in community-based dental care as a part of mandatory continuing education in radiation protection. Application of segmented and child DPT programmes was thereafter prospectively followed up during a 1-year period and compared with our similar data from 2010 using a logistic regression analysis. Application of the child programme increased by 9% and the segmented programme by 2%, reaching statistical significance (odds ratios 1.68; 95% confidence interval 1.23-2.30; p-value < 0.001). The number of repeated exposures remained at an acceptable level. The segmented DPTs were most frequently taken from the maxillary lateral incisor-canine area. The educational intervention resulted in improvement of radiological practice in respect to radiation safety of children during dental panoramic tomography. Segmented and child DPT programmes can be applied successfully in dental practice for children.
NASA Astrophysics Data System (ADS)
Wahbeh, W.; Nebiker, S.; Fangi, G.
2016-06-01
This paper exploits the potential of dense multi-image 3d reconstruction of destroyed cultural heritage monuments by either using public domain touristic imagery only or by combining the public domain imagery with professional panoramic imagery. The focus of our work is placed on the reconstruction of the temple of Bel, one of the Syrian heritage monuments, which was destroyed in September 2015 by the so called "Islamic State". The great temple of Bel is considered as one of the most important religious buildings of the 1st century AD in the East with a unique design. The investigations and the reconstruction were carried out using two types of imagery. The first are freely available generic touristic photos collected from the web. The second are panoramic images captured in 2010 for documenting those monuments. In the paper we present a 3d reconstruction workflow for both types of imagery using state-of-the art dense image matching software, addressing the non-trivial challenges of combining uncalibrated public domain imagery with panoramic images with very wide base-lines. We subsequently investigate the aspects of accuracy and completeness obtainable from the public domain touristic images alone and from the combination with spherical panoramas. We furthermore discuss the challenges of co-registering the weakly connected 3d point cloud fragments resulting from the limited coverage of the touristic photos. We then describe an approach using spherical photogrammetry as a virtual topographic survey allowing the co-registration of a detailed and accurate single 3d model of the temple interior and exterior.
Petersen, Lars B; Vaeth, Michael; Wenzel, Ann
2016-01-01
Pre-surgical CBCT has been suggested before removal of the mandibular third molar. Currently, the standard-of-care is two-dimensional (2D) panoramic imaging. The aim of this randomized controlled trial was to analyse possible differences in neurosensoric disturbances of the inferior alveolar nerve between patients undergoing either panoramic imaging or CBCT before surgical removal of the mandibular third molar. Furthermore, the aim was to perform a sensitivity analysis to assess the statistical significance of different assumptions related to sample size calculations. 230 patients were randomized to a scan group and a non-scan group. All patients were referred from practicing dentists in the Copenhagen area. Inclusion criteria were overlap of the root complex and the mandibular canal on a 2D radiographic image. Central allocation of the randomization code and double blind settings were established. The surgical removal was performed in a specialized surgical practice geographically and personally separated from the study practice. Registration of neurosensoric anomalies was performed with a Semmes-Weinstein test and a visual analogue scale questionnaire pre- and post-surgically. In the scan group (n = 114), 21 episodes of neurosensoric disturbances were registered and in the non-scan group (n = 116), 13 episodes of neurosensoric disturbances were registered. There was no statistically significant difference between the two groups (p = 0.14). Performing a sensitivity analysis confirmed that CBCT was not superior to panoramic imaging in avoiding neurosensoric disturbances. The use of CBCT before removal of the mandibular third molar does not seem to reduce the number of neurosensoric disturbances.
Kathirvelu, D; Anburajan, M
2014-09-01
The aim of this study is to extract cortical and trabecular features of the mandible and to develop a novel combinational model of mandibular cortical thickness, trabecular bone area and age in order to predict low bone mineral density or osteoporosis from a dental panoramic radiograph. The study involved 64 south Indian women (age = 52.5 ± 12.7 years) categorised into two groups (normal and low bone mineral density) based on total femur bone mineral density. The dental panoramic radiographs were obtained by a digital scanner, and measurement of total bone mineral density at the right femur was performed by a dual-energy X-ray absorptiometry scanner. The mandibular cortical thickness and panoramic mandibular index were measured bilaterally, and the mean values were considered. The region of interest of 128 × 128 pixels around the mental foramen region was manually cropped and subjected to pre-processing, normalisation and average threshold-based segmentation to determine trabecular bone area. Multiple linear regression analyses of cortical and trabecular measures along with age were performed to develop a combinational model to classify subjects as normal and low bone mineral density. The proposed approach demonstrated strong correlation (r = 0.76; p < 0.01) against the total bone mineral density and resulted in accuracy, sensitivity and positive predictive values of 0.84, 0.92 and 0.85, respectively; the receiver operating characteristic outcomes disclosed that the area under the curve was 0.89.Our results suggest that the proposed combinational model could be useful to diagnose subjects with low bone mineral density. © IMechE 2014.
Highly sensitive mode mapping of whispering-gallery modes by scanning thermocouple-probe microscopy.
Klein, Angela E; Schmidt, Carsten; Liebsch, Mattes; Janunts, Norik; Dobynde, Mikhail; Tünnermann, Andreas; Pertsch, Thomas
2014-03-01
We propose a method for mapping optical near-fields with the help of a thermocouple scanning-probe microscope tip. As the tip scans the sample surface, its apex is heated by light absorption, generating a thermovoltage. The thermovoltage map represents the intensity distribution of light at the sample surface. The measurement technique has been employed to map optical whispering-gallery modes in fused silica microdisk resonators operating at near-infrared wavelengths. The method could potentially be employed for near-field imaging of a variety of systems in the near-infrared and visible spectral range.
NASA Astrophysics Data System (ADS)
Enfield, Joey; McGrath, James; Daly, Susan M.; Leahy, Martin
2016-08-01
Changes within the microcirculation can provide an early indication of the onset of a plethora of ailments. Various techniques have thus been developed that enable the study of microcirculatory irregularities. Correlation mapping optical coherence tomography (cmOCT) is a recently proposed technique, which enables mapping of vasculature networks at the capillary level in a noninvasive and noncontact manner. This technique is an extension of conventional optical coherence tomography (OCT) and is therefore likewise limited in the penetration depth of ballistic photons in biological media. Optical clearing has previously been demonstrated to enhance the penetration depth and the imaging capabilities of OCT. In order to enhance the achievable maximum imaging depth, we propose the use of optical clearing in conjunction with the cmOCT technique. We demonstrate in vivo a 13% increase in OCT penetration depth by topical application of a high-concentration fructose solution, thereby enabling the visualization of vessel features at deeper depths within the tissue.
NASA Astrophysics Data System (ADS)
Li, Jun; Xia, Qing; Wang, Xiaofa
2017-10-01
Based on the extended spin-flip model, the all-optical flip-flop stability maps of the 1550nm vertical-cavity surface-emitting laser have been studied. Theoretical results show that excellent agreement is found between theoretical and the reported experimental results in polarization switching point current which is equal to 1.95 times threshold. Furthermore, the polarization bistable region is wide which is from 1.05 to 1.95 times threshold. A new method is presented that uses power difference between two linear polarization modes as the judging criterion of trigger degree and stability maps of all-optical flip-flop operation under different injection parameters are obtained. By alternately injecting set and reset pulse with appropriate parameters, the mutual conversion switching between two polarization modes is realized, the feasibility of all-optical flip-flop operation is checked theoretically. The results show certain guiding significance on the experimental study on all optical buffer technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, S; Dewhirst, M; Oldham, M
2016-06-15
Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm{sup 3}) ex vivo tissue samples at a resolution of 12.9µm{sup 3} per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10,more » 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied to study metastasis and immunologic responses via fluorescence staining.« less
NASA Astrophysics Data System (ADS)
Ugryumova, Nadezhda; Gangnus, Sergei V.; Matcher, Stephen J.
2006-08-01
Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.
Methods of both destructive and non-destructive metrology of GRIN optical elements
NASA Astrophysics Data System (ADS)
Lindberg, G. P.; Deegan, J.; Benson, R.; Berger, A. J.; Linden, J. J.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.
2015-05-01
Gradient index (GRIN) optics have been an up-and-coming tool in the world of optics. By combining an index gradient with a surface curvature the number of optical components for a lens system can often be greatly reduced. Their use in the realm of infra-red is only becoming realized as new efforts are being developed to create materials that are suitable and mutually compatible for these optical components. The materials being pursued are the chalcogenide based glasses. Small changes in elemental concentrations in these glasses can have significant effects on physical and optical properties. The commonality between these glasses and their widely different optical properties make them prime candidates for GRIN applications. Traditional methods of metrology are complicated by the combination of the GRIN and the curvature of the element. We will present preliminary data on both destructive and non-destructive means of measuring the GRIN profile. Non-destructive methods may require inference of index through material properties, by careful measurement of the individual materials going into the GRIN optic, followed by, mapping measurements of the GRIN surface. Methods to be pursued are micro Raman mapping and CT scanning. By knowing the properties of the layers and accurately mapping the interfaces between the layers we should be able to back out the index profile of the GRIN optic and then confirm the profile by destructive means.
OCT-based in vivo tissue injury mapping
NASA Astrophysics Data System (ADS)
Baran, Utku; Li, Yuandong; Wang, Ruikang K.
2016-03-01
Tissue injury mapping (TIM) is developed by using a non-invasive in vivo optical coherence tomography to generate optical attenuation coefficient and microvascular map of the injured tissue. Using TIM, the infarct region development in mouse cerebral cortex during stroke is visualized. Moreover, we demonstrate the in vivo human facial skin structure and microvasculature during an acne lesion development. The results indicate that TIM may help in the study and the treatment of various diseases by providing high resolution images of tissue structural and microvascular changes.
NASA Astrophysics Data System (ADS)
Sopori, Bhushan; Wei, Chen; Yi, Zhang; Madjdpour, Jamal
2000-03-01
A scanning system for mapping defects, and for measuring their influence on the photovoltaic of Si solar cells, is described. The system uses optical scattering patterns to identify the nature of defects. The local density of the defects is statistically determined from the integrated scattered light. The optical system can also measure the reflectance and the light-induced current which is then used to yield maps of the internal photoresponse of the device.
Dual fiber microprobe for mapping elemental distributions in biological cells
Martin, Rodger C [Powell, TN; Martin, Madhavi Z [Powell, TN
2007-07-31
Laser-induced breakdown spectroscopy (LIBS) is applied on a microscale for in situ elemental analysis and spatial mapping in biological cells. A high power laser beam is focused onto a cell surface using a dual branching optical fiber probe for optical excitation of the cell constituents. Dual spectrometers and ICCD detectors capture the emission spectra from the excited cell(s). Repeated probing or repositioning of the laser beam with respect to the cell can provide 2-D or 3-D mapping of the cell.
Huang, Chenxi; Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi; Liu, Huafeng
2012-11-19
We propose a new method for realizing high-spatial-resolution detection of singularity points in optical vortex beams. The method uses a Shack-Hartmann wavefront sensor (SHWS) to record a Hartmanngram. A map of evaluation values related to phase slope is then calculated from the Hartmanngram. The position of an optical vortex is determined by comparing the map with reference maps that are calculated from numerically created spiral phases having various positions. Optical experiments were carried out to verify the method. We displayed various spiral phase distribution patterns on a phase-only spatial light modulator and measured the resulting singularity point using the proposed method. The results showed good linearity in detecting the position of singularity points. The RMS error of the measured position of the singularity point was approximately 0.056, in units normalized to the lens size of the lenslet array used in the SHWS.
Second of three panoramic views of North Base as seen ...
Second of three panoramic views of North Base as seen from top of Building 4500, Control Tower. View looks west (268°) at North Base complex. In foreground is taxiway, with Building 4456 (Fire House No. 4) at right. Building 4452 (Utility Vault) appears in extreme left foreground, with Building 4412 (Liquid Oxygen Repair Facility) and Building 4410 (Liquid Oxygen Storage) in extreme left background. In view over Building 4456 is the "loop" bound by Third, Fourth, A, and B Streets. Concrete slabs are all that remain of military housing constructed in the 1940s. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA
Road sign recognition using Viapix module and correlation
NASA Astrophysics Data System (ADS)
Ouerhani, Y.; Desthieux, M.; Alfalou, A.
2015-03-01
In this paper, we propose and validate a new system used to explore road assets. In this work we are interested on the vertical road signs. To do this, we are based on the combination of road signs detection, recognition and identification using data provides by sensors. The proposed approach consists on using panoramic views provided by the innovative device, VIAPIX®1, developed by our company ACTRIS2. We are based also on the optimized correlation technique for road signs recognition and identification on pictures. Obtained results shows the interest on using panoramic views compared to results obtained using images provided using only one camera.
Kodak T-Mat G film in rotational panoramic radiography.
Ponce, A Z; McDavid, W D; Lundeen, R C; Morris, C R
1986-06-01
Panoramic radiographs were taken of a tissue-equivalent phantom to evaluate T-Mat G and Ortho G films in combination with rare earth screens. The radiographs were compared to radiographs made with high-speed calcium tungstate screens and Kodak XRP film. The reduction in the amount of radiation necessary for the use of rare earth screens (50% to 70%) was accomplished by lowering the mA and adding filtration. All evaluated films were diagnostically acceptable. There was a marked preference of the T-Mat radiographs over the Ortho G radiographs and a slight preference over radiographs made with the standard calcium-tungstate screen-film system.
Sato, Katsushige; Nariai, Tadashi; Momose-Sato, Yoko; Kamino, Kohtaro
2017-07-01
Intrinsic optical imaging as developed by Grinvald et al. is a powerful technique for monitoring neural function in the in vivo central nervous system. The advent of this dye-free imaging has also enabled us to monitor human brain function during neurosurgical operations. We briefly describe our own experience in functional mapping of the human somatosensory cortex, carried out using intraoperative optical imaging. The maps obtained demonstrate new additional evidence of a hierarchy for sensory response patterns in the human primary somatosensory cortex.
Dehghani, Mahdieh; Shadkam, Elaheh; Ahrari, Farzaneh; Dehghani, Mahboobe
2018-04-01
Age estimation in adults is an important issue in forensic science. This study aimed to estimate the chronological age of Iranians by means of pulp/tooth area ratio (AR) of canines in digital panoramic radiographs. The sample consisted of panoramic radiographs of 271 male and female subjects aged 16-64 years. The pulp/tooth area ratio (AR) of upper and lower canines was calculated by AutoCAD software. Data were subjected to correlation and regression analysis. There was a significant and inverse correlation between age and pulp/tooth area ratio of upper and lower canines (r=-0.794 for upper canine and r=-0.282 for lower canine; p-value<0.001). Linear regression equations were derived separately for upper, lower and both canines. The mean difference between actual and estimated age using upper canine was 6.07±1.7. The results showed that the pulp/tooth area ratios of canines are a reliable method for age estimation in Iranians. The pulp/tooth area ratio of upper canine was better correlated with chronological age than that of lower canine. Copyright © 2018 Elsevier B.V. All rights reserved.
Constructing spherical panoramas of a bladder phantom from endoscopic video using bundle adjustment
NASA Astrophysics Data System (ADS)
Soper, Timothy D.; Chandler, John E.; Porter, Michael P.; Seibel, Eric J.
2011-03-01
The high recurrence rate of bladder cancer requires patients to undergo frequent surveillance screenings over their lifetime following initial diagnosis and resection. Our laboratory is developing panoramic stitching software that would compile several minutes of cystoscopic video into a single panoramic image, covering the entire bladder, for review by an urolgist at a later time or remote location. Global alignment of video frames is achieved by using a bundle adjuster that simultaneously recovers both the 3D structure of the bladder as well as the scope motion using only the video frames as input. The result of the algorithm is a complete 360° spherical panorama of the outer surface. The details of the software algorithms are presented here along with results from both a virtual cystoscopy as well from real endoscopic imaging of a bladder phantom. The software successfully stitched several hundred video frames into a single panoramic with subpixel accuracy and with no knowledge of the intrinsic camera properties, such as focal length and radial distortion. In the discussion, we outline future work in development of the software as well as identifying factors pertinent to clinical translation of this technology.
Towards System Calibration of Panoramic Laser Scanners from a Single Station
Medić, Tomislav; Holst, Christoph; Kuhlmann, Heiner
2017-01-01
Terrestrial laser scanner measurements suffer from systematic errors due to internal misalignments. The magnitude of the resulting errors in the point cloud in many cases exceeds the magnitude of random errors. Hence, the task of calibrating a laser scanner is important for applications with high accuracy demands. This paper primarily addresses the case of panoramic terrestrial laser scanners. Herein, it is proven that most of the calibration parameters can be estimated from a single scanner station without a need for any reference information. This hypothesis is confirmed through an empirical experiment, which was conducted in a large machine hall using a Leica Scan Station P20 panoramic laser scanner. The calibration approach is based on the widely used target-based self-calibration approach, with small modifications. A new angular parameterization is used in order to implicitly introduce measurements in two faces of the instrument and for the implementation of calibration parameters describing genuine mechanical misalignments. Additionally, a computationally preferable calibration algorithm based on the two-face measurements is introduced. In the end, the calibration results are discussed, highlighting all necessary prerequisites for the scanner calibration from a single scanner station. PMID:28513548
Panoramic, large-screen, 3-D flight display system design
NASA Technical Reports Server (NTRS)
Franklin, Henry; Larson, Brent; Johnson, Michael; Droessler, Justin; Reinhart, William F.
1995-01-01
The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified.
Genotoxic effects of X-rays on keratinized mucosa cells during panoramic dental radiography.
Cerqueira, E M M; Meireles, J R C; Lopes, M A; Junqueira, V C; Gomes-Filho, I S; Trindade, S; Machado-Santelli, G M
2008-10-01
The aim of this study was to evaluate the genotoxic effects of X-rays on epithelial gingival cells during panoramic dental radiography using a differentiated protocol for the micronucleus test. 40 healthy individuals who underwent this procedure for diagnostic purposes on request from their dentists agreed to participate in this study. All of them answered a questionnaire before the examination. Epithelial gingival cells were obtained from the keratinized mucosa of the upper dental arcade by gentle scraping with a cervical brush immediately before exposure and 10 days later. Cytological preparations were stained according to the Feulgen-Rossenbeck reaction, counterstained with fast green 1% for 1 min and analysed under a light microscope. Micronuclei, nuclear projections (broken eggs) and degenerative nuclear alterations (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were scored. The frequency of micronuclei was significantly higher after exposure (P < 0.05), as were the frequencies of nuclear alterations indicative of apoptosis (P < 0.001). These results indicate that X-ray radiation emitted during panoramic dental radiography induces a genotoxic effect on epithelial gingival cells that increases the frequency of chromosomal damage and nuclear alterations indicative of apoptosis.
NASA Astrophysics Data System (ADS)
Suprijanto; Azhari; Juliastuti, E.; Septyvergy, A.; Setyagar, N. P. P.
2016-03-01
Osteoporosis is a degenerative disease characterized by low Bone Mineral Density (BMD). Currently, a BMD level is determined by Dual Energy X-ray Absorptiometry (DXA) at the lumbar vertebrae and femur. Previous studies reported that dental panoramic radiography image has potential information for early osteoporosis detection. This work reported alternative scheme, that consists of the determination of the Region of Interest (ROI) the condyle mandibular in the image as biomarker and feature extraction from ROI and classification of bone conditions. The minimum value of intensity in the cavity area is used to compensate an offset on the ROI. For feature extraction, the fraction of intensity values in the ROI that represent high bone density and the ROI total area is perfomed. The classification will be evaluated from the ability of each feature and its combinations for the BMD detection in 2 classes (normal and abnormal), with the artificial neural network method. The evaluation system used 105 panoramic image data from menopause women which consist of 36 training data and 69 test data that were divided into 2 classes. The 2 classes of classification obtained 88.0% accuracy rate and 88.0% sensitivity rate.
Rohrbach, Daniel J.; Muffoletto, Daniel; Huihui, Jonathan; Saager, Rolf; Keymel, Kenneth; Paquette, Anne; Morgan, Janet; Zeitouni, Nathalie; Sunar, Ulas
2014-01-01
Rationale and Objectives The treatment of nonmelanoma skin cancer (NMSC) is usually by surgical excision or Mohs micrographic surgery and alternatively may include photodynamic therapy (PDT). To guide surgery and to optimize PDT, information about the tumor structure, optical parameters, and vasculature is desired. Materials and Methods Spatial frequency domain imaging (SFDI) can map optical absorption, scattering, and fluorescence parameters that can enhance tumor contrast and quantify light and photosensitizer dose. High frequency ultrasound (HFUS) imaging can provide high-resolution tumor structure and depth, which is useful for both surgery and PDT planning. Results Here, we present preliminary results from our recently developed clinical instrument for patients with NMSC. We quantified optical absorption and scattering, blood oxygen saturation (StO2), and total hemoglobin concentration (THC) with SFDI and lesion thickness with ultrasound. These results were compared to histological thickness of excised tumor sections. Conclusions SFDI quantified optical parameters with high precision, and multiwavelength analysis enabled 2D mappings of tissue StO2 and THC. HFUS quantified tumor thickness that correlated well with histology. The results demonstrate the feasibility of the instrument for noninvasive mapping of optical, physiological, and ultrasound contrasts in human skin tumors for surgery guidance and therapy planning. PMID:24439339
Design and application of star map simulation system for star sensors
NASA Astrophysics Data System (ADS)
Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan
2013-12-01
Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.
NASA Astrophysics Data System (ADS)
Kincal, Cem; Singleton, Andrew; Liu, Peng; Li, Zhenhong; Drummond, Jane; Hoey, Trevor; Muller, Jan-Peter; Qu, Wei; Zeng, Qiming; Zhang, Jingfa; Du, Peijun
2010-10-01
Mass movements on steep slopes are a major hazard to communities and infrastructure in the Three Gorges region, China. Developing susceptibility maps of mass movements is therefore very important in both current and future land use planning. This study employed satellite optical imagery and an ASTER GDEM (15 m) to derive various parameters (namely geology; slope gradient; proximity to drainage networks and proximity to lineaments) in order to create a GIS-based map of mass movement susceptibility. This map was then evaluated using highly accurate deformation signals processed using the Persistent Scatterer (PS) InSAR technique. Areas of high susceptibility correspond well to points of high subsidence, which provides a strong support of our susceptibility map.
Baladi, Fadwa; Lee, Min Won; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A
2016-07-01
A highly detailed and extended map of low-frequency fluctuations is established for a high-power multi-mode 980 nm laser diode subject to filtered optical feedback from a fiber Bragg grating. The low-frequency fluctuations limits and substructures exhibit substantial differences with previous works.
Techniques for Down-Sampling a Measured Surface Height Map for Model Validation
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2012-01-01
This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces
Calculating potential fields using microchannel spatial light modulators
NASA Technical Reports Server (NTRS)
Reid, Max B.
1993-01-01
We describe and present experimental results of the optical calculation of potential field maps suitable for mobile robot navigation. The optical computation employs two write modes of a microchannel spatial light modulator (MSLM). In one mode, written patterns expand spatially, and this characteristic is used to create an extended two dimensional function representing the influence of the goal in a robot's workspace. Distinct obstacle patterns are written in a second, non-expanding, mode. A model of the mechanisms determining MSLM write mode characteristics is developed and used to derive the optical calculation time for full potential field maps. Field calculations at a few hertz are possible with current technology, and calculation time vs. map size scales favorably in comparison to digital electronic computation.
A fast method for optical simulation of flood maps of light-sharing detector modules.
Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W; Peng, Qiyu
2015-12-01
Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200-600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.
Entz, Michael; King, D Ryan; Poelzing, Steven
2017-12-01
With the sudden increase in affordable manufacturing technologies, the relationship between experimentalists and the designing process for laboratory equipment is rapidly changing. While experimentalists are still dependent on engineers and manufacturers for precision electrical, mechanical, and optical equipment, it has become a realistic option for in house manufacturing of other laboratory equipment with less precise design requirements. This is possible due to decreasing costs and increasing functionality of desktop three-dimensional (3-D) printers and 3-D design software. With traditional manufacturing methods, iterative design processes are expensive and time consuming, and making more than one copy of a custom piece of equipment is prohibitive. Here, we provide an overview to design a tissue bath and stabilizer for a customizable, suspended, whole heart optical mapping apparatus that can be produced significantly faster and less expensive than conventional manufacturing techniques. This was accomplished through a series of design steps to prevent fluid leakage in the areas where the optical imaging glass was attached to the 3-D printed bath. A combination of an acetone dip along with adhesive was found to create a water tight bath. Optical mapping was used to quantify cardiac conduction velocity and action potential duration to compare 3-D printed baths to a bath that was designed and manufactured in a machine shop. Importantly, the manufacturing method did not significantly affect conduction, action potential duration, or contraction, suggesting that 3-D printed baths are equally effective for optical mapping experiments. NEW & NOTEWORTHY This article details three-dimensional printable equipment for use in suspended whole heart optical mapping experiments. This equipment is less expensive than conventional manufactured equipment as well as easily customizable to the experimentalist. The baths can be waterproofed using only a three-dimensional printer, acetone, a glass microscope slide, c-clamps, and adhesive. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Yamanari, Masahiro; Miura, Masahiro; Makita, Shuichi; Yatagai, Toyohiko; Yasuno, Yoshiaki
2007-02-01
Birefringence of retinal nerve fiber layer is measured by polarization-sensitive spectral domain optical coherence tomography using the B-scan-oriented polarization modulation method. Birefringence of the optical fiber and the cornea is compensated by Jones matrix based analysis. Three-dimensional phase retardation map around the optic nerve head and en-face phase retardation map of the retinal nerve fiber layer are shown. Unlike scanning laser polarimetry, our system can measure the phase retardation quantitatively without using bow-tie pattern of the birefringence in the macular region, which enables diagnosis of glaucoma even if the patients have macular disease.
NASA Astrophysics Data System (ADS)
Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu
2015-09-01
The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.
Radiometric spectral and band rendering of targets using anisotropic BRDFs and measured backgrounds
NASA Astrophysics Data System (ADS)
Hilgers, John W.; Hoffman, Jeffrey A.; Reynolds, William R.; Jafolla, James C.
2000-07-01
Achievement of ultra-high fidelity signature modeling of targets requires a significant level of complexity for all of the components required in the rendering process. Specifically, the reflectance of the surface must be described using the bi-directional distribution function (BRDF). In addition, the spatial representation of the background must be high fidelity. A methodology and corresponding model for spectral and band rendering of targets using both isotropic and anisotropic BRDFs is presented. In addition, a set of tools will be described for generating theoretical anisotropic BRDFs and for reducing data required for a description of an anisotropic BRDF by 5 orders of magnitude. This methodology is hybrid using a spectrally measured panoramic of the background mapped to a large hemisphere. Both radiosity and ray-tracing approaches are incorporated simultaneously for a robust solution. In the thermal domain the spectral emission is also included in the solution. Rendering examples using several BRDFs will be presented.
Design and Implementation of a Novel Portable 360° Stereo Camera System with Low-Cost Action Cameras
NASA Astrophysics Data System (ADS)
Holdener, D.; Nebiker, S.; Blaser, S.
2017-11-01
The demand for capturing indoor spaces is rising with the digitalization trend in the construction industry. An efficient solution for measuring challenging indoor environments is mobile mapping. Image-based systems with 360° panoramic coverage allow a rapid data acquisition and can be processed to georeferenced 3D images hosted in cloud-based 3D geoinformation services. For the multiview stereo camera system presented in this paper, a 360° coverage is achieved with a layout consisting of five horizontal stereo image pairs in a circular arrangement. The design is implemented as a low-cost solution based on a 3D printed camera rig and action cameras with fisheye lenses. The fisheye stereo system is successfully calibrated with accuracies sufficient for the applied measurement task. A comparison of 3D distances with reference data delivers maximal deviations of 3 cm on typical distances in indoor space of 2-8 m. Also the automatic computation of coloured point clouds from the stereo pairs is demonstrated.
Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wang, A.; Ruff, S.W.; Craig, M.A.; Bailey, D.T.; Johnson, J. R.; De Souza, P.A.; Farrand, W. H.
2010-01-01
The Mars Exploration Rover (MER) Spirit has discovered surprisingly high concentrations of amorphous silica in soil and nodular outcrops in the Inner Basin of the Columbia Hills. In Pancam multispectral observations, we find that an absorption feature at the longest Pancam wavelength (1009 nm) appears to be characteristic of these silica-rich materials; however, spectral analyses of amorphous silica suggest that the ???1009 nm spectral feature is not a direct reflection of their silica-rich nature. Based on comparisons with spectral databases, we hypothesize that the presence of H2O or OH, either free (as water ice), adsorbed or bound in a mineral structure, is responsible for the spectral feature observed by Pancam. The Gertrude Weise soil, which is nearly pure opaline silica, may have adsorbed water cold-trapped on mineral grains. The origin of the ???1009 nm Pancam feature observed in the silica-rich nodular outcrops may result from the presence of additional hydrated minerals (specific sulfates, halides, chlorides, sodium silicates, carbonates or borates). Using the ???1009 nm feature with other spectral parameters as a "hydration signature" we have mapped the occurrence of hydrated materials along the extent of Spirit's traverse across the Columbia Hills from West Spur to Home Plate (sols 155-1696). We have also mapped this hydration signature across large panoramic images to understand the regional distribution of materials that are spectrally similar to the silica-rich soil and nodular outcrops. Our results suggest that hydrated materials are common in the Columbia Hills. ?? 2009 Elsevier Inc.
Panoramic Views of Cluster Evolution Since z = 3
NASA Astrophysics Data System (ADS)
Kodama, Tadayuki; Tanaka, M.; Tanaka, Ichi; Kajisawa, M.
2007-05-01
We have been conducting PISCES project (Panoramic Imaging and Spectroscopy of Cluster Evolution with Subaru) with making use of the wide-field imaging capability of Subaru. Our motivations are first to map out large scale structure and local environment of galaxies therein, and then to investigate the variation in galaxy properties as a function of environment and mass. We have completed multi-colour imaging of 8 distant clusters between 0.4
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Click on the image for A Whale of a Panorama (QTVR) More than 1.5 years into their exploration of Mars, both of NASA's Mars Exploration Rovers continue to send a cornucopia of images to Earth. The results are so spectacular that Deputy Project Manager John Callas recently described them as 'an embarrassment of riches.' Spirit produced this image mosaic, nicknamed the 'Whale Panorama,' two-thirds of the way to the summit of 'Husband Hill,' where the rover investigated martian rocks. On the right side of the panorama is a tilted layer of rocks dubbed 'Larry's Outcrop,' one of several tilted outcrops that scientists examined in April, 2005. They used spatial information to create geologic maps showing the compass orientation and degree of tilting of rock formations in the vicinity. Such information is key to geologic fieldwork because it helps establish if rock layers have been warped since they formed. In this case, scientists have also been studying the mineral and chemical differences, which show that some rocks have been more highly altered than others. In the foreground, in the middle of the image mosaic, Spirit is shown with the scientific instruments at the end of its robotic arm positioned on a rock target known as 'Ahab.' The rover was busy collecting elemental chemistry and mineralogy data on the rock at the same time that it was taking 50 individual snapshots with its five panoramic camera filters to create this stunning view of the martian scenery. The twin tracks of the rover's all-terrain wheels are clearly visible on the left. This mosaic of images spans about 220 degrees from left to right and is an approximate true-color rendering of the Mars terrain acquired through the panoramic camera's 750-, 530-, and 430-nanometer filters. Spirit collected these images from its 497th martian day, or sol, through its 500th sol (May 27 through May 30, 2005).Layered Outcrops in Gusev Crater (False Color)
NASA Technical Reports Server (NTRS)
2004-01-01
One of the ways scientists collect mineralogical data about rocks on Mars is to view them through filters that allow only specific wavelengths of light to pass through the lens of the panoramic camera. NASA's Mars Exploration Rover Spirit took this false-color image of the rock nicknamed 'Tetl' at 1:05 p.m. martian time on its 270th martian day, or sol (Oct. 5, 2004) using the panoramic camera's 750-, 530-, and 430-nanometer filters. Darker red hues in the image correspond to greater concentrations of oxidized soil and dust. Bluer hues correspond to portions of rock that are not as heavily coated with soils or are not as highly oxidized.Optomechanical stability design of space optical mapping camera
NASA Astrophysics Data System (ADS)
Li, Fuqiang; Cai, Weijun; Zhang, Fengqin; Li, Na; Fan, Junjie
2018-01-01
According to the interior orientation elements and imaging quality requirements of mapping application to mapping camera and combined with off-axis three-mirror anastigmat(TMA) system, high optomechanical stability design of a space optical mapping camera is introduced in this paper. The configuration is a coaxial TMA system used in off-axis situation. Firstly, the overall optical arrangement is described., and an overview of the optomechanical packaging is provided. Zerodurglass, carbon fiber composite and carbon-fiber reinforced silicon carbon (C/SiC) are widely used in the optomechanical structure, because their low coefficient of thermal expansion (CTE) can reduce the thermal sensitivity of the mirrors and focal plane. Flexible and unloading support are used in reflector and camera supporting structure. Epoxy structural adhesives is used for bonding optics to metal structure is also introduced in this paper. The primary mirror is mounted by means of three-point ball joint flexures system, which is attach to the back of the mirror. Then, In order to predict flexural displacements due to gravity, static finite element analysis (FEA) is performed on the primary mirror. The optical performance peak-to-valley (PV) and root-mean-square (RMS) wavefront errors are detected before and after assemble. Also, the dynamic finite element analysis(FEA) of the whole optical arrangement is carried out as to investigate the performance of optomechanical. Finally, in order to evaluate the stability of the design, the thermal vacuum test and vibration test are carried out and the Modulation Transfer Function (MTF) and elements of interior orientation are presented as the evaluation index. Before and after the thermal vacuum test and vibration test, the MTF, focal distance and position of the principal point of optical system are measured and the result is as expected.
Fluence compensated photoacoustic tomography in small animals (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hussain, Altaf; Pool, Martin; Daoudi, Khalid; de Vries, Liesbeth G.; Steenbergen, Wiendelt
2017-03-01
Light fluence inside turbid media can be experimentally mapped by measuring ultrasonically modulated light (Acousto-optics). To demonstrate the feasibility of fluence corrected Photoacoustic (PA) imaging, we have realized a tri-modality (i.e. photoacoustic, acousto-optic and ultrasound) tomographic small animal imaging system. Wherein PA imaging provides high resolution map of absorbed optical energy density, Acousto-optics yields the fluence distribution map in the corresponding PA imaging plane and Ultrasound provides morphological information. Further, normalization of the PA image with the acousto-optically measured fluence map results in an image that directly represents the optical absorption. Human epidermal growth factor receptor 2 (HER2) is commonly found overexpressed in human cancers, among which breast cancers, resulting in a more aggressive tumor phenotype. Identification of HER2-expression is clinically relevant, because cancers overexpressing this marker are amenable to HER2-directed therapies, among which antibodies trastuzumab and pertuzumab. Here, we investigate the feasibility and advantage of acousto-optically assisted fluence compensated PA imaging over PA imaging alone in visualizing and quantifying HER2 expression. For this experiment, nude mice were xenografted with human breast cancer cell lines SKBR3 and BT474 (both HER2 overexpressing), as well as HER2-negative MDA-MB-231. To visualize HER2 expression in these mice, HER2 monoclonal antibody pertuzumab (Perjeta®, Roche), was conjugated to near-infrared dye IRDye 800CW (800CW, LICOR Biosciences) at a ratio of 1∶2 antibody to 800CW. When xenograft tumors measured ≥ 100 mm3, mice received 100 µg 800CW-pertuzumab intravenously. Three days post injection, mice were scanned for fluorescence signal with an IVIS scanner. After fluorescence scans, mice were euthanized and imaged in our PA tomographic imaging system.
Xiang, X D
Combinatorial materials synthesis methods and high-throughput evaluation techniques have been developed to accelerate the process of materials discovery and optimization and phase-diagram mapping. Analogous to integrated circuit chips, integrated materials chips containing thousands of discrete different compositions or continuous phase diagrams, often in the form of high-quality epitaxial thin films, can be fabricated and screened for interesting properties. Microspot x-ray method, various optical measurement techniques, and a novel evanescent microwave microscope have been used to characterize the structural, optical, magnetic, and electrical properties of samples on the materials chips. These techniques are routinely used to discover/optimize and map phase diagrams of ferroelectric, dielectric, optical, magnetic, and superconducting materials.
NASA Astrophysics Data System (ADS)
Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.
2018-04-01
The method of Doppler color mapping of one specific (previously chosen) velocity in a turbulent flow inside biological tissues using optical coherence tomography is described. The key features of the presented method are: the raw data are separated into three parts, corresponding to the unmoving biological tissue, the positively and negatively directed biological fluid flows; the further independent signal processing procedure yields the structure image and two images of the chosen velocity, which are then normalised, encoded and joined. The described method can be used to obtain in real time the anatomical maps of the chosen velocities in normal and pathological states. The described method can be applied not only in optical coherence tomography, but also in endoscopic and Doppler ultrasonic medical imaging systems.
Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.
Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki
2017-12-09
Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.
Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor
Park, Jinho; Park, Hasil
2017-01-01
Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826
Satellites vs. fiber optics based networks and services - Road map to strategic planning
NASA Astrophysics Data System (ADS)
Marandi, James H. R.
An overview of a generic telecommunications network and its components is presented, and the current developments in satellite and fiber optics technologies are discussed with an eye on the trends in industry. A baseline model is proposed, and a cost comparison of fiber- vs satellite-based networks is made. A step-by-step 'road map' to the successful strategic planning of telecommunications services and facilities is presented. This road map provides for optimization of the current and future networks and services through effective utilization of both satellites and fiber optics. The road map is then applied to different segments of the telecommunications industry and market place, to show its effectiveness for the strategic planning of executives of three types: (1) those heading telecommunications manufacturing concerns, (2) those leading communication service companies, and (3) managers of telecommunication/MIS departments of major corporations. Future networking issues, such as developments in integrated-services digital network standards and technologies, are addressed.
In Situ Optical Mapping of Voltage and Calcium in the Heart
Ewart, Paul; Ashley, Euan A.; Loew, Leslie M.; Kohl, Peter; Bollensdorff, Christian; Woods, Christopher E.
2012-01-01
Electroanatomic mapping the interrelation of intracardiac electrical activation with anatomic locations has become an important tool for clinical assessment of complex arrhythmias. Optical mapping of cardiac electrophysiology combines high spatiotemporal resolution of anatomy and physiological function with fast and simultaneous data acquisition. If applied to the clinical setting, this could improve both diagnostic potential and therapeutic efficacy of clinical arrhythmia interventions. The aim of this study was to explore this utility in vivo using a rat model. To this aim, we present a single-camera imaging and multiple light-emitting-diode illumination system that reduces economic and technical implementation hurdles to cardiac optical mapping. Combined with a red-shifted calcium dye and a new near-infrared voltage-sensitive dye, both suitable for use in blood-perfused tissue, we demonstrate the feasibility of in vivo multi-parametric imaging of the mammalian heart. Our approach combines recording of electrophysiologically-relevant parameters with observation of structural substrates and is adaptable, in principle, to trans-catheter percutaneous approaches. PMID:22876327
Surveying the Newly Digitized Apollo Metric Images for Highland Fault Scarps on the Moon
NASA Astrophysics Data System (ADS)
Williams, N. R.; Pritchard, M. E.; Bell, J. F.; Watters, T. R.; Robinson, M. S.; Lawrence, S.
2009-12-01
The presence and distribution of thrust faults on the Moon have major implications for lunar formation and thermal evolution. For example, thermal history models for the Moon imply that most of the lunar interior was initially hot. As the Moon cooled over time, some models predict global-scale thrust faults should form as stress builds from global thermal contraction. Large-scale thrust fault scarps with lengths of hundreds of kilometers and maximum relief of up to a kilometer or more, like those on Mercury, are not found on the Moon; however, relatively small-scale linear and curvilinear lobate scarps with maximum lengths typically around 10 km have been observed in the highlands [Binder and Gunga, Icarus, v63, 1985]. These small-scale scarps are interpreted to be thrust faults formed by contractional stresses with relatively small maximum (tens of meters) displacements on the faults. These narrow, low relief landforms could only be identified in the highest resolution Lunar Orbiter and Apollo Panoramic Camera images and under the most favorable lighting conditions. To date, the global distribution and other properties of lunar lobate faults are not well understood. The recent micron-resolution scanning and digitization of the Apollo Mapping Camera (Metric) photographic negatives [Lawrence et al., NLSI Conf. #1415, 2008; http://wms.lroc.asu.edu/apollo] provides a new dataset to search for potential scarps. We examined more than 100 digitized Metric Camera image scans, and from these identified 81 images with favorable lighting (incidence angles between about 55 and 80 deg.) to manually search for features that could be potential tectonic scarps. Previous surveys based on Panoramic Camera and Lunar Orbiter images found fewer than 100 lobate scarps in the highlands; in our Apollo Metric Camera image survey, we have found additional regions with one or more previously unidentified linear and curvilinear features on the lunar surface that may represent lobate thrust fault scarps. In this presentation we review the geologic characteristics and context of these newly-identified, potentially tectonic landforms. The lengths and relief of some of these linear and curvilinear features are consistent with previously identified lobate scarps. Most of these features are in the highlands, though a few occur along the edges of mare and/or crater ejecta deposits. In many cases the resolution of the Metric Camera frames (~10 m/pix) is not adequate to unequivocally determine the origin of these features. Thus, to assess if the newly identified features have tectonic or other origins, we are examining them in higher-resolution Panoramic Camera (currently being scanned) and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera images [Watters et al., this meeting, 2009].
Stingl, J; Zamponi, F; Freyer, B; Woerner, M; Elsaesser, T; Borgschulte, A
2012-10-05
Transient polarizations connected with a spatial redistribution of electronic charge in a mixed quantum state are induced by optical fields of high amplitude. We determine for the first time the related transient electron density maps, applying femtosecond x-ray powder diffraction as a structure probe. The prototype ionic material LiBH4 driven nonresonantly by an intense sub-40 fs optical pulse displays a large-amplitude fully reversible electron transfer from the BH4(-) anion to the Li+ cation during excitation. Our results establish this mechanism as the source of the strong optical polarization which agrees quantitatively with theoretical estimates.
NASA Technical Reports Server (NTRS)
Stacey, G. J.; Townes, C. H.; Geis, N.; Madden, S. C.; Herrmann, F.; Genzel, R.; Poglitsch, A.; Jackson, J. M.
1991-01-01
The detection of the F = 1 - 0 hyperfine component of the 158-micron forbidden C-13 II fine-structure line in the interstellar medium is reported. A 12-point intensity map was obtained of the forbidden C-13 distribution over the inner 190-arcsec (R.A.) X 190-arcsec (decl.) regions of the Orion Nebula using an imaging Fabry-Perot interferometer. The forbidden C-12 II/C-13 II line intensity ratio varies significantly over the region mapped. It is highest (86 +/-0) in the core of the Orion H II region, and significantly lower (62 +/-7) in the outer regions of the map, reflecting higher optical depth in the forbidden C-12 II line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin forbidden C-13 II line at the edges of the bowl-shaped H II region blister.
Ferreira, Ana Cristina; Dias, Ricardo; de Sá, Maria Inácia Corrêa; Tenreiro, Rogério
2016-08-30
Optical mapping is a technology able to quickly generate high resolution ordered whole-genome restriction maps of bacteria, being a proven approach to search for diversity among bacterial isolates. In this work, optical whole-genome maps were used to compare closely-related Brucella suis biovar 2 strains. This biovar is the unique isolated in domestic pigs and wild boars in Portugal and Spain and most of the strains share specific molecular characteristics establishing an Iberian clonal lineage that can be differentiated from another lineage mainly isolated in several Central European countries. We performed the BamHI whole-genome optical maps of five B. suis biovar 2 field strains, isolated from wild boars in Portugal and Spain (three from the Iberian lineage and two from the Central European one) as well as of the reference strain B. suis biovar 2 ATCC 23445 (Central European lineage, Denmark). Each strain showed a distinct, highly individual configuration of 228-231 BamHI fragments. Nevertheless, a low divergence was globally observed in chromosome II (1.6%) relatively to chromosome I (2.4%). Optical mapping also disclosed genomic events associated with B. suis strains in chromosome I, namely one indel (3.5kb) and one large inversion (944kb). By using targeted-PCR in a set of 176 B. suis strains, including all biovars and haplotypes, the indel was found to be specific of the reference strain ATCC 23445 and the large inversion was shown to be an exclusive genomic marker of the Iberian clonal lineage of biovar 2. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ryu, Inkeon; Kim, Daekeun
2018-04-01
A typical selective plane illumination microscopy (SPIM) image size is basically limited by the field of view, which is a characteristic of the objective lens. If an image larger than the imaging area of the sample is to be obtained, image stitching, which combines step-scanned images into a single panoramic image, is required. However, accurately registering the step-scanned images is very difficult because the SPIM system uses a customized sample mount where uncertainties for the translational and the rotational motions exist. In this paper, an image registration technique based on multiple fluorescent microsphere tracking is proposed in the view of quantifying the constellations and measuring the distances between at least two fluorescent microspheres embedded in the sample. Image stitching results are demonstrated for optically cleared large tissue with various staining methods. Compensation for the effect of the sample rotation that occurs during the translational motion in the sample mount is also discussed.
NASA Technical Reports Server (NTRS)
Davidson, A. C.; Grant, M. M. (Inventor)
1973-01-01
A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners.
Thevissen, P W; Galiti, D; Willems, G
2012-11-01
In the subadult age group, third molar development, as well as age-related morphological tooth information can be observed on panoramic radiographs. The aim of present study was to combine, in subadults, panoramic radiographic data based on developmental stages of third molar(s) and morphological measurements from permanent teeth, in order to evaluate its added age-predicting performances. In the age range between 15 and 23 years, 25 gender-specific radiographs were collected within each age category of 1 year. Third molar development was classified and registered according the 10-point staging and scoring technique proposed by Gleiser and Hunt (1955), modified by Köhler (1994). The Kvaal (1995) measuring technique was applied on the indicated teeth from the individuals' left side. Linear regression models with age as response and third molar-scored stages as explanatory variables were developed, and morphological measurements from permanent teeth were added. From the models, determination coefficients (R (2)) and root-mean-square errors (RMSE) were calculated. Maximal-added age information was reported as a 6 % R² increase and a 0.10-year decrease of RMSE. Forensic dental age estimations on panoramic radiographic data in the subadult group (15-23 year) should only be based on third molar development.
Dula, K; Sanderink, G; van der Stelt, P F; Mini, R; Buser, D
1998-08-01
Dose reduction in digital panoramic radiography was studied. Intentional underexposure was performed with the Orthophos DS while six different human mandibles were radiographed. Exposure settings were 69 kV/15 mA (standard), 64 kV/16 mA, and 60 kV/16 mA. Standardized spherical defects, each either 1 or 1.25 mm in diameter, were simulated in 288 of 432 images, and seven observers decided whether defects were present or not. Areas under the receiver operating characteristics curves were calculated. They showed no significant differences in the detectability of the 1-mm defect at 69, 64, or 60 kV. For the 1.25-mm defect, no difference was found between the 69 and 60 kV images, but a statistically significant different detectability was found for 64 kV images in comparison with both 69 and 60 kV images. A dose reduction of up to 43% was ascertained with a Pedo-RT-Humanoid phantom when panoramic radiography was performed at 60 kV/16 mA. The conclusion is that with the Orthophos DS, it seems possible to reduce the dose rate of x-rays without loss of diagnostic quality in the case of radiolucent changes.
Szalma, József; Lempel, Edina; Jeges, Sára; Szabó, Gyula; Olasz, Lajos
2010-02-01
The aim of the study was to estimate the accuracy of panoramic radiographic signs predicting inferior alveolar nerve (IAN) paresthesia after lower third molar removal. In a case-control study the sample was composed of 41 cases with postoperative IAN paresthesia and 359 control cases without it. The collected data included "classic" specific signs indicating a close spatial relationship between third molar root and inferior alveolar canal (IAC), root curvatures, and the extent of IAC-root tip overlap. Bivariate and multivariate logistic regression analyses were completed to estimate the association between radiographic findings and IAN paresthesia. The multivariate logistic analysis identified 3 signs significantly associated with IAN paresthesia (P < .001): interruption of the superior cortex of the canal wall, diversion of the canal, and darkening of the root. The sensitivities and specificities ranged from 14.6% to 68.3% and from 85.5% to 96.9%, respectively. The positive predictive values, calculated to factor a 1.1% prevalence of paresthesia, ranged from 3.6% to 10.9%, whereas the negative predictive values >99%. Panoramic radiography is an inadequate screening method for predicting IAN paresthesia after mandibular third molar removal. Copyright (c) 2010 Mosby, Inc. All rights reserved.
The evaluation of MCI, MI, PMI and GT on both genders with different age and dental status.
Bozdag, G; Sener, S
2015-01-01
The aim of this study was to measure the mandibular cortical index (MCI), mental index (MI), panoramic mandibular index (PMI) and cortical bone thickness in the zone of the gonial angle (GT) in panoramic radiographies from a large sample of males and females and to determine how they relate to patients' age, gender and dental status. 910 panoramic radiographs were obtained and grouped into age, dental status and gender. The MCI, MI, PMI and GT were analysed. Remarkable differences were observed for MCI and GT regarding gender, age groups and dental status on both sides (p < 0.05). While age and dental status had an effect on the MI and PMI in females, dental status had an effect on the MI and PMI in males (p < 0.05). Also, gender had an effect on the MI and PMI (p < 0.05). The effects of age and tooth loss are different in females and males. In females, the harmful effects of tooth loss and age are more prominent according to the PMI and MI measurements. The effects of age and tooth loss in the GT and MCI measurements are similar, and these indices can be accepted as more reliable in studies including both genders.
The evaluation of MCI, MI, PMI and GT on both genders with different age and dental status
Sener, S
2015-01-01
Objectives: The aim of this study was to measure the mandibular cortical index (MCI), mental index (MI), panoramic mandibular index (PMI) and cortical bone thickness in the zone of the gonial angle (GT) in panoramic radiographies from a large sample of males and females and to determine how they relate to patients' age, gender and dental status. Methods: 910 panoramic radiographs were obtained and grouped into age, dental status and gender. The MCI, MI, PMI and GT were analysed. Results: Remarkable differences were observed for MCI and GT regarding gender, age groups and dental status on both sides (p < 0.05). While age and dental status had an effect on the MI and PMI in females, dental status had an effect on the MI and PMI in males (p < 0.05). Also, gender had an effect on the MI and PMI (p < 0.05). Conclusions: The effects of age and tooth loss are different in females and males. In females, the harmful effects of tooth loss and age are more prominent according to the PMI and MI measurements. The effects of age and tooth loss in the GT and MCI measurements are similar, and these indices can be accepted as more reliable in studies including both genders. PMID:26133366
Goncalves-Filho, Antonio Jg; Moda, Larissa B; Oliveira, Roberta P; Ribeiro, Andre Luis Ribeiro; Pinheiro, João Jv; Alver-Junior, S Rgio M
2014-01-01
Dental anomalies (DAs) are the result of disorders that are able to modify the shape, number, size, and structure of teeth. This study aimed to evaluate the prevalence of DAs using panoramic radiographs in a population of the City of Belém, northern Brazil. In this study, 487 panoramic radiographs were evaluated searching for DAs. Dental records were reviewed for diagnostic confirmation. DAs related to the shape, number, size, and structure of teeth were investigated. Our results showed a DA prevalence of 56.9%. The most prevalent DA was taurodontism, which was present in 27.19% of cases. Root dilaceration was the second most prevalent DA in adults, whereas hypodontia was the second most prevalent DA in children. A total of 13 DAs were found. Dental anomalies were present in over half of the sample, and most of them were related to the shape of the teeth. Although there was a high prevalence of shape-related DAs, these alterations are generally of lower severity, and most do not require specific treatment. However, in 19.25% of cases, DAs were found involving the number, size and structure of the teeth. These DAs should be diagnosed and treated early, avoiding thus more serious complications.
Palmer, Ty B; Akehi, Kazuma; Thiele, Ryan M; Smith, Doug B; Thompson, Brennan J
2015-03-01
The purpose of this study was to examine the reliability of ultrasound (US) measures of cross-sectional area (CSA), muscle thickness (MT) and echo intensity (EI) of the hamstrings, with comparisons between males and females. In 20 healthy participants (10 males, 10 females), CSA, MT and EI were measured from panoramic US scans of the hamstrings on 2 separate days. The intra-class correlation coefficients and standard errors of measurement as a percentage of the mean for CSA, MT and EI ranged from 0.715 to 0.984 and from 3.145 to 12.541% in the males and from 0.724 to 0.977 and from 4.571 to 17.890% in the females, respectively. The males had greater CSAs and MTs and lower EIs than the females (p = 0.002-0.049), and significant relationships were observed between CSA and MT (r = 0.714-0.938, p ≤ 0.001-0.023). From an overall reliability standpoint, these findings suggest that panoramic US may be a reliable technique for examining muscle size and quality of the hamstrings in both males and females. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
It's a Bird, It's a Plane, It's a... Spacecraft?
NASA Technical Reports Server (NTRS)
2004-01-01
Observing the sky with the green filter of it panoramic camera, the Mars Exploration Rover Spirit came across a surprise: a streak across the sky. The streak, seen in the middle of this mosaic of images taken by the navigation and panoramic cameras, was probably the brightest object in the sky at the time. Scientists theorize that the mystery line could be either a meteorite or one of seven out-of-commission spacecraft still orbiting Mars. Because the object appeared to move 4 degrees of an arc in 15 seconds it is probably not the Russian probes Mars 2, Mars 3, Mars 5, or Phobos 2; or the American probes Mariner 9 or Viking 1. That leaves Viking 2, which has a polar orbit that would fit with the north-south orientation of the streak. In addition, only Viking 1 and 2 were left in orbits that could produce motion as fast as that seen by Spirit. Said Mark Lemmon, a rover team member from Texas A&M University, Texas, 'Is this the first image of a meteor on Mars, or an image of a spacecraft sent from another world during the dawn of our robotic space exploration program? We may never know, but we are still looking for clues'.
The inset shows only the panoramic image of the streak.Sex estimation based on tooth measurements using panoramic radiographs.
Capitaneanu, Cezar; Willems, Guy; Jacobs, Reinhilde; Fieuws, Steffen; Thevissen, Patrick
2017-05-01
Sex determination is an important step in establishing the biological profile of unidentified human remains. The aims of the study were, firstly, to assess the degree of sexual dimorphism in permanent teeth, based on digital tooth measurements performed on panoramic radiographs. Secondly, to identify sex-related tooth position-specific measurements or combinations of such measurements, and to assess their applicability for potential sex determination. Two hundred digital panoramic radiographs (100 males, 100 females; age range 22-34 years) were retrospectively collected from the dental clinic files of the Dentomaxillofacial Radiology Center of the University Hospitals Leuven, Belgium, and imported in image enhancement software. Tooth length- and width-related variables were measured on all teeth in upper and lower left quadrant, and ratios of variables were calculated. Univariate and multivariate analyses were performed to quantify the sex discriminative value of the tooth position-specific variables and their combinations. The mandibular and maxillary canine showed the greatest sexual dimorphism, and tooth length variables had the highest discriminative potential. Compared to single variables, combining variables or ratios of variables did not improve substantially the discrimination between males and females. Considering that the discriminative ability values (area under the curve (AUC)) were not higher than 0.80, it is not advocated to use the currently studied dental variables for accurate sex estimation in forensic practice.
Cobbles in Troughs Between Meridiani Ripples
NASA Technical Reports Server (NTRS)
2006-01-01
As NASA's Mars Exploration Rover Opportunity continues to traverse from 'Erebus Crater' toward 'Victoria Crater,' the rover navigates along exposures of bedrock between large, wind-blown ripples. Along the way, scientists have been studying fields of cobbles that sometimes appear on trough floors between ripples. They have also been studying the banding patterns seen in large ripples. This view, obtained by Opportunity's panoramic camera on the rover's 802nd Martian day (sol) of exploration (April 27, 2006), is a mosaic spanning about 30 degrees. It shows a field of cobbles nestled among wind-driven ripples that are about 20 centimeters (8 inches) high. The origin of cobble fields like this one is unknown. The cobbles may be a lag of coarser material left behind from one or more soil deposits whose finer particles have blown away. The cobbles may be eroded fragments of meteoritic material, secondary ejecta of Mars rock thrown here from craters elsewhere on the surface, weathering remnants of locally-derived bedrock, or a mixture of these. Scientists will use the panoramic camera's multiple filters to study the rock types, variability and origins of the cobbles. This is an approximately true-color rendering that combines separate images taken through the panoramic camera's 753-nanometer, 535-nanometer and 432-nanometer filters.A fast method for optical simulation of flood maps of light-sharing detector modules
Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu
2016-01-01
Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials. PMID:27660376
A fast method for optical simulation of flood maps of light-sharing detector modules
Shi, Han; Du, Dong; Xu, JianFeng; ...
2015-09-03
Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. Here, we present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We also simulated conventional block detector designs with different slotted light guide patterns using the new approachmore » and compared the outcomes with those from GATE simulations. And while the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.« less
Design and fabrication of multispectral optics using expanded glass map
NASA Astrophysics Data System (ADS)
Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Sanghera, Jasbinder; Kotov, Mikhail; Drake, Gryphon; Deegan, John; Lindberg, George
2015-06-01
As the desire to have compact multispectral imagers in various DoD platforms is growing, the dearth of multispectral optics is widely felt. With the limited number of material choices for optics, these multispectral imagers are often very bulky and impractical on several weight sensitive platforms. To address this issue, NRL has developed a large set of unique infrared glasses that transmit from 0.9 to > 14 μm in wavelength and expand the glass map for multispectral optics with refractive indices from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. The new NRL glasses can be easily molded and also fused together to make bonded doublets. A Zemax compatible glass file has been created and is available upon request. In this paper we present some designs, optics fabrication and imaging, all using NRL materials.
Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R
2016-01-13
Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications.
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S
2005-10-01
To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.
McDougall, Craig; MacDonald, Michael Peter; Ritsch-Marte, Monika
2016-01-01
Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with high-NA imaging in a microfluidic environment. The powerful acoustic trapping within a layered resonator, which is suitable for highly parallel particle handling, is complemented by the flexibility and selectivity of holographic optical tweezers, with the specimens being under high quality optical monitoring at all times. The dual acoustic/optical nature of the system lends itself to optically measure the exact acoustic force map, by means of direct force measurements on an optically trapped particle. For applications with (ultra-)high demand on the precision of the force measurements, the position of the objective used for the high-NA imaging may have significant influence on the acoustic force map in the probe chamber. We have characterized this influence experimentally and the findings were confirmed by model simulations. We show that it is possible to design the chamber and to choose the operating point in such a way as to avoid perturbations due to the objective lens. Moreover, we found that measuring the electrical impedance of the transducer provides an easy indicator for the acoustic resonances. PMID:27025398
NASA Astrophysics Data System (ADS)
Anantua, Richard; Roger Blandford, Jonathan McKinney and Alexander Tchekhovskoy
2016-01-01
We carry out the process of "observing" simulations of active galactic nuclei (AGN) with relativistic jets (hereafter called jet/accretion disk/black hole (JAB) systems) from ray tracing between image plane and source to convolving the resulting images with a point spread function. Images are generated at arbitrary observer angle relative to the black hole spin axis by implementing spatial and temporal interpolation of conserved magnetohydrodynamic flow quantities from a time series of output datablocks from fully general relativistic 3D simulations. We also describe the evolution of simulations of JAB systems' dynamical and kinematic variables, e.g., velocity shear and momentum density, respectively, and the variation of these variables with respect to observer polar and azimuthal angles. We produce, at frequencies from radio to optical, fixed observer time intensity and polarization maps using various plasma physics motivated prescriptions for the emissivity function of physical quantities from the simulation output, and analyze the corresponding light curves. Our hypothesis is that this approach reproduces observed features of JAB systems such as superluminal bulk flow projections and quasi-periodic oscillations in the light curves more closely than extant stylized analytical models, e.g., cannonball bulk flows. Moreover, our development of user-friendly, versatile C++ routines for processing images of state-of-the-art simulations of JAB systems may afford greater flexibility for observing a wide range of sources from high power BL-Lacs to low power quasars (possibly with the same simulation) without requiring years of observation using multiple telescopes. Advantages of observing simulations instead of observing astrophysical sources directly include: the absence of a diffraction limit, panoramic views of the same object and the ability to freely track features. Light travel time effects become significant for high Lorentz factor and small angles between observer direction and incident light rays; this regime is relevant for the study of AGN blazars in JAB simulations.
J-PLUS: The Javalambre Photometric Local Universe Survey
NASA Astrophysics Data System (ADS)
Cenarro, Javier; Marin-Franch, Antonio; Moles, Mariano; Cristobal-Hornillos, David; Mendes de Oliveira, Claudia; Sodre, Laerte
2015-08-01
The Javalambre-Photometric Local Universe Survey, J-PLUS (www.j-plus.es), is defined to observe 8500 deg2 of the sky visible from the Javalambre Observatory (Teruel, Spain) with the panoramic camera T80Cam at the JAST/T80 telescope, using a set of 12 broad, intermediate and narrow band optical filters. The Project is particularly designed to carry out the photometric calibration of J-PAS (http://j-pas.org). For this reason, some J-PLUS filters are located at key stellar spectral features that allow to retrieve very accurate spectral energy distributions for more than 5 millions of stars in our Galaxy. Beyond the calibration goals, the unusually large FOV of T80Cam, 2deg2, together with the unique width and location of some filters, turn the J-PLUS Project into a powerful 3D view of the nearby Universe, mapping more than 20 millions of galaxies with reliable distance determinations and a similar number of stars of the Milky Way halo. At a rate of 100 gigabytes of data per night, J-PLUS will provide unprecedented multi-color images of the Universe to address a wide variety of astrophysical questions related with cosmology, large scale structure, galaxy clusters, 2D stellar populations and star formation studies in galaxies, the discovery of high redshift galaxies at specific redshift slices, quasars, supernovae, Milky Way science and structure, and minor bodies in the Solar System. In addition, the repetition of the whole area over time in certain filters will allow to face variability studies in the time domain.Complementing J-PLUS, a replica of the JAST/T80 telescope, T80Cam and the J-PLUS filters have been installed at the CTIO, allowing to extend the project to the Southern Hemisphere. J-PLUS together with the southern extension, S-PLUS, constitute an All-sky Photometric Local Universe Survey whose details and scientific applications are the bulk of the present talk.
Matiukas, Arvydas; Mitrea, Bogdan G; Qin, Maochun; Pertsov, Arkady M; Shvedko, Alexander G; Warren, Mark D; Zaitsev, Alexey V; Wuskell, Joseph P; Wei, Mei-de; Watras, James; Loew, Leslie M
2007-11-01
Styryl voltage-sensitive dyes (e.g., di-4-ANEPPS) have been used successfully for optical mapping in cardiac cells and tissues. However, their utility for probing electrical activity deep inside the myocardial wall and in blood-perfused myocardium has been limited because of light scattering and high absorption by endogenous chromophores and hemoglobin at blue-green excitation wavelengths. The purpose of this study was to characterize two new styryl dyes--di-4-ANBDQPQ (JPW-6003) and di-4-ANBDQBS (JPW-6033)--optimized for blood-perfused tissue and intramural optical mapping. Voltage-dependent spectra were recorded in a model lipid bilayer. Optical mapping experiments were conducted in four species (mouse, rat, guinea pig, and pig). Hearts were Langendorff perfused using Tyrode's solution and blood (pig). Dyes were loaded via bolus injection into perfusate. Transillumination experiments were conducted in isolated coronary-perfused pig right ventricular wall preparations. The optimal excitation wavelength in cardiac tissues (650 nm) was >70 nm beyond the absorption maximum of hemoglobin. Voltage sensitivity of both dyes was approximately 10% to 20%. Signal decay half-life due to dye internalization was 80 to 210 minutes, which is 5 to 7 times slower than for di-4-ANEPPS. In transillumination mode, DeltaF/F was as high as 20%. In blood-perfused tissues, DeltaF/F reached 5.5% (1.8 times higher than for di-4-ANEPPS). We have synthesized and characterized two new near-infrared dyes with excitation/emission wavelengths shifted >100 nm to the red. They provide both high voltage sensitivity and 5 to 7 times slower internalization rate compared to conventional dyes. The dyes are optimized for deeper tissue probing and optical mapping of blood-perfused tissue, but they also can be used for conventional applications.
Bi-orthogonal Symbol Mapping and Detection in Optical CDMA Communication System
NASA Astrophysics Data System (ADS)
Liu, Maw-Yang
2017-12-01
In this paper, the bi-orthogonal symbol mapping and detection scheme is investigated in time-spreading wavelength-hopping optical CDMA communication system. The carrier-hopping prime code is exploited as signature sequence, whose put-of-phase autocorrelation is zero. Based on the orthogonality of carrier-hopping prime code, the equal weight orthogonal signaling scheme can be constructed, and the proposed scheme using bi-orthogonal symbol mapping and detection can be developed. The transmitted binary data bits are mapped into corresponding bi-orthogonal symbols, where the orthogonal matrix code and its complement are utilized. In the receiver, the received bi-orthogonal data symbol is fed into the maximum likelihood decoder for detection. Under such symbol mapping and detection, the proposed scheme can greatly enlarge the Euclidean distance; hence, the system performance can be drastically improved.
Analysis of advanced optical glass and systems
NASA Technical Reports Server (NTRS)
Johnson, R. Barry; Feng, Chen
1991-01-01
Optical lens systems performance utilizing optical materials comprising reluctant glass forming compositions was studied. Such special glasses are being explored by NASA/Marshall Space Flight Center (MSFC) researchers utilizing techniques such as containerless processing in space on the MSFC Acoustic Levitation Furnace and on the High Temperature Acoustic Levitation Furnace in the conceptual design phase for the United States Microgravity Laboratory (USML) series of shuttle flights. The application of high refractive index and low dispersive power glasses in optical lens design was investigated. The potential benefits and the impacts to the optical lens design performance were evaluated. The results of the studies revealed that the use of these extraordinary glasses can result in significant optical performance improvements. Recommendations of proposed optical properties for potential new glasses were also made. Applications of these new glasses are discussed, including the impact of high refractive index and low dispersive power, improvements of the system performance by using glasses which are located outside of traditional glass map, and considerations in establishing glass properties beyond conventional glass map limits.
Optimal multiguidance integration in insect navigation.
Hoinville, Thierry; Wehner, Rüdiger
2018-03-13
In the last decades, desert ants have become model organisms for the study of insect navigation. In finding their way, they use two major navigational routines: path integration using a celestial compass and landmark guidance based on sets of panoramic views of the terrestrial environment. It has been claimed that this information would enable the insect to acquire and use a centralized cognitive map of its foraging terrain. Here, we present a decentralized architecture, in which the concurrently operating path integration and landmark guidance routines contribute optimally to the directions to be steered, with "optimal" meaning maximizing the certainty (reliability) of the combined information. At any one time during its journey, the animal computes a path integration (global) vector and landmark guidance (local) vector, in which the length of each vector is proportional to the certainty of the individual estimates. Hence, these vectors represent the limited knowledge that the navigator has at any one place about the direction of the goal. The sum of the global and local vectors indicates the navigator's optimal directional estimate. Wherever applied, this decentralized model architecture is sufficient to simulate the results of quite a number of diverse cue-conflict experiments, which have recently been performed in various behavioral contexts by different authors in both desert ants and honeybees. They include even those experiments that have deliberately been designed by former authors to strengthen the evidence for a metric cognitive map in bees.
View From Within 'Perseverance Valley' on Mars
2017-12-06
This view from within "Perseverance Valley," on the inner slope of the western rim of Endurance Crater on Mars, includes wheel tracks from the Opportunity rover's descent of the valley. The Panoramic Camera (Pancam) on Opportunity's mast took the component images of the scene during the period Sept. 4 through Oct. 6, 2017, corresponding to sols (Martian days) 4840 through 4871 of the rover's work on Mars. Perseverance Valley is a system of shallow troughs descending eastward about the length of two football fields from the crest of the crater rim to the floor of the crater. This panorama spans from northeast on the left to northwest on the right, including portions of the crater floor (eastward) in the left half and of the rim (westward) in the right half. Opportunity began descending Perseverance Valley in mid-2017 (see map) as part of an investigation into how the valley formed. Rover wheel tracks are darker brown, between two patches of bright bedrock, receding toward the horizon in the right half of the scene. This view combines multiple images taken through three different Pancam filters. The selected filters admit light centered on wavelengths of 753 nanometers (near-infrared), 535 nanometers (green) and 432 nanometers (violet). The three color bands are combined here to show approximately true color. A map and high-resolution TIFF file is available at https://photojournal.jpl.nasa.gov/catalog/PIA22074
A general solution for the registration of optical multispectral scanners
NASA Technical Reports Server (NTRS)
Rader, M. L.
1974-01-01
The paper documents a general theory for registration (mapping) of data sets gathered by optical scanners such as the ERTS satellite MSS and the Skylab S-192 MSS. This solution is generally applicable to scanners which have rotating optics. Navigation data and ground control points are used in a statistically weighted adjustment based on a mathematical model of the dynamics of the spacecraft and the scanner system. This adjustment is very similar to the well known photogrammetric adjustments used in aerial mapping. Actual tests have been completed on NASA aircraft 24 channel MSS data, and the results are very encouraging.
Conformal mapping in optical biosensor applications.
Zumbrum, Matthew E; Edwards, David A
2015-09-01
Optical biosensors are devices used to investigate surface-volume reaction kinetics. Current mathematical models for reaction dynamics rely on the assumption of unidirectional flow within these devices. However, new devices, such as the Flexchip, include a geometry that introduces two-dimensional flow, complicating the depletion of the volume reactant. To account for this, a previous mathematical model is extended to include two-dimensional flow, and the Schwarz-Christoffel mapping is used to relate the physical device geometry to that for a device with unidirectional flow. Mappings for several Flexchip dimensions are considered, and the ligand depletion effect is investigated for one of these mappings. Estimated rate constants are produced for simulated data to quantify the inclusion of two-dimensional flow in the mathematical model.
Logarithm conformal mapping brings the cloaking effect
Xu, Lin; Chen, Huanyang
2014-01-01
Over the past years, invisibility cloaks have been extensively discussed since transformation optics emerges. Generally, the electromagnetic parameters of invisibility cloaks are complicated tensors, yet difficult to realize. As a special method of transformation optics, conformal mapping helps us design invisibility cloak with isotropic materials of a refractive index distribution. However, for all proposed isotropic cloaks, the refractive index range is at such a breadth that challenges current experimental fabrication. In this work, we propose two new kinds of logarithm conformal mappings for invisible device designs. For one of the mappings, the refractive index distribution of conformal cloak varies from 0 to 9.839, which is more feasible for future implementation. Numerical simulations by using finite element method are performed to confirm the theoretical analysis. PMID:25359138
Polarization-correlation analysis of maps of optical anisotropy biological layers
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Dubolazov, A. V.; Prysyazhnyuk, V. S.; Marchuk, Y. F.; Pashkovskaya, N. V.; Motrich, A. V.; Novakovskaya, O. Y.
2014-08-01
A new information optical technique of diagnostics of the structure of polycrystalline films of bile is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of films of bile taken from healthy donors and diabetes of type 2 were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of bile were found and its efficiency in diagnostics of diabetes extent of type 2 was demonstrated. Considered prospects of applying this method in the diagnosis of cirrhosis.
Saying Goodbye to 'Bonneville' Crater
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Annotated Image NASA's Mars Exploration Rover Spirit took this panoramic camera image on sol 86 (March 31, 2004) before driving 36 meters (118 feet) on sol 87 toward its future destination, the Columbia Hills. This is probably the last panoramic camera image that Spirit will take from the high rim of 'Bonneville' crater, and provides an excellent view of the ejecta-covered path the rover has journeyed thus far. The lander can be seen toward the upper right of the frame and is approximately 321 meters (1060 feet) away from Spirit's current location. The large hill on the horizon is Grissom Hill. The Colombia Hills, located to the left, are not visible in this image.NASA Technical Reports Server (NTRS)
2006-01-01
At least three different kinds of rocks await scientific analysis at the place where NASA's Mars Exploration Rover Spirit will likely spend several months of Martian winter. They are visible in this picture, which the panoramic camera on Spirit acquired during the rover's 809th sol, or Martian day, of exploring Mars (April 12, 2006). Paper-thin layers of light-toned, jagged-edged rocks protrude horizontally from beneath small sand drifts; a light gray rock with smooth, rounded edges sits atop the sand drifts; and several dark gray to black, angular rocks with vesicles (small holes) typical of hardened lava lie scattered across the sand. This view is an approximately true-color rendering that combines images taken through the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.The prevalence of dental anomalies in an Australian population.
Dang, H Q; Constantine, S; Anderson, P J
2017-06-01
The aim of this study was to determine the prevalence of dental anomalies within an Australian paediatric population using panoramic radiographs. This was a prospective review of 1050 panoramic radiographs obtained as part of a school dental screening program in suburban and rural New South Wales, Australia. Fifty-four (5.14%) patients had a dental anomaly present. Agenesis was noted to have occurred 69 times across 45 patients (4.28%), along with seven cases of impaction (0.6%) and three cases of supernumerary teeth (0.28%). Dental anomalies rarely occur in the Australian population, which possesses a wide-ranging multiethnic cohort. Despite their rarity, they can be incidentally discovered so identification and management by dental practitioners are important. © 2016 Australian Dental Association.
NASA Astrophysics Data System (ADS)
Hadjiyska, Elena Ivanova
2009-06-01
Optical transients have been studied in isolated cases, but never mapped into a comprehensive data base in the past. These events vary in duration and signature, yet they are united under the umbrella of time varying observables and represent a significant portion of the dynamical processes in the universe. The Transient Optical Sky Survey (TOSS) System is a dedicated, ground-based system of small optical telescopes, observing nightly at fixed Declination while gathering 90 sec exposures and thus creating a repeated partial map of the sky. Presented here is a brief overview of some of the signatures of transient events and a description of the TOSS system along with the data acquired during the 2008-2009 observing campaign, potentially producing over 100,000 light curves.
Toward a hyperspectral optical signature of extra virgin olive oil
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Thienpont, H.; Ottevaere, H.; Attilio, C.; Cimato, A.
2007-05-01
Italian extra virgin olive oils bearing labels of certified area of origin were considered. Their multispectral digital signature was measured by means of absorption spectroscopy in the 200-1700 nm spectral range. The instrumentation was a fiber optic-based, cheap, and compact device. The spectral data were processed by means of multivariate analysis and plotted on a 2D classification map. The map showed sharp clusters according to the geographical origin of the oils, thus demonstrating the potentials of UV-VIS-NIR spectroscopy for optical fingerprinting. Then, the spectral data were correlated to the content of the most important fatty acids. The good fitting achieved demonstrated that the optical fingerprinting can be used also for predicting nutritional and chemical parameters.
Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, S K
2006-02-09
We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated datamore » with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.« less
2012-01-01
Background The genome of Mycobacterium avium subspecies paratuberculosis (MAP) is remarkably homogeneous among the genomes of bovine, human and wildlife isolates. However, previous work in our laboratories with the bovine K-10 strain has revealed substantial differences compared to sheep isolates. To systematically characterize all genomic differences that may be associated with the specific hosts, we sequenced the genomes of three U.S. sheep isolates and also obtained an optical map. Results Our analysis of one of the isolates, MAP S397, revealed a genome 4.8 Mb in size with 4,700 open reading frames (ORFs). Comparative analysis of the MAP S397 isolate showed it acquired approximately 10 large sequence regions that are shared with the human M. avium subsp. hominissuis strain 104 and lost 2 large regions that are present in the bovine strain. In addition, optical mapping defined the presence of 7 large inversions between the bovine and ovine genomes (~ 2.36 Mb). Whole-genome sequencing of 2 additional sheep strains of MAP (JTC1074 and JTC7565) further confirmed genomic homogeneity of the sheep isolates despite the presence of polymorphisms on the nucleotide level. Conclusions Comparative sequence analysis employed here provided a better understanding of the host association, evolution of members of the M. avium complex and could help in deciphering the phenotypic differences observed among sheep and cattle strains of MAP. A similar approach based on whole-genome sequencing combined with optical mapping could be employed to examine closely related pathogens. We propose an evolutionary scenario for M. avium complex strains based on these genome sequences. PMID:22409516
In Vivo Fiber-Optic Raman Mapping Of Metastases In Mouse Brains
NASA Astrophysics Data System (ADS)
Stelling, A.; Kirsch, M.; Steiner, G.; Krafft, C.; Schackert, G.; Salzer, R.
2010-08-01
Vibrational spectroscopy, in particular Raman spectroscopy, has potential applications in the field of in vivo diagnostics. Raman and FT-IR spectroscopy analyze the complete biochemical information at any given pixel within the visual field. Here we demonstrate the feasibility of performing Raman spectroscopic measurements on living mice brains using a fiber-optic probe with a nominal spatial resolution of 60 μm. The objectives of this study were to 1) evaluate preclinical models, namely murine brain slices containing experimental tumors, 2) optimize the preparation of pristine brain tissue to obtain reference information, to 3) optimize the conditions for introducing a fiber-optic probe to acquire Raman maps in vivo, and 4) to transfer results obtained from human brain tumors to an animal model. Disseminated brain metastases of malignant melanomas were induced by injecting tumor cells into the carotid artery of mice. The procedure mimicked hematogenous tumor spread in one brain hemisphere while the other hemisphere remained tumor free. Three series of sections were prepared consecutively from whole mouse brains: pristine, 2-mm thick sections for Raman mapping and dried, thin sections for FT-IR imaging, hematoxylin and eosin-stained thin sections for histopathological assessment. Raman maps were collected serially using a spectrometer coupled to a fiber-optic probe. FT-IR images were recorded using a spectrometer with a multi-channel detector. The FT-IR images and the Raman maps were evaluated by multivariate data analysis. The results obtained from the thin section studies were employed to guide measurements of murine brains in vivo. Raman maps with an acquisition time of over an hour could be performed on the living animals. No damage to the tissue was observed.
Free space and waveguide Talbot effect: phase relations and planar light circuit applications
NASA Astrophysics Data System (ADS)
Nikkhah, H.; Zheng, Q.; Hasan, I.; Abdul-Majid, S.; Hall, T. J.
2012-10-01
Optical fields that are periodic in the transverse plane self-image periodically as they propagate along the optical axis: a phenomenon known as the Talbot effect. A transfer matrix may be defined that relates the amplitude and phase of point sources placed on a particular grid at the input to their respective multiple images at an image plane. The free-space Talbot effect may be mapped to the waveguide Talbot effect. Applying this mapping to the transfer matrix enables the prediction of the phase and amplitude relations between the ports of a Multimode Interference (MMI) coupler- a planar waveguide device. The transfer matrix approach has not previously been applied to the free-space case and its mapping to the waveguide case provides greater clarity and physical insight into the phase relationships than previous treatments. The paper first introduces the underlying physics of the Talbot effect in free space with emphasis on the positions along the optical axis at which images occur; their multiplicity; and their relative phase relations determined by the Gauss Quadratic Sum of number theory. The analysis is then adapted to predict the phase relationships between the ports of an MMI. These phase relationships are critical to planar light circuit (PLC) applications such as 90° optical hybrids for coherent optical receiver front-ends, external optical I-Q modulators for coherent optical transmitters; and optical phased array switches. These applications are illustrated by results obtained from devices that have been fabricated and tested by the PTLab in Si micro-photonic integration platforms.
NASA Astrophysics Data System (ADS)
Plaksin, Igor; Rodrigues, L.
2013-06-01
Question which mechanism is driving radiation-induced reactions, thermal or athermal becomes a subject of conflicting discussions. Major challenge of this work is to identify at micro- (sub-granular), meso- (grain level) and macro-scale roles of these two mechanisms in triggering initiation chemistry in HMX-based HEs. Four acceptor-patterns were tested at 20 GPa input pressure: single HMX crystal-in-water, HMX/water-slurry, PBX(HMX/HTPB) & inert PBX-simulant (HMX-particles replaced by crystalline sucrose). Scenario of reaction onset-localizations-dissipation was spatially resolved using Multi-Channel Optical Analyzer MCOA-UC (96 channels, 100um-spatial accuracy, 0.2ns-timeresolution, 450-850 nm-spectral range) through real-time panoramic recording emitted reaction light and shock field in standard optic monitor. Experiments reveal a dual nature of initiation chemistry: athermal and thermal. Single-crystal tests disclose origination of photo-induced reactions downstream of emitting reaction spot due to intensified radiation absorption in surface micro-defects. Polycrystalline samples reveal cyclic reproducibility of radiation-induced thermal precursors in which radiation absorption causes thermal expansion/phase-changes of HMX-grains resulting in oscillating detonation. Work was supported by the Office of Naval Research under the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Cliff Bedford and Shawn Thorne Program Managers.
Sriram, K. K.; Yeh, Jia-Wei; Lin, Yii-Lih; Chang, Yi-Ren; Chou, Chia-Fu
2014-01-01
Mapping transcription factor (TF) binding sites along a DNA backbone is crucial in understanding the regulatory circuits that control cellular processes. Here, we deployed a method adopting bioconjugation, nanofluidic confinement and fluorescence single molecule imaging for direct mapping of TF (RNA polymerase) binding sites on field-stretched single DNA molecules. Using this method, we have mapped out five of the TF binding sites of E. coli RNA polymerase to bacteriophage λ-DNA, where two promoter sites and three pseudo-promoter sites are identified with the corresponding binding frequency of 45% and 30%, respectively. Our method is quick, robust and capable of resolving protein-binding locations with high accuracy (∼ 300 bp), making our system a complementary platform to the methods currently practiced. It is advantageous in parallel analysis and less prone to false positive results over other single molecule mapping techniques such as optical tweezers, atomic force microscopy and molecular combing, and could potentially be extended to general mapping of protein–DNA interaction sites. PMID:24753422
In vivo correlation mapping microscopy
NASA Astrophysics Data System (ADS)
McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh; Leahy, Martin
2016-04-01
To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.
Fiber optic distributed temperature sensor mapping of a jet-mixing flow field
Lomperski, Stephen; Gerardi, Craig; Pointer, William David
2015-03-04
In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less
Fiber optic distributed temperature sensor mapping of a jet-mixing flow field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomperski, Stephen; Gerardi, Craig; Pointer, William David
In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less
An adaptive spatio-temporal Gaussian filter for processing cardiac optical mapping data.
Pollnow, S; Pilia, N; Schwaderlapp, G; Loewe, A; Dössel, O; Lenis, G
2018-06-04
Optical mapping is widely used as a tool to investigate cardiac electrophysiology in ex vivo preparations. Digital filtering of fluorescence-optical data is an important requirement for robust subsequent data analysis and still a challenge when processing data acquired from thin mammalian myocardium. Therefore, we propose and investigate the use of an adaptive spatio-temporal Gaussian filter for processing optical mapping signals from these kinds of tissue usually having low signal-to-noise ratio (SNR). We demonstrate how filtering parameters can be chosen automatically without additional user input. For systematic comparison of this filter with standard filtering methods from the literature, we generated synthetic signals representing optical recordings from atrial myocardium of a rat heart with varying SNR. Furthermore, all filter methods were applied to experimental data from an ex vivo setup. Our developed filter outperformed the other filter methods regarding local activation time detection at SNRs smaller than 3 dB which are typical noise ratios expected in these signals. At higher SNRs, the proposed filter performed slightly worse than the methods from literature. In conclusion, the proposed adaptive spatio-temporal Gaussian filter is an appropriate tool for investigating fluorescence-optical data with low SNR. The spatio-temporal filter parameters were automatically adapted in contrast to the other investigated filters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G
2016-12-01
Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.
Near-infrared image-guided laser ablation of artificial caries lesions.
Tao, You-Chen; Fan, Kenneth; Fried, Daniel
2007-01-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two-dimensional NIR images of demineralized tooth surfaces can be used to guide CO(2) laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm(2) bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO(2) laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO(2) laser ablation system for the selective removal of dental caries.
Near-infrared image-guided laser ablation of artificial caries lesions
Tao, You-Chen; Fan, Kenneth; Fried, Daniel
2012-01-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two–dimensional NIR images of demineralized tooth surfaces can be used to guide CO2 laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm2 bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO2 laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO2 laser ablation system for the selective removal of dental caries. PMID:22866210
Near-infrared image-guided laser ablation of artificial caries lesions
NASA Astrophysics Data System (ADS)
Tao, You-Chen; Fan, Kenneth; Fried, Daniel
2007-02-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two-dimensional NIR images of demineralized tooth surfaces can be used to guide CO II laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 x 5 mm2 bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO II laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO II laser ablation system for the selective removal of dental caries.
A Case For Free-free Absorption In The GPS Sources 1321+410 And 0026+346
NASA Astrophysics Data System (ADS)
Marr, Jonathan M.; Perry, T. M.; Read, J. W.; Taylor, G. B.
2010-05-01
We report on the results of VLBI observations of two gigahertz-peaked spectrum sources, 1321+410 and 0026+346, at five frequencies bracketing the spectral peaks. By comparing the three lower-frequency flux-density maps with extrapolations of the high frequency spectra we obtained maps of the optical depths as a function of frequency. The morphologies of the optical depth maps of 1321+410, at all frequencies, are strikingly uniform, consistent with there being a foreground screen of absorbing gas. We also find that the flux densities across the map fit free-free absorption spectra within the uncertainties. The required free-free optical depths are satisfied with reasonable gas parameters (ne 4000 cm-3, T 104 K, and L 1 pc). We conclude that the case for free-free absorption in 1321+410 is strong. In 0026+346, there is a compact feature with an inverted spectrum at the highest frequencies which we take to be the core. The optical depth maps, even excluding the possible core component, exhibit a noticeable amount of structure, but the morphology does not correlate with that in the flux-density maps, as would be expected if the absorption was due to synchrotron self-absorption. Additionally, the spectra (except at the core component) are consistent with free-free absorption, to within the uncertainties, and require column depths about one half of that in 1321+410. We conclude that free-free absorption by a relatively thin amount of gas with structure apparent on the scale of our maps in 0026+346 is likely, although the case is weaker than in 1321+410. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and by a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Blakley, Sean Michael
Nitrogen--vacancy diamond (NVD) quantum sensors are an emerging technology that has shown great promise in areas like high-resolution thermometry and magnetometry. Optical fibers provide attractive new application paradigms for NVD technology. A detailed description of the fabrication processes associated with the development of novel fiber-optic NVD probes are presented in this work. The demonstrated probes are tested on paradigmatic model systems designed to ascertain their suitability for use in challenging biological environments. Methods employing optically detected magnetic resonance (ODMR) are used to accurately measure and map temperature distributions of small objects and to demonstrate emergent temperature-dependent phenomena in genetically modified living organisms. These methods are also used to create detailed high resolution spatial maps of both magnetic scalar and magnetic vector field distributions of spatially localized weak field features in the presence of a noisy, high-field background.
Rousselet, Jérôme; Imbert, Charles-Edouard; Dekri, Anissa; Garcia, Jacques; Goussard, Francis; Vincent, Bruno; Denux, Olivier; Robinet, Christelle; Dorkeld, Franck; Roques, Alain; Rossi, Jean-Pierre
2013-01-01
Mapping species spatial distribution using spatial inference and prediction requires a lot of data. Occurrence data are generally not easily available from the literature and are very time-consuming to collect in the field. For that reason, we designed a survey to explore to which extent large-scale databases such as Google maps and Google Street View could be used to derive valid occurrence data. We worked with the Pine Processionary Moth (PPM) Thaumetopoea pityocampa because the larvae of that moth build silk nests that are easily visible. The presence of the species at one location can therefore be inferred from visual records derived from the panoramic views available from Google Street View. We designed a standardized procedure allowing evaluating the presence of the PPM on a sampling grid covering the landscape under study. The outputs were compared to field data. We investigated two landscapes using grids of different extent and mesh size. Data derived from Google Street View were highly similar to field data in the large-scale analysis based on a square grid with a mesh of 16 km (96% of matching records). Using a 2 km mesh size led to a strong divergence between field and Google-derived data (46% of matching records). We conclude that Google database might provide useful occurrence data for mapping the distribution of species which presence can be visually evaluated such as the PPM. However, the accuracy of the output strongly depends on the spatial scales considered and on the sampling grid used. Other factors such as the coverage of Google Street View network with regards to sampling grid size and the spatial distribution of host trees with regards to road network may also be determinant.
Shivkumar, Kalyanam; Ellenbogen, Kenneth A.; Hummel, John D.; Miller, John M.; Steinberg, Jonathan S.
2012-01-01
Catheter ablation of atrial fibrillation (AF) currently relies on eliminating triggers, and no reliable method exists to map the arrhythmia itself to identify ablation targets. The aim of this multicenter study was to define the use of Focal Impulse and Rotor Modulation (FIRM) for identifying ablation targets. METHODS We prospectively enrolled the first (n=14, 11 males) consecutive patients undergoing FIRM guided ablation for persistent (n=11) and paroxysmal AF at 5 centers. A 64 pole basket catheter was used for panoramic right and left atrial mapping during AF. AF electrograms were analyzed using a novel system to identify sustained rotors (spiral waves), or focal beats (centrifugal activation to surrounding atrium). Ablation was performed first at identified sources. The primary endpoints were acute AF termination or organization (>10 % cycle length prolongation). Conventional ablation was performed only after FIRM guided ablation. RESULTS 12/14 cases were mapped. AF sources were demonstrated in all patients (average of 1.9±0.8 per patient). Sources were left atrial in 18 cases, and right atrial in 5 cases, and 21/23 were rotors. FIRM guided ablation achieved the acute endpoint in all patients, consisting of AF termination in n=8 (4.9±3.9 min at the primary source), and organization in n=4. Total FIRM time for all patients was 12.3±8.6 min. CONCLUSIONS FIRM guided ablation revealed localized AF rotors/focal sources in patients with paroxysmal, persistent and longstanding persistent AF. Brief targeted FIRM guided ablation at a priori identified sites terminated or substantially organized AF in all cases prior to any other ablation. PMID:23130890
Dekri, Anissa; Garcia, Jacques; Goussard, Francis; Vincent, Bruno; Denux, Olivier; Robinet, Christelle; Dorkeld, Franck; Roques, Alain; Rossi, Jean-Pierre
2013-01-01
Mapping species spatial distribution using spatial inference and prediction requires a lot of data. Occurrence data are generally not easily available from the literature and are very time-consuming to collect in the field. For that reason, we designed a survey to explore to which extent large-scale databases such as Google maps and Google street view could be used to derive valid occurrence data. We worked with the Pine Processionary Moth (PPM) Thaumetopoea pityocampa because the larvae of that moth build silk nests that are easily visible. The presence of the species at one location can therefore be inferred from visual records derived from the panoramic views available from Google street view. We designed a standardized procedure allowing evaluating the presence of the PPM on a sampling grid covering the landscape under study. The outputs were compared to field data. We investigated two landscapes using grids of different extent and mesh size. Data derived from Google street view were highly similar to field data in the large-scale analysis based on a square grid with a mesh of 16 km (96% of matching records). Using a 2 km mesh size led to a strong divergence between field and Google-derived data (46% of matching records). We conclude that Google database might provide useful occurrence data for mapping the distribution of species which presence can be visually evaluated such as the PPM. However, the accuracy of the output strongly depends on the spatial scales considered and on the sampling grid used. Other factors such as the coverage of Google street view network with regards to sampling grid size and the spatial distribution of host trees with regards to road network may also be determinant. PMID:24130675
Optical mapping of optogenetically shaped cardiac action potentials.
Park, Sarah A; Lee, Shin-Rong; Tung, Leslie; Yue, David T
2014-08-19
Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation.
Optical mapping of optogenetically shaped cardiac action potentials
Park, Sarah A.; Lee, Shin-Rong; Tung, Leslie; Yue, David T.
2014-01-01
Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation. PMID:25135113
Surface characterization based on optical phase shifting interferometry
Mello, Michael , Rosakis; Ares, J [Altadena, CA
2011-08-02
Apparatus, techniques and systems for implementing an optical interferometer to measure surfaces, including mapping of instantaneous curvature or in-plane and out-of-plane displacement field gradients of a sample surface based on obtaining and processing four optical interferograms from a common optical reflected beam from the sample surface that are relatively separated in phase by .pi./2.
Prevalence of Taurodont Molars in a Selected Iranian Adult Population
Jamshidi, Davoud; Tofangchiha, Maryam; Jafari Pozve, Nasim; Mohammadpour, Mahdis; Nouri, Bijan; Hosseinzadeh, Kazem
2017-01-01
Introduction: Taurodontism is an anomaly characterized by elongated crowns and consumedly apical location of the bifurcation area. This study aimed to determine the prevalence of taurodontism in molars based on digital panoramic radiographies in eight cities of Iran. Methods and Materials: This descriptive cross-sectional study was conducted on 2360 digital panoramic radiographs taken for different treatment purposes. Demographic information of patients was recorded and radiographs were evaluated for presence of taurodont molars. The prevalence rates were calculated and the data were analyzed using SPSS software version 18 via paired t-test, chi square test and ANOVA. Results: A total of 2360 panoramic radiographs (from 51.4% male and 48.6% female patients) were evaluated and the prevalence of taurodontism was reported 22.9% (22.6% in males and 23.3% in females) (P>0.05). Its prevalence was 51.67% in the right and 48.33% in the left quadrants (P>0.05), 34.1% in the mandible and 65.9% in the maxilla (P=0.000) and 79.52% in the second and 20.48% in the first molar (P=0.000). The prevalence of hypotaurodontism, mesotaurodontism and hypertaurodontism was 84.13%, 11.07% and 4.8%, respectively. Conclusion: The prevalence of taurodont molars was high in Iran and it was more common in the second molars and in the maxilla. Hypotaurodontism had the highest prevalence. PMID:28808451
Using Vertical Panoramic Images to Record a Historic Cemetery
NASA Astrophysics Data System (ADS)
Tommaselli, A. M. G.; Polidori, L.; Hasegawa, J. K.; Camargo, P. O.; Hirao, H.; Moraes, M. V. A.; Rissate, E. A., Jr.; Henrique, G. R.; Abreu, P. A. G.; Berveglieri, A.; Marcato, J., Jr.
2013-07-01
In 1919, during colonization of the West Region of São Paulo State, Brazil, the Ogassawara family built a cemetery and a school with donations received from the newspaper Osaka Mainichi Shimbum, in Osaka, Japan. The cemetery was closed by President Getúlio Vargas in 1942, during the Second World War. The architecture of the Japanese cemetery is a unique feature in Latin America. Even considering its historical and cultural relevance, there is a lack of geometric documentation about the location and features of the tombs and other buildings within the cemetery. As an alternative to provide detailed and fast georeferenced information about the area, it is proposed to use near vertical panoramic images taken with a digital camera with fisheye lens as the primary data followed by bundle adjustment and photogrammetric restitution. The aim of this paper is to present a feasibility study on the proposed technique with the assessment of the results with a strip of five panoramic images, taken over some graves in the Japanese cemetery. The results showed that a plant in a scale of 1 : 200 can be produced with photogrammetric restitution at a very low cost, when compared to topographic surveying or laser scanning. The paper will address the main advantages of this technique as well as its drawbacks, with quantitative analysis of the results achieved in this experiment.
Bastos, Aline do Carmo; de Oliveira, Joelma Bezerra; Mello, Karina Flexa Ribeiro; Leão, Patrícia Botelho; Artese, Flavia; Normando, David
2016-12-01
The aim of this study was to evaluate the ability of oral/maxillofacial surgeons (OMFSs) and orthodontists to predict third molar eruption by examining a simple panoramic radiograph in cases where full spontaneous eruption occurred. Panoramic radiographs of 17 patients, 13-16 years of age, were obtained just after orthodontic treatment (T1), when the third molars were intraosseous. The radiographs at T1 were presented to 28 OMFSs and 28 orthodontists-who were asked to give a prognosis for the lower third molars on both sides (n = 34). The full spontaneous eruption of all third molars was clinically observed when patients were older than 18 years (T2). These teeth were clinically asymptomatic at T1 and T2. OMFSs decided by extractions in 49.6 % of cases while orthodontists in 37.8 % (p < 0.001), when the radiographs were examined at T1. Agreement between OMFSs and orthodontists was excellent (Kappa = 0.76, p < 0.0001), as well as intragroup agreement for both OMFSs (Kappa = 0.83) and orthodontists (Kappa = 0.96). Despite a remarkable agreement for third molar prognosis, orthodontists and OMFSs were unable to predict lower third molar eruption by examining a simple panoramic radiograph. Both indicated extractions of a considerable number of spontaneously erupted asymptomatic teeth.
Cerqueira, E M M; Gomes-Filho, I S; Trindade, S; Lopes, M A; Passos, J S; Machado-Santelli, G M
2004-08-08
The genotoxic effects of X-ray emitted during dental panoramic radiography were evaluated in exfoliated cells from oral epithelium through a differentiated protocol of the micronucleus test. Thirty-one healthy individuals agreed to participate in this study and were submitted to this procedure for diagnosis purpose after being requested by the dentist. All of them answered a questionnaire before the examination. Cells were obtained from both sides of the cheek by gentle scrapping with a cervical brush, immediately before the exposure and after 10 days. Cytological preparations were stained according to Feulgen-Rossenbeck reaction and analyzed under light and laser scanning confocal microscopies. Micronuclei, nuclear projections (buds and broken eggs) and degenerative nuclear alterations (condensed chromatin, karyolysis and karyorrhexis) were scored. The frequencies of micronuclei, karyolysis and pycnosis were similar before and after exposure (P > 0.90), whereas the condensation of the chromatin and the karyorrhexis increased significantly after exposure (P < 0.0001). In contrast, both bud and broken egg frequencies were significantly higher before the examination (P < 0.005), suggesting that these structures are associated to the normal epithelium differentiation. The results suggest that the X-ray exposure during panoramic dental radiography induces a cytotoxic effect by increasing apoptosis. We also believe that the score of other nuclear alterations in addition to the micronucleus improves the sensitivity of genotoxic effects detection.
Cobbles in Troughs Between Meridiani Ripples (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
As NASA's Mars Exploration Rover Opportunity continues to traverse from 'Erebus Crater' toward 'Victoria Crater,' the rover navigates along exposures of bedrock between large, wind-blown ripples. Along the way, scientists have been studying fields of cobbles that sometimes appear on trough floors between ripples. They have also been studying the banding patterns seen in large ripples. This view, obtained by Opportunity's panoramic camera on the rover's 802nd Martian day (sol) of exploration (April 27, 2006), is a mosaic spanning about 30 degrees. It shows a field of cobbles nestled among wind-driven ripples that are about 20 centimeters (8 inches) high. The origin of cobble fields like this one is unknown. The cobbles may be a lag of coarser material left behind from one or more soil deposits whose finer particles have blown away. The cobbles may be eroded fragments of meteoritic material, secondary ejecta of Mars rock thrown here from craters elsewhere on the surface, weathering remnants of locally-derived bedrock, or a mixture of these. Scientists will use the panoramic camera's multiple filters to study the rock types, variability and origins of the cobbles. This is a false-color rendering that combines separate images taken through the panoramic camera's 753-nanometer, 535-nanometer and 432-nanometer filters. The false color is used to enhance differences between types of materials in the rocks and soil.